—————— —.- .
R [v

SECTION 4

PROGRAM DEBUGGING

cChapter 3 described the basic facilities of Instant Pascal for

reating, changing, and executing a Pascal program. In addi-

{ ion, the Step (+<,>) command and DEL key have been shown to be
aneful for analyzing the dynamic behavior of a program. This

chapter describes several additional facilities which are

available for program debugging.

1.1 TRACING

when the Step command is used, tracing is automatic. In
jeneral there are two kinds of tracing, which can be 1ndepen-—

lently controlled in Instant Pascal during continuous execution

("<G>) "
a. Statement tracing

b. Assignment tracing

These two kinds of trace may be independently controlled by two
toggles, called S and A, respectively. These toggles are
switched by the S and A commands.

4.1.1 Statement Tracing (S Command})

Statement tracing prints each text unit Jjust before 1t 1s

axecuted.

Detail:

The state of the toggle after entering the S command 1S

indicated by the word ON or OFF printed immediately after

the command.

4-1

———— kb = kdd

4.1.2 Assignment Tracing (A Command)

Assignment tracing.prints values changed by assignment and FOR

statements.

NDetaills:

a. The state of the toggle entering the A command is indi-

cated by the word ON or OFF printed immediately after the
command.

b. If S 1s off and A is on, assignment statements are never-—

theless printed in order to associate them with the

printed values. FOR statements are also printed, but only

the first time through the loop.

4.2 IMMEDIATE STATEMENT EXECUTION (X COMMAND)

It 1s possible, under well defined conditions, to key in a

single statement and have it executed 1mmediately, independent

of the execution of the program in memory. This 1is useful

during a break or after an abnormal program termination for

examining and changing the values of variables.

The +<X> (eXecute) command immediately sets up a text input
prompt. Key 1n one statement; it will be executed upon

depression of RETURN. Note the restrictions to the use of X

which are listed below.

Detaills:

a. There must be a program in memory which has been success-

fully bound and whose execution has begun. That 1s, X

should be executed only during a break or after completion
of a program, either a normal completion or one accom-
panied by an ERROR message. Other use of X will lead to

unpredictable results.

——em 2 e e aem . e L
. o ST A e am, R oomor ma L= .
. .- - - . iy - . . - e ——— PR, - - H '
. - ."::._._'_-_‘.. = _"-‘i".".. | il i il o L T . " "
- - a . = R
- —re .,.'.'.,,."""'-*.' = e e - r e - - :__.,ll.,.,_._,_—r - -
" FLLREI - - il = p e

R R L ST A
SR TR e T e T e AR i e AT ?._‘

- _ -
— —a—— 1 R a.-_,: oL ag gl 1w
—wlnm Sy I a-—_-:-_j_,.._.- R A .F"t‘::.“_.u -
1-_1_ J.oa. = - eyt N T H
- - - s

e — -
r

., -
- "

r-..l_
-t .

- —

Iy,

i*.

f'].

h.

If the program is not bound when X 1s executed, 1t will
first be bound before the statement 1s executed. This
program binding is indicated by the printout ".C.". If 1t

leads to a diagnostic, the statement will not be executed.

The statement must itself be bound before 1t can be

executed. This can lead to diagnostics, 1n which case the

statement will not be executed.

There is the question of visibility of identifiers. That
is, the statement WRITELN(A[I]) may have different inter-
pretations of A and I depending on the block 1in which 1t
is presumed to be executed. This block 1s i1dentified by

the position of the text unit pointer at the time +<X> 1s

executed. The text unit pointer must be 1n the statement

vart of an active block or at the bottom of the program.
The movement commands used in text editing (see 3.2, 3.4)

may be used to position the pointer before using X.

Note that at a break, the text unit pointer 1s at the text
unit listed and about to be executed.

If the program terminates with an ERROR message, the text
unit pointer is at the text unit listed, 1.e., the one

whose execution caused the error.

If the program is bound in response to X (i.e., 1f “".C."
is printed), and there are no Binder diagnostics, the

interpretation of the statement will be with respect to

the statement part of the main program, since, 1n this

case, the Binder leaves the text unit pointer at the

bottom of the program.

The single statement executed can be a structured

statement. Its complexity, therefore, 1s limited only Dby

the 60-character length of the AIM 65 input line.

4-3

| ‘
I
wkﬂ
il
[
v |
1l
i
ik | SECTION 5

| i | INSTANT PASCAL TEXT UNITS

gl
g
il

i;!m; "Me internal form of a Pascal program in the Instant Pascal

j'jfﬁ nystem has been designed to satisty three objectives not

i lﬁf previously considered compatible 1in systems supporting

i E!% ntructured languages:

o o6 The internal form of the program must be backwards trans-
f|:i ': | , . , .
i latable to equivalent source code. Thls objective permlts

| ygué building a system which can support the 1llusion of

TR

i “HPE directly executing the source code.

e

| - - ' Lt] |

IR o Fxecution time should be insensitive to complexity of data

%i !ﬁi or statement structures. For example, the time recqulred

;'.Lﬂ: by an IF statement to skip over an unexecuted compound

S |

!;,yy statement should be about the same whether the compound

Qﬁfhé statement is three lines or one hundred lines long.
L

| | I

; ?H?E o The consequences for the structure of the internal form of

i f_;i the program of any source-program change must be confined

| il o

] . iﬂi to the portions of the program which are changed. As a

;2' ﬂ counterexample, changing one letter, VAR A,B:SEAL; to VAR

j' h% A,B:SEAT; (where SEAL and SEAT are defined types) 1n a

| ;?% compller-based system can completely alter the object

| %jh program and therefore requlres total recompilatzion.

A

| :ii 'he approach which has been taken to reconcile these objectives

ééﬁﬁﬁ 'n Instant Pascal divides the process of transforming source

i:;ﬁg lext into answers 1into three phases.

| 'HI:EE;,

.Ii;i'l

:ill

| Bl

L

| rﬁ
1

| i
J !' 5-1 |

{_5 '

el b W R TR W TRTET W TEET

5.1

Translation (elicited by the R, I, and X commands) pPro-

cesses Pascal source code and translates it into the
Internal program format which is in executable form except
for certain addresses and integer values, such as polnters
to variable declarations and lengths of structured types.
The proper values cannot be computed for these values
because the program cannot be assumed to be whole.

1s left,

space
however, for these values to be later added.

(These entities are called "spanners” in this section).

Binding (elicited by the C and X, and possibly by the G
and step commands) scans the entire program (or in the
case of X, the statement), verlifying its structural

integrity and assigning values to all spanners.

Execution (elicited by the G, step, and X commands)

sequentially interprets program statements and alters data

values 1n accordance with the rules of Pascal.

TEXT UNITS IN EDITING

In order to ensure that the user's freedom to edit programs 1s

not seriously constrained by the design approach taken above,

this design approach also incorporates the following principle.

Every program is conceived as being built of a single-

level, linear sequence of syntactic building blocks called

"text units". From the editor's point of view, the text

unit 1is the throwaway unit. Program building and altering
reduces to inserting text units into, and deleting text

units from, this linear sequence.

Ay a consequence of thas principle, character—level editing

wilhin a given text unit 1is accomplished by deleting the text

Tn some cases, text units

it and 1nserting a replacement.
Wrre small enough that the editing process, viewed as deletion

(6l lowed by insertion, 1s essentially the same as conventional

haracter-oriented editing. For example, the following are

| oxt units:

(as a statement separator), REPEAT, ELSE

BEGIN, REND,

11 the other hand, some text units are larger. TFor example,

A1l simple statements are text units; 1n fact, eXpressions are

vlways contained within larger text units.

'he person familiar with Pascal will readily 1ncorporate the
Lo xt—-unit orientation into his or her editing style. Here 1s a
hrief and informal definition of most of the Pascal text units.
and function headings, 1ncluding

. Program, procedure,

formal parameter lists.

Example:

FUNCTION ISPRIME(N:2..MAX):BOOLEAN;

h, Certain part header words:

CONST
TYPE
VAR

+. Constant definitions, including the final semicolon.

Example:

GREETING='HELLO, THERE! ';

5-3

B e T i) [

- = ——

e el e —————e e s T fe emle am e amm s

Type definitions, 1including the final semicolon, except 1n

the case of record type definitions, i1n which case the

word RECORD stands 1n place of the type and final

semlcolon.

Examples:

TARLE=ARRAY[{ RANGE JOF COST:
HASHTABLE=RECORD

Variable and field declarations {they are the same).
Example:

GAP=5SA409, INPUTCHAR:CHAR:
(Note that the final semicolon after a field declaration
1s always required in Instant Pascal unless the field type
1s RECORD.)
END and ; at the end of a RECORD definition.
Simple statements.
Examples:

GOTO 5

SUBRR(CRLOW)
A:=B[N+1]1*C

54

......

h. The connective fragments which are used to build

structured statements.

Examples:

REPEAT
UNTITL A=N

IF ODD(I) THEN
WwITH R[P] DO

l.abels and case constant lists preceding statements.

j. Comments.

Example:
(*THIS IS A COMMENT?Y)

In general, the lister begins each text unit on a new line.

Fxceptions occur when labels and case constants precede

statements and, most commonly, when semicolons follow

This fact is important in editing because the
cument 1n

statements.
formatted listing is frequently used as a reference do

the editing process, and the editing commands which regqulre

numeric parameters {(+<L>/n, +<K>/n, +<U>/n, +<D>/n) always

count text units, not lines. The most COmMMON €aSE +o remember

when counting text units on a listing is to count as two text

any line containing a simple statement Or a structured

statement connective fragment followed by "7 " .

unlits

Examples:

END:
UNTIL NOT ODD(N) ;:

5=5

" T L T . L -

5 There 1s a special case 1n the input translator which is The reason for excepting END and the separate semicolon 1s that

necessltated by a syntactic ambiguity in Pascal. Consider the

lhey can occur 1in both statements and at the end of RECORD

| plight of the input translator on encountering the following lypes.

text i1n the course of program creation.

DEFINITIONS OF TEXT UNITS

.' : | N
A,B,C,D:F:

"hiLs section presents a list of the text units of Instant

Is 1t a variable declaration, or 1is it a case constant list Pascal. It 1s not a formal definition of the syntax of the

followed by a procedure statement? These two objects must be source language. Such a definition 1s 1mplied in Chapter 7.

(3) Otherwise, 1if the preceding text unit is one which
occurs 1n declaration or definition parts, the wvalue
1s changed to DECLARATIVE; or if the preceding text
unit 1s one which occurs in the statement part, the

value 1s changed to STATEMENT.

5~6

f% translated differently. This 1s the only case in which the Rather, this section uses the reader's assumed knowledge of
| ?& translation process 1s context—-sensitive. The translator cx1sting syntax definitions of Pascal to present the source
i fﬂ decides how to treat this input by examining a context flag of language from the linear, single-level text unit point of view.
ﬂﬁ type (DECLARATIVE, STATEMENT). The flag's value is maintained
é }ﬁ& according to the following rules. "here are two metalinguistic elements used 1n these lists.
% - a. It 1s 1nitialized to DECLARATIVE. . Square brackets [] enclose an optional element.
? THEE b. Otherwise, 1ts value depends on the 1i1dentity of the text b, Elipses mean that the previous element 1s optionally
]! unit 1mmediately preceding the text unit pointer, and the repeated any number of times.
%?'ﬂﬁ value 1s subject to change every time the identity of the
é::?ﬁ? preceding text unit 1s changed, according to the e detall notes accompanying the lists clarify specific polnts
| E?#ﬁ?i following rules: and cite deviations from standard Pascal practice.
- ; ifﬁ
-gl'.$i (1) If there is no preceding text unit, the value 1is ".2.1 Program Heading
; f !ﬁi% unchanged.
o % Ji@ PROGRAM 1dentifier;
'} :Ef (2) If the preceding text unit is END or the separate
Ok r ' ' ' '
f?i; ":", the value 1s unchanged. 10242 gzitSUnlts Appearing 1n Both Declarative and Statement
[l

1. (* comment text *)

N

END
3, .

NDetalls:

1. Comment text may not contain the character sequence "*)".

57

| . The character ":" appears at the end of certain heading, 1. The semlicolons at the end of cases 1,3,5,8,10,11 are not
fﬁ declaration, and definition text units. This use of ";" optional. Therefore, the optional semicolon permitted by
. VEE is not a separate text unit but is an 1inseparable part of Pascal after the last field declaration 1in a record
| ijﬂ the heading, declaration, or definition text unit. definition is not optional 1in Instant Pascal; 1t 1s
Eifﬁf requilred.
!:ﬂ“ﬁ 5.2.3 Text Units Appearing in Declarative Parts
{yPER o - “".2.4 Simple Statements
: ,%i The text units are:
; HH The statements are:
é;iﬂﬁ 1. LABEIL integer [,integer]...:
! :T& 7 CONST . variable:=exXpression
?iiﬁﬁ 3. identifier=constant: 2. function designator:=expression
N :;-Mﬁ 4, TYPF b, GOTO 1integer
§ IW¢ 5, identifier=type; 4., 1dentifier([actual parameter list)]
EFL 6. 1dentifi1er=RECORD |
.ﬂﬂ{ 7. VAR hetalls:
J@h 8., identifier[=$hhhhll[,identifier[=$hhhhjl...:type;
jliﬁi 9. identifier[=$hhhh][,identifier{=$hhhh]]...:RECORD 1. Statement type 2 expresses assignment to the value of a
| !ﬁh 10. PROCEDURE identifier[(formal parmeter list)]:; function.
:'Eﬁ 11. FUNCTION identifier[(formal parameter list)]J:type:
;.Ha . The integer in the GOTO statement must appear in the LABETL
| , o |
) '%? Detaills: declaration of the block containing this statement part.
“ . |gﬂ GOTO may not jump outside 1ts own hlock.
]| a. The constant definition identifier=identifier; is not in
.; it the language. . The identifier in the statement type 4 1s a declared or
. -é !w% predefined procedure name.
E Hﬁw b. The option [=$hhhh] denotes a global variable asslgned to
; !iﬁ the absolute hexadecimal address hhhh. If the type 1s “.2.5 Statement Connective Fragments
. E i longer than one byte, hhhh is the lowest-numbered address
L . | EH in the variable. The connective fragments are:
:;'-.!EE 1. BBEGIN
" ;giﬁ c. The identifier[=%hhhh] cases above are used for both 2. END (the same as 1n 5.2.2)
ﬁﬁﬁi variable and field declarations. The option [=$hhhh] 1s 3. ; (the same as 1n 5.2.2)
% 5 “;” not permitted in field declarations. 4. IF Boolean expression THEN

gl | 5. ELSE

ey 6. WHILE Boolean expression DO SECTION 6
7. REPEAT

I? 8. UNTIL Boolean expression DIAGNOSTIC MESSAGES
|

9. FOR identifier:=expression TO expression DO

'* 10. FOR identifier:=expression DOWNTO expression DO

iﬁﬁ 11. CASE expression OF "mis chapter describes diagnostic messages which can occur

| ‘%“ 12. case constantl,case constant]...: (uring translation, binding, execution, and listing.
13. OTHERWISE:

nﬁ 14. WITH record variablel ,record variablel]...DO .1 SOURCE INPUT DIAGNOSTICS
|
| 15. label:

nach correct source input line 1s a seqguence of one or more

i Detalls: nyntactically correct text units. There 1s syntax checking

fﬁf . ; -Mﬂ ‘ring translation, but only within each text unit. With the

':$ a. Case constants are not strongly type checked against the rxception noted in 5.1, there 1s no concern at translation time

expression in the CASE fragment. A case constant will be Abhout the order in which text units are entered or about the

p
“AWE selected at run-time if its ORDinal value matches the sverall structure of the program.

C o

i
|-, , :
iwﬂ ORD1inal value of the exXpression.

.-[!

1

hmring source i1nput (I, R, or X command), an entire line 1s

b. OTHERWISE: is the default case "constant’. input before any of the line 1s translated. This permits free

nse of the DEL key to correct kKeying errors. Once translation

il bhegins {(immediately after keying RETURN) each text unit 1s

. t ranslated without regard for any text units either preceding

or following it on the same line. 1If an error 1s discovered

. I i , -
¢ | !!WH luring the translation of any text unit 1n an input line, no

: ' . !{ﬁh loxt unit in that line 1s incorporated into the program. If no
e] 3 !hwﬂ crror 1s discovered, all text units 1in the line are
s R R
o L _ S j o] 07 -
e T e e T R] i';; tncorporated i1into the program.
TTEmE s L eI e LS e TS (il ‘
o SRR = e
e S Pt SR R 1
e Re Eo e B Y| - - - -
e P SR :__i | |, ! . "ree diagnostlic messages can occur durlng source input.
A T TR e ey Bl
T U e T T e T T S R T |
e ‘ gl
G T e e i
S e S S) _;i -Hy o The syntax error messagdge
TR : T 1 See 3.1 for a discussion of this message.
R SFAEE e me s —ET L

R T

B ﬂ N A] | I| i

LR = : i
N 3 R e JHIE
S caEeE 1 5-10
e s 6-1

= WL TR SCT I T o T e Doy ook iyt (g [-ooF Ll L ey

