

COMPUTER NOTES/APRIL 7, 1978

Qand &

Q. tht do I need to hook my
Southwest Technical Products CT1024
to my ALTAIR?

A. You need a CT-S serial in-
terface from Southwest Tech and
a SIOA interface from MITS.

Another possibility that we
believe will work is a 88-PIQ
from MITS and a CT-L parallel
interface from Southwest.

Q. What do I do about a short rou-
tine or subroutine that doesn't do
what I want it to?

A. Send it to our service desk --
we won't rewrite it for you but we
will tell you what you are doing
wrong.

Q. What kinds of hardware problems
have you been experiencing with the
88007

A. The problems at this point have
been only in kits and have been pri-
marily solder bridges and cold solder
joints in the ground or power cir-
cuits. Point of interest: Of 1000
units in the field, only 13 have
been returned to date. Five of these
have been at the request of the re-
air department to investigate
.otentially serious problems.

©,S. They weren't serious.

Q. How many optioms can I put in
my ALTAIR 8800 before I have to beef
up the power supply?

A. There are 16 slots in the basic
chassis. One of these is taken up
by the CPU board. The other 15 can
be filled in any manner (memory, 1/0,
etc.) to satisfy the user’'s require-
ments.

Q. How do I use the sense switches? .

A. Sense switches are inputted to

AREG by an input 303 from DEVICE 377. |

After this the data may be manipu-

lated in any fashion that you choose. |

Q. What does MITS have in the mill
as a mass storage device priced be-
tween the Audio Cassette and the
Floppy Disk?

A. We do have a mag tape system in
the planning stages right now, and
will be announcing more on it in
future newsletters.

C

Q. How can I contact other Users
Group members?

© A, If you will send a letter to
Barb authorizing her to publish your
name to other users, we'll have
these names printed in future news-
letters.

A. Look at the "New Products" page
in this newsletter. (page %)

Q. I've seen bits and pieces about
software available for the 8800.
What's the full story?

A. See page 3 for software details
and prices.

ALTAIR CHECKCUT PROCEDURE

1. BEFORE APPLYING POWER VISUALLY
(WITH THE AID OF & MAGNIFYING GLASS
IF POSSIBLE) CHECK FOR SOLDER
BRIDGES, COLD SCLLER JOINTS, BROKEN
LANDS AND/OR WIRES AND CORRECT ORI~
ENTATION OF COMPONENTS. 97.37452%
OF ALL FAILURES CAN BE CAUGHT DURING
THIS STEP.

2, With the pluggable boards out
of the machine, power it up and
check the terminal boards for the
proper imput voltages.

Check the bus for +5 volts (pins 1 &
§1), +15 volts (pin 2), -15 volts
(pin 52), and ground (pins 50, 100).
With the boards out these should
reach as follows:

(Use negative side of power supply
electrolytic capacitors as ground.)

Pins 1 & 51 +10 VDC
Pin 2 420 VDC) approx.
Pin 52 -17 VDC,

Pins 50, 100 -ov

_ ——
Now check that none of these voltages
are seen on pins adjacent to the
above checked pins.

NOTE: IN NO CASE REMOVE OR INSTALL
ANY BOARDS WITH POWER ON.

3. After powering the machine down,
install the boards and check the out-
put of the voltage regulators for
4+5VDC. Also check the output of the

12V zener on the CPU board for +12VDC.

Assuming everything above is
kosher, you should now power the
machine down; install the CPU plug
and power it back up. The machine
comes up in an undetermined state,
so what you do is hold the STOP
switch in the stop position and give
‘it a RESET. Then'check to see if it

unprotec
CN Now you can check out the dif-
ferent switches and indicators. All
address switches should be in the
off position. Hold the RESET on--
you should have all the status lights
off and all data address lights on.
When you release the FESET switch,
all the address ligats should go off.
The MEMR, M1, WO, WAIT lights should
be on and whatever data there is in
location 0 will be displayed in the
data lights.

Now to check the lights and
switches for proper operation, turn
each address switch on one at a time
and make sure that the' corresponding
address light comes on when EXAMINE
switch is operated. What you are
doing here is checking for obvious
shorts in the address bus area so
only one switch should be on at a
time.

The data lights should be
checked in the same fashion. Oaly
use the lower 8 switches and the
DEFQSIT switch to check these.

Checking the EXAMINE NEXT and
DEPOSIT NEXT is fairly simple. Just
keep pressing them and observe that
the address lights count up binarily.

Make sure that PROTECT switch
turns on the Protect Status light
and that UNPROTECT turns it off.
With the PROTECT on you shouldn't be
able to change the contents of mem-
ory with DEPOSIT or DEPOSIT NEXT
(or instructions either).

Now you're ready to try a pro-
gram, Use the one in the Operator's
Manual on pages 33-38. After you
load everything in be sure to RESET
so that you start from LOC 0. SINGLE
STEP through it first to check out
the SINGLE STEP switch and then run
it. Every time you stop it to exam-
ine the results be sure to RESET

prior to restarting.
B

COMPUTER NOTES/AUGUST.1975

8800 MOD

(1) DEPOSIT PROBLEM (D/C board)
SYMPTOMS: Machine won't deposit
at all or deposits all ones when
using the front panel deposit
switch.

FIX: Change the timing capa-

citors for the deposit single shot

(IC G on the Display/Control
board). Chanc 7 to 0.0IMF,
C8 to 0,1 MF.

(2) 12 VOLT ZENER (CPU board)
SYMPTOMS: Zener running very hot.
FIX: Change R46 on CPU board to
43 ohms (Use either a 1IW or 2w
resistor). This should be done
only if there are four or less
cards on the bus. If there are
more than four cards R46 should
be 33 ohms.

(3) AC SWITCH (Display/Control
beard).

PROBLEM: The tracks on the D/C
board which connect the AC switct
terminals to the pads where the
switch wires are connected to

the board have 115VAC on them. If
these are inadvertently shorted
to other tracks on the board
several IC's are wiped out.
FIX:(a) remove the AC switeh lines
from the D/C board,

(b) Cut the tracks leading from
the pads where the switch is mount-
ed to the pads where the AC
switch wires attach to the D/C
board. Cut the tracks as close as
possible to the switch pads so
there will be no length of track
with 115VAC on it.

(¢} Slide about 1" of heat .
shrink tubing (3/32 to 7/64 diam.)
over the AC switch wires. Solder
these wires directly to the AC
switch terminals. Slide the heat.
shrink tubing down so it covers the
switch terminals and uninsulated
ends of the switch wires. Heat the
tubing once it has been properly
positioned to keep it in place.

(4) CLOCK SPECS (CPU Board)

(a) Phase 1 pulse width (meas-
ured at 90% points), 60 nano-
seconds minimum.

(b) Phase 2 pulse width (meas-
ured at 90% points), 220 nano-
seconds minimum.

{c) Delay from leading edge
(90%) of Phase one to leading
edge (10%) of Phase 2. 130
nana-seconds minimum.

(d) Delay from trailing edge
(10%) of Phase 2 to leading
edge (10%) of phase 1. 70
nano-seconds minimum.

MAINTENANCE
by Paul Van Baalen

A good percentage of the people
who have had trouble with their
bits have shown this symptom. "All
the data lites on at all times".
Below is a 1ist of the most common
causes:

A. Check the mother board for
shorts using VOM.

B. Insure that all regulated
voltages are OK.

C. Make sure the memory is install-
ed and the address strapping is
correct. Be sure that the connec-
tor from the front panel for the
data lines is on the CPU.

D. Are all the data lines high
on the D/C board? If they aren't,
check the continuity of the CPU
connector.

E. Check the timing of 01 £02.

F.Check the drivers J&H on the
static memory board. These tri-
state drivers need a low on pins
1615 to pass a signal. If 1615
are high the outputs of these drivers
will be high all the time.

G. See if line 68 on the bus is
high all the time. If it is, back-
track- thru the logic. Most pro-
bable cause is ICG on the front
panel being bad or a short or
solder bridge in the vicinity
of ICG.

H. Check IC's UET on D/C board

" to insure the signal levels are
' correct,i.e.; no 1.5 volt levels
‘as opposed to £.5V or Zu+VDC.

S

C

COMPUTER NOTES/OCTOBER. 1975

IAVRIROWIHIEIANDFRIRS

woob construcs
Ve ngm=

s tallowing

has been
mes; you may find
erring to various
nge process, as

7 was changed
7 4FD, then *o
abpsolute last
(as of August
4P A hanges

5 severas

wange notices

weili as extra

Page 18

(D/C Board): Don't bolt the printed
boarl to the sub-panel; the
s will nold it fine. The

s come with extra mounting

ind extra guide washers; you can
sarfely throw away all this extra
hardware - you den't need it. Mount
the switches as shown with only one
nut each for best results.

Fage 39

The wafer connector is
o large to £it the board
1t sav the holes in the
ooari are too clese). To prevent
connector plug from arching,
it down flat l2 so. rg
it on. If wvou can't clamp it, then
try cutting it with a hacksaw into
two 4-pin connectors. .

(Checkout): After turning the com-
ter on you should reset it. To

~t the computer you have to holid
“.e stop switch raised while raising
the reset switch. Release the reset
switch first. (No, we don't know
why, but it's traditionall)

Pages u0-u6

(1K Memory): Until May, only the 1K
memory board was available, and most
systems were ordered with 256 words
of memory on one of these boards.

Now that the 2K and 4K memories are
available, it isn't sensible to re-
quire some 1K boards in every system,
but the instructions are still embed-
ded in the CPU manual. CPU kits
don't have any memory in them.

Page 50

(P/S Board): The bridge rectifier
seems to cause more than its share
of problems. Be sure the leads are
clean - several of us have found
that solder won't wet the leads, and
it's a mess to try to clean the par-
tially soldered assembly. Run the
leads through some slcohol and/or
steel wool before installing the
bridge. The spacer-and-washer ar-
rangement on Page 51 is a jig to get
the bridge flat at the right position
it will later be bolted directly to
the chassis.

MITS doemn'r

oW the
trimming tran
all the %20

and use
have long loc

good for allowing beards, etc. to be
moved without breaking wires, but
you may want to install the terminal
lugs after consulting the wiring
diagrams on Pages 59 and 62.

P, 85

(er board): The way the instruc-
tions spell it out, you'll have a
slack loop of cable. Hold everything
in place on the chassis to see the
actual length required. We are in-
cluding a sorted list of wires to
help you check your progress. Using
masking tape, group the wires in
decades after protecting them with a
cable clamp. Then, install them on
the metherbeard, by decades; 50's,
69's, 70's,20's,30's, 30's, 20's,

ard finally u40's.

the cable clamps by

to the printed circuit
y. If you put screws

he sub-panel, then the

el won't fit flush against
u won't be able to screw the
chassis into the case!

Page 68

(Expander Hoards): The capd yolges
are maybe sorta optional. They look
nice, but they really aren't veguire:

place - the
enty strong

%o hold the boards ir
edge connectors are g
for that.

orle advecate
ion of the CPU
reguiater and
ilodes on the CPU have been

Page 77
(Nameplate):

This beauty gets a lot
of criticis "Mine was off-color,
kinda pinkish." That's a sticky
plastic cover to protect it until
after you've installed it. Peel the
covering off afterward. The white
lettering on the dress-panel can be
chipped off by hard use. If you de-
cide to protect it with clear acrylic
spray, use a matte-finish product.
Ours locks funny with a glossy krylon
Ffinish.

DATA/CONTROL ‘BOARD CONNECTIONS TO SYSTEM BUS

ORGANIZED BY DECADE

0's 10's 20's 30's 40's
20 30 41
21 31 42
24 32 43
26 33 44
27 34 45

28 37 46 (11!)

29 39 47
48

50's 60's 70's 80's 90's
53 68 70 80 91
54 69 71 81 92
72 82 93
75 83 94
76 84 95
77 8s 96
78 86 97
79 87 98
99

S

CONPUTER NOTES/JULY,137%

MEASURING INTERRUPT ACTIVITY o nosman crowroor

Altair User Devises Interrupt Monitor

"Duning the course of completing
a procesds-contnold application wtil-
4izing the Altair computer, it became
necessary Lo obtain certain measure-
ments qf interrupt activity. 1
devised and <{mplemented a hardware/
softwane mechanism in which Computer
Notes neaders may be interesied.

"Briefly, a ¢ w-chip cireudlt
was constructed on a protolype card
and four instwetions were added
Lo the general interrwupt service
noutine. This mechanism i& further
detailed below."

Sincernely,

Norman C. Crowfoot
Lowell Observatony
Feagszafg, AZ 86001

Interrupt Monitor

General Description:

In order to accurately measure
certain time-dependent interrupt
parameters on a heavily-loaded Al-
tair 8800 system, the following
hardware/software additions were
made.

The hardware additions consist
of four integrated circuit (IC)
packages on a prototype board. The
function of this circuit is to latch
data written by the central process-
ing unit (CPU) to a specific memory
address area. This data is further
used to gate a 1 Miz pulse stream.

The software additions consist
of four additional instructions in-
serted into a general interrupt
routine. These instructions set
and reset the hardware data latch.

Together these additions allow
the accurate measurement of the
following parameters:

- interrupt rate;

- interrupt count;

- microseconds used to process
interrupts; .

percentage of total machine

cycles used to process interrupts;

interrupt response latency time

Hardware Description:

Constructed on a prototype
card, the four-package circuit is
diagrammed in Figure 1. The circuit
responds to all memory writes with
address bit 15 high; that is, all
addresses greater than or equal to
X'8000'. The data is latched from
data line zero into IC C, a D-type
flip-flop. Test point A reflects
the status of this latch.

IC D continuously divides the
2 Miz P, clock to yield a 1 MHz
square wave. This 1 MHz pulse
stream is then gated to test point
B by the current setting of IC C.

Software Description:

The general interrupt service
routine is listed in Figures 2 and

Figure 2 lists the memory
locations to which the Vectored
Interrupt (VI) board forces the CPU
to execute. A typical routine
(INT1), first pushes the B/C and

_ D/E register pairs, and then calls

the general interrupt service rou-
tine (LEVEL). Following the call
are three bytes of parameters for
LEVEL. First is the new level mask
work for the VI board, then two

.bytes of the address of the specific

interrupt handling subroutine for
the level.

Figure 3 lists LEVEL, the
general interrupt service routine,
and BACK, the general return rou-
tine. LEVEL completes the saving
of registers, pushes the current
status of the VI board (CLMASK) and
sets the VI board up for the new
level. Note that at this time, all
previous context is pushed on the
stack and that interrupts may now
be enabled. The ';;;' notation in
the remarks field indicates instruc-
tions for which interrupts are
masked off,

LEVEL then fakes a call on the
specified handler subroutine, by
pushing the address of BACK and then
pushing the handler address. Fin-
ally a return (RET) instruction is
executed, causing a branch to the
handler subroutine.

The code at location BACK is
entered when the handler routine
executes a RET instruction, causing
the address pushed by LEVEL to be
returned to. First BACK restores
the VI board and location CLMASK
to their previous values. Then all
registers are restored and a RET
instruction is executed to return
control to the interrupted code.

This technique of handling
interrupt context changes allows
interrupts to be nested to an in-
definite level: 1In fact, interrupts
are allowed at all times, except
when the VI board is being updated.

In Figure 3, the four additional
instructions have been marked. They
simply store a 'l' at location
X'8000' upon entry to LEVEL and set
X'8000' to '0' upon exiting BACK.

Measurement Procedure:

Referring to Figure 1, the
following procedures are used to
measure various timings and counts:

'

interrupt rate - attach frequency
meter at test point A;

- interrupt count - attach cvent
counter at test point A;

)

microseconds used to process
interrupts - attach event
counter at test point B;

interrupt response latency time -
trigger 'scope on rise of CPU
line PINT, measure time to

rise of status line SINTA. The
lines PINT and SINTA are avail-
able on the MITS bus.

lioubr.less, there are many other

measurements that may be made with
this relatively simple setup.

-continued

J

Measuring Interrupt Activity

b“

C

General Suggestions and Comments:

Only half of IC C, the 7474
latch, is used. Another data line
may be connected to the unused half
for adding further software "hooks'
for rore compl cd measurements.
Additicnally. » ating logic
might be added ts combine several
latch cutruts. For instance, this
could be used to determine how
often the CPU is interrupted from
some specific code or interrupt
level.

The Power Cn Clear (POC), bus
lin- .9, was tied to Reset, line
75, to cause the CPU to automati-
cally start at location zero when
power is first applied to the ma-
chine. Obviously, some type of
involatile mermory is required to
enable this feature to work proper-
ly. And logically, cne might
wonler why this minor alteration
#as mot included in the original
“ITS design.

We also found a subtle problem
with the Intel SI14 priority inter-
rupt control chip, used on the VI
board. While it is described as a
latch, it is clocked at 2 Mlz and
thus appears as a buffer. Too
short an interrupt request signal
causes the 8214 to develop a level
zero interrupt, rather than the
one originally requested. The
interrupt request line must be
held until the CPU grants the
interrupt. Beware also of holding
the line too long, as multiple
interrupts will be generated.

A final point is that the
MITS engineers, in their infinite
wisdom, have reversed the level
numbers on the VI board going into
the 8214. This explains the appa~
rent reversal of the VI mask bytes
in Figure 2.

This work is an outgrowth of
a larger project which has been sup-
ported in part by the National Sci-
ence Foundation grant AST 73-05269
A0l to the Lowell Observatory.

A

POC SET
[:l“
ORCE RESET AT
POWER ON

L

INTERRUPT

n 8
j e _JLUL
TMHZ WHILE IN
INTERRUPT
GND Vce {
A 8885 7 14
B 3880 7 14
< 7474 n 4
0 7473 n 4

FIGURE 1_- HARDWARE

MAIDVAIY

) 8 NP, STAGK
ENET Foit (LX)
Jy LEVELD

[
LEVEL
a6
LEVELL
Brre——— I[NTERRUPT LEVEL 2
orc 020"
INT2 PUSAR B
PUSH D
€ALL LE\':L
T a1
OEF Leirez
*
Ko l'iTERRVP"‘ LE\’EL 2
R
IAT3 s n
PUSH D
CaLL LEVEL
ocT 314
DEF LEVEL3
-
#=~===e INTERRUPT LEVEL 4
ORG 030"
INT4 PUSH B
PUSE D
CALL LEVEL
ocT 213
DEF LEVELS
=
#----~—- INTERRUPT LEVE‘L 5
RC 0'
INTS PUSH
PUSH n
CALL LEVEL
ocT 212
DEF LEVELS
nT}:P.nD'r‘r LEVEL 6
on; 60°
INT6 van n
D
CALL LEVEL
oGT 311
DEF LEVEL6
3
#===-==e= INTERRUPT LEVEL 7
ORG 079"
INT? PUSH B
pPusH D
CALL LEVEL
ocT 319
DEF LEVELY

INTEIIWIY LEVELN

LOrALVAYR AT LOE
TOINEDIP WTAGK NHNDN
POUUNTART Potar
VCCONTIRIE NITI STARTYP

" unwnm: FIXED LOCATLON

MSK
ADD) ms 'OF HANDLER SUBROUTINE

TARDVARE FIXED LOCATIoN
AVE B/E REG PA
VE D/E REG nm
rr\nwz VITH COM™ON CODE

% LEVEL MASK WORD
\DDRESS OF MARDLER SUBROUTINE

LURDVARE 7 13ED l].oc.\‘rmn

i1 ICONTINUE VITH conml copE
xulll:‘l LEVEL MASK
+1:ADDRESS OF HANOLER SUBROUTINE

run
ONTINUE vlm coﬂm! copE
. | NEW LEVEL
+ 1 ADDRESS OF H.MBLEI SUBROUTINE

+ 5 : HARDVARE F 1XED Lou:uron

: xgaﬂ: a/r. ch

iSAVE D.

OKTINIIE VITH romn CODE

t E¥ LEVEL MASK W

t1:ADDRESS OF WDLER SUBROUTINE

111ADDRESS OF IMDLZI\ SUBROUTINE

GENERAL INTERRUPT SERVICE llDUTlN!. CDHPLETE STACK FRAME
AND UPDATE CURRENT LEVEL ON VI

CENERAL FORM OF THE CONTEXT STACK FRANE
ADDRESS OF RETUR® HANDLER (BACK®)

gu) CLMASK

" SAVE B/L REC PAIR + GET PARM LIST
:SAVE PSW/A REC PATR
G, ‘ME |

EVEL MASK
VE AS PART OF STI\L'K CONTEXT
113READ NEV LEVEL
+3 RETAIN FOR NEXT sTACK FRAME
11 INFORM VI BOARD
+110PEN UP FOR HORE INTERAUPTS

”—-—-—FOY FAKE slmmlrrnm CALL Dlrgll‘ﬁll'l!\’ LPV!L SUBROUT {NE
"

1 THEN GO TO m lwlﬂ'”“:

Reeeooo~RETURN FRON INTERAUPT ROUTINE, RESTORE ST

o
Ei
PUS!
INX s
mov EN
INX i
MOV oM
PUSE D
RET
BACK D1
POP
8TA CLHA!K
T vi
POP PSW
POP id
POP
POP B
RET

(additional instructions marked '*'}

1O KEEP T QUIET FOHL: EOUPLE OF CYCLES

111PULL BACK OLD

VI BOJ
11 10PEK UP NW. TNICIQ.V STUFF*S DONE
+11CLEAR A

:THEN EXIT TBIS IN‘"MII" LEVEL

03

OMPYUTER NOTES/JLLY~197b

The Mainframe of the Seventies

The Altair 8500b, now in full
production, has gencrated a large
number of inquiries, reminiscent of
the responsc to the original Altair
8800. Because of this, we are devot-
ing a large portion of this month's
Computer Notes to technical informa-
tion on the 8800b.

When the original Altair 8800
first went out into the field, it
was by far the most advanced design
of its kind. By being at the van-
guard of the computer movement, MITS
has been in a unique position to
assimilate feedback and new informa-
tion from many sources: from hobby
customers, from business users, from
computer design industries. All of
these influences have been percolat-
ing at MITS since the first Altair
computer came off the line, and the
current result is the Altair 8800b.
We feel it will be "the mainframe of
the 70's."

As anyone associated with micro-

computers will tell you, the field

is evolving so rapidly that keeping
current is almost a day-to-day job.
The Altair 8800b incorporates many
new electronic and mechanical fea-
tures including some of the newer
integrated circuits for the 8080
family of microprocessors.

The new design features of the
Altair 8800b that will be discussed
here include: enhanced front panel
capabilities, new Display/Control
logic, the Front Panel Interface
Board, the new CPU Board, added bus
lines and heavy duty power supply.

NEW_FRONT PANEL CAPABILITIE;J

Added Front Panel Switch Functions

Five new front panel switch
functions have been added to the
Altair 8800b computer to expand the
front panel capability:

1, SLOW: Permits execution of a
program at a rate of approximately
2 machine cycles per second or
slower. The normal machine speed
is approximately 500,000 machine
cycles per second. Useful in de-
bugging programs where it would
be too time consuming to single
step through the code.

2. DISPLAY ACCUMULATOR: Displays
the contents of the CPU accumula-
tor register on the front panel
data LEDs.

3. LOAD ACCUMULATOR: Loads the CPU
accumulator register with the
data present on the lower eight
front panel address switches.

4. INPUT ACCUMULATOR: Inputs the
data present at an input/output
device into the CPU accumulator
register. The input/output de-
vice is selected on the upper
eight front panel address switches.

§. OUTPUT ACCUMULATOR: OQutputs the
contents of the CPU accumulator
register to a selected input/
output device. The input/output
device is selected on the upper
eight front panel address switches.

Dress Panel

A new multi-color dress panel
with functionally designed graphics
is used in the Altair 8800b. The
front surface of the dress panel has
a protective sheet of mylar to in-
sure that the graphics are not rub-
bed or scratched off. The LED
indicators are now back-lit through
the panel and the toggle switches
have 50% longer handles that are
flatted (instead of round) for
easier use.

Front Panel 1/0 Capability

The 8800b has /0 channel 255,
and effectively channel 254, dedica-
ted to the front panel. As with the
Altair 8800, an input from channel
255 (octal 377) will input the con-
tents of the Sense Switches (Al5--
A8) to the accumulator. The 8800b
has the added feature that an output
to 255 will display the contents of
the accumulator on the data LEDs.

In addition, one can configure this
1/0 channel (by means of patching
jumpers) so that all outputs (to any
1/0 channel number) are shown on the
data LEDs and/or all inputs (from
any I/0 channel number) are shown on
the data LEDs.

[NEW_DISPLAY/CONTROL LOGIC |

Electronically the Display/
Control Board has been completely
redesigned. The logic design is now
totally synchronous. The design ap-
proach used in the Altair 8800b is
to allow the Display/Control logic
to assume control of the CPU and jam
the instructions necessary to imple-
ment the Front Panel functions. For
example: To implement an EXAMINE,
the Display/Control Board causes the
CPU to execute a jump (JMP) to the
address selected on the front panel
address switches (Ag--Al5).

In order for the Display/Control
Board logic to jam instructions to
the processor (that is, cause the
processor to execute a specific
series of instructions), two things
are necessary:

1. The Display/Control logic must
have control of the processor
READY line (RDY). (See section
entitled "New Bus Lines.")

2. The Display/Control logic must
have access to.the processor
data bus.

1f these two conditions are
satisfied, the Display/Control logic
can cause the processor to execute a
series of instructions by successive-
ly placing the instructions on the
data bus and activating the READY
line to cause the processor to exe-
cute the required instructions.

The block diagram, Figure 1,
summarizes the interface between the
Display/Control logic, the CPU, and
the Memory and I/0. On the block
diagram, note that:

1. The Display/Control logic has
control of the READY (RDY) line.

2. The Display/Control logic has
access to the data bus through
its own data input drivers
(FDI@--FDI7). By activating the
Bus Control signal, it can enable
its own drivers and disable the
standard data input drivers
(DIg--DI7) from the memory and
1/0.

~continued

9’

.,

W

8800b

The block diugram, Figure 2,
shows the Display/Control logic it-
self (from a functional block view-
point).

1. The front panel switches are de-
bounced ant e -xamine, deposit,
accumulatiy and 170 function
switches (8 switches) are encoded
to the upper four address. lines
(RA7--RA4) of the control PROM.

o

. The outputs from the RUN, STOP,
SINGLE STEP and SLOW switches go
‘7 pairs) to similar circuits
whose outputs (RUN and SS} con-
trol the RDY line ([RDY] = [RUN]
OR [SS]). (See Figure 3.) Both

of these circuits consist
basically of flip-flops which,
when set, force the outputs (RUN,
SS) high and, when reset, force
the outputs low,

The RUN/STOP flip-flop is set
asynchronously as soon as the in-
put from the run switch (S[RUN})
goes high. This in turn causes
RDY to go high and the processor
will start to execute., The flip-
flop will reset when the input
from the stop switch (S(STOP])
goes high and the following stop
condition is true:
STOP COND =

Ps: 2) AND (DOS = SM1) AND (STSTB).

WEI

AN
acnntig

L Hule gy

{'| . '[e,
|

i
i
"HM/\ ””,‘,,, . '
. (i w17 taNTHn
LATER)
-4 s
U !
+
i
3 ;
)
o 33 AI&‘;
s¢ < 2-31%
0 38-274
EL
36 !OEF) \
i 1]
$7 (3US CONTROL) (8C))—I'MEIFAC{
s8__ (sB)
Sarse |_sov 0

STSTE

INTR
CONTROL U

FIGURE 2. DISPLAY/CONTROL LOGIC
3LOCK DIAGRAM

This insures that the processor
will stop during the M1 machine
cycle of an instruction cycle.

3. The SS/SB circuit's flip-flop is

set by the switch inputs from

SINGLE STEP or SLOW, or by the
SB input from the control PROM.
This circuit, however, has two
sets of stop conditions.

ADDRESS (A-A15}!
STATUS 1
| MEMORY
ROY or
o
DEVICE
BI-DATA (09-07) i | OATA IN (010-017)
cry
[N __0ATA 0uT (009-007)
i
PDBIN i
o Fos-rorz FRONT
PANEL

BUS CONTROL (BC)

FIGURE 3. Dfsplay-Control Logic/CPU
Interface

One is associated with the SINGLE
STEP/SLOW switch and one with the
control PROM that generates the
Front Panel functions. The latter
will always stop execution after
a single machine cycle has been
executed. The fermer can be con-
figured via patching jumpers to
stop execution after either a
single machine cycle or a complete
instruction cycle.

4. The 8 switches which are encoded
as addresses to the control PROM
represent those functions that
are implemented by jamming in-
structions to the CPU:

EXAMINE

EXAMINE NEXT
DEPOSIT

DEPOSIT NEXT

LGAD ACCUMULATOR
DISPLAY ACCUMULATOR
INPUT

OUTPUT

Pressing one of these switches
causes a unique address to be set
up on the upper four address lines
of the PROM (thus selecting a 16-
byte sector within the PROM). At
the same time, the 4-bit PROM ad-
dress counter is cleared and
clock pulses are applied to its
input. This causes the lower
four PROM address lines to begin
counting from zero and continue
sequentially through the 16 bytes
of the selected sector. This
will continue until a stop code is
encountered in the PROM which
will stop the address counter.
The instructions stored as data
in the PROM may be roughly divided
into two categories:

-continued

1

8800b

D/C Logic Control instructions
at the even address locations;

""Processor instructions at
the odd address locations.

The D/C Logic Control instructions
are output from the PROM and stored
in the CONTROL LATCH. These in-
structions configure the D/C

logic so the subsequent "pro-
cessor' instruction can be jammed

to the CPU. In general this will
involve setting the SB and BUS
CONTROL bits and selecting the
source of the "processor" instruc-
tion. It must be noted here that
by 'processor" instruction we
mean any of the bytes that may be
required to make a complete 8080
instruction (not just the OP
code). There are five sources for
"processor" instructions:

ROY

41}

RUN
PSYNC

STSTR 1
S{RUH) —J 3
STOP/RUN | ss/se
SWITCHES CONTROL. CONTROL
i S{sT0P)
DECODING
5(55)
S(SLON)
FIGURE 3. DISPLAY/CONTROL LOGIC
READY LINE CONTROL CIRCUITRY
e FROM FRONT PANEL
A - AlS N 4D - AIS
>
00 - 07 008 - 007 8800b
8216 - “'/\ 8US
o1p - 017
80804
FROM INTERFACE
0BIN
8ov
st 88000
8212 {>_."“’ Faus
SYSTB
[l
FROY
8224 ROYIN FROY
” x30Y

XROY?

FIGURE 4. CPU BLOCK DIAGRAM

CONTROL PROM (via tri-state
drivers), enable: S5

Upper address switches
(A15--A8), enable: S2

Lower address switches
(A7--Ap), enable: S1

Upper address latch,
enable: S3

Lower address latch,
enable: S4

A typical PROM sequence to com-
plete an examine would be as
follows: .
1) Control Instruction: Set up SB,
BUS CONTROL (BC), SS

2) "Processor Instruction': JMP =
303 (octal)

3) Control Instruction: Set up SB,
BC, S1

4) "Processor Instruction': 000g.

The contents of PROM are immater-
ial here since data is coming
from address switches Ag--A7.

5) Control Instruction: Set up SB,
C,

6) "Processor Instruction': A8--AlS

7) Control Imstruction: Clear

Control Latch -

"Processor Instruction: Stop °
Code for PROM address counter

8,

=

[FRONT- PANEL _INTERFACE BOARD]

All the lines between the 8800b
bus and the Display/Control Board
are now buffered through a Front
Panel Interface Board. (The bus
lines no longer directly drive any-
thing on the Display/Control Board.)
The Front Panel Interface Board con-
nects to the Display/Control Board
by means of two 34-conductor ribbon
cable assemblies, eliminating the
wiring harness between the Display/
Control Board and the bus.

~continued

C

8800b

NEW CPU BOARD

The CPU Board consists of four
major functional blocks:

8080A CPU Chip

3224 Clock Generator Chip
8212 Status Latch
Drivers and Receivers

The diagram, Figure 4, shows
the relatinaship between these four
blocks. Scveral points of interest
are:

1. The DIGl signal (see section en-
titled "New Bus Lines') controls
enabling of the input data
Irivers (DI@--DI7) from the bus.

2. The ready input to the 8224
(RDYIN) is the logical product
of {PRDY) AND (FRDY} AND (XRDY)
AND (XRDY2).

3. The bidirectional data bus to
(and from) the 8080A is completely
buffered (8216s).

The 8080A, the microprocessor
chip itself, exercises control over
the CPU board and the rest of the
system. It executes the instructions
stored in memory and controls all
the data transfers.

The 8224 clock generator chip
piovides the two-phase clock (at the
specified voltage levels) required
by the 8080A. In addition, it
synchronizes the READY and RESET in-
puts to the 8080A and provides a
status signal (STSTB) that can be
used to load the 8212 status latch.
This guarantees that status data
will be available as soon as possible
in a machine cycle. The master tim-
ing reference for the 8224 is an
external crystal (18MHz). By chang-
ing this crystal it is possible to
generate the clocks used by the
faster versions of the 8080A: the
8080A-1 (1.3us cycle time) and the
8080A-2 (1.Sus cycle time).

The 8212 status latch outputs
the status signals that define the
current machine cycle for all de-
vices attached to the bus. The
status latch was used in the 8800b
instead of the 8228 bus controller
because it was necessary to maintain
bus compatibility with the original
Altair 8800.

The majority of the system bus
lines either originate or terminate
at the CPU board., All output lines
from the board are driven by tri-
state bus drivers (74367 or 74368).

L_ADDED BUS LINES

All of the original Altair 3800
bus lines have been maintained, and
five new lines have been added:

Bus Number Signal
12 XRDY2
58 FRDY
55 RTC
56 STSTB
57 DIG1

XRDY2 and FRDY

XRDY2 and FRDY are additional
ready inputs to the CPU Board. For-
merly, the READY signal consisted of
two inputs, PRDY and RDY. The READY
signal input to the processor that
determines the RUN/WAIT state of the
8080A is now defined as the logical
product of these four signals:

READY = (PRDY) AND (FRDY) AND (XRDY)
AND (XRDY2)

Therefore, if any of the four
"ready" signals on the bus are pulled
low, the READY input to the 8080A
will go low, causing the CPU to enter
a series of .5 microsecond wait
states. The four 'ready' signals on
the bus are used as follows:

PRDY: Used by memory and 1/0 to
synchronize the CPU to slower
memory or 1/0

FRDY: Used by the Display/Control

logic

XRDY and XRDY2:
External ready signals.
XRDY and XRDY2 are available
to devices that have to stop
the processor {(by pulling
READY low), but must also be
able to sense the state of
PRDY and FRDY. (For example:
DMA)

RTC
RTC is a 60Hz signal used as a

timing reference by the Real Time
Clock/Vectored Interrupt Board.

STSTB

STSTB is a strobe signal pro-
vided by the 3224 clock generator
chip. Its basic function is to
strobe the 8212 status latch to
allow status signals to be set up as
soon as possible. This signal is
also used by the 38800b Display/Con-
trol legic.

DIGL

DIGl is a signal that controls
enabling of the CPU Data Input (DI)
drivers. The 8800b employs two sets
of DI drivers: one is the standard
set used by all memory and I/0 de-
vices; the other is used exclusively
by the Display/Control logic. If Gl
is defined to be the enable signal
for the first set of drivers and G2
to be the enable for the second set,
then:

Gl = (DIG1) AND (PDBIN)

G2 = (DIGL) AND (PDBIN)

—————
POWER SUPPLY

Specifications: The power sup-
ply furnishes the following voltages
to the 8800b bus at the indicated
full load currents.

8 volts at 18 amps
+18 volts at 2 amps

-18 volts at 2 amps

The +18 and -18 volt supplies
are pre-regulated {series pass tran-
sistor) to provide a constant vol-
tage to the bus over the load range
of the supplies (0 - 2 amps).

The +8 volt supply is not pre-
regulated. Instead, the 8 volt
secondary of the transformer is
tapped at 3 points. By changing the
tap that drives the 8 volt supply,
the bus voltage can be maintained
between 7.5 volts and 9 volts over a
load range of 1 amp to 18 amps.

The primary of the power trans-
former is tapped to allow for either
115 volt AC or 230 volt AC operation.
In addition there are "HIGH LINE" and
"LOW LINE" taps for 130 VAC, 100 VAC,
260 VAC and 200 VAC operation. The
supply will operate at the above
specifications on either SOHz or
60Hz line frequencies.

Zcontinued

8800b

[MESGELLANEOUS

18-51ot Mothe rhourd

The four-slot expander cards in
the Altair 8800 have been replaced
by a single piece 18-slot mother-
board. The 18-slot motherboard con-
tains 10 solder lands which comprise
the 100 pin bus. The need for ex-
pander board w.ring has been com-
pletely eliminated. Assembled units
may be ordered with 6, 12 or 18 edge
connectors.

Single Step/Slow

Single Step: The 8800b has
provisions for selecting one of two
modes for the single step operation
by means of a patching jumper. In
the first mode a single machine
cycle will be executed each time the
switch is activated. The second
mode allows a complete instruction
cycle to be executed.

Slow: The SLOW mode on the
8800b will operate in the same manner
as single step as far as the mode is
concerned. The speed of the slow
mode is selectable by patching
jumpers® for three different speeds.

Data LEDs

The front panel data LEDs are
driven (in the STOP mode) by the
Data Qut lines (DO@--D07). (In the
Altair 8800 they are driven by the
Data Input lines, DI@--DI7.) If
single step is operated in the
single machine cycle mode, the cor-
rect data will be displayed on the
LEDs during memory write and output
machine cycles.

TRESET Switch

The RESET switch on the front
panel has provisions for wiring to
the front panel switch enable line
(instead of to ground). If this is
done, the machine can be RESET only
in the STOP mode.

Control PROM

The front panel control PROM
(1702A) has been divided into 16
sectors, each 16 bytes long. The
even addresses within any sector are
used to control the front panel cir-
cuit. Since the last address must
contain a stop code for the PROM Ad-
dress Counter, there are 7 bytes
available in each sector for machine
code. This means that there is some
flexibility in redefining the front
panel switch functions (for special
applications) by re-programming the
control RPOM. The functions are
constrained by the fact that there
are only 7 bytes of machine code
available to execute them.

10 pg

~”

COMPUTER NOTES/ZJUNE,1370

by Steve Pollini

Cals.-air 5800 Hardwarz Jlotzs

A. Teletype lnterconnect

Some b80b users are having has-
sles when connecting a Teletype to
the Altair 680b computer. All of the
es v connections within the com-
ter are clearly explained in the
Marual. However, the
nections within the
Teletype machiae itself are not de-
scribed, The diagram below shows
the necessary interconnections be-
tween the 25-pin connector on the
back panel of the Altair 680b and the
9-lug terminal strip inside the
Teletype.

630b Assembly

680b T
25-pin [pin 2 lpin 3 |pin 4 [pin 5 ‘
conn. 7 T

i |
Teletype T
9-lug |lug 6 llug 7 |1tug 3 ilug 4 I
term.

The Teletype must be wired for
20 ma current loop and full duplex
cperation.

B. RESLT Function

Another aspect of #30b operation
that has caused some concern is the
RESET function. It is necessary to
turn off the computer in order to
have it RESET and RUN properly after
the processor has entered an unde-
fined state {due to the processor
attempting to execute an invalid
instructicn). The reason that the
system cannot be RESET once’ the pro-
cessor enters this undefined state
is that the BUS AVAILABLE (BA) signal
line will not go high when an attempt
is made to HALT the processor. This,
in turn, prevents enabling of the
front panel RESET function. BA was
originally used for front panel enab-
ling because it is valid (high) only
when the processor is halted. This
prevents the front panel RESET and
DEPOSIT functions from interfering

 With the system while it is running
a program.

L o7 (34
B 02 (37)
vee vee vec A
. é p——<o0 za.109
cs S c1 Sme cz S nas Y Loz
tu'r_§ux L2UF 247K Zine pwry
Nnim? S nse
I
e et o2 L evee
e o x,
a40 icf 0
10K l—'D T N
cun SR
: _]
T
e @
‘...:;.4
RESY
or
fne
L uar) @
e [3)

Front Panel Display Board Modification

(680 Display Schematic, Sheet 4 of 4)

To permit vour computer to per-
form a master RESET even when the
MPU will not halt while the RUN/HALT
switch is in the HALT position, per-
form the following modification to
the front panel dispiay board:

1. Delete the signal line that con-
nects the center pins of the

RESET and LEPOSIT switches.

2. Delete the signal line from (C !
(pins 2 and 3) to the center pin
of the RESET switch.

3. Since step 2 also deletes the
signal line from the DEPOSIT
switch, it is necessary to con-
nect a jumper from the land of
IC I (pin 2) to the center pin
of the DEPOSIT switch.

4. Connect a jumper from IC K
(pin 4) to the center pin of
the RESET switch.

The diagram below shows the
modification schematically.

Now the RESET function of the
front panel is no longer contingent
upon the state of the BA signal line,
but rather upon the state of the
RUN/HALT signal line.

In normal operation, IC K5
(pin 13) is high when the processor
is in the HALT mode. Pin 4(Q) of IC K
is then low. Since a low signal is
necessary at IC Ly (pin 1) to effect
a RESET, the Q output of K; (pin 4)
is fed to the RESET switch. When
the processor is in the RUN mode,
IC Kz (pin 13) is low and the Q out-
put {pin 4) is high. With this high
signal present on the RESET switch,
no RESET can be effected.

If you wish to initiate a master
RESET while the processor is in the
RUN or the HALT mode, I recommend
following modification steps 1, 2,
and 3 above. Instead of jumpering
as in step 4, jumper the center pin
of the RESET switch to a ground land
on the board. Remember, however,
that when a RESET is effected while
the processor is in the RUN mode, it
will then jump back to the Monitor
regardless of what program it was

previously running.
D
>

COMPUTER NOTES/JULY, 1975

ALUTAR FLOPPY DISK

by Tom Durston

Available in August, the MITS
Altair Disk will enable the Altair
8800 to function as a really sophis-
ticated computer system. The disk
offers the advantar of nonvolatile
memory (doesn't "¢ -- " yhen power
turned off), plus re..cively fast
access to data (3/4 sec —- worst
case).

The Altair disk can be separated
into three parts as follows:

1) Alta’'r Disk Controller

This part consists of twe PC
Boards (over 60 I,C.S.) that fit in
the Altair chassis. They intercon-
nect to each other with 10 wires and
connect to the disk through a 37-pin
connector mounted on the back of the
Altair.

Data is transferred to and from
the disk serially at 250K bits/sec-
ond. The disk controller converts
Tz serial data to and from 8-bit
parallel words (one word every
32usec). The Altair CPU transfers
the data, word by word to and from
memory, depending on whether the
disk is reading or writing, The
dlsk controller also controls all .
mechenical functions of the disk as
well &s presenting disk status to
the computer. All timing functions
are done by hardware to free the :
computer for other tasks. Since the
iloppy disk itself is divided into
32 sectors, a hardware interrupt
system can be enabled to notify the
CPU at the beginning of each sector.

Power consumption is approxi-
mately 1.1 amperes from the +8v
(VCC) line for the two boards.

2) Disk Drive and Multiplexer

A PERTEC FD40Q is mounted in an
Optima case (S 1/2" high--same depth
and width as computer) and includes
a power supply PC board and a buff/
multiplexer PC board. A cooling fan
is provided to maintain low ambient
temperature for continuous operatiocn.

The disk drive has two 37-pin
connectors on the back panel, one is
the input from the disk controller,
the other is the output to additional
disk drives. Up to 16 drives may be
attached to one controller, and it
is possible to have more than one
controller in an Altair.

The following are specifications
on the disk drive:

+ Rotational speed 360 rpm
(166.7 ms/rev)

~+ Access times

track to track 10 ms.
head settle 20 ms
head load 40 ms
average time to

read or write 400 ms

~+ Head life - over 10,000 hours of
head to disk contact

+ Disk life - over 1 million passes
per track

+ Data transfer rate 250K bits/sec

+ Power consumption - 117VAC 80W

+ Disk specifications

hard sector - 32 sectors + index
recommend Dysan 101 floppy disk
73 tracks

3) Altair-Disk Format & Software

We use our own format, allowing
storage of over 300,000 data bytes.
Since the disk is hard sectored (32
sactors for each track), we write
133 bytes on each sector, 5 of which
are used internally (track #, CRC)
leaving 128 data bytes per sector,
4086 per track. .

One floppy disk is supplied
with each drive, extra floppies are
available at $15 each. A software
driver for the floppy disk is avail-
able at no charge and is supplied
with the disk as a source listing.

The disk operating system--
which has a complete fils structure
and utilities for copying, deleting
and sorting files--costs extra. The
Extended BASIC, which uses random
and sequential file access for the
floppy disk, will also be available
at the same time (late July).

S

COMPUTER_NOTES/MARCH. 1976

Allajir Floppy Diskk Sysiem

LSRR RO LR APETAT AP

tors on the bick panel., OUne is the
iaput from the Disk Controller, and
the other is the output to additional
lizr, Jdrives. I!'n %o lb drives nmay be
ed to une controller.

7.0 Disk Controller consists of two
PC ourds (over 60 ICs) that fit in
he ALTAIR chassis. They intercon-
nect to each other w 20 wires
nrect to the Jdisk throuch u
connector meunted on the back
ALTAIR. [lata is transferred
the Jdisk serially at
239K bits/second. The Disk Contral-
lor converts the serial data to and
3 3-bit parallel words (cne word
every 32 usec;. The ALTAIR CPU tran-
sfzrs the data, word by word to and
from memory, dJepending on whether
the disk is reading or writing. The
isk Controller also controls all
mechanical functions of the disk as
well as presenting disk status to
the computer. All timing functions
:re done by hardware to free the

iter for other tasks. Power
onsumption is approximately 1.1
amperes from the +8v (VCC) line for
the two boards.

ALTAIR FLOPPY DISK DRIVE UNIT

The ALTAIR Disk Format allows stor-
age of over 300,000 bytes. Since
the floppy "diskette™ is hard sec-
tored (32 sectors for each track),
we write 137 bytes on each sector,

9 of which are used internally (track
#, checksum) leaving 128 data bytes

TN

Patenaed DS
user with complete

FEEIN
are aet

facility for

reading or writine data files and
saving and loading program files.

All file names are
ASCIT strings.

tial invut ('I" mode), |

sequen-
11 se-

auential output (0" medel, and

random mode (“R").

In random mode,

the user can read or write the nth

Listed below are scr

"ile.

atures

of ALTATR Lisk Extended BASIC:

NOTE:

o
[}

MOUNT

UNLOAD

KILL

OPEN

CLOSE

INPUT

PRINT

FEATURES

Parameters enclosed in brackets

are ontional.

/disk number}, [{disk number}]

no argument means all disks

“ounts and initializes for I/0 the floopy disk on drive {disk
number}.

isk number}, [{disk number} |

no arguments mean all disks

Closes all files on {disk number} and disables all [/C on that Jisk.

{file name}, (disk number}

Deletes the file on the disk specified.
{mode}, [#] {file number}, {file name: isk number}
Opens the file in the mode given on the disk specified.
assigned a file number (1-15) for further I/0 operations.

The file is

Mode is a string formula whose first character must be
= sequential output
1 = sequential input
R = random

{file number}, [{file number}]
no argument means all files
Closes the file(s) given.

{file number},

{variable list}
Reads the information on the sequential input file {file number}
into the variable list specified.

{file number}, [USING {string formula};]

{formula list}
Writes the ASCII representation of the internal format on the for-
mulas given on the file {file number}. (Example: PRINT #1, 3) puts
a space, 3, space, carriage return on the output file.

-continued

13

Llnt
NPl

GET

FIELD

ALTAIR Floppy Disk

P9 tiie number:,

string vaviable!
Reids the complete character string up to a carriage return, into the
string specitied, LINL INPUT without a file number may be used to

read a string from the user terminal.

[*] ‘file number}, (record number}
Performs a random read of the nth record of the file into the random
file mi'er associated with {file number},

[#] (file number), {record number}
Performs a random write of the random buffer associated with {file
number} to the nth record in (file number}.

{#] (file number}, {numeric formula} AS {string variable},

[, {numeric formulaj

Associates (numeric formula) bytes in the disk buffer with the
(string variable) given. Subsequent CSETs and RSET may be used to
place data in the random buffer, while a random read will automati-
cally assign byte strings to string variables that have "FIELDed"
into the buffer.

END and NEW both close all files.

LOAD

SAVE

(file name}, (disk number}[,R]

The LOAD command loads a program file into memory from {disk number}.
The optional R at the end may be used to RUNthe program after it is
loaded. The old program and all variables are erased. LOAD can be
given in a program.

{program name}, {disk number}
[,A[{line range}]]

The SAVE command saves the program on the {disk number}. The optional
A can be used to SaVe the program file in ASCII source format (using
the optional line range). Otherwise, the program is saved in com-
pressed image format, which requires less disk space and loads more
quickly,

- continued

C

ALTAIR Floppy Disk

FUNCTIONS

MRS

MEDS

MRS$

CcvD

Ccvs

{vinteger Yormulal)
Returns a two hyte string containing the binary representation of the

tinteger formulalt.

{‘double precision formulasij)
Returns an eig byte string containing the binary representation of
the {double precision formulas}.

{{single precision formula}}

Returns a four byte string containing the binary representation of
the {single precision formulal.

(fstring formulal})

Returns an integer value which is obtained from the first two bytes
of i{string formula;.

({string formula})
Returns a double precision value which is obtained from the first

eight bytes of (string formula}.

({string formula})
Returns a single precision value which is obtained from the first

four bytes of {string formula}.

CVI, CVS, CVD file a “function call" error if the string argument is too short.

DSKF

EOF

Loc

LOF

({disk number})
Returns the number of free sectors on {disk number}. The disk mus*

be mounted.

{{file number})
Must be a sequential input file and returns a true (-1} if end of
file is detected on {file number}. False (0) otherwise.

({file numberl})

Returns the current record number read or written on {file number}.
For random files, gives the record that will be accessed if a GET or
PUT without a record # is used.

({file number})

Must be a random access file and returns the last record number writ-
ten on the random file {file number}. Always = 5 MOD 8.

altair disk specifications

Rotational 360 rpm (166.7ms/rev)
Access Track to track, 10 ms
Times ltead settle, 20 ms

flead load, 40 ms
Average time to read or
write, 400 ms

Worst case, 1 sec

Head Life Over 10,000 hours of head
to disk contact

Pisk ‘Life Over 1 million passes/track

Data Transfer

Rate 250K bits/sec

Power Consumption 117VAC 110W

Diskette Hlard sectored, 32 sectors ver track
+ index, Dysam 101 flonny disk, 77
tracks/diskette

0

1§

LOMPUTER NOTES/OCTOBER41975

PROM Memory Card

1. The 38-PMC PROM memory card
provides up to 2K bytes of non-
volatile memory for boot loaders and
other programs that must be retain-
ed if power to the computer is in-
terrupte:d. The card uses either
1702 or L702A PROMs which contain
256 B8-bit bytes. These PROMs are
electrically programmable and eras-
able (using ultra-violet light) so
they can be reprogrammed if neces-
sary. The non-erasable versions
(1602 and 1602A) can also be used in
the card.

2. The card has a power down op-
tion consisting of four drivers that
switch the PROMs on and off in pairs
to reduce current drain. In the
"off" state the PROMs draw about "15%
to 20% of the current required in
the "on" state. Except for some over-
lap in switching, only two of the
PROMs can be in the "on" state at a
time.

3. There are provisions on the card
for patching the number of wait
states from 0 to 3 in order to ac-
comodate different speed devices.

S

COMPUTER NOTES/MAY.297%

Product Review
MITS 4K STATIC MEMORY

By Tom Durston

Reports from our customers in-
dicate the work we put into the de-
sign of the 88-4!ICS was well worth
the effort.

The features that make the
A5=4MCS outstanding are:

- Solder mask on the soldered
side of the PC Poard. This
helps nrevent solder shorts
during assembly.

Din Switch for address selec-
tion. (o address jumpers.)

Sockets for all lovic and
nenory I.C.s.

A manual that includes a
complete theory of operation
and trouble stine section.

The 88-4}CS has received very
gavorable comments on its reliabil-
ity and trouble-free operation. It
functions equally well with dynamic
memory and our new 16K static memory
(88-16MCS) .

Other specifications include:

Access Time - 450 ns worst case
(300 ns typical)

Powor Hoquiromont - +RY unroy-
ulated at
1.2A, max.

Memory Array - 4 each 1K x 8
bits (32 ea.
2102 A-4)

7>

C

COMPUTER NOTES/MAY. 197,
from MITS rapair dept.
by Jay Miller and Dave Silva

I. TROUBLESHOOTING 4K DYNAMIC BOARDS

A. Addressing

A one-tc-one relationship exists between the slope of the address straps
(12, 13, 14, I5) and the switches (Al2, Al3, Ald, Al5). With the address
switch up, the strap must have positive slope from I to A to enable the board.
All straps are at Vec with the board enabled, and J8 must go low. THE BOARD
IS NOW ENABLID.

the domain cf the board, there are 4096 bvtes (locations) addressed
A 108 to the right of Al2,13,14,15, Twelve pins about the 4060s
follow tnese AU through All switches with respect to the examine switch., The
pin configuration for the 4060 is given below:

wWithin

Zener D2 wb (1 22 Gnd Buss 50,100
Q9 A9 (2 21 A8 Q3

Qs Ao 3 20)- A7 Qs

Qi ALl —(4 19) A6 Q7

Js 53 ~1|(5 1s)t: vdd 7812 reg +12v
R or 2 DIN -4(6 § 17)‘ [oh) +12v pulse via Q1, Z
To latch BOUT— (7 T 16)— (not used)

P7 or 09 a0 (s 15)}— A5 P9 or 03

PS5 or 01l Al —4;(9 14)—Ad P11l or 05

P3 or 013 Ar o 15)- 43 P13 or 07
7805 vee 0t 12)-FE A4

With the appropriate switch raised, the levels at the address pins
(above) rise to switched Vec. A small square imposed on this DC level on the
2, 3, 4 and 19, 20, 21 pins is due to the driver Q being tri-stated by I13--
a function of refresh. Going behind the lines from O are the counters, E and F.

IC E: pin 3 - 30 usec IC F: pin 3 - .5 msec
pin 2 - 60 usec pin 2 - 1 msec
pin 6 - .12 msec
pin 7 - .25 msec

Counters E and F are a function of refresh. Chip O is referred to as
the artificial address driver.

B. Prc;tect/Unprotect

Tb is the protect flop. T,-Q is used to control the LED on the panel
for protect. Pin 9, if low, allows the WE at the 4060 to fall during a write.
You may verify this by chips M and-A. T is set to protect with a high from
Ml. A .luF cap is placed across pin 5 to ground of Tb to prevent noise
transients from clocking T. Jumpers 13 and 14 should be checked. Pin 10
should no longer be common with pin 4 (Vcc) but rather with pin 11 (gnd).

C. Deposit Switches to 4060s

In this discussion, it is assumed that refresh is working properiy.

In the Dep mode we may assign a 4060 to each address switch on the
right half of the front panel. Pin 6 is the data input to the chip, If a
zero is deposited into the chip in question, active high pulses are observed
(pulse width approximately .6 millisec wide). Depositing a 1 presents no
spikes. The data lines are inverted between the buss and the RAMs since the
RAMs invert the data internally.

~continued

from MITS repair dept.

with WU active, the following forms at pin 7 (DOUT) may be seen with the
seope at 20 usecsdiv oand at TTL levels:

Bit set Bit Cleared ’ |
RRRRR e

A feature of the WE remains obscure in the stop state. The following
program running will smoke it out:

333 Input sense switches

377

062 Store at location 100

100

000

303 Loop

000

000 -

NouAaLN~O

While running the unit you should see the WE line pulse low. If the line is
shorted to Vce, no pulses appear.

D. Refresh

Refresh requires reading the memory locations over short time intervals
as well as providing an external write and read to the system. The READY,
SYNC, @1 and @2 serve to synchronize the refresh and read systems. The sync
passes through A and should be pulsing only while the machine is running.

K3 has negative-going spikes about 32 usec apart and should not have a square]
wave(due to a faulty G). In static reset state MLl is low and M2 is high due u
to the initial status of the 8080. On the other side of the Read/Write flop i 7

(Hb) check pin 11 of N for a strobe every 32 usec. This pulse is used to
load the latch with the data available at pin 7 of the 4060s.

Chip Enable is provided by Qi (12v level) and is strobed through L from
H. The rise and fall time for this level must be minimal, hence the transis-
tor is used. If not, usually Z is at fault (see drawing below). . As the board
is addressed two pulses appear at 22 and the second disappears as other 4Ks
are addressed. CE must be related to B12 as shown to insure that the addresses
are stable before enabling the chips.

If the board is to be used with a Disk, any caps at C3, C4, C5 or the
delay between Read/Write and the Latch must not have diamonds on them as the
tolerance isn't tight enough. Also RS and R6 are to be changed to 15K and
30K respectively. These changes should produce the forms below. If not, RS
may have to be reduced further to 13K. In essence, we must catch the 92 that
has been getting away to leave the wait state and keep up with the Disk.

| Bad i
Chan 1 (Scope) ! H
Sync B2~ s >
|
° —
| J
|
b 12v
! 8d. | jmin
Chan 2 : 325 900 addressed 1120 nsec
an 400
nsec nsec
CE 2 : nsec. ! T
! R !
8, : pin 2 of IC S
— |
RDY /
pin 11 of IC S u
18 -

seen only when running
a program

|
'Cusuauy between 700-950 nf' scontinue:

from iAITS repair dzpi

1. DISK PRECAUTIONS—Protecting Floppies
Protecting the Disk Drive

The following "Disk Precautions™ will help prevent unnecessary abuse
of the floppies or the disk system itself

The floppies are very susceptable to magnetic fields. Keep them away from
floursscent lamps, transtormers and soldering irons. Store the floppies tree
from dust t tect the surface and save on head wear. Marking the floppies
should be muadatory.

The Jdrive should de shipped only with the safety board or strap pro-
vided. While the board or strap is installed, the door should be fixed
shut. Attempting to open the door with the board in the drive will damage it.

Consider the following program:

0 333 Input sense switches

1 377

2 323 Out to Disk enable channel

3 010

4 303 Loop

5 000

6 000

By raising AQ to All we should be addressing another Disk on the Daisy

and as a result Disk 0 should be disabled. e may also simulate an open door

by raising Al5, which will also disable Disk 0.

Suppose that Disk O is enabled and we wish to mechanically operate the
head and track movement (a scratch floppy is advised until the operator is
famiiiar with the Disk). Change byte 3 of the program from 10 to 11. We will
now output to the control channel. Toggling A3 will move the head in toward
the center (to track 77). Likewise toggling A9 will move it out. AlO up will
load the head and All up will unldad it.

To protect the floppy, the head should be unloaded and the Disk disabled !
before opening the door. This is done in BASIC by an OUT 8,255. Now the Disk
may be changed quite safely. Remember that BASIC deals in decimal, unless the
Q option (octal notation) is used. Using the WAIT command to read status from
the Disk is straightforward. Reading and Writing data with the Disk in machine
code is more complex due to the sector bookkeeping.

A reminder: the Disk is composed of 77 tracks of 4K per track and ro-
tates at 360 rpm. There are 32 sectors per track and 128 free bytes per
sector.

IIl. DISK ERRATUM

On Disk board #1 there is a track missing that allows unused inputs of
the logic to float instead of being tied to Vyg. It could possibly affect
the sector circuit if noise were picked up by this line. To remedy the
problem,.connect the top end of R16 (VHg) to pin 7 of IC F2. This is easily
done on the bottom (solder side) of the PC board, since a track from F2-7
passes right next to the pad for R16.

S

18

HNew Producis

&80-b-BSM 18k
Static Memory Card

One of the big hits at the 1976
National Computer Conference was the
MITS Altair 680b computer with 33K
of memory running MITS Altair 680
BASIC. The memory board that made
this possible is the 680b-BSM 16K
Static Memory Card. Two 680b-BSM
cards were used, providing 32K and
the internal 1K of memory provided
the additional IK.

Included with the 680b-BSM and
the 680b computer is a free copy of\
MITS Altair 680.BASIC, Assembler and
Text Editor on paper tape. Altair
680 BASIC is virtually identical to
the Altair 8800 8K BASIC and operates
in about 7K of memory.

The 680b-BSM 16K Static Memory
Card has many outstanding features,
one of which is its extremely modest
power consumption of S watts or 38
micro watts per bit. This allows
operation of two 16K cards without
adding a second power transformer.
A DIP switch is used for address
selection and test points have been
installed at important signal out-
puts for ease of checkout and trou-
bleshooting. Ferrite beads are used
on all common supply lines for noise
isolation.

For the kit builder, the use of
an epoxy solder mask on areas not to
be soldered increases ease of assem-
bly, as well as sockets for all ICs,
providing easy installation and re-
moval of ICs. All of these features,
plus a well-documented manual with
step-by-step assembly instructions
and detailed theory and troubleshoot-
ing sections, make the 680b-BSM the
ideal addition to the MITS 680b com-
puter. The care and effort we have
put into the 680b-BSM will be appre-
ciated by hobbyists and professional
computer users alike.

20

If you are ordering the 680b-BSM
card and it is your first additional
card for the 680b, you will need to
order the 680-MB Expander Card. The
680-MB holds up to three cards and
includes a 100-pin connector for
plugging in to the 680b Main Board.

Also, if you intend to add
three cards to your 680b, you will
need to install a second power trans-
former to the 680b back panel in the
holes provided.

680b-BSM SPECIFICATIONS

RAM Access Time 215ns maximum
RAM Cycle Time 400ns minimum
+16v current 130ma maximum
-16v current 110ma maximum
+9v current 150ma maximum

Altair 680 BASIC, Assembler, Text Editor

Price Free with purchase
of Altair 680b and
680b-BSM

ph

MP|

K

DISX HARDWARE NOTES

C

By Tom Durston

I7 vou are havine «ifficulties with vour §3-DCul hardware,

follow thesc wuldelines for scrvicing:

AL

Controlier Soards:

1.

w

On Controller loard #1 be sure the bus strins are
soldered on both the ton and hotton of tie P.{.
Board. Do not apnly nressure to bus strins a‘ter
installation.

Controller Zoard *l iurrmer the tor end oF 214
(B) to the trach fron rnin 7 of IC F2 {on sach of
card). This ties floatine inputs of sector locic
high to nrevent ncise nickun.

On Controller Board #1 check the track from Pin 2
of IC lil where it goes through the Loard on the
plated hole. Some P.C. Cards had shorts to the
adjacent track on the back of the card.

4. On Controller 3oard #1 check jumper wires to be
sure taere are no shorts to bus strins (insulation
on wires melted), and cieck jumper wires for cor-
rect wiring.

5. On both Board 1 aad I check Stab Connector for
siiorts on fingers. File at an anale along the
length of the Stab Connector and the bevel edge
of the card to remove any shorts.

6. Be sure all interconnect cables are wired correctly
and the pins are making good contact.

T. Check one shot timing on Loth boards as follows,
using the Disk Test Froeram that apmeared in Anril

b '76 Comnuter Notes, napes 12 and 13.
a) Controller Board #1:

FULCTION IC and PIN 4 POSITIVE PULSL WISTI! RANGL
Read Clock Mask IC Al Pin 13 0.7us to 1.2us
Read Data Window IC Al Pin § 2.6us to 2.9%us
Scctor Pulse llask IC E1 Pin 13 130us to 60%us
Index Pulse Window IC E1 Fin 5 3.3ms to 4.5ms
Read Clear IC F1 Pin 13 150us to 150us
Index Pulse Verification IC F1 Pin S 3.3ms to 4.5ms
Sector True IC F4 Pin 13 20us to 40us
write Data Enable IC F2 Pin 5 25Cus to 300us

b) Controller Eoard #2:

FULCTION

Repeat Step OK (Gtatus)
Step Inhibit 1 (Status)
Head Settle

Step Inhibit 2 (Status)
Trim Erase Start belay
Trim trase knd Delay
Disk Cnable Timer

Lisk Power Disable

IC and PIN ¢

POSITIVE PULSE WIDT RANGE

IC Al Pin 13 0.4ms to 0.5ms
IC Al Pin § 9.5ms to 11.5ms
IC Bl Pin 13 3%ms to 70ms

IC Bl Pin 5 17ns to 30ms

IC 82 Pin 13 180us to I25us
IC B2 Pin § 420us to 520us
IC B85 Pin 13 1.5us to 4.5us
IC B3 Pin § 1.Sus to 4.5us

-continued

21

Disk Hardware Notes

¢} If the measured time constants are not within 3
the specifiei tolerance, varr the resistor value : ‘\)
for the one shot affected. ~

d) We have had difficulty using National 74123 ICs
for B3 on Board #2. Replace with Signetics or
TI ICs if you suspect problems.

8. If you are using 4% Dynamic cards, be sure they are
using only one wait state. See Mav '76 Computer
Notes, nages O and 10.

9. Check the Powe: Suppiy to be sure the nerative peaks
of the +8V unrepulated do not ro helow +7V.

B. Disk Drive Chassis:

1. On the Buffer Card the most common difficulty is
incorrect wiring or incorrectly installed ICs.

2. On the Power Supply Board be sure X1 and X3 are
properly installed as indicated on the errata sheet.

3. If you suspect difficulty with the Disk Drive, Do
NOT attempt to service it. Any work done on the
Pertec FD-400 will void the warranty. Typical ser-
vice charges for customer damaged FD-400's are
$100.00.

4. Do not plug the FD-400 connector in backwards. Be
sure to install the polarizing key as the instruc-
tions indicate. Plugging in the connector back-
wards will destroy 5-10 ICs and will cost at least
$100.00 for repair.

S. If you must ship the Pertec FD-400 or complete Disk
Drive unit, reinstall the Disk door block or strap.
Any damage to the mechanism as a result of incorrect
shipping typically costs the customer $100.00 in
repair charges.

C

6. Our dealers now have Pertec FD-400 service manuals.
If you suspect difficulty with the FD-400, contact
your nearest dealer for his advice and service.

7. If you can't remedy the difficulty, don't try to
save postage by just returning the FD-400 alone.
Please return your complete 83-DCDD including
Cables, Controller Boards, and Drive Chassis.
This will allow us to check your system out com-
pletely and save you time, money, and hassie.

S

2

COMPUTER NOTES/SEPTEMBER.1975

Using the Y1<T

The VLCT is a very useful octal
I/C device. It consists of a 10-key
kevboard (0-7, Ready, and Clear), an
t LED input register display and
ree digit octal output dispiay.
The VLCT interfaces to the Altair
through the 38-PIO using TTL logic
levels., Data is entered into the
Altair by use of a short input pro-
gram, such as the one listed below.

VLCT INPUT PROGRAM

Stores data in memory starting at address specified by LXI
instruction (must be different from input program.)

(1] oul LXI Load H &'L with starting address

1 XXX Least significant address byte

2 XXX Most significant address byte
IsT: 3 333 IN

4 ooo

5 3u6 ANI Test for:input latch loaded

8 002 (after 3 keystrokes)

7 312 Jz

lg ggg Jump to IST

2 333 IN

3 [s[2Y

4 167 MOV (Htem y,L) + (A)
0ST: S 333 IN

g 000

7 3u6 ANI Test for' Ready key

20 ocl pressed

1 312 JZ

2 015 Jump to 0ST

3 000

u 176 uov (a) « (Mem ;1)

5 323 ouT ’

6 001

7 ou3 INX (H,L) + 1

30 303 J¥P ’

1 003 Jump to IST

2 000

NOTE: For 88-PIO address 081

After 3 keystrokes on the VLCT,
data is automatically transferred to.
the input latch, where software
stores it in memory. Pressing the
Ready key causes the software to echo
back the data to the octal display on
the VLCT.

By changing the test byte after
the first "ANI" you can use the Ready
key to trigger storage of data to
prevent automatic entry of an incor-
rect.code.

This program stores octal data
sequentially in memory starting at
the address specified by LXI. It
should be used for writing machine
language programs; and, for long pro-
grams, it is faster and easier than
loading in through the front panel
switches.

S

COMPUTER NOTES/JULYA197b

S-VLCT

MOD

88-VLCT READY XEY MCU

PROBLEM:

Pressing "READY" key should cause one

strobe pulse to PIO board "SBO" line,
causing computer to output data to
octal display. Noise from keyswitch
bounce causes multiple pulses on

ngBO" line, causing next byte entered

to be echced without pressing READY.

SOLUTION:)
Change R32 from 10K to l0meg. 334
is across C6, the .0l pulse timing

capacitor for the READY key. In-

creasing R32 to lOmeg makes discharge

time for C6 greater than iOms, pre-
venting keyswitch bounce.

NOTE:

READY key schematic is incorrect:
R33, 1000, shown going to Vec is
actually connected to ground. R3l,
47Q, shown going to ground, actually
goes to Vec.

10meg -~ MITS part number 102079

S

COMPUTER NOTES/OCTOBER.1975

ENGINEERING NOTE:

For proper operation of a Tele-
type with the 88-SIOC interface
board, the Teletype must be internal-
ly wired for 20mA, full duplex oper-
ation. MITS is currently selling
Teletype model #3320-3JE. Instruc-
tions for changing to 20mA, full
duplex operation may be found in the
wiring diagram #9336WD-B2A supplied
with the Teletype (this model comes
from the factory wired for 60mA, half
duplex). Also, be sure that R10 on
the 88-SIOC is 220 ohm, not 330 ohm.
This resistor determines the 20mA
loop current operating the printer

part of the Teletype.
‘0

PX]

COMPUTER NOTES/OCTOBER. 1975

1JSIT5 S8ERidL i/D BUSRIDS

by Tom Durston

The MITS technical staff has
been receiving many questions on the
writing of software to handle the
88-SI0 boards. Most of the confusion
has been due to a lack of explanation
of the fundamental concept of the
Altair I/0 structure. We hope the
following will help answer users’'
questions on 88-SI0 =oftware.

Inputting data from an external
1/0 device: The input instruction is
a two byte (1 byte = 8 bits) instruc-
tion. The first byte (333g) is the
code telling the CPU to input data
from an external device (TTY, Comter,
CRT terminal, etc.) and put it in the
accumulator. The second byte (XXX)
is the address of the I/0 board con-
nected to the desired external device.
The address of the I/0 board is deter-
mined by the user by seven hardwire
jumpers (Il - I7) on the I/0 board.
The list of addresses and jumpers is
in the back of the I/0 bodrd assembly
manual. After execution of this two
byte input instruction, the input
data present at the 1/0 board is
transferred to the accumulator in the
CPU. There are 256 I/0 addresses,
000g through 377g; the even numbered
ones being used for status and con-
trol of the I/0 board and the odd
numbered ones being used for data
transfer. This gives the user.a max-
imum possible number of 127 external
1/0 devices; the 128th 1/0 device is
the sense switch input (address 377).

To input valid réceived data
from an 88-SIO board, the status
channel information must be inputted
and bit D@ tested. For Rev 1 88-SI0
boards, D@ = # indicates that a new
character has been received from an
external device. When status bit D@
has been found to equal #, then the
data channel may be inputted. Status
bit D@ is reset when an input to the
data channel is done. From this
point the user may do anything de-
sired with the data. A typical imput
program using address 0&1 would look
like this:

Outputting data to an external
1/0 device: The output instruction
is a two byte instruction. The first
byte (323) is the code telling the
CPU to output the data in the accumu-
lator to an external I/0 device. The

second byte (XXX) is the address of
the I/0 board connected to the desired

external device. When outputting to
an 88-5I0 board on the even numbered
address line (control channel), the
interrupt enable circuit may be en-
abled or disabled by bits Dg and D1
(interrupt is explained later in this
article). When outputting to an 88-
SIO on the odd numbered address line,
parallel data is transferred from the
accumulator to the 88-SI0 and is
transmitted serially to the external
device.

When outputting data to an ex-
ternal device, a test of status bit
D7 (Rev 1 88-SI0 board) must be done
to see if the 88-SI0 board is ready
to transmit a character. When status
bit D7 = @, indicating the transmit-
ter-buffer is empty, then data to be
transmitted is placed in the accumu-
lator and outputted to the 88-SIO
board on its data channel. A typical
output program using address 081
would look like this:

Byte 1 000 333 IN Input
Byte 2 000 Status Channel
2 007 RLC Test D7, rotate Acc left

Byte 1 3 332 Jc Jump if carry (D7 = 1)

2 4 000

3 5 000
Byte 1 6 333 IN Input

2 7 377 from sense switches
Byte 1 10 323 ouT Output

2 11 001 Data Channel
Byte 1 12 303 JMP Jump to beginning

2 13 000

3 P 000

This program continuously trans-
mits data from the sense switches to
the external device.

Byte 1 000 333 IN Input - continued
1 000 Stat address
2 017 RRC Test D, rotate Acc right
Byte 1 3 332 JC Jump if carry (D@ = 1)
2 4 000
3 S 000
Byte 1 6 333 IN Input
2 7 001 Data address
Byte 1 10 062 STA Store char in memory loc 000 040
2 11 ouo
3 12 000
Byte 1 13 303 JMP Jump to beginning
2 1 000
3 15 000

L

;S:;te 1 350 333)& Input Byte 1 000 LXI SP Get stack pointer
2 i [sals} Status Channel 2 1 to 000 200
2 217 PPC Sotate acc £r 3 2
syte L 3 k} JC Jumg if 0F = 1 3 EI Enable interrupts
i " % (no data) 3yte L & MY Move Q0L into
3 K 2] accumulator
tyte 1 © IR} Input dyte 1 & cuT Qutput tec I/0
2 7 Data Channel 2 7 board control channel
Byte 1 10 062 STA Store data Byte 1 10 JMP Jump to self and
2 il o040 2 11 wait for interrupt
3 12 000 3 12
Byte 1 13 333 I Input
2 p 000 Status Channel Byte 1 070 333 IN Input from
5 007 RLC Rotate acc left 2 71 00l Data Channel
Byte 1 16 332 Jc Jump if D7 =1 Byte 1 72 C62 STA Store data in
2 17 013 (transmit busy) 2 73 ou0 loc 000 Ou0
3 20 000 3 74 00 -
Byte 1 2l 272 LCA - Lead acc with 75 373 EI Enable interrupts
2 22 ou0 stored data 76 311 PET Peturn to "jump o
3 23 209 self"
dyte 1 24 22 ouT Cutput
2 25 001 Data Channel
Byte 1 26 303 Jup Jump back to
2 27 000 beginaing
3 30 [shole}

Interfacing the &5-2IC with the

Interrupt: Using the interrupt Selecting the correct baud rats

feature of the CPU allows the Altair external device: First you must de- for jour i/5 device will Zepend on
to be performing a task other than termine what interface your terminal its requirements. For instance Tele-
/ snitoring the I/C ports for data requires. The three standard types operate at 110 baud only, the
.ransiers. To use the interrupt fea- available from MITS are EIA- Comter operates at 110 or 300 baud,
moSt terminals cperate between

ture, the stack address should be
cified, interrupts enabled in the
CPU, interrupts enabled on the I/0
board, and a subroutine written at
the proper location to handle the I/0
of data. Using single level inter-
rupt (vectored interrupt hardware
will be available by the end of the
year), all interrupts will cause the
CPU to jump to location 070 where the
1/0 subroutine should be located.
Single level interrupt is utilized by
connecting the desired interrupt mode
pad ("IN", "OUT", "BH") to the "INT"
pad on the 88-SI0 board. A short in-
put program that uses single level
interrupt would look like this (for
1/0 board address 0§1):

(88-SICA), TTY - 20mA loop (&8-S
and TTL logic (28-3I0B). :

The EIA-RS232 interface on the
38-SICA board offers only transmitted
data, received data, and signal
ground (circuits BA, BB and AB), If
your external device requires other
signals, they will have to be strap-
ped to the proper DC voltages for
proper operation. EIA interface
levels are: Logic §: +5 to +25
volts, Legic l: -5 to =25 volts.

The TTY - 20mA loop interface is
used for Teletypes or 1/0 devices
utilizing that interface level. The
88-SI0C levels are: Logic @#--open
circuit, no current flow; Logic l--
closed circuit, 20mA current.

The TTL logic interface uses
7400 type logic levels. The inter-
face level for the 88-SIOB are:
Logic #: +.4 volts, Logic l: +2.2
volts.

110 baud and 5600 baud. (Baud = bits
per second)

For Teletype, use 110 buad, 2
stop bits, and 8 data bits. For
baud rates of 300 and up, use one
stop bit and 8 data bits. lote that
above 240C baud the output pulse of
IC "0" must be between 2.0 and 2.5
microseconds for correct operation.
Varying K25 (7.5K) will obtain pro-
per timing.

1f you wish to check parity, use
7 data bits and either odd or even
parity, depending on your require-
ments.

Selecting the address of the
1/0 board is up to the user with the
following exceptions (used in the
BASIC language software):

Address 0/1 -- I/0 terminal (83‘510)
2/3 -~ Line Printer
u/5 -- Alternate terminal
6/7 -- ACR
10/11/12 -- Altair Disk
376 -- VI, RTC
Sense Switch __

377 -=

20,21 - 2510 1/0 Term.
>
25

COMPUTER NOTES/OCTOBER+19?5

88-2510 Interface

The B88-2SI0 Interface board can
be ordered with one port for just
Slad In kir fogm and $lul gssembled.
The additional port is $24 for kit
and 335 assembled. Each port pro-
vides the following features:

1) 5 signal/control lines
a) transmit data
b) receive data
c) data carrier detect
d) clear to send
e) request to send

This allows for maximum utiliza-
tion of some of the more sophistica-
ted terminals on the market.

2) All signal/control lines are
user-selectable for t12 volt levels
(RS-232), TTL levels (0-5 volts), or
20 milliamp current loop (Teletypf:).

3) Software programmable for 9 or
10 bit transmission
a) 7 data bits + parity bit
(odd, even or none) + 1 or
2 stop bits
b) 8 data bits + L or 2 stop
bits
¢) 8 data bits + 1 stop bit +
parity bit (odd or even)

u

Full 8 bit status register
a) received data available
b) transmitter buffer empty
¢) carrier detect

d) clear to send

e) framing error

f) received data overflow
g) parity error

h) interrupt request

Allows for greater control and
handshaking ability.

26

5) Transmit and receive interrupts
--disable/enable under software.

6) On-board, crystal-controlled
clock for any of eight baud rates
(with a single jumper): ilC, 159,
3C0, 1200, 1800, 2400, 4800, 9600.

7) Programmable counter can pro-
vide other baud rates of 37.5, 75
and 600.

The 88-2SI0 with 2 ports can
interface 2 serial I/0 devices, each
running at a different baud rate and
each using a different electrical
interconnect. 1Ihat is, the .2 Dorts
cap be ocperating entirely indepen-
dentls of each other (Such.as an.
252232 CRI terminal tunning ar 2609
baud and 2 20 miliianp Telsivos cun-
ning at 110 baud). Five volt power
consumption is typically 520 milli-

amps.

88-4P10 Interface

The 88-4PI0 Interface board can
be ordered with a single port for
just $86 ip kit form and $112 assem-
bled: Three additional ports are
$3Q each in kit form and $39 each
assembled. Each port provides the
following:

1) Sixteen data lines

a) Each line can be initial-
ized as an input or output
so that a single port can
interface a terminal (8
lines in--8 lines out) or
2 input devices (such as.
paper tape reader and
keyboard) or 2 output de-
vices (paper tape punch
and printer) or any comb-
ination for custom appli-

b) All data lines are fully
TTL compatible and in ad-
dition, 8 of the 16 lines
can directly drive the base
of a transistor switch
(1.5v @ 1 milliamp).

2) Four controllable interrupt lines
a) Effabled/disabled under
software control.
b) Two lines can act as outputs
for ready/busy handshake.

J
3) Two control/status registers-- .

Contains a status bit for-each of the
four interrupt lines.

4) Removable flat cable connection
from board to back panel.

cations.
cPy PORT g ! 170 DEVICE (S)
OATA IN < _8LINES '
[4 1) INTERRUPT
] A 1
DATA OUT : q—f—-—'—b DATA IN/OUT
4
| LiNeS |
ADDRESS s |
suss 1 |
e————=<
READ/ ~ I 8] INTERRUPT
write 7 i €] 3
DATA IN/OUT
! 8 LINES !

SIMPLIFIED BLOCK DIAGRAM (1 port)

Assuming the board 15 addressed
at location #, register selection for
port § is:

ADDRESS REGISTER

L] Section A - control
1 Section A - data

2 Section B - eontrol
3 Section B - data

Port 1 would be aderssu 4,5,6,7
Port 2 would be address 8,9,10,11
Port 3 would be addresses 12,13,14,15

An 88-4PI0 with 4 ports has 64
data lines (each group of 8 individu-
ally selectable) and consumes 500
milliamps at 5 volts - typical.

pgu

COMPUTER NOTES = NOVEMBER/DECEMBER.1975
...more notes on ACR

Tape Recorder Motor Control

for the #g-ann

Lnother peques
“otor tane record

lo

= with the Juin

s is tn
the interrunt fu ion on the %
usually not used the 28-2CP° -
orne of the flin-fiops to an unused -
driver,

The circuit shown below uses control channel
and off,

——————> _To TAPE
> REcORDRR
“REMOTE"
JACK , oR MoTaR
ONfOrF ciRCWIT,

REAY -

SPST ,N.O.
Svec corn
100 M R GREATRER

The other half of IC B may be used for another control function in the
same manner, IC U has 3 other spare drivers that may be used.

We suggest the relay be mounted externally to prevent recorder supply
voltages from interfering with the Altair 8800,

For the machine language Read/Write programs, adding the foilowing in-
structions will allow use of the start/stop feature.

To turn the motor circuit on, place these instructions before the begin~
ning of the Write and Read programs.

. Cctal
Locaticn| Céde | Mnemonic/Description
016,374 | 076 MVI move immediate to accum,
375 | 001 Turn on motor
376 | 323 Output data from accum.
377 | 006 Contrel channel

NOTE: For Write program, single step through these 4 instructions,
wait appropriate time (5-15 seconds), then hit RUN.

To turn the motor off, {:lace these instructions before the iump to self
loop at "END.," Also change data in location 017,376 to 371,

Octal
Code

Location Mnemgnic/Description

017,371 | 076 | Mvi
372 | 000 turn motor off
373 | 323 Output
374 | 006 Control channel

NO‘i’E: The flifa-flaps Ba and Bb do ' not have power on clear. Tt
may be necessary to single step the motor off circuit to
clear these flip-flops.

- For use with Altair 8K BASIC, use:
OUT 6,1 - to turn motor on
CLOAD or CSAVE
OUT 6,0 - to turn motor off

Keep in mind that if writing, vou must turn the motor on
5-15 seconds before outputting data.

o S

21

COMPUTER NOTES/JANUARY 1976

DAZZLER featured in POP TROMICS

A new Altair-compatible interface,
the TV DAZZLEP from Cromemeco, is
being featured in the February 1376
issue of Popular Electronics. Pro-
viding an interface between the
computer and a TV set, the DAZZLER
can be "used to generate action games,
animated displays, educational learn-
ing drills, graphs, even light shows--
all in full color."® Considering its
versatility and wide variety of ap-

to farm the fmage.""* Communication
hetween the computer and the DAZ7LEP
uses two output ports (016 and 917)
and an input port (016). Output port
016 turns the DAZZLER on and off and
sets the starting address of the pic-
ture in the computer memory. The data
output from port 017 determines the
format of the picture as to normal
resolution or 4X resolution, amount
of memory to be used for the picture,
bilack-and-white or color, and the

plications, the TV DAZZLER repr ts
a unique and affordable concept in
computer peripherals.

The basic kit costs $195 and is de-
signed to plug directly into the Al-
tair 8800 using direct memory access
(DMA). There are two PC boards, each
taking up one slot on the Altair bus.
Board #1 outputs a conventional NTSC
(National Television Standards Com-
mittee) color video signal, and board
#2 communicates with the computer via
a high speed DMA controller.

"When writing programs for the DAZZLER,
it is important to remember that the
TV picture is stored as a specially
coded sequence in the computer memory.
The DAZZLER simply interprets this code

28

color or intensity of each frame of
the picture. Input nort 016 uses one
bit to indicate that the DAZZLER is
enabled and one bit to indicate the
end of a frame. '

Interfacing and construction details
are outlined in the PE article, along
with a parts list, test program, and
an octal listing for a DAZZLER Game
of Life.

To nbtain the schematics, etchine and
drilling puide and component place-
ment 4iagram free of charge, send a
stamped (for 3 oz.), self-addressed
9" x 12" envelope to:

Cromemco

One First Street

Los Altos, CA 94022
Prices for the TV DAZZLER:

$195-kit

$215-kit with IC sockets

$350-assembled and tested DAZZLER

*'Build the TV DAZZLER" by Terry
Walker, Roger Melen, Harry Garland,

and Ed Hall. Popular Electronmics,
Feb., 1976,

NOTE: Static memory is required in
the Altair 8800 when inter-

facing with the TV Dazzler.

S

/o

810G REV O MOD

In house, the SIOC Rev 0 boarfls underwent two significant shanges, One
change, the more apparent of the twWo, concerns the lccation of the interface
connections between the TTY and the board as well as the nature of the inter-
face electronically. First the popition of the pins between the computer and
the TTY will be redefined to be more compatible to the Rev 1 cabling. The
color code is arbitrary but provided in order that the client is aware of MITS

standards.

Molex Conn on Board Color
4 (3nD) Black
5 (Tran) Red
6 (Rev) Green
7 (Rev) Orange

It might also be noted that t
with full duplex transmission. Th
lead should be moved from term lug:
major change has been made in the
difficulty in functioning with a 6
loop can be obtained by 1) moving &
the left-most terminal on Rl (a 4 o
the line/local switch on the base g
Rl (from the 3rd connection to the

The Rev 0 modified electronic

Male & Female
25-Pin Conn.

Term Lugs in TTY(ASP-33)

2 6
3 7
u 3
5 4

e SIOC board is capable of only functioning
t is, a White-Blue lead and a Brown-Yellow
4 and 3 respectively to lug 5. Unless some

interface electronics the SIOC board will have

mA current loop in the TTY. The desired 20MA

Purple lead from lug 8 to lug 9. 2) Moving
onnection resistor located about 8" back from
late) to the left-most terminal connection of
4th connection).

interface and the Rev 1 interface appear

below:

The second modification of the Rev 0 board (called hardware interrupt) is
in the status provided to the data pbus by the UART. The new board will pull
DIO low on the DA high condition (input status) and will pull DI7 low on fav-
orable output status. The logic fallows.

o7

S 2

COMPUTER NOTES/FEBRUARYL37b

M a i i b
b i B ; " : & : ryY ALTAIR eoul INTERFACE--THANKS TO
g B EERREE 41. ET aees PROFESSOR KENNETH b+ WIBERG OF

| : YALE UNIVERSITY

Altair 8800 Interfaces

One of a kind interfaces are

most conveniently made by wire LG S A L
wrapping, and wire wrapping tools
are available at a reasonable price.
Most wire-wrap boards are made by Ll
4L 42
Z RN T v: SNNPTIVY-)

2

inserting wire-wrap IC sockets into .
a suitable board and making connec-
tions on the reverse side. This is
inconvenient for two reasons. First,
each module will then take two loca-
tions on the Altair mother board. —ief
Second, it is much easier to wire pos w18 ._-@:
wrap on the front side of the board :
(where the IC's can be seen) than
on the reverse.

60 1 2 3 4 5 Asoness
The MITS prototype board can A5 29
be converted into a wire-wrap board .
by soldering IC sockets into the As or—Scpyt 11
plac$s4zrov1$ed. and 1nsert1ng Vec- S WPy __i
tor T-44 mini-wrap terminals from s 035 ;|
the back side into the holes connec-
ting with the socket pins. The ter-

’ N\
minals should be soldered from the vr VZ—’K bol
;$verse side. These terminals just Swrmen]
t into the holes provided. Up to ‘—'K
16 sixteen-pin plus 4 fourteen-pin LEUMAL (8cD cooer)
sockets may be placed on the board. SWLLCH (NPuT o <P po3

STROBE (rrem T4e¥2) (Acrvh saw)

s
a 73,
230 -

boards, an interface which will dis- E p—
play the contents of the accumulator

is convenient. Such an interface
is shown in Fig. 1. The address
377 is decoded by the 74130, and STROBE (Faom 7443) (ACTIvE Lowg}

For those who construct I1/0 AbpaLsits . 4073 A /3 org™v
SwiTeH 2

21—

the output is ANDed with SOUT and 15 9 16 /¥ W 13 CowwEcToR
PWR by the 74L10. The strobe sig- o 42 3 £ aooaass
nal is inverted by a 7404 (which ,’ .
will drive the 7474's) and is used . H
to latch the data on the bus in Ac 31 H, 201"
the 7475 latches. Their output "
are decoded by the 7447's and dis- = .,
played using 7 segment LED units. 10 3 e T RTAL
The contents of the accumulator wau— 4 20 raLs2
are displayed by including . |_,

ouT 377 ¢

in a program. ft T T I] ADORESS
/6 /S /w43 /2 N cownatTOR

|:Lvu

vaL42

v 75 |6

In some of our applications, we
wish to read data from BCD coded
switches. Since the 8180 allows a
large number of I/0 addresses, it is
convenient to read the contents of
each switch using a unique address.
As shown in Fig. 2, this can easily
be done using a 74L30 to decode the
four more significant address bits

along w'lth(SINP and two 74L10 gates

to AND A3 (or with the output 2. a8 Dc P
of the 74L30 and PDBIN and select

one of two 74L42. The 74L42's de- bl DECIMAL DISPAY IWTEAFACE 1%

code the three least significant AvoRE
address bits when enabled, giving ORESSES 100 - 117y y
eight possible strobe pulses from s 81—40 b 7

" ComwtcTan

each. A given strobe pulse (neg-

ative going) 1s used to enable —continued

30

COMPUTER NOTES/FEBRUARY.197b

Vector interrupt and Real Time Clock

/ Annette Milford

Two new MITS products, the 88-Vector
Interrupt (88-VI) and the optional
88-Real Time Clock (88-RTC) are now
being shipped to customers. Although
both of these peripherals -have been
designed on the same printed circuit
board, the Vector nterrupt may be
nurchased without .h- Real Time Clock.
The 8800 can be hardwire connected
for a maximum of one interrupt system.
This means, of course, that it is not
possible to wire an I/0 board for sin-
¢le level interrupt and connect the
88-VI for multi-level interrupt.

VECTOR INTERRUPT

As an independent board, the 83-VI
has been designed to increase the ef-
ficiency of your system. It is use-
ful in real time applications, when
it is necessary to service I/0 de-
vices on a priority basis. Specifi-
cally, the VI provides the 8800 with
the capability to interrunt activity,
via the Restart (RST) instruction
and to allow only the highest active
nriority of eight levels to inter-
(pt the 8800. A system which in-
ides the Floppy Disk, a teletype,
line printer and an 88-VI, for
¢. 'mple, should service the Floppy
D1sk before any other device.
Placing the Flopny Disk at the
highest priority on the 88-VI then,
insures that the software necessary
to process data is available to the
ALTAIR 8800 as soon as possible.

The ENABLE INTERRUPT instruction of
the 8800 permits the 88-VI to inter-
rupt. After each interrupt from the
88-VI is completed, ENABLE INTERRUPT
is activated again, thereby reacti-
vating the 8800's internal interrupt.
The RST instruction translates in
octal code to 3A7; and "A" translates
into a 3 bit code which represents
one of the eight priority locations:
0, 10, 20, 30, 40, 50, 60, or 70
(octal). Restart instructions, then,
are RST 0 = 307, RST 10 = 317, RST
20 = 327, etc., (octal).

The interrunt service routine for
level 2 would appear as follows:

OCTAL LOCATION INSTRUCTION

20 PUSH B
21 PUSH D
22 PUSH H
23 PUSH PSW
24 JMP LEV2

NOTE: As soon as the interrupt RST
,instruction is executed, interrupts
.,are automatically disabled.

A software device called the inter-
runt service handler, supervises
eight interrupt service routines,
thereby enabling the interruption of
a lower interrupt routine by a high-
er one and also insuring that each
lower routine is returned to and
fully executed.

The RST instruction saves the current
program counter in the stack, then:!
branches to the appropriate location
(9, RST 0; 10, RST 1; 20, RST 2; 30,
RST 3; 40, RST 4; SN, RST 5; 60, RST
6; 70, RST 7). The correct inter-
rupt service routine saves all CPU
registers on the stack, then, if
required, jumps out of the RST loca-
tion to comnlete the rest of the
program.

LEV2 LDA CURLEV ;GET LEVEL INTERRUPTED

PUSH PSW ;SAVE OLD LEVEL ON STACK

| MVI A,15Q ;SET CURRENT LEVEL
STA CURLEV
ORI 3000 ;OR IN BITS REQUIRED BY VI BOARD

;ORI 330Q SHOULD BE SUBSTITUTED
;IF THE RTC IS HONKED TO THIS LEVEL

out 376Q
EI
: ;DEVICE SERVICE ROUTINE
. ;GOES HERE
b1
PoP PSwW ;POP OLD INTERRUPT LEVEL

! STA CURLEV ;RESTORE CURLEV

! OFF: ORI 300Q ;'"OR" IN BITS FOR VI

BOTH: our 376Q ;TELL VI BOARD WHAT LEVELS TO ACCEPT

PoP PSW sRESTORE ALL REGISTERS
POP 1
Pop 0
pop B
E1 ;ENABLE THE INTERRUPTS
RET sRETURN FROM INTERRUPT

-continued

N

VLCT

BUSY is low active and goes low after
DATA READY IN goes high only for the
time constant determined by the One
slot in the VLCT Receiver. As long

as RESET -(BUSY) is high, the sequence
generator of the VLCT send section
will not count. The result is that
after entering three key strokes, the
READY OUT goes low signaling the 4-PIQ
that DATA is ready. Your software
should send the received data back to
the VLCT for verification. No new
data will be transmitted till the VLCT
receives data back. (See "Using the
VLCT", Computer Notes, Vol. 1, Issue
5.)

Loc. Octal Mneumonic
1] 333 INPUT
1 020 address
2 346 ANI
3 200 data.
4 312 Jz
5 XXX ¢h2>
6 XXX <{b3)
7 333 INPUT
10 n21 address
11 323 OUTPUT
12 023 address
13 303 JMP
14 XXX {b2)
15 XXX {b3)>

3. We used the same initializa-
tion program contained in the 4-PIp
manual with the following changes.

Loc. 15 005 Disables CA2, sets CAl
low active, and enables
it (bit 7 becomes our
DATA READY flag).

Loc. 21 0S5 Same as in manual ex-
cent CB2 set when next
"E" pulse goes high
instead of when CBl is
active.

4. Our test program is as fol-
lows:

Read A Control Register

Mask for bit 7 (data ready flag)

Test and loop if (Loc. 0) not present

Input data

Output data

{Loc. 0)

When this program is run, the follow-
ing should hapnen: after you enter
3 keystrokes, the octal number should
appear at the DATA IN display on the
VLCT and should remain until you en-
ter another 3 keystrokes.

If that works, you are all set.

Talk to your computer!

3

COMPUTER NOTES/FEBRUARY~197b

¥

by Bill Kuhn

(J In answer to questions about use of
the VLCT with the 4-PIf, we have |
made the following hookup and testied
it. !

GENERAL PROCEDURE: !

First: Decide what section o
the 4-P1P port you will use for the
various signals necessary.

Second: Make an interface
cable (25 pin male to 25 pin femalp)
to connect the 4-PIP to the proper =
lines on the VLCT (or if you haven't
wired your VLCT you can wire its
connector and eliminate the extra
cable.)

Third: Initialize the port
so it is ready to send and receive!
on the proper sections.

Fourth: Design and run a test
program to check steps 2 and 3.

sing the Y1GT with 471

HERE'S WHAT WE DID

1. We chose section A of the
4-PIp for input data lines, and
CAl as our flag for data ready at
the input lines.

We chose section B for output
data lines and CBl as our signal
from the VLCT requesting new data.
CB2 was chosen as the signal to
the VLCT that new data was ready
at its inputs.

2. We made an interface cable
as shown in the following chart:

NOTE: If you haven't wired your
VLCT, you may wire its connector
the same as the 88-4PIP connector
and eliminate the interface cable.

88-4PIP Signal Name Connector Pin # Conmnector Pin # VLCT Signal Name

kY

PA O 4 5 Dp o
PA 1 5 6 g1
PA 2 14 7 Dp 2
PA 3 15 8 Dg 3
PA 4 16 1 s DP4
) PA S 17 2 Dg 5
L/ PA 6 18 3 Dg 6
PA 7 19 4 Dp 7
CA1l 2 10 READY OUT
CA 2 3 not used
PB O 20 14 DI 0
PB 1 21 15 DI 1
PB 2 22 16 DI 2
PB 3 23 17 DI 3
P8 4 25 21 DI 4
PB S 25 20 DI S
PB 6 10 19 DI 6
PB 7 11 18 D1 7
CB 1 12 23 READY KEY
cB 2 13 22 DATA READY IN
Ground 6 13 . Ground
9 RESET IN
[25 BUSY OUT
: NOTE 2: We also tied Pin 9 to Pin 25 on the VLCT end of our cable to -continued
L/ accomplish the following: ‘

ALTAIR 8800 Interface

four 8797 gates which are connected
to the corresponding switch. Up to
156 27D switch (16 integers) can be
read in using this one interface.

Similarly, BCD data may be
displayed using 7 seament units via
the interface shown in Fig. 3.
Here, the three 74L20 gates perform
the high order address decoding
function, enabling one of the 74L42
decoders. The :“rote signals may
be used to latch data into one of
several TIL 378 display units {or
the corresponding combinations of
latches, decoders and 7 segment
displays). The data are buffered
by 74L074 and 7406 inverters in order
to have sufficient drive to handle
up to 16 TIL 308's.

s ~ -
1 r ' \ rp=
SLA) SLAI SLA Le
. 3] :::tuo
A5 »
1%} pe="
7447 (7447}
[5 w27

. 1, 2
3|/ 3 9
27 D6 25 24 D3
92 93 92 7 87

- * 2
? g A%
22 21 Do
88 35 36

LED OCTAL DISPLAY APDAESS %377

[7s75_ 5
6 E 2 3<}; “JDJ

Fon s
77 45

3

Vi & RTC

During this program, the following
occurs: The previous interrunt le-
vel (in CURLEY) is saved on the
stack. The current interrupt level
is output to the VI board in order
to nrohibit interrunts at level 2
or levels of any lesser nriority
(in this case, 3, 4, 5, 6, or 7}
from interrupting. The current
interrupt level is saved in CURLEV.
Interrupts are then re-enabled to
allow execution of higher priority
interrupts. At this point, the
appronriate device service routine
should be executed. After the ser-
vice routine is completed, inter-
rupts are disabled. The previous
interrupt level, saved in CURLEV
is re-stored in CURLEV and output
to- the VI controller. The regis-
ters are then popped off of the
stack, interrunts are reenabled,
and the interrupt service routine
returns.

The interrupt routine is the same
for all interrupt levels, except
for instruction 3(MVI). The fol-
lowing chart indicates the correct
MVI instruction for each of the
eight interrupt levels. Level 0
is the highest priority interrunt
level, and level 7 is the lowest.
Note also that instruction 5 re-
quires that 330 be substituted for
300 if the RTC is hooked to this
level, thereby allowing the RTC
to interrupt when serviced.

Interrupt RST Address [nstructioﬁ
Level
0 0 MVI A,179
1 10 MVI A,16Q
2 20 MVI A,15Q !
3 30 MVT A,140 |
4 40 MV A,13Q
5 50 MVI A,12Q
6 60 MYT A,119
7 70 MVI A,10Q ‘

REAL TIME CLOCK

The Real Time Clock is designed for
the computer system in which timing
of events is critical.
is generated by the 88-RTC after a
precise interval of time, thereby
enabling software to time certain
routines and even to generate the
correct time, day, and year upon
Tequest.

An interrupt

The 88-RTC provides the optien of
one of two sources, a derivative
of the 2 megahertz clock or the
line frequency. Both sources offer
respective advantazes. The 2 mesa-
hertz clock should be used ia sys-
tems that Jemand a fast RTC; it is
selectable for time intervals down
to every 100 microseconds. The
line frequency (60 Hertz) on the
other hand, is efficient in svstems
that depend upon accuracy over a
long period of time. Power com-
panies constantly adjust frequency,
thus insuring a consistent source.

1. A JMP instruction must be put
at location "1, so that the in-
terrupt will cause a JMP to the
machine language interrupt res-
ponse routine. Correct branching
is implemented hv the following

three RASIC commands:
56,105
537,187
58,31

[N

The following commands allow the
USR function to turn on the clock
and to enable interrupts. This
changes the JMP FCERR in location
72 to a JMP INIT (see symbol

The table below shows the frequency table).
and associated time interval for
both sources at each of the four POKE 73,250
selectable divide rates: POKE 74,31
SOURCE DIVIDE DIVIDE TIME
RATE FREQUENCY (HZ) INTERVAL
Line Frequency (60 Hertz) 1 60 16.67 milli-
seconds
10 6 166.7 milli-
seconds
100 .6 1.67 seconds
1000 .06 16.67 seconds
10,000 Hz (a derivative
of the 2 MHz system clock) 1 10,000 100 microseconds
10 1,000 1 millisecond
100 100 10 milliseconds
1000 10 100 milliseconds

Note that this time interval repre-
sents the frequency at which the
88-RTC will cause an interrupt.

second.

MITS has developed a machine lan-
guage program for the 88-RTC, which
keeps track of hours, minutes, se-
conds, and 60ths of seconds in four
consecutive memory locations. This
program uses 8K BASIC, a USR assem-
bly language subroutine, and an
interrunt response subroutine. To
execute the program, strap the RTC
for line frequency in + 1, and load
the following program using Package
I (assembler, editor, monitor).
Note that Q represents octal.

After the program is loaded, BASIC
must be loaded into the CPU. The
"memory size" question in BASIC's
initialization's dialog should be
answered with 8122. All other ini-

tialization questions in BASIC should

be answered as usual.

After initialization, certain modi-
fications to BASIC must be made.

For
example, if 1000 Hz is selected, the
RTC will generate an interrupt every
1000th of a second or 1000 interrupts/

3. In order to set the time, make
these commands. (Note: Set the
time a few minutes ahead to allow
for the time necessary to type
the commands):

POKE 8180, TIM (60ths of a second)
POKE 8181, TIM (seconds)

POKE 8182, TIM (minutes)

POKE 8183, TIM (hours)

The above commands could also be part
of a BASIC program which asked for
the initial tie as HHMMSSJJ (hours,
minutes, seconds and jiffies -- 1
jiffy = 1/60 second).

-continued

35

N\

START: PUSH

LooP: MOV

ouTLP: DI

NMB: DS
CURLEV: DB

©INIT: MVI
i our
EI

LAST: RET

UNDEFINED SYMBOLS
SYMBOL TABLE

$0200000
START 017673
CURLEV 017771
NMB 017764
LOOP 017721
OUTLP 017746
INIT 017746
INIT 017772
LAST 017777

Program for RTC

176730 ;PROGRAM STARTS AT THIS MEMORY LOCATION
PSW ;STACK ALL REGISTERS TO BE USED
B
il
CURLEV ;PICK UP OLD LEVEL NUMBER
pSW SAVE IT ON THE STACK
A,10Q iNEW LEVEL IS 10Q
CURLEY :STORE THIS AS THE NEW CURRENT LEVEL
3300 ;OR IN BITS NEEDED TO RESET RTC AND VI BOARD
254 ;OUTPUT LEVEL INFO TO VI BOARD
8,3 .
11, NMB ;GET ADDRESS OF 60TH'S OF SECONDS COUNTER
AM ;PICK UP COUNTER
u ; INCREMENT COUNTER
59 {CHECK IF COUNTER IS NOW = TO 60
OUTLP ;IF < 60 WE ARE DONE
M,A ;IF = 60 ZERO OUT COUNTER
H ;POINT AT NEXT COUNTER
B * ;DECREMENT NUMBERS OF COUNTERS LEFT TO CHECK
LOOP ;LOOP TILL 60TH'S, SECONDS, AND MINUTES ARE DONE
AM ;NOW CHECK HOURS COUNTER
M
23 {MAKE SURE NOT MORE THAN 24 HOURS
OUTLP
M,A .
PSW ;POP OLD INTERRUPT LEVEL OFF STACK
CURLEV ;STORE AGAIN AS CURRENT LEVEL
300Q ;OR IN CONTROL BITS FOR VI
254 ;OUTPUT CURRENT LEVEL TO VI BOARD
H ;RESTORE ALL REGISTERS USED
B
PSW
;RETURN TO INTERRUPTED PROGRAM
5
0
A,360Q INITIALIZE THE VI BOARD
254
TIM

EXAMPLE: If the RTC were to be set
for 9:30 a.m., the commands
would appear as follows:

POKE 8180,0
POKE 8181,0
POKE 8182,30
POKE 8183,9

4. In order to start the clock, type:
A = USR (1)

A printout of the correct time will be
received when the following BASIC pro-
gram is typed in.

10 DIM Z(3)
20 FOR X=1 TO 3
30 Z(X)=PEEK(8180+X)

40 NEXT X .
50 PRINTZ(3);":";2(2);":";

A94: 038 : O

294: A304: A0

COMPUTER NOTES/FEBRUARY>197%

Naw Audio Modulation Method for ACR U

As evidence that we at MITS listen
to our customers, we are improving
the 8R-ACR read and write perfor-

mance. The changes described below

will allow the 38-ACR to accept 2.75:

zimes wider speed variation when de-
modulating tapes written with the
new method. Also, demodulation
(reading) of tapes written by the
old method will be the same as be-
fore.

I Purpose: ‘Make reading and
writing of, data on audio tapes

less suscentible to errors due:

to speed variations, and to
make adjustment of R29 (phase
locked loop center frequency
adjust) less critical.

11 Method: Change modulator fre- |
quencies from 2225HZ/2025Hz- |
(200 Hz difference) to 2400Hz/ :
18590Hz- (550 liz difference).
This change keepns the center
frequency at 2125ifz, allowing
the 88-ACR to demodulate (read)
either type of modulation.

II1 Modifications to 88-ACR Modem
Boards in the field:
A) Modulator - Change jumpers
as follows:
1. Remove jumpers #1 & 2. !
2. Connect pins 3, 4, and;
S of IC "J" together.
3. Change jumper #3 from
3B to 2A.
4. Change jumper #4 from .
4B to 4A. !
5. Disconnect pins S and
6 of IC "K" from ground
(unsolder and bend out
of board).
6. Connect pins 4 and S5
X of IC "K" together.
7. Change jumper #S5 from
. SB to 2A.
8. Connect pin 6 of IC "K"
to point 5A.
9. Change jumper #7 from
7B to 7A.

NOTE: The "B" row of jum-
per points is closest to
edge of Modem Board, the
“A" row of jumper points
is closest to the row of
numbered jumper wires

(see schematic diagram

in manual).

This changes the modulation
frequencies to:

LOGIC 1 = 2404 Hz + 1 Hz
LOGIC p = 1852 Hz + 1 Hz

(measured at IC "H"-8)

B) Demodulator: Change R238
to 5.3K ohms, or narallel
a 5.6K ohm resistor with
the existing 8.2K ohm re-
sistor.

This change increases the
lock range of the phase
locked loop (IC "C') for
the wider frequency spread
of the new modulation me-
thod. It does not affect
demodulation of tapes pre-
viously recorded with the
old frequencies (2225/
2025 Mz).

This change allows tape
speed varjations between
writing and reading of
over 3% without readjust-
ment of R29 (if demodu-
lating tapes written with
the new method).

Other Circuitry Changes Re-

commended for the 88-ACR.

A) Change C18 (was uf
electrolytic) to a 1 pf
mylar or non-polarity
sensitive capacitor.

This prevents breakdown
of C18 when reverse biased
(no carrier).

8) Use the old Cl8 (5 uf
electrolytic) to add a
S uf capacitor: + end
to IC "C" pin 9 end of
R30, -- end to -12 volts.
This helps stabilize ad-
justment of R29.

C) Change R32 to. 8.2K (use
old R38) and change Z1
(12 volt zener) to a
3.3K resistor. This
allows the P, L. L. out-
put (IC "C", pin 8) to
pull down point 'RS" to
a valid logic § even if
the system negative vol-
tage supply is low.

D) Remove diode D4. This
allows reading and writ-
ing of taves simultan-
eously.

E) Opntional - For indication
of the carrier (2K Hz
tones) a L. E. D. may be
wired to points "A" and
"K" on the Modem Board.
Remove the jumper wire
from "A" to "K", and
connect the LED anode
to "A", the cathode to
"K'". When the carrier
is being received, the
LED forward current is

about 10MA. Use a red
LED only--1.7 volts for-
ward drop.

Address

Lffective ate of Change

XY ATU COMAER IT units, all
assembled 38-ACR's and
all renaired 83-ACR's
shipned from MITS after
March |, 1974, contain
the modification Jes-
cribed above.

B) All 88-ACR kits shinped
after March 15, 1976,
contain the modification
described aks

C) All ALTAIR BASIC and Pack-
age I cassette tapes will
be made with the new modu-
lation technique starting
April 5, 1976,

i Tanes
Tletho
Xlthough it is roc necessary,
vou may wish to convert exist-
ing tapes to the new form. To
do this, vnu need two tane Te-
cerders and:
A} Modify ycur £8-ACR hoard
as indicated, including
Step IV-D.

8) Identify the slower of the
two tape recorders, and
use it tor playback of
your existing tave during
transfer. The nlay machine
should be slightly slow to
prevent the inputting of
data faster than it can be
outputted. Connect the
slower machine to the "PLAY
IN" circuit, and adjust
R29 for the proper pattern.

C) Connect the other tape re-
corder to the "RECORD OUT"
circuit and use it for re-
cording the new tape.

D) Use the following program
to transfer data:

Octal Code Mnemonic

000,000 333 IR}

006
017 RRC
332 JC
000
000
333 IN
007
323 ouT
007
303 JMP
000
000

~continued

37

\J

ACR

, F) Start the record machine
first, then start play
machine; then play pro-
gram to transfer data.

F) After your tape has been
transferred, check it for
correct data. If vour
playback tape recorder was
too fast, then there will
be bytes dropped.

G) Once vour tapes have been
transferred, R29 will pro-
bably not require readjust-
ment. This is one of the
advantages of spreading
the modulation frequencies.

If you have only one tape recorder,
or if the above procedure does not
work for you, read the old tape into
memory, then write it out to tape.

Use the 88-ACR read/write programs
listed in the Nov/Dec COMPUTER NOTES,
pages 22 § 23. If you are rerecord-
ing an ALTAIR BASIC cassette, the
test byte must be changed to 175

for version 3.1 and 256 for ver-
sion 3.2.

If you need to order pvarts for the
modification, order:

b » 2 ea. 102085 3.3K resistor
1 ea. 100363 1.0mf mylar
capacitor
S

N’

COMPUTER NOTES/MARCH-197b

e

1.

Try using

lower volume seg-
tings on vour tape recorddr
during playback. Sometimas
noise generated in recorddrs
nlaying at maximum volume |
can cause errors in data.

te have found that in most
recorders volume settings

as low as 1/3 of maximum
are satisfactory.

If vou have trouble obtain-
ing a proper "JUMP" of ad-i
dress lights when beginninyg
a bootstrap load, or you
don't want to wait the 1S :
seconds between starting
the tane playing and de-
pressing tic run switch,
try this 9 step program

in addition to the boot-
strap loader.

tests for tne
icader bit nattern it is
recorded before the checksum
loader at the beginning of
MITS software. The program
will io0p at the high ad-
dresses until the leader
byte is found (10-15 seconds
after start of tape) and
then jump to thwe bootstrap
loader at 20¢,209. Approx-
imately 10 seconds later
the address lights chanue
again, indicating proper
loading of the software

(for version 3.2 A3, AY,
& A6 off).

Deposit bootstrap lvuder.
Deposit leader Jetector.
mine 201,
Start tane and depress TR
on Altair,
25 seconds later, Altair
should jump, indicating nre-
per loading of data.

footstrap Leader Detector

a6

START

OCTAL
MNEMONIC | ADDRESS 05}

IN 001,000 33
1 00
CPIL 2 7!
3 25
JINZ 4 30
S 00
6 00
JMP 7 30.
001,010 00
11 00

LXPLANATION

input data

from ACR

compare data byte to

leader byte for version 3.2

(175 for 3.1) (same as bootstrap
location 1)

jump if data # 256 (or 17%)

to "start"

jump to bootstrap loader
if data = 256 (or 175)

COMPUTER NOTES/MARCH. 197
Mew Products

Teletype Call-Control Kit

Ihe MITS Teletype Call-Control
Kit provides a much lower cost and
faster way to get a Teletype into
your system than was previously pos-
sible. MITS has made an agreement
with Teletype whercby the fully as-
sembled mechanical portion of the
Teletype will hipped directly to
you from Teletypce Corp. and the PC
board Call-Control Kit will be ship-
ped from MITS. Starting in May,
delivery time should be a couple of
weeks as opposed to 4 to 5 months.

There are three Call-Control
Kits available: 88-TYR which is
supplied with the Teletype Printer
only, 88-TYK which is supplied with
Teletype Model KSR-33 (printer and
keyboard), and 88-TYA which is sup-
plied with Teletype Model ASR-33
(printer, keyboard, paper tape
punch and reader), All three kits
use the same basic printed circuit
board (see parts layout, this page).
All you need to do is assemble as
much of the PC board as applies to
the model of Teletype you have pur-
chased, mount it to the Teletype
chassis, and plug it in,

The PC board for the 88-TYR
(printer) kit has a power switch,
two fuses, a simple power supply
and the receive circuit for 20ma
current loop. Interconnect plugs
and mounting hardware are also pro-
vided.

40

tor the 5X-1YK kit, a relay
for linc¢-local switching, a conncce
tor to the kevhoard, and some
transicnt damping circuitry are
added.

For the 88-TYA kit, all of the
above is included with the addition
of another simple power supply, con-
nections for the paper tape reader,
and a circuit to control the reader
by nrogram control.

That's all there is to it. The
Most complicated part of the assembly
is connecting wires from the line-
local relay to the PC board. The 88-TYA
kit should take only 3 to 5 hours to
complete. At $500.00 savings, that's
$100.00 an hour for your time.

S

COMPUTER NOTES/MARCH.197h

— 530b Paper Tape
Reader Conirol

by Steve Pollini

It has been advertised that the
Altair 680b has a Paper Tape Reader
Control output. This output function
utilizes the Request To Send (RTS)
output of the Motorola 6850 (ACIA)
and is fully software controllable.
The desirability of having such a
feature is dubious until you try to
generate an object tape or assemble
a program with a two-pass assembler.

During the process of assemb-
ling a program, a single line of data
is read from the paper tape, assem-
bled, and then printed. If the
paper tape is not halted while the
computer is assembling and printing
the line that was just read in, data
will be lost as soon as the next
line begins to be read. Therefore,
it is very useful to have a paper
tape reader controller on your Tele-
type, such as the one that is in
the MITS 88-TYA.

what this circuitry essentially
consists of is a relay that makes
and breaks the supply current to the
reader feed magnet within the Tele-
type. The relay is supplied with
current from the 20ma current loop
interface supplied on the 680b main
board. The relay is driven by the
RTS output of the ACIA.

Turn to page 15 for a diagram
of the circuitry necessary to imple-
ment a paper tape reader controller
on an ASR-3320 Teletype.

. | 7-0rTopY ,
MODE SKITCH ! ‘ .
!
) ALL o LINE LOCAL | 7™ precprpyron |
Ao o> | o ks TRIP boede e e
| L1 i MEGHET X =
| S PO '
!
-Sgart-
-Stop-
> ~Free-
/ Switch
|
54d3-1
i
2
0B-25 ""“T"'°“T
PIN § a! Lo
(PTRC OUT) ; "7\ L S
DB-25 — Y N
PIN 7 [G I
(Gnd.) 3
bus-a

The relay used in the MITS 88-
TYA is a Guardian 10 amp 1345 DC
relay (form C). The coil draws
approximately 5 milliamps and is
therefore easily driven by the 20ma
interface labelled '"PTRC" (Paper
Tape Reader Controller) on the 680b
main board. To connect the relay to
an ASR-3320, remove the jumper be-
tween pins 7 and 8 on J3 of the
Teletype. Connect pin 7 of J3 to
pin 1 of the relay and pin 8 of
J3 to pin 3 of the Teletype.

All of the software necessary
to control this output while assem-
bling a program is contained within
the Assembler. However, if you
want to control this output to read
in a data file from paper tape while
not assembling a program, the fol-
lowing information will be useful.

When the RTS output goes high,
the reader is turned on. When it is
low, the reader is turned off.

To turn the reader on:

LDA A #$ D1
STA A $ F000

This stores Dl in.the Control
Register of the ACIA. Bits five and
six function together such that when
six is a one and five is a zero, the
RTS line is high with Transmitting
Interrupt Disabled. The Control Re-
gister is also set for a s+ 16 clock,
two stop bits, eight bits, and no
parity.

To turn the reader off:

LDA A #3 81

STA A $ F000 -

This stores Bl in the ACIA Con-
trol Register. Bits five and six
function together such that when
they are both zeros the RTS line is
low with Transmitting Interrupt Dis-
abled. The Control Register is also
set for a + 16 clock, two stop bits,
eight bits, and no parity. To turn
the reader off with Transmitting
Interrupt Enabled, do a LDA A #§

91 instead of a LDA A #$ Bl.

For further information on the
ACIA Control Register, see the 680b
Programming Manual, Appendix C.

>

L)

COMPUTER NOTES/MAY.147b

New Products

Controllable High Speed Tape Reader

L/,

88-HSR rassembled only)

Designed around a REMEX 300 low power standby mode. The stand-
character-per-second opto-reader, by mode serves twc purposes: it
the 88-iiSR connects directly to one reduces motor voltage during periods
.port of an 88-4PT0 parallel inter- of inactivity, and also allows tapes
face card or one ‘arallel port of to be read at the reduced speed of
an Altair 680b. :ftware features 30 cps.

include start/si.; on character and
The reader is enclosed in an
Optima case that is the same style
and colors as the Altair 8800 and
Specifications: 680b cases.

Reading Sneed 300 cps or 30 cns, software selectable
stops 'on character'

Tapes
a) light transmissivity 57% or less
b) thickness .0027 - ,0045 inch
¢) type standard 8-track (l-inch) and most other
standard 5, 6, or 7.track
Data Output TTL: a) less than .4 volts @ 16 ma (No
Hole) 2.4 - S volts @ .2 ma (Hole)
b) Plug-in compatable with 88-4PIO0
or Altair 680 parallel port
Drive DC stepping motor with sprocket drive
READ Mechanism Filament lamp to fiber optics to photo
cells
Lamp operated below voltage rating to
greatly increase life
Tape Loading easy in-line, front load
Dimensions 6 1/2 inches high, 8 1/2 inches wide, 11
inches deep
Power 50 watts, running

)

—’

g 300 baud

J.a-f" e QN e
from iive TS J

In comparison to MITS' older
1/0 boards, the 2SI0 Board may seem
far more complex due to its program-
ing requirement. In the earlier 1/0
boards, the information containing
number of stop bits, tvpe of parity,
and number of bits per character
was hardwired. Reset was also pro-
vided by hardware. In the 2SIO,
all of this information is supplied
through software. This difference
only means that troubleshooting
will use both software and hardware.

Special considerations:

1f DATA CARRY DETECT and

CLEAR TO SEND are not used but are
connected through the circuitry to
the Molex connectors, they must be
set to a high level. This is done
by jumpering Sl-1 and S1-2 (or S2-1
and 52-2 for second port) of Molex
pins to +5v. (Earlier errata sheet
on jumping to ground should be ig-
rored.} These jumpers are neces-
sary for RS-232 level interfacing.
If these lines are not connected,
jumper the D and E pads to ground
(D1, D2, El, E2).

When using a 2SIO to load soft-
ware, start the bootstrap before
starting the loading device. The
2S10's ACIA must be reset before it
will accept any data. When assem-
bling the 2SI0 board, IC J is in-
stalled only if the 2510 is to be
used for 2 ports. The 2SI0 requires
the 3.2 version or later of BASIC
and must be addressed at Location
20. Switch A-11 must be up for
operation of the 2510 at Location
20. Use the echo routine (page
101 of BASIC Manual) and the boot-
strap loader (page 99 of BASIC Man-
ual) with the 2SI0. (The echo rou-
tine is given at the end of this
article).

Troubleshooting

Check the power supply levels
on the voltage regulators and check
for solder bridges. An easy way
to check the wiring is with an ohm-
meter. Use a scope, if available,
to check the baud rate. The fre-
quency is 16 times the baud rate.
110 baud should produce a square,
symmetrical waveform of roughly
.568 millisecond pulse width (1760
hertz).

110 baud .568 milliseconds

,208 milliseconds

Repair Department .

When troubleshooting the ZSIO,
use the status register information
of the ACIA to indicate the problem.
You can single step through the 2SIO
echo routine, checking status at
appropriate times.” (It is necessary
to check status since it is possible

to echo on a 2SI0 which will not
respond with BASIC.) The status
register indicates the condition of
the ACIA at any given moment, and
each bit indicates one characteris-
tic. Status register bits appear
on the data lights when instruction
333,020 of the echo program has
been single stepped. ("HIGH" in-
dicates a lit LED, and "LOW" in-
dicates an unlit LED on the data
lights.)

The status register bits are
defined as follows.
3it ¢:
HIGH - Receive data register full.

A character has been re-
ceived. from the terminal.

LOW - Receive data register empty.
No character received yet
from the terminal.

Bit 1:

HIGH - Transmit data register empty.
No character is being sent
from the CPU to the ACIA.

Transmit data register full.
ACIA has a character stored
and is transmitting the
character to the terminal.

LOW -

Bits 2 and 3 are for use with a
modem.

Bit 2:

HIGH - No carrier is present. {Pin
23, DCD, of ACIA will be
HIGH accordingly.) In this
state, pin 23 inhibits the
receiver section of the
ACTA, thus no data can enter
the 2SI0.

Carrier is present. (Pin 23,
DED, of ACIA will be LOW ac-
cordingly.) In this state,
pin 23 activates the ACIA
receiver section, and ACIA
is free to accept data.

LOW -

Bit 3:

by Bruce Fowler

HIGH - Output device is not ready
to receive. In this state,
the ACIA's transmitter sec-
tion is inhibited and the
2S10 cannot output (i.=.
transmit) data. (Fin 24 of
ACIA will be HIGH.)

LOW - Output device is ready to

receive. In this state the

ACIA transmitter section is

free to output Jata.

The other bits, which are de-
fined on page 8 of the Theory Manual,
are not vital in troubleshooting.
Thus, for proper operation, the
status register should have all
bits LOW except for Bit 1.

Single step the echo routine
through to where the status is
checked (hit single step 12 times).
[f you receive proper status, hit
a key on the input device. B8it 0
wiil light up, indicating that the
character has been received. If
single stepping is continued, the
echo routine will output the
character.

When the ACIA is neither re-
ceiving nor transmitting, pins 2
and 6 of the ACIA must be HIGH.
With a Teletype, pin 2 of the ACIA
is LOW until the Teletype is ON
LINE. If either pin is LOW, the
ACIA responds as if data were being
transferred.

Bad Status and Areas to Look At

If Bit 3 (or 4) and pin 23
{or 24) of the ACIA are HIGH:
This indicates either bad inverters,
diodes installed backwards, or Sl-
1 and S1-2 not tied to +Sv for
RS-232 levels.

If Bit 0 is HIGH before
entering data, then Pin 2 of ACIA
is LOW when it should be HIGH, or
the ACIA hasn't been reset. The
latter could be caused by the
data buffers IC A and B not being
enabled after hitting single step
four times starting at the begin-
ning of the echo routine.

-continued

5]

W

b,

Troubleshooting

If all bits are HIGH: ACIA is
not sciected due to one or more had
control signals or the output buffer
to the ¢PU is not enabled. After -
single stepping 12 times (from the
beginning of the echo routine) in
the echo routine, the ACIA should
contain:

(HIGH and LOW are in TTL levels,
.8v or less for LOW, 2v or more
for HIGH)

Cso Pin 8 HIGH
RS Pin 11 LOW

Cs1 Pin 10 HIGH
R/W Pin 13 HIGH
E Pin 14 HIGH
[oi:72 Pin 9 Low
ICP Pin 38 LOW
ICO Pin38 LOW

ICS Pin 11 HIGH

NOTE: R/W (nin 13 of the 6850) is
LOW for outputting. Centinue
single stepping 10 more tires and
Pin 12 should be ICX. IC P, Pin
5, will be I'ICH, while Pin 6 will
be LOW. SINF will alsc be LOW.
A1 other pins will be the same
as before

Final Notes

If the ACTA is not reset, the
Teletype may run open when it is
turned on. To correct this, simply
flip the Altair ON/OFF switch a
couple of times. In some cases an
etching error will short out SOUT.
This etching error is located on
the back of the 2510 board between
IC S, Pin 11, and the gold fingers.
Usually SOUT is shorted to address
line A6. This etching short should
be cut. For those of you who
bought the BASIC manual before the
extended BASIC section was written,
the 2510 echo routine and bootstrap
are listed below: Note that the
first 4 bytes reset the ACIA and
clear its internal registers. The
next 4 bytes tell the ACIA what
type of parity, the number of bits/
character, and the interrupt infor-
mation that will be used.

NOTE: Therc is a misprint in the
Appendix, page 10i, of the Extended
BASIC Manual. The corrections are
listed below:

025 in Location 005 is for 1 stop
bit.

021, used in Location 00S, is for
2 stop bits.

2510 Echo Routine

OCTAL_AUDRESS OCTAL CObE OCTAL_ADURESS
000 076 013
001 003 oe
002 323 s
003 ‘020 016
004 076 017
005 021 (=2 stop bies, 020
006 325 025%1 stop bit) oo
007 *020 022
010 333 023
ot1 *020 02¢
02 o7

* - Control channel
** - Data channel

ocTAL Cove

322
010
000
33
**021
323
**021
303
010
000

S

—

COMPUTER NOTES/APRIL 2. 1975

Altatr Techn

al nines

USING THE STACK

The stack is a portion of memory
the programmer sets aside for temp-
orary storage of data or addresses.
The stack is necessary for the pro-
per execution of many instructions.
The Stack Pointer is a 16-bit regis-
ter that specifies the address in
the stack that will be operated upon.

To establish the stack use the
LXI SP instruction. The data byte
immediately following the instruction
has the least significant 8 bits of
the address, and the next data byte
has the most significant 8 bits of
the address. For example:

LXI SP sets the stack pointer
077,000 at memory address
000 077 octal.

There are two basic operations
on the stack, the PUSH and the POP.
The PUSH instruction moves the con-
tents of the specified register pair
into the stack. The first register
of the specified register pair goes
into the stack at the address in the
stack pointer minus 1 and the second
register at the address in the stack
pointer minus 2. The stack pointer
is then decremented by 2.

For example:

PUSH D with the stack pointer
at 077 octal would move
the contents of regis-
ter D to memory address
076, E to 075 and then
set the stack pointer
to 075.

The POP instruction is the re-
verse of the PUSH. So the content
of the stack at the addreas contain-
ed in the stack pointer is moved
into the second register of the spe-
cified register pair. The content
of the stack at the address contain-
ed in the stack pointer plus 1 is
moved into the first register of the
specified pair. The stack pointer
is then incremented by 2.

For example:

POP D with the stack pointer
at 075 octal would move
the content of 075 to
register E, 076 to reg-
ister D and then set

the stack pointer to 077.

In addition to these instructions

the stack pointer may be operated on

_by many of the register pair instruc-

tions.

When programming remember the
following:

1) If an instruction requires a
stack for proper execution be

sure to provide it. (For ex-
ample, the stack is necessary
when using subroutines.)

2) There should be a POP instruc-
tion for every PUSH instruction.
(The stack is for temporary
storage.)

3

The stack pointer moves down
through memory as data is added
to the stack and back up as
data is removed. Be sure to
allow sufficient memory for the
maximum possible requirements
of the stack.,

B

45

COMPUTER NOTES/JULY419?5

ALTAIR INTERRUPT STRUCTURE

By Paul Allen

Tn order to implement simple
(cne level) interrupts on the Altair,
use the following procedure:

1) Enable interrupts using the EI
(enable interrupt) instruction.

2) The I/0 interface should pull
bus line PINT low. This will cause
the immediate exe~ution of a RST 7
instruction if - CPU is halted, or
as soon as the .rent instruction
finishes if the CPU is already run-
ning. As Scon as the interrupt is
edged, i pts are

disabled.

3) At the completion of the inter-
rupt service routine (which should
start at octal location 70), enable
interrupt (EI) instruction should be

d to ble interrupt; and
then an RET instruction should fol-
low the EI, causing the CPU to exe-
cute the instruction after the one
it was executing when the interrupt
occurred.

NOTE! Since the RST instruction
uses one lavel (2 bytes) of stack to
store the return address to the
"main sequence" code, the programmer
should always have a stack set up if
he expects interrupts to occur; and

~ he should allocate enough stack

! space for the use of the interrupt

(jservice routine.

Consider the following example:
location 70: PUSH PsW

The buffer pointer in [H,L] is
used to store the byte in the buffer,
The buffer pointer is then advanced
to point to the next byte in the
buffer; and then the pointer is
saved back in memory, so that when
the next interrupt occurs the incom-
ing byte will be stored in the cor-
rect location.

This interrupt service routine
would use 3 levels or 6 bytes of
stack space.

An actual interrupt service
routine for an ACR or SIO board
would be more complicated. It would
test the status bits for the device
to see whether the interrupt was
caused because the device set char-
acter ready or character done. It
would then either empty a character
from the output buffer or store a
new character in the input buffer.
Also, it would take some special ac-
tion when the output buffer became
gﬁy or the input buffer became

If the programmer wishes to ig-
nore interrupts and is in an inter-
ruptable state because an enable
interrupt instruction has been exe-
cuted, he should include a disable
in;empt (DI) instruction in his
code.

ssave A £ condition codes

PUSH H ;save [H,L]

IN 10 ;read in byte from device

LHLD BUFPNT ;load buffer pointer into [H,L]
MOV M,A ;save byte in buffer

INX H ;increment buffer pointer

SHLD BUFPNT ;save updated buffer pointer
POP H ;restore [H,L]

POP PSW ;restore A and PSW

EI jre-enable interrupts

RET sreturn to main sequence

When an interrupt occurs, this
simplified routine will save the A
register, the condition codes and
the H and L registers. Then the in-
put byte from the interrupting de-
vice is read into A with an IN 10.
Next, a buffer pointer (BUFPNT) is
loaded into the register pair [H,L].
This buffer pointer addresses an
area of memory where the incoming
bytes are to be stored. The first
byte read in will be stored in the
first byte of the buffer, etc.

C

46

The maximum time between the
occurrence of an interrupt and the
execution of the first instruction
in the interrupt service is approxi-
mately twenty microseconds for dy-
namic memory and thirty microseconds
in the static memory. This allows
for the execution of the longest
possible instruction plus the time
required to execute the RST in-
struction.

Vectored Interrupts board

The Vectored Interrupt board
gives the Altair eight levels of
priority interrupt service. The

highest priority level is zero and
the lowest is seven. An interrupt
on level five would cause an RST §

(357) to be executed. If an inter-
rupt occurred on level two while the
service routine for level five was
still being executed, the level two
service routine would pre-empt the
level five service routine and an
RST 2 (327) would be executed., When
the level two service routine fin-
ished, it would return to some loca-
tion inside the level five service
routine, where execution would con-
tinue. If a level six interrupt
occurred during the servicing of the
level five or level two interrupts,
it would be held pénding and would
not be serviced until the level two
and level five service routines had

finished.
S

CCMPUTER NOTES/JULY, 1975

software
By bill Gates
Condition Codes

There seems to be some confusion
about the condition codes. These
are the Boolean (true/false) flags
that are set/reset depending on the
results of certain instructions.

They are:
Z = zero - result was 0
S = sign - the most significant

bit (MSB) of the result
P = parity - the result has an even
number of ones in it
an arithmetic operation
generated a carry out
of the most significant
bit (i.e. adding 200 to
212)
CYy = first digit carry -

this is used only for

BCD arithmetic and will

be elaborated on next

month,

C = carry -

It is the condition codes that
determine whether conditional JMP's,
CALL's and RET's will be executed
(i.e. RZ, CPE, JP). JM, CM, and RM
(minus) are executed if the sign
flag is on, JP, CP, and RP
(positive) are executed if the sign
flag is off. JZ, JNZ, CNZ, RZ, RNZ
(zero/no zero) depend on the zero
flag just as JC, JNC, CC, CNC, RC,
RNC (carry/no carry) depend on the
carry flag. CPE, JPE, RPE (parity
even) are executed if the parity
flag is on and CPO, JPO, RPO are ex-
ecuted when it is off.

The condition codes do not al-

ways reflect the value in A since

IN, LDA, LDAX, MOV and MVI can change
A but do not affect the condition
codes. Instructions like INR C,

DCR L, CMP B, CPI 3, STC, CMC and
DAD B affect the condition codes,

but not A.

Affect carry only: STC, CMC,
RAL, RAR, RLC, RRC and DAD.

_Affect all but carry: INR, DCR.
Affect all: ADD, ADC, SUB, SBB,

CMP, ANA, ORA, XRA, DAA and their

immediate counterparts (i.e. ADI,CPI).

Use carry to affect result:
CMC, RAR, RAL, ADC, SBB, ACI, SBI,
DAA.

The instructions XRA, ORA, ANA,
XRI ORI and ANI always reset carry.

If the conditidn codes do not
reflect A's value (i.e. you just did
a LDA or MOV into A) and you want to
see if A=0, use ORA A or ANA A.

CPI 0, ADI 0 and ORI 0 also work but
they are 2-bytes.

The only other instructions be-
sides the ones in the list above
that use the condition codes are
PUSH PSW and POP PSW. Respectively,
they SAVE/RESTORE the condition
codes and A on the stack.

For tricky programmers a
sequence like PUSH B / POP PSW may
be used to set the condition codes.
This has the effect of moving B into
A (MOV A, B) and moving C into the
condition codes. The PSW (condition
code) format is

MSB*LC[:JP!O!CYll o‘zls—‘«Lsa
7 6 s

¥ 3 2 1 0

Therefore if C was 201g before the
POP PSW, zero and sign would be set
and parity and zero would be unset.
The bits marked '0' and 'l' are con-
stant and cannot be changed.

HINT #1

If you have a counter that can
be bigger than 255 but is always
less than 65535, it is convenient to
use the following:

LXI B, count ;set up counter
LOOP: code to be executed 'count'
times

DCX B ;decrement count
;does not affect
scondition codes

MOV A,B

ORA C ;see if any bits set

JNZ LOOP ;80 back if so

HINT #2

For those who like to save

ytes, and especially for those with
256-byte machines, (a byte is always
8 bits, which is a word on the 8800)
RST's that are not used for inter-
rupts, debug calls, monitor calls,
etc. can be used to call subroutines
that get called in many places (i.e.
a character input subroutine). An
RST is only 1 byte and a CALL is 3
bytes. Even if you have to put in a
JMP so you don't overrun another RST
location (0,10,20,30,40,50,60,70)
you will probably save bytes.

Loading Software

Software from MITS will be pro-
vided in a checksummed format.
There will be a bootstrap loader
that you key in manually (less than
25 bytes). This will read a check-
sum loader (the 'bin' loader) which
will be about 120 bytes.

For audio cassette loading the
bootstrap and checksum loaders will
be longer. All of this will be ex-
plained in detail in a cover package
that will go out with all software.

For loading non-checksummed
paper tapes here is a short program:
STKLOC: DW GETNEW
(2 bytes-#1 low byte of

GETNEW address
#2 high byte of
GETNEW address)

START:
GETNEW:

LXI H,0

LXI SP, STKLOC

IN <flag-input channel>
RAL ;get input ready bit
RNZ ;ready?

IN <data-input channel> -
CPI <043 = INX B>

RNZ

INR A

STA CHGLOC

RET

CHGLOC:

(22 bytes)

Punch a paper tape with leader,

a 043 start byte, the byte to be
stored at loc 0, the byte to be
stored at' 1, - - - etc. Start at
START, making sure the memory the
loader is in is unprotected. Make
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC
back to CPI - 376.

3

47

C

COMPUTER NOTES/JULY+1975

<.LILETTER 7O THE EDITOR. ...
Here are a couple of program-
ming suggestions which may be of in-
terest to other Altair owners.

1) An efficient way to establish a
control counter in a program which
is already using the accumulator
(register A) and the memory address
register pair (H and L) for other
purposes is to use the B, C, D or E
register with the decrement register
(DCR) and Jump ! zero or Jump if
not zero (JZ, . ° instructions.

The desired count is first
loaded into the selectad register.
The DCR instruction will cause the
zero flag to be set when the count
is exhausted and the JZ instruction
will test this condition.

Note that the decrement regis-
ter pair instruction (DCX) does not
set the condition flags and cannot
be used in this fashion. Also be
aware that the DCR (E) instruction
will not cause a borrow from regis-
ter D.

2) A simple way to indicate "end
of program" on an Altair withou® any
1/0 devices (i.e. the basic kit) is
to use the "interrupt enabled" light
on the front panel and an uncondi-
tional Jump instruction. The last
instructions are:

g EX
{ JuP (To EI)

The stop switch camn be actuated
when the light comes on and the re-
sct switch will turn it off. (This
avoids use of the machine hanging
HALT instruction.)

T. H. Sehmidt
P.0. Box 9674
Stanford, CA 94305

p§

48

N -

COMPUTER NOTES/AUGUST.1975

AT

by Monte Davidoff

After loading BASIC, jou may be
ready for a little enjoyment from your
Altair. Here are three short pro-
grams that illustrate some of the
things that are easy %o do in 2K
Altair BASIC.

The first program wants two
strings S$ and W$. The program finds
all the occurances of W$ as a sub-
string. (i.e. it finds all the places
in S$ that are exactly the same
characters that are in W$.) For
example, if S$="ABCDAB" and S$='"'AB"
then the program would say "AB" was
found in S$ starting at characters
1 and 5. Now let's lock at the
program.

The first thing we do is input S$
and W$. Notice that we can print
text in an INPUT statement also. The
next thing the program does is set
the variable CN to Zero. (Remember you
can have two character variable names
in Altair 8K BASIC). CN will be used
to count how many times W$ is found in
$$. Next, we use the CHR$ function
to set Q5 to a string one character
long. 34 is the ASCII code for a
double quote. Next we use the con-
catentation operatoer "+" to put
quotes around W$ and S$. This is just
so the printouts will look nice. Next
comes the meat of the program. I
ranges from 1 to the number of charac-
ters in S$. The MIDS function will
return as many characters out of
S$ as there are in WS. If these
are equal to W$, we have found our
substring. So, we add one to the
count, CN, and print a message.

Remember that if the IF statement
is true, the statements following the
THEN will be executted. If the IF
statement is false, we skip the
statements on the same line and
start at ethe beginning of the next
line. In 8K Altair BASIC, if there is
no variable given in the NEXT state-
ment, BASIC will assume the NEXT is
for the most recent FOR loop. Line
90 just prints out how many times
we found WS in S$. This program is
just intended to show what kinds of
things can be done with the string
functions such as MID$ and LEN.

The next program shows how you
can use STRS to make your output
lock nice. This program produces a
table of Pascal's Triangle. This table
is used in probability. It is formed
by starting & one at the top
and then adding the two numbers that
appear to the upper right and left
to form an entry in the next row. No-
tice the NEXT J,I in line 60 to end
both for lcops. The trick comes in
printing the thing out to look
like a triangle. The STR$ function
is used to convert the number to be
printed to a string. Then the

LEN function is used to find out how
many characters are needed to print
the number, These are added together
in line 90 to see how many characters
will be used to print all the numbers
in the line. In line 100 we find how
many spaces to print between each num-
ber. We have 72-LL positions to fill,
and we want to divide the number of
spaces into groups. .5 is added
to round te the nearest integer. Line
120 then prints the row out using the
SPC function to print the correct
number of spaces. The last NEXT in
line 120 ends the FOR in line 80,s¢0
we repeat thls procedure for each
line in the triangle. The right side
does not look as nice as the left
side. This is because the terminal can
only print a character at discrete
positions on the paper. However, the
program still shows the general idea
of using the STRS function.

The third program is intended for
people who already know about BASIC
on an advanced level. While
BASIC is a simple language, it still
has the power to do complicated things.
This program calculates N factorial
(N!) where n!= Nx (n-1)x (N-2)...
3x2x1 and 0!=1, So S!= Sxux3x2xl=
120.

The program uses the fact that
0!=1 and N!=N.(n-1)!

The FOR loop in line 20 just sets
up things so a table can be printed

MiTH ALTAIR Ba31E o

in two columns. The subroutine in
line 60 prints out the result. The
STR$ function is used to make the
output lock nice by having the ex-
clamation mark come immediately
after the number.

Now for the tricky part. The
subroutine in line 40 calculates .
F=N!. In line 40, if N=o then we
know I should be one and we
RETURN because we are done. If

N is not zero, Line 50 decreases N

by one, and then GOSUB'S to line 40
again to calculate (N-1)! The amount
of times GOSUB'S can be executed with
out a RETURN is limited only by how m
much memory you have. I ran these
programs on a machine with 8K.

Anyway, when the subroutine returns in
line 5C, the N=N+l updates N to the
value it was before the GOSUB,

F=N*F updates (N-1)! to N! and then
we return. If you are confused
atout this program, you might want

to print out the values of N and F

at line 40 before the IF statement.
(i.e. type: 40 PRINT N,F: IF N=0

THEN F=1: RETURN). If confusion s
prevails, do not worry about it.
There are very few BASIC programs in
which this type of trick is

used. If you want to run this program
in 4K Altair BASIC, change line 60 to:
60 PRINT N;'"!="F,:RETURN

-continued

4

== =m====<s== Having Fun With Altair BASIC--Program One =~==== = m====

FIN

GIVE ME A SENTENCE? THE PAIN IN SPAIN FALLS MAINLY ON THE PLAIN

GIVE ME SOME CHAPMACTERS? THE

“THE" STARTS AT | o~
“THE'" STARTS AT 35

"THE"™ OCCURE 2 TIMES IN "THE PAIN IN SPAIN FALLS MAINLY ON THE PLAIN"

GIVE ME A. SENTENCE? I LIXE APPLES COOKED IN TURPENTINE
GIVE ME SOME CHARACTERS? ELEPHANT
"ELEPHAVT" OCCURS @ TIMES IN "I LIKE APPLES COOKEL IN TURPENTINE"

GIVE ME A SENTENCE? A MAV LOOKED AT A CAT

GIVE ME SOME CHARACTERS? A

"A" STAFTS AT i

“A" STAPTS AT 4

“A" STAFTS AT 14

“A" STAPTS AT 17 .
STARTS AT 2@

A" OCCURS 5 TIMES IN "A MAN LOOKEL AT A CAT"

GIVE ME A SENTENCE?

0K
LIST

1¢ PEM SEARCH FOP A CHARACTEF IN A SENTENCE

20 INPUT "GIVE ME A SENTENCE"}SS

3@ INPUT “GIVE ME SOME CHARACTERS";v$

4@ CN=@ : PEM CNsNUMBER OF TIMES WS OCCURS IN S$

S? QS=CHR$(J4) & SOI=CE+S$+08 : V(ES=QI+VE+0S

6@ FOP I=1 TO LEN(SS)

78 IF MICSCSS,1,LENC(WS))=WS THEN CN=CHN+l : PRINT W@S * STARTS AT" 1

82 WEXT
9¢ PRINT WQ$ " OCCURS®™ CN "TIMES IN " 5Q$: PRINT
128 GOTO 2¢
oK
-continued
™

by
HOW MANY RQO¥S? 9

1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 1e S I
i 5 15 2¢ 15 6 1
1 7 21 35 35 21 7 1
1 8 28 Sé 7¢ <6 28 8 1
1 9 36 84 126 126 84 36 9 i
OK
LIST

18 FEM PRINT PASCAL'S TRIANGLE LIKE A TRIANGLE

2@ INPUT '"HOV MANY ROVS"3R : R=R+]

3¢ CIM PKR,R)

40 PEM GENEPATE PASCAL'S TRIANGLE

5@ PCl,1)=1 1 REM INITIALIZE THE TRIAVGLE

62 FOR I=2 TO R : FOP J=1 TO 1 : PCI,JI)=P(l=l,J=1)+PCI=-1,d) ¢ NEXT J,!
72 PEM PRINT THE TPIANGLE

8@ FOR I=! TO P : LL=8

$@ FOR J=1 TO ! : LL=LL+LENC(STRE(P(I,J))) : NENT : REM LL=LINE LENGTH
100 SP=INT((72-LL)/C(I+1)+.5) : REM SP=NUMBER OF SPACES BETVEEN N'MEERS
118 PEM PPINT A ROV

120 FOR J=1 TO I : PRINT SPC(SP);STRE(P(I,J)); : NEXT : PRINT : NEXT

0K

— OM] we4B0Jgd--21SYE YIVLTY HLIM NN4 ONIAVH

HAVING FUN WITH ALTAIR BASIC--Program Three =7

RWN
et = 1 18! = 60 4G237E+15
1t =1 19! = 1421645E+17
21 = 2 208! = 2.4329E+18
3t = 6 21! = S5.1C9@9E+19
41 = 24 22! = 1% 124E+21
St = 12¢ 23! = 2.5852E+22
61 = 720 241 = 6+ 2C448E+23
71 = 5848 25! = 1+55112E+25
81 = 4@320 26! = 4eB3291E+26
. 91 = 362882 27! = 1. @BBBYE+28
10t = 3. 6288E+06 281 = 3.0488B8E+29
111 = 3.99168E+07 29! = 8.84176E+32
12! = 4. T90C2E+08 301 = 2. 65253E+32
13! = 6.22702E+09 311 = Be¢222B4E+33
14! = 8.71783E+10 32! = 2. 63131E+35
1St = 1«3B76TE+12 33! = 8. 68332E+36

16! = 2.@9228E+13
2?0V ERROE IN 50
oK
LIST

18 PEM CALCULATE N! RECURSIVELY

2@ FOP M=@ TO 17 : NaM : GOSUB 4@ : GOSUB 6¢ : PPINT TAB(36)J
38 N=M+18 : GOSUB 4€ 3 GOSUB 63 : PPINT : NEXT

40 IF N=@ THEN Fsl : RETURN

S0 NaN-1 : GOSUB 4@ : N=N+l : F=N*F : RETURN

60 PRINT STRS(NDS™! =" F» 1 RETURN

0K

03

r1

COMPUTER NOTES/AUGUST.1975

SoftWARE HINTs for 8800

by Bill Gates

When I first heard about B-bit com-
puters, I thought about how difficult
12-bit computers, like the PDF-8, are
to program. The PDP-8 has one accum-
ulator, 256 words directly addressable
and eight instructions. Cutting down
on this would make a computer unusable.

The 8080 instruction set is actually
much better thu. that of the PDP-8.
There are seven accumulators, 65,536
words directly addressable and 78 in-
structions. How is it possible to
have all this on a computer with only
2/3 as many bit per word? One of the
most important reasons is the use of
multi-byte instructions. Any possible
address can be specified in three byte
instructions that use the second and
third bytes to form an address. For
ease of manipulation up to three ad-
dresses can be stored in the registers.
Decrementing (DCX), incrementing (INX)
or adding another number (DAD) to these
addresses are all one Instruction
operations.

Another important thing about the 8080's

instruction set is the stack, used
both for storing temporary values and
subroutine return addresses. Two reg-
isters can be stored in, or loaded from
memory with a single PUSH/or PCP in-
struction. When a subroutine returns,
conditionally or unconditionally, no
address needs to be specified since
/ the new program counter is always taken
from the top of the stack. The stack
allows a programmer to be tricky and
elegant using very few instructionms.

4K BASIC is a good example of how
compact a complicated program written
for the Altair can be. Some 16-bit

machines have 4K BASIC's as good as
Altair uK BASIC--but, to use the same
amount of memory as Altair uK BASIC, a
16-bit machine would have to have a 2K
BASIC which is unheard of.

BCD Arithmetic

BCD stand for binary coded decimal.
This is a way of storing numbers accord-
ing to their decimal digits. Four bits
are used to store each digit, so two
digits are stored in each word. Each
decimal digit is represented by its
value in binary, so 0=0000, 1=0001, 2=
0010, 320011, 4=0100, 520101, 620110,
720111, 8%1000, 921001. This leaves
six possible configurations of digits

* which are meaningless (1010, 1011, 1100,
1101, 1110, 1111). These wasted com-
finations mean that BCD is not as
compact & way of storing numbers as
is binary. In binary, a word can have
values from 0 (all 0's) to 255 (all 1's).
In BCD, a word can range from 0 (all 0's)
to 255 (all 1's).

L/52

The advantage of BCD is that decimal
input and output are extremely easy.
With binary numbers, decimal input
involves multiplying by 10 and decimal
output dividing by 10. If the oper-
ations to be performed on a number
are simple (addition or subtraction),
BCD may be a more convenient form of
storage. Simple calculators use BCD
for internal storage, whereas more
powerful calculators, such as those

that have trigonometric functions,
convert numbers to a binary format.
The Altair has a special instruction
for BCD arithmetic called DAA (deci-
mal adjust). Adding 31=0011 0001 to

56=0101 0110 will give 87=0100 0111,
so the ADD instruction works fine in
this case. The problem with using

ADD occurs whenever you get decimal
carry, Example: u6=0100 0110 + 27=
0010 0111 will give 0110 1101, which
is meaningless as a BCD number. If

a result has a digit greater than 9,
we want to have the next higher digit
incremented. Also, consider 19=0001
1001 + 48=0100 1000 = 0110 0001 which
is 61. The carry from the low order

sRoutine to convert A from BCD

digit resulted in a number greater
than 15, so the 10's digit was affected.
Therefore, only 10 was added to the
number, instead of the 16 that should
have been added. The CYl flag bit,

in the PSW, is used to remember if

a carry occured out of the fourth

bit, i.e., whether the 10's digit was
affected. The DAA instruction is
always used after adding BCD numbers.
DAA, the only instruction that uses -
CYl, looks at the number in accumulator
A and reformats it as a BCD number.
This is done by adding 6 if CYl is

on, checking for a digit being

greater than 9 and i{f so, subtracting
10 from that digit and incrementing
the next higher digit. If the high
order digit overflows, carry is set.

;to binary. 13 bytes.
;A routine which doesn't loop takes
; 14 bytes
BCDBIN: PUSH B ;save [B,C]
ORA A ; turn carry off
MVI B,100 decimal
LOOPBC INR A ; add to BCD #
DAA ; set carry if
;equal to 100
DCR B 3 count down
Hs:3]
JNC LOOPBC ;if [(A] is not equal to 100
jcontinue to
scount down
MOV A,B ;save result
3in [A]
POP B ;restore [B,C]
RET
If anyone has a shorter solution than the above, please send it in.
Challenge: What is the shortest Binary to BCD routine?
-continued

~

_

Hints For 8800

THE LXI TRICK

Many computers have SKIP instructions. Having multi-word instructiams

makes it difficult to tell how much should be skipped, so computers
with multi-word instruction are seldom provided with a SKIP instruc-
tion. the LXI trick, however, allows the skipping of, one or two
words. Example: (from Altair BASIC)

ERR3:MVI E,3 ;set up the error #

JMP ERROR .
ERR7:MVI E,7 ;set up the error #

JMP ERROR
ERRS: MV E,5 5

JMP ERROR

ERR2:MVI E,2
ERROR:LXI B,ERRMSG

change this to:

ERR3: MVI E,3

1 ;first byte of LXIB,
ERR7: MVI E,7

1 3first byte of LXIB,
ERRS: MVI E,5

1
ERR2 MVI E,2
ERROR: LXI B,ERRMSG

If a jump is made to ERR3, E will be set up. Then a LXIB will
be executed. B, and C, will be given garbage values depending on the
instructions that follow, and the program counter will be incremented
beyond the MVI E,7.

Another example: (from Basic)

AND: MVI A,l ;set flag this is"AND
-JMP DOBOOL ;by setting A non-zero
OR: XRA A ;set flag this is OR
. ;by setting A to zero
DOBOOL: ceens
change to:

;set flag with A not 0
;first byte of ORI
AND: 366 OCTAL ;XRA A does not equal 0 so will
not equal zero
OR: XRA A
DOBOOL: ceen

Skip one byte:

MVI A,(or other register) ;sets register to next op code, ;
but does not affect the condition
codes.

CPI ; Doesn't change any registers, but

. condition codes are set.
ORI A, ;Sets register to next op code, and
3 will always reset the ZERO condi-
: tion code, and carry.

Skip two bytes:

LXI B,(or other register pair);Sets register pair to following
two bytes. Does not affect
condition codes.

JC,JNZ,etc.

(or other conditional Jump)
;if you know one of the condition
codes is on or off you can skip the
next two bytes by using a JMP which
won't get executed. Condition codes
are not affected, nor are any
registers.

-continued

53

Hints For 8300

Cther hints:
If you have the following sequence:

SUBL:

shorten it to:
LXI

SUBL:

PALL
JMP
LHLD

suRrl
LARLY
ADP1

H,LAEBLL

PUSH H
LHLD ADR1

This may look like a fairly special trick, but manipulating return
addresses with PUSH's and POP's is a very general technique. For
instance, say, a subroutine has a condition in which it wants to

return to its caller's caller and not the caller.

caller's return address will handle this.

Consider this:

CPI
Jz
CPI
Jz
CPI
Jz
CPI
Jz.

"on
>

Replace this with:

LXI
PUSH

CPI
RZ
CPI
RZ
CPI
RZ
CPI
RZ
POP

B, TERMN
B

"o
’
nen

12

"o
H

POPing off the

sassuming [B,C] is
;free,put the
;address to go to
sonto the stack.

;80 to TERMN if
jmatches

seliminate TERMN
;address from the
jstack

Final challenge: Write a short subroutine that finds the
parity of A without using the parity flag.
in the carry flag, and don't smash any registers but A. You

can use the stack.

54

Give the result

3

W

COMPUTER NOTES/SEPTEMBER.LI?S

Software
Notes

by Bill Gates

‘Though the most difficult and .
enjoyable part of writing a program
is the design of data structures and
program flow, it is also important to
use the least number of instructions
possible to perform each function in

a program. For instance:

CALL SUBL should be replaced by
RET

JMP SUBL unless something fairly

tricky is being done
with return addresses. The JMP is
faster, takes one less byte, and
uses no stack space. An instruction
book on programming the 8008 ignores
this simple fact!

JMPs should be avoided wherever
possible., By rearranging code you
can often avoid having an uncondi-
tional JMP by falling into the rou-
tine you were JMPing to.

The beginning programmer will
use lots of SHLDs, LHLDs, STAs and
LDAs when they are not necessary.
The stack can be used to save tem-
porary values in most cases. SHLDs,
LHLDs, LDAs and STAs should only be
used for values referenced in many
different contexts within a program,
i.e. an I/0 parameter or the current
line number.

A good technique for familiar-
izing yourself with the instruction
set is to go out of your way to use’
every instruction at least once (ex-
cept perhaps DAA)., Go through the
instruction set from time to time
and look closely at the instructions
you seem to use very rarely. With
few exceptions (DAA, SPHL) all the
instructions can be used to advan~
tage, even in small programs. One
of the most overlooked instructions
is XTHL. When all the accumulators
have values that must be saved and a
value needs to be taken off the
stack, XTHL is the only instruction
that can be used.

Example: :Exchange [B,C] with [ﬂ,L]
PUSH B sput [B,C] on the stack
XTHL ;[H,L] = top stack entry =
[8,c]
3[H,L] goes on the stack
POP B 3[B,€] = original [H,L]

Sometimes the simple way of do-
ing things is the best. PUSH B/POP D
may seem like a tricky way of setting
(D,E] = [B,C], but the obviocus se-
quence MOV D,B/MOV E,C is much faster.

Some tricks invelve instruction
sequences which ar first sight seem
meaningless. For instance: SUB A
or XRA A, Subtracting A from itself
or exclusive-oring A with itself are
the only one-byte wavs of satting
As0, MVI A,C must still be used if
the condition codes need to be pre-
served, but this is rare.

ADC A is equivalent to RAL, ex-
cept it affects all the cendition
codes, SBB A sets A=0 if carry is
off and A=377 if carry is on. The
routine belew uses this fact to com-
vert A as a signed integer to a_dou-
ble byte signed integer in [H,L]:

MOV L,A j;setup the low order
;now the sign must be
;"extended” by setting H=0
3if A=>0 and 4=377 otherwise
RAL sCarry = 1 if A<O

jCarry = 0 if A=>0
SBB A 3A=0 if old A was =>0
;A=377 if old A was <0

The sequence: INF E
DCR E

doesn't modify any values, but it
does set the condition codes (except
carry) depending on what is in E. If
E is being used as a flag to indicate,
say, whether or not a decimal point
has been seen, the zero flag is set
up to do a conditional JMP.

The subject of good decimal
print routines has been discussed
extensively in the Altair Software
Department this week. This routine
is one of the four or five I wrote
this week -- each with its own advan-
tages and disadvantages. This one
is fairly tricky, in that it takes a
little bit of looking at to under-
stand.

#1
;Print the binary unsigned number
3in [H,L] in decimal, suppressing
;leading zeros

H
;24 bytes (25 if saves D,E)
3ON RETURN:

5A = last digit in ASCII
3B,D = 255 (all constants in
sdecimal)

3C,E = last digit -16

3HoL = 9

1

;Uses up to 18 bytes of stack
;Total compute time up to 85
;milliseconds

5

;IDEA: calculate a digit, save it
H on the stack, and call the
digit calculator to calcu-
late and print higher order
digits, pop the digit off
and print it.

~continued

55

Software Notes

[ERRTEN LXT H, =i¢

it MOV b, it
MOV 1,0

LGOPSS: DAL

ORA L
CNZ GETDIG

MVI A, "g" + 19
POP B

ADD C

JMP OUTCHR

SCALL here .
sl s
juinee B o= 204

sSubtract L@ trom (L1 until Lil,L] < 1#. Carry
iwon't be set by the last DAD when [H,L1 < 14.
;increment the count

;loop subtracting

;[L] = curreant digit -18

;Save the current digit on the stack. Change to
;XTHL and add PUSH D at GETDIG to save [D,E].
3[H,L] = old (H,L]/18

;Set zero flag if [H,L] = 2

sIf not zero, print the higher order digits and
sthen return here to print this digit.

;A = constant to add to digit

;pop the digit into C

3A = ASCII of digit

sJump to the routine to print A and return. If
;OUTCHR is located next, the JMP can be eliminated.

Parity is used as a check to
detect errors in data transmission.
Each data word is given an additional
bit which is set to 1 if there are
an odd number of l's in the data and
? otherwise. When the data is re-
ceived the parity bit is checked to
make sure it is set properly. Thus,
if you are reading a 7-bit ASCII
paper tape with the 8th bit used for
parity, the parity of the entire 8

bits should be even,

The reason I first thought about
a parity routine for the 8080 is
+hat the parity condition code and
all the instructions related to it
(JPO, JPE, RPE, RPO, CPO, CPE) are
seldom used, I wondered how diffi-
cult it would be to calculate parity
if the parity flag were removed. A
user-settable flag would be much
more useful than the parity flag. .
BASIC uses the parity flag in only
about eight places, and all of these
are special tricks. Here is the
smallest parity routine I've been

able to write:

;Enter with number in A.

1¢ bytes.

;0n exit, As@ and all the other reg-

;isters are preserved.

;Carry is set depending on A's

sparity.

y
;Enter at ODDPAR for carry on to

ymean odd parity.
QODDPAR: ADD A
RZ

JNC ODDPAR

sMove a bit of A into carry.
3If all bits added into carry, return.

3If no bit moved into carry, rotate more.

senter at EVNPAR for carry on to

;mean even parity
EVNPAR: ADI 200

JMP ODDPAR

;Complement the parity of the remaining bits

;Rotate more.

Qg

C

COMPUTER NOTES/SEPTEMBER, 1975

GINIRAL 3SonWARE UpDATZ INFO

by Paul Allen

Programmed I/0

The coding technique for data
input and output in which the CPU
waits for completion of the I/0 op-
eration is usually termed "programmed
I/0." This is by far the easiest and
most common way of writing input and
output subroutines for the Altair,
and is used by BASIC and the Package
1 software.

There are usually two subrou-
tines for each device. One that in-
puts a character from the device and
one that outputs a character to the
device. The input routine (INCHR)
waits for the device's input buffer
full flag to be set and then reads
the character. On the Altair, the
device status is in the input side of
the lower I/0 channel, and the data
is read from that channel +l. Assum-
ing we will return the byte read from
the device in the A register, the
code is as follows (for an old SIOC

4 corresponding character (byte)
output subroutine for an old (REV C)
SIO board is listed below. The byte
to be output is in the A register:

QUTCHR: PUSH PSW ;Save the A register on the stack.
QUTLP: IN INCHN ;Read the device status into the A register.
ANI 2Q ;See if bit 1 is = 0.
JZ OUTLP ;If it is, keep waiting for the terminal to finish
sprinting.
PCP PSW ;Get back the saved output byte.

OUT INCHN + 1 ;Now output the byte to the terminal.

RET ;Return from subroutine.

Often it is desirable to echo
the character read from a terminal's

keyboard immediately back to the ter-

|- dy bit in bit 5): N . .
board--character resdy bit in bi) minal. The easiest way to do this is
INCHR: IN INCHN ;where ICHN is the input channel to insert

ANI 40Q 3TEST BIT 520 (Q means octal). The mask 40Q is INECHO: CALL INCHR
;"anded" with the device status in the A register.
iThe mask (40Q) selects only bit S. right before the OUTCHR routine and
. then call INECHO instead of INCHR.
JZ INCHR 3If no input data ready, loop. If we knew we were always going to
echo the input character back to the
IN INCHN+1 ;Read the input byte. terminal, we could have the input
. £ he brouti character subroutine (INCHR) "fall
RET ;Return from the subroutine. into" the output character routine

Note that the input character
routine is a "subroutine" that could
be called many different places in a
program by using a CALL instructionm,
i.e.

CALL INCHR

(OUTCHR). This may be done by plac-
ing INCHR directly ahead of OUTCHR
and also removing the RET at the end
of INCHR so an "OUTCHR" will always
be performed when INCHR is called.

;Get a character from the terminal.
CPI 15Q ;Was it a carriage return?
;If so, end of input line.

JZ ENDLIN

Of course, the stack pointer
must be set, up pointing to an area of
memory set aside for use by subrou-
tine calls and PUSH/POP and other
stack manipulations. This is most
easily done as follows (this code is
usually placed at the start of your
program):

START: LXI SP, STACK

DS 20
STACK:

~continued

;set aside 20 locations (10 levels) of stack space

51

Software Update

iLight modifications must be
- 1o these routines if we want to
nse ¥l 1 or modified XEV 0 serial
I/0 voards. In these boards, the
shdracter ready bit is in bit 0 of
otdtus byte, and the character
nt) bit is in pit 7. Also,
the bits are "active Lcw,' that is,
a 1 means the bit is false and a
zero means the bit is true, which is
just the opposite of the way the bits
were set on the REV 0 board used in
the previous examples. We could test
bits by using an AND immediate in-
struction as before (i.e. replace the
ANI 40Q in INCHR with an ANI 1Q and
. the ANI 2Q to an ANI 200Q) and chang-
ing the J2's to JNZ's. However since
the status bits are in the least and
most significant bits in the status
byte, we can conveniently test them
by using the rotate instruction to
move the bit in question into the
carry flag and then using a JNC in-
struction to loop:

INCHR: IN ICHN ;Read status
RAR ;Character ready?
Jc INCHR ;If not, loop
IN INCHN+l1 ;Read character
RET ;Return

OUTCHR: PUSH PSW ;Save character

OUTLP: IN ICHN ;Read status

RAL ;Test bit 7

JC OUTLP

POP PSW ;Get character
sback in A

OUT INCHN+l;Send it to
sterminal

RET 3All done, return

Using rotates instead of ANIs
aves one byte in each routine. Re-
member: taking care to save each
byte you can will make long programs
significantly shorter and faster.

PIO boards (often used for SWTPC
TVTs) have the status bits "active
low" like REV 1 SIO boards, but the
status bits are in different posi-
tions: character ready is bit 1 and
character done is bit 0, so:

INCHR: IN INCHN

ANI 2Q

JNZ INCHR
IN INCHN+1
RET

QUTCHR: PUSH PSW
OUTLP: IN ICHN

RAR

JNC QUTLP

POP PSW

QUT INCHN+1

RET

If you are confused by the use .

of "masks," here is an explanation.
If we want to make a jump on only one
bit of the A register, we "and” a
mask with that bit on with A. The
result of the AND will be zero if
that bit was zero, and non-zero if
the bit was one. Here is a table of
bit masks (in octal) for each bit
position:

58

1 (usually
2

y
10
20
40

100

200 (usually

NewEWNEO

Hote that bits
fewer bytes to test
because they can be
carry status bit as

use PAR to test)

use RAL to test)

0 and 7 take

than the rest
rotated into the
mentioned earlier.

It is often very useful to use
bit testing and setting in a program.
Suppose you are writing an assembler
and you want to remember if you have
seen any colons or commas on a line.
You could use ome bit in a register
to flag the fact you had seen a colon
and another bit to flag whether you
had seen a comma; and you could use
the other six bits of the register
for six other flags. Suppose the
flags were kept in the B register.
Then, to set a flag (if bit=l means
set):

MOV A,B ;Get flag register in A
DRI 2 ;Mark colon seen.(bit 1)
MOV B,A ;Save flags back

To reset a flag:
MOV A,B ;Get flag register in A

ANI 375 3377-2
;Reset colon flag (bit 1)

MOV B,A ;Save flags back

To test two flags:
MOV A,B ;Get flag register

ANI 12Q ;Test both bits 3 & 1
;(colon and comma)

JZ NETHER ;Jump to NETHER if both
;flags = 0

JNZ ONEFLG jJump to ONEFLG if one
;or both of two flags
jset.

To complement (invert) a flag (reset
it if set, set it if reset):

MOV A,B ;Get flag register
XRI 2 3Flip (complement) bit 1

MOV B,A ;Save flags back

S

C

COMPUTER NOTES/OCTOBER. 1975

Hoftware
Notes

by Bill Gates

Using the STACK

Svery program written for the
8800, large or small, should take ad-
vantage of the stack. The stack is a
stored list of data which behaves in
a last in--first out (LIFO) fashion.
That is, PUSH D/POP D doesn't modify
(D,E] since the POP removes the same
two bytes that were just pushed onto
the stack. There are three things to
remember in using the stack:

1) Initialize the stack pointer to
the highest location in a block of
free Read/Write memory. As data is
pushed onto the stack the stack
vointer is decremented.

2) Make sure that the amount of
space set aside for the stack is suf-
ficient to hold all the values (in-
cluding return addresses) that are
stored on the stack at one time.
Svery time a PUSH or CALL is dcne the
stack pointer is decremented by two,
so data pushed onto the stack will be
stored in lower and lower locations.
Evéry POP or RETurn increments the
stack pointer by two, so the impor-
tant thing is not how many values are
PUSHed on during a program, but how
many are on at the same time.

Consider:
LXI SP, STKBOT

LOOPDO: PUSH D ;save [D,E]
CALL SUBl

RETADR: .
POP D srestore [D,E]
DCR B
JNZ LOOPDO

L DS 4

STKBOT:

SUBL1: . ;no stack use
RET

No matter how many times the
above loop is executed, [D,E] will
always be saved and restored from the
same memory locations, since the stack
pointer is incremented by 2 by the
PUSH, incremented by 2 by the CALL,
decremented by 2 by the RET, and de-
cremented by 2 by the POP. Only four
bytes of stack space are set aside
for this program since only 2 bytes
of data (D and E) and 2 bytes of re-
turn address are ever stored on the
stack at a time. If additional PUSH/
POPs or CALLs are done inside the
loop, more stack space would have to

be se
all o
as mu
idea
space
use.

3)
never
than
more
PUSHs

ILLUS

lier.

174
175
176
177

200

t aside. Unless you are using
f memory and need to compactify
ch as possible, it is a good
to allocate a lot more stack
than you think you will ever

Unless you are being very tricky,
take more data off of the stack
is put on. This means doing
POPs and RETs than CALLs and

TRATION OF STACK OPERATION

Consider the example given ear-
Assume that STKBOT = 200 octal.

program data

jset aside for stack use
jinitial contents irrelevant

other data
After the LXI SP, STKBOT
SP will equal 200.

PUSHs and CALLs always put 2

bytes of data onto the stack as fol-

Lows:
1)
2)

3)
4)

When
D is

Decrement SP |

Store the high 8 bits of data
being PUSHed in the memory
location given by SP.

Decrement SP

Store the low 8 bits of data
being PUSHed into the memory
location given by SP. PUSHMA:

the PUSH D is done: SP=177,
stored at 177, SP = 176, E is

stored at 176.

Say RETADR = 124

When
high

the call is done: SP = 175,
byte of Retadr = 0 and is stored

at 175, SP = 174, the low byte of
Retadr = 124 and is stored at 174.

So we have:

174 121 the return address
s o
o CE] 4 o,e)
i

POPs and RETs do the "reverse"”
operation:

1) Pick up the low 8 bits of data
in the memory location given by
the SP

2) Increment the SP

3) Pick up the high 8 bits of data
in the memory location given by
the SP

4) Increment the SP

“Exercise:

Work out the details of
how the RET and POP D in the exampld
work,

Other machines that have stacks®
vary in the details of implementati
Some machines increment the SP on
PUSHs and decrement on POPs (PLP-13).
Other machines store before decre-
menting on PUSHs and increment tafc
fetching on POPs (Altair 680). How
ever, the basic notion of a last if-
first out list to store data and re
turn addresses remains the same.

3

Iy

The way subroutines are nested
that is, always returning to the modt
recent caller, makes the stack very
natural for storing return addressesq.

The fact that the stack is usef
to store both return addresses ard
data allows for some tricky program
ming involving manipulation of ratufn
addresses on the stack, of whick a
few examples were given in earlier
"Software Notes." It also causes
some trouble however for subroutine
that wish to leave resuits on the
stack or fetch arguments from the
stack, since the return address gets

in the way. The sequence:
MoV Cc,M
INX H
MoV B,M
LINX H
PUSH B

was used many, many times in BASIC sp
it was decided to use one of the RST|
instructions to perform this opera-

tion. It was coded as follows:

XTHL ;[(H,L]=return addrgs
SHLD PUSHMA+1 smodify a JMp

POP H sget [H,L] back

Mov C,M

INX H

MoV B,M

INX H

PUSH B

JMP * 3JMP to return point

If only a single byte of data
needs to be pushed onto the stack,
put the data in A, B, D, or H and do
a PUSH PSW, B, D, or H respectively,
followed by a INX SP. To pop off the
single byte of data do a DCX SP, POP
A, B, D, or H. This puts garbage
into the PSW, C, E, or L respectively|..
Unless the same PUSH will be used to
Store a large number of one byte
pleces of data on the stack, it is
simplest to merely do a PUSH/POP se-
quence and allow the extraneous byte
to be stored.

-continued

59

Software Notes

Sometimes the amount of stack

srace a program requires will depend
on the input to the program, for in-
stance when BASIC evaluates compli-
cated formulas. If this is the case,
a check must be done when data is
cushed on to make sure the stack
isn't "overflowing." If it is, ei-
ther some sort of recovery procedure
must be invoked, or an error message
printed. The following subroutine
checks to see if the stack is point-
ing below STKSTP.

;saves all registers

CHKSTK: PUSH H ysave [H,L]
LXI H,~-STKSTP ;won't work for STKSTP=0
DAD SP
POP H ;[H,L]
RC sreturn if still ok

;here on stack overflow

If you have a subroutine which

is often passed constant arguments

such as:

MVI C,3

CALL SUBl

MVI C,S

CALL SUBl
MVI C,7
CALL SUBL

SUB1:

SUBLC: XTHL ;[H,L])=return address

By manipulating the return ad-
dress you can save one byte per call
as follows:

CALL SUB1C

DB 3 ;put constant in
. sreturn location
CALL SUBLC

DB S

CALL SUBLC
DB 7

MoV C,M ;fetch the constant

INX H jupdate return address

XTHL jrestore the return

SUB1: . ;address and [H,L]

60

This is not a useful technique

in most cases, but it does give a
good example of XTHL.

S

S

COMPUTER NOTE S -NOVEMULE/DE CLMUCR 1175

Aotes on Disk
Extended BASIC

s 0 ntand-
slivered on a
Flopoe has been

with the utility

icader is vtes and can
either reside on a PRCM, be keyed

in or be loaded from ACR or paper
tape using the standard 20-byte boot-
strap.

Luring initialization the number
of disk buffers (maximum 8) and ran-
dom access blocks (maximum 8) to be
allocated are determined by the user.
These numbers determine the number
of files that can be open simultan-
ecusly and the number of random ac-
cess files that can be open simultan-
eously, respectively. The disk
irives that are to be brought on
line are all checked for proper for-
matting and the locations of free
sectors are stored in memory.

Zach floppy can store 300,000
s (characters) of user informa-
n. The rest of the storage space
. on the floppy is used to store the
7ile structuring and error detection
formation. Up to 254 files can be
Ltored on a floppy and a single file
can be up to 300,000 bytes long. A
file must reside entirely on a single
floppv, thus no file can be larger
than 300,000 characters.

There are three modes For file
access:
1) Sequential input: The file is
stored as ASCII text. Numbers and
strings are read as character strings
in exactly the crder theyv were tvped
in or written out.

2) Sequential output: Any previous
contents of the file are deleted and
output is done item by item in ASCII.

3) Random access: Each record is
128 characters. lumbers are written
in binary, so integers take 2 bytes,
single-precision numbers 4 bytes and
double-precision numbers § bytes.
Special functions return the recerd
number of the current position in
the file (LOC) and the highest num-
bered recoerd currently allocated
(LOF) in the file. SEADs and F2INTS
of random zccess records can be
intermixed. A srecific record num-
ber in the file can be specified by
a formula in both the MEAD and

PPINT statements.

All the features of non-disk
Extended BASIC are provided.

To use Disk Extended BASIC,
20K of memory is required since the
program itself uses 16.5K and each
disk buffer and random access block
require another 140 bytes.

end

S

61

I / O Pr o g rams for th e ACR | COMPUTER NOTES-NOVEMBER/DECEMBER. 1975

Tnput/Output programs for the 88-ACP

8y Tom Durston
———————

One request we've been getting frequently is for simple machine language
programs to write and read data on tape through the 88-ACR. Listed below is a
program to write and a program to read using the 88-ACR. These programs have
been used in our engineering department to store lengthy test routines, and
can be used for any type of data.

WRITE PROGRAM - 38 bytes

Writing data on tape through the 88-ACR is accomplished by first specify-
ing the start address of data and the end address of data. Then a test byte
(000 in this program) is written, followed by data output. The last portion
of the program tests to see if the program has transmitted the last byte of
data. If it has, the program jumps to the last positions in memory, and is
observed by a change in the address lights on the front panel. If the program
hasn't outputted the last data byte, the H & L registers are incremented by 1
and the program outputs the next byte. This program is placed in the upper
portion of 4K memory with a starting address of 017,000, The location may be
changed, but be sure to change all jump addresses accordingly. After record-
ing data that includes program information, write down the start and end ad-
dress on the tape cartridge along with the name and test byte of the program
for identification.

When recording data at the beginning of a cassette tape, record at least
15 seconds of steady tone before running the write program (to get past the
plastic leader and wrinkles in the beginning of the tape). Also, if recording
more than one batch of data, leave at least 5 seconds of steady tone between
batches. This program is written for 88-ACR addresses of 6 & 7.

28-ACR WRITE PROGRAM T

TAG | MNEMONIC | ADDRESS | OCTAL CODE| EXPLANATION
LXI 017,000 |. Oul Load immediate HEL register pair
1 XXX X,o} starting address of
2 XXX Hi|] data to be written
LXI 3 001 Load immediate BEC register pair
[y XXX Lo| end address of
S XXX Hi| data to be written
MVI 6 076 Move immediate to accumulator
7 000 Test byte to be written at beginning
ouT 017,010 323 Output data from accumulator
1 007 Data channel # of 88-ACR
TEST IN 12 333 Input data to accumulator
13 006 Status channel # of 88-ACR
RLC 14 007 Rotate accumulator left, test for D7 true
Jc 15 332 Jump if carry (D7 not true)
el | 7o 1EsT"
Mov 017,020 176 Move contents of memory specified by H&L
register to accumulator
ouT T2l 323 Output data from accumulator
22 007 Data channel # of 88-ACR
MoV 23 175 Move contents of L register to accumulator
CMP 24 271 Compare accumulator vs B register
JINZ 25 302 Jump if not zero (L # B)
Eo ey To "NEXT"
MoV 017,030 174 Move contents of H register to accumulator
CcMP 31 270 Compare accumulator vs C register
JNZ 32 302 Jump if not zero (H # C)
2w |) e e
JMP 35 303 Jump (if L = B and H = C)
O .
NEXT INX 017,040 ou3 Increment register pair HEL
JuP 1 303 Jump
g gig To "TEST"
END JHP 017,375 303 Jump (loop to self)
el g |) o

62

-cdnti nued

/

READ PROGRAM - 48 bytes

As in the write program, start and end addresses of incoming data are
specified firat. llext, thes program looks for the tast bvte (000 in this pro-
gram). Once the test byte is detected, the program inputs data and stores it
in memory as specified by the H & L registers. The next portion of tne pro-
gram tests to see if the end"memory address has been filled. If it has, the
program jumps to the last positions in memory, and is observed by a change in
the address lights on the front panel. If it is not the end, then the program
increments H &£ L by 1 and jumps back to input another data byte. This program
is placed in the upper portion of 4K of memory with a starting address of
017,000. The location may be changed, but be sure to change all jumo addresses
accordingly. When reading data back in, the tape and program should be started
a few seconds before the start of data.

88-ACR READ PROGRAM

TAG | MHEMONIC | ADDRESS |OCTAL CODE | EXPLANATION
LXI 017,000 oul Load immediate HEL register pair
1 XX Lo | starting address of
2 XXX Hi | data to be read
LXI 3 001 Load immediate BE&C register pair
4 KKK Lc] end address of
5 XXX Hi | data to be read
TSTBT IN 6 333 Input data to accumulator
7 006 Status channel # of 88-ACR
RRC 017,010 017 Rotate accumulator right (test D@ true)
Jc 11 332 Jump if carry (D@ not true)
iz | oo R
IN 14 333 Input data to accumulator
15 007 Data channel # of 88-ACR
cer 16 376 Compare immediate with test byte vs
: "| accumulator
17 000 Test byte
JNZ 017,020 302 Jump if not zero (test bytefinput byte)
g; gg.s, To "TSTBT"
TEST IN 23 333 Input data to accumulator
2u 006 Status channel # of 88-ACR
RRC 25 017 Rotate accumulator right (test D@ true)
Jc 26 332 Jump if carry (D@ not true)
27 023
017,030 | 017 To "TEST"
DATA IN 31 333 Input data to accumulator
32 007 Data channel # of 88-ACR
MOV 33 167 Move contents of accumulator to memory
address specified by HEL registers
Mov 34 175 Move contents of L register to accumulator
cMp 35" 271 Compare accumulator vs B register
JINZ 36 302 Jump if not zero (L # B)
37 051 e
017,080 | - 017 To "NEXT"
Mov 41 .17 Move contents of H register to accumulator
CcMP 42 270 Compare accumulator vs C register
JNZ 43 302 Jump if not zero (H # C)
“Ms g:; To "NEXT"
JNP 46 303 Jump (if L = B and H = C)
47 375
017,050 | 017 To “END"
NEXT INX 51 ou3 Increment HEL register pair
JMP 52 303 Jump
2l |) e
END JMP 017,375 303 - Jump (loop to self)
i) I

S

63

COMPUTER NOTES-NOVEMBER/DECEMBER, 1975

SBSoftwaxre
Notesms

by Bill Cates

ey 's te, here

To go with the Jdecimal outrut routine riven in Sept B
for overflow.

is a decimal input routine. For fun, modifv it so it checks
(Hint: use the carry bit generated by Tal.

;routine to do decimal inmput (I
sreturn result in [H,L]. [A] contai
;[D,E] is smashed. Stack use: INCHR is called to get a character
;in [A). Cverflow is not checked,

DECINF: LXI H,d sinitialize to zero
DECLOP: CALL INCHR iread a character into [4]

CPI g o+ 1 isee if it 1s > "ov

“RNC ireturn i so

CrPI - isee if it is < "2v

RC if so

sUI e numeric value of new digit

fwov o, = [H,L]

twov E,L

DAD H = old [¥,L]}¥2

DAD H = old [H,L]Mw

oAb D = old [#,L]%*S

DAD d = old [H,L]*1g

MVI 3.2 = new digit

MOV E,A

DAD D jadd in the new digit

JMP CECLOP ;get more digits

toves :
“eliminate for octal input

The simplicity of loading BASIC into an fltair is important, since people
without PROMs or BASIC on POY must load it every time they power up their
nachine. Here are the details of how this process works:

(All numbers are octal)

The format of a binary tape of BASIC or a monitor is as follows:

leader = 175 currently
last byte of checksum loader (311)
next to last byte of checksum loader (172)

. intermediate checksum loader bytes

second byte of checksum loader (61)
first byte of checksum loader (363}
gap of null characters (0)

<checksum data block -- up to 256

data bytes per block>

<additional checksum data blocks i
until all program data has been given>
<checksum go block>

Checksum loaders can be loaded into most pages of memory depending on lo=~
cation 2 of the boot and which checksum loader is on the tape. The checksum
loader for 4K BASIC and the Package I monitor starts at location 7400, The
checksum loader for 8K BASIC starts at 17400, Except for being relocated,
these loaders are identical.

-;onfi.r{ued

\J

/

Software Notes
Checksum data block:

74 start character

number of data bytes in the bloack (#=256)

lower 8 bits of storage address

high 9 blca

<data bvtes>

checksum byte = summation without carry »f all ivtes
in the block except the 179 and count
specification

Checksum: go block

170 start character
lower 8 bits of address to jump to
high & bits

The data block for locations @ through 376 is the last data block on the
tape so the bootstrap loader doesn't have to be keyed in again when checksum
errors occur, unless the checksum error is on the final data block.

BOOT STRAP LOADER
start at locatlion zero

o/ LXI H,
number of bytes in the checksum loader
page number of the checksum loader

Set [il,L] to point to the last location
in the checksum loader + 1.

3/ LXI SP,STKADR Set [SP) so returns come back to this
location. After each return [SP] is reset.
8/ ™ ¢ See if there is a character, and loop
. PAR if not.

RC

2/ .IN 1 Read a character and see if it's leader.
CMP L * (Lead character = number of bytes in the
RZ checksum loader)

16/ DCR L Store the data in the next lower location,
MOV M,A and loop unless all bytes have been read.
RNZ

21/ PCH L Start the checksum loader at its beginning.

22/ STKADR: DW LOPADR
The stack pointer points here, so this
gives the address returns branch to.

This bootstrap loader has several advantages:

" 1) Leader is allowed.

2) Only 20 bytes need to be keyed in.

3) It automatically starts the checksum loader, so only
one tape needs to be entered.

4) It can run from Read Only Memory.

S) It starts at a convenient location (zero).

6) It is easily relocated by changing the addresses at
locations 4 and 22.

7) To load different checksum loaders, only location 2
needs to be changed.

I've written a bootloader that only takes 13 bytes of keyed-in data, but
anything smaller than 20 bytes isn't easy to use.

65

{OMPUTER NOTES/JANUARY 2197

SOFTWARE NOTES

lultl-Precision Arithmetic By Bill Gates

On the 8080, multi-precision unsigned arithmetic is made easy by the carry
»it and its affect on the instructions "ADC" and "SBB". Unsigned arithmetic
treats all numbers as positive, with all zeros being the least number, and all
»nes being the highest. Adding and subtracting memory addresses is the most
sommon form of unsigned arithmetic. Wulti-precision arithmetic must be used
ihenever the range of values desired is greater than that accepted by the arith-
netic unit of the computer you are using. The 8080's arithmetic units accept
3-8 bit operands, one from the [A] register and the other from B, C, D, E, H,
L, contents of address in [H, L] or the byte following the arithmetic instruc-
tion (immediatemode) so anytime values greater than 255 are to be accepted,
pulti-precision arithmetic must be used. "DCX", "INX" and "DAD" allow l6-bit
juantities to be added to, or subtracted from, so 16-bit arithmetic could be
considered single precision. However, the lack of any 16-bit arithmetic in-
structions that use carry .to affect their result make it more appropriate to
sonsider 16-bit arithmetic multi-precision.

;16-bit unsigned add (H, L] = [D, EJ + (H, L]

ADD16U: DAD D
;carry is set as an overflow indicator

;32-bit unsigned add (D, E, B, Cl(M+3, M+2, M+1, M)
ADD32U: MOV A, C
ADD M

Mov C, A

INX H

MOV A, B

ADC M

MOV B, A jcarry is returned as an overflow

INX H jindicator
MOV A, E

- MOV E, A

;16-bit subtract [H, L} = [D, E] ~ [H, L]

SUBI6U: MOV A, E
SUB L
MOV L, A
MOV A, D
$BC H
MOV H, A
RET

searry indicates that (H, L] was greater than [D, E]
$32-bit subtract [D, E, B, C] = (M + 3, M+ 2, M+ 1, ¥) - [D, E, B, C]

SUB32U: MOV A, M
SUB C
MOV C, A
INX H
MOV A, M
SBC B
MOV B, A
INXH
MOV A, M
SBC E
MOV E, A
INX H
MOV A,
SBC D
HOV D,
RET

> =

:c;nt{ nued

\J

-

Software Notes

icarry indicates [D, E, B, C] was preater than (M + 3, M + 2, M + 1, M)
;add 8-bit [A] to 16-bit [B, C] unsigned. Result in [B, C]

AD816U: ADD C

MOV C, A
ADC B
SUB C
MoV B, A

jno overflow indication is given

Signed Arithmetic

In signed arithmetic (2's complement) half the numbers are treated as
negative and the other half as positive. A 1 followed by all zeros is the
smallest number. All 1's is the largest negative number (-1), and all 0's is
the smallest positive number. A zaro followed by all on:s is the largest num-
ber. HNote that the absolute value of the smallest number (a one followed by
all zeros) is larger than the largest number. This creates an overflow case
for negation, and makes subtraction tricky if this special case is handled.
This "special" negative number is -32768 if 16-bit signed arithmetic is used.
This highest 16-bit signed number is 32767,

This signed format allows two numbers to be added through a simple’ DAD.
The only complication is checking for overflow. The table below gives the
different possibilities for adding signed numbers:

Arg 1 Arg 2 Carry Sign of Result Overflow
1 pos pos off neg yes
2 pos pos off pos no
3 pos neg off neg no
u pos neg on pos no
H neg neg on neg no
3 neg neg on pos yes

Overflow only occurs when the result of adding two positive numbers is greater
than 32767, or the result of adding 2 negative numbers is less than -32768.
The formula: (& means exclusive - or)

Sign of arg 1 @ sign of arg 2 @ carry @ sign of result is 1, if and
only if overflow occurred. Subtraction is merely a negation followed by an
addition, unless -32768 is being subtracted (i.e. =30 - (-32768)), in which
case no negation is necessary, but the sign of -32768 as an addend must be
positive.

316-bit signed negate [H, L] = -[H, L]

NEGIGS:XRA A ;get negative [L]
SUB L
MOV L, A
SBB H
SUB L
MOV H, A 3[H] = -[H] - borrow if any
SUI 128 ;see if -32768 (decimal)
ORA L swith (H] = 128, [L] = 0
RNZ ;if not, return
JMP OVERFL joverflow here

316-bit signed add and subtract [H, L] = [D, £] = [H, L]

SUBENT:CALL NEGIGS sentry from subtraction
ADD16S:MOV B, H 3MSB of [B] = sign of arg 1
SBZENT:DAD D 3do the add

RAR 3MSB of [A] = carry

XRA B 3XOR in sign of arg 1

XRA D 3XOR in sign of arg 2

XRA H 3XOR in sign of result

RP . sreturn if MSB @

JMP OVERFL sotherwise there was overflow

~continued

67

Software Notes
;subtract [H, L] from [D, EJ

SUB16S:MOV A, H sis it -32768?
SUI 128
ORA L
JNZ SUBENT 3if not, just negate and add
MOV B, L ;say sign is positive
JMP SBZENT ;do the add

USR_Routines

There are two ways for a "USR" routine to get the argument passed to it
as a signed integer in [D, E]. The easiest is to use a CALL followed by
the two byte address in locations 4 and 5. The only disadvantage to this
is that it has to be changed when you get a new version of BASIC, since
the address in locations % and 5 changes from version to version. The
alternate way is long, but doesn't have to be changed when you get a new
version of BASIC. It is: LXI H, BACK LC

PUSH H

LHLD &

PCHL

BACKLC: rest of USR routine

Here are 4 example USR routines written for 4K and 8K BASIC. In Extended
BASIC, the argument is passed and returned in [H, L]. So appropriate mod-
ifications will have to be made to use these with Extended BASIC.

#1 function: turn interrupts ON if argument is negative.
turn interrupts OFF if argument is positive.

CALL ¢address at location 4>

MOV A, D ;get argument high order

ORA A X ;set MINUS if negative

DI ;assume positive

RP sreturn if so

}Eé ;otherwise, turn interrupts on
T

#2 function: Delay for 11.5u seconds # argument + overhead

CALL <address at location 4>

LOOPDL: DCX D ;decrement the argument
MOV A, E ;is (D, E] = 02
ORA D .
JNZ LOOPDL ;1f not, continue looping
RET

#3 function: Execute instruction or instructions in (D, E]. Return
value of [A].

[]
CALL address at location 4 ; get argument in [p, EI.
XCHG
SHLD INSTRS
IXI, HO ;save the stack pointer
DAD SP
SHLD STORSP + 1
LXI SP, PSWLOC + 1 ;set up to read the USR ac-
POP PSW jcumulators, fetch the USR
POP H jaccumulators
POP D
POP B
INSTRS: DS 2
PUSH B ;store the USR accumulators
PUSH D
PUSH H
PUSH PSW
MOV B, A ;return the contents of [A].
XRA A ;as the result in [A, B]
STORSP: LXI SP, O ;restore the stack pointer
LHLD 6 ;convert [A,B] and re-enter
PCHL ;the BASIC program
PSWLOC: DS 8 ;the accumulators can be set

;up and examined by using
1PEEK's and POKE's on these
;locations

~continued

Software Notes

#4 function: dispatch to one of several subroutines depending on the high

8-bits of the argument

CALL ¢address at location 4>

LXI H, TBLLOC
MVL B, ©
MOV C, D
DAD B
DAD B
MOV A, M
INX H
: MOV H, M

MOV L, A
PCHL

TBLLOC: DW USRZER
DW USRONE
DW USRTWO

Note on allowing interrupts

spoint at dispateh table
sget dispatch offset

3in [B, <]

sadd in 2 * offset since
;table entries are 2 Lytes
;fetch the dispatch address
sinto [H, L]

;dispateh

;address to go to on zero
;on one

To allow interrupts a program must always leave l6-bytes of free stack

space, If multiple interrupts can come in 16 *(maximum number at once)
bytes must be left free. Also no tricks involving INX SP or DCX SP can
be used. The third example USR routine is not interruptible, since an

interrupt following the LXI SP would not work.

3

Mlachine Game
For MITS BASIC> = »

This program is written using the combinations and percentages sug-
gested by Donald D. Spencer on pages 219-223 of his book, "Game Playing
with Computers''.

SLOT MACHINE IS SET UP WITH 3 REELS, 20 SYMBOLS EACH REEL:

REEL 1 REEL 2. REEL 3 SYMBOL EQUIVALENT

CHERRIES 4 6 0 = 1
ORANGES 5 4 7 0 2
BELLS 4 6 5 1 3
LEMONS 3 2 4 * 4
WATERMELONS 3 1 3 + S

BARS 1 1 1 $ 6
PAYOFFS ARE AS FOLLOWS: (A = ANY SYMBOL)

COMBINATION PAYOFF NUMBER OF POSSIBLE WAYS

= A A $ 3 400

= = A s 240

0 0 $ 6 20

1 1 0 8 168

] # * 10 24

+ + $ 15 3

0 0 0 18 140

+ + + 20 9

$ $ $ 200 1

PAYOFF AVERAGES $70.49 FOR EVERY $80 PUT IN; NET LOSS IS $9.51; THE HOUSE
MAKES 11.89%. (CASINOS ARE THOUGHT TO MAKE BETWEEN 3% AND 50% WITH THE
AVERAGE BETWEEN 11% and 12%).

EACH TIME THE REELS SPIN, YOU ARE BETTING A DOLLAR. THE PROGRAM ES-
TABLISHES THE REEL EQUIVALENTS WITH RANDOM NUMBERS, PRINTS OUT THE SYM-
BOLS, THE PAYOFF (IF ANY), AND SUMMARIZES YOUR FINANCIAL POSITION AT
THAT POINT. (REMEMBER IF YOUR WINNINGS ARE $20 AND YOU WIN A $5 PAYOFF,
“9UR NEW WINNINGS ARE $24--$25 MINUS THE DOLLAR YOU BET.)

THE PROGRAM IS WRITTEN IN "MITS" BASIC AND USES THE FOLLOWING VARIABLES:

X PAYOFF COUNT

L LOSSES (MONEY PUT IN)

N NUMBER OF RANDOMS IGNORED

P PAYOFF

Q EQUIVALENT OF ALL THREE REELS
R(3) ENUIVALENT OF INDIVIDUAL REELS
s(6) SYMBOL EQUIVALENT TABLE

W WINNINGS (TOTAL PAYOFFS)

XY WFOR" LOOP CONTROLLED VARIABLES
z IGNORED RANDOMS

b$ DECISION

R$(3) SYMBOL FOR INDIVIDUAL REELS
$$(6) SYMBOL TABLE

1'd like to say something brief about MITS Basic: I think it's great!
Comments have been made about it being slow and about certain clumsy
features. But the agility to play with bits, to sense ports and to use
single ASCII codes is long overdue! I hope the use of "INP" in this
program will encourage other programmers to work on new data input
methods (especially for games). Having to "hit return” after each entry
is a drag!

“ontinued

100
110
120
130
140
130
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810

Reprinted from the Februarv, 1976, issuc of Interface Magarine. J

DATA = 0.1 + .5

FOR X = 1 TO 6 READ $$(x).5(X) = X:-NEXT

IF NOT (INP(0)(128) G010 120

QuT 112

PRINT 1AB(6), D2220> SLOT MACHINEC{((((™ PRINT PRINT
N = INTi500*RND (8)) + 1

FORX =110N Z=RND(8) NEXT

PRINT "PRESS THE SPACE BAR TO GET REPEATED"™

PRINT “REEL SPINS (EACH SPIN COSTS YOU §1)

PRINT PRINT "PRESS 'Q WHEN YOU'RE READY TO QUIT."
PRINT PRINT "PRESS ANY OTHER KEY TO GIVE YOURSELF
PRINT ""A BREAK. THE SPACE BAR WILL GET YOU™

PRING GOINGAGAIN GOOD LUCK!'

IFNOT NP1} = 22 OR INP (1) = 81) GOTO 230
IFINPi1)=81GOTO 750

L=L+1

FOR X =1 TO 3.R(X) = INT(20*RND(8)) + 1:NEXT

IF R(1){ 6 THEN R(1) = 2:GOTO 330

IFR(1){Q10 THEN R(1) = 1'GOTO 330

IF R(1){14 THEN R(1) = 3:GOTO 330

IFR(H)C17 THEN R(1) = 4.GOTO 330

IF R(1)<20 THEN R(1) = 5:GOTO 330
R(1)=6
IFR(2) 7 THEN R(2)=3:GOTO 390

IF R(2) 13 THEN R(2) = 1:GOTO 390
IFR(2) 17 THEN R(2) = 2 GOTO 390
IFR(2) 19 THEN R(2)=4.GOTO 390
IF R(2) =19 THEN R(2) = 5:GOTO 390
R2)=6

IF R(3) { 8 THEN R(3) = 2:GOTO 440
IF R(3)C13 THEN R(3) = 3:GOTO 440
IFR(3){17 THEN R(3) = 4-GOTO 440
IF R(31C19 THEN Ri3) = 5 GOTO 440
R} =6

Q=100"R(1) + 10°R(2) + R(3)

IF Q=666 THEN P = 200:GOTO 550
IFQ=555THEN P = 20 GOTO 550
IFQ=222THENP= 18 GOTO 550
IFQ=556 THEN'P= 15.GOTO 550
IFQ =444 THENP = 10:GOTO 550
IFQ=332THENP = 8.GOTO 550
IFQ=226THENP = 6.GOTO 550

IFINT(Q/10) = 11 THEN P = 5:GOTO 550
IFINT (Q/100) = 1 THEN P = 3:GOTO 550

P=0

FORX=1TO3.FORY=1TO6

IF R (X) = S(Y) GOTO 580

NEXTY

R$(X) = S$(Y):NEXT X
W=W+PIFP=0GOTO610

K=K+1

PRINT.PRINT "REELS. TAB(Q),H$(1).TAB(I2).R$(2)‘TAB(15),H$(3)
IFP=0GOTO 700

IF P =200 GOTO 660

IF NOT (INP(0)<128) GOTO 640

OUT 1,7:PRINT "PAYQFF $ " .P.GOTO 700
FORX=1T7075

IF NOT (INP(0)<128) GOTO 670

QUT 1.7:NEXT

PRINT “JACKPOT!! 111 §":P

ON SGN(W-L) + 2 GOTO 710,720,730

PRINT SO FAR YOU'VE LOST $':L-W:GOTO 740
PRINT SO FAR YOU RE EVEN"":GOTO 740
PRINT *'SO FAR YOU VE WON $"* W-L
PRINT:GOTO 230

Slot Machine Game

PRINT:PRINT *“TIMES PLAYED" "L:PRINT ""NUMBER OF PAYOFFS; K

PRINT VAMOUNT PAID. §~ W
ON SGN (W-L) + 2 GOTO 780.790.810

PRINT "TOTAL LOST $'.L-W:PRINT “WANNA TRY AGAIN, SUCKER?".GOTO 9999
PTINY YOU BROKE EVEN. TOO BAD. ".PRINT "' THE NEXT ONE MIGHT HAVE ™

PRINT “"BEEN THE BIG ONE' ":GOTO 9999
PRINT “TOTAL WON. $" W-L.PRINT *'YOU BUY THE DRINKS! ™

9999 END

OK

n

S

COMPUTER NOTES/JANUARY 21976

MAINTENANCE SOFTWARE

Maintenance software serves two primary purposes. First, it aids in
identifying problem areas that exist within a computer system. Second. by
not finding any problems, it should give a high degree of confidence in the
system. With these thoughts in mind, we use several different programs in
the process of checking out repair and production computers.

Let us consider how one short program can be of use in this regard.

Sense Switch Read

TAG MNEMONIC ADDRESS OCTAL CODE EXPLANATION
STRT IN S.SW 000,000 333 Input sense switch data
(1/0 channel 377)
(28 377 to the accumulator
STA 100 002 062 Stores the contents of
the accumulator
003 100 in memory location 100
(octal)
004 000
JMP STRT 005 303 jump to the start of the
program
006 000
007 000

This program reads the sense switches (A8 through Al5), then stores the infor-
mation in memory location 100. Thus, when memory location 100 is displayed,
the data lights should reflect the positions of the sense switches. For ex-
ample, if switch A8 were up, then DO would be on. Or if Al5 was down, then
D7 would be off.

What this program tells the technician depends on his knowledge of
the computer. If the technician has trouble entering or checking the program
in the computer's memory, he knows the proper portions of the D/C board, CPU
board, and memory boards to check for the problem.

After loading the program, he should then single step through the
program. By observing as it executes the program step by step, he can often
identify a problem area on the CPU board or on the D/C board.

The last thing he does is to run the pr;gram, éfépping to examine
the memory for each of the sense switches. This assures proper sense switch
reading, which is necessary when loading BASIC.

If the program fails to execute properly, the technician then begins
his troubleshooting in the appropriate area.

If the program will run and single step, but yields the wrong data at
memory location 100, he has several possible problem areas. First a visual
inspection is made on the CPU board to verify R9 through R16 are 4.3K ohm
resistors and 1C"Q" is a TI 74123. Next the timing relationship of Pl and
@2 are checked. If this checks properly, he will then check the logic on the
D/C board, starting at 1C"U" pin 8 (a logic low level that has a high going
pulse when the sense switches are being read).

If the computer will operate correctly when either running or single
stepping, but not both, the technician should begin his troubleshooting on
the CPU board at 1C"R" pin 8 (normally high; goes low to enable DI data bus)
and checks logic levels of 1C"0". If the CPU checks out, he will then pro-
ceed to the appropriate area on the D/C board to continue his troubleshooting.
If improper operation results in writing alternating bit patterns throi
memory (usually 071 with 000) he begins his troubleshooting with 1C"0" on the
SPU. These problems are generally caused by improper enabling of the DI data
S .

As can be seen, this program while short can be of great benefit to the
technician. It aids him in identifying the area in which to start his trouble~
shooting. If he fails to find a problem, he feels confident in the proper
operation of the majority of the computers circuits. He is now ready to use
more complex programs in checking out the computer.

12 pg

—

COMPUTER NOTES/APRIL+197%

ALTAIR DISX TEST PROGRAMS

. . by Jom imreaton
Lasted below stre some Aftair bisk Test programs that will cieck ont all e

‘ thie wormal functrots of the Disk Brive, (hese check-out procedures will also
be included in the AMtair bisk Ticory of Operation manual.

A

Disk Read/Write lest Program

This program writes data on disk on sector ¥ of the track it is
positioned on, then reads the data back, stores it in memory,
then outputs it to an 1/0 device. It is used for testing all
read/write functions.

WRITE: Thae number of write data bytes is set by tne
position of the sense switches {maximum of
22#0g). lirite dJata consists of: .

377g (b7 = 1 - sync bit)
data on sense switch

lst byte

2nd byte =
3rd byte = 2nd - 1
4th byte = 2nd - 2

"n"th byte = 001
last byte = 000

If sense switch is set to P@p, program will stop.

READ: The read data is stored in memory, starting at
address 001,2368 and consists of the data written
by the write program

OUTPUT: After the read program, the data is outputted to a
terminal (Teletype, CRT, etc.). The output program
is set to output on channel 1. To obtain a useful
output pattern, change the sense switches until a
desirable pattern is printed. The characters printed
will consist of all printable ASCIT characters in re-
versed order (as in 987654321 and zyxwvu . .
This pattern repeats itself and is easily observed
for errors.

Stepping Program

This program steps the disk head out 77 times to track P and then
in 77 times to track 76, continuously repeating with the computer
in the run mode.

This program is useful for testing the disk enable, MH status, track
P status, and stepping functions of the disk.

While stepping with this program, the head is unloaded, so it may’
be run continuously without wear on the read/write head surface.
A squeaking sound caused by the head load mechanism is normal in
this test.

To loop with the read/write program, see next section.

. For stepping program, disk drive address of #@9 is used. To change

disk drive tested, the address is contained in location (001,001) .

Looping With Stepping Program

To check the read/write and step functions simultaneously,
the two programs may be run together by changing:

1) Data in locations (000,154) and (000,155) to 037. 001
as indicated,

2) Data in location (001,034) to 303 as indicated.

-cont{nued

n

Disk Test Programs

Start the program at (001,000), the start ot the stepping
program. .

The disk head will step out to track 9.

The head will then load and a write/read will occur.
The head will then unload and output will take place.
After output, the head will step in once, starting
the write/read sequence again. After this repeats
76 times, the head is stepped out to track @, and it
begins again. %%

NOTE: 1) For read/write program, disk drive address of

FE] ppp is used. To change disk drive tested, the
address is contained in location (000,001) and
(000,150) .

2) Output device addresses are in locations (000,133)
(status) and (000,141) (data).

READ/WRITE PROGRAM

OCTAL Lo e .
rrw \mxcl ADDRESS CODE EXPLANATION MVI(B) | 7 gos Store in "8" reg. :
| — {75 200 | "NRDA" mask '

“ MVI(A) | 000,000 076 ‘\ . NOP | 76 000 .
. 1 000 |Disk drive address . NoP y 77 000
Loour 2 323 RSECT N {100 333 | Read sector test
| [3 010 |Disk controller ensble channel 101 0Ll Sector position channel
Do | I 4 076 cP1 102 376
! : S 004 |Load hesd bit i 103 300 @ sector
out 6 323 INZ i 104 302 ' .Jusp if not starc of @ sect.
7 011 |pisk function control channel | 105 100} to “RSECT"
WRTLP In 10 333 |lInput # of bytes to ba written . | 106 000
i 1l 377 |Sense switch ROTST w © | 107 333 Start of “NRDA" test
LMOV(C)+(A) 12 117 {Store tn "C" | uo aw s channol
| WID) 13 06 |Store in ANA(A) /(8) 11 240 'NRDA" status
' 14 377 |First write byte INT 1z 302 ROA" false (x1)
[HO 1S 006 [Stors in “B" reg. us 107
16 001 |“ENWD" status mask 114 000
WSECT |, IN 17 333 [Write sector test ;] 115 333, Input read data
| 20 Oil |Sector position channel : 116 012 ' Disk yata channel
cPl 21 376 . MOV (M) (A) 117 167 Store duta in memory (lleL}
] 22 300 |8 sector TNR(L) 120 054 , Increment L reg. (mem addr}
INZ 23 302 |Jump if not start of P sect. INZ 121 302) Jump if L reg. 4 0
| 24 017 |to ""WSLCT 122 107} | to RUTST
25 000 128 000f |
i MVI(A) 26 076 MOV(A)+(D) © 124 172 ! Move 377 byte to accum.

27 200 |write enable bit out bisensblo disk by output logic | on

30 323 7 to disk ensble chan. (end of read
i 31 011 |Disk function control channel ; starc of output)

FBYT 32 333 |Firse byte test . LXI(iteL) | Load Hlel with:

33 010 |Disk status channel B Starting addr of dJata stored by read
! ANA(A) / (8) 34 240 |Test for VENND® status . progras
: INZ 35 302 |Jump if “ENWD" false (=1) : 131 omt

36 032) [to “FBYT" ! : I :

37 000 j ot : w 132 333 | Test output device for busy '

MOV(A) (D) 30 172 |Move 377 into accua. ' H i 133 000 i Status chan. of terminal
our 41 323 |Output first byte i toRue 134 007 ! Test bit §, rotate into carry
42 012 |Disk dats channel : 3 135 332 ' Jusp if carry (bit 8 = 1)
INDAT] 43 333 |Start of write data sequence { . 136 132 to "OTST"
44 010 |Disk status channel . . 137 000§, .
ANA 45 240 |Test for VENWD" status l | MOV(A)e(M) | 140 176 Move data Erom mem(llsL) !
| JINZ 46 302 |Jump if VENWD" false (s1) !oour Y141 323 . Output dats :
i 47 043| |to “NDAT" I | 142 001 | Data channel for term .
i 0 000 \ INR(L) 143 054 © Increment L register
, MOV(A)>(€) | SL 171 |Move "DATA" byte to accua. ! Nz 144 302 | Jump if L reg 4 O, output another byte
ot 52 328 I 45 ! to "OTST"
i 3 012 |Disk data channel ; 1S 132) 1 to noTST”
: DCR(C) S4 015 |Decrement. “DATA" byte . ' owIA) { 147 o7
i Nt S5 302 |Jump if data byte * 8. i i | 150 000
] 56 043] |to "WDAT", write another byte ouT | 181 323 Eneble disk
57 000 i ' Posz o1t
wr ™ 60 333 |Start of zero byte :) {183 303
| 61 010 |Output sequence | NOTE De1s4 004 | To "LDIW"
i ANA(A)e(B) | 62 240 |Test "ENWD" (last byte written) i i 155 oon}
JNZ ‘ 63 302 . Jump if "ENWD" false . ;156
| 64 060y To WIT i is7
65 000 t : :
XRA(A) (A) i 66 257 Zeros accumilator | :
Ut 67 323 Output zaTo byte ; ! | «..For R/W-step loop change
70 012 Disk Jate channel (end of writ | | ' Data at (000,154) to 037
: tart of re v | Data at (000,155) to 001
Lxi 71 041 | Losd lleL reg. with: S |
| 72 236] Starting addr. to store read data
o uml

-continued

"

Disk Test Programs

O QUTPUT

LNABLE 0ISK ¢ oo — PROGRAM
AND LOAD HEAD (non, j27 AL
INITIALIZL {1 « ! REGISTER WITH STARTING |
AUURESS OF RLAD DATA STORLD [N MEMORY |
INITIALIZE - i
8 W MASK

REG € = NUMBLR UF BYTES TO BE WRITTLN
REG U + FIRST BYTE WRITTEN (377)

b
|

REGISTLRS: ; B
|

!

!

H € 000,010
|

!

|

) (000,017)
! ;
i

(100,026) TURN WRITE

i CIRCUIT ON

WRITE FIRST
BYTE (377)

Lw/ Yes
DEVICE REALY

"\ TO RECEIVE
\\PATA

(000,140) j/

- oNe S [oureur oata FRow sewoRy i
A4 { AGUR. AS SPECIFIED BY Il + L REG |
T

(000,143) INCREMENT L

(000,040)f
REGISTER

f—

Bttt

WRITE DATA BYTE
FROM "C" REGISTER

DECREMENT C
REGISTI

?

OQUTPUT PROGRAM

(000,147)

LE DISK

FOR R/W + STEP LOOP

€ 000,055)

v 1 ES
FOR R/W LOOP ONLY

Ct REG =

{000,060)

i p
| JUMP TO STEP JUMP_TO
J5 B PROGRAM WRITE Pmmﬂ
| 93 WRITTEN —_
FOR REMAINDER| | wrITE | | N + oromeme=s
‘ OF SECTOR
T0 STE
. e g 0 WRITE PROG.
‘ €000,071) [
INITIALIZE REGISTERS
s L RCG » STARTING ADDRESS FOR
STORING READ DATA IN MEMORY
8 REG = "NRDA" MASK)
— -continued
€000,100 3

€000,107)

vgs 000,115 INPUT READ DATA
| AND STORE IN MEMORY
(ADDRESS SPECIFIED BY

H e L

(000,120
INCRENENT 1
REGISTER

[it ord

{000,124

DISENABLE
DISK DRIVE AND
CONTROLLER

¢

75

S oy o)

Disk Test Programs
ENARLL DISK

0 RLGISTLR WITH & OF

.1
. |

ST LA P ‘

! H BUTAYL
1 rAG AN ABIRLSS ot LAPLASATTON
STEP MVI(A) onl,o0u 07
L 000 Uisk drive addr @
out 2 323 ‘Output (data-d) to
3 010 Disk CTRL ble channel
NOS T MVI(E) 1 036 Initialize E register
. 5 115 277 (number of steps * i) -
sout N & 333 Test "MI status bit (move head) X
~ 7 010 Disk status channel
ANI .10 346 Test
, 1oz ot nask (001,015} |
[Nz |12 302 “Jusp if "M false (DI=1)
13 noo\ To “SOUT" STEP 1IEAD OUT
4 001 1 TIME
MVI(A) 15 076
16 002 Bit Dlel (step out)
out 17 323 Output (data 002) to
20 011 'Disk function contral channel ke
DCR(E) 21 035 Decrement step counter (E reg.) '3
aNZ 2 302 Jump if E reg 4 O 1
iz: 06 'to "souT" 1@!
24 001 194
1 w 25 333 ;Test for track § status 3
26 010 Disk status channel]
N 27 346 Test A
30 100 D6 mask 13
INZ 31 302 Jump if track § false (D6=1) ol
32 025) to "T2" i
33 001 -
woP | NOP +34 000 2
' NoP |35 000
NOP 136 000
sI¥ N 137 333 :Test "MH" status bit (move head)
40 010 . Disk status channel (001,025)
ASI 41 3d6 Test
. 42 002 DI mask
INZ 43 302 Jusp if "MH” false (Dl=l)
44 037) to "SIN'
45 001
WI(A) 16 076
47 001 Bit D# =1
our 50 323 Output (Data 001} to
51 01l :Disk function control channel
INR(E) 52 034 Add 1 to "E" vegister
Wi(h) 53 ot * Coor.osey . ORBM/STERWOP 3O
54 114 76 steps S r R 1
Emz!o\)/(z) 5 27; Compars reg. to 76 v
N: S6 302 Jump if "E" reg.
. i60 0OL - i A o
M 61 303 |Jump if i
. 62 004 4
63 001 e
64 :
;68 - FROM STEP OUT PROG. OR
s & OUTPUT PROG.
67
| . (001,037)
. *.-Chiange to 303 for Step + R/¥ loop
S S SR SRR S s
(001,046)
(001,052) [INCREMENT "E"
oo REGISTER
! ¢ :
i3 (STEP COUNTER)
1<
|§;
i
-1
1&
=
=
1o
W
I3
IC

(001,061}

JUMP TO BEGINNING OF
STEP OUT PROGRAM

16 o pg

COMPUTER NOTES/JUNE.197h

Softwars Injtialization of Paralie]
and Serial I/

By Patrick N. Codding

In an attempt to encompass as many ditferent appli-
cations as possible, MITS has created two new peripheral
interface boards, the 88-4PI10 and the 88-2S10. The
boards are extremely versatile, which has led to some
confusion in their software intialization requirements.
This article will help to explain the software operation
of the boards.

88-4FI10Q
NOTE: All address references are in octal.

There are two sections in each port, "A" and "B",
and three registers in each section of each port: the
Control Register, the Data Direction Register and the
Data Register.

The Control Register is always accessed by an even
address (address line A = @), Assume an 88-4PI0 with
only one port, addressed at starting location 020. In
this case, the "A" Section Control Register is 020 and
the "B" Section Control Register is 022. Execution of
an input instruction (INP = 333) followed by an I/0 ad-
dress of 020 would transfer the contents of the "A" Sec-
tion Control Register into the accumulator. Execution
of an output instruction (OUT = 323} followed by an I/0
address of 022 would transfer the contents of the accumu-
lator into the "B Section Control Register.

The Data Direction Register and the Data Register
have the same address: using the above example, the "A"
Section Data Direction Register and the Data Register are
at address 021 and the ""B" Section Data Direction Regis-
ter and Data Register are at address 023. These addres-
ses are always odd (A@ = 1). The Control Register deter-
mines which one of the other two Registers will be
selected: .

Control Register 1/0
Bit 2 Address Register Selected

Zero (0) 021 "A" Section Data Direction
Zero (0) 623 "B" Section Data Direction
One (1) 021 "A" Section Data Register
One (1) 023 "B" Section Data Register

This brings us to the first step of the Port Ini-
tialization: write a zero into bit 2 of both Control
Registers. In fact, since at this point the other bits
of the Control Registers have no effect, simply write the
Registers with all zeros:

.076 Load Accumulator with zeros
000

323 Output zeros to "A" and "B"
020 Section Control Registers
323

022

When the above routine has been executed, an 1/0
instruction followed by the even address will select one
of the Data Direction Registers (DDR). The DDR has only
one purpose: to define each of the data lines as an in-
put or an output. Normally this Register is accessed
only during initialization. It is an 8-bit, write-only
register with each bit defining a particular data line:
Bit @ defines data line §, etc. When a DDR bit is set to
a one, the associated data line acts as an output. When
the DDR bit is reset to a zero, the data line acts as an
input.

Suppose we wish to interface a parallel keyboard and
CRT display unit with the port. The routine given below
sots up the "A" Section to act as an 8-bit input for the
keyboard and the "B" Section to act as an 8-bit output
for the CRT:

Boards

Note that this is a continuation of the above pro-
gram and the accumulator is zeroed.

323 Output zeros to the "A" Section DDR

021 to make the data lines inputs
076 Load accumulator with ones
377

323 Output ones to "B" Section DDR to
023 make data lines outputs

The above sequence is only an example. Any combin-
ation of inputs and outputs is possible: e.g., the "A"
Section could be set up for 4 inputs and 4 outputs and
the "B" Section for 8 inputs, giving a total of 12 inputs
and 4 outputs.

When one section is going to be used for input and
the other for output, it might be desirable to use the
"'B" Section as output because not only is it TTL compat-
ible (as the "A" Section is) but it also has higher
sourcing current. This means that it can directly drive
a transistor switch by sourcing 1 milliamp at a minimum
of 1.5 volts. One application would be interfacing to a
device using relays for its inputs. The "B" Section
could directly drive transistors used to turn the relay
coils on and off.

The last step in the initialization is to again
write into the Control Registers. All the data bits of
the Control Register are. important for this final write.
Remember that we're using address 020, so that the "A"
Section Control Register is address 020 and the "B" Sec-
tion Control Register is 022.

Before explaining the effsct that the Control bits -
have on the operation of the port, let's briefly discuss
terminal interface communications. Assume that we have
a keyboard and a printer. We are going to interface the
keyboard to the "A" Section of the port and the printer
to the "B" Section. The keyboard produces 7 data bits
with each key stroke and a strobe pulse signaling when a
key is active. The strobe pulse becomes a "Handshake"
signal to inform the CPU when there is valid data at the
input section. The keyboard also has an input for a
busy signal. Once a key is depressed and the strobe
signal is sent, it is up to the port to maintain a busy
signal back to the keyboard until the data has been re-
ceived by the CPU. After the receipt of the valid data
signal the CPU inputs the data and resets the busy sig-
nal indicating that it is ready to receive new data from
the keyboard.

The printer operates in a similar manner. When the
printer is ready to receive new data it indicates this
by a ready-to-receive signal to the interface port.

When the CPU receives this signal it sends out valid data
along with a signal indicating to the printer that there
is valid data, Once the data has been received by the
printer it again sends out its ready-to-receive signal
which then resets the CPU valid data signal. (See block
diagram.)

The table below shows the bit function for the
control registers.

Bit # 7 6 5 I 4 l 3 2 1 [0
Function | Interrupt C2 Control DDR Cl Control
Request Control

= continued

n

Software Initié]ization

The bits of both the "A" and "B" Section Control
Register are defined in the tables below:

ISV i ST w1 F 1]
i " e o
PN e e i when CL 1 active isabied - remii high
o i MOREC B et g when G s avtive Goes Tow when bt 7 gues
i gh
l T Active g set hagh when €1 05 active Disabled -+ romains high

Avtive high Set high when C1is active Goes low when bit 7 yoos

high
CUNEROL BITS [N STATUS BIT o ™
5 3
§0 00 active tow o Set high when L2 is uctive Disabled -- remains high
VE O L Active low Sct high when U2 is active . Goes low when bit 7 is
high
O 110 Active high Set high when C2 is active Disabled -- remains high
O 11 Active high Set high when C2 is active Goes low when bit 7 is
high
b CEHION o
TONTROL BETS | 82
sTatg CLEARED
S : |
100 Low when L pulse goes high, following | High when CBi
i awrite of B Jata channel { is active
1,01 Low When I pulse yoes high, following ‘ High when next E
! a write of B data channel , pulse goes high
]
1.1 o Always low when bit 3 is low |
Lo ! Always high when
i bit 3 is high
A SECTION caz
__CONTROL BITS .
513 CLEARED
[, . -
1 0°'0 ! Low after E pulse, following
: ' read of A data channel !
1 1101 Lowafter a read of A data | High following next E
: channel ulse
il i
11,0 | Always low when bit 3 is low

i Always high when bit 3
| is hign

As an example of the use of these tables, consider
the keyboard/printer discussed above. The complete
initialization of the port for the "A" and "B" Sections
is given below, with particular emphasis on the control
word of each section.

First we must designate the "A" Section as the Input
Mode and the "B" Section as the Output Mode.

076 Load accumulator with zeros
000

323 Output

020 "A" Section Control

323 Qutput
022 "B Section Control

323 Qutput

021 "A" Section DDR
076 Load accumulator with ones
377

323 Qutput
023 "B" Section DDR

Access Data Direction Register and set up all '.'A"
Section data lines as inputs and "B" Section data lines
as outputs,

8

"A" SECTION CONTROL WORD

076 Bits 0 and 1 equal 0 and 1 respectively -

046 making CAl low (active} and disabling inter-

323 rupts. Bit 2 equals a 1 - enable the bata

020 Register. Bits 3, 4, and 5 equal 001 re-
spectively - defining CA2Z as an output to
act as a busy signal to the keyhouard.

CA2 will go low when the keyboard strobe
signal forces the Cl input active. CA2
will go back high after the CPU reads the
"A' Section Data Channel. In this applica-
tion the CA2 signal indicates the CPU is
busy when it is low. When it is high the
keyboard is free to send new data.

'B" SECTION CONTROL WORD

076 Again bits 0 and 1} equal 0 and 1 and operate

045 as in the above "A" Section.

323 Bit 2 equals 1 - enable the "B" Data Register.

022 Bits 3, 4, and S define CB2 as an output busy
signal to the printer. The printer pulls CBl
low when it is ready for new data. This
action causes (B2 to go high, indicating that
the CPU is busy. When the CPU writes a data
word out to the printer, CB2 goes low to tell
the printer that valid data is available.

CPU OPERATION

Bits 6 and 7 of the Control Register operate as
status bits in the above example. Since CA2 and CB2 are
used'as outputs, status bit 6 is not used. The following
Toutine is an echo program which inputs a character from
thg keyboard and then outputs the character to the
pPrinter. The CPU monitors status bit 7 for indication
that datg is available from an input section or the out-
Put section is ready to receive data.

Assume that the port has been initialized per the
above routine.

000 333 Input

001 020 "A" Section Control Register
002 346 AND Immediate -
003 200 Bit 7

004 312 Jump if result zero

005 000 to location 0

006 000

Q07 333 Input

010 021 "A" Section Data Register
011 062 Store Accumulator

012 100 at location 100

013 000

014 333 Input

015 022 "B" Section Control Register
016 346 AND Immediate

017 200 Bit 7

020 312 Jump if zero

021 014 to location 014

022 000

023 072 Load Accumulator

024 100 from location 100

025 000

026 323 Output

027 023 "B" Section Data Register
030 333 Input

031 023 "B" Section Data Register
032 303 Jump unconditional

033 000 to location 0

034 P[V[1]

-continued

N

“C

Software Initialization

tixecution of this program causes tho following:
"A" Sectlon Control Roglstar ls (nput to the accumulator
and tested to see if bit 7 has gone high. If high, "A"
Sectlon Deta Channel i3 input to the accumulator and
then stored at location 100. Then the "B" Section
Control Register is tested to see Lf bit 7 is high. If
it is, it indicates that the printer is not busy and the
stored character is then loaded from location 100 into
the accumulator and output to the "B Section Data Chan-
nel. Then the "8" Section Data Register must be input to
clear the status flag, bit 7. The program then jumps to
the beginning to wait for a new character.

poRT ;
Data In Data Availsble (strobe)l rypyr pevice ‘
(Keyboard) 1
Data In
Busy l

Ready to Receive (busy) | |
OUTPUT DEVICE 1‘

Dats Out {Printer)

Data Available

Port/Device Communications

This has been a description of one port. The 88-
4PI0 has provisions for a total of four ports, each
operating identically to the above port. The only addi-

. tion for the extra ports is the I/0 address used for
Register selection. The complete addressing for 4 ports
on the above board (starting address 020) is as follows:

PORT # | SECTION | ADDRESS | REGISTER
0 A 020 Control
021 Data
B 022 Control
023 Data
1 A 024 Control
025 Data
B 026 Control
027 Data
2 A 030 Control
031 Data
B 032 Control
033 Data
3 A 034 Control
035 Data
B 036 Control
037 Data

Hach port on the HB-25L0 contulns two Kegl4ters:
u Control/Status Regiater und a Datu In/Out Regiater,
An with the RH-APIO, tho porta must be Indtialized, The
accoss wcheme s the snme ns the AP0, ‘The Control/
Status Register s tho sven address (Ad = @) and the Duta
1/0 Register Ls tho odd address (A = 1),

Assume the board is addressed at starting location

010. Then the Register addresses become:

010 Control/Status Register Port @

J11 Data I/O Register Port ¢

012 Control/Status Register Port 1

013 Data [/0 Register Port 1

The first step in initialization is to reset the
port. This is accomplished by writing a 1 into the first
two bits of the Control Register:

076

003 Write 1's into bit # and bit 1 of

323 the Control Register

010

[eir [71 6 [s 4(5]2!1]0j

REC ’ Hi
FINCTION | INT | X-MIT | INT | woRD sLecT | meser/stvioe

The table above shows the bit functions of the
control register.

The next step is to define the clock divide ratio.
The on-board clock generator produces a frequency that is
16 times the actual baud rate (the rate marked 110 on the
board is actually 16 times 110, or 1760 Hertz). If the
baud rate needed for your particular terminal is one of
the baud rates marked on the board, use the 16 mode. If
the baud rate needed is one of the other five available
(27.5, 37.5, 75, 450 or 600), use the +64 mode. Page 5
of the 88-2SI0 Theory Manual shows which rate to select
on the board for the above five rates. Note that both
the baud rate and the word select are a function of the
1/0 device being used. The port is programmed to be com-
patible with the device, not vice-versa.

The chart below shows the function of bits @ and 1.

BIT 1 BIT 0 FUNCTION
0 0 4+ Clock by 1
0 1 + Clock by 16
1 0 + Clock by 64
1 1 Master Reset

Bits 2, 3, and 4 define the form of the serial word
transmitted and received, Again, this is a function of
the device. An example is a Teletype that has a reader
and punch (ASR). The port should be programmed for 8
data bits, 2 stop bits and no parity. The chart below
shows the serial word combinations available:

DATA BIT FUNCTION
Number of Number of
4| 3| 2 | pata Bits Stop Bits | Parity
0 0 0 7 2 Even
0 0 1 7 2 0dd
0 1 0 7 1 Even
0 1 1 7 1 0dd
1 0 0 8 2 None
1 0 1 8 1 None
1 1 0 8 1 Even
1 1 1 8 1 0dd
continued

1

Software Initialization

Bits 5 and 6_control the transmit interrupt and the
Huguest-To-Send (RTS) output signal. The RTS signal is
u.ed tu turn the reader on and off, under software con-
trol, on the new TYA Kit. With the 2810, a "landshake"
type communication previously described in the 4PL0 oper-
ation is usually not nceded. When the port receives a
serial data word and converts it to parallel for the CPU,
a status flag is automatically set to indicate valid data
and if interrupts are enabled, it also generates an inter-
rupt. The transmit portion works in the same way. Nor-
mally, the "Handshake" signals on-the 2S5I0 would only be
used in a modem connection. This is also true with ter-
minals. There is generally no need for handshake signals
in a single-user, stand-alone system. This is why the
88-2S10 Manual indicates that if CIS and DCD are not
needed, which is usually the case, connect them directly
to ground (at the D and E pads) and to nothing else.

Bit 7 controls the receive interrupt.

DATA BIT FUNCTION

T e 3

) RS = low, transmitting interrupt disabled.

X0 RTS = low, transmitting interrupt enabled.

x 10 RTS = nigh, transmitting interrupt disabled.

X 1 1 RTS = high, transmits a break level on the
transmit data,output. Transmit inter-
rupt Jisabled.

o by X Receive interrupt disabled.

Lox X Receive interrupt enabled.

A\ = does not matter.

The example below shows the complete control word
for a CRT terminal that operates at 9600 baud, uses 7
data bits, 1 stop bit and even parity. This example
disables both receive and transmit interrupts:

control Bit | 7] 6] 5] a3 2]1]o0

S 1Y Y [P0 O I P

Thus, to initialize the port:

076 Load
111 Control Word
323 Out

010 Control Register

Remember that the previous output for resetting the port
has been executed prior to this initialization.

The CPU looks at status information exactly the same
as with the 4PI0, but the pertinent bits are in a dif-
ferent location within the status register.

correction

"Software Initialization of Parallel
ana Serial I/0 Boards", Computer
Notes, June 1976

Note at the end of the 1/0
article it was stated that an inter-
rupt could not occur in the HALT
state if the uew I/0 boards are
used. {This is true only on the
80-4PI0. The 88-2SI0 works normaily
in the hALT condition.)

80

[Recetve bata Register tull - when high, -
\ndicates that valid data 15 ready to i

| STATUS RLGISIER BIT # I FUNCTION
l be input into the accumulutor.

fransmit Data Register capty - when high,
L | i thae e OPE may output data

We can now write an echo program for port § of a
2S[0 at starting address 010:

000 333 {nput

001 010 Status Register
002 346 AND Accumulator
003 ool with bit §

004 312 Jump if no data
00s 000 to §

006 000

007 333 Input

010 011 Data Register
011 062 Store at

0l2 100 100

013 000

014 333 Input

015 010 Status Register
016 346 AND with

017 002 bit 1

020 312 Jump if buffer
021 014 full to 14

022 000

023 072 Load from

024 100 100

025 000

026 323 Qut to

027 011 Data Register
030 303 Jump to get

031 000 new data

032 000

Hopefully, this information has cleared up some
misconceptions about the [/0 boards. The software is a
little more complex, but this allows hardware compati-
bility with many different devices, and also allows
interfacing more than one device per card.

SPECIAL NOTE: With the new I/O boards, a program
cannot interrupt from a Halt state. A mod to change
this exists, but is fairly complex. If your application
does not lend itself to changing the Halt instruction to
a Jump-self instruction, please contact me and I'l]l be
happy to send you the mod.

Patrick N. Godding
Program Manager

S

o

COMPUTER NOTES/JUNE + 1547

Linn Cochran, a gradunte of
Cal Pelu, Pomena, ha$ teen active
An amatewr nadio including the
desdign of digital contrels {ex xe-
reater systems, and nas hecentlu
beceme invofved in the hobéu com-

ruten field. He (s presentfer
erpleyed in San Francisce as a
cemmunications engineet 4on a farge
cl{l corperation..

The computer game of STARTREK
(based on MBC's popular TV show) has
appeared in many versions since the
late sixties. Among the most popu-
lar versions are those written by
Mike Mayfield in the P contributed
program library, and by David Ahl in
the book 101 BASIC COMPUTER GAMES.

These instructions are for a ver-
sion of STARTREK optimized for use
with MITS S$-K BASIC (a listing of the
program is included). I rewrote it
to fit in a minimum of memory with
the result that it just fits in my
12-K Altair 8800 system with the 8-K
Basic interpreter (version 3.1). In
rewriting it to get it to fit within
12-K, I've combined the "Warp Engines"
and "Photon Torpedoes' routines, left
out printed-out instructions, and
eliminated the "Status Report" com-
mand (each device now tells you how
many years are required, for its re-
pair when you try to use it). It
also runs a little slower than on the
big machines; it takes about 4 se-
conds to set up a new Quadrant, and
a whole 10 seconds to initialize the
Galaxy, but the feeling you get from
saving the known universe makes it
worth it. Running this program is
also a good way to test memory; it
finds problems no memory-checker pro-
gram will (it uses just about every-
thing). It would be a good bet to
put vour best memory in the bottom 8-K
to minimize the fatality of any 'mem-
ory lapses.' The program does not use
ATN, so Basic can be initialized with-
out it if memory space is needed.

I have included a 'Block Diagram'
of the STARTREK program which provides,
on one page, an idea of how the pro-
gram works. The diagram shouldn't be
taken too literally; not shown are
the damaged device routines, or the
fact that the "Warp Engines' and "Tor-
pedo" commands are processed by a
single routine.{Block Diagram--page 18)

Also included is a list of the
variables used in the program; they
may come ir handy if you try to deci-
pher the strange techniques I've used
to crunch STARTREX into 12-K of mem-
ory.

Because I feel that other peo-
ple may want access to copies of this
progran, either to modify for their
own use, or to use as is, I want to
see this program freely distributed.

Lynn Cochran

by Lynn Cochran Raprintod ltom Interface June. 1976

INSTRUCTIONS FOR STARTRLK

It is Stardate 3421 and the Fed-
eration is being invaded by a band of
Klingon "pirates" whose objective is
to test our defenses. If even one
survives the trial period, Klingon
veadquarters will launch an all out
attack. As Captain of the Federation
Starship 'ENTERPRISE', your mission is
to find and destroy the invaders be-
fore the time runs out.

The known galaxy is divided into
64 quadrants arranged like a square
checkerboard, 8 on a side. Each qua-~
drant is likewise divided into 64
sectors arranged as an 8 by 8 square.
Each sector can contain a Klingon (K),
star (*), Starbase (3), the Enterprise
herself (E), or empty space (.). Each
sector is also numpered; a Starbase
in sector 3-5 is 3 rows down from the
top of the Short Range Scan printout,
and 5 sectors to the right. Docking
at a Starbase is done by occupying
an adjacent sector, and reprovisions
your Starship with energy and rhotor
torpedoes, as well as repairing all
damages,

Your Starship will act on the follow-
ing commands:
Command 1

Warp Engine Control is used to
move the Enterprise. You will be
asked to set the distance (measured
in Warps), and the course for the
move. Each move that you make with
the Enterprise from one sector to
another, or from one quadrant to
another, costs you one stardate (one
year). Therefore, a 30 year game
means you have 30 moves to win it
in.

Course--A number from 1
to 8.999 indicating a di- 5 ——
rection (starting with a /‘\
1 to the right and in- 6 7 8
creasing counterclockwise).

To move to the left, use a course of
S. (A course of 3.4 is halfway be-
tween 3 and 4; a course of 8.75 is
three-quarters of the way from 8 to 1.

3

Warp--Cne Warp moves you the
width of a quadrant. A warp of .§
will move you halfway through a qua-
drant; moving diagonally across a
quadrant to the next will require
1.414 Warps. Warp 3 will move you
3 quadrants providing rothing in
your present quadrant blocks your
exit. Once you leave the guadrant
that you were in, you will enter
liyperspace; coming out of Hyper-
space will place you randemly in
the new quandrant. Klingons in
a giver quadrant will fire at you
whencver you leave, enter, or move
within that quadrant. ntering a
course or warp of zero can be used
to return to the command mode.

‘\f/ 2

Compand 2

A short Range Sensor will print
cut the quadrant vou presently occ-
upy showing the content of each of
the 64 sectors, as well as other
pertinent information.

Command 3

The Long Range Sensor Scan sum-
marizes the quadrant you are in, and
the adjoining ones. Each quadrant
is represented as a 3-digit number;
the first (hundreds) digit is the
number of Klingons in that quadrant
while the middle digit is the number
of Starbases, and the units digit
is the number of stars. An entry
of 305 means 3 Klingons, no Star-
bases, and 5§ stars.

Cemmand 4

Fire Phasers; the portion of
the Enterprise's energy that you
specify will be divided evenly
among the Klingons in the quadrant
and fired at them. Surviving
¥lingons will retaliate. Phaser
fire bypasses stars and Starbases,
but is attenuated by the distance
it travels. The arriving energy
depletes the shield power of its
target. Cnergy is automatically
diverted to the shields as needed,
but if you run out of emergy, you'll
get fried.

Command 5

Photon Torpedo Control will
launch a torpedo on a course you
specify which will destroy any
object in its path. Range is lim-
ited to the local quadrant. [xpect
return fire from surviving Klingons.

Command 6

The Galactic Records Section of
the ship's computer responds to this
command by printing out a galactic
map showing the results of all pre-
vious sensor scans.

VARIABLES USED

WITHIN THE STARTREK PROGRAM

Just arrived in
quadrant

A = Command: As=(

A=1 Warp Cngine Control

A=2 Short Range Sensor
Scan
A=3 Long Range Sensor

Scan

A=4 Phaser Contrel

A= Photon Torpeuo
Ccntrol
A=6 Trint Galactic Map

-continued 81

Star Trek Lives

£ = Present energy

L‘u = Initial energy

P = Number of torpedoes left

PO = Initial number of torpedoes
T = Present year

TO = Starting year

T9 = Ending year

K = Number of Klingons in present qua-
drant

K9 = Total number of Klingons in the
galaxy

B = Number of Starbases in present
quadrant (one or zero)

B9 = Total number of Starbases in the
galaxy

S = Number of stars in present qua-
drant

S9 = Initial energy of each Klingon
C = Course entered by player
¥ = Warp entered by player

H = Hit on Enterprise or Klingon in
units of energy

1,J = Matrix variafles in FOR-NEXT
statements

N,X,Y,X1,Y1,X2,Y2 = Multiple-use vari-
ables

$1,82 = Enterprise sector coordinates
(down, right)

'1,Q2 = Enterprise quadrant coordinates
(down, right)

Q$ = Characters used in prin'ting a
Short Range Scan (EKB*)

C$ = Condition; Green, Yellow, Red,
or Docked

ES = Multiple-use string variable

D(I) = Number of years for repair of
each device where the value of
1 determines the device.

2$(1) = Descriptive character string
for each device where the value
of I determines the device.
See statements 30 through 70.

The value of I for each device is:

I=0 Warp Engines

Is] Short Range Sensors
I=2 . Long Range Sensors
1=3 Phasers

I=4 Phcton Torpedoes
1=5 Galactic Records

82

K1(I} = Sector coordinate (down) for
Ith Kiingon in quadrant

K2(I) = Sector coordinate (right) for
Ith Klingon in quadrant

K3(I) = Units of energy left in Ith
Klingon in quadrant

S§(I,J) = Sector Matrix. The values
of both I and J are permitted
to range from 0 to 7. To-
gether, a given set of values
for I and J selects one of
the 64 stored numbers that
the dimensioned variable S
(I1,J) has. S(I,J) is used
to store the contents of the
64 sectors of the quadrant
that the Enterprise is pre-
sently in. When the sector
is printed out using the
Short Range Scan, the value
of I associated with each
sector determines how far
down from the top that sec-
tor is printed, while the
value of J determines how
far to the right it is
printed. The contents of
each element in the matrix
S(1,J) determines what is
printed in the associated
sector:

1sEmpty space (.)
2=Enterprise (E)
3=Klingon (K)
4aStarbase (B)
S-Star (*)

Q(I,J) = Quadrant Matrix. Like the
sector matrix, this matrix
is also defined to have 64
eiements; each one stores a
number which indicates how
many Klingons, Starbases,
and stars are in the asso-
ciated quadrant. No attempt
is made to store actual pos-
itions of Klingons, Starbases,
or stars in any quadrant but
the one that the Enterprise
is currently in. For the re-
maining quadrants, only the
number of Klingons, Star-
bases, and stars are stored
(in the quadrant matrix).

When the enterprise moves to
a new quadrant, the number
of Klingons, Starbases, and
stars for that quadrant are
looked up in the guadrant
matrix, and then that many
Klingons, Starbases, and
stars are randomly positioned
along with the Enterprise in
the sector matrix when the
new quadrant is set up (state-
ments 230 to 300). The num-
bers stored in the quadrant
matrix are what are printed
out when Long Range Scans
and Galactic maps are printed.
When the galaxy is first set
up, each clement in the qua-
drant matrix has a negative
value. As the Enterprise
roams the galaxy scanning
quadrants, the values for
those quadrants are made
positive. The Galactic Map
routine (statements 1300 to
1350) only prints positive
valued quadrants; i.e. only
those previously scanned by
the Enterprise. Typical
values stored for a quadrant
are:

-305 means unexplored, 3
Klingons, no Starbases,
and 5 stars

16 means mapped by sensors,

no Klingons, 1 Starbase,
and 6 stars

-continued

\J

/)

Star Trek Lives

MOVE

ADVANCE
YEAR

NO

p IS
ENTERPRISE
DESTROYED?

NO

ENTERPRISE
DESTROYED?

ANY KLINGONS
IN QUADRANT
FIRE AT YOU

You
Lose

NO

Ew
‘QUADRANT FIRE AT YOU

NEW GAME

QUADRANT

ANY KLINGONS IN N/

ANY KLINGONS
IN QUADRANT
FIRE AT YOU

ANY
YES KLINGONS

18
ENTERPRISE You
DESTROYED? LOSE
PRINT SHORT
RANGE SCAN
PRINT
LONgE
RAN
y SCAN
(4]
SELECT
COMMAND
»
PRINT
GALACTIC
" MAP
FIRE
PHOTON
TORPEDO
BLOCK DIAGRAM
OF STARTREK
. the warp
engines and t
routines are combined .
to save space)

~continued

83

star Trek Lives

NULL O

CLEAR S0

NEW

10 REM ## STARTREK ## (3/14/76)

10 REM A GAME OF INTRAGALACTIC WARFARE BASED ON NBC‘S POPULAR TV SHOW
10 REM ADAPTED FOR ALTAIR 8K BASIC (VERSICON 3 1) BY L E COCHRAN

10 REM AND REWRITTEN TO FIT (WITH 8K BASIC) WITHIN 12K OF MEMORY

10 REM (EXPECT A 4 SEC PAUSE T SET UP EACH CWADRANT, AND

10 REM 10 SEC AFTER "WORKING")

10 DIM D(S), K1(7), K2(7),K3(7),5(7, 7)., G(7,7), D8(3)

20 Qs=" EKB#*"

30 D$(0)="WARP ENGINES"

40 D$(1)="SHORT RANGE SENSORS"

S0 D$(2)="LONG RANGE SENSORS" -
40 D$(3)="PHASERS")

70 D$(4)="PHOTON TORPEDOES®: D$(3)="GALACTIC RECORDS"

80 INPUT"PLEASE ENTER A RANDOM NUMBER"; E$: I=ASC(ES)

90 I=I-11#INT(I/11):FOR J=0 TO I:K=RND(1):NEXT:PRINT“WORKING-"

100 DEF FND(N)=*SGQR((K1(1)~S1)"2+(K2(1)-52)"2)

110 GOSUB &10: GOSUB 4S0: Q1=X: G2=Y: X=€: Y=1: X1=. 2Q7S: Y1=6. 28: X2=3. 28

120 Y2=1. 5: A= 96:C=100: W=10: K9=0: B9=0: S9=400: TP=3451: GOTO 140

130 K=K+ (NCX2)+(NCYZ) 4+ (NS 28)+(NC. 081+ (N 03)+(N<, 01): K9=K9-K: GOTO 160
140 TO=3421: T=T0: EO=4000: E=EQ: PO=10: P»P0O: FOR I=0 TQ 7

150 FOR J=O TO 7:K=0:N=RND(Y): IF N<CX1 THEN N=N#64:Kw(NCY1)-Y:GOTO 130
140 B=(RND(Y)>A): BP=BY-B: Q¢ I, J) =K*C+B#W~INT(RND(Y) #X+Y): NEXT J. I

170 IF K9>(T9~TO) THEN T9=TO+K?

180 IF B9>0 THEN 200

190 GOUSUB 450: (X, Y)=Q(X, Y)~10: By=1

200 PRINT LEFT$(“STARTREK ADAPTED BY L. E. COCHRAN 2/29/76", 8): KO=K?P

210 PRINT"OBJECTIVE: DESTROY";K%; "KLINGON BATTLE CRUISERS IN*; T9-TO:

»
=4

PRINT“YEARS. ": PRINT" THE NUMBER OF STARBASES IS"; B9

230 A=0: IF (1<0 OR G1>7 OR Q2<0 OR Q237 THEN N=0: $=0:K=0:GOTO 250
240 N=ABS(Q(21, Q2)): AR, G2)=N: S=N-INTIN/10) #10: K=INT(N/100)

250 B=INT(N/10-K#10):GOSUB 450: S1=X: 52=Y

260 FOR I=0 TO 7:FOR J=0 TO 7:S(I, J)=1:NEXT J, I:35(S1,S52)=2

270 FOR I=0 TO 7:K3(1)=0:X=8: IF I<K THEN GOSUB 460: S(X, Y)=3:K3(1)=S9
280 K1(I)=X:K2(I)=Y: NEXT: [=S5

290 IF B>O THEN S0OSUB 460:5(X, Y)=4

. .

300 IF 150 THEN GOZUB 460:$(X, Y)=S: I=I-1:GOTQ 300

310 GOSUB ST0: IF A=) THEN GOSUB 480

320 IF E<=0 THEN 1370

230 I=1:IF D(I1)>0 THEN 420

340 FOR I=0 TO 7:FOR J=0 TO 7:PRINT MIDS(Q$,S(1,J), 1);" ";:NEXT J
350 FRINT" ";:ON I GOTO 380, 390, 400, 410, 420, 430, 440

340

~RINT"YEARS ="; T9-T

370 e XT. GOTO 650

320
Ead)
400
o
420
430
440

FRINT"STARDATE=";
PRINT"CONDITION ; C8: GOTD 370
PRINT"QUADRANT="; Q1+1; i R2+1:GOTO 370
PRINT"SECTOR ="; S1+1; "-"; $2+1: GOTO 370
PRINT"ENERGY="; E: GOTO 370

PRINT D$(4); "="; P: GOTO 370
FRINT"KLINGONS LEFT=";K?9:GOTO 370

: GOTO 370

4SO X=INT(RND(1)#8): Y=INT(RND(1)#8): RETURN
460 GOSUB 430: IF S(X,Y)>1 THEN 460
470 RETURN

480
490
s00
10
520
530
540
550
860

IF K<1 THEN RETURN

IF C$="DOCKED" THEN PRINT"STARBASE PROTECTS ENTERPRISE": RETURN
FOR I=0 TO 7:IF K3(1)<=0 THEN NEXT:RETURN

HoK3(I)# 48RND(1): K3(I)=K3(1)~H: H=H/(FND(0)~. 4): E=E-H
Es=“ENTERPRISE FROM":N=E: GOSUB S30: NEXT: RETURN

PRINT H: "UNIT HIT ON “;E$; " SECTOR";K1(I)+1; "="; K2(I)+1;
PRINT* (";N; "LEFT)": RETURN

FOR IaS1-1 TO S1+1:FOR J=S2-1 TO S2+1

IF I<0 OR I>7 OR JCO OR J>7 THEN 580

IF S(1,J)=4 THEN Cs$="DOCKED”: E=EQ: P»PO: GOSUB 610: RETURN
NEXT J, I: IF K>0 THEN Ce="RED":RETURN

IF E<EO#. 1 THEN C$="YELLOW": RETURN

Ce="GREEN": RETURN

FOR N=O TO $:D(N)=0: NEXT RETURN

PRINT D$(1); ¥ DAMAGED.

PRINT" “;D(I); "YEARS ESTlHATED FOR REPAIR. ": PRINT

IF A=} THEN RETURN

INPUT"COMMAND*; A

IF A<l OR A>6 THEN 680

ON A GOTO 710,310, 1230, 1140, 690, 1300

FOR I=0 TO S:PRINT I+i;“= *;D${I):NEXT:G0TO 450

IF D(4)>0 THEN PRINT"SPACE CRUD BLOCKING TUBES. ";: I=4:GOTQO 630
N=1S: IF P<1 THEN PRINT“NO TORPEDQES LEFT":GOTO 650

-continued

Star Trek Lives

710
720
730
© 740
750
760
770
780
790
800
810
820
830
840
%0
260
870
880
890
900
910
920
930
940
9%0
960
970
930
990

IF A=S THEN PRINT“TORPEDD *;

INPUT"COURSE (1-2 9)"*,C: IF £<1 THEN 450

IF C>=9 THEN 710

IF A=S THEN P=P-1:PRINT"TRACK. *; : GOTO 200
INPUTHWARP (0-12)"; W: IF W<=0 OR W»12 THEN 710
IF W<= 2 DR D(0)<=0 THEN 780

1=0: PRINT D$(1); " DAMAGED, MAX IS 2 ", GOSUR &430: GOTQ 750
GOSUB 480: IF EC=0 THEN 1370

IF RND(1)> 2% THEN 370

X=INT(RND(1)#&): [F RND(1)>. 5 THEN 830
D{X)=D(X)+INT(A-RND(1)#5): PRINT"##SPACE STORM, “;

PRINT D$(X); " DAMAGED##": I=X: GOIUE &420: D(X)=D(X)+1: GOTQ 870
FOR I=X TO S:IF D(1)>0 THEN 240

NEXT

FOR I=0 7O X: IF D(I1)<=0 THEN NEXT GOTO S70

D(I)= 5: PRINT"#4SPOCK USED A NEW REPAIR TECHNIGLE##"

FOR I=0 TO S5:IF D(I)=0 THEN £90

D(I)=D(I)-1:1F D(1)<=0 THEN D(I)=0: PRINT D$(I); " ARE FIXED!'"
NEXT: N=INT(W#8): EsE~N-N+. 5: TaT+1:S(S1, $2) =1
Yi=S1+ S: X1=52+. S5: IF TO>T? THEN 1370

Ya(C~-1)% 785398: X=COS(Y): Y=-SIN(Y)

FOR I=1 TO N:YimYieY:X1=X1+X: YZ=INT(Y1): XZaINT(X1)

IF X2<0 OR X2>7 DR Y2<O OR Y2>7 THEN 1110

IF A=S THEN PRINT Y2+1; “-"; X241,

1IF S(Y2, X2)=1 THEN NEXT:G0TO 1040

PRINT: IF A=1 THEN PRINT"BLOCKED BY *;

ON S(Y2,X2)-3 GOTO 1040, 1020

PRINT"KLINGON"; : IF A=1 THEN 10%0

FOR =0 TO 7:IF Y2<>K1(1) THEN 1010

1000 IF X2=K2(1) THEN K3(I)=0

1010

NEXT: KaK-1: KP=K9=1: 30TO 1070

1020 PRINT"STAR"; : IF A=S THEN S=S-1:060T0 1070
1030 GOTO 1050: 2LZYE74C
1080 PRINT"STARBASE"; : IF A=S THEN B=Z: GOTO 1070

1050 PRINT" AT SECTOR®; Y2+1; "

Ui X241 Y2Z=INT(YL1=Y): X2=INT(X1-X)

1060 S1mY2: S2=X2: 5(S1, 52)=2: A=2: GOTD 310
1070 PRINT" DESTROYED!"::IF B=2 THEN B=0:PRINT". . . GOOD WORK!"

PRINT: S(YZ, X2Z)=1: Q(31, Q2) =k ¢ 100+E#10+S: IF KP<] THEN 1400
COSUB 480: IF E<=0 THEN 1370

GOSUB =50: GOTO 4%0

IF A=S THEN PRINT"MISSED'":GOTQ 1090
Ql-lNT(Ql#N*V*(Sl#.5)/8).uz-lNT(ﬂZ*N*X*(SZ*.5)/8)
Q!-Ql-(ﬂl(O)Q(Gl>7):QZ’QZ-(02<O)¢(02>71’00T0'230

I=2: IF DCI)>0 THEN 620

INPUT"FHASERS READY: ENERGY UNITS TO FIREY; X: IF X<=0 THEN &S50
IF X2E THEN PRINT“ONLY 50OT"; E:GOTD 1150

E=E~X:YaK:FOR =20 TO 7:1F K3(I1)<=0 THEN 1230
HaX/(Y®#(FND(O) ™~ 4)): K2(I)=KI(1)~H

E$=“KLINGON AT":N=K3{I):GOSUB 30

IF K3(I)>0 THEN 1230

PRINT"##KL INGON DESTROYED##"

Kak~1: K9=kg=1: S(K1(1), KZ(I))=1: Q(@L, Q2) =@ (@1, Q2) =100
NEXT: IF K9<1 THEN 1400

GOTQ 1090

I=2: IF D(I}>0 THEN 420

PRINT D$(I); " FOR QUADRANT™; Q@1+1; "~"; Qz+1

FOR I=G1-1 TO Qi+1:FOR J=Q2-1 TO 02+1: PRINT" e

TF T<0 OR 157 OR J<O OR J>7 THEN PRINT *###®
Q(1, J)=ABS(Q(1, J)): GOTO 1340

I=5IF D(I)>0O THEN 620

PRINT"CUMULATIVE GALACTIC MAP FOR STARDATE"; T

FOR 1=0 TO 7:FOR J=0 TO 7:PRINT" *;

IF Q(I, J)<O THEN PRINT"###";.GOTO 13%0

ES=STRS(Q (1,)) ES="00"+MIDS(ES, 2): PRINT RIGHTS(ES, 3);

NEXT J: PRINT: NEXT I:GOTO 650

PRINT: PRINT"IT IS STARDATE"; T: RETURN

GOSUB 1360: PRINT"THANKS TO YOUR BUNGLING, THE FEDERATION WILL BE"
PRINT"CONQUERED BY THE REMAINING"; K9; "KL INGON CRUISERS!' "
PRINT"YOL ARE DEMOTED TO CABIN EOY'":GOTQ 1430

GOSUB 1360: PRINT"THE FEDERATION HAS BEEN SAVED!'"

PRINT"YOU ARE PROMOTED TO ADMIRAL": PRINT KO; "KLINGONS IN";
PRINT T-TO; “YEARS. RATING="; INT(KO/(T=T0)#1000)

INPUT"TRY AGAIN";ES$: IF LEFT$(ES, 1)="Y" THEN 110 @

S

8

GOOD GRIEF!

This program was adapted from a
program appearing in the H-P BASIC
Program Library Handbook, June 1972.
It will run without modification on
both 680 and 8800 8K ALTAIR BASIC.

SNOGPY sessa DEMONSTRATION PROGRAN ®esss
REM s##esVERSION | sesex7/31/69 vsess
REM PRINTS APICTURE OF SNOOPY ON THE TTY

READ K.K1

IF X<@ THEN 9918

1F K=130¢ THEN 9110
IF K=999 THEN 9112
IFKeM THEN 9814

FOR I = | TO 6] STEP 3
IF I>M THEN 9924

IF LCI)wl THEN 9@27
IF LCIel)mt THEN 9338
IF L(I+2)ul THENSGAD
PRINT ™ i3

NEXT

PRINT

GOTO 990a

17 LOI+1)s) THEN 98I0
17 Lile2)ml THEN 9936
PRINT "s “3

GOTO 9924

IF L(1+2)=] THEN 9834
PRINT “ss =

GOTO9824
L(l+e2)ml THEN 9234
"e my

1045 DATA 999.8

'Aa6 DATA 43s51s-1.9

9247 DATA 37:51,53.53,=1,-1

9348 DATA J4,49.56056,-1v=1

9 32,47.57,570% 101
S,

25+32,43,45.58,6101.°1
26029:41041,45.45,574537562,62,10=1

224 22027,27,38. 38,465,464 56056,
190225 2828033,35,38:38,45,43,87,57,-14=1

18,15,23,23,26,28432532,35,35,39. 390444 44,38, S
1341323423429, 295 38+ 32036536538, 284 44/ 44439, 3¢

2.2
2020747020523,27,2742. 2.
2020707021426031531547047+58:58,~
204231031:81,860°10=1

202431531 +50085,714=1
244430:39,50,52, 54,855,121
20248,9435 30451454,

9
1.

460
$48,15,19,26026510
17017223, 23,~1.-1
18218,23,23,=1,=1
16516028024529429,310 310101
16:16,04,27,30, 305010 %)
17517232,320=10=1

9884 DATA 18,18,31,30,=1,°1
9085 DATA 20,3d.=1s<1

9986 DATA 47.47.=1
9687 DATA 46s46,58,58,-1,-1
9088 DATA 43,45,52,520-1,~1
9089 DATA ad,44s54:54s=10°1
9699 DATA 4as 440560365151
9391 DATA 43,43457.574-1.-1
9092 DATA 42,42058,58,-1.-1
9893 DATA 42,42059,59:-1.-4
9094 DATA 42,42,59,59,-1.-1
9895 DATA 4l,a1s68,6d,-10-1
9896 DATAAL»4168,68s=14=1
9397 DATA 42,42.68.68.-1.=1
9898 DATA 42,42:684685-1,-1
9899 DATA 42,42.68,6s=1s-1
9108 DATA 43,43.60,68,-1,-1
9181 DATA 4344368, 680151
9182 DATA 44544559039¢-1,-1
9183 DATA a5,45,59,89,=1,<1
° a7,47,38,58, =101
48,57,57,1,
53,564560=14-1
§2,52,5505%, =101

L]

9
sessssssessssessVl HOPE YOU LIKE IT:

9111 STOP

9112 PRIN

9113 PRIN

9114 GOTO 9288
BND

A PICTURE OF SNOOPY FROM THE ALTAIR 6888 SYSTEM

sessusnes

ecsesanssssnsess o

sevenses reu
e - .
. . .
. . .

. .
LTI .
. . L .
. i . o e .
. . .. s -
can . ssnne .. .
[saaee & .
. . e v .
. .
.
.
-
-
.
-
. . .
. .
Ca—
. s e
. wees w
.
. -
sesessssrane
.
. .
. .
.
.

sessssssssssnsssssssE HOPE YOU I.IKE [Tssssans

sssee
. .
.
.
-
.

T "A PICTURE OF SNOOPY FROM THE ALTAIR 680B SYSTEM"
T

saneasa

COMPUTER NOTES/JUNE.17%

. CHANGING CSAVE AND CLOAD 1/0 PORTS
C FOR 3% BASIC (VERSION 3.2)

By Tom Durston

By altering locations in 8K BASIC, it is possible to change the ACR
"CSAVE'" and "CLOAD" I/0 ports. You may want to do this to use a dJifferent
type of storage device for "CSAVE" or "CLOAD" or you may want to use the
2SIO board with the COMTER II.

The following is a listing of the portiocn of 8K BASIC (version 3.2)
that handles "CSAVE" and "CLOAD", and the locaticns that may be changed.
You may change the octal code either by "EXAMINE" and "DEPOSIT", or con-
vert the octal address and code to decimal and use "PEEK" and "POKE".
Note that if you POKE incorrectly, you may kill BASIC and will have to

reload it.
LOCATION OCTAL 1/0 PORT 2510 CHANGES
CODE
010007 333
010010 006 CLOAD STATUS PORT - - - - - -
010011 346
010012 001
010013 302 e e e e e e ia e 312
010014 007
010015 020
010016 333
010017 007 CLOAD DATA PORT - - = - - -
010020 311
010021 315
010022 024
010023 020
010024 365
(N 010025 333
/ 010026 006 CSAVE STATUS PORT - - - - = ~
010027 346
010030 200 m e e e e oo e a 002
010031 302 e e e e e e e - 312
010032 025
010033 020
010034 361
010035 - 323
010036 007 CSAVE DATA PORT - - - - - -

To find the "CSAVE" and "CLOAD" locations for other versions of
BASIC, enter "CLOAD" and carriage return. Then stop the computer and
examine the addresses in that vicinity for a pattern similar to the
one listed above.

&

TER NOTES/ZJULY 297k

The typical program develop-
ment process usually involves the
following steps:

1. Load the Editor.

2. Use the Editor to enter the
program into the Edit Buffer.

3. Output the program from the
Edit Buffer to an I/0 device
(e.g. paper tape or cassette
tape) .

4. Load the Assembler.

5. Assemble the program from the
tape.

However, to expedite the pro-
gram development procedure, Package
II allows the user to assemble a
program directly from the Edit
Buffer. This saves the time spent
outputting the program from the
Edit Buffer to an I/0 device and
reading it back into the Assembler.

The steps outlined below con-
stitute a general procedure for
creating a program file using the
Editor and then using the Assembler
to assemble the program directly
from the Edit Buffer.

Step 1:

»ad the Monitor.
L
Load the Editor.

Type E to return to the Mon-
itor.

Step 4:

Use the Monitor's DEP command
to modify the contents of locations
5124-5125Q and 5530-5531Q. These
locations contain the starting and
ending addresses of the Edit Buffer,
respectively. This step is neces-
sary because the default location
of the Edit Buffer is directly
above the Editor, and Version 2 of
the Assembler (AM2) loads directly
above the Editor. In the sample
program given here ("ASC"), the
Edit Buffer has been moved to start
at 12K and end at 16K-1. Note
that 12K is 30000Q which is
0011000000000000 in binary.

88

ssembling From the Edit Buier
With Prchmge 1] v e oo

Split into 8 bit bytes, this ad-
dress becomes:

00110000 00000000
high low
order order
byte byte

Converting the bytes to octal
yields:

00 / 110 / 000 00 / 000 / 00O

0 6 0 0 0 0

Thus, the high order byte is 060
(octal) and the low order byte is
000 (octal).

The 8080 must always have
addresses stored with the low order
byte first and the high order byte
stored second. Therefore, the com-
mand:

DEP 5124

[

69

’! {control Z - not echoed)

is used to change the starting ad-
dress of the Edit Buffer. Similar-
ly, the ending address of the buf-
fer is changed (see sample).

Step S:

Restart the Editor by typing
EDT and enter the program into the
Edit Buffer. (See the Package II
Manual for details on the use of the
Editor.)

Step 6:

When the program has been
entered, type E to return to the
Monitor.

Step 7:

Type the command OPN FIL,EB,A.
This opens the symbolic device
"FIL" to the Edit Buffer in ASCII
mode.

Step 8:

Load and run Version 2 of
the Assembler (AM2).

Step 9:

Type FILE to tell the Assem-
bler to read and assemble the pro-
gram from the symbolic device FIL. !
(In this case, the contents of
the Edit Buffer.)

Note that the last line of
the program is a RUN directive
which tells the assembler to execute
the code that it assembled.

The sample program "ASC" ac- i
cepts characters from the Teletype
and prints the ASCII value of the
character in octal. Control is
returned to the Monitor when a §
is typed.

Memory Map

When using the Editor and Ver-
sion 2 of the Assembler in the
fashion.outlined above, it is nec-
essary to plan memory use carefully.
Below is the memory map for the
above example. .

377777Q* o :
Edit Buffer A

30000Q*) S)
User Program Area /

24000Q*
Assembler Symbol Table

17041Q i
Assembler (AM2) :

11553Q
Editor (EDT)

5100Q
Monitor

*User defined addresses

Memory Map
for Program Development

-continued ~-

vevelopment Procedure for Sample

Program "AsC"

Development Procedure for Sumple Program 'ASC"
0PN ABS,AC
?EUT

START INPUT

.

7DEP 5124

0
?DEP 5530
377

77
?EDT
START [NPUT
‘I
ORG 24p90Q ;Set location counter
OUTCH: DB 1 ;Use LXI trick to get
;around print space entry point
ouTS: MVI A, ;Load A with a space
PUSH PSW ;Save char to be output
OUTCHL: IN [;TTY ready?
RLC
JC OUTCH1 iNo, try again
PQP PSW ;Retrieve char to be output
QuT 1 ;Yes, send the char
RET iReturn to calling program
GETCAR: IN [} ;Anything typed?
RCC
Jc GETCAR ;No, check again
IN 1 ;Yes, read the char
CALL OUTCH ;Echo the char
ANT 177 ;Strip the parity bit
CPI s ;Should we quit?
Jz MON ;Uf so, return to monitor
MOV L,A ;Copy char into L
XRA A iClear A to clear H
MOV H,A
CALL ouTs ;Send out a space
MV D,3 ;Initialize digit counter
Jvp FIRTWO ;Print digit containing high
;Order two bits
NXTDIG: DAD H ;Shift left 1 bit
FIRTWO: DAD H
DAD H
MoV AH ;Move octal digit to A
ANT 7 iUse low order three only
ORI 60Q ;Add in ASCII @
CALL QUTCH ;Print out the digit
DCR D ;Decrement the digit counter
JINZ NXTDIG iMore digits to go
CALL ouTS ;Send out space and
JMP GETCAR 180 get next character
BEG GETCAR ;Execution begins at GETCAR
END ASC
- RUN ASC
70PN FIL,EB,A
7AM. (S -
ALTAIR LOADING ASSEMBLER - REVISION 3.p
ASM
FILE

UNDEFINED SYMBOLS
SYMBOL TABLE

$ p24199
OUTCH §21ppg
OUTS #249p1
OUTCH1 #24994
GETCAR #24016
FIRTNO §24p54
NXTDIG 24953

A 191 B 192 C 183 D 194 E 185 F 106 G 197 H 119 §

Reentering the Lditor

Should it ever he necessary
to reenter the Editor to modify
the text left in the Edit Buffer
from the last edit session, the
R parameter should be used.

For example, to modify the
sample program "ASC" after re-
turning to the Monitor, the com-
mand EDT (R) would be used to
restart the Editor.

Do not use the command EDT to
reenter the Editor or the contents
of the Edit Buffer will be lost.

In other words, use the com-
mand EDT to create a new program
file, and use the command EDT (R)
to modify a program that is al-
ready in the Edit Buffer.

3

COMPUTER NOTES/JULY1297b

1 wnote this program in MITS

$K BASIC, and it runs on my 12K
ALTAIR §800.

1 don't think that anyone

will get nich selling a computer-
{zed biorhythm chart (at Least
at the small usens' fLevell, but

T think it can be used as a means
03 showing what our computers can
do and might serve as a program-
ming example §or the novice pro-
grammer (also it's possibly good
for a Laugh §rom the more exper-
denced "bit-diddeens").

Well, enough rambling! Fon

what it's wonth, here's my version
0§ a bdlonhythm program,

Thank you,
Henny 0. Atnold, Jn.

(Editon's note: Creat!)

LIST

1 LET R1 = (380/33)/57.2958
2 LET R2 = (340-28)/57.2938
3 LET R3 = (3&0/23)/57.2958

S0 DATA 0931559,90,120,1515181,212,243,273,304,334
“NTA 289
LIM L$(D0)

5y
B

¢

75 RESTORE

100
125
150
200
205
206
207
210
22

230
300
400
500
%50
600
625
450
800

FRINT "ENTER EIRTHDATE»CURRENT
LET F1 = 0

LET J6 = 1

INFUT 01,02

LET 19 = D2

FRINT "ENTER DURATION®

INFUT JS)

FRINT *ENTER NAME OF SUBJECT®
INFUT As

GOSUE 12000

IF D1 » D2 THEN FRINT *INVALID
LET X1 = D1

GOSUE 1000

LET f1 = X2:LET #1 = X3{LET D1
LET X1 = D2

GOSUR 1000

LET Y2 - X2ILET M2 = X3:LET 02
60TO 4060

1000 LET X2 = INT(X1,/10000)
1100 LET %3 = INT(X1/100)-(X£2%100}

1200

1300 RETURN

4000

4100 FOR 1 = 1 TO M1
4200 REAL Jt

4300 NEXT I

4400 RESTORE

4500 FOR I = 1 TO M2
4600 READ J2

4700 NEXT I

4800 LET J1 = J1+4D%

DATE (YYMMDD) *

DATES*IGOTO 200

LET X4 = X1-{(XI&100)+{X2*10000))

LET B4 = C(INT((Y2-1)%365.25)-INT{(Y1-1)%355.25))

Reprinted from Personal Systems .
{The San Diego Computer Society Newsletter)

4900 LET J2 = 42+D2
S000 LET L1 = (Y1/4)-(INT(Y1/4))

5100 IF L1 = O THEN LET L1 = 1:G60OTO

5200 LET Lt = 0
$300 LET L2 = (Y2/4)~-(INT(r2/4))

$400 IF L2 = ¢ THEN LET L2 = 1:GOTO 5600

$500 LET L2 = O
$600 IF M1 » 2 THEN LET J1 = J1+4L1

5800 LET D4 = D4+J2-J1
4000 LET DOt = ([4-CINT(D4/33)%33))
6100 LET D2 = ([4-(INT{D4/28)%28))
6200 LET D3 = (D4-CINT(D4/23)%23))
4300 FOR L3 = 1 TO 50

6350 FOR I = 1 T0 S0

6360 LET L$(I) = * *

6370 NEXT I

6400 LET X = SIN(R1XD1)

4500 LET Y = SIN(R2XD2)

6600 LET Z = SIN(R3XD3)}

6700 LET L$(XX20#25) = *x*

6800 LET L$(YX20425) = *+°

4900 LET L$(ZX20425) = *.°

A9%0 PRINT *@ v
7000 FOR I = 1 TD SO
7050 LET L$(25) = *!°

7100 FRINT L$¢I);

7200 NEXT I

7205 FRINT *1 3

7207 GOSUEF 10000:FRINT DS3°
7210 IF N1 = 0 THEN LET C
o o=

02 = 0 THEN LET
D2 = 14 THEN LET C
D3 = 0 THEN LLET C
b3 = 12 THEN LET C
C =1 THEN LET C = 0
7250 FRINT

7390 LET D1 = D141

V400 LET D2 = 0241

7500 LET D3 = D3+1

7600 IF D1 = 33 THEN LET M =
7700 IF D2 = 28 THEN LET 02 =
7800 IF D3 = 23 THEN LET 03
7900 LET J2 = J2+1

7920 LET J6 = Jét1

7950 IF JS-J6 GUTO 8300

8000 NEXT L3

8050 LET F1 = F1+1

8100 GOSUE 14500

8125 PRINTIFRINT

H1%0 GOSUE 12000

8200 GUTO 6300

8300 LET F1 = Fl41

835C GOSUB 14500

8400 FOR I = 1 TO 50:FRINTINEXT 1
8500 GOTO 75

10000 KESTORE

10100 FOR I = 1 TA 13

10150 LET J4 = J3

10200 READ J3

cCo

i

10250 IF J2 > 359 THEN LET 13 = J3+L2

2 THEN LET J2 = J24L2

-continued

Biorhythm Program

10300
10400
10%00
1o61¢
10529
10539
10600
10700
11080
1110

IF J2
NEXT I
LET 12
LET LY
IF L2
LET L2
LET U2
GOTa 1
LET M2
LET Do

=42 6OTO 110

TOYD+L

2 AN
- O THEN LET
0

PRERT
o000
= f-t
4

D0

TCr/4)
L2 = LIBATO 10400

THEM LET T4 = D&4L2
TIEIGOC0H(MANI00) +16

1115¢

11200

11300

12000

121¢0

12200

12230 P

12300 FRINT *: COMFUTERIZED STUDY OF RIORHYTHMIC

12400 GOSUER 13400 CURVES®;

12500 FRINT "1 SUBJECT: *in%}

12600 GUOSUR 13600

12700 PRINT *: DATE UF STUDY - *309:" - DURATION®:JS
* DAYS®H

12800 GOSUE 13800

12810 FOR I = INEXT IIFRINT

13200 FOR I = 1 TO PGIPRINT *=*FINEXT I

13210 FRINT

13250 FRINT *: N
HIGH L

13240 * DATE t CRITICAL®:

13400 A3

13500 - 17075

13510 -t

13520

13530

13540

13600 = 75-FOS(X)

13700 =170 J-t

g 13800 [
(_/713900 NEXT I
14000 FRINT *3°*

14100 RETURN

14500 FOR I = 1 TO 7SiPRINT “-*;INEXT IIFRINT

14400 PRINT *: x = INTELLECT !AL ABRILITY, AMBITION.";
14700 GOSUB 13600
14800 FRINT *: + = SENSIKILIY
14900 GOSUR 13400
15000 FRINT *: , =
15100 GOSUE 12600
15150 FOR T = 1 TD 753PRINT °*~-*FINEXT I:FRINT
15200 FRINT TAR(31)3°FAGE *iF1

15400 RETURN

as

“VES» MOODs CREATIVE ABILITY.®

FHYSICAL STRENGTHs ENDURANCE, CONFIDENCE,®§

RUN

ENTER BIRTHIATE» CURKENT DATE C(YYMMODD)
? 4109065760524

ENTER DURATIUM

7112

ENTER NAME OF SUBJECT

? HENFY 0. ARNOLDN JR.

~éontinued

iorhythym Program

92

et we 03 45 30 43 20 4o o5 se ee o4 oo s o4 Se 2s G+ Ge Se s T3 Te Tr v 46 Te s T e 3 ve G644 43 ve o4 3 e +e ve se es eo ea 4 +e 4w oo ve

CUMFUTERIZED STULDY OF RIOFHTTHMIC CURVES
=

SURIECTy HENRY 0, AkMOLL
DATE OF STuby - g

H

e e em me 4 e mm mm = vm e ea mu wn ma mn =% mm me = m= So =e = —s 4 o me m= —a cs o= a e == = =m em me em == cm e cm mn mm e e me e | e

+x

we 46 50 9 se o6 S5 30 4o T TE 26 3 43 ve vs *a or 4a Os e +e Ge 44 S0 = te s ve e +e Se 04 46 ve Go 44 To e 0% Te e To 29 se e 2o 0o we e

760524
760525
760526
760527
760528
760529
760530
760931
760601
760602
760603
760504
7606905
760606
760507
760508
760609
760610
7560611
760612
760613
7604614
760618
760616
760617
760618
760619
760620
760621
750622
760623
760624
760625
760626
760627
760628
760629
760630
250701
760702
760703
760704
760705
760706
7460707
760708
760709
760710
760711
760712

e 45 o4 v8 3¢ 53 46 s 4o 4o 8 20 +e 3 4o *0 Se Ge se to e 44 be Se Vs 4e eo ce e 4e Se G G os Te e 4o 4s Se 43 e Se o e s se o e se ve
"

+ *

INTELLECTUAL AEBILITY,
SENSIRILITY» NERVES,

FPHYSICAL STRENGTH»

ENDURANCE »

AMEITION.
MOODe CREATIVE ARILITY.

CONFIDENCE,

H

~continued

R

C

Biorhythm Program

N
:
.
:

COMFUTERIZED STUDY OF RIORHYTHMIC CURVES
SUBJECT» HENRY 0, ARNOLD JR.
DATE OF STUDY - 740524 <~ DURATION 112 [AYS

LOW H HIGH

.

DATE

CRITICAL?

S S e TS TS 0 st 00t et te e th s ot e e et se teee 0e 54 ee be s se 44 ve ee 0o oe 2 ve be es oe oe 00 4o 4o se oo oeee oo ve

H
i
'
i
'
H
)
i
'
H
1}
'
H
i
B
'
'
H
H
.
H
'
H
'
H
'
. H
i
i
]
'
'
H
i
H
H
'
!
'
i
1l
.
H
'
H
]
H
'
H

760713
760714
760715
760716
760717
760718
760717
7640720
760721
760722
760723
760724
760725
760726
760727
760728
760729
760730
740731
760801
760802
760803
760804
760805
760806
760807
760808
760809
760810
760811
760812
760813
760814
760815
760816
740817
760818
760819
760820
760821
760822
760823
760824
760825
760826
760827
760828
760829
760830
760831

7T S % SSe et e Tt oS 000 0 0ot e te thte th te ue et et e 500t o0 on 0 0a ve oe e 54 e os 0o ve ve 20 00 36 %0 be ve ve o ae on

o oo oe

* = INTELLECTUAL ARILITY, AMBITION.
+ = SENSIPILITY, NERVES» MOOD, CREATIVE ARILITY,
+ = FHYSICAL STRENGTHs EMDURANCE» CONFIDENCE.

~continued

a3

Biorhythm

%

Program

¢ OLUFUECTy HENRY 0. ARNOLDL JR.
§olaTE QF STUDY - 740524 - DURATION 112 [DAYS

: Low H HIGH

DaTE

N

CRITICAL:

+ 0

o 5o o5 04 ot ve ve vr e ve e oe
-
+
»

+
+ *
+

760901
760902
760903
740904
760905
760906
760907
760908
760909
760910
760911
760912

* = INTELLECTUAL ABILITY, AMRITION.
+ = SENSIFILITY, NERVES, MOOD» CREATIVE ABRILITY.
+ = FHYSICAL STRENGTH, ENDURANCEs CONFILDENCE.

Q('

index
COMPUTER

NOTES
REVIEW

VOLUME |

‘C

ALTAIR 8800

Checkout Procedure - 1
Construction Tips - 3
Chassis
CPU Board
CPU Chip
D/C Board
Data/Control Board Connections to System Bus
Expander Boards
Memory, 1K
Motherboard
Nameplate
P/S Board
Data Lights ON (problem) - 2
Interfaces, custom - 30
Interrupt Monitor - 4
General Description - 4
General Interrupt Service Routine -4
General Suggestions and Comments - 5
Hardware Description - 4
Hardware Interrupt Levels - 5
Hardware Schematic - 5
Measurement Procedure - 4
Software - 4
Modifications - 2
AC Switch (Display/Control board)
Clock Specs (CPU board)
. Deposit Problem (D/C board)
12V Zener Symptoms (CPU board)

ALTAIR 8800b

Bus Lines - 9

CPU Board - 9

Control PROM - 10

Data LEDS - 10
Display/Control Logic - 6
Front Panel Capabilities - 6
Front Panel Interface Board - 8
Motherboard, 18-Slot - 10
Power Supply - 9

RESET Switch - 10

Single Step/Slow - 10

INDEX

ALTAIR 680b

Front Panel Display Board Modification - 11
RESET Function - 11
Teletype Interconnect - 11

MEMORY DEVICES

Floppy Disk
Disk Controller - 12,13,21
Disk Drive Unit - 12,13,22
Disk Erratum - 19
Disk Extended Basic - 12,13,61
Features - 13
Functions - 15
Disk Format - 12,13
Disk Precautions - 19
Disk Test Programs - 73
Specifications - 12,15
4K Dynamic Memory Board
Troubleshooting -~ 17
Addressing
Deposit Switches to 4060
Protect/Unprotect
Refresh
4K Static Memory Board
Features -~ 16
Specifications - 16
28-PMC PROM Memory Card
Features - 16 :
680b-BSM 16K Static Memory Board
Features - 20
Specifications - 20

ii

INDEX

1/0 DEVICES

88-ACR (Audio Cassette Record Interface)
Audio Modulation Method - 37
CSAVE and CLOAD I/0 Ports - 87
Read/Write Programs - 27
Software Loading on Cassette Tape - 39
Tape Recorder Motor Control - 27
88-HSR (High Speed Tape Reader)
Specifications - 42
Interfaces, custom - 30
88-4PI0 (Parallel Input/Output Board)
Block Diagram - 26
Features - 26
Software Initialization - 77
VLCT - 32
680b Paper Tape Reader Control - 41
88-RTC (Real Time Clock)
Program for RTC - 35,36
88-SI0 (Serial 1/0 Board)
Address for I/0 Board - 25
Baud Rate for 1/0 Device - 25
Echo Program - 25
Inputting Data frm External I/0 Device - 25
Interfaceing with External Device - 25
Outputting Data to an External I/0 Device - 24
88-S108
: ACR - 27
88-S10C
REV 1 Interface - 29
REV 0 Modifications - 29
with Teletype - 23
88-2S10
Echo Routine - 44
Features - 26
Software Initialization - 77
Troubleshooting - 43
88-TYA, TYK, TYR (Teletype Call-Control Kit)
. Features - 40
TV Dazzler - 28
88-VI (Vector Interrupt)
Interrupt Service Routine - 34

88-VLCT (Very Low Cost Terminal)

Input Programs - 23
Modification - 23

88-PI0 - 23
88-4PI0 - 32
INDEX

iii

SOFTWARE

Assembler - 88

Sample Program "ASC" - 89
BCD Arithmetic - 52
Biorhythm Program - 90
Bootstrap Loader - 65
Checksum Loader - 64
Condition Codes - 47
CSAVE and CLOAD I/0 Ports - 87
Data Structures - 55
Decimal Input Routine - 64
Decimal Output Routine - 55
Disk Extended Basic - 61
Disk Test Programs

Read/Write Test Program - 73

Stepping Program - 73
Editor - 88

Sample Program "ASC" - 89
Good Grief (Snoopy Program) - 86
Instruction Set, 8080 ~ 52
Interrupt - 46,69

Interrupt Service Routine - 5,34,46

Loading BASIC into Altair - 64
Loading Software - 47
LXI Trick - 53
Maintenance Software - 72
Masks - 58
Multi-Precision Arithmetic - 66
Pe~ity Routine - 56
Program Flow - 55
Programmed 1/0 - 57
Programming Suggestions - 48
Programs with 8K BASIC - 49
Signed Arithmetic - 67
Siot Machine Game - 70
Stack

Operation - 59

Stack Pointer - 45
Star Trek Program - 81
USR Routine - 68

88-ACR (Audio Cassette Record Interface)

Audio Modulation - 37

CSAVE and CLOAD 1/0 Ports - 87
1/0 Programs (Read/Write) - 62

Read/Write Programs - 27

Software Loading on Cassette Tape - 39

iv

88-4PI0 (Paraliel Input/Output Board)

Software Initialization - 77

with 88-VLCT - 33
88-RTC (Real Time Clock)

Program for RTC - 35,36
88-SI0 (Serial I/0 Board)

Echo Program - 25

Input Program - 24

Interrupt Program - 25

Qutput Program - 24
88-2510

Echo Routine - 44

Software Initialization - 77

88-VI (Vector Inerrupt)

Interrupt Service Routine - 34

88-VLCT (Very Low Cost Terminal)
Input Program - 23
with 88-4PI0

Initialization Program - 33

Test Program - 33

INDEX

, : COMPUTER NOTES REVIEW
U VOLUME |
TABLE OF CONTENTS

ALTAIR 8800
QUANG Ao 1
8800 MOOD.... .2
Maintenance by Paul Van Baalen... .2
Arrowhead TiPS.....c.ccocovviieiiiiiiiieeaiieiiiiiiiiiieieeee .3
Measuring Interrupt Activity by NOrmMan CrowfOOt........cccccovviiiiieiiiiici oo 4
ALTAIR 8800b .
The Mainframe Of The Seventies—Altair 8800c.ccc.occiimeeeeeeeee e 6
ALTAIR 680b
Altair 680b Hardware Notes by Steve POlNi. ..o e e e 11
MEMORY DEVICES
Altair FIoppy Disk DY TOM DUFSTON........cooouiiiiiti i oo e e et er e 12
Altair Floppy Disk System............. .13
PROM Memory Card..............cooooviimiiieiiiiiiieeee 16
Product Review, MITS 4K Static Memory by Tom Durston.... .16
From MITS Repair Department by Jay Miller and Dave SilVa.......co....oooieeieeeee e 17
New Products, 680b6-BSM 16K Static MemOry Card..............cc..oueeoeeeeeeeee e e 20
\D_isk Hardware Notes by TOM DUFSTON............c.iiiiiiiiiiet sttt er e 21
/O DEVICES
BB-VLCT MOD ... oottt 23
USING THE VL CT oottt e et e e e e et 23
ENGINEEIING NOTBSc.ooiiiiiiiiiiiiiiiieee ettt ettt ettt 23
Using Serial 1/0 Boards DY TOM DUFSTON............ociiiiiiiiiiei ettt et eae e 24
NeW 1OS.26
TBPE RECOIAEr MOLOr CONMEIOL..........vvvoeeeeeii i s et e e e e e e e e et e e e e e eeetae e 27
Dazzler FEAtUred I POP TFOMICScccuuei ettt ee e e et et 28
SIOC REVO Mod................ .29
Altair 8800 Interfaces................c.......... .30
Using The VLCT With 4PI0 by Bill KURN......cociiiiiiiiiiiis ettt ene e 32
Vector Interrupt and Real Time Clock by Annette MilFOrd..........ccoooooeriieeee e et ee s eeeee e 34
New Audio Modulation Method for ACA....................... .37
88-ACR User Notes by Tom Durston....... .39
New Products, Teletype Call-CONUrol Kit.................c...ccooeeeeeeeeeieeeesseeseeeeeeseere e e sseeereeesesssatseesseesessssersan 40
680b Paper Tape Reader Control By StEVe POIINMI............cc.eoveeieeeeeeeeee oo e e ereeeee s eeesseereessere e eessees o 41
New Products, Controllable High Speed Tape Reader, 88-HSR.. 42
Troubleshooting 2-S10 Boards by Bruce FOWIEE................cccooouuoiieeeee e eeees et 43

(J' © s 1976

2450 Alamo S.E./Albuquerque, New Mexico 87106

L/ COMPUTER NOTES REVIEW
‘ VOLUME |

SOFTWARE

USING A8 SEACKooeeiieieeiie ettt a et e e e sttt n e e s
Altair Interrupt Structure by Paul Allen............................

Software by Bill Gates..ccccoveeviiieriiiiie e

Letter To The Editor

Fun With Altair Basic by Monte Davidoff...
Software Hints For 8800 by Bill Gates..........ccoiiiiiiiiiiii ettt e
Software Notes by Bill GaeS..........ooiiii it e et
General Software Update Info by Paul Allen....... .57
Software Notes, Using The Stack by Bill Gates... .59
Notes On Disk EXended BaSiC..........cccccovoiiviiiiiiiiiiiiiiiiiiiii e eeeeeeieniinas OUORTPPPN .81

/10 Programs For The ACR by Tom DUFStON ..o .62
Software Notes by Bill Gates.................... ...64
Software Notes by Bill Gates.............cocooeeeiee .66
Slot Machine Game For MITS Basic by Jon Walden................cc..cooeivnennnn. .70

-~ “aintenance Software by Harvey Lee................... FE PSRRI .72
b air Disk Test Programs by Tom Durston...................ooiiininnicics .73
Software Initialization OFf Parallel And Serial /O Boards by Patrick N. Godding. 77
Star Trek Lives by LYNN COCRIAN.......ccoueirieietr ettt eeee e seeen e .81
GOOA GIIOFot ree ettt ettt ettt e e et e e abe s seatestaeeeanas T SOOI 86
Changing CSAVE And CLOAD /0 Ports For 8K Basic {Version 3.2) by Tom Durston............cccccenvnnee 87
Assembling From The Edit Buffer With Package Il by Mark Chamberlin...................... .88
Altair Basic Biorhythm Program by Henry O. Arnold, Jr..........co.oocvveeiiiuiiiecie e crenicesaee s vt 90

-C

