REFERENCE MANUAL

!

-+
.
=

IR EE RN

BLEL ELE

b Kb RR R RE O EDORR O RLEL B RR ER_IIF

NOTICE

Apple Computer Inc. reserves the right to make improvements in the product described in this
manual at any time and without notice.

This munual is copyrighted and comams proprietary information. All rights are reserved. This document may nol, in
whole or part, be copied, photocopied, reproduced, 1ranshited, or reduced 10 any electronic medium or machine resdable
form wilthaul prior consent, in writing, fiom Apple Computer Inc

1979 by Apple Computer Ine.
10260 Bandley Drive
Cuperting, CA 95014
LADEY 996- 1010

Reorder Apple product number A2LO0OTA (030-0004-01)

Written by Christopher Espinisa

=Apple”” is a trademark of Apple Compuier Ing

AN AN

=

Apple II Reference Manual

A REFERENCE MANUAL
FOR THE APPLE Il
AND THE APPLE II PLUS
PERSONAL COMPUTERS

TABLE OF CONTENTS

CHAPTER 1
APPROACHING YOUR APPLE

2 THE POWER SUPPLY

3 THE MAIN BOARD

- TALKING TO YOUR APPLE

THE KEYBOARD

1] READING THE KEYBOARD

9 THE APPLE VIDEO DISPLAY

9 THE VIDEQ CONNECTOR

10 EURAPPLE (50 HZ) MODIFICATION
{0 SCREEN FORMAT

12 SCREEN MEMORY

12 SCREEN PAGES

12 SCREEN SWITCHES

14 THE TEXT MODE

17 THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE
19 THE HIGH-RESOLUTION GRAPHICS (HI-RES) MODE
30 OTHER INPUT/QUTPUT FEATURES
20 THE SPEAKER

22 THE CASSETTE INTERFACE

73 THE GAME 1/O C(INNECTOR

73 ANNUNCIATOR OUTPUTS

24 ONE-BIT INPUTS

4 ANALOG INPUTS

5 STROBE OUTPUT

5§ VARIETIES OF APPLES

25 AUTOSTART ROM / MONITOR ROM
26 REVISION @ / REVISION 1 BOARD
27 POWER SUPPLY C HANGES

27 THE APPLE 1l PLUS

A L L L

CHAPTER 2
CONVERSATION WITH APPLES

30
30
3

32
32
32
33
34
36
36
37
38

STANDARD OUTPUT

THE STOP-LIST FEATURE

BUT SOFT, WHAT LIGHT THROUGH YONDER WINDOW BREAKS!
(OR, THE TEXT WINDOW)

SEEING IT ALL IN BLACK AND WHITE
STANDARD INPUT

RDKEY

GETLN

ESCAPE CODES

THE RESET CYCLE

AUTOSTART ROM RESET

AUTOSTART ROM SPECIAL LOCATIONS
“OLD MONITOR™ ROM RESET

CHAPTER 3
THE SYSTEM MONITOR

ENTERING THE MONITOR

ADDRESSES AND DATA

EXAMINING THE CONTENTS OF MEMORY

EXAMINING SOME MORE MEMORY

EXAMINING STILL MORE MEMORY

CHANGING THE CONTENTS OF A LOCATION

CHANGING THE CONTENTS OF CONSECUTIVE LOCATIONS
MOVING A RANGE OF MEMORY

COMPARING TWO RANGES OF MEMORY

SAVING A RANGE OF MEMORY ON TAPE

READING A RANGE FROM TAPE

CREATING AND RUNNING MACHINE LANGUAGE PROGRAMS
THE MINI-ASSEMBLER

bl B M TR W oW O O G MMM MM MR

BRI E N E e

DERUGGING PROGRE AMS

EXAMINING AND CHANGING REGISTERS
MISCELLANEQUS MONITOR COMMANDS
SPECIAL TRICKS WITH THE MONITOR
CREATING YOUR OWN COMMANDS
SUMMARY OF MONITOR COMMANDS
SOME USEFUL MONITOR SUBROUTINES
MONITOR SPECIAL LOCATIONS
MINI-ASSEMBLER INSTRUCTION FORMATS

CHAPTER 4

MEMORY ORGANIZATION

CONFIGURATION BLOCKS
M STOR AGE

ERO PAGE MEMORY MAPS

CHAPTER J

INPUT/OUTPUT STRUCTURE

78
79
80
80
81
82
83
84

BUILT-IN IYO
PERIFHERAL BOARD I/O
PERIPHERAL CARD 1/0 SPACE

PERIFHERAL CARD ROM SPACE
1O PROGRAMMING SUGGESTIONS
PERIPHERAL SLOT SCRATCHPAD RAM

THE CSW/K5W SWITCHES
EXPANSION ROM

CHAPTER 6

HARDWARE CONFIGURATION

L)
90
92

96

THE MICROPROCESSOR
SYSTEM TIMING

POWER SUPPLY

ROM MEMORY

RAM MEMORY

THE VIDEO GENERATOR
VIDEO OUTPUT JACKS
BUILT-IN I/O

“*USER 1" JUMPER

THE GAME /O CONNECTOR
THE KEYBOARD
KEYBOARD CONNECTOR
CASSETTE INTERFACE JACKS
POWER CONNECTOR
SPEAKER

PERIPHERAL CONNECTORS

LI

(B (H] HV 1ED OIHDL IHD 'R Is1 (EY IB1 RY O/RDO'RR OB M}

m mw m

LN

B33 e e e

" APPENDIX A

THE 6502 INSTRUCTION SET

" APPENDIX B

SPECIAL LOCATIONS

* APPENDIX C

ROM LISTINGS

" GLOSSARY

* BIBLIOGRAPHY

INDEX

190
194
195
195
195

GENERAL INDEX
INDEX OF FIGURES
INDEX OF PHOTOS
INDEX OF TABLES
CAST OF CHARACTERS

m MM

" M

vee ms m1 m1 im1 'ER IR EYO P10 R M)

Bl e e e

INTRODUCTION

This is the User Reference Manual for the Apple 11 and Apple 11 Plus personal computers. Like
the Apple itsell, this book is a tool. As with all tools, you should know a little about it before
you starl (o use it,

This book will not teach you how to program. It is a book of facts, not methods. If you have
just unpacked your Apple, or you do not know how to program in any of the languages available
for it, then before you continue with this book. read one of the other manuals accompanying
your Apple. Depending upon which variety of Apple vou have purchased, you should have
received one of the following:

Apple 11 BASIC Programming Manual
{part number A2L0O00D5)

The Applesoft Tutorial
(part number A2L0018)

These are tutorial manuals for versions of the BASIC language available on the Apple. They also
include complete instructions on setling up your Apple. The Bibliography at the end of this
manual lists other books which may interest you.

There are a few different varieties of Apples, and this manual applies to all of them. It is possible
that some of the features noted in this manual will not be available on your particular Apple. In
places where this manual mentions features which are not universal to all Apples, it will use a
footnote to warn vou of these differences.

This manual describes the Apple 1l computer and its paris and procedures. There are sections on
the System Monitor, the input/output devices and their operation, the internal organization of
memory and input/output devices, and the actual electronic design of the Apple itsell. For infor-
mation on any other Apple hardware or software product, please refer to the manual accompany-
ing that product,

Wl W W W W W W W W W W W T T W e W W W Eaﬂjﬂﬂ

 CHAPTER 1
APPROACHING YOUR APPLE

For detailed information on setting up your Apple, refer to Chapter | of either the Apple BASIC
Programming Manual or The Applesoft Tutorial.

In this manual, all directional instructions will refer to this ecrientation: with the Apple's
typewriter-like keyboard facing you, ““front’ and “*down’” are towards the keyboard, “"back™ and
“up’ are away. Remove the lid of the Apple by prying up the back edge until it “*pops’, then
pull straight back on the lid and [ift it off,

This is what you will see:

Power Supply

Main Board

Speaker

Photo 1. The Apple 11.

THE POWER SUPPLY

The metal box on the left side of the interior is the Power Supply. It supplies four voliages:
+5v, —5.2v, +11.8v, and —12.0v. [t is a high-frequency ““switching"'-type power supply, with
many prolective features to ensure that there can be no imbalances between the different sup-
plies. The main power cord for the computer plugs directly into the back of the power supply.
The power-on switch 18 also on the power supply itself, to protect you and vour fingers from
accidentally becoming part of the high-voltage power supply circuit.

fE1 rel rey pR1 gm) gl PED IED (@1 (®1 (EY (P11 (P e (Pl /P !PT P PTOFTOITT1 TR

o S

k=

110 volt model 110/220 volt model

Photo 2. The back of the Apple Power Supply.
THE MAIN BOARD

The large green printed circuit board which takes up most of the bottom of the case is the com-
puter itself. There are two slightly different models of the Apple I main board: the original
{Revision #) and the Revision | board. The slight differences between the two lie in the elec-
tronics on the board. These differences are discussed throughout this book. A summary of the
differences appears in the section **Varieties of Apples’” on page 25,

On this board there are about eighty integrated circuits and a handful of other components. In
the center of the board, just in front of the eight gold-toothed edge connectors (*'slots™) at the
rear of the board, is an integrated circuit larger than all others. This is the brain of your Apple.
It is a Synertek/MOS Technology 6582 microprocessor. In the Apple, it runs at a rate of
1,023,000 machine cycles per second and can do over five hundred thousand addition or subtrac-
lion operations in one second. It has an addressing range of 65,536 eight-bit bytes. [ts repertory
includes 56 instructions with 13 addressing modes. This microprocessor and other versions of it
are used in many compulters systems, as well as other types of electronic equipment.

Just below the microprocessor are six sockets which may be filled with from one to six slightly
smaller integrated circuits. These 1Cs are the Read-Only Memory (ROM) ““chips™ for the Apple.
They contain programs for the Apple which are available the moment you turn on the power.
Many programs are available in ROM, including the Apple System Monitor, the Apple Autostart
Monitor, Apple Integer BASIC and Applesoft 11 BASIC, and the Apple Programmer’s Aid # 1 util-
ity subroutine package. The number and contents of your Apple’s ROMs depend upon which
type of Apple you have, and the accessories vou have purchased,

Right below the ROMSs and the central mounting nut is an area marked by a white square on the
board which encloses twenty-four sockets for integrated circuits. Some or all of these may be
filled with 1Cs. These are the main Random Access Memory (RAM) “‘chips™ for vour Apple.
An Apple can hold 4,096 to 49,152 bytes of RAM memory in these three rows of components.®
Each row can hold eight 1Cs of either the 4K or 16K variety. A row must hold eight of the same

L
L
L
L
E
L
L
L
L
.
L
-
E
L,
.
L.
L.
-
L.
L
IQ

* You can extend your RAM memory to 64K by purchasing the Apple Language Card, part of the Apple
Langusge System (part aumber A2B00O06).

type of memory components, but the two types can both be used in wvarious combinations on
different rows to give nine different memory sizes.* The RAM memory is used to hold all of the
programs and data which you are using at any particular time. The information stored in RAM
disappears when the power is turned off.

The other components on the Apple 11 board have various functions: they control the flow of
information from one parl of the compuier to another, gather data from the outside world, or
send mformation to you by displaying it on a television screen or making a noise on a speaker.

The eight long peripheral slots on the back edge of the Apple’s board can each hold a peripheral
card to allow you to extend your RAM or ROM memory, or to connect your Apple to a printer or
other input/output device. These slots are sometimes called the Apple’s “backplane™ or
“mother board™.

TALKING TO YOUR APPLE

Your link to your Apple is at your fingertips. Most programs and languages that are used with
the Apple expect you to talk to them through the Apple’s keyboard. It looks like a normal type-
writer keyboard, except for some minor rearrangement and a few special keyvs. For a quick
review on the keyboard, see pages 6 through 12 in the Apple 11 BASIC Programming Manual
or pages 5 through 11 in The Applesoft Tutorial.

Since you're talking with your fingers, you might as well be hearing with your eyes. The Apple
will tell you what it is doing by displaying letters, numbers, symbols, and sometimes colored
blocks and lines on a black-and-white or color television set,

* The Apple 11 is designed 10 use both the 16K and the less expensive 4K RAMs. However. dug to the greater
availuhility and reduced cost of the 16K chips, Apple now supplies only the 16K RAMs

P11 1m0 181 (1 #i (®1 Pl P Pl PGPl fTY el Ty 'ELO'En el 'R

L)

hfBernl e

T T

THE KEYBOARD

The Apple Keyboard
Number of Keys: 52
Coding: Upper Case ASCII
Number of codes: 91
Output: Seven bits, plus strobe

Power requirements: +5v at 120mA |
—12v atl 50mA

Rollover: 2 key

Special keys: CTRL
ESC
RESET
REPT

. it

Memory mapped locations: Hex Decimal
Data 5C000 49152 -16384
Clear $C@10 49168 -16368

The Apple 11 has a built-in 52-key typewriter-like keyboard which communicates using the Amer-
ican Standard Code for Information Interchange (ASCII}®. Ninety-one of the 96 upper-case
ASCII characters can be generated directly by the kevboard. Table 2 shows the keys on the key-
board and their associated ASCII codes. *“‘Photo™ 3 is a diagram of the keyboard,

The keyboard is electrically connected to the main circuit board by a l6-conductor cable with
plugs at each end that plug into standard integrated circuil sockets. One end of this cable is con-
nected to the keyboard, the other end plugs into the Apple board's keyboard connector, near the
very front edge of the board, under the keyboard itself. The electrical specifications for this con-
neclor are given on page 102,

Most languages on the Apple have commands or statements which allow your program to accept
input from the keyhoard quickly and easily (for example, the INPUT and GET statements in
BASIC). However, your programs can also read the keyboard directly.

All ASCII codes used by the Apple normally have their high bit set. This is the same as standard mark-
parity ASCII

“Photo”* 3. The Apple Keyboard.

READING THE KEYBOARD

The keyboard sends seven bits of information which together form one character. These seven
bits, along with another signal which indicates when a key has been pressed, are available to most
programs as the contents of a memory location. Programs can read the current state of the key-
board by reading the contents of this location. When you press a key on the keyboard, the value
in this location becomes 128 or greater, and the particular value it assumes is the numeric code
for the character which was typed. Table 3 on page 8 shows the ASCII characters and their asso-
ciated numeric codes. The location will hold this one value until you press another key, or until

your program tells the memory location to forget the character it's holding.

Once your program has accepted and understood a keypress, it should tell the keyboard’s memory
location to “‘release’’ the character it is holding and prepare lo receive a new one. Your program
can do this by referencing another memory location. When you reference this other location, the
value contained in the first location will drop below 128. This value will stay low until you press
another key. This action is called “‘clearing the keyboard strobe™. Your program can either read
or write 1o the special memory location; the data which are written to or read from that location
are irrelevant. It is the mere reference 1o the location which clears the keyboard strobe. Once you
have cleared the keyboard strobe, you can still recover the code for the key which was last

pressed by adding 128 (hexadecimal $8@) to the value in the keyboard location.

These are the special memory locations used by the keyboard:

| Table 1: Kevhoard Special Locations
Location: o
Hex Decimal Bescription
SCOE0 49152 -16384 Keyboard Data
$CO10 49168 -16368 Clear Keyboard Strobe

The [RESET] key at the upper right-hand corner does not generate an ASCII code, but instead is
directly connected to the microprocessor. When this key is pressed, all processing stops. When
the key is released, the computer starts a reset cycle. See page 36 for a description of the RESET

L_rl\"ﬂ MU /oo R mom T OTTEORL T

BRI e e e e e

function.

The [CTRL] and [SHIFT]| keys generate no codes by themselves, but only alter the codes produced

by other keys.

The [REPT| key, il pressed alone, produces a duplicate of the last code that was generated. If you
press and hold down the [REPT] key while you are holding down a character key, it will act as if
you were pressing that key repeatedly at a rate of 10 presses each second. This repetition will

cease when vou release either the character key or |REPT

The POWER light at the lower left-hand corner is an indicator lamp to show when the power to

the Apple is on.
Ty Table 2: Keys and Their Associated ASCII Codes

Key | Alone CTRL SHIFT _ Both | Key | Alone CIRL SHIFT Both |
space | SAQ SAR SAD SAD | RETURN 58D S8D 38D S8D
@ $Ba SBO SEa sBa | G $C7 $87 $C7 887

1! $B1 $B1 SAl SAl H 5CR 588 SC8 S88 |
2 $B2 SB2 A2 SAZ I $C9 589 $C9 S89
i# $B3 SB3 5A3 SA3 I [SCA SEA SCA S8A
45 $B4 SB4 SA4 SA4 K $CB S3B SCH $8B
5% $BS SBS SAS SAS L | SCC $8C SCC $8C
od SB6 SB6 SAB SAH I M SCD S8D sDD 59D
T SB7 SBY SAT SAT N° SCE S8E SDE S9E
Bi SB8 B8 AR SAS | 0 $CF SBF $CF S8F
9) SB9 SB9 $A9 SA9 r@ sDa 590 sCe 588
‘. $BA SBA SAA SAA Q D1 891 §D1 891
.+ SBB BB SAB $AB R iD2 £92 $D2 592
< SAC SAC $BC SBC 5 $D3 $93 SD3 $93
—-= | SAD SAD 5BD SBD T $D4 594 SD4 594
> SAE SAE SBE SBE U | SD3 595 SDS5 §95
I? $AF SAF SBF $BF v $D6 596 SD6 596
A 5C1 581 SC1 581 w | sD7 $97 sD7 597
B 5C2 582 8C2 §82 X SD8 98 SD8 $98
C $C3 383 SC3 583 Y $D9 $99 $D9 $99
D $C4 584 SC4 584 Z | $DA 594 $DA $9A
E $C5 $83 SC5 $85 — $88 $88 SR8 588
F $C6 $86 SCo 586 = §95 §95 §95 $95
ESC 598 598 $9B 598

All codes are given in hexadecimal. To find the decimal equivalents, use Table 3.

fee==rrmr—

| Table 3: The ASCII Character Set
Decimal: 128 144 168 176 192 208 224 240
Hex: S89 98 SA@ SBP SC@ SD@ SE@ 5F9
'] 5@ nul dle (] @ P p
1 $1 soh del ! 1 A Q a q
2 $2 stx de2 ! 2 B R b T
3 §3 etx ded # 3 £ 5 [3
E 54 eot ded b 4 D T d 1
5 8§35 eng nak % 5 E u e u
6 b ack syn & [F v f v
T 57 bel etb : 7 G w g W
8 38 bs can (8 H X h X
9 59 ht em) 9 I Y i ¥
19 SA If sub 8 3 1 Z i z
11 SB vt esc + ¥ K [k |
12 $ | A& fs < L \ ! I
13 SD cr gs - = M | m |
14 SE S0 rs . > N # n e
15 SF si us / ? 0 . o rub |

Groups of two and three lower case letlers are abhreviations for standard ASCII control charac-

ters.

Not all the characters listed in this table can be generated by the keyboard. Specifically, the char-
acters in the two rightmost columns (the lower case letters), the symbols [(left square bracket), \
(backslash), _ (underscore), and the control characters “'fs™, “sys™, and “‘rub’’, are not available

on the Apple keyboard.

The decimal or hexadecimal value for any character in the above table is the sum of the decimal
or hexadecimal numbers appearing at the top of the column and the left side of the row in which

the character appears.

L) O O Y O NN LT L L O O A L !

T T

THE APPLE VIDEO DISPLAY

| Number of colors:

Display type:

Display modes:

Text capacily:
Character type:
Character set:
Character modss:

Graphics capacity:

The Apple Video Display

Memory mapped into system RAM

Text, Low-Resolution Graphics,
High-Resolution Graphics

960 characters (24 lines, 40 columns)
5 % 7 dot matrix
Lipper case ASCII, 64 characters
Normal, Inverse, Flashing
1,920 blocks (Low-Resolution)

in a 40 by 48 array
53,760 dots (High-Resoplution)

in a 280 by 192 array

16 (Low-Resolution Graphics)
6 (High-Resolution Graphics)

THE VIDEO CONNECTOR

In the right rear corner of the Apple Il board, there is a metal connector marked “*VIDEO'.
This connector allows you to attach a cable between the Apple and a closed-circuit video monitor.
One end of the connecting cable should have a male RCA phono jack to plug into the Apple, and
the other end should have a connector compatible with the particular device you are using, The
signal that comes out of this connector on the Apple is similar to an Electronic Industries Associ-
ation (ELA)-standard, National Television Standards Committee (NTSC)-compatible, positive
composite color video signal. The level of this signal can be adjusted from zero to 1 volt peak by
the small round potentiometer on the right edge of the board about three inches from the back of

the board.

A non-adjustable, 2 volts peak version of the same video signal is available in two other places:
on a single wire-wrap pin* on the left side of the board about two inches from the back of the
board, and on one pin of a group of four similar pins also on the left edge near the back of the
board. The other three pins in this group are connected to —35 volts, +12 valts, and ground.

See page 97 for a full description of this auxiliary video connector,

* This pin is not present in Apple 11 systems with the Revision ® board

Auxiliary Video
Output Conneclor

Auxiliary Video Pin

Level Adjustment
Potentiometer

= Color Trim
: Adjustment

Photo 4. The Video Connectors and Potentiometer.

EURAPPLE (50 HZ) MODIFICATION

Your Apple can be modified to generate a video signal compatible with the CCIR standard used
in many European countries, To make this modification, just cut the two X-shaped pads on the
right edge of the board about nine inches from the back of the board, and solder together the
three O-shaped pads in the same locations (see photo 5), You can then connect the video con-
nector of your Apple to a Furopean standard closed-circuit black-and-white or color video moni-
tor. If you wish, you can obtain a “*Eurocolor™’ encoder to convert the video signal into a PAL or
SECAM standard color television signal suitable for use with any European television receiver.
The encoder is a small printed circuit board which plugs into the rightmost peripheral slot (slot 7)
M vour l.\pp!f qnd connecis to the ~p|r'llﬂ|: .[I_,I'NH-:hrl‘.' video outpul rli.l'l.

WARNING: This modification will void the warranty on your Apple and requires
the installation of a different main erystal. This modification is not for beginners.

SCREEN FORMAT

Three different kinds of information can be shown on the video display to which your Apple is
connected:

10

T T TR

M momom e oo omororomomomm

n

e

T

RAM .- #
ré

jumper pads

LI LT LT}

]
L]
L]
L]
(]
L]
]
.

ool i:l‘! -,?'q

=

Photo 5. Eurapple (50 hz) Jumper Pads.

1) Text. The Apple can display 24 lines of numbers, special symbols, and upper-case letters
with 40 of these characters on each line. These characters are formed in a dot matrix 7 dots
high and 5 dots wide. There is a one-dot wide space on either side af the character and a one-
dot high space above each line.

2} Low-Resolution Graphics. The Apple can present 1,920 colored squares in an array 40
blocks wide and 48 blocks high. The color of each block can be selected from a set of sixteen
different colors. There is no space between blocks, so that any two adjacent blocks of the
same color look like a single, larger block.

3) High-Resolution Graphics. The Apple can also display colored dots on a matrix 280 dots
wide and 192 dots high. The dots are the same size as the dots which make up the Text char-
acters. There are six colors available in the High-Resolution Graphics mode: black, white, red,
blue, green, and violet.® Each dot on the screen can be either black, while. or a calor,
although not all colors are available for every dot

When the Apple is displaying a particular type of information on the screen, il is said to be in
that particular “*mode™. Thus, if you see words and numbers on the screen, you can reasonably
be assured that your Apple is in Text mode. Similarly, if you see a screen full of multicolored
blocks, your computer is probably in Low-Resolution Graphics mode. You can also have a four-
line “caption” of text at the bottom of either type of graphics screen. These four lines replace

* For Apples with Revision @ boards, there are four colors: black, white. green, and violet

the lower 8 rows of blocks in Low-Resolution Graphics, leaving a 40 by 40 array. In High-
Resolution Graphics, they replace the bottom 32 raws of dots, leaving a 280 by 160 matrix. You
can use these “‘mixed modes' to display text and graphics simultaneously, but there is no way to
display both graphics modes at the same Lime.

SCREEN MEMORY

The video display uses information in the system’s RAM memory to generate ils display. The
value of a single memory location controls the appearance of a certain, fixed object on the screen,
This object can be a character, two stacked colored blocks, or a line of seven dots. In Text and
Low-Resolution Graphics mode, an area of memory containing 1,024 locations is used as the
source of the screen information. Text and Low-Resolution Graphies share this memory area. In
High-Resolution Graphics mode, a separate, larger area (8.192 locations) is needed because of
the greater amount of information which is being displayed. These areas of memory are usually
called “*pages™. The area reserved for High-Resolution Graphics is sometimes called the “picture
buffer'” because it is commonly used to store a picture or drawing.

SCREEN PAGES

There are actually rwo areas from which each mode can draw its information. The first area is
called the “*primary page’ or “‘Page 1. The second area is called the “*secondary page'’ or
“Pape 2" and is an area of the same size immediately following the first area. The secondary
page is useful for storing pictures or text which you want 1o be able to display instantly. A pro-
gram can use the iwo pages lo perform animation by drawing on one page while displaying the
other and suddenly flipping pages.

Text and Low-Resolution Graphics share the same memory range for the secondary page, just as
they share the same range for the primary page. Both mixed modes which were described above
are also available on the secondary page. but there is no way to mix the two pages on the same
screen.

| Table 4: Video Display Memory Ranges —
i : P Begins al: Ends at:
_ . Hex Decimal
Text/Lo-Res Primary S4@ 1824 STFF 2047
Secondary S80¢ 2848 SBFF 37 |
Hi-Res Primary 2008 8192 $3IFFF 16383
L Secondary S4008 16384 $3FFF 24575

SCREEN SWITCHES

The devices which decide between the various modes, pages, and mixes are called “sofl
switches'”. They are swiiches because they have two positions (for example: on or ofl, text or
graphics) and they are called “*soft” because they are controlled by the software of the computer.

momomomomomm T TT TR

¥ (E1 TR

I

I I

e T m

o

B e

A program can “‘throw™ a switch by referencing the special memory location for that switch, The
data which are read from or wrilten to the location are irrelevant; it is the reference o the address
of the location which throws the switch.

There are eight special memory locations which control the setting of the soft switches for the
screen. They are set up in pairs; when vou reference one location of the pair you turn its
corresponding mode “on’™ and its companion mode “off”. The pairs are:

L Table 5: Screen Soft Switches
' Location: A Description:
Hex Decimal
SCAse 49232 -16384 Display 4 GRAPHICS mode. i
3CA51 49233 -16383 Display TEXT mode. _
SCPs2 49234 -16302 Display all TEXT or GRAPHICS. |
SC@53 49235 -16381 Mix TEXT and a GRAPHICS mode.*
SCP@54 . 49236 -1630@ Display the Primary page (Page 1).
| SCP55 49237 -16299 Display the Secondary page (Page 2).
SCAS6 49238 -16298 Display LO-RES GRAPHICS mode.*
sCas7 . _492]9 —Ib.':“;_T Display HI-RES GRAPHICS mode.*

There are ten distinct combinations of these switches:

Table 6: Screen Mode Combinations

Primary Page | Secondary Page
Screen Switches Il screen Swilches
All Text $CHS4 SCOS1 || All Text SCPS5 SCPSI
All Lo-Res $CB54 SC@56 || All Lo-Res SCH55 SCAsh

Graphics SCP52 SCB5@ | Graphics $CAs2 $CAsH
All Hi-Res ~ SC@54 SCOS7 || All Hi-Res SC@55 $C@57
| Graphics SCO52 SCHS@ | Graphics SCPS2 SCAsH
Mixed Text SC@54 $C@56 | Mixed Text SCPS5 SC056
and Lo-Res $C@53 $C05@ || and Lo-Res 3C#53 SC#50
Mixed Text SC@54 SCO57 || Mixed Text SC@55 SC@57 |
|and Hi-Res SC@53 SC@50 || and Hi-Res $COS3 SCO50 |

(Those of you who are learned in the ways of binary will immediately cry out, “*Where's the
other six?!", knowing full well that with 4 two-way switches there are indeed sivieen possible
combinations. The answer to the mystery of the six missing modes lies in the
TEXT/GRAPHICS switch. When the computer is in Text mode, it can also be in one of six
combinations of the Lo-Res/Hi-Res graphics mode, “mix™ mode, or page selection. But since
the Apple is displaying text, these different graphics modes are invisible.)

To set the Apple into one of these modes, a program needs only to refer to the addresses of the
memory locations which correspond to the switches that set that mode. Machine language pro-
grams should use the hexadecimal addresses given above. BASIC programs should PEEK or
POKE their decimul equivalents (given in Table 5, *‘Screen Soft Switches™. above). The
switches may be thrown in any order: however, when switching into one of the Graphics modes,
it is helpful 10 throw the TEXT/GRAPHICS switch last. All the other changes in mode will then
lake place invisibly behind the text. so that when the Graphics mode is set, the finished graphics

* These modes are only visible if the “Display GRAPHICS™ switch is “an”

13

screen appears all at once,

THE TEXT MODE

In the Text mode, the Apple can display 24 lines of characlers with up to 40 characters on each
line. Each characler on the screen represents the contents of one memary location from the
ry range of the page being displuyed. The character set includes the 26 upper-case letiers,

ed ina

mem
the 10 digits, and 28 special characters for # total of 64 characters, The characters are [or7
a one-dot wide space on both sides of gach

dot matrix 5 dots wide and 7 dots high. There 1s
churacter to separate adjacent characlers and a one-dot high space
formed with white dots on a dark back-

above each line of characters 1o
separate adjacent lines. The characters are normally
n also be displayed using dark dots on a white

ground: however, each character on the screen i
cler. When the Video

background or alternating between the two 1o produce a flashing ch
Display is in Text mode, the video circuitry in the Apple turns off the color burst signal to the

lelevision monitor, giving you a clearer hlack-and-white display.*

The area of memory which is used for the primary text page starts at location number 1824 and
extends to location number 2847, The secondary screen begins at location number 20848 and
extends up 1o location 3@71, In machine language, the primary page is from hexadecimal address
S48 to address $7FF: the secondary page Is from S8@@ to SBFF. Each of these pages IS 1,024
bytes long. Those of you intrepid enough to do the multiplication will realize that there are only

| which are not

960 characters displayed on the screen. The remaining 64 bytes in each page
locations by programs stored in PROM on

displayed on the screen are used as temporary slorage
Apple Intelligent Interf:

peripheral boards (see page 82)

Photo 6 shows the sixty-four characters available on the Apple’s screen

Photo 6. The Apple Character Set,

Table 7 gives the decimal and hexadecimal codes for the 64 characters in normal, inverse, and

Nashing display modes

* This leature (s nol present on the Revision @ b

T THF H

=l (el FY 1P FY 1ED TFE TFL

el

-

198 19EIEL) BN [[ISV "L AGEL

i /) 0o /) 0 i / 0 | i / 0 |4

<) N < . . N < i N < i N EL R

= -1 W = -|1 Ww|l= - 1 W|= - [W|as«a

> ' X 1 > Y 1 > L] 1 = E Y 3 X0

: i] | +] b | : +] A -] ¥ | 880

* z [. FA [* z [¢ Z [vEal

[{ A | 6 l A I [(A 1 [{ A | L

]) X H 8) X H 8) X H 8) X H LA i~
A . Mmoo D L : M D L M 0 L i M 0 | st 2
a ¥ A 4 9 ¥ A 4 9 ® A 4 9 ¥ A 4 9% 9

s kU n E| § "y i] | 3 o n E| & o n £ 855

¥ 8 L a ¥ S 1 a t 8 L a r) A a L

£ # S 2 £ # S J £ # S) £ # S J 5

{ " | d L W H d [" H d [) d i (244

1 i 0 v 1 i 0 ¥ 1 i 0 v 1 i 0 v | I8l

@ d @ @ d @ @ d @ @ d @ | el
#45 (5} Mas B8 aHS aws #65 wes (/R #og L3 s (33 T4 #1s s W9H
Bl riz Rt 4l 9Ll (21l Frl gl Tl 9 ¥ 9 kF T 91 i (P23
| BTIIIA0T | Nt 1]

Rurysm 4 SESERNT |
LITITEN
SI9JIBIEy) U205 JIOSY 1L 91qe L

T VO | O T T T O e

4 W W W W

$400
$480
$500
$580
5600
3680
§700
$780
$428
$4A8
$528
$5A8
$628
$6A8
$728
$7A8
$450
$4D0
$550
$5D0
$650
$6D@
$750
$7D@

14

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488
1616
1744
1872
20008

_—.h+ (1] i1di i 1Al BT =T B

— wr g = (=] —ri T oW o DT D
£53525535533885580050555555 R

—— Wy - ot
luI.1]‘5&?89“1[!“'.@L”Wﬂ2nnﬂﬁ

§22
513
524
§25
526
s

4
35
36
kT

8
39

Figure 1. Map of the Text Screen

16

B I e T T e e

Figure 1 is a map of the Apple’s display in Text mode, with the memory location addresses [or
each character position on the screen.

THE LOW-RESOLUTION GRAPHICS (LO-RES)
MODE

In the Low-Resolution Graphics mode, the Apple presents the contents of the same 1,024 loca-
tions of memory as is in the Text mode, but in a different format. In this mode, each byle of
memory is displayed not as an ASCII character, but as two colored blocks, stacked one atop the
other. The screen can show an array of blocks 40 wide and 48 high. Each block can be any of
sixteen colors. On a black-and-white television set, the colors appear as patterns of grey and
white dols.

Since each byte in the page of memory for Low-Resolution Graphics represents two blocks on the
screen. stacked vertically, each byle is divided into two equal sections, called (appropriately
enough) “‘nybbles™. Each nybble can hold a value from zero 1o 15. The value which is in the
lower nybble of the byte determines the color for the upper block of that byte on the screen, and
the value which is in the upper nybble determines the color for the lower block on the screen
The colors are numbered zero to 15, thus:

Table 8: Low-Resolution Graphics Colors
Decimal Hex Color) | Decimal Hex Color
[} 50 Black 8 58 Brown
1 £1 Magenia ‘ 9 59 Orange
2 82 Dark Blue 18 SA Greyl
3 83 Purple | 11 5B Pink
4 %4 Dark Green 12 SC Light Green
5 35 Grey | [13 $D Yellow
| 6 $6 Medium Blue 14 SE Aguamaring
[7 $7 Light Blue 15 SF White

(Colors may vary from television 1o television, particularly on those withoul hue controls. You
can adjust the tint of the colors by adjusting the COLOR TRIM control on the right edge of the
Apple board.}

So, 4 byte containing the hexadecimal value SD8 would appear on the screen as a brown block on
top of a yellow block. Using decimal arithmetic, the color of the lower block is determined by
the quotient of the value of the byte divided by 16: the color of the upper block is determined by
the remainder

Figure 2 is a map of the Apple's display in Low-Resolution Graphics mode, with the memory
location addresses for each block on the screen.

Since the Low-Resolution Graphics screen displays the same area in memory as is used for the
Text screen, interesting things happen if you switch between the Text and Low-Resolution
Graphics modes. For example, if the screen is in the Low-Resolution Graphics mode and is full
of colored blocks. and then the TEXT/GRAPHICS screen switch is thrown 1o the Text mode, the
screen will be filled with seemingly random text characters, sometimes inverse or flashing. Simi-
larly, a screen full of text when viewed in Low-Resolution Graphics mode appears as long hor-
izontal grey, pink, green or vellow bars separated by randomly colored blocks.

WW W W WWWWWW W W E W a a4 ae

5355335553835 55583 0oz rziayCusennnanen
“Hljd.n.n?!QMHUUHHMHNWHHHHHHRHHN”NEH“HMHBH

Sa00 1024

S4RM 1152

$500 1280 e

5580 1408 : |

5600 1536 2 |

680 1664 £

3700 1792 7

$780 1920 + 5

$428 1064 . =

$4A8 1192 [+ =

$528 1320 :

$5A8 1448 & =

$628 1576 E

S6A8 1704 P

$728 1832 : =

S7TA8 1960 =

5450 1104 -

$4D@ 1232 2

550 1360 :

$5D@ 1488 1] =

$650 1616 1

$6D@ 1744

$750 1872

$7D0 2000 I [I I i

B R R e

THE HIGH-RESOLUTION GRAPHICS (HI-RES)
MODE

The Apple has a second type of graphic display, called High-Resolution Graphics (or sometimes
“Hi-res™), When your Apple is in the High-Resolution Graphics mode, it can display 53,760
dois in a mairix 280 dois wide and 192 dots high. The screen can display black, white, violet,
green, red, and blue dots, although there are some limitations concerning the color of individual
dots.

The High-Resolution Graphics mode takes its data from an B,192-byte area of memory, usually
called a “*picture buffer”. There are two separate picture buffers: one for the primary page and
one for the secondary page. Both of these buffers are independent of and separate from the
memory areas used for Text and Low-Resolution Graphics. The primary page picture buffer {or
the High-Resolution Graphics mode begins at memory location number 8192 and extends up to
location number 16383; the secondary page picture buffer follows on the heels of the first at
memory location number 16384, extending up to location number 24575, For those of you with
sixteen fingers, the primary page resides from S2088 1o S3IFFF and the secondary page [ollows in
succession at S4088 1o 85FFF, IT vour Apple is equipped with 16K (16,384 bvies) or less of
memory, then the secondary page is inaccessible to you: if its memory size is less than 16K, then
the entire High-Resolution Graphics mode is unavailable to vou.

Each dot on the screen represents one bit from the picture buffer. Seven of the eight bits in each
byte are displayed on the screen. with the remaining bit used to select the colors of the dots in
that byte. Forty bytes are displayed on each line of the screen, The least significant bit (first bit)
of the first byte in the line is displayed on the left edge of the screen, followed by the second bit,
then the third, etc. The most significant (eighth) bit is not displayed, Then follows the first bit
of the next byte, and so on. A total of 280 dots are displayed on each of the 192 lines of the
screen.

On a black-and-white monitor or TV set, the dots whose corresponding bits are *"on™ (or equal to
1) appear white; the dots whose corresponding bits are “*off”” or {equal to @) appear black. On a
color monitor or TV, it is not so simple. If a bit is “off”", its corresponding dot will always be
black. If a bit is ""on™", however, its color will depend upon the posiion of that dot on the screen.
If the dot is in the leftmost column on the sereen, called **column @, or in any even-numbered
column, then it will appear violet. If the dot is in the rightmost column {(column 279} or any
odd-numbered column, then it will appear green. If two dots are placed side-by-side, they will
both appear white. If the undisplayed bit of a byte is turned on, then the colors blue and red are
substituted for violet and green, respectively.® Thus, there are six colors available in the High-
Resolution Graphics mode, subject to the following limitations:

1} Dots in even columns must be black. violet, or blue.
2} Dots in odd columns must be black, green, or red.

3) Each byie must be either a violet/green byte or a blue/red byte. It is not possible 1o mix
green and blue, green and red, violet and blue, or violet and red in the same byle.

* On Revision @ Apple boirds, (he colors red and blue are unavailable and the setting of the cighth bit is ir-
relevani

19

4) Two colored dots side by side always appear white, even if they are in different bytes.

5) On European-modified Apples, these rules apply but the colors generated in the High-
Resolution Graphics mode may differ.

Figure 3 shows the Apple’s display screen in High-Resolution Graphics mode with the memory
addresses of each line on the screen.

OTHER INPUT/OUTPUT FEATURES

Apple Input/Output Features

Inputs: Cassetle Input
Three One-bit Digital Inputs
Four Analog Inputs

Qutputs: Cassette Output
Built-In Speaker
Four “*Annunciator”™ Qutpuls
Utility Strobe Output

THE SPEAKER

Inside the Apple’s case, on the lefl side under the keyboard, is a small 8 ohm speaker. [t is con-
nected to the internal electronics of the Apple so that a program can cause it o make various
sounds,

The speaker is controlled by a soft switch, The switch can put the paper cone of the speaker in
two positions: *‘in”" and *‘out™. This soft switch is not like the soft swiiches controlling the van-
ous video modes, bul is instead a rogele switch. Each time a program references the memory
address associated with the speaker switch, the speaker will change state: change from “in” 1o
“out’ or vice-versa. Each time the state is changed, the speaker produces a tiny “‘click™. By
referencing the address of the speaker switch frequently and continuously, a program can gen-
erate a steady tone from the speaker.

The soft switch for the speaker is associated with memory location number 49288, Any reference
1o this address (or the equivalent addresses -16336 or hexadecimal 3C@3@) will cause the speaker
to emil a click.

A program can “‘reference’’ the address of the special location for the speaker by performing a
“read”” or “write’ operation to that address. The data which are read or wrilten are irrelevant, as
it is the address which throws the switch. Note that a “*write”” operation on the Apple’s 6582
microprocessor actually performs a “‘read” before the “"write’. so that if you use a ““write”
operation 1o flip any soft switch, you will actually throw that switch rwice. For toggle-type soft
swilches, such as the speaker switch, this means that a “write” operation to the special location

20

erofer o fen Pl P feL L RLO'ELOELOEL OTEL ML

s

- i_.-._l-

=

Se—-

eten ‘e b tel tel den el e I

T

uaaldg sanydesny wopnjosay-ydy s jo degy ¢ aandig

#OO1S 891L 8916 @ALIS
PORIS vr19[] e @SETs
Poris BTis[] 7168 @ALIS

2015 960t [¥8L8 @sTTs .

peoes Teae] gcog @IS =

oos0s svaz[“ gzss @S1ZS 2

oaras vzl [] gars BCBIS g

L0 — s 0ses s

Ang yawa uj BT16 BVELS w

@o06 BIELS

88 8VILS 5

ppig BTITS 2

9198 BVIIS - =
ggpg BIICS : h

@ofg BVOIS 3

7f7I8 BTOTS :

88@6 @BEIS :

Po68 BAECS E

7c88 @8ITS £

vOL8 BOCTS 3

9/s8 @8IZS :

gypR BBITS g

gzes @888 m

618 BROCS £

R RS SRR ARt ek S S 1 it :

gooosaasaasananergeLEs8gE8geggEsg

ST MO @ 950 23k == TM g

L2
741
T4
ris
1741
i

141

T O) T T T T T T T T T T O

controlling the switch will leave the switch in the same state it was in before the operation was
performed.

THE CASSETTE INTERFACE

On the back edge of the Apple’s main board, on the right side next to the VIDEO conneclor, are
two small black packages labelled “IN" and “*OUT™. These are miniature phone jacks into which
vou can plug a cable which has a pair of miniature phono plugs on each end. The-other end of
this cable can be connected to a standard cassetie tape recorder so that your Apple can save infor-
mation on audio cassette tape and read it back again,

The connector marked “OUT"" is wired 10 yet another soft switch on the Apple board. This is
another toggle switch, like the speaker switch (see above). The soft switch for the cassetle oul-
put plug can be toggled by referencing memory location number 49184 {or the equivalent -16352
or hexadecimal SCP2@). Referencing this location will make the voltage on the OUT conneclor
swing from zero to 25 millivolts (one fortieth of a volt), or return from 25 millivolts back to
zero. If the other end of the cable is plugged into the MICROPHONE input of a casseile tape
recorder which is recording onto a tape, this will produce a tiny “‘click”™ on the recording. By
referencing the memory location associated with the casseite output soft switch repeatedly and
frequently, a program can produce a tone on the recording. By varying the pitch and duration of
this tone, information may be encoded on a tape and saved for later use. Such a program 1o
encode data on a tape is included in the System Monitor and is described on page 46.

Be forewarned that if you attempt to flip the soft switch for the cassette output by wriling 1o its
special location, you will actually generate rwo “'clicks™ on the recording. The reason for this is
mentioned in the description of the speaker (above). You should only use “‘read™ operations
when toggling the cassette output soft switch,

The other connector. marked “IN'", can be used to *‘listen” to 4 casselte tape recording. lis
main purpose is to provide a means of listening to tones on the tape, decoding them into data,
and storing them in memory. Thus, a program or data set which was stored on casselie tape may
be read back in and used again.

The input circuit takes a 1 volt (peak-to-peak) signal from the cassette recorder’s EARPHONE
jack and converts i into a string of ones and zeroes. Each time the signal applied to the input
circuit swings from positive to negative, or vice-versa, the input circuit changes state: il it was
sending ones, it will start sending zeroes, and vice versa. A program can inspect the state of the
cassetle input circuit by looking a1 memory location number 49248 or the equivalents -16288 or
hexadecimal SCA68. 1f the value which is read from this location is greater than or equal to 128,
then the state is a **one’; if the value in the memory location is less than 128, then the state is a
“zero’’. Although BASIC programs can read ihe state of the cassette input circuit, the speed of a
BASIC program is usually much too slow Lo be able to make any sense out of whal it reads.
There is. however, 4 program in the System Monitor which will read the tones on a casselte tape
and decode them. This is described on page 47.

22

L BeU et Seu dee el ted e fe Ter TR fe o fe frr fELfELOFELOMEL ELELOELOEL LML

O VO VA A e U A U

THE GAME 1I/0 CONNECTOR

The purpose of the Game /0 connector is 1o allow you to connect special input and output dev-
ices to heighten the effect of programs in general, and specifically, game programs. This connec-
tor allows you to connect three one-bit inputs, four one-bit outputs, a data strobe, and four ana-
log inputs to the Apple, all of which can be controlled by your programs. Supplied with vour
Apple is a pair of Game Controllers which are connected to cables which plug into the Game /0
connector. The two rotary dials on the Controllers are connected to two analog inputs on the
Connector: the two pushbuttons are connected to two of the one-bit inpuls.

u
[
L
"
o
(]
]
[
]
]
E
]
]
]
W
]
]
]
]
]
[
]
u
[

T T T T T T
T R
B

HEASSSSSSEEENES

A

Photo 7. The Game 1/0 Connector.

ANNUNCIATOR OUTPUTS

The four one-bit outputs are called “annunciators’”, Each annunciator output can be used as an
inpul to some other electronic device, or the annunciator outputs can be connected to circuits to
drive lamps, relays, speakers, elc.

Each annunciator is controlled by a soft switch. The addresses of the soft switches for the annun-
ciators are arranged into four pairs, one pair for each annunciator. If vou reference the first
address in a pair, you turn the output of its corresponding annunciator *off™"; if vou reference the
second address in the pair, you turn the annunciator’s output “on”. When an annunciator is

23

“off”", the voltage on its pin on the Game 1/0 Connector is near 0 volis; when an annunciator is
*‘on’’, the voltage is near § volts. There are no inherent means to determine the current setling
of an annunciator bit. The annunciator soft switches are:

Table %: Annunciator Special Locations
Address:
Decimal Hex
@ off 49240 -16296 SC@58
on 49241 -16295 5C@59
1 off 49242 -16294 SCP5A
on 49243 -16293 SC@5B
2 o 49244 16292 SCBSC |
on 49245 -16291 SC@5D
3 off 49246 -16299 SCASE
an 49247 -16289 SC@SF |

Ann. State

ONE-BIT INPUTS

The three one-bit inputs can each be connected to either another electronic device or to a push-
button. You can read the state of any of the one-bit inputs from a machine language or BASIC
program in the same manner as you read the Cassette Input, above. The locations for the three
one-hit inputs have the addresses 49249 through 49251 (-16287 through -16285 or hexadecimal
$C@61 through $CB63),

ANALOG INPUTS

The four analog inputs can be connected to 150K Ohm variable resistors or potentiometers. The
variable resistance between each input and the +5 voll supply is used in a one-shot timing cir-
cuit. As the resistance on an input varies, the liming characteristics of its corresponding timing
circuit change accordingly. Machine language programs can sense the changes in the timing loops
and obtain a numerical value corresponding to the position of the potentiometer.

Before a program can start to read the setling of a potentiometer, it must first reset the timing
circuits, Location number 49264 (-16272 or hexadecimal $C87@) does just this,. When you reset
the timing circuits, the values contained in the four locations 49252 through 49255 (-16284
through -16281 or SC#64 through $CB67) become greater than 128 (their high bits are sel).
Within 3.060 milliseconds, the values contained in these four locations should drop below 128,
The exact time it 1akes for each location to drop in value is directly proportional to the setling of
the game paddle associated with that location. If the potentiometers connected 1o the analog
inputs have a greater resistance than 150K Ohms, or there are no potentiometers connected, then
the values in the game controller locations may never drop 1o zero.

24

1 el 'EY O'ELO'FDO'EDOTEYOY'ELOMEY O(ELOTEY 'R R OBl O'EL LT

IF

IE

FE. 'F1

U

STROBE OUTPUT

There is an additional output, called CB48 STROBE, which is normally +35 volts but will drop 1o
zero volts for a duration of one-half microsecond under the control of a machine language or
BASIC program. You can trigger this “strobe’ by referring to location number 49216 (-16320 or
SC@4F). Be aware thut if you perform a “‘write” operation to this location, vou will trigger the
strobe rwice (see a description of this phenomenon in the section on the Speaker).

Table 10: Input/Output Special Locations |

o Address: ; |
Iumﬂu_n. "~ Decimal Hex Read/Wrile
Speaker 49209 -16336 SCA30 R

~Cassette Out | 49184 -16352 SC020 | R
Cassette In -1925&_ -l 6288 SCHeR R
Annunciators® | 49249 -16296 SCAs8 R/W

through through through
49247 -16289 SCASF

Flag inputs 49249 -16287 SChol R
49250 -16286 $CA62 R

49251 -16285 SCh63 R |
Analog Inputs | 49252 -16284 SCa64 R

49253 -16283 SCB63
49254 -16282 SCH66
49255 -16281 SC067
Analog Clear 49264 -16272 5Ce70 R/W
Utility Strobe | 49216 -16320 SCa40 R

VARIETIES OF APPLES

There are a few variations on the basic Apple Il computer. Some of the varigtions are revisions
or modifications of the computer itself: others are changes to its operating software. These are
the basic variations:

AUTOSTART ROM / MONITOR ROM

All Apple 11 Plus Systems include the Autostart Monitor ROM. All other Apple systems do not contain
the Autostart ROM. but instead have the Apple System Monitor ROM, This version of the ROM
lacks some of the features present in the Autostart ROM, but also has some features which are not
present in that ROM. The main differences in the two ROMs are listed on the following pages.

See the previous table

25

s Editing Controls, The ESC-1, J, K, and M sequences, which move the cursor up, left. right,
and down, respectively, are not available in the Old Monitor ROM.

® Stop-List. The Stop-List feature (invoked by a [CTRL i), which allows you to introduce a
pause into the output of most BASIC or machine language programs or listings, 15 nol available
in the Old Monitor ROM.

® The RESET cvele. When you first turn on your Apple or press RESET], the Old Monitor
ROM will send you directly inio the Apple System Maonitor, instead of initiating a warm or

cold start as described in **The RESET Cycle™ on page 36.

The Old Monitor ROM does, however, support the STEP and TRACE debugging features of the
System Monitor, described on page 51, The Autostart ROM does not recognize these Monitor

commands.

REVISION # / REVISION 1 BOARD

The Revision @ Apple Il board lacks a few features found on the current Revision 1 version of
the Apple Il main board, To determine which version of the main board is in your Apple, open
the case and look at the upper right-hand corner of the board, Compare what you see 1o Photo 4
on page 10. If your Apple does not have the single metal video connector pin between the four-
pin video connector and the video adjusiment polentiometer, then you have a1 Revision & Apple.

The differences between the Revision @ and Revision 1 Apples are summarized below.

® Color Killer. When the Apple’s Video Display is in Text mode, the Revision @ Apple board
leaves the color burst signal active on the video output circuit. This causes text characters to
appear tinted or with colored fringes.

s Power-on RESET. Revision @ Apple boards have no circuil o automatically initiate @ RESET
cycle when you turn the power on. Instead. you must press RESET| once to start using your
Apple.

Also, when vou turn on the power to an Apple with a Revision @ board, the keyboard will
become active, as if you had typed a random character. When the Apple starts looking for
input, it will accept this random character as if you had typed it. In order to erase this charac-
ter, you should press after you [RESET] vour Apple when you turn on its power.

® Colors in High-Resolution Graphics. Apples with Revision @ boards can generale only four
colors in the High-Resolution Graphics mode: black, white, violet, and green. The high bit of
each byte displayed on the Hi-Res screen (see page 19) is ignored.

® 24K Memory Map problem. Systems with a Revision @ Apple 11 board which contain 20K or
24K bytes of RAM memory appear to BASIC to have more memory than they actually do.
See “Memory Organization™, page 72, for a description of this problem.

® 50 Hz Apples. The Revision @ Apple Il board does not have the pads and jumpers which you
can cut and solder to convert the VIDEO OUT signai of your Apple to conform to the Euro-
pean PAL/SECAM television standard. [t also lacks the third VIDEO connector, the single
metal pin in [ront of the four-pin video connector.

26

ML ML 'FLF1L F1L F1 L FL

/el IEL IFL 'F1 TFL 'F1 TE1 TF1 TF1 [FI

IF

1
]

fEL IFl TF

Fi. 'R

o

R e

& Speaker and Cassette Interference. On Apples with Revision @ boards, any sound generated
by the internal speaker will also appear as a signal on the Cassette Interface’s OUT connector
If you leave the tape recorder in RECORD maode, then any sound generated by the internal
speaker will also appear on the tape recording.

® Cassette Input. The input circuit for the Cassette Interface has been modified so that it will
respond with more accuracy 1o a weaker inpul signal,

POWER SUPPLY CHANGES

In addition, some Apples have a version of the Apple Power Supply which will accept only a 110
voll power line input, These are are not equipped with the voltage selector switch on the back of
the supply

THE APPLE II PLUS

The Apple 11 Plus is a standard Apple 11 computer with a Revision | board, an Autostart Moni-
tor ROM, and the Applesoft Il BASIC language in ROM in lieu of Apple Integer BASIC. Euro-
pean models of the Apple 11 Plus are equipped with a 110/220 volt power supply. The Apple
Mini-Assembler, the Floating-Point Package, and the SWEET-16 interpreter, stored in the
Integer BASIC ROMSs, are not available on the Apple 11 Plus

P
o |

HWHWHWWEWWWWWWWWHW W W& E W W wmaamy

28

CHAPTER 2
CONVERSATION WITH APPLES

Almost every program and language on the Apple needs some sort of input from the keyboard,
and some way to prinl information on the screen. There is a setl of subroutines stored in the
Apple’s ROM memery which handle most of the standard input and output from all programs
and languages on the Apple.

The subroutines in the Apple’s ROM which perform these input and output functions are called
by various names, These names were given to the subroutines by their authors when they were
written. The Apple itsell does notl recognize or remember the names of 11s own machine
language subroutines, but it's convenient for us to call these subroutines by their given names.

STANDARD OUTPUT

The standard output subroutine is called COUT. COUT will display upper-case letters, numbers,
and symbols on the screen in either Normal or Inverse mode. It will ignore control characters
except RETURN, the bell character, the line feed character, and the backspace character.

The COUT subrouting maintains its own invisible “‘output cursor’™ (the position at which the
next character is to be placed), Each time COUT is called, it places one character on the screen
ut the current cursor position, replacing whatever character was there, and moves the cursor one
space to the right. If the cursor is bumped off the right edge of the screen, then COUT shifis the
cursor down to the first position on the next line. I the cursor passes the bottom line of the
screen, the screen “‘scrolls™ up one line and the cursor is set to the first position on the newly
blunk bottom line.

When a RETURN character is sent to COUT, it moves the cursor to the first position of the next
line. If the cursor falls off the bottom of the screen, the screen scrolls as described above.

THE STOP-LIST FEATURE

When any program or language sends a RETURN code 1o COUT, COUT will take a quick peck at
the kevboard. If vou have typed a since the last time COUT looked at the keyboard,
then it will stop and wait for you to press another key. This is called the Stop-List feature®*
When you press another key, COUT will then output the RETURN code and proceed with nor-
mal output. The code of the key which you press 1o end the Stwop-List mode is ignored unless it
is a [CTRLC|. If it is, then COUT passes this character code back o the program or language
which is sending output, This allows vou to terminate a BASIC program or listing by typing
{CTRL C| while you are in Stop-List mode.

A line feed character causes COUT o move its mythical output cursor down one ling without any
horizontul motion at all. As always, moving beyond the bottom of the screen causes the screen
to scroll and the cursor remains at its same position on a resh bottom line.

A backspace character moves the imaginary cursor one space to the left. If the cursor is bumped
off the left edge, it is reset to the rightmost position on the previous line. 1f there 1s no previous
line (if the cursor was at the top of the screen), the screen does nof scroll downwards, but instead

* From latin cirsas, “runner”
** The Stop-lisi feature is not present on Apples withoul the Autosturt ROM

30

Bl R R M B R AT AN AN NANRART

B R e

the cursor is placed again at the rightmost position on the top line of the screen.

When COUT is sent a “*bell” character (CTRL G), it does not change the screen at all, but
instead produces a tone from the speaker. The tone has a frequency of 100Hz and lasis for
1/10th of a second. The output cursor does not move for a bell character,

BUT SOFT, WHAT LIGHT THROUGH YONDER
WINDOW BREAKS!

(OR, THE TEXT WINDOW)

In the above discussions of the various motions of the output cursor, the words “‘right™, *"left™,
“1op™”, and “bottom’ mean the physical right, left, top, and bottom of the standard 40-character
wide by 24-line tall screen. There is, however, a way 1o tell the COUT subroutine that you wanlt
it 10 use only a section of the screen, and not the entire 960-character display. This segregated
section of the text screen is called a “window™, A program or language can sel the positions of
the top, bottom., left side, and width of the text window by storing those positions in four loca-
tions in memory. When this is done, the COUT subroutine will use the new positions to calcu-
late the size of the screen. It will never print any text outside of this window, and when it must
scroll the screen. it will only scroll the text within the window. This gives programs the power 10
control the placement of text, and to protect areas of the screen from being overwritten with new
text.

Location number 32 (hexadecimal $28) in memory holds the column position of the leftmost
column in the window. This position is normally position @ for the extreme left side of the
screen. This number should never exceed 39 (hexadecimal $27), the lefimost column on the
text sereen. Location number 33 (hexadecimal $21) holds the width, in columns, of the cursor
window. This number is normally 48 (hexadecimal 528) for a full 40-character screen. Be care-
ful that the sum of the window width and the lefimost window position does not exceed 40! If it
does, it is possible for COUT to place characters in memory locations nol on the screen,
endangering vour programs and data,

Location 34 (hexadecimal $22) contains the number of the top line of the text window. This is
dlso normally @, indicating the topmost line of the display, Location 35 (hexadecimal $23) holds
the number of the bottom line of the screen (plus onel. thus normally 24 (hexadecimal $18) for
the bottommost line of the screen. When you change the texi window, you should take care that
you know the whereabouts of the output cursor, and that it will be inside the new window.

S

Table 11: Text Window Special Locations
Functioa: Lccgu’nn: Min_imum!Nnrmuh‘Muximum Valug
Decimal Hex | Decimal Hex .
Left Edge | 32 $20 | 0/0/39 S0/S0/317
" Width 33 $21 | 0/40/40 S0/$28/$28
Top Edge | 34 §22 | 8/0/24 S@/50/S18
Bottom Edge | 35 $23 | 8/24/24 S0/S18/818

SEEING IT ALL IN BLACK AND WHITE

The COUT subroutine has the power to print what's sent to it in either Normal or Inverse text
modes (see page 14). The particular form of its output is determined by the contents of location
number 5@ (hexadecimal $32). If this location contains the value 235 (hexadecimal $FF), then
COUT will print characters in Normal mode; if the value is 63 (hexadecial $3F), then COUT will
present its display in Inverse mode. Note that this mode change only affects the characters
printed after the change has been made. Other values, when stored in location 58, do unusual
things: the value 127 prints letters in Flashing mode, but all other characters in Inverse; any
other value in location 5@ will cause COUT to ignore some or all of its normal character sel.

Table 12: Normal/Inverse Control Values
Value: Effect:
Decimal Hex
255 SFF | COUT will display characters in Normal mode.
63 83F | COUT will display characters in Inverse mode.
127 $7F | COUT will display letters in Flashing mode, all
other characters in Inverse mode.

The Normal/lnverse ““mask’ location, as it is called, works by performing a logical “AND"
between the bits contained in location 50 and the bits in each outgoing character code. Every bit
in location 5@ which is a logical “*zero™ will force the corresponding bit in the character code to
become ‘‘zero’” also, regardless of its former setting. Thus, when location 58 contains 63 (hexa-
decimal $3F or binary @@111111), the top two bits of every output character code will be turned
“off”", This will place characters on the screen whose codes are all between 0 and 63. As vou
can see from the ASCII Screen Character Code table (Table 7 on page 15), all of these characters
are in Inverse mode.

STANDARD INPUT

There are actually two subroutines which are concerned with the gathering of standard input:
RDKEY, which fetches a single keystroke from the keyboard, and GETLN, which accumulates a
number of keystrokes into a chunk of information called an input line,

RDKEY

The primary function of the RDKEY subroutine is to wait for the user to press a key on the key-
board, and then report back to the program which called it with the code for the key which was
pressed. But while it does this, RDKEY also performs two other helpful tasks:

1). Inmit Prompting. When RDKEY is activated, the first thing it does is make visible the hid-
den output cursor. This accomplishes two things: il reminds the user that the Apple is wailing
for a key to be pressed, and it also associates the input it wants with a particular place on the
screen. In most cases, the inpul prompt appears near a word or phrase describing what is being
requested by the particular program or language currently in use. The input cursor itself is a
flashing representation of whatever character was at the position of the output cursor. Usually
this is the blank character, so the input cursor most often appears to be a flashing square.

32

13|

1 F1 1 'E1 1 TE]

Fl [F1 [F1 [F

[Fl

IFI IFL (F1 [F1 [Fl

IR IEL IF IF

Irl

fi. m

8

e W RTETERR W

When the user presses a key, RDKEY dutifully removes the input cursor and returns the
value of the key which was pressed to the program which requested it. Remember that the
output cursor is just a position on the screen, but the input cursor is a flashing character on the
screen. They usually move in tandem and are rarely separated from each other, but when the
input cursor disappears, the output cursor is still active.

2). Random Number Seeding. While it waits for the user to press a key, RDKEY is continually
adding | to a pair of numbers in memory. When a key is finally pressed, these two locations
together represent a number from @ to 65,535, the exact value of which is quite unpredictable.
Many programs and languages use this number as the base of a random number generator.
The two locations which are randomized during RDKEY are numbers 78 and 79 (hexadecimal
S4E and 34F),

GETLN

The vast majority of input 1o the Apple is gathered into chunks called /npur lines. The subroutine
in the Apple’s ROM called GETLN requests an input line from the keyboard, and afver getting
one, returns to the program which called it. GETLN has many features and nuances, and it is
good to be familiar with the services it offers.

When called, GETLN first prints a prompring character, or “prompt”. The prompt helps you to
identify which program has called GETLN requesting input. A prompi characier of an asterisk
(+) represents the System Monitor, a right caret (>) indicates Apple Integer BASIC, a right
bracket (1) is the prompt for Applesoft 11 BASIC, and an exclamation point (!) is the hallmark of
the Apple Mini-Assembler. In addition, the guestion-mark prompt (?) is used by many programs
and languages to indicate that a user program is requesting input. From your (the user’s) point
of view, the Apple simply prints a prompt and displays an input cursor. As you lype, the charac-
ters you type are printed on the screen and the cursor moves accordingly. When you press
[RETURN], the entire line is sent off to the program or language you are talking to, and you get
another prompt.

Actually, what really happens is that after the prompt is printed, GETLN calls RDKEY, which
displays an input cursor. When RDKEY returns with a keycode, GETLN stores that keycode in
an inpur buffer and prints it on the screen where the input cursor was. It then calls RDKEY again.
This continues until the user presses [RETURN|. When GETLN receives a RETURN code from
the keyboard, it sticks the RETURN code at the end of the input buffer, clears the remainder of
the screen line the input cursor was on, and sends the RETURN code 1o COUT (see above).
GETLN then returns to the program which called it. The program or language which requested
input may now look at the entire ling, all at once, as saved in the input buffer.

At any time while you are typing a line, you can type a [CTRL X] and cancel that entire line,
GETLN will simply forget everything you have typed, print a backslash (\), skip to a new line,
and display another prompt, allowing vou to retype the line. Also, GETLN can handle a max-
imum of 255 characters in a line. If you exceed this limit, GETLN will cancel the entire line and
you must start over. To warn you that you are approaching the limit, GETLN will sound a tone

every keypress starting with the 249th character.

GETLN also allows you to edit and modify the line you are typing in order to correct simple
typographical errors. A guick introduction to the standard editing functions and the use of the
two arrow keys, r:_] and . appears on pages 28-29 and 53-55 of the Apple 11 BASIC Program-
ming Manual, or on pages 27-28, 52-53 and Appendix C of The Applesoft Tutorial, at least one

33

of which you should have received. Here is a short description of GETLN's editing features:
THE BACKSPACE ([=)) KEY

Each press of the backspace key makes GETLN *‘forget™ one previous character in the input line.
It also sends a backspace character to COUT (see above), making the cursor move back to the
character which was deleted. Al this point, a character typed on the keyboard will replace the
deleted character both on the screen and in the input line. Multiple backspaces will delete succes-
sive characters; however, il you backspace over more characters than you have typed, GETLN
will forget the entire line and issue another prompt.

THE RETYPE ([=]) KEY

Pressing the retype key has exactly the same effect as typing the character which is under the cur-
sor. This is extremly useful for re-entering the remainder of a line which you have backspaced
over o correct a typographical error. In conjunction with pure cursor moves (which follow), it is
also useful for recopying and editing data which is already on the screen.

ESCAPE CODES

When you press the key marked on the keyboard, the Apple's input subroutines go into
escape mode. In this mode, eleven keys have separate meanings, called “escape codes™. When
vou press one of these eleven keys, the Apple will perform the function associated with that key.
After it has performed the function, the Apple will either continue or terminate escape mode,
depending upon which escape code was performed. If you press any key in escape mode which is
not an escape code, then that keypress will be ignored and escape mode will be terminated.

The Apple recognizes eleven escape codes, eight of which are pure cursor moves, which simply
move the cursor without altering the screen or the input line, and three of which are screen clear
codes, which simply blank part or all of the screen. All of the screen clear codes and the first four
pure cursor moves (escape codes @, A, B, C, D, E, and F) terminate the escape mode after
operating. The final four escape codes (I, K, M, and J} complete their functions with escape
mode active.*

A press of the key followed by a press of the [A] key will move the cursor one space
to the right without changing the input line. This is useful for skipping over unwanted
characters in an input line: simply backspace back over the unwanted characters, press
L!TJ 1o skip each offending symbol, and use the retype key io re-enter the remainder
of the line.

Pressing followed by [B] moves the cursor back one space, also without disturbing
the input line. This may be used to enter something twice on the same line without
retyping it: just type it once, press [ESC][B] repeatedly to get back to the beginning of the
phrase, and use the retype key to enter it agaimn.

* These four escape codes are not available on Apples without the Aulostart Monitor ROM.

34

T IEL IER FER El El Ed EY W1

] '

U0 L O AL A L A L L A L

The key sequence moves the cursor one line directly down, with no horizontal
movement. If the cursor reaches the bottom of the text window, then the cursor
remains on the bottom line and the text in the window scrolls up one line. The input
line is not modified by the [ESC|[C] sequence. This, and [ESC|[D] (below), are useful for
positioning the cursor at the beginning of another line on the screen, so that it may be
re-entered with the retype key.

[ESC| [D] The [ESC] [D] sequence moves the cursor directly up one line, again withoul any horizon-
tal movement. If the cursor reaches the top of the window, it stays there. The input
line remains unmodified. This sequence is useful for moving the cursor 10 4 previous
line on the screen so that it may be re-entered with the retype key.

[ESC] [E] The [ESC] [E] sequence is called “clear to end of line”. When COUT detects this
sequence of keypresses, it clears the remainder ol the screen line (sof the input line!)
from the cursor position to the right edge of the text window. The cursor remains
where it is, and the input line is unmodified. [ESC| [E] always clears the rest of the line 1o
blank spaces, regardless of the setting of the Normal/Inverse mode location (see abovel.

[ESC] [F] This sequence is called ““clear to end of screen’™. It does just that: it clears everything in
the window below or to the right of the cursor. As before, the cursor does nol move
and the input line is not modified. This is useful for erasing random garbage on a clut-
tered screen after a lot of cursor moves and editing.

ESC The [ESC sequence is called “"home and clear”. It clears the entire window and
places the cursor in the upper lefi-hand corner, The screen is cleared to blank spaces,
regardless of the setting of the Normal/Inverse location, and the input line is not

changed (note that **[@]" is [SHIFT P]).

[ESC| [K| These four escape codes are synonyms for the four pure cursor moves given above.
[ESC|[J] When these four escape codes finish their respective functions, they do moi turn off the
ESC|[M]escape mode: you can continue typing these escape codes and moving the cursor around
ESC|[I] the screen until you press any key other than another escape code. These four keys are

placed in a **directional keypad™ arrangement, so that the direction of each key from the
center of the keypad corresponds to the direction which that escape code moves the cur-
sor.

- = [T

B) O] == =[] [Al

NEE

Figure 4. Cursor-moving Escape Codes.

35

THE RESET CYCLE

When you turn your Apple's power switch on® or press and release the key, the Apple’s
6582 microprocessor initiates a RESET cycle. It begins by jumping into a subroutine in the
Apple’s Monitor ROM. In the two different versions of this ROM, the Moniter ROM and the
Autostart ROM, the RESET cycle does very different things.

AUTOSTART ROM RESET

Apples with the Autostart ROM begin their RESET cycles by fipping the soft switches which
control the video screen to display the full primary page of Text mode, with Low-Resolution
Graphics mixed mode lurking behind the veil of text. It then opens the text window to 1ts full
size, drops the output cursor to the bottom of the screen, and sets Normal video mode. Then 1t
sets the COUT and KEYIN switches to use the Apple’s internal keyboard and video display as the
standard input and output devices. It flips annunciators @ and 1 ON and annunciators 2 and 3
OFF on the Game /0 connector, clears the keyvboard strobe, turns off any active 1/0 Expansion

§e

ROM (see page 84), and sounds a *“‘beep!™.

These actions are performed evety lime you press and release the key on vour Apple. Al
this point, the Autostart ROM peeks into two special locations in memory to see if it's been
RESET before or if the Apple has just been powered up (these special locations are described
below). If the Apple has just been turned on, then the Autostart ROM performs a “‘cold start™;
otherwise, it does a “‘warm start™".

1) Cold Start. On a freshly activated Apple, the RESET cycle continues by clearing the screen
and displaying ““APPLE II"" top and center. It then sets up the special locations in memory to
tell itself that it’s been powered up and RESET. Then it starts looking through the rightmost
seven slols in your Apple's backplane, looking for a Disk Il Controller Card. It starts the
search with Slot 7 and continues down to Slot 1, If it finds a disk controller card, then it
proceeds to bootstrap the Apple Disk Operating System (DOS) from the diskette in the disk
drive attached to the controller card it discovered. You can find a description of the disk
bootstrapping procedure in De's and Don’ts of DOS, Apple part number A2L0012, page 11.

If the Autostart ROM cannot find a Disk 11 controller card, or you press again before
the disk booting procedure has completed, then the RESET cycle will continue with a
“lukewarm start’. [t will initialize and jump into the language which is installed in ROM on
your Apple. For a Revision @ Apple, either without an Applesoft I Firmware card or with
such a card with its controlling switch in the DOWN position, the Autostart ROM will start
Apple Integer BASIC. For Apple [1-Plus systems, or Revision @ Apple lls with the Applesoft
Il Firmware card with the switch in the UP position, the Autostart ROM will begin Applesoft
11 Floating-Point BASIC.

2) Warm Start, If vou have an Autostart ROM which has already performed a cold start cycle,

then each time you press and release the [RESET] key, you will be returned to the language
you were using, with your program and variables intact.

* Power-on RESET cycles occur only on Revision 1 Apples or Revision @ Apples with at least one Disk 1l con-
troller card.

36

LT L L FI 1 L Tl

Fl M

Fl 1 TFI

IFL /A R TF1 TFI

IFl

m In IF

I, M

I

BRI R R R

AUTOSTART ROM SPECIAL LOCATIONS

The three “‘special locations™ used by the Autostart ROM all reside in an area of RAM memory
reserved for such system functions. Following is a table of the special locations used by the
Autostart ROM:

(1 Table 13: Autostart ROM Special Locations

Location: Contanis:

Decimal Hex :) |
1818 §3F2 Soft Entry Vector. These two locations conlain
1811 $3F3 the address of the reentry point for whatever
e language is in use. Normally contains SE@B3.
| 1012 $3F4 Power-Up Byte. Normally contains 545, See

below. -

64367 $FB6F This is the beginning of a machine language
(-1169) subroutine which sets up the power-up location. |

When the Apple is powered up, the Autostart ROM places a special value in the power-up loca-
tion. This value is the Exclusive-OR of the value contained in location 1811 with the constant
value 165. For example, il location 1#11 contains 224 (its normal value), then the power-up
value will be:
Decimal Hex Binary

Location 1811 224 SE@ 11180000

Constanl 165 $SAS 1018@1al

Power-Up Value 69 S45 dlvdal1al

Your programs can change the sofl entry vector, so that when you press |RESET| you will go to
some program other than a language. I you change this soft entry vector, however, yvou should
make sure thal you set the value of the power-up hyte to the Exclusive-OR of the high part of
your new sofl entry vector with the constant decimal 165 (hexadecimal $AS). If you do not set
this power-up value, then the next time you press the Autostart ROM will believe that
the Apple has just been turned on and it will do another cold start.

For example, you can change the soft entry vector to point to the Apple System Monitor, so that
when you press [RESET| you will be placed into the Monitor. To make this change, you must
place the address of the beginning of the Monitor into the two soft entry vector locations. The
Monitor begins at location $SFF69, or decimal 65385, Put the last two hexadecimal digits of this
address ($69) into location $3F2 and the first two digits (8FF) into location $3F3. I you are
working in decimal, put 105 (which is the remainder of 65385/256} into location 1818 and the
value 255 (which is the integer quotient of 65385/256) into location 1811,

MNow you must set up the power-up location. There is a machine-language subroutine in the
Autostart ROM which wil automatically set the value of this location to the Exclusive-OR men-
tioned above. Al you need to do is o execule a JSR (Jump to SubRoutine) instruction to the
address $FB6F. If you are working in BASIC, you should perform a CALL -1169. Now every-
thing is set, and the next time you press [RESET], you will enter the System Monitor.

To make the [RESET| key work in its usual way, just restore the values in the soft entry vector to
their former values (SE®83. or decimal 57347) and again call the subroutine described above.

37

“OLD MONITOR” ROM RESET

A RESET cycle in the Apple 11 Monitor ROM begins by setting Normal video mode, a full screen
of Primary Page text with the Color Graphics mixed mode behind it, a fully-opened text window,
and the Apple’s standard kevboard and video screen as the standard inpui and output devices. It
sounds a ““beep!”, the cursor leaps to the bottom line of the uncleared text screen, and you find
voursell fucing un asterisk (+) prompt and talking 1o the Apple System Monitor.

38

DXL TR TEY UFL PEL PR TEL CRLTEL TEL UFLOTEL L L YEL OFEL YL TEL FLOTEL R RL ML

CHAPTER 3
THE SYSTEM MONITOR

Buried deep within the recesses of the Apple’s ROM is a masterful program called the System
Monitor. It acts as both a supervisor of the system and a slave to it it controls all programs and
all programs use it. You can use the powerful features of the System Monitor to discover the
hidden secrets in all 65,536 memory locations. From the Monitor, you may look at one, some,
ar all locations; you may change the contents of any location; you can write programs in Machine
and Assembly languages to be executed directly by the Apple’s microprocessor. you can save vast
quantities of data and programs onto cassette tape and read them back in again; you can move
and compare thousands of bytes of memory with a single command; and you can leave the Moni-
tor and enter any other program or language on the Apple.

ENTERING THE MONITOR

The Apple System Monitor program begins at location number 8FF69 (decimal 65385 or —151)
in memory. To enter the Monitor, you or your BASIC program can CALL this location. The
Monitor’s prompt (an asterisk [=]) will appear on the left edge of the screen, with a flashing cur-
sor to its right. The Monitor accepls standard input lines (see page 32) just like any other system
or language on the Apple. It will not take any action until you press [RETURN]. Your input lines
to the Monitor may be up to 255 characters in length. When you have finished your stay in the

Monitor, you can return to the language you were previously using by typing [CTRL C|[RETURN)

{or, with the Apple DOS, [3][D] [#][G][RETURN]), or simply press [RESET].*

ADDRESSES AND DATA

Talking to the Monitor is somewhat like talking to any other program or language on the Apple:
you type a line on the keyboard, followed by a1 [RETURN], and the Monitor will digest what you
typed and act according to those instructions. You will be giving the Monitor three types of
information: addresses, valies, and commands. Addresses and values are given 1o the Monitor in
hexadecimal notation. Hexadecimal notation uses the ten decimal digits (8-9) to represent them-
selves and the first six letters (A-F) to represent the numbers 10 through 15. A single hexade-
cimal digit can, therefore, have one of sixteen values from 0 to 15. A pair of hex digits can
assume any value from 0 to 255, and a group of four hex digils can denote any number from 0 1o
65.536. It 50 happens that any address in the Apple can be represented by four hex digits, and
any value by two hex digits, This is how you tell the Monitor about addresses and values. When
the Monitor is looking for an address, it will take any group of hex digits. If there are fewer than
four digits in the group, it will prepend leading zeroes; if there are more than four hex digits, the
Monitor will truncate the group and use only the last four hex digits. [t follows the same pro-
cedure when looking for two-digit data values.

The Monitor recognizes 22 different command characters. Some of these are punctuation marks,
others are upper-case letters or control characters. In the following sections, the full name of u
command will appear in capital letters, The Monitor needs only the first letier of the command
name. Some commands are invoked with control characters. You should note that although the
Monitor recognizes and interprets these characters, a control character typed on an input line will
not appear on the screen.

* This does not work on Apples withoul the Autostart ROM.

40

M MWW MmM|mMmFEFFF AR

Y (

i

M

I

-

I\

B

L

The Monitor remembers the addresses of up lo five locations. Two of these are speci they are
the addresses of the last location whose value you inguired about, and the location which is next
to have its value changed. These are called the fast apened location and the next changeable loca-
tion, The usefulness of these two addresses will be revealed shortly

EXAMINING THE CONTENTS OF MEMORY

When vou type the address of a location in memory alone on an input line to the Monitor, it will
reply* with the address you typed, a dash, a space, and the value®™ contained in that location,
thus;

+EORB

Edde— 24
300

Hide— 9%

Each time the Monitor displays the value contained in a location, it remembers that location as
the last apened locaiion. For technical reasons, it also considers that location as the wexr change-
able location,

EXAMINING SOME MORE MEMORY

If you type a period (.) on an input line to the Monitor, followed by an address, the Monitor will
display a memory dumyr the values contained in all locations from the last opened location to the
location whose address you typed following the period. The Monitor then considers the last loca-
tion displaved to be both the last opened location and the next changeable location.

® In the examples, your queries are in normal type and the Apple replies in boldface
** The values printed in these examples may differ from the values displayved by your Apple for the same in-
slructions

41

=28

HAZH— HH
+. 2B

#H21— 28 dd 18 HF WHC #4 #9
#H2E— A8 do6 DH W7
«300

d380— 99
« 315

#381— BY d4d #8 #A HA #A 99
W3A8— #4 88 C8 D# F4 A6 1B A9
#318— @49 85 27 AD CC #3

= 32A

#il6— B5 41

HIT8— B4 48 BA 4A 4A 4A 4A #9
#32¢— CH 85 3F A9 5D 85 3E 24
H328— 43 #3 29

You should notice several things about the format of a memory dump. First, the first line in the
dump begins with the address of the location joflowing the last opened location; second, all other
lines begin with addresses which end alternately in zeroes and eights; and third, there are never
more than eight values displayed on a single line in a memory dump. When the Monitor does a
memory dump, it starts by displaying the address and value of the location following the last
opened location. [t then proceeds to the next successive location in memory. If the address of
that location ends in an 8 or a @, the Monitor will **cut™ to a new line and display the address of
that location and continue displaying values. After it has displaved the value of the location
whose address you specified, it stops the memory dump and sets the address of both the last
opened and the next changeable location to be the address of the last location in the dump. I
the address specified on the input line is less than the address of the last opened location, the
Monitor will display the address and value of only the location following the last opened location.

You can combine the two commands (opening and dumping) into one operation by concatenating
the second to the first; that is, type the first address, followed by a period and the second address.
This two-addresses-separated-by-a-period form is called a memory range.

+3100.32F

#3I0E— 99 BY #4d #8 A HA BA 99
BIAE— #H H8 C8 DA F4 A6 2B A9
BF3lP— #9 B5 27 AD CC #3 85 41
H318— B4 49 BA 4A 4A 4A 4A P9
#324= CH BS 3F A9 5D B5 3E 24
#328— 43 #3 24 46 @3 A5 3D 4D
«30. 4@

dH3d— AA HH FF AA H5 C2 #5 C2
#R38— 1B FD DH W3 3C #H 44 ##
He4d— 34

«EA15 . EB25

42

fE. IEl (w1 IFDI (P IEL IED OIFL IEL TE1 IED IEY IE1 'ER ED ELl OIEL (EY

1E!

] 3

||)

L

E#15— 4C ED FD
E#18— A9 28 C5 24 B# HC AY 8D
E#2d— A# B7 28 ED FD A9

EXAMINING STILL MORE MEMORY

A single press of the [RETURN] key will cause the Monitor to respond with one line of a memory
dump; that is, a memory dump from the location following the last opened location 1o the next
eight-location **cut’. Once again, the last location displayed is considered the last opened and
next changeable location.

*3

HEHS— W@
+[RETURN]
LINLE
«[RETURN]

fABE— @ A4 A0 WA WP HE HP HE
«32

#@832— FF
+[RETURN
AA WE C2 W5 C2
*[RETURN]

##38— 1B FD DW #3 3C W@ 3IF @4

CHANGING THE CONTENTS OF A LOCATION

You've heard all about the *“next changeable location’; now you're poing to use it. Type a
colon followed by a value.

«f

Aidd— e
= : 5F

Presto! The contents of the next changeable location have just been changed to the value you
typed. Check this by examining that location again:

=9

#HBE— SF

43

-

You can also combine opening and changing into one operation:

«302:42
302
#3g2— 42

When you change the contents of a location, the old value which was contained in that location
disappears, never to be seen again. The new value will stick around until it is replaced by another
hexadecimal value,

CHANGING THE CONTENTS OF
CONSECUTIVE LOCATIONS

You don't have to type an address, a colon, a value, and press [RETURN] for each and every loca-
tion you wish to change. The Monitor will allow you to change the values of up to eighty-five
locations at a time by typing only the initial address and colon, and then all the values separated
by spaces. The Monitor will duly file the consecutive values in consecutive locations, starting at
the next changeable location. After it has processed the string of values, it will assume that the
location following the last changed location is the next changeable location. Thus, vou can con-
linue changing consecutive locations without breaking siride on the next input line by typing
another colon and more values.

«330:69 @1 20 ED FD 4C @ 3
«30a

Hidd— 69

*[RETURN]

#1 28 ED FD 4C 448 @3
«18:0 1 23

«18.17

HHIH— B8 #1 A2 #3 B4 #5 #6 87

-

MOVING A RANGE OF MEMORY

You can treat a range of memory (specified by two addresses separated by a period) as an entity

44

IEl [El

'El

I1E T I IE IE1 IE1 'F1 IF1OTE1 OTE1OIFD OTED OTE1 IEl [E

3

FE. N

L O A L

unto itself and move it from one place 1o another in memary by using the Monitor’s MOVE
command. In order to move a range of memory [rom one place to another, the Monitor must be
told both where the range is situated in memory and where it is to be moved. You give this
information to the Monitor in three paris: the address of the destination of the range, the
address of the first localion in the range proper, and the address of the last location in the range.
You specily the starting and ending addresses of the range in the normal fashion, by separating
them with a period. You indicate that this range is to be placed somewhere else by separating the
range and the destination address with a left caret (<), Finally, you tell the Monitor that you
want to move the range to the destination by typing the letter M, for “MOVE". The final com-
mand looks like this:

{destination} < |start) . lend] M

When you type this line 1o the Monitor, of course, the words in curly brackets should be replaced
by hexadecimal uddresses and the spaces should be omitted. Here are some real examples of
MEMOrY moves:

@ F

WHHE— SF #d #5 BT Hd e He de
HHHE— HH HH HH HH B HE B W
«IRA:A9 BD 280 ED FD A9 45 20 DA FD 4C 48 @3

«31p@.308C

#3##— A9 BD 24 ED FD A9 45 24
#3IR8— DA FD 4C ## #3
Q<38 . 30O

3.0

WHHE— A9 8D I#4 ED FD A9 45 14
WHHE— DA FD 4C ## B3
«310<8. AM

«310.312

#31¥— DA FD 4C
«2<7 . 9M

B C

PUBA— A9 BD 24 DA FD A9 45 2
WHHE— DA FD 4C W@ 83

&

The Monitor simply makes a copy of the indicated range and moves il to the specified destina-
tion. The original range is left undisturbed. The Monitor remembers the last location in the ori-
ginal range as the last opened location, and the first location in the original range as the next
changeable location. If the second address in the range specification is less than the first, then
only one value (that of the first location in the range) will be moved.

If the destination address of the MOVE command is inside the original range, then strange and
(sometimes) wonderful things happen: the locations between the beginning of the range and the

45

destination are treated as a sub-range and the values in ihis sub-range are replicated throughout
the original range. See “‘Special Tricks', page 55. for an interesting application of this feature.

COMPARING TWO RANGES OF MEMORY

You can use the Monitor to compare two ranges of memory using much the same format as you
use to move a range of memory from one place to another. In fact, the VERIFY ¢command can
be used immediately after a MOVE 1o make sure that the move was successful.

The VERIFY command, like the MOVE command, needs a range and a destination. 1n short-
hand:

[dlestination} < |start] . [end] V

The Monitor compares the range specified with the range beginning at the destination address. [f
there is any discrepancy, the Monitor displays the address al which the difference was lfound and
the two offending values.

«9:D7 F2 E9 F4 F4 E5 EE A® E2 F9 A8 C3 C4 C5

«300<0. DM

+300<0 . DV

«h k4

«308<d . DV

dddo—E4 (EE)

Notice that the VERIFY command, if it finds a discrepancy, displays the address of the location
in the original range whose value differs from ils counterpart in the destination range. If there is
no discrepancy, VERIFY displays nothing. 1t leaves both ranges unchanged. The last opened and
next changeable locations are sel just as in the MOVE command. As before, if the ending
address of the range is less than the starting address, the values of only the first locations in the
ranges will be compared. VERIFY also does unusual things il the destination is within the origi-
nal range; see ‘*Special Tricks"', page 33.

SAVING A RANGE OF MEMORY ON TAPE

The Monitor has two special commands which allow you to save a range of memory onlo cassetie
tape and recall it again for later use. The first of these two commands, WRITE, lets you save the
contents of one 1o 65,536 memory locations on standard casselle tape.

To save a range of memory 1o tape, give the Monitor the starting and ending addresses of the
range. followed by the letter W {for WRITE):

46

e e e e tEL TEL OIEL TEV OTEL 'ET O'EL 'E1 O [EL_TEL

I

L e L

{start] . {end] W

To get an accurate recording, you should put the tape recorder in record mode belore you press

RETURN] on the input line. Let the tape run a few seconds, then press [RETURN|. The Monitor
will write a ten-second *‘leader™ tone onto the tape, followed by the data. When the Monitor is
finished, it will sound a "beep!” and give vou another prompt, You should then rewind the tape.
and label the tape with something intelligible about the memory range that's on the tape and whal

it's supposed o be,

+@.FF FF AD 38 C@ 88 D@ ©¥4 Co6 @1 F# B8 C
A DB Fo A6 P@ 4C b2 b0 69

+0.14

WAAA— FF FF AD 34 C# 88 DH #4
AAdE— Co6 W1 FH WE CA DB F6 AB
HAIH— HE 4C W2 WH 6H

0. 14w

It takes about 35 seconds total 1o save the values of 4,096 memory locations preceded by the
ten-second leader onto tape. This works out to a speed of about 1,350 bits per second, average.
The WRITE command writes one extra value on the tape after it has written the values in the
memory range. This extra value is the checksum. 1t is the partial sum of all values in the range.
The READ subroutine uses this value to determine if @ READ has been successful (see below).

READING A RANGE FROM TAPE

Once you've saved a memory range onto tape with the Monitor’s WRITE command, yvou can
read that memory range back into the Apple by using the Monitor’s READ command. The data
values which you've stored on the tape need not be read back into the same memory range from
whence they came: vou can tell the Monitor to put those values into any similarly sized memory
range in the Apple’s memory.

The format of the READ command is the same as that of the WRITE command, except that the
command letter is R, not W:

[start] . [end] R

Once again, after typing the command, don’t press [RETURN]. Instead, start the tape recorder in
PLAY mode and wait for the tape's nonmagnetic leader to pass by. Although the WRITE com-
mand puts a ten-second leader tone on the beginning of the tape. the READ command needs
anly three seconds of this leader in order to lock on to the frequency. So yvou should let a few

down 10 a steady Lone,

L I O T T O O O
(]

«@B.14

47

didd— d8 dd dF d8 d8 d8 HP HE
AHAB— Ad A8 A8 A8 WP WP HH B4
fR1d— A8 A8 d8 A8 He

«0.14R

«B.14

#ewd— FF FF AD 38 CH B8 D# #4
HHHE— C6 W1 FA B8 CA DB F6 A6
HH1d— d# 4C H2 dH od

After the Monitor has read in and stored all the values on the tape, it reads in the extra check-
sum value, [t compares the checksum on the tape to its own checksum, and if the two differ, the
Monitor beeps the speaker and displavs “ERR™. This warns you that there was a problem during
the READ and that the values stored in memaory aren't the values which were recorded on the
tape. If, however, the iwo checksums match, the Monitor will give you another prompl,

CREATING AND RUNNING MACHINE
LANGUAGE PROGRAMS

Machine language is certainly the most efficient language on the Apple, albeit the least pleasant in
which to code. The Monitor has special facilities for those of you who are determined to use
machine language to simplify creating, writing, and debugging machine language programs.

You can write a machine language program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands covered above. You can get a hexade-
cimal dump of your program, move it around in memory, or save il 1o tape and recall it again
simply by using the commands you've already learned. The most important command, however,
when dealing with machine language programs is the GO command. When you open a location
from the Monitor and type the leter G, the Monitor will cause the 6582 microprocessor to starl
execuling the machine language program which begins at the last opened location. The Monitor
treats this program as u subroutine: when it’s finished, all it need do is execute an RTS {return
from subrouting) instruction and control will be transferred back to the Monitor.

Your machine language programs can call many subroutines in the Monitor to do various things.
Here is an example of loading and running a machine language program to display the letiers A
through Z:

«3PB:A9 C1 20 ED FD 18 69 1 CY DB DB Fbo 6@

=300 . 30C

W3W— A9 C1 24 ED FD 18 69 #1

WIRB— C9 DB D¥ Fo6 o

300G

ABCDEFGHI JKIMNOPQRSTUVWXYZ

{The instruction set of the Apple’s 6582 microprocessor is listed in Appendix A of this manual.)

48

'l

[El

'El E1 'E1 "El

'F1 [E1 [E1 [El [E1 [El [E]

Fi

[

IF. IF IEL (El IFl [FI

IF!

4 JO §

¥

B

Now, straight hexadecimal code isn't the easiest thing in the world 1o read or debug. With this in
mind, the creators of the Apple’s Monitor neatly included a command to list machine language
programs in assembly langugge form. This means that instead of having one, two, or three byles
of unformatted hexadecimal gibberish per instruction you now have a three-letter mnemonic and
some formatted hexadecimal gibberish to comprehend for each instruction. The LIST command
to the Monitor will start at the specified location and display a screenfull (20 lines) of instruc-
lions

« 3001

Wind— A C1 LDA #8C1
Hiw2— 8 ED FD JSR SFDED
Aifs— 18 CLC

Hid6— 69 Wl ADC #8401
AIdg— C% DB MP #SDB
HIdA— D¥ Fa BNE SH3IW2
AIRC— L) RTS

AIAD— L) BRK

WIRE— we BRK

WIRF— e BRK

Wilw— LI BRK

#irl— He BRK

#inz2—- L1 BRK

#ili— W BRK

#ild4— Wi BRK

#315— we BRK

#il6— He BRK

#317— e BRK

H3lg— e BRK

#i19— o BRK

Recognize those first few lines? They're the assembly language form of the program vou typed
in a4 page or so ago. The rest of the lines (the BRK instructions) are just there to fill up the
screen. The address that vou specify is remembered by the Monitor, but not in one of the ways
explained before. It's pul in the Program Counter, which is used solely to point to locations
within programs. After a LIST command, the Program Counter is sel o point to the location
immediately following the last location displayed on the screen, so that il you do another LIST
command it will continue with another screenfull ol instructions, starting where the first screen
lefi off

THE MINI-ASSEMBLER

There is another program within the Monitor* which allows you 10 Lype programs into the Apple
in the same assembly format which the LIST command displays, This program is called the
Apple Mini-Assembler. It is a ““mini""-assembler because it cannol understand symbolic labels,
something that a full-blown assembler must do. To run the Mini- Assembler, type:

* The Mini-Assembler does nol actually reside i the Monitor ROM, but s part of the Integer BASIC ROM
qel. Thus, it s not available on Apple 11 Plus systems or while Firmware Applesolt [s in use

49

=F6660G

You are now in the Mini-Assembler. The exclamation point {!) is the prompt character. During
your stay in the Mini-Assembler, you can execute any Monitor command by preceding it with a
dollar sign (3). Aside from that, the Mini-Assembler has an instruction set and syntux all its
oW

The Mini-Assembler remembers one address, that of the Program Counter. Before you start to
enter 4 program, you must set the Program Counter to point to the location where you want your
program 1o go. Do this by lyping the address followed by a colon. Follow this with the
mnemonic for the first instruction in your program, followed by a space. Now type the operand
of the instruction (Formats for operands are listed on page 66), Now press [RETURN|. The
Mini-Assembler converts the line you typed into hexadecimal, stores it in memory beginning al
the location of the Program Counter, and then disassembles it again and displays the disassem-
bled line on top of your input line. It then poses another prompt on the next line. Now it's
ready 1o accept the second instruction in your program. To tell it that you want the next instruc-
tion to follow the first, don’t type an address or a colon, but only a space, followed by the next
instruction’s mnemonic and operand. Press [RETURN]. It assembles that line and waits for
another.

If the line you type has an error in i, the Mini-Assembler will beep loudly and display a
circumflex (*) under or near the offending character in the input ling. Most common errors are
the result of typographical mistukes: misspelled mnemonics, missing parentheses, etc. The
Mini-Assembler also will reject the input line il you forget the space before or after a mnemonic
or include an extraneous character in a hexadecimal value or address. 1f the destination address
of u branch instruction is out of the range of the branch (more than 127 locations distant from
the address of the instruction), the Mini-Assembler will also flag this as an error.

PI0@:LDX #82

Bing— Al #2 LDX #5542
' LDA 58 X

Hidi— BS #¢ LDA SH# . X
! STA §518.X

Hidd— 95 14 STA S14.X
! DEX

Hin6— CA DEX

! 5TA §C@3e

Hig7— 8D 38 C# STA SCa3p
! BPL 5382

HIRA— 1# Fb BPL S#3IH2
! BRK

LEL Ly LY BRK

!

To exit the Mini-Assembler and re-enter the Monitor, either press [RESET] or type the Monitor

50

mOIEL IED 1E. E D e FD (R ED TEL TET TET PE1 IEL OIE1 'E1 'E1 'EL 'E1 TEL TEN

Ir1

BRI R

command {preceded by a dollar sign) FF69G:

'$FF69G

Your assembly language program is stored in memory. You can look at it again with the LIST
commind:

= 300L

Hiwd— Al #12 LDX #in2
Hidgl— BS ## LDA 564 .X
Hidd— 95 14 STA 514.X
Hido— CA DEX

#3ig7— 8D 3# C# STA SCH3d
H3igA— 18 F6 BPL SH3IH2
#3igC— (1] BRK

#3AD— L] BRK

HINE— L1 BRK

HIHF— L1 BRK

#ile— e BRK

#3i11— H# BRK

#3i12-—- L] BRK

#3il1i-— o BRK

#3il14— L1 BRK

#315— LI BRK

#3il6— L1 BRK

#il7— LL BRK

LER B LT BRK

#il9-— LT BRK

DEBUGGING PROGRAMS

As put so concisely by Lubarsky*, ““There’s always one more bug.”” Don’t worry, the Monitor
provides facilities for stepping through ornery programs to find that one last bug. The Monitor’s
STEP** command decodes, displays, and execules one instruction at a time, and the TRACE®®
command steps quickly through a program, stopping when a BRK instruction is executed

Each STEP command causes the Monilor 1o execute the instruction in memory pointed (o by the
Program Counter. The instruction is displayed in its disassembled form, then executed. The
contents of the 6582s internal registers are displayed after the instruction is executed. Afier exe-
cution, the Program Counter is bumped up to point to the next instruction in the program.

Here's what happens when you STEP through the program you entered using the Mini-
Assembler, above:

* In Murpine's Law, and Other Roasoes win Things Go Wrong, edited by Arthur Bloch, Price/Stern/Sloane 1977
** The STEP and TRACE commuands are not available on Apples with the Autostart ROM

«3005
#30d— A2 @2 LDX #S#2
A=#A X=#2 Y=D8 P=3# S=F8

.8

B3W2— BS ## LDA $##,X
A=#C X=#2 Y=DB P=34 S=F8

.5

pida— 95 18 STA S14.,X
A=#C X=2 Y=D8 P=3# S=F8

«12

#812— #C

.5

#Iige— CA DEX

A=#C X=#1 Y=DB P=3§ S=F8§

w5

#387— 8D 34 Cd STA $SCH3H
A=#C X=#1 Y=D8 P=3# S=F%

.5

#3i#A— 14 Fé BPL S#3#2
A=H#C X=#1 Y=D8 P=34 S=F8

.S

pig2— BS 04 LDA S##,X
A=#B X=#1 Y=D8 P=3§ S=F8§

.S

#3d4— 95 14 STA $1#,X

A=#B X=#1 Y=D8 P=3# 5=F8

&

Notice that after the third instruction was executed, we examined the contents of location 12.
They were as we expected, and so we continued stepping. The Monitor keeps the Program
Counter and the lust opened address separate from one another. so that vou can examine or
change the contents of memory while you are stepping through your program.

The TRACE command 1s just an infinite STEPper. It will stop TRACEing the execution of a pro-
gram only when you push RESET] or it encouniers a BRK instruction in the program. If the
TRACE encounters the end of a program which returns to the Monitor via an RTS instruction,
the TRACEing will run off into never-never land and must be stopped with the button.

T

Hide— CA DEX

A=#B X=## Y=DB P=32 S=F8§

Hipw7— BD 34 Cd STA SCa3n
A=#B X=#d Y=DR P=32 S5=F8§

HIRA— 14 Fb BPL $A3p2

IFl F1 'F1 (E1 (E1 [E1 TE1 [E1 [El [E1 'El 'E1 'El F1 'F1 fFI

IF|

L FFTL IR IED IR OIFLOIE

A=#B X=## Y=D8 P=31 S5=F§

Bini— B5 #H LDA SHHE . X
A=#A X=HH Y=D8 P=3# 5=F8§

Hia— 95 1# STA S$14.X
A=HA X=HH Y=D8 P=3# 5=F8

Higo— CA DEX

A=RA X=FF Y=D8 P=B# 5=F8

Hid7— 8D 3d CH 5TA SCHid
A=#A X=FF Y=D8& P=B# 5=F8

HidA— I# Fo BPL SHiW2
A=HA X=FF Y=D8& P=H# S=F8

Hido— LL BRK

HIHC— A=#A X=FF Y=D8 P=B# S5=F8

EXAMINING AND CHANGING REGISTERS

As you saw above, the STEP and TRACE commands displayed the contents of the 6302°s inter-
nal registers after cach instruction. You can examine these registers at will or pre-set them when
yvou TRACE, STEP, or GO a machine language program.

The Monitor reserves five locations in memory for the five 6582 registers: A, X, Y, P [processor
stutus register). and S (stack pointer). The Monitor's EXAMINE commund, invoked by a
CTRL E|. tells the Monitor to display the contents of these locations on the screen, and lets the
location which holds the 6582's A-register be the next changeable location. If you want to
change the values in these locations, just type a colon and the values separated by spaces. Next
time you give the Monitor a GO, STEP, or TRACE command, the Monitor will load these five
locations into their proper registers inside the 6502 before it executes the first instruction in your
Program.

«[CTRL E

A=#A X=FF Y=D8 P=B# 5=F8
«: B0 @2

+[CTRL E|
A=B# X=#2 Y=DR P=B# S=F8

L A A A A

<3065

#ido— CA DEX

A=Bd4 X=#1 Y=DE P=3# 5=F8

5

Hifgi— 8D 38 C# STA SCH3W
A=B# X=#1 Y=D8§ P=3d S=F8

*5

HinA— 1# Fo BPL S#3n2
A=B# X=#1 Y=DR P=3# S5=F8

-

53

MISCELLANEOUS MONITOR COMMANDS

You can control the setting of the Inverse/Normal location used by the COUT subroutine (see
page 32) from the Monitor so that all of the Monitor's output will be in Inverse video. The
INVERSE command does this nicely. Input lines are still displayed in Normal mode, however.
To return the Monitor's output to Normal mode, use the NORMAL command.

0. F

AEAR— BA AB HC WD HE #F D# H4
HEHE— Co H1 FH BB CA D# Fo A6
.

«f_F

HHAH— HA WB HC @D WE H#F D# #4
HAAB— C6 #1 FH #B CA DH F6 A6
N

*8.F

HHHE— HA HB WC #D HE #F DH 84
#A#R— Co #1 FH HB CA D# F6 A6

The BASIC command, invoked by a [CTRL B], lets you leave the Monitor and enter the language
installed in ROM on your Apple, usually either Apple Integer or Applesoft 11 BASIC. Any pro-
gram or variables that you had previously in BASIC will be lost. If you've left BASIC for the
Monitor and you want to re-enter BASIC with your program and variables intaci, use the
(CONTINUE BASIC) command. If you have the Apple Disk Operating System {DOS)
active, the *3D®G’ command will return you to the language you were using, with yvour program
and variables intact.

The PRINTER command, activated by a [CTRL P|, diverts all output normally destined for the
screen to an Apple Intelligent Interface® in a given slot in the Apple’s backplane. The slot
number should be from 1 to 7, and there should be an interface card in the given slot, or you will
lose control of vour Apple and your program and variables may be lost. The format for the com-
mand is:

lslot number| [CTRL P

A PRINTER command to slot number @ will reset the flow of printed output back to the Apple’s
video screen.

The KEYBOARD command similarly substitutes the device in a given backplane slot for the
Apple’s keyboard. For details on how these commands and their BASIC counterparts PR# and
IN# work, please refer 1o “CSW and KSW Switches™, page 83, The format for the KEYBOARD
cammand is:

|slot number| [CTRL K

54

1 ME1 MEY (€L fEL /Bl "Bl Bl 'ED (FL TR

IEl

[Fl

IFl 1F [EI

IFl

m. m

BRI e

A slot number of @ for the KEYBOARD command will force the Monitor to listen for input from
the Apple's buill-in keyboard.

The Monitor will also perform simple hexadecimal addition and subtraction, Just type a line in
the format:

[value) + |value)
[value) — {value]

The Apple will perform the arithmetic and display the result:

«20+13
=33
«4A—C
=3E
«FF+4
=#3
«3-4
=FF

-

SPECIAL TRICKS WITH THE MONITOR

You can put as many Monitor commands on a single line as yvou like, as long as you separale
them with spaces and the total number of characters in the line is less than 254, You can inter-
mix any and all commands freely, except the STORE (;) command. Since the Monitor takes all
values following a colon and places them in consecutive memory locations, the last value in a
STORE must be followed by a letter command before another address is encountered. The
NORMAL command makes a good separator; it usually has no effect and can be used anywhere.

«3P0.307 300:18 69 1 N 399, 382 3045 S

H38A— HF HH AW P WP W dH WP
A30A— 18 69 #1

A3pe— 18 CLC
A=#4 X=#1 Y=DB P=3i# S=F8§
LRTD B 69 #1 ADC #8@1

A=#5 X=#1 Y=DB P=3# S=F8§

-
Single-letter commands such as L, 5, 1, and N need not be separated by spaces.
If the Monitor encounters a character in the input line which it does not recognize as either a
hexadecimal digit or a valid command character, it will execute all commands on the input ling up
to that character. and then grind to a halt with a noisy beep, ignoring the remainder of the input

line.

The MOVE command can be used to replicate a pattern of values throughout a range in memory.

.

To do this, first store the pattern in its first position in the range:

*3gd:11 22 33

Remember the number ol values in the pattern: in this case, 3. Then use this special arrange-
ment of the MOVE command:

[start+number] < [start] . lend—number] M

This MOVE command will first replicate the pattern at the locations immediately following the
original patiern, then re-replicate that pattern following itsell, and so on until it fills the entire
range,

«3P3<300. 32DM
«300.32F

#348— 11 22 33 11 22 33 11 22
#388— 33 11 22 33 11 22 33 11
#318— 22 33 11 22 33 11 22 33
#318— 11 22 33 11 22 33 11 21
#328— 33 11 22 33 11 22 33 11
#328— 22 33 11 22 33 11 21 33

A similar trick can be done with the VERIFY command to check whether a pattern repeats itself
through memory. This is especially useful to verify that a given range of memory locations all
contain the same value:

«300:9

«301<300.31F

«101<300.31FV

«31p4:82

«3B1<3I08.31FV

Wipd—de (H2)

Higd4—d2 (#H)

You can create a command line which will repeat all or part of itself indefinitely by beginning the
part of the command line which is to be repeated with a letter command, such as N, and ending it
with the sequence 34:n, where n is a hexadecimal number specifying the character position of the
command which begins the loop, for the first character in the line, n=0. The value for » must
be followed with a space in order for the loop lo work properly,

«N 306 392 34:9

#ide— 11

3b

Fl fFL fFL FL FL F1 P ML

Fl IFL (F1 (FL 'F1 TF1 TF1 (F1 (F1

| JE |

IFl

SN N !

W W W W W W

BIRREE R

pig2— 3
Bige— 1
Bip2— 3
Bige— 1
pigz— 3
Hige— 1
#ig2— 3
WIAH— 11
#idg2— 33
Wide— 11
#ip2— 33
#ig

The only way to stop a loop like this is to press [RESET].

CREATING YOUR OWN COMMANDS

The USER ([CTRL Y|) command, when encountered in the input line, forces the Monitor 1o
You can pul your own IMP instruction in this loca-

jump 1o location number S3F8 in memory,
tion which will jump to your own program

registers and pointers or the input line itself.

Your program can then either examine the Monitor’s
For example, here is a program which will make
everything on the input line following

the |[CTRL Y| command act as a ““‘comment”” indicator;
the [CTRL ¥ | will be displaved and ignored.

+Fo 6 oG
130@ - LDY 534

H3dd— A4 34
! LDA 200.Y

Hidz— BY d# #2
! ISR FDED

Bigs— I8 ED FD
! INY
Hins— CH

I OMP #58D

Wig9— 9 8D
! BNE 382

#idB— D¥ F5
1 IMP SFF69

A3D— 4C 69 FF
PIFS:IMP $300

#3IF8— 4C #d #3

LDY

LDA

JSR

INY

OMP

BNE

JMP

JMP

$34

SHIHH.Y

SFDED

#88D

SHipg2

SFFo9

SHIMM

'SFF69G

«[CTRLY|THIS 1S A TEST.
THIS 1S A TEST.

58

TL_ Tl

IFI IFL IF1 [F1 (F1 fFL fF1 TEL TP /FL_TF1 P11

M. TEl IEL TEL TPL IFL IFL IF

4§

BRI T

SUMMARY OF MONITOR COMMANDS

Summary of Monitor Commands.

Examining Memory.
ladrs]

|adrsl].|adrs2|

RETURN

Changing the Contents of Memory.

(adrs]:{val} |val} ...

Aval] fval] ...

Moving and Comparing.

[dest] < |start}. |end]M

[dest] < [start}.|end]V

Saving and Loading via Tape.

(start].|end|W

[start).lend|R

Running and Listing Programs.

{adrs|G

ladrsiL

Examines the value contained in one location.

Displays the wvalues comtained in all locations
between ladrsl) and ladrs2)

Displays the values in up to eight locations fol-
lowing the last opened location.

Stores the values in consecutive memory loca-
tions starting at |adrs].

Stores values in memory starting at the next
changeable location.

Copies the values in the range |start}.{end] into
the range beginning at |dest],

Compares the values in the range |start]. lend|
to those in the range beginning at {dest|

Writes the walues in the memory range
|start].lend] onto tape, preceded by a ten-
second leader

Reads wvalues from tape, storing them in
memory beginning at {start] and stopping at
lend]. Prints “ERR"" if an error occurs,

Transfers contral to the machine language pro-
gram beginning at |adrs}

Disassembles and displays 20 instructions, start-

ing at ladrs}. Subsequent L’s will display 20
more instructions each.

59

Summary of Monitor Commands.

The Mini-Assembler
Fo660

$|command]|

SFF69G

|adrs] S

ladres] T

CTRL E
Miscellaneous.

z

CTRL B
CTRL C

{val] + |val]

{val}— {val}

[stot]

|stot) [CTRL K

CTRL Y

* Not avmlable in the Apple [Plus,
*= Mot available n the Autostart ROM

Invoke the Mini- Assembler.”

Execute a Monitor command (rom the Mini-
Assembler.

Leave the Mini-Assembler.

Disassemble, display, and execute the instruc-
tion at ladrs], and display the contents of the
6502°s internal registers. Subsequent S's will
display and execule successive instructions.**
Step infinitely. The TRACE command stops
only when it executes a BRK instruction or

when you press RESET|.**

Display the contents of the 6582’s registers.

Set Inverse display mode.
Set Mormal display mode.

Enter the language currently installed in the
Apple’s ROM.

Reenter the language currently installed in the
Apple's ROM.

Add the two values and print the result.

Subtract the second value from the first and
print the result.

Divert output to the device whose interface
card is in stot number [slot}. If [slot)=4@, then
route output to the Apple’s screen.

Accept input from the device whose interface
card is in slot number (slot}. If [slot)=#@, then
accept input from the Apple’s keyboard.

Jump to the machine language subroutine at
location $3F8.

a0

ML FL/FLFLFLFL R

IFL IFL IR JFL TALTFLOFLOTEL ML TR R

IF

L"ﬂ M._TR IR

AR R T

SOME USEFUL MONITOR SUBROUTINES

Here is a list of some useful subroutines in the Apple’s Monitor and Autostart ROMs, To use
these subroutines from machine language programs, load the proper memory locations or 6582
registers as required by the subroutine and execute a JSR 1o the subroutine’s starting address. [t
will perform the function and return with the 6582°s registers setl as described,

SFDED CouT Output a character

COUT 1s the standard character output subroutine. The character to be output should be in the
accumulator. COUT calls the current character output subroutine whose address is stored in
CSW (locations 536 and $37), usually COUTI (see below),

SFDF4 COUT1 Qutput to screen

COUTI displays the character in the accumulator on the Apple’s screen at the current output cur-
sor position and advances the output cursor. It places the character using the setting of the
Normal/Inverse location. It handles the control characters RETURN, linefeed, and bell. It
returns with all registers intact.

SFES# SETINY Set Inverse mode

Sets Inverse video mode for COUTI1. All output characters will be displayed as black dots on a
white background. The Y register is set to 83F, all others are unchanged.

SFES4 SETNORM Set Normal mode

Sets Normal video mode for COUTL. All output characters wwill be displayed as white dots on a
black background. The Y register is set to SFF, all others are unchanged.

SFDSE CROUT Generate a RETURN
CROUT sends a RETURN character to the current output device,
$FDSB CROUTI1 RETURN with clear

CROUTI clears the screen from the current cursor position to the edge of the text window, then
calls CROUT.,

SFDDA PRBYTE Print a hexadecimal byte

This subrouting outputs the contents of the accumulator in hexadecimal on the current output
device. The contents of the accumulator are scrambled.

SFDE3 PRHEX Print a hexadecimal digit

This subroutine outputs the lower nybble of the accumulator as a single hexadecimal digit. The
contents ol the accumulator are scrambled.

§F941 PRNTAX Print A and X in hexadecimal

This outputs the contents of the A and X reisters as a four-digit hexadecimal value, The accu-
mulator contains the first byte output, the X register contains the second. The contents of the

6l

accumulator are usually scrambled.
$F948 PRBLNK Print 3 spaces

QOutputs three blank spaces to the standard output device. Upon exit, the accumulator usually
contains $A@, the X register contains 9.

SFo4A PRBL2 Print many blank spaces

This subroutine outputs from 1 to 256 blanks to the standard output device. Upon entry, the X
register should contain the number of blanks to be output. [f X=5@@, then PRBL2 will output
256 blanks.

SFF3A BELL Output a “*bell” character

This subroutine sends a bell (CTRL G) character to the current outpui device. It leaves the
accumulator holding $87.

SFBDD BELLI1 Beep the Apple's speaker

This subroutine beeps the Apple’s speaker for .1 second at 1KHz. It scrambles the A and X
registers.

SFDAC RDKEY Get an input character

This is the standard character input subroutine. It places a flashing input cursor on the screen at
the position of the output cursor and jumps to the current inpul subroutine whose address is
stored in KSW (locations 838 and $39), usually KEYIN (see below).

SFD3s RDCHAR Get an input character or ESC code

RDCHAR is an alternate input subroutine which gets characters from the standard input, but also
interprets the eleven escape codes (see page 34).

SFDI1B KEYIN Read the Apple's keyboard

This is the keyboard input subroutine. It reads the Apple’s keyboard, wails for a keypress, and
randomizes the random number seed (see page 32). When it gets a keypress, it removes the
flashing cursor and returns with the keycode in the accumulator.

SFDaA GETLN (et an input line with prompt

GETLN is the subroutine which gathers input lines (see page 33). Your programs can call
GETLN with the proper prompt character in location $33; GETLN will return with the input line

in the input buffer (beginning at location $20@) and the X register holding the length of the input
line.

SFD67 GETLNZ Get an input line

GETLNZ is an alternate entry point for GETLN which issues a carriage return to the standard
output before falling into GETLN (see above).

62

TLTFL T T TL M

L M1 T

4

(F1 T

FE..TL TR TRL TEL TEL TEC IEL (FL TRL ORI

B R LR R R R R R LR

SFD6F GETLNI1 Get an input line, no prompt
GETLN] is an alternate entry point for GETLN which does not issue a prompt belore it gathers
the input line. If, however, the user cancels the input line, either with oo many backspaces or

with a [CTRL X], then GETLN] will issue the contents of location $33 as a prompt when it gels
another line,

SFCASR WAIT Delay

This subroutine delays lor a specific amount of time, then returns to the program which called it
The amount of delay is specified by the contents of the accumulator. With A the contents of the
accumulutor, the delay is 12(26+27A+5A%) useconds. WAIT returns with the A register zeroed
and the X and Y registers undisturbed.

SF864 SETCOL Set Low-Res Graphics color

This subroutine sets the color used for plotting on the Low-Res screen to the color passed in the
accumulator. See page 17 for a table of Low-Res colors.

SF85F NEXTCOL Increment color by 3
This adds 3 to the current color used for Low-Res Graphics.
SFaAH PLOT Plot a block on the Low-Res screen

This subroutine plots a single block on the Low-Res screen of the prespecified color. The block’s
vertical position is passed in the accumulator, its horizontal position in the Y register. PLOT
returns with the accumulator scrambled, but X and Y unmolested.

$FR19 HLINE Draw a horizontal line of blocks
This subroutine draws a horizontal line of blocks of the predetermined color on the Low-Res
screen. You should call HLINE with the vertical coordinate of the line in the accumulator, the

leftmost horizontal coordinate in the Y register, and the rightmost horizontal coordinate in loca-
tion $2C. HLINE returns with A and Y scrambled, X intact.

SFH28 VLINE Draw a vertical line of blocks

This subroutine draws a vertical line of blocks of the predetermined color on the Low-Res screen.
You should call VLINE with the horizontal coordinate of the line in the Y register, the top verti-
cal coordinate in the accumulator, and the bottom vertical coordinate in location $2D. VLINE
will return with the accumulator scrambled.

SF832 CLRSCR Clear the entire Low-Res screen

CLRSCR clears the entire Low-resolution Graphics screen. If you call CLRSCR while the video
display is in Text mode, it will fill the screen with inverse-mode @ characters. CLRSCR des-
troys the contents of A and Y.

SFR36 CLRTOP Clear the top of the Low-Res screen

CLRTOP is the same as CLRSCR (above), except that it clears only the top 40 rows of the
screen.

63

SFR71 SCRN Read the Low-Res screen

This subroutine returns the color of a single block on the Low-Res screen. Call it as yvou would
call PLOT (above). The color of the block will be returned in the accumulator. No other regis-
ters are changed.

SFBIE PREAD Read a Game Coniroller

PREAD will return a number which represents the position of a game controller, You should
pass the number of the game controller (@ to 3) in the X register. If this number is not valid,
strange things may happen. PREAD returns with a number from 388 1o $FF in the Y register.
The accumulator is scrambled.

SFF2D PRERR Print “ERR"

Sends the word “ERR", followed by a bell character, to the standard output device. The accu-
mulator is scrambled,

SFF4A 1OSAVE Save all registers

The contents of the 6582's internal registers are saved in locations $45 through $49 in the order
A-X-Y-P-5. The contents of A and X are changed: the decimal mode is cleared.

SFF3F IOREST Restore all registers

The contents of the 6502°s internal registers are loaded from locations $45 through $49,

64

Tl Tl

Tl Tl

Tl Tl

¥l TF

FE.M_ M IFl R IFL IR IFL P TFL TRL 'FL TR TR TRL T

MONITOR SPECIAL LOCATIONS

Table 14: Page Three Monitor Locations
Address: Use:
Decimal Hex Monitor ROM Autostart ROM
19A8 S3FQ Holds the address
1999 S3Fl of the subroutine
1 which handles
None | :
machine language
| “BRK" requesis
(normally SFAS9)
: :m? ;:_:“E None, . Soft Entry Vector.
|o1@12 S3F4 None. l Power-up Byle.
1913 S3F5 | Holds a *““JuMP" instruction to the
1914 S3F6 | subrouting which handles Applesoft 11
1415 S3F7T | “&" commands®* Normally $4C $38
| SFF.
1816 $3F8 | Holds a “JuMP" instruction to the|
1817 S3F9 lh.'uhrt:u'lmu which handles *“*USER™|
1018 $3FA | ([CTRL Y]) commands.
1819 S3FR | Holds a ““JuMP™ instruction to the
1020 SAFC | subroutine which handles Non-
1021 S3FD | Maskable Interrupts.
1822 $3FE | Holds the address of the subroutine
1623 S3FF | which handles Interrupt ReQuests.

BRI AR R

* See page 123 m the Applesofi 11 BASIC Reference Munual

MINI-ASSEMBLER INSTRUCTION FORMATS

The Apple Mini-Assembler recognizes 56 mnemonics and 13 addressing formats used in 6592
Assembly language programming. The mnemonics are standard, as used in the MOS
Technology/Synertek 6500 Programming Manual (Apple part number A2L0003), but the
addressing formats are different. Here are the Apple standard address mode formats for 6592
Assembly Language:

Table 15: Mini-Assembler Address Formats

Muode: Format:

Accumulator None.

Immediate #SIvalue)
| Absolute $laddress|
 Zero Page ${address|

Indexed Zero Page Sladdress), X
Sladdress]. Y
Indexed Absolute S|address], X

Sladdress).Y
Implied ~ None
Relative Sladdress|
Indexed Indirect (Sladdress}.X)
Indirect Indexed (§laddress}).Y

Absolute Indirect (Sladdress|)

An laddress| consists of one or more hexadecimal digits. The Mini-Assembler interprets
addresses in the same manner that the Monitor does: if an address has fewer than four digits, it
adds leading zeroes: if it has more than four digits, then it uses only the last four.

All dollar signs (8), signifying that the addresses are in hexadecimal notation, are ignored by the
Mini-Assembler and may be omitted.

There is no syntactical distinction between the Absolute and Zero Page addressing modes. 1f you
give an instruction to the Mini-Assembler which can be used in both Absolute and Zero-Page
mode. then the Mini-Assembler will assemble that instruction in Absolute mode if the operand
for that instruction is greater than SFF, and it will assemble that instruction in Zero Page mode if
the operand for that instruction is less than $0100.

Instructions with the Accumulator and Implied addressing modes need no operand.

Branch instructions, which use the Relative addressing mode, require the rarger address of the
branch. The Mini-Assembler will automatically figure out the relative distance to use in the
instruction. If the target address is more than 127 locations distant from the instruction, then the
Mini-Assembler wil sound a “beep™, place a circumfex (7) under the target address, and ignore
the line.

If you give the Mini-Assembler the mnemonic for an instruction and an operand, and the
addressing maode of the operand cannot be used with the instruction you entered, then the Mini-
Assembler will not accept the line.

66

TFl IF1

IF1 1 TE1 'F1

Fl

¥l IFl 1Pl IF1 QIEL 1IN 1ED TED IFI IF1 1 IF1 IF

- CHAPTER 4
MEMORY ORGANIZATION

The Apple’s 6502 microprocessor can directly reference a total of 65,536 distinct memory loca-
tions. You can think of the Apple’s memory as a book with 256 “*pages’, with 256 memory loca-
tions on each page. For example, ““page $3@"" 15 the 256 memory locations beginning at location
$30@¢ and ending at location S3AFF. Since the 6502 uses two eight-bit bytes to form the address
of any memory location, you can think of one of the hytes as the page number and the other as
the focation withun the page.

The Apple’s 256 pages of memory fall into three categories: Random Access Memory (RAM),
Read-Only Memory (ROM), and Input/Output locations (L/0). Different areas of memory are
dedicated to different functions. The Apple’s basic memory map looks like this:

System Memory Map
Page Number:
Decimal Hex
) s00
] 501
2 502
' ' RAM (48K)
199 SBE
191 SBF
192 SCo
193 5CI

140 (2K)

198 $C6
199 $C7
200 $C8
201 $C9
, ' 1/0 ROM (2K)
206 SCE
207 SCF
208 SDD
209 D1
;S ' ROM (12K)
254 SFE
255 SFF

Figure 5. System Memory Map

RAM STORAGE

The area in the Apple’s memory map which is allocated for RAM memory begins at the bottom

68

T M

IFl IFL [Fi IF1 IFY MF1 RN MPYL JRL TR TRD "1 RN

rrem mom om om o

of Page Zero and extends up to the end of Page 191. The Apple has the capacity to house [rom
4K (4,096 bytes) to 48K (49,152 bytes) of RAM on its main circuil board. In addition, yvou can
expand the RAM memory of vour Apple all the way up to 64K (65,536 bytes) by installing an
Apple Language Card {(part number A2B0006). This extra 16K of RAM takes the place of the
Apple’s ROM memory, with two 4K segments of RAM sharing the 4K range from $D@@d 1o
SDFFF.

Most of your Apple’s RAM memory is available to you for the storage of programs and data.
The Apple, however, does reserve some locations in RAM for use of the System Monitor, van-
ous languages, and other system functions. Here is a map of the available areas in RAM
memaory:

Table 16: RAM Organization and Usage e
Page Number:))
Decimal Hex Csed Tor
[} S0 | System Programs
[1 %81 | System Stack
| 2 42 | GETLN Input Buffer
! 3 503 Monitor Vector Locations
4 S84 |
5 B35 | Text and Lo-Res Graphics
[56 Primary Page Storage
7 567
8 508
9 509 | Text and Lo-Res Graphics
8 $8A | Secondary Page Storage
11 0B
- FREE
12 saC
through
31 51F
|- —_— RAM
32 520 Hi-Res Graphics
through Primary Page
_53 $3F | Storage
64 548 | Hi-Res Graphics
through Secondary Page
95 55F | Storage
96 S6@
through
191 SBF

Following is a breakdown of which ranges are assigned to which Tunctions:

Zero Page. Due to the construction of the Apple’s 6582 microprocessor, the lowermost page in
the Apple's memory is prime real estale for machine language programs. The System Monitor
uses about 20 locations on Page Zero; Apple Integer BASIC uses a few more; and Applesoft 11
BASIC and the Apple Disk Operating System use the rest. Tables 18, 19, 20, and 21 show the
locations on zero page which are used by these system functions.

Page One. The Apple’s 6502 microprocessor reserves all 256 bytes of Page | for use as a

“stack™. Ewven though the Apple usually uses less than half of this page at any one time, it 15 nol
easy lo delermine just what is being used and what is lying fallow, so you shouldn’t try 1o use

69

Page 1 1o store any data,

Page Two. The GETLN subroutine, which is used to get input lines by most programs and
languages. uses Page 2 as its inpui buffer. If you're sure that you won't be typing any long input
lines, then you can (somewhat) safely store temporary data in the upper regions of Page 2.

Page Three. The Apple’s Monitor ROM (both the Autostart and the original) use the upper six-
teen locations in Page Three. from location S3F@ to $3FF (decimal 1808 10 1823). The
Monitor's use of these locations 15 outlined on page 62.

Pages Four through Seven, This 1,024-byte range of memory locations is used for the Text and
Low-Resolution Graphics Primary Page display, and is therefore unusable for storage purposes.
There are 64 locations in this range which are not displayed on the screen. These 64 locations are
reserved for use by the peripheral cards (see page 82).

RAM CONFIGURATION BLOCKS

The Apple’'s RAM memory is composed of eight 1o 24 integrated circuits. These 1C's reside in
three rows of sockets on the Apple board. Each row can hold eight chips of either the 4.096-bit
(4K) or 16,384-bit (16K) variety. The 4K RAM chips are of the Mostek ““4096™ family, and
may be marked **MK4096"" or “MCM6604"". The 16K chips are of the “4116™ type, and may
have the denomination “*MK4116" or **UPD4160"". Each row must have eight of the same type
of chip, although different rows may hold different types.

A row of eight 16K 1C’s represents 16,384 eight-bit bytes of RAM. The leftmost IC in a row
represents the lowermost (least significant) bit of every bvie in that range, and the rightmost 1C
in a row represents the uppermost (most significant) bit of every byte. The row of RAM IC's
which is frontmost on the Apple board holds the RAM memory which begins at location @ in the
memory map: the next row back continues where the first left off.

You can tell the Apple how much memory it has, and of what type it is, by plugging Memory
Configuration Blocks into three |C sockets on the left side of the Apple board. These
configuration blocks are three 14-legged critiers which look like big, boxy integrated circuits, But
there are no chips inside of them; only three jumper wires in each. The jumper wires **strap™
each row of RAM chips into a specific place in the Apple’s memory map. All three configuration
blocks should be strapped the same way. Apple supplies several types of standard configuration
blocks for the most common system sizes. A sel of these was installed in your Apple when it was
built, and you get a new set each time you purchase additional memory for your Apple. If, how-
ever, you want to expand your Apple’s memory with some RAM chips that you did not purchase
from Apple, vou may have to construct your own configuration blocks (or modify the ones
already in vour Apple).

There are nine different RAM memory configurations possible in your Apple. These nine

memory sizes are made up from various combinations of 4K and 16K RAM chips in the three
rows of sockets in your Apple. The nine memory configurations are:

70

| 4| 8|

'El

'El

IF IFl IF EL IEL IFL IFD 1FD TFL TEL TED TED O TEL TED1 TE]

El IE

e

R

SCotd —
_‘

SRO0A
SA000 | 16K
590068

4K
sE0aa

57000
S6000

16K | 16K | 16K | ..

S5v0a —
4K 4K

s480@

Sivoe =
ik

$2000 | 16K | 16K | 16K | 16K | 16K | 16K |

4K | 4K

$1000 ,
4K | 4k | 4K

S00a0 i

5‘;2‘;‘“ 48K 36K 32K 24K 20K 16K 12K 8K 4K

Figure 6. Memory Configurations

Of the fourteen *‘legs’” on each controller block, the three in the upper-right corner (looking at it
from above) represent the three rows of RAM chips on the Apple’s main board. There should
be a wire jumper rom ecach one of these pins to another pin in the configuration block, The
“‘other pin”" corresponds to a place in the Apple’s memory map where you want the RAM chips
in each row 1o reside. The pins on the configuration block are represented thus:

4K range SOA0R-SOFFF) /4 | Frontmost row (*C")

{
4K range S100@-51FFF | 2 13 | Middle row (D7)
4K range S2000-$2FFF | 7 12 | Backmost row (“'E™)
4
il

4K range S3000-$3IFFF 11 | No connection,
4K range S4000-54FFF 10 | 16K range SO808-53FFF
4K range $5000-55FFF | 6 9 | 16K range $4008-57FFF
4K range S800@-58FFF | 7 & | 16K range S8000-3BFFF
Figure 7. Memory Configuration
Block Pinouts

If a row contains eight chips of the 16K variety, then you should connect 4 jumper wire from the
pin corresponding to that row 1o a pin corresponding to a 16K range of memory. Similarly, if a
row contains eight 4K chips, you should connect a jumper wire from the pin for that row Lo a pin
corresponding 1o a 4K range of memory. You should never put 4K chips in a row strapped for
16K, or vice versa. Il is also not advisable to leave 4 row unstrapped, or o strap iwo rows inio
the same range of memory.

You should always make sure that there is some kind of memory beginning at location 8. Your

Apple’s memory should be in one contiguous block, but it does not need to be. For example, if
you have only three sets of 4K chips, but you want to use the primary page of the High-

Tl

Resolution Graphics mode, then vou would strap one row of 4K chips to the beginning of
memory (4K range $808@ through S@FFF), and strap the other two rows to the memory range
used by the High-Resolution Graphics primary page (4K ranges $20@@ through $2FFF and 53060
through $3FFF). This will give you 4K bytes of RAM memory to work with, and 8K byies of
RAM to be used as a picture buffer.

Notice that the configuration blocks are installed into the Apple with their front edges (the edge
with the white dot, representing pin 1) towards the front of the Apple.

There is a problem in Apples with Revision # boards and 20K or 24K of RAM. In these systems,
the 8K range of the memory map from 54@0@ to $5FFF is duplicated in the memory range S6089
to $7FFF, regardless of whether it contains RAM or not. So systems with only 20K or 24K of
RAM would appear to have 24K or 36K, but this extra RAM would be only imaginary. This has
been changed in the Revision 1 Apple boards.

ROM STORAGE

The Apple, in its natural state, can hold from 2K (2,048 bytes) to 12K (12,288 bytes) of Read-
Only memory on its main board. This ROM memory can include the System Monitor, a couple
of dialects of the BASIC language, various system and ulility programs, or pre-packaged
subroutines such as are included in Apple’s Progranumer’s Aid #1 ROM,

The Apple's ROM memory resides in the top 12K (48 pages) of the memory map, beginning at
location $D@@@. For proper operation of the Apple, there must be some kind of ROM in the
upppermost locations of memory. When you turn on the Apple’s power supply. the microproces-
sor must have some program lo execule. 1t goes to the top locations in the memory map for the
address of this program. In the Apple, this address is stored in ROM, and is the address of a pro-
gram within the same ROM. This program initializes the Apple and lets you start to use it. (For
a description of the startup cycle, see “The RESET Cycle™, page 36.)

Here is a map of the Apple’s ROM memory, and of the programs and packages that Apple
currently supports in ROM:

L Table 17: ROM Organization and Usage
Page Number: i .
Decimal Hex Haed Dy:
208 SDa e at
12 SD4 “lProgrammer s Aid #1
216 SD8
220 sDC Applesoft
224 $EQ 11
228 $E4 BASIC
232 SER Integer BASIC
236 SEC
24 SFd
244 8F4 Utility Subroutines
;gg gll:(s_ Monitor ROM Autostart ROM

12

'l TE1 IF)

El

1 _I(E1 IE1 1FI 1Fl 1F \Fl Fl IF1 TFL IF1L IF1 TE1 TEV TE1 ITEL TE1 TE]

BRI

Six 24-pin IC sockels on the Apple’s board hold the ROM integrated circuits. Each socket can
hold one of a type 93168 2,048-byie by 8-bit Read-Only Memory. The lefimost ROM in the
Apple’s board holds the upper 2K of ROM in the Apple’s memory map; the rightmost ROM IC
holds the ROM memory beginning at page SD@ in the memory map. If a ROM is not present in
a given socket, then the values contained in the memory range corresponding to that socket will
be unpredictable.

The Apple Firmware card can disable some or all of the ROMs on the Apple board, and substi-
tute its own ROMSs in their place. When vou have an Apple Firmware card installed in any slot in
the Apple’s board, vou can disable the Apple’s on-board ROMs by lipping the card’s controller
switch to its UP position and pressing and releasing the [RESET | button, or by referencing location
SCO8Q (decimal 49280 or -16256). To enable the Apple’s on-board ROMs again, fip the con-
troller switch o the DOWN position and press [RESET), or reference location $CB81 (decimal
49281 or -16255). For more information, see Appendix A of the Applesoft 11 BASIC Program-
ming Reference Manual.

I/0 LOCATIONS

4,096 memory locations (16 pages) of the Apple’s memory map are dedicated to input and output
functions. This 4K range begins at location SCO0@ (decimal 49152 or -16384) and extends on up
to location SCFFF (decimal 53247 or -12289). Since these functions are somewhalt intricate, they
have been given a chapter all to themselves. Please see Chapter 3 for information on the alloca-
tion of Input/Output locations.

73

ZERO PAGE MEMORY MAPS

Table 18: Monitor Zero Page Usage

Decimal @ 1 2 3
Hex S8 %1 %2

§3 34 355 56 37 S8

4 5 6 7 B8 9 1@ 11 12 13
9 $A SB SC

4

SD SE SF

15

SF@

Table 19:

Applesoft 11 BASIC Zero Page Usage

Decimal 1 2 3
Hex S@ S$1 82 §3

4 5 6 7 8 9 1 11 12 13
54 §5 56 $7 S8 %9 S5A SB- SC SD

14
S5E

a Sea] L] L] L]
16 510 e @ e @
32 820
48 830
64 S49
S50
96 368
S7¢
S50
590
SAB
SB@
SC0
sDa
SE@
SF@

249

L] L] L] L] [] []
L] L] L L L

[BN BN BN BN BN BN BN B BN BN
% & % 8 8 " 00 80
L] LI BN BN BN BN B BN
L] e 8 8 8 & 8 0 @
[B B B B BN BN BN BN BN BN)
a8 8 8 8 8 " 0 80
[BN BN BN B B B BN BN BN)
LN BN BN BN BN BN BN BN]

* e e 80 08 8w

* % 8 o 8 8 0 00

74

Tl OIE IE] OIF O1FL IEL (EL (EL IEL TEL JEL IEL TED TEYOTEY O OIED OTEY O O(ED O'E1 OTEY1 OTE1 TE1 ME)

B A R R R

Table 20:_Apple DOS 3.2 Zero Page Usage

]

16
32
48
64
8@
96
112
128
144
168
176
192
208
224
249

Decimal

Hex
508
516
820
$30
540
850
S6@
870
580
590
5A0
SB@
sCa
sDa
SE@
SF@

7 3 4 5 6 7 8 9 18 11 12 13
$2 83 S4 S5 S6 ST S8 59 SA S$B SC D

14
SE

) 'Il;_l;le 21: Integer BASIC Zero Page Usage

Decimal

Hex
00
s1e
828
3@
S48
S50
6@
S7¢
8@
5990
SAD
SB#

sce |

SD#
SEO
Ll

2 3 4 5 6 71 8 9 1@ 11 12 13
§2 §3 84 S$5 S6 S7 S8 S9 SA S$B SC SD

s 2 0 0 9 89

[B B B B BN B N]

L B B B B BN B BN

L I B BN B BN B BN BN
LI B B B BN B BN BN
L BN B BN BN BN BN BN BN
8 & ° 00 80
LI BN BN BN BN BN BN BN
& & & & 0 0B 8B
" 8 ® 8 0 0 0 0 80
L B BN B BN BN BN BN RN]
L O BN BN BN BN BN BN B B]

14

3E

SF

75

B

i

i 14

14

E |

(i

F |

1

1l

14l

F 1

ldl

Ldi

™

76

CHAPTER J
INPUT/OUTPUT STRUCTURE

mm——
o
- e
i
e —
P i
e
mr——
T
e
 m——
B

The Apple's Input and Output functions fall into two basic categories: those functions which are
performed on the Apple’s board itself, and those functions which are performed by peripheral
interface cards plugged into the Apple’s eight peripheral “slots’™, Both of these functions com-
municate to the microprocessor and your programs via 4,096 locations in the Apple's memory
map. This chapter describes the memory mapping and operation of the various input and output
controls and functions; the hardware which executes these functions is described in the next
chapter,

BUILT-IN 1/0

Most of the Apple’s inherent 1/0 facilities are described briefly in Chapter 1. **Approaching your
Apple™. For a short description of these facilities. please see thal chapier.

The Apple’s on-board 1/0 functions are controlled by 128 memory locations in the Apple’s
memory map, beginning at location SCHBG and extending up through location SCATF (decimal
49152 through 49279, or -16384 through -16257), Twenty-seven different functions share these
128 locations. Obviously, some functions are affected by more than one location: in some
instances, as many as sixteen different locations all can perform exactly the same function. These
128 locations fall into five types: Data Inputs, Strobes. Soft Switches, Toggle Switches, and Flag
Inputs,

Data Inputs. The only Data Input on the Apple board is a location whose value represents the
current state of the Apple’s built-in keyboard. The uppermost bit of this input is akin 10 the Flag
Inputs (see below): the lower seven bits are the ASCII code of the key which was most recently
pressed on the keyboard.

Flag Inputs. Most built-in input locations on the Apple are single-bit ‘flags’. These flags appear
in the highest feighth) bit position in their respective memory locations. Flags have only two
values: ‘on’ and ‘off”. The setting of a flag can be tested easily from any language. A higher-
level language can use a “PEEK™ or similar command to read the value of a flag location: if the
PEEKed value is greater than or equal to 128, then the flag is on; if the value is less than 128,
the flag is off. Machine language programs can load the contents of a flag location into one of the
6502's internal registers (or use the BIT instruction) and branch depending upon the setting of
the N (sign) flag. A BMI instruction will cause a branch if the flag is on, and a BPL instruction
will cause a branch if the flag is off.

The Single-Bit (Pushbution) inputs. the Cassette input, the Keyboard Strobe, and the Game Con-
troller inputs are all of this type.

Strobe Outputs. The Ulility Strobe, the Clear Keyboard Strobe, and the Game Controller Strobe
are all controlled by memory locations. If your program reads the contents of one of these loca-
tions, then the function associated with that location will be activated. In the case of the Utility
Strobe, pin 5 on the Game 1/O connector will drop from +35 volts to 0 volts for a period of .98
microseconds, then rise back to +35 again: in the case of the Keyboard Strobe, the Kevboard's
flag input (see above) will be turned off; and in the case of the Game Controller Strobe, all of the
flag inputs of the Game Controllers will be turned off and their timing loops restarted.

Your program can also trigger the Kevboard and Game Controller Strobes by writing to their con-
trolling locations, but you should not write to the Utility Strobe location. If you do, you will pro-
duce rwe 98 microsecond pulses, about 24.43 nanoseconds apart, This is due 1o the method in
which the 6582 writes to a memory location: first it reads the contents of that location, then it

78

F1_IFl 'Fl IFI IFI IF. (Bl IEI IE1 IEI IF1l IFl IFI 1 IFlL IEL TE1 1Bl (F1 (F1 [F1 IEl [FI

WA

writes over them. This double pulse will go unnoticed for the Kevboard and Game Controller
Strobes, but may cause problems if it appears on the Unlity Strobe,

Togele Switches. Two other strobe outputs are connected internally 1o two-state “*Mip-flops™.
Each time you read from the location associated with the strobe, its flip-lop will “togele™ to its
other state. These toggle switches drive the Cassette Output and the internal Speaker. There is
no practical way 1o determine the setting of an internal togele switch. Because of the nature of
the toggle switches, vou should only read from their controlling locations, and not write to them
(see Strobe Outputs, above).

Soft Switches. Soft Switches are 1wo-position switches in which each side of the switch is con-
trolled by an individual memory location. If you reference the location for one side of the
switch, it will throw the switch that way: il you reference the location for the other side, it will
throw the switch the other way. It seis the switch without regard 1o its former setting, and there
is no way to determine the position a soft switch is in. You can safely write to soft swiich con-
trolling locations: two pulses are as good as one (see Strobe Outputs, above). The Annunciator
outputs and all of the Video mode selections are controlled by soft switches.

The special memory locations which control the buili-in Input and Output functions are arranged
thus:

L - Table 22: Built-In 1/0 Locations
3@ S1 %2 53 54 85 _Sﬁ__ _ST S8 59 %A SB SC SD SE SF

SCHoa _i((_ég-'-ﬁﬂztrc-lula:lt'u'lnpui
SCa1@ _C_.'Ic;:r Keyvhoard Strobe

'SCom | C 'clH.HCllc_glll_l_i}_L_lL nggte B

SCA38 | Speaker Toggle

SC®4@ | Unility Strobe .
T - - = e |

SCAsSH J| gr 1% nomix | mix | opri | sec | lores | hires i I anl anl and

SC060 | cin .r'h.l.. ! phl! _: pbi __gn:ﬂ ecl ged | med repeal SCHOR-3CH6T

SCOTR | Game (‘nnl?ullcr Strobe l

Key to abbreviations:

gr Set GRAPHICS mode tx Set TEXT mode
nomix Sel all lext or graphics mix Mix text and graphics
pri Display primary page sec Display secondary page

lores Display Low-Res Graphics hires Display Hi-Res Graphics

an - Annunciator outputs pb Pushbutton inputs
ge Game Controller inputs cin Cassetle Input

PERIPHERAL BOARD 1/0

Along the back of the Apple’s main board is a row of eight long “slots™, or Peripheral Connec-
tors. Into seven of these eight slots, you can plug any of many Peripheral Interface boards
designed especially for the Apple. In order 1o make the peripheral cards simpler and more versa-
tile, the Apple’s circuitry has allocated a total of 280 byte locations in the memory map for each

79

of seven slots. There is also a 2K byte *‘common area™, which all peripheral cards in your Apple
can share.

Each slot on the board is individually numbered, with the lefimost slot called **Slot @ and the
rightmost called “*Slot 7. Slot @ is special: it is meant for RAM, ROM, or Interface expansion.
All other slots (1 through 7) have special control lines going to them which are active at different
times for different slots.

PERIPHERAL CARD I/0 SPACE

Each slot is given sixteen locations beginning at location $C@88 for general input and output pur-
poses. For slot @, these sixteen locations full in the memory range $SC@8@ through SCB8F: for
slot |, they're in the range SCA98 through SCB9F, er cerera. Each peripheral card can use these
locations as it pleases. Each peripheral card can determine when it is being selected by listening to
pin 41 (called DEVICE SELECT) on its peripheral connecior. Whenever the voltage on this pin
drops to 0 volts, the address which the microprocessor is calling is somewhere in that peripheral
card’s 16-byie allocation. The peripheral card can then look at the bottom four address lines to
determine which of its sixteen addresses is being called.

- Table 23: Peripheral Card 1/0 Locations
s sl 52 33 $4 35 %6 §7 58 89 $A 3B SC SD SE S5F
SCHsa @
SCA9@ 1
SChAQ 2
SCABY Input/Output for slot number 3
SCece 4
SCoDa 5
SCOED 6
SCOF® 7

PERIPHERAL CARD ROM SPACE

Each peripheral slot also has reserved for it one 256-byte page of memory. This page is usually
used to house 256 byles of ROM or Programmable ROM (PROM) memory, which contains driv-
ing programs or subroutines for the peripheral card. In this way, the peripheral interface cards
can be “intelligent’: they contain their own driving software; you do not need to load separate
programs in order to use the interface cards.

The page of memory reserved for each peripheral slot has the page number $Cn, where #n is the
slot number. Slot @ does not have a page reserved for i, so you cannot use most Apple interface
cards in that slot, The signal on Pin | (called I/O SELECT) of each peripheral slot will become
active {drop from =+ 35 volis to ground) when the microprocessor is referencing an address within
that slot’s reserved page. Peripheral cards can use this signal 1o enable their PROMs, and use the
lower eight address lines to address each bvte in the PROM.

80

IEFl IFl IFl [E| IEIL IFl IF1 Pl (FI 1IF1 [Fl [IEl [El IEl [El IEl [F1 IEl I[El IEl IFI

IE!

| IS 4

BRI R R

_ Table 24: Peripheral Card PROM Locations)
[S00 SI0 S20 530 540 S50 500 570 580 S99 SAD SBA SCO SD@ SEP SF
SC100 i
SC200 5
SC300 3
SC400 PROM space for sloi number 4
SC500 s
SC600 6
[SC700 2

I/0 PROGRAMMING SUGGESTIONS

The programs in peripheral card PROMs should be portable; that is, they should be able to func-
tion correctly regardless of where they are placed in the Apple’s memory map. They should con-
tain no absolute references to themselves. They should perform all JuMPs with conditional or
forced branches.

Of course, vou can fill a peripheral card PROM with subroutines which are nof portable, and your
only loss would be that the peripheral card would be slot-dependent. If you're cramped for space
in a peripheral card PROM, you can save many bytes by making the subroutines slot-dependent.

The first thing that a subroutine in a peripheral card PROM should do is to save the values of all
of the 6582°s internal registers. There is a subroutine called I0SAVE in the Apple’s Monitor
ROM which does just this. It saves the contents af all internal registers in memory locations $435
through $49, in the order A-X-Y-P-S. This subroutine starts at location SFF4A. A companion
subroutine, called IORESTORE. restores afl of the internal registers from these storage locations.
You should call this subroutine, located at $FF3F, before your PROM subroutine finishes.

Most single-character input and output is passed in the 6582's Accumulator. During output, the
character to be displayed is in the Accumulator, with its high bit set. During input, your
subrouting should pass the character received from the input device in the Accumulator, also
with its high bit set.

A program in a peripheral card’s PROM can determine which slot the card is plugged into by exe-
cuting this sequence of instructions:

dine- 28 4A FF JSR SFF4A
Bips- 78 SEI

fing- 28 58 FF JSR $FF58
A3ia7- BA TSX

BIg8 - BD @@ @1 LDA ielee. X
#3igB- 8D F8 @7 5TA SBTF8
BIBE- 29 @F AND #SOF
fine- AR TAY

After a program execules these steps, the slot number which its card is in will be stored in the
6582°s Y index register in the format $@», where # is the slot number. A progrum in the ROM
can further process this value by shifting it four bits to the left, 1o obtain 508.

#itt- 98 TYA

81

#312- LY ASL
#313- @A ASL
#314- LI ASL
#315- #A ASL
B3l6- AA TAX

A program can use this number in the X index register with the 6582°s indexed addressing mode
to refer to the sixteen 1/0 locations reserved for each card. For example, the instruction

0317- BD 89 C@ LDA SCRRG . X

will load the 6502's sccumulator with the contents of the first 1/O location used by the peripheral
card. The address SCB8@ is the base address Tor the first location used by all eight peripheral
slots. The address SC@R1 is the base address for the second 1/0 location, and so on. Here are
the base addresses for all sixteen /0 locations on each card:

Table 25: 1/0 Location Base Addresses

| Base Slot
Address 0 | 2 k] 4 5 6 7
SCHR0 SCRHRA SCa9n SChAD SCaBa SCace SCaDa SCOER SCAra
sC@s1 SCP81 SCH91 SCOAL SCAB1 SCecCl SCADI1 SCRE] SCAF1
SC@s2 SC@82 SCh92 SCRA2 SC@AB2 SCac?2 SCaD2 SCOE2 SCOF2
$C@83 SC@P83 SCH93 SCPAZ SC@B3 SCaC3 SCAD3 SCOE3 SCAF3
SCa84 SCPR4 SCHu4 SC0A4 SCOB4 SCAC4 SCAD4 SCOE4 SCAF4
$CH8s SCP85 SCH95 SCOAS SCABS SCaCs SCODS SCOES SCAES
$Ch86 SCPH86 SCHY6 SCAADL SCOB6 SCaCH SCODA SCOEn SCAF6
ICA8T SC@A87 SCH97 SCAAT SCOBT sCacy sCan? SCOE7 SCAFT
SCess SCH88 SCH98 SCAAR SCHRR SCACH SCODR SCOES SCAF8
SC@89 SC@H89 SC@99 SCOA9 SCABY SCRCY SCaD9 SCOE9 SCAF9
SCORA SCH8A SC@#9A SCOAA SCPABA SCACA SCODA SCREA SCHFA
SCOSB SCOSE SCP9R SCAAB SCABR SCOCE SCADB SCOEB SCOFB
SCHRC SCORC SCP9C SCPAC SCPBC SCPCC SCODC SCREC SCOFC
SCOSD | SCESD SCO9D SCBAD SC@BD SCACD SCHADD SCPRED SCBFD
SCHEE SCPSE SCOM9E SCBAE SCBBE SCBCE SC@DE SCOEE SC@FE
SCO8F SCOEF SCR9F SCOAF SCOBF SCBCF SC@DF SCBEF SCOFF

1/0 Locations

PERIPHERAL SLOT SCRATCHPAD RAM

Each of the eight peripheral slots has reserved for it 8 locations in the Apple’s RAM memory.
These 64 locations are actually in memory pages S84 through $87, inside the area reserved for the
Text and Low-Resolution Graphics video display. The contents of these locations, however, are
nof displayed on the screen, and their contents are not changed by normal screen operations.®
The peripheral cards can use these locations for temporary storage of data while the cards are in
operation. These “scratchpad™ locations have the following addresses:

* See "But Soft_”", page 31

82

[T TET THY] =l IFl IF1 IF =1 IFl IF1 IEl E1 F1 IF1 IF1 [E1

'El IE IEi IEi

EE—)]

Table 26: 1/0 Scratchpad RAM Addresses
Base Slot Number

Address | 1 2 3 4 5 6 7
58478 SP479 SP4TA SMTB S4TC SMMTD SB4TE S@4TF
S@4F8 SP4F9 SP4FA SMMFB S@4FC S@4FD SB4FE S@4FF
88578 SPS79 SPSTA S@STB 3@STC B@STD S@STE S@5TF
S@5F8 SOSF9 S@SFA S@5FB $@SFC S@5FD S@SFE S@5FF
SP6TH SP679 SP6TA S@6TB S06TC S@eTD SP6TE SP6TE
SO6TFE SP6F9 SA6FA S@6FB S@6FC S@EFD SBeFE S06FF
SQA778 SA779 SA77A SRTTB S477C S@TTD S@7TE SATIF |
SATFR SA7TF9 SATFA SOTFB S@7TFC S@TFD SWIFE SMTFF |

Slot @ does not have any scratchpad RAM addresses reserved for it. The Base Address locations
are used by Apple DOS 3.2 and are also shared by all peripheral cards. Some of these locations
have dedicated Tunctions: location $7F8 holds the slot number (in the format $Ca) of the peri-
pheral card which is currently active, and location $5F8 holds the slot number of the disk con-
troller card from which any active DOS was booted.

By using the slot number $@», derived in the program example above, a subroutine can directly
reference any ol its eight scratchpad locations:

B31A- B9 T8 @4 LDA §0478.Y

WilD- 99 F8 @4 STA 504F8.Y
Wize- B9 78 @5 LDA SP578.Y
#3i23- 99 F8 @5 STA SOSFE.Y
#ilo- B9 78 @6 LDA SO6TE.Y
#329- 99 FR #6 STA SA6F8.Y
832C- B9 78 @7 LDA Sa778.Y
032F- 99 F§ A7 STA SBTFR.Y

THE CSW/KSW SWITCHES

The pair of locations $36 and $37 (decimal 54 and 35) is called CSW, for **Character output
SWitch™. Individually, location $36 is called CSWL (CSW Low) and location $37 is called
CSWH (CSW High). This pair of locations holds the address of the subroutine which the Apple
is currently using for single-character output. This address is normally SFDF@, the address of the
COUT subroutine (see page 30). The Monitor's PRINTER ([CTRL P|} command, and the
BASIC command PR#, can change this address to be the address of a subroutine in a PROM on
a peripheral card. Both of these commands put the address SC#0@ into this pair of locations,
where n is the slol number given in the command, This is the address of the first location in
whatever PROM happens to be on the peripheral card plugged into that slot, The Apple will then
call this subroutine every time it wishes to output one character. This subrouting can use the
instruction sequences given above to find its slot number and use the 1/0 and RAM scratchpad
locations for its slot. When it is finished, it can either execute an RTS (ReTurn from
Subroutine) instruction, to return to the program or language which is sending the output, or it
can jump to the COUT subroutine at location SFDF@, to display the character on the screen and
then return to the program which is producing output,

Similarly, locations $38 and 39 (decimal 56 and 57), called KSWL and KSWH separately or KSW

83

(Keyboard input SWitch) together, hold the address of the subroutine the Apple is currently
using for single-character input. This address is normally 8FD1B, the address of the KEYIN
subroutine, The Monitor’s KEYBOARD command ([CTRL K]} and the BASIC commund IN#
both change this address 10 SC#@, again with » the slol number given in the command. The
Apple will call the subrouting at the beginning of the PROM on the peripheral card in this slot
whenever it wishes to get a single character from the input device. The subroutine should place
the inpui character into the 6502°s accumulator and ReTurn from Subroutine (RTS). The
subroutine should set the high bit of the character before it returns.

The subroutines in a peripheral card’s PROM can change the addresses in the CSW and KSW
switches 1o point to places in the PROM other than the very beginning. For example, a cerlain
PROM could begin with a segment ol code to determine what slot it is in and do some initializa-
tion, and then jump in to the actual character handling subroutine. As part of its initialization
sequence, it could change KSW or CSW (whichever is applicable} to point directly to the begin-
ning of the character handling subroutine. Then the next time the Apple asks for input or output
from that card, the handling subroutines will skip the already-done initialization sequence and go
right in to the task at hand. This can save time in speed-sensitive situations.

A peripheral card can be used lor both input and output if its PROM has seperate subroutines for
the separate functions and changes CSW and KSW accordingly. The initialization sequence in a
peripheral card PROM can determine if it is being called for input or output by looking at the
high parts of the CSW and KSW switches. Whichever switch contains $Cn is currently calling
that card to perform its function. IT both switches contain $Cn, then your subrouting should
assurme that it 15 being called for output.

EXPANSION ROM

The 2K memory range from location SC80® 1o SCFFF is reserved for a 2K ROM or PROM on a
peripheral card, to hold' large programs or driving subroutines. The expansion ROM space also
has the advantage of being absolutely located in the Apple’s memory map, which gives you more
freedom in writing your interface programs.

This PROM space is available to all peripheral slots, and more than one card in vour Apple can
have an expansion ROM. However, only one expansion ROM can be active at one time,

Each peripheral card’s expansion ROM should have a flip-flop to enable it. This flip-flop should
be turned *“on’" by the DEVICE SELECT signal (the one which enables the 256-byte PROM).
This means that the expansion ROM on any card will be partially enabled after you first reference
the card it is on. The other enable to the expansion ROM should be the [/O STROBE line, pin
20 on each peripheral connector. This line becomes active whenever the Apple's microprocessor
is referencing a location inside the expansion ROM's domain, When this line becomes active,
and the aforementioned flip-flop has been turned “*on’", then the Apple is referencing the expan-
sion ROM on this particular board (see figure 8),

A peripheral card’s 256-byte PROM can gain sole access to the expansion ROM space by referring
to location $CFFF in its initialization subroutine. This location is a special location, and all peri-
pheral cards should recognize it as a signal to turn their fip-flops *'ofl™ and disable their expan-
sion ROMs. Of course, this will also disable the expansion ROM on the card which is trying to
grab the ROM space, but the ROM will be enabled again when the microprocessor gets another
instruction from the 256-byte driving PROM. Now the expansion ROM is enabled, and its space
is clear. The driving subroutines can then jump directly into the progrums in the ROM, where

B4

=i = = = = m m

IR R U L L A

11 I

[}

TR

10 TIOEEY nsLE |

LATCH |———_—
(’:Tj—)

|40 STRORE

20 BYTE
L

ERAALE 2

Ap TD ALR
ADDRE 55

Figure 8. Expansion ROM Enable Circuit

they can enjoy the 2K of unobstructed, absolutely located memory space:

#3iiz2- 2C FF CF BIT SCFFF
#33s5- 4C @8 C8 IMP SCR@0

It is possible 1o save circuitry (at the expense of ROM space) on the peripheral card by not fully
decoding the special location address, $CFFF. In fact, if you can afford to lose the last 256 bytes
of your ROM space, the following simple circuit will do just fine:

T0 RESET, ADM ERABLE
nIF-AoF

Figure 9. SCFXX Decoding

85

E VIS ||
14 14
(E TIE |
(41 di
. E T RENE | I
d 14 14 4 14 'a
2l 14 2
[IF [T |
a4 4
I W ar
| | S

86

CHAPTER 0
HARDWARE CONFIGURATION

THE MICROPROCESSOR

The 6582 Microprocessor
Model:

Manulactured by:

Number of instructions:
Addressing modes:
Accumulators:

Index registers:

Other registers:

Stack:

Status Nags:

Other flags:

Interrupts:
Resets:
Addressing range:
Address bus:

Data bus:

Vollages:
Power dissipation:

Clock frequency:

MCS6502/5Y 6582
MOS Technology, Inc.
Synertek

Rockwell

56

13

1 (A)

2 (X.Y)

Stack pointer (S)
Processor status (P)

256 bytes, lixed

N (sign)

C (carry)

V loverfllow)

I (Interrupt disable)

D (Decimal arithmetic)
B (Break)

2 (IRQ, NMI)

1 (RES)

2! (64K locations

16 bits, parallel

& bits, parallel
Bidirectional

+ 5 volis
.25 want

1.023MHz

BR

The microprocessor gets its main timing signals, ®@ and &1, lrom the liming circuits described
below, These are complimentary 1.023MHz clock signals. Various manuals, including the MOS

Bl fE1 IE. AR fEl el (E TED (EL IEL IF1 (ED1 (ED (E1 1EL (FE1 IEL IFL (E1 TE1 IFL [F

g

Peripheral Connectors

Power
Connector

USER |
Jumper

N—['Jﬁactlc
Interface

Jacks

Video
Output
Connectors

CGame 1/0
Connector

W
"
"
"
"
"
"
"
[
W
"

Eurapple
Jumpers

Speaker
Connector

Kevboard
Connector

Figure 10. The Apple Main Board

59

Technology Hardware manual, use the designation @2 for the Apple’s $@ clock.

The microprocessor uses its address and data buses only during the time period when ®8 is
active. When @@ is low, the microprocessor is doing internal operations and does not need the
data and address buses.

The microprocessor has a 16-bit address bus and an 8-bit bidirectional data bus. The Address bus
lines are buffered by three 8T97 three-state buffers at board locations H3. H4, and H5. The
address lines are held open only during a DMA cycle, and are active at all other times. The
address on the address bus becomes valid about 300ns after @1 goes high and remains valid
through all of 4@,

The data bus is buffered through two 8T28 bidirectional three-state buffers at board locations H10
and HI1. Data from the microprocessor is put onto the bus about 300ns after @1 and the
READ/WRITE signal (R/W) both drop 10 zero. At all other times, the microprocessor is either
listening to or ignoring the data bus.

The RDY. RES, IRQ, and NMI lines to the microprocessor are all held high by 3.3K Ohm resis-
tors 1o +35v. These lines also appear on the peripheral connectors (see page 105).

The SET OVERFLOW (SO) line to the microprocessor is permanently tied lo ground.

SYSTEM TIMING

Table 27: Timing Signal Descriptions)
14M: Master Oscillator output, 14.318 MHz. All timing signals are
derived from this signal,

T™: Intermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency, 3.580MHz. Used by the video gen-
eration circuitry.

O (p2) Phase @ system clock, 1.023MHz, compliment 1o $].
Pl Phase | sysiem clock, 1.023 MHz, compliment to $&@.
0Q3: A general-purpose timing signal, twice the requency of the sys-

tem clocks, but asymmetrical.

All peripheral connectors gel the timing signals TM, ©8, &1, and Q3. The timing signals 14M
and COLOR REF are not available on the peripheral connectors.

fER TE IR TED DTN IR IEL IEED TEED TEED (EL TED TE1 IE. TE1 IF IEL IF1L F1 IFL IFL TED TFI

BRI R

| |

| I
500 nsec 500 nsec

I

P —] |

I
I
|
|
|
|
|
|
I
|
|
|

[
[
|
|

am—] : l
|
|
[

300
nsec

|

|

|

': < ™
6502 Address X I

|

Q3

) <_ See 6592 Hardware
Data from 6502 (read) X I >- manuals for details,

100 nsec ﬂ \——

Data 1o 6582 (write) M/

Figure 11, Ti-ming Signals and Relationships

91

POWER SUPPLY

The Apple Power Supply (U. S. Patent #4,130,862)

Input voltage: 107 VAC 10 132 VAC, or
214 VAC 10 264 VAC
{switch selectable®)

Supply voltages: +5.0
+11.8
—=12.0

—5.2

Power Consumption: 60 watts max. (full load)
79 watts max. lintermittent**)

Full load power output: +5v: 2.5 amp
—5v: 250ma
+12v: L5 amp {(— 2.5 amp intermitlent®*)
—12v: 250ma

Operating temperature: 55¢ (131° Farenheit)

The Apple Power Supply is a high-voltage ““switching’™ power supply. While most other power
supplies use a large transformer with many windings 1o convert the input vollage into many lesser
voltages and then rectify and regulate these lesser voltages, the Apple power supply first converls
the AC line vollage into a DC voltage, and then uses this DC voltage to drive a high-frequency
oscillator. The output of this oscillator is fed into a small transformer with many windings. The
voltages on the secondary windings are then regulated 1o become the output voltages.

The +35 volt output voltage is compared to a reference voltage, and the difference error is fed
back into the oscillator circuit, When the power supply’s output starts to move out of its toler-
ances, the frequency of the oscillator is altered and the voltages return to their normal levels,

If by chance one of the output voltages of the power supply is short-circuited, a feedback circuit
in the power supply stops the oscillator and cuts all outpul circuits. The power supply then
pauses for about % second and then attempts to restart the oscillations, If the output is still
shorted, it will stop and wait again. It will continue this cycle until the short circuit is removed or
the power is turned off.

If the output connector of the power supply is disconnected from the Apple board, the power
supply will notice this “*no load" condition and effectively short-circuit itself, This activates the
protection circuits described above, and cuts all power output. This prevents damage o the
power supply’s internals.

* The voltage selector switch s not present on some Apples.
"* The power supply can run 20 minutes with an intermittent load il followed by 10 minutes ot normal load
withou! damage.

92

Fl

|

IF

1 IE IEl IF1 IEL IFL IFL IFI IEL IFL IF1 IEI JEI IFI [FI I IEl IEl [E 'E

F

- z

Y B, T g

E Tamf a

M1 e e

e T v} =

snr > ! oz . + M

i | T Tof] | ina m

T » - =H 7

S . Il 4 " d =

. d = o
4 il | = o

i . e Ao =

; — A fonet ol

' 1 — - - = =

i bt & m e o — z
L] R S - e e —

i BT | | =

k. 4 ik + - . | =

ol] 12

§ & P = | - o

B | | z

=] | 5

iy

e

|
N) T L T O T T O

If one of the output voltages leaves its tolerance range, due to any problem either within or
external 1o the power supply, it will again shut itsell’ down to prevent damage to the components
on the Apple board. This insures that all voltages will either be correct and in proportion, or they
will be shut off.

When one of the above fault conditions occurs, the internal protection circuits will stop the oscil-
lations which drive the transformer. After a short while, the power supply will perform a restart
cyele, and atlempt 1o oscillate again. 1T the fault condition has not been removed, the supply will
again shut down. This cycle can continue infinitely without damage to the power supply. Each
time the oscillaior shuis down and restarts, its frequency passes through the audible range and
you can hear the power supply squeal and squeak. Thus, when a fault occurs, you will hear a
steady ““click click click™ emanating from the power supply. This is your warning that something
is wrong with one of the voltage outputs.

Under no circumstances should you apply more than 140 VAC to the input of the transformer
{or more than 280 VAC when the supply’s switch is in the 220V position), Permanent damage to
the supply will result.

You should connect your Apple’s power supply to a properly grounded 3-wire outlet. It is very
important that the Apple be connected 1o a good earth ground.

CAUTION: There are dangercus high vollages inside the power supply’s case. Much of the
internal circuitry is sor isolated from the power line, and special equipment is needed for service.
DO NOT ATTEMPT TO REPAIR YOUR POWER SUPPLY! Send it to your Apple dealer for
SErVICE.

ROM MEMORY

The Apple can support up to six 2K by 8 mask programmed Read-Only Memory ICs. One of
these six ROMs is enabled by a T4L5138 at location F12 on the Apple’s board whenever the
microprocessor’s address bus holds an address between SD@® and SFFFF. The eight Data oui-
puts of all ROMs are connected 1o the microprocessor’s data line buffers, and the ROM’s address
lines are connected to the buffers driving the microprocessor's address lines A® through A10.

The ROMs have three “‘chip select” lines to enable them. CS1 and CS3, both active low, are
connected together to the 7415138 at location F12 which selects the individual ROMs, €S2,
which is active high, is common to all ROMs and is connected to the INH (ROM Inhibit) line on
the peripheral connectors. Il a card in any peripheral slot pulls this line low, all ROMs on the
Apple board will be disabled.

The ROMs are similar to type 2316 and 2716 programmable ROMs. However, the chip selects
on most of these PROMs are of a different polarity, and they cannot be plugged directly into the
Apple board,

94

1 el ¥l IF TP IED IFL IED (EL IFEL IE1 P TEL IFD (F1 IE] TE1 IF1 'F1 [F1 'F1 IF1 [F]

BARER R R R e

AT [1O M| +5v
Ab 2 23 AR
A5 | 3 22| A9
Ad | 4 21 | C53
Al | § 20 | C51
Al | 6 19| Al@
Al | 7 18 | C82
AB | 8 17| DT
De | v 16 | D6
D1 | 1o 15| D5
D2 | N 4| D4
Gnd | 12 13| D3

Figure 13. 9316B ROM Pinout.

RAM MEMORY

The Apple uses 4K and 16K dynamic RAMs for its main RAM storage. This RAM memory is
used by both the microprocessor and the video display circuitry. The microprocessor and the
video display interleave their use of RAM: the microprocessor reads from or writes to RAM only
during ®@, and the video display refreshes its screen from RAM memory during &1.

The three 74L5153s at E11, E12, and E13, the 74LS283 at E14, and half of the 7408257 at Cl12
make up the address multiplexer for the RAM memory. They take the addresses generated by
the microprocessor and the video generator and multiplex them onto six RAM address lines. The
other RAM addressing signals, RAS and CAS, and the signal which is address line 6 for 16K
RAMSs and CS for 4K RAMSs, are generated by the RAM select circuit. This circuit is made up of
two T4LS139s at E2 and F2, half of a 74L5153 at location C1, one and a half 74L8257s at C12
and J1, and the three Memory Configuration blocks at D1, El, and F1. This circuit routes sig-
nals to each row of RAM, depending upon what type of RAM (4K or 16K) is in that row.

The dynamic RAMs are refreshed automatically during @1 by the video generator circuitry. Since
the video screen is always displaying at least a 1K range of memory, il needs to cycle through
every location in that 1K range sixty times a second. It so happens that this action autematically
refreshes every bit in all 48K byies of RAM. This, in conjunction with the interleaving of the
video and microprocessor access cycles, lets the video display, the microprocessor, and the RAM
refresh run at full speed, without interfering with each other.

The data inputs to the RAMs are drawn directly off of the system’s data bus. The data outputs of
the RAMSs are latiched by two 74LS5174s at board locations BS and B8, and are multiplexed with
the seven bits of data from the Apple's keyboard. These laiched RAM outputs are fed directly to
the video generator’s character, color, and dol generators, and also back onto the system data bus
by two T4L5257s at board locations B6 and B7.

95

—5v | F O 16 | Gnd —-5v | L' O {6 | Gnd
DataIn | 2 15 | CAS Dataln | 2 15 | CAS
R/W | 1 T4 | Data Ou R/IW | 2 14 | Data Out

RAS | 4 13| €8 RAS | 4 13| A6

A5 | 3§ 12| A2 AS | § 12| A2

Ad | 6 1| Al Ad | 6 1] Al

Al | T 1| AR Al | 7 10| A
+12v | & 9| +5v +12v | & 9| +5v

4096 4K RAM 4116 16K RAM
Pinout Pinout

Figure 14. RAM Pinouts

THE VIDEO GENERATOR

There are 192 scan lines on the video screen, grouped in 24 lines of eight scan lines each. Each
scan line displays some or all of the contents of forty bytes of memory,

The video generation circuitry derives its synchronization and timing signals from a chain of
74L5161 counters at board locations D11 through D14. These counters generate fifteen syn-
chronization signals;

H® H1 H2 H3 H4 HS5
Ve V1 V2 V3 V4
VA VB VC

The "H" family of signals is the horizontal byte position on the screen, from G@0@@Q o binary
198111 (decimal 39), The signals V@ through V4 are the vertical line position on the screen,
from binary ®8@@@ 1o binary 18111 (decimal 23). The VA, VB, and VC signals are the vertical
scan line position within the vertical screen line. from binary @88 to 111 (decimal 7).

These signals are sent to the RAM address multiplexer, which turns them into the address of a
single RAM location, dependent upon the setting of the video display mode soft switches (see
below). The RAM multiplexer then sends this address to the array of RAM memory during @1,
The latches which hold the RAM data sent by the RAM array reroute it to the video generation
circuit, The 7415283 at location rearranges the memory addresses so that the memory mapping
on the screen is scrambled.

If the current area on the screen is 1o be a text character, then the video generalor will route the
lower six bits of the data to a type 2513 character generator at location A5, The seven rows in
each character are scanned by the VA, VB, and VC signals, and the output of the characler gen-
erator is serialized into a stream of dots by a 74166 at location A3. This bit stream is routed Lo
an exclusive-OR gate, where it is inverted if the high bit of the data byte is off and either the
sixth bit is low or the 555 timer at location B3 is high. This produces inverse and flashing charac-
ters., The text bit stream is then sent to the video selector/multiplexer (below).

If the Apple’s video screen is in a graphics mode, then the data from RAM is senl 1o two
7415194 shift registers at board locations B4 and B9. Here each nybble is turned into a serial
duty siream. These iwo data sireams are also sent to the video selector/multiplexer.

fE1 IEl IEL TEL IEL IEL EL 'EI OTEL O(EL O(EL OTELOTED OTEL IR OMELOTELO'EDOMPDORDOMFL TR

IF._ Tl

BRI e e e e

The T4LS8257 multiplexer at board position A8 selects between Color and High-Resolution graph-
ics displays. The serialized Hi-res dot stream is delayed one-hall clock cycle by the 74L874 at
location ALL if the high bit of the byte is set. This produces the alternate color set in High-
Resolution graphics mode.

The video selector/multiplexer mixes the two data streams from the above sources according to
the setting of the video screen soft switches. The T4LS194 at location A10 and the T4LSI151 al
A9 select one of the serial bit streams for text, color graphics, or high-resolution graphics
depending upon the screen mode, The final serial output is mixed with the composite synchroni-
zation signal and the color burst signal generated by the video sync circuits. and sent to the video
putpul connectors.

The video display soft switches, which control the video modes, are decoded as part of the
Apple’s on-board [/O functions, Logic gates in board locations B12, B13. B11, A12, and All are
used to control the various video modes.

The color burst signal is created by logic gates at B12, B13, and C13 and is conditioned by RS,
coil L1, C2, and trimmer capacitor C3, This trimmer capacitor can be tuned to vary the tint of
colors produced by the video displuy. Transistor Q6 and its companion resistor R27 disable the
color burst signal when the Apple is displaying text,

VIDEO OUTPUT JACKS

The video signal generated by the aforementioned circuitry is an NTSC compatible, similar to an
ElA standard, positive composite video signal which can be led to any standard closed-circuit or
studio video monitor. This signal is available in three pluces on the Apple board:

RCA Jack. On the back of the Apple board, near the right edge, is a standard RCA phono jack.
The sleeve of this jack is connected to the Apple’s common ground and the tip is connected 1o
the video output signal through a 200 Ohm potentiometer. This potentiometer can adjust the
voltage on this connecter from 0 to 1 voll peak.

Auxiliary Video Connector. On the right side of the Apple board near the back is a Molex
KK 100 series connector with four square pins, (257 tall, on 10" centers. This connector supplies
the composite video output and two power supply voltages. This connector is illustrated in figure
15.

fahlc 28: {’\usiliary Video Output Connector Signal Descriptions |

Pin Name I’j;:::u_riﬁlilm |
| GROUND System common ground; 0 volts.
2 VIDEOQ NTSC compatible positive composite video. Black level is

about .75 volt, white level about 2.0 volt, sync tip level is 0
volts. - Output level is not adjustable. This is not protected
against short circuits,

| 3 +12v +12 volt power supply.
|4 —Sv —35 volt line from power supply.
97

Auxiliary Video Pin. This single metal wire-wrap pin below the Auxiliary Video Output Connec-
tor supplies the same video signal available on that connector. It is meant to be a conneclion
point for Eurapple PAL/SECAM encoder boards.

(-
[of[e]]o]]e | TR
IE] — | Pin

Figure 15, Auxiliary Video Output Connector and Pin.

BUILT-IN 1/0

The Apple’s built-in 1/O functions are mapped into 128 memory locations beginning at SCA@8.
On the Apple board, a 74LS138 at location F13 called the 1/0 selector decodes these 128 special
addresses and enables the various functions.

The 7415138 is enabled by another "138 at location H12 whenever the Apple’s address bus con-
tains an address between SCOBB and SCOFF. The 1/0 selector divides this 256-byle range into
eight sixteen-hyle ranges, ignoring the range SCB8@ through SCAFE. Each output line of the "138
becomes active (low) when its associated 16-byle range is being referenced.

The “@" line from the 1/0 selector gates the data from the keyboard connector into the RAM
data multiplexer.

The **1"" line from the 1/0 selector resets the 74L574 fip-Aop at B10, which is the keyboard Nag.

The “*2" line toggles one half of a 74LS74 at location K13, The output of this flip-flop is con-
nected through a resistor network to the tip of the cassette outpul jack.

The **3'" line toggles the other half of the 74LS74 at K13. The output of this flip-flop is con-
nected through a capacitor and Darlington amplifier circuit o the Apple's speaker connector on
the right edge of the board under the keyboard,

The **4"* line is connected directly to pin 5 of the Game 1/O connector. This pin is the utility

CA4d STROBE .

The **5" line is used to enable the 7415259 at location F14, This IC contains the soft swilches
for the video display and the Game 1/0 connector annunciator outputs. The switches are selected

9%

El ¥l IEL [F]

Ty OIE O 'El O IEl IEl OIE OJEl ED O'E1OTEL OIED OIFL O TE1 (El OIF1 IEl TEl IE

R R R e e e

by the address lines 1 through 3 and the setting of each switch is controlled by address line @

The 6" line is used to enable a 7418251 eight-bit multiplexer at location H14. This mulu-
plexer, when enabled, connects one of its eight input lines to the high order bit (hit 7) of the
three-state system data bus. The bottom three address lines control which of the eight inputs the
multiplexer chooses, Four of the mux’s inputs come from a 553 quad timer at location HI13,
The inputs to this timer are the game controller pins on the Game /O connector. Three other
inputs to the multiplexer come from the single-bit (pushbutton] inputs on the Game I/O connec-
tor, The last multiplexer input comes from a 741 operational amplifier at location K13, The
input to this op amp comes [rom the cassetie inpul jack

The “*7" line from the 1/0 selector reseis all four trmers in the 553 quad timer at location H13.
The four inputs 1o this timer come from an RC neiwork made up of four 0.022uF capacitors,
four 100 Ohm resistors, and the variable resistors in the game conirollers attached to the Game
1/0 connector. The total resistance in each of the four timing circuits determines the timing
characteristics of that circuil.

“USER 1" JUMPER

There is an unlabeled pair of solder pads on the Apple board, to the left of slot @, called the
“User 1" jumper. This jumper is illustrated in Photo 8. If you connect a wire between these two
pads, then the USER 1 line on each peripheral connectors becomes active. If any peripheral card
pulls this line low, e/ internal 1/0 decoding is disabled. The 1O SELECT and the DEVICE
SELECT lines all go high and will remain high while USER 1 is low, regardless of the address on
the address bus.

- L
WETETERTTEY

B
=
B
| .
B
B
B
B
=
E

The USER 1 Jumper

e BTE

Photo 8. The USER 1 Jumper.

99

THE GAME 1I/0 CONNECTOR

=+ 5v
PB&
PBI
) PB2
Cl4d STROBE
GCe
GC2
Gnd
Figure 16.
Game 170 Connector Pinouts
[Table 29: Game 1/0 Connector Signal Descriptions

Pin: Name: Description:

1 + 5v +5 volt power supply. Total current drain on this pin must be
less than 100mA.

2-4 PE®-PR2 Single-bit (Pushbutton) inputs. These are standard 74LS series
TTL inputs.

5 C@ STROBE A general-purpose strobe, This line, normally high. goes low
during @@ of a read or write cycle to any address from $C@40
through SC@4F. This is a standard 74LS TTL output.

6.7,10,11 GCB-GC3 Game coniroller inputs. These should each be connected
through a 150K Ohm variable resistor to +3v,

8 Gnd System electrical ground.

12-15 ANB-ANJ Annunciator outputs. These are standard 74LS series TTL out-
puts and must be buffered if used to drive other than TTL
inputs,

9,16 NC No internal connection.

THE KEYBOARD

The Apple’s buili-in keyboard is built around a MM5740 monolithic keyboard decoder ROM.

The inputs to this ROM, on pins 4 through 12 and 22 through 31, are connected to the matrix of

keyswitches on the keyboard. The outputs of this ROM are buffered by a 7404 and are connected
to the Appie's Kevboard Connector (see below),

The keyboard decoder rapidly scans through the array of keys on the kevboard, looking for one
which is pressed. This scanning action is controlled by the free-running oscillator made up of
three sections of a 7400 at keyboard location U4, The speed of this oscillation is controlled by
C6, Ro, and R7 on the keyboard's printed-circuit board.

(FI 'F1 TFI IFI IEL IFI IFL IFL IFl IFL IFL IF1 (FL (F1 IEl [F1 [Fl 'F1 'F1 'E1 [Fl [FI

FF.._"Fl

101

Figure 17. Schematic of the Apple Kevboard

| O) T T T T LR

The key on the keyboard is connected 1o a 555 timer circuit at board location U3 on the
keyboard. This chip and the capacitor and three resistors around it generate the 10Hz “REPeaT™
signal. If the 220K Ohm resistor R3 is replaced with a resistor of a lower value, then the [REPT
key will repeat characters at a faster rate.

See Figure 17 for a schematic diagram of the Apple Keyboard,

KEYBOARD CONNECTOR

The data from the Apple’s keyboard goes directly to the RAM data multiplexers and latches, the
two 74152575 at locations B6 and B7. The STROBE line on the keyboard connecior sels a
741574 DNip-Nlop at location B10. When the 1/0 selector activates its **#"" line, the data which is
on the seven inputs on the keyboard connector, and the state of the strobe flip-flop, are mult-
plexed onto the Apple’s data bus,

Table 30: Keyboard Connector Signal Deseriptions
Pin: Name: Descriplion: i
1 +5v +35 volt power supply. Total current drain on this pin must be
less than 120mA.

2 STROBE Strobe output from keyboard. This line should be given a pulse
at least 10us long each time a key is pressed on the keyboard.
The strobe can be of either polarity.

3 RESET Microprocessor’s RESET line. Normally high, this line should
be pulled low when the [RESET] button is pressed.

4916 NC No connection.

5-7,10-13 Data Seven bit ASCII keyboard data input,

8 Gnd Svystem electrical ground.

15 —12v —12 wvolt power supply. Keyboard should draw less than
S0mA.

102

Tl L FL

| L IFL(FL TP OTEL TEL TFL TFL 'FLTFI

IFI

| IF_'FI [Nl Nl TEI [Fl IE IFI

RESET | 3
NC | 4
Data 5 3
Data 4 | 6
Data &
Gnd | &

Figure 18.

1o a normal home cassetie tape recorder

The input impedance is 12K Ohms.

LR T R S

03

14
13
12
11
iy
9

+5v | 1 D 16
STROBE | 2 13

NC
—12v
NC
Data 1
Data @
[Data 3
Data 2
NC

Keyboard Connector Pinouts

CASSETTE INTERFACE JACKS

Cassette Input Jack: This jack is designed to be connected to the ““Earphone’
outpul jacks on most tape recorders. The input voltage should be 1 volt peak-to-peak (nominal)

The twao female miniature phone jacks on the back of the Apple 11 board can connect vour Apple

or ~*Monitor™

Cassette Qutput Jack: This jack is designed 1o be connected 1o the “"Microphone™ npul on
most lape recorders. The output voltage is 25mv into a 100 Ohm impedance load.

POWER CONNECTOR

This connector mates with the cable from the Apple Power Supply. This is an AMP #9-35028-1
six-pin male connector.

Table 31: Power Connector Pin Descriptions

Name:

Ground

+5v

+12v

—12v

— Sy

Description:

Common electrical ground for Apple board.

+5.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws —1.5 amp from this supply.

+12.0 volis from power supply. An Apple with 48K of RAM
and no peripherals draws —400ma from this supply.

=12.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws —12.5ma from this supply.

—5.0 volts from power supply. An Apple with 48K of RAM |
and no peripherals draws —0.0ma l'rDE: this supply. |

O
5 6

—12V @ (2] -8V
3 4

+5V @ @ +12V
1 2

GND @ @ GND

mn
L Y

Figure 19. Power Connector

104

IFi IF1 IF Er IEl IF1 IF1 Pl IF1 Fi

IFi

Tl IFi 1 J| a4 i r i] |F IFl

r

BRI e

SPEAKER

The Apple’s internal speaker is driven by hall of a T4LS74 Nip-flop through a Darlington amplifier
circuit. The speaker connector is a Molex KK100 series connector, with two square pins, .25
tall, on 107 centers

[Pin. Name]ie-;u-rugrtii-wn: _
1 SPKR Speaker signal. This line will deliver about .5 watl into an 8
Ohm load.

|
| 2 +5v +5 volt power supply.

| o | sPkR
E =1

Figure 20, Speaker Connector

PERIPHERAL CONNECTORS

The eight peripheral connectors along the back edge of the Apple’s board are Winchester
H#IHW2SC0-111 50-pin PC card edge connectors with pins on . 10" centers, The pinout for these
connectors is given in Figure 21, and the signal descriptions are given on the following pages.

105

1

USER 1

- 0
DEVICE SELECT
D7

D&

05

D4

D3

D2

D1

Do

+12v

nonoonnonnannonnnaonnnnnnnn

E) [Lummmmummﬁ Ol

b in L L T= R
ha L & o~ =

+5V
DMA QUT
INT OUT
DMA
RDY

170 STROBE
MN.C.
R/W
A15

Ald

A13

A2

ATl

Al0

AG

AB

AT

AB

AS

Ad

A3

A2

Figure 21. Peripheral Connector Pinout

106

IF1 'F1 'F1 (E1 IFL T

IFl

Tl Py 1 TFL 1P IFD (P IFL IFL IFL TFL IFL O IFD OIF Tl

VI A L L L

Table 33: Peripheral Connector Signal Description

Pin:

Name:

Description:

18

20

21

22

23

24

25

26

170 SELECT

AB-ALS

R/W

SYNC

T/0 STROBE

RDY

INT OUT

DMA OUT

+5v

GND

This line, normally high, will become low when
the microprocessor references page 3Cn, where
i is the individual slot aumber. This signal
becomes active during @@ and will drive 10
LSTTL loads®. This signal is nol presenl on
peripheral connector @

The buffered address bus. The address on
these lines becomes valid during @1 and
remains valid through ®@. These lines will
each drive 5 LSTTL loads®.

Buffered Read/Write signal. This becomes
valid at the same time the address bus does,
and goes high during a read cycle and low dur-
ing a write. This line can drive up 1o 2 LSTTL
loads®.

On peripheral connector T only, this pin is con-
nected to the video liming generator’s SYNC
signidl.

This line goes low during @@ when the address
bus contains an oddress between $CE@Q and
SCFFF. This line will drive 4 LSTTL loads®.

The 6582's RDY input. Pulling this line low
during @1 will halt the microprocessar, with the
address bus holding the address of the current
location being fetched,

Pulling this line low disables the 6592's address
bus and halts the microprocessor. This line is
held high by a 3K} resistor to +5v.

Daisy-chained interrupt output to lower priority
devices. This pin is usually connected 1o pin 28
(INT INL.

Daisy-chained DMA output to lower priority
devices. This pin is usually connected Lo pin 22
(DMA IN).

+5 volt power supply. S00mA current is avail-
able for all peripheral cards.

System electrical ground.

* Loading limits are for each peripheral curd

107

Table 33 (cont’d):

Peripheral Connector Signal Description

Pin:

Name:

Description:

27

26

29

30

31

33

34

35

36

37

38

39

DMA IN

INT IN

Z|

=
el

ES

=

—12v

—S8v

COLOR REF

™

Q3

bl

USER 1

Daisy-chained DMA input from higher priority
devices. Usually connected to pin 24 (DMA
OuT).

Daisy-chained interrupt input from higher
priority devices. Usually connected to pin 23
(INT OUT).

Non-Maskable Interrupt, When this line is
pulled low the Apple begins an interrupt cycle
and jumps to the interrupt handling routine at
location $3FB.

Interrupt ReQuest. When this line is pulled
low the Apple begins an interrupt cycle only if
the 6502°s 1 (Interrupt disable) flag is not set,
If so. the 65082 will jump to the interrupt han-
dling subroutine whose address is stored in
locations S3FE and S3FF.

When this line is pulled low the microprocessor
begins a RESET cycle (see page 36).

When this line is pulled low, all ROMs on the
Apple board are disabled. This line is held high
by a JK (1 resistor to +5v.

—12 wvolt power supply. Maxmum current is
200mA for all peripheral boards.

—5 wvolt power supply. Maximum current is
200mA for all peripheral boards.

On peripheral connector 7 onfy, this pin is con-
nected to the 3.5MHz COLOR REFerence sig-
nal of the video generator.

TMHz clock. This line will drive 2 LSTTL
loads®.

2MHz asymmeitrical clock, This line will drive
2 LSTTL loads®.

Microprocessor’s phase one clock., This line
will drive 2 LSTTL loads®,

This line., when pulled low, disables all internal
1/0 address decoding®*®. |

* Loading limils are for esch peripheral card

** See page 99

108

IFi IFL IFL IF1 (P! IF1 (Pl IFL IF1 P F1 IF1 Tl IF1

IFl

Fl IF IFl IFiL IFl IFl |IFI

T

IR e

T:;hl:: 33 (cont'd): Peripheral Connector Signal Descr‘i.ii-ﬁnn

Description:

Tiey Naow
40 b
41 DEVICE
SELECT
4249 DB-D7
50 +12v

Microprocessor's phase zero clock. This line
will drive 2 LSTTL loads®.

This line becomes active (low) on each peri-
pheral connector when the address bus is hold-
ing an address between SC@mM and SCOnF,
where » is the slot number plus 58. This line
will drive 10 LSTTL loads*.

Buffered bidirectional data bus, The data on
this line becomes wvalid 300nS into @ on a
write cycle, and should be stable no less than
100ns before the end of ®@ on a read cycle.
Each data line can drive one LSTTL load.

+12 volt power supply. This can supply up to
250mA total for all peripheral cards.

* Loading limits are for each peripheral card.

109

14

1di

RO

-

a1

14l

(4l

'yl

(4l |4 14l

14l 14

14l

i [VT |

’-” B

oF K AR A A
\om o e T
N] B ey T
wpve e [T e B DT e T E— = e
7 s - . -
L
T = | lan BELITT
) ! G
n4 = n :
| _ R
— = = LT [i)
11 AT}
| — —— i o
| _ = — | T = _-.—__um
g ST T
_ = | [e
L= = _ . N
—’-“;ﬂ
8 TALER T + ™ . e
.Tp\ ¥ s - — | | ||a.“u_u
e v i | e e s, | g
TR . .,
Y s 1o ALy i d..\?_. ,_ | | 2
[- U - B
[mais B —]
3 4] - | ¥ L]
o T 1 —An
— r e
pdi B F.J. %
ferr_cen B —
o L _ i
— e
n. e n“
s =
ll W = ————+ =
) § e
1] et T — o
| f s
—r
i -ar
[e
7 o egef
i
i

14

1ai

Figure 22-1, Schematic Diagram of the Apple 11

110

rrirs
|

K

EEEREREE]]] i i]] i

K

R = | o 0 e e o e

s
I.—_ - il
[e 1 '
L

. Lo

- | e A, R S S B
[B] | (R]
St -

5 E L

[~ g e [

p T T M T

K

K

L]
'

K

K

K

F
8

KR

-
i

|

-

|

-

\

\

A

3

Figure 22-2. Schematic Diagram of the Apple 11

n
u‘

Wi

111

1

14

di

(¥ T 1]

A

141

4l

1di

14

14

&

Figure 22-3. Schematic Diagram of the Apple 11

(F /a1

112

. —_— — 3o
_ e — —_———————— — - D0 w by Sw T -,
__ H — = = = p ¢
b — - v o B v |
| lil —— Ter— M_ - T
[N - Lllﬁr ! S S . N
[l | | =
1

[
- =] -2 x

- = & B 1 E T T
| = = =] | R [T
il | e = Lt e - o et || 4 r _.nl -

N — _ | 7 e — |

| R i (I L : 1 _ .I.mh_.l» | _

_ = — - T g T .
L | — | _ ———— 1 [|
T T ek e B _ klekhons L i 11 1 1 swes| |
. M I] THETET] s — woe: .l_.. -
@ 2 @ @ [T :

§ I " il

Figure 22-4. Schematic Diagram of the Apple 11

| = Lk | mearase o i
(| _w+ﬂ IR 7 . T

_| = _I._.| || = | #|--|,In.xl
__..mmm. = _ [

| | T T T T T T O OO

113

What loelambening

Figure 22-5. Schematic Diagram of the Apple 11
114

Figure 22-6. Schematic Diagram of the Apple 11

| L Y, T O, A T O, O

115

116

ri [Fl

'FI IFl 1El IFi 1El 1FI

] J

APPENDIX A
THE 6502 INSTRUCTION SET

6502 MICROPROCESSOR INSTRUCTIONS

ADC

AND
ASL

BCC
BCS
BEQ
BT

ami
BHE
BPL
BRK
BYC
avs
cLC
cLD
CLI

[={8]
cMP
CPX
CPY
DEC
DEX
DEY

INC
INX
INY
JMP
J5A

Add Memoary to Accumuiaion with
Carry

"AND" Memory wilh Accumuiator
Shift Lett Cne B4 iMemory or
Ascumulator!

Branch on Carry Claar

Branen on Carry Set

Braneh o Aesull Zeno

Test Bits in Momory with
Accurmuimor

Branch on Resuit Menus

Branch on Aesul not Zero
Branch on Resul Pls

Force Break

Branch pn Overflow Clear

Branch on Overfiow So1

Ciear Carry Flag

Cinar Dwcimal Mode

Clear Intarfupl Desable BiY

Ciear Overfiow Fing

Compare Memory and Accumulster
Compare Mamory §nd Index X
Compare Memory and index ¥
Decramant Memory by One
Dicremant index X by One
Decremant indek ¥ by Dne
"Exclusrve-Or" Memory with
Agcumulator

incremeni Memory by One
Ingremen Indas X by One
increment Indes ¥ by Onae
dump to New Locaion

Jump 1o Néw LOCabon Saving
Relurn Address

LDA&
LOX
LDY
LSR

NOP
ORA
PHA
PHP
PLA
PLP

ROL

ROR

ATI
RATS

S8C

SEC
SED
SEI

ETA
ETX
STY
TAX
TAY
TSX
THA
TEE
TYA

Load Accumilmior witn Memary
Lowd Index X with Memary
Loed ndex ¥ wiih Memory
Shift Aight ona Bit (Mamaory oF
Accumuisior!

Mo Cperation

“OA" Memory wiin Accaemulaton
Fush ACcumulilor on SIeck
Fush Processo’ Stalus on Stack
Pull Accumulator trom Stack
Pull Processor Status trom Siachk

RAoiaie One Bit Left iMemary or
Accumulaion

Aotate One Bit Right IMamory oF
Acoumuiatar

Return fram Interrupt

Fieturn from Subroutine

Subtract Memory from Accumiisto:
with Borrow

Sel Carry Flag

Sel Decimal Mode

Sel Interrup! Disable Stalus
Store ACCUMIBIGT in Mamary
Store index X in Memaory

Store Index ¥ in Memaory

Transler Accumulator 1o Indes X
Transler Accumuiaton 1o Index ¥
Transler Stack Pointer to index X
Transier index X to Accumulator
Transier Ingex X to Stack Poirnist
Trangter Indes ¥ 10 ACcumalalorn

118

Ml (EL MEL TEL MEL MEL ME1 TEL MEL

| 4

FI TFL [FI

E

T I A A A A A

<

LW EOT >

PCL
QFER

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

Accumuisior

Ingas Ragisters
Memary

Boriow

Processor Status Regisier
Siack Pointer

Change

Mo Chengs

Add

Logical AND

Subtract

Lagical Exclusave Dv
Trargter From Siack
Transier To Stack
Transier To

Transier To

Legical OF

Program Counter
Program Counier High
Program Countar Low
Operang

Immadiaie Addressing Mode

FIGLURE 1 ASL-SHIFT LEFT ONE BIT OPERATION
— , . .
|ij~r|ﬁ|5]4|a|?|1!n.—_|i|

FIGURE 2 ROTATE ONE BIT LEFT [MEMDRY
OR ACCLUMULATOR

ISoonoonn

FIGURE 3

IS Ennnnnnn,

NOTE 1 BIT — TEST BITS

Brl 6 and 7 8 transfarred 1o the sigtus regisier 11 ihe
rasult of A A M i zero then 251, otherwise 20

119

PROGRAMMING MODEL

T 4]
1 A J ACCUMULATOR
. o
¥ INDEX REGISTER ¥
7 0

X INDEX REGISTER X

PCH

PAOGRAM COUNTER

1]
|
o
[[on | 5] STACK POINTER

7 0
]N vig|ojpi|Z|c PROCESSOR STATUS REGISTER. P
S CARRY
ZERD
— INTERAUPT DISABLE
e DECIMAL MOCE
BREAK COMMAND

OVERFLOW
NEGATIVE

120

P, Pl (F TEL TEL [El [El [E1 [EL

¥

T1 (F1 'EL IFL TEL IED IFL 1E0 1Pl 1Fl [FI

O e e e e e e

INSTRUCTION CODES

e — 4
| Agsembly m_‘l
Mime Cperation Addressing Langeiige oF | Ko | P S Ry
Mescriplian | Mads | Form Cofe |Bytex | WICIDV
T ! ! 1 10T
ADC : |
Adé memory o B-M-C —AC | mmedate | ADC wilper (] 2 ==y
sccumulatier with carry | Zera Page | ADC Oper (1] 2
| Tera Pegex | ADC OperX Th 2
| Absabute ADC Oper B0 k|
| Absoiute X ADC Dper X i 3
hbspkite ¥ ADC Dper Y by] 3|
(ndirect ¥} ADC (Diper X)] 2|
{Indirech ¥ ADC [Opedt Y LAl z |
| — - 8 Tnas Al o o B O —r
AND
AND memary with AAM =4 | Immediate AND alipe = 2 Wy
accumulator | Zera Page AND Oper 25 2
fero PageX | AND Oper X 35 2
Absalute | AND Ogper il 3
Kbsobute X AND Oper X n 3
Absoldte ¥ AND Oper ¥ n 3
{lndirect X) | AND (Operx) | 21 | 2 i
(Ingirech ¥ AND (Operi¥ | M 2 |
ASL |
Shitt left ane bt |Ses Figuere 1) | Accumulaior | ASL A [0 1 iy
{Memory or Accumulaior] Tero Page [ASL Oper o6 2
fera Page X | ASL Opar.X 16 7
Absptute | ASL Oper [3 a
leuu X | ASLOperx | E | 3
BCC |
| Branch on carmy clear Branch on C-0 | Aslatve BCC Opar L] s
BCS |
 Branch on carry set | Branch on C=1 | Aelative EES_ﬂpur ‘l B 2 =
BEQ |
Branch o0 resull rero Branch on Z=1 | Aelative BEQ Oper L
BIT
Tesi buts in memory AAM M; =N | Zero Page BIT* Oper 4 7 My My
with accumulator Mg =W Absolule BIT* Dpet €] 3|
BMI .
Branch on resull minus Branch on N-1 l.lliz_l__aln-'r BMI Dpes ko 2 1 1|
BNE |
| Branch on resit not zero | Branch on 2-0 | Relative BNE Oper | DO 2 =
BPL |
_Branch on resull phus ranch on N=0 | Belative BFL opir) 2| --——
BAK ,
|- Farce Break | Farced Implied BRK" o 1 L]
| Interrupt
- l PC:24PA
BVC |
Branch an overliow clear Rerative BWC Oper 5 2 —

e b

IR B CatTEnd DRI I TEMET By RS

[I!I.”, |]
| peration Addresaing Language | or | We | F Subue Reg
L Made Fim | Code |Byms| W2CIDV
e Y J- TR Pz s o] B o
BYVS | | [
Branch an overfiow sef Branch on Vel | Relative A5 Oper | o 2
s S L2 — e = 4
CLe
| Ciear carry tag 0~C Implied LG 1B i o
CLD
Clear decimal mode | 0—=D Implied | {EI__?_ | b8 | 1 -1
CL
0 —I Implied L 58 1 [}
| s S . b 1
CLv
Clear overflaw flag | =¥ Implign CLy Ba 1 R |
CMP
Compare memary and a—M immediate | CMP =0per (v] 2 Wiy
accumulator Iero Page | CMP Oper ¥ 2
Tero Page X | CMP Oper X i 2 |
Absolute CMP Oper co 3
Absolute X CMP Oper X oo 3
Absolute ¥ CMP Oper ¥ 1] k]
(Indirect X) CMP |Oper X) (] 2
Illl_ﬂlr_ﬂ:_r! ¥ CMP (Oper) ¥ o 2
CPX
Compare memary and X—M Immediate CPX s(per ED 2 Wi
index X Zuro Page CFX Dpet E4 2
Absolute | CPX DOper EC 3
i —— Bl Ml —
CPY |
Compare memory and Y—M Immediate CPY sillper v] 2 ALY
inen ¥ Zern Page CPY Dper [=] 2
Absolule CPFY Oper ceC 3
DEC
Decrement memary M—1-=M | Zern Page DEC Oper 6 | 2 W
by ohie Zero Page ¥ | DEC OperX 06 2
Absplule DEC Oper CE 3
A | Absoiute X | DEC Oper.X DE 3
DEX
Decrement mdex X =1k Implig DEX ca 1 W
heeny oo o) B
DEY
Decrement ndex ¥ ¥=1-=¥ Impleed | DEY -] 1 W —
|_by one i —
122

[} & i L] o 1} &] =1 e (] 2 L]

e

e ¥

[}]

Tl O1F 'EL 1L IR IR TR

O O e

| Aszambly HEX
| LT | Dperstion Addrealng Language op e | P Staun Reg
Denerigtion I Mode Farm Code [Byms | WICIDV
| EOR . g
| TEzclusiwe-Dr’ memary AVM =i Immediate E0H wlper | a9 2 N
| with accumudator Tero Page EOR Dpet &5 2
| Tero Page X EQ# Oper X 55 2
| | Absolule EOR Oper 40 3 |
| Mpsolutex EOR Oper.X 50 3
Ansplute ¥ EOR Oper¥ = 3
(indimect X| EOR (Dper X) 41 2
| frdivect) ¥ | EOR (Dper)Y & 2
b SO G v LI :
[N -
| Imcrement memary M:1=M Zero Fage INC Opsi Eé 2 Wyl
by one | Zero PageX | INC OperX F& 2
| Absolute INC Diper EE k|
| o Absolute X INC Dpes.X FE]
INX |
increment mdes X By ong | X - 1 =X ! impled INg El 1 Wiy
INY
| increment mndex ¥ by one | ¥+ 1 =¥ Iemplied INY ca 1 W
JMP |
Jump 10 nEw IDCEnan [PC+1} == PCL | Absglule JMP Oper ac 3
o PC+2) = PCH | Indsrect JMF [Dper] 6L i
| Juiifip to Aew lacation PC-2 4 Absoluie JSA Oper Fall 3
S3VANG TEIEIN address (PC+1) ==PCL
(PL+2) —PLH
| Load accumulator Mo=A | Immediare LOA niiper AR 2 W
willi memary ZTera Page LOA DOper AS 2
Tere Page X LDA DperX BS 2
Abaalule LOA Dpes AD k]
Absolute ¥ LOA OpesX B0 3
| Mbsolute¥ | LDA Opar¥ BY 3
(IndivectX) | LOA [Oper X} at | 2
{Inadimect]. ¥ LDA (Operl¥ B |2
LDX |
Load index X M =X Immipdiain LXK wiper A2 2 i
with memary Ieio Page | LDN Dper AR 2
Iero PageX | LDX OperY B 2
Atsolute LO¥ Dpes AE | 3
Absolute ¥ | LDX Dper Y BE k]
Loy
Load mndea ¥ M-y Immediate LDY #0per Al 2 Wi
wilhl memory Zaro Fage LOY Oper A 2
Jero Page | LDY Operk B4 2
Absolute LOY Oper AL 3
Absalute X LOY Operx | BC k]

123

Azpsmbly
L1LT] Oparation Addressing Languaga
Descripbisn Made Form

LSR
Shitt ngh! eae bl {See Figure 1) | Accumutator | LSA A 1A 1 [EEENS
Imemary af accumulatar) Tero Page LSA Oper o]

Zero PageX | LSA Opee X 56 ?

Absalute LA Ogper A 3

= __MEI_U_!E _I LSA Oger X S5F 3

NOP
NC Operalan Mo Operation | Impled NOF E& 1 |
DRA
IR memney with AVM —=A Immediaie ORA w0per (1] 2 afiy ==
accumulalon Iein Page ORa, Opes o5 2

Zero Page | ORA Oper X 15 2

Absolute 04 Oper oo 3

Ansolute, X ORA - Oper X g1} 3

Absnlute, ¥ 0RA Oper¥ 19 k]

finditect X) 0RA (OperXy | O H

findwect) ¥ 0fa |Oper) Y 11 2 -
PHA
Push accumulalar Ay Impiied FHA AN 1 e
an slack
PHP
Push precessor status Fi Implied PHF o 1
on slack 1
PLA
Pull accumulator at Imiplied PLA] 1 W=
from stack
PLP
Pull processar stalus Py linphied PLR by] ! | Frem Stack
from stack
ROL
Fotate one b ledt [See Figure 71 | Accumulator | AOL A 24 1 iyl ——
(mempry or accumaulator] Zero Page ROL Oper s 2

Tero Page. X ROL Dper X 6 2

Absalute AOL Oper i3 3

L Absofute ¥ | ROL Oper.X € |3 | 1

ROR
Rniate ane bit right |See Figure 31 | Accumulator | RDA A 6 1 Vil —— -
Imemary of BCcumulator) Tero Page RORA Oper B 2

Tero Page. | ROA Oper X L] 2

Absalute ROA Oper BE 3

Absalute X ROA Oper X TE E]

124

[El TEI [E1 [E1 TE1 IEL IEL

IE|

| 3

Fl

TI IEI 'El TFl [FI | IEl [El IFI

O O VU

o index X

125

| Axpembly
Wame Opsratins | Asdressing Language ¥ St A
Deseriphien | Mode Farm e | micigv
ATI
Retuen from mberrupl FYPCE Implied _ﬂTI o From Stace
RTS ”
Retutn tram subroutine | PCH. PL-1 —PC/ Implied RTS — 1
SBC ; '
Subteact memary from | A-M-T =& |Immediate SAC wOper 2] ity
Accumutato: with borrow Zero Fage SEC Dpet ES
Tero Page X | SBC Oper X Fs
Mhaahute SAC Dper ED
Absalute X | SBC Dpei X FO
Atsakute Y SHC Oper¥ Fa
Indrect. X} SBC (Dper X) Ei
ngirect] ¥ SHC |Oper)Y F1 - N
SEC [
Ser cany flag 1 —=C Implied SEC __3!; =} =,
SED
Set decimal mode 1 =D imphied SED F& !
i sl Lo | 4]
SEI
Set inlerrupt disable V==l Implied SEl i} i
ELELTEY Jp——
STA |
Sipre accumulaion L] Tein Page STA Dper BS ?
in memory Tern Page X STA Oper X o5 2
Abspigie STA Dper 8O 3
Absolusie X STA Oper X 80 3
Absolute ¥ STA Dper¥] 3
indliiect X) STA [Oper,X) 81 2
o bindirect. ¥ STA (Dper)Y 1] 2
87X
Store index X o memary | X —=M Jerp Page 5TX Oper B 2
Zero Page ¥ | STX Dper ¥ 96 2
| Ahsalule | arx _I:I_D!r BE 3
sTY
Store index ¥ m memary | ¥ =M Jern Page STY Dper B4 2 -
Zero Page X STY Oper X 54 2
Ahsgalute STY Oper BC 3
TAX
Transier accumuiaion B =X Fnpleed TAX LY o
1o inden X
TAY
Transher accumulator A=Y Implied TAY AH W=
1o index ¥ .
TSX .
Transter stach poinber |5 =X | implipg T5X BA oy

Name
Descriplian

TXA

Transter indexn X
b BCCuMulELD:

Transier intex X io
slack pomnfer

CTYA

Transfer indexs ¥
160 ACE iU kRl o

Dperatipn

K-

i=5

¥ o=k

Kunembly
Addrezsing Language
Wipde Fard

|mplied TaA
Implied TaS

|mplied TYA

126

Hex |

or

Ni

Sl Rag

Cote |Bym| MIZCIDV

e el 1E [El [IE er Ie el ey rey e NEl

el

L] b e e i

e

rima

o

0o —

& -
g -
o —
o5 —
o6 —
a7 —

o —
oA

o -
0c —

DE —
OF =
-
" —
12 —
12 -
"
15 —
"Ww—
7=
18 =
15—

18 -
1€ —
10—
1€ —
1F —
20—
21—
22
23 —
24—
25 —
28 —
a7 —
2 —
26 —
! —
| —
-
20 —
2€ —

HEX OPERATION CODES

BAK

DAA — iIndiract, X
MO

NOP

NOP

ORA Loro Page

ASL — Ievo Page

NOP

PHP

ORA I YT

- ASL — Accumulator

NOP

NOP

ORA — Absobute
ASL — Absoluie
NOP

BPL

ORA — lindirect!, ¥
HOP

HOP

MNOP

ORA — Zero Page, X
ASL — Zero Page. X
NOP

=18 =

ORA — Abacdute, ¥
NOP

NO#P

NOP

ORA — Absolute, X
ABL — Absoluie, X
NOP

J3R

AMND — lindirsct, Xi
NOP

MOF

BIT — Zero Page
AND — Faro Page
AQL — Imo Page
NOFP

PLP

AMD — Immediaie
AOL — Accumutalor
WNOP

BIT — Absoluie
AND — Abaslule
ROL — Absolule

2F = NDP
o — Bme
A1 — AND — (inderech, ¥
32— NOP
1 NOP
34 — WNODF

35 — AND — Zero Page. X
3 — AQL — Fero Page, X
ar — NOP

38 — SEC

MM — AMND — Absolute, ¥
1A — NOP

3B — NOP

IC - NOP

3D — AND — Absojute. X
3E — ROL — Absolute, X
IF — NOP

40 ATI

41 — EDQR — linginect, X
42 — NOP

43 — NOP

48 — NOP

45 — EDOR — Zero Page
46 — LSA — Zero Page
4T — NOP

AR — PHA

45 — EDR — Immadige
44 — LSRR — Accumulator
4B — NDP

4C — JMP — Absolute
40 = EDR — Absoluie
4E — L3R — Absolule

4F — NDP
50 — BwC
51 — EOR iindirecil, ¥
82 — NOP
83 — MNOP
54 — WOP

55 — EOF — Zeio Page, X
56 — LSA — Zero Page, X
57 — NOP

58— CLI

45 — EQR — Absolule. ¥
54 — NDP

58 — MOP

SC — NDP

50 — EOR — Absoluts, X

127

SE — LBA — Apsaiute, X

5F — NOP
60 — ATS
B — ADC — singireci, Xi
62 — NOP
61 — NOP
B4 — NDF

B — ADC — Zero Page
66 — AOR — Zero Page
67 — HOP

B — PLA

&3 ADC — Immediate
fA — ROR — Actumulalos
&8 — NOP

BC — JMP — Indirect

&0 — ADC — Absolute

GE ROR — Absolute

6F — NOF
0 — BVS
71 — ADC — lindirecti, ¥
72 — NOP
73 — WOP
4 — NOP

T4 ADC — Zero Page, X
76 = ROR — Zero Page X
7 — NOP

T8 — SE

T8 — ADC — Absolule. ¥
TA — NOP

T8 = NOP

7C — NOP

7D — ADC — Atsolute, X NOP
TE — ROR — Absglule, X NOF

F — NOP

B0 — NOP

Bl — STA — ilndireci. X
a2 NOP

Bl = NOP

B4 —5TY — Zera Page

B5 — STA — Zero Page

B — STX — Zara Page

ar NOP

B& — DEY
88 — NOP
BA — TXA
B3 — NOP

ac S5TY — Absolute

BDr — STA — Absalule

BE — S5TX — Absoluie

BF — NOP

80 — BCC

g1 STA = lindimact, ¥
52 — NOP

81— NOP

82 — STY = Zarp Page X
85 — 5TA — Zero Page X
B — STX — Zero Page, ¥
97 — NOP

98 — TYA
99 — 5TA — Apsoiute, ¥
88 — TXS
98 — NOP
8C — NOF

90 — 5TA — Absofute. X
9E — NOF

9F — NOF

Al — LDY — immeduie
A1 — LDA — lindirect. X
AZ — LDX — immediate
AJ — NHOP

Ad — LDY — Faro Page
A% — LDA — Zoro Page
AE — LDX — Zero Page
AT — MOFP

AB — TAY

LY LDA — immadinte
AA — TAX

AB — NOF

AC — LDY — Abspiute
AD — Absoiule

AE — LDOX — Absolute
AF = NOF

B0 — BCS

Bi — LOA — (indirect, ¥
B2 — NOF

Bl — NOP

Ba — LDY — Zero Page, X
BS — LOA — Zero Page, X
By LOX — Fero Page, ¥
BT — NOP

B — CLV

B3 — LDA — Absorute ¥
BA — TEX

BE — NOP

BC — LOY — Absolute X
BD — LDA — Absohule, X
BE — LDX — Absolute, ¥
BF — NO®

Co — CPY Immadeate
C1 = CMpP indirect. i
Cz — NP

€3 — NOP

T4 — CPY — Zero Page
C5 — CMP — Zero Page
CE — DEC — Zero Page
C7 = NOP

CB — INY

CB — CMP — immediate
CA — DEX

CB — NOP

CC —=CFY — Absolute
CO —CMP — Abanluls
CE — DEC — Absoluie

CF — NOP
D0 — BNE
01 — CMP — [indirectl, ¥
0F — NOF
03 — NOP
04 — NOP

D5 — CMP — Zero Page. X
D6 — DEC — Zero Page, X
OF — NOP

D8 = CLD

08 — CMP — ADsoiute. ¥
DA — NOP

128

DA — NoP
OC —NOP

DO —CMP — Absaluie X
DE — DEC — Absolute, X
DF — NOP

ED — CPX — Immédiale
Et — SBAC — iindirect X
E2 — NOP

El = NOP

Ed4 — CPX — Zera Page
ES — SBC — Zero Page
Ef — INC — Zero Page
ET — NOP

EB — INK

ES — SBC — Immedate
EA — NOP

EA — NOP

EC — CPX - Abaclute
ED — SBC — Absolule
EE — INC — Absolute
EF — NOP

F0 — BEQ

F1 — BBC — lindireet, ¥
F2 — NOP

F3i — NOP

Fd — NOP

(3 SBC — faro Pags X
F& = INC — Zero Fage, ¥
F7 — NOP

FE — SED

FB — SBC — Absolube. ¥
FA — NOP

FB — NOP

FC — NOP

FD — SBC — Absolube, X
FE — INC — Absolule, X
FF — NOP

IEi TEl [(El TEl TEl TEI TEI [fEl IEl [EIl

[El

1 (EFI 'FlI IEF1 /E1I I'EL IEl 'EL IE1l [FlL [IFI

IEl

APPENDIX B
SPECIAL LOCATIONS

Table 1: Keyboard Special Locations

Location: Siie
o Dccim_a! Description:
SCOB@ 49152 -16384 Kevboard Data
SCAI@ 49168 -16368 Clear Keyboard Strobe

Table 4: Video Display Memory Ranges

Sc:rccr; Page Begins at: _ Ends at: .
Hex Decimal Hex Decimal
Text/Lo-Res Primary 5400 1824 $7FF 2047
Secondary 5800 2048 $BFF 3871
Hi-Res Primary 52000 8192 S3FFF 16383
Secondary $400@ 16384 SS5FFF 24575
Table 5: Screen Soft Switches
L]‘_]{‘;Tm"‘ Decimal Description:
SCA50 49232 -16384 Display a GRAPHICS mode.
SCA51 49233 -16383 Display TEXT mode.
SCA52 49234 -16382 Display all TEXT or GRAPHICS.
SCA53 49235 -16381 Mix TEXT and a GRAPHICS mode.
SC@A54 49236 -1630@ Display the Primary page (Page 1).
SC@55 49237 -16299 Display the Secondary page (Page 2).
$C@56 49238 -16298 Display LO-RES GRAPHICS mode.
SCA5T 49239 -16297 Display HI-RES GRAPHICS mode. .
Table 9: Annunciator Special Locations
Address:
Aan. St Decimal Hex
(] off 492480 -16296 SCB33
on 49241 -16295 SC@59
1 off 49242 -16294 SC@5A
on 49243 -16293 $C@5B
2 off 49244 -16292 5C@5C
— on 49245 -16291 3C@SD
3 off 49246 -16299 SC@SE
on 49247 -16289%9 SC@5F

130

MEL

L

TEl TE1 TEl T[El [F!

IE. [E

IF. 'El IEl [El [E [Fl

IEl

1 IE 1 1 J IEl IEi IEl

Table 10: Input/Output Special Locations
Function Address: ; Read/Write
Decimal Hex
Speaker 49208 -16336 SC@3a R
Cassette Out | 49184 -16352 SCH20 R
Casselte In 49256 -16288 SCH6a R
Annunciators | 49240 -16296 SC@58 R/W
through through through
49247 -16289 SCA5F
Flag inputs 49249 -16287 SChe6l
49250 -16286 SCe62
49251 -16285 SC@63
Analog Inputs | 49252 -16284 SC064
49253 -16283 SCH65
49254 -16282 SCho6
49255 -16281 SCo6T

Analog Clear | 49264 -16272 SCaTR R/W

wlm = =

Utility Strobe | 49216 -16320 SCp40 R
Table 11: Text Window Special Locations
Function l.ocgttion: Minimummormal.’h’laximum Valuel
Decimal Hex | Decimal Hex
Left Edge 32 520 | @/8/39 S8/50/517
Width 33 21 | B/48/40 S8/528/528
Top Edge 34 8§22 | B/@8/24 $0/58/518
Bottom Edge 35 %23 | 8/24/24 SO/S18/818

Table 12: Normal/Inverse Control Values

Value:

Decimal Hex Effect:

255 SFF | COUT will display characters in Normal mode.

63 $3F | COUT will display characters in Inverse mode.

127 STF | COUT will display letters in Flashing mode, all
other characters in Inverse mode.

L I I I L I L L AL A LA LA LA LA LA LA

Table 13: Autostart ROM Special Locations

ocation:
I%)ccimal Hex Contents:
118 $3F2 Soft Entry Vector. These two locations contain
1811 $3F3 the address of the reentry point for whatever
language is in use. Normally contains SE@@3.
1012 S3F4 Power-Up Byte. Normally contains $45.
64367 SFB6F This is the beginning of a machine language
(-1169) subroutine which sets up the power-up location.
131

Table 14: Page Three Monitor Locations

Address: Use:
Decimal Hex Monitor ROM Autostart ROM
loe8 53F0 Holds the address
1889 $3F1 of the subroutine
None which_ handles
' machine language
“BRK™ reguests
(normaly $FAS9).
}g:? ;;:i None., Soft Entry Vector.
@12 $3F4 | None. Power-up byte.
1813 $3F5 | Holds a “JuMP" instruction to the
1814 S3F6 | subroutine which handles Applesoft 11
1815 $3IF7 | “&" commands. Normaly $4C S$58
SFF. B
1816 $3F8 | Holds a “‘JuMP" instruction to the
1817 $3F9 | subroutine which handles “‘User™
1818 S3FA | ([CTRL Y]) commands.
18419 $3FB | Holds a *“‘JuMP™ instruction to the
la2@ $3FC | subroutine which handles Non-
1921 S3FD | Maskable Interrupts.
1822 S3IFE | Holds the address of the subroutine
1923 $3FF | which handles Interrupt ReQuests.

Table 22: Built-In 1/0 Locations

5@ §1 82 83 84 S5 %6 §7 S8 S9 SA SB SC SD SE SF
SCP00 | Keyboard Data Input
SC@1@ | Clear Kevboard Strobe
8CO2@ | Cassette Qutput Toggle
$CR30 | Speaker Toggle
SC@48 | Utility Strobe
SCO5@ | gr | x| nomix | mix | pri | sec | lores | hires ani anl un2
$CHOR | cin | pbl ph2 phd | go# | gcl ge2 el repeatl 3CA68-3CR67
$C@7@ | Game Controller Strobe
Key to abbreviations:
gr Set GRAPHICS mode tx Set TEXT mode
nomix Set all text or graphics mix Mix text and graphics
pri Display primary page sec Display secondary page
lores Display Low-Res Graphics hires Display Hi-Res Graphics
an Annuncialor oulpuls pb Pushbutton inputs
ge Game Controller inputs cin Cassette Input
132

[E. TEL TEL TEL (F1 TEL IF. [EL

lE. [EI

[El

1 IF1 'FI 'FI 'F1 IFl 'Fl 'Fi 'Fl [Fl [F|

Table 23: Peripheral Card ifﬂ_Lm:ntinns

SCH98
SCHAR
SCaBa
$CRCH
SCODWY
SCOEQD
SCOFR

SCAs |

$1

52 53 84 85 %6 ST

58 $9 SA SB SC_SD SE SF|

Input/Output for slot number

1 O L e Ll b — S

133

f—
e — |
-
o
;
% o Table 24: Peripheral Card PROM Locations
S00 S10 520 SI0 540 S50 S6@ 570 S8 500 SA@ SBA SC@ SD@ SE@ SF
SC190 1
SC200 2
SCipa 3
% SC400 PROM space for slot number +
SC508 5
SCHHR 6
| $CT00 7
L
- Table 25: 1/0 Location Base Addresses
| Base - Slot
Address @ 1 2 3 4 5 6 (i
SCa88 SCPS® SCR9@ SCAA@ SCAB SCOCE SCPD@ SCOE@ SCOF®
L SC@81 SCHE1 SCa91 SCAAL $COBI sCaCl SCaD1 S$CPEL SCOFI
s 5C@82 SCAR2 §CP92 SCPA2 SCPB2 SCAC2 SCED2 SCRE2 SCPF2
I SCO83 SCP83 SCP93 SCBA3 SCBB3 SCAC3 SCeD3 SCRE3 SC@F3
SC@84 GOP84 SCP94 SCPA4 $CEB4 SCAC4 SCPD4 SCBE4 SCBF4
o SCO85 SCORS SC@95 SCOAS §CeBS SC@CS $CODS SCAES SCAFS
L‘_ SCE86 SCPRE SCB96 SCPAG SCPB6 SCOC6 SCPD6 SCO@E6 SCAK6
. e SCO87 SCART SCB9T SCPAT SC@BT SCOCT SCeD7 SC@ET SC@FT
I SCR8R SCARR SCE9R SCPAS SCABS SCACE SC@D8 SCAEE SC@rs
SCORY SCAR9 SC@9Y SCPAY SCABY SCBCY® SCEDY SCREY SC8rY
e SCARA | SCOSA SCPIA SCPAAA SCPBA SCACA SCADA SCOEA SCOFA
| $CH8B SCASR SC@YB SCPAB SCOBB SCOCB SCADB SCOEB 3C@FB
= SCPRC | SCBRC SC@9C SCRAC SCEBC SCACC $CODC SCREC 5COFC
SCERD | SCOSD SC@9ID $CPAAD SCPBD SCACD SCADD SCOED SCOFD |
L— SCORE SCOSE SCB9E SC@AE SC@BE SCOCE SCODE SCOEE SCOFE
i SCO8F SCA8F SCR9F SCOAF SCOBF SCACF $CaDF SCOEF SCOFF
| 1/0 Locations
-
Lss

Table 26: 1/0 Scratchpad RAM Addresses

" Base
_Addrgss
SP478
SB4F8
SB578
S05F8
$0678
B6F8
58778

[SO7F8

Slot Number

1 2 3 4 5 6 7

SA479 SB4TA SP4TB SP47C BA4TD SW4TE SMMTF
S84F9 S@4FA SPMFB SPAFC SBAFD SR4FE SP4FF
58579 S@5TA SBSTB S@STC SBSTD SBSTE S@STF
305F9 S@5FA SO0SFB SBSFC S85FD S@SFE SOSFF
50679 S@67A SP6TB 3B6TC SB6TD S@GTE SP6TF
S06FY SPEFA SP6FB S86FC S@6FD SB6FE SO6FF
8779 S@77A S@77B S477C S@7ID SA7TE SMTTF
$07F9 SPTFA S@TFB $ATFC S@TFD S@TFE S$ATFF

134

'l ¥l 'El Nl IF1 [Nl Kl 'El [El [IEl [EFl [Pl [F1 [E! [F1 [E. [E1 [ET TIE1 [El TE1 [El TE!

APPENDIX C
ROM LISTINGS

AUTOSTART ROM LISTING

falalels
o0an
o000
0000
oooo
Q000
Q000
[elelali]
0000
0000
Co0o
0000
DooO
elnls]e]

Qoo

[elulila]
Q0o0

0Q00:

Faoo
FEOD
Faoo
Faou
FBOC

FBOO:

FB0o
FBOO
FBOO
FEoo
FEOO

FBOO.

FBO0
FB0o
FBaoo
FBOOD
FBOQ
FBO0
FBoO
FBOC
FBOO0
FA00

FBOO-
FB00:
FB00:
Faoo.

Faoo
Fao0n
FBaoo
FBOO
Faoo

Faoo:

Faoo

FBOG;
FEOO:

FBaoo
Fa0o
FBOO
FBOOD
FBOOD
Fao0
FBCO
FBOOD
FBoO
FBoo
FBOO
FBOO
Feoo

FBo0:

LA A A RS L Lt e e s R s s st B L e

APPLE

i1

MONITOR 11

COPYRIGHT 1578 BY

ALL RIGHTS RESERVED

#
-
“
+ APPLE COMPUTER,
-
-
-
=

STEVE WOINIAK

FEEFHREFFA NP CR RN SRR RS EDND RS

* BY JOHN A

&

HEAREErUES SRS E RS H R R

INC

& MODIFIED NDV 1578

ORG sFBO0
OBJ %2000
ERRBEERAAEERARETRARFERREAST SN
3 LOCO EGU 00
LOC1 EGU ®01
» WHNDLFT EGU %20
HNDWDTH EGU $21
WHNDTOF EGU %22
WNDBETHM EGU %23
CH EGU %24
oV EGU 25
GHASL EQGU #2&
GHASH EGL 827
nasL EGU =28
BASH EGU s29
BAS2L EQU s24A
BasaH EGQU s2B
hid EQU s2C
LMNEM EGU $2C
wa EGU $2D
AMMEM EQU %20
MASK EGU S2E
2 CHEBUM EGU $2E
FORMAT EGU %2E
LASTIN EGU ®2F
LENGTH EQU $2F
SI1GN EGU ®2F
COLDR EGQU %30
MODE EQU %31
INVFLE EQGU %32
* PROMPT EGU %33
YSay EGU %34
YSaVi EGU %35
CEWL EGU %3&
CSwH EGU =37
KEML EGU %38
KSWH EGQU w39
PEL EGU %34
FCH EGU =3B
alL EGQU s3C
ALlH EGU 3D
AZL EGU $3E
AZH EGU ®3F
AZL EGU s40
HIH EGU %41
Akl EGQU %42
AdH EGU a3
ASL EGU w44
ASH EGU m45
136

FL

L

| [FL [F1 [F1 [F!

(. [Fl

. [F1 [FL [F1 TFL [FI

F

[Fl

[F

[E]

Tl 'FI 'Rl 'Rl IF

U

B e

FBOO
FBCO
FBoo
FEOD
FROO
FBOO
FBOD
FBaoo
FBOD
FBOO
FBOD
FBOD
FEOO
Fao1
Faoo
FEOU
FEDO
FEOO
FEOO
FEDO
FEDO
FEOO
FBEoo
FBOO
FBOO
FBOD
FEOO
FEOO
FBOoO
FBGO
FEOO
FBOC
FBOO

FB00:

Fa00
Faoo
FBaoo
FBoO
FE0o
FBOO

FBOO:
FBOO:
FBOO:
Faoc:

FBO0
Faoo
Faao
FEO1

FEG2

FBOS:

FBEO&4

FBOE:

FEOA
FBOC
FEOE
Fa10
Fa12
Fai14
FE1&
FB18
FE1%

FB1g:

FEBIE
FEa0
FEal
FE24
FB2&
Feze
Faze
Faac
FB20n
FB2F

FE3:

Bs

=0

&0

a7

[e]a}

FB

FE

FE

FB

I B B BN I |

=4 i
000 M3 ih g LR -

13&

1368
13%
130
lai

ACC
XREG
YREG
STATUS
SPNT
REDL
RMNDH
FICK
&
BREW
SOFTEV

» PWREDUP

AMPERY
USRADR
MM 1
IRGLOC
LINE1
MSLOT
10ADR
KBD
KBDSTRE
TAPEOUT
SPKR
TXTCLR
TATSET
MIXCLR
MIXSET
LOWSCR
HISCR
LORES
HIRES
SETANO
CLRAND
SETAN]
CLRANI
SETANZ
CLRANZ
BETANI
CLRANSI
TAPEIN
FADDLD
FTRIG
CLRROM
BASIC
BaASICZ

FLOT

RTHMASK
PLOT]

HLINE
HLINE1

¥ VLINKEZ

VLINE

RTE1

EGu
EQu
EGQU
EGU
EGU
E@u
EQU
EGU
EGU
EqQu
EGQU
EGU
EGU
EGU
EGU
EaQy
EaGU
EQY
Eau
EGU
EGU
EGU
EGU
EQU
EGQU
EGQU
EaQU
EGU
EGU
EQu
EQu
EGU
EGU
EGU
EGU
EGuU
EGU
EGU
EQU
EQu
EGU
E@y
EQuU
EGU
EQu
PAGE
LSR
PHP
JSH
PLP
LDA
BCC
ADC
8TA
LD&
EOR
AND
EOR
STa
RTS
JER
CPY
BCS
INY
JER
occ
ADC
PHA
JER
PLA
CHP
BCC
RTS

®45

L 1%
%47
48
w45
®4E
+4F
55
0200
S3F0
®3F2
$3Fa
H3IFS
$03F8
%*03FD
$3FE
400
SO07FE
$CO000
sC000
$CO10
0020
sCO30
sC050
$C051
«CO052
sC0S3
$C054
sCO85
®CO54
SCOST
sCOo58
sCoss
sC05A
E Tadubot |
$C05C
s*CO5D
*CO5E
SCO5F
$COo&0
%C0&9
SCO70
$CFFF
S$EQOO
SEQD3

&
GEASCALC

Lide
RTHASK
#HED

MASK
(EBASLY, ¥
COLDR
MASK
(GBASL) ., Y
{GEABL)Y. ¥

PLOT
Ha
RTE1
PLOT1
HLINE1L
#801
PLOT

va

VLINEZ

137

NOTE OVERLAF WITH ASH!'

NEW VECTOR FOR DR
VECTOR FDR WARM START
THIS MUST = EQOR #$AS5S OF
APELESOFT & EXIT VECTOR

BOFTEV+L

FB32
Fa34

FH34:

FB3E
FE3a
FB3C
FBIE
FBA&C

FB43-
FB&4-

FB4s
FE47
Fas7
Feas
Feag
FH4E

Fa4D:

Faas

Faso:

Fas2
Fa54
Fa5é&
Fas&

Fass

FBZA
Fas5cC
F8S5E
FBSF
FBel
FB&2
FBa&s
FBos
FB&B

FE&T.

FB&A
FB&D

FB&C:
FB&E:

FB70
FB71
FB7TZ
FB73
FB7&
FE7E
FBTS
FETR
FE7C
FE7D

FB7E:
Fa7F:
FB81;
Feaz:
Faaz:
Faa4:
FBBe&:

Faes

Faac:

FBBE
FBBaF

FB9O:

FE92
Fee3
Fae5
FES7
FEST
FE5E
FESE
FE9D

FBAD.
FBA3:

FEAS
Faa7?

FEAT:

2F
o1
27
20
&7
o0
30

» 28

be [
30

47

24

o4

35
3B

) Rb

ag
34

oy
10

oC
ar

&2
75
o4
80
oo

FB

FB

FD
Fy

F7
FB

142
143
144
185
148

187
168
159

172
173
174
175

1786

178
179
180
181

182
183
184
185
184
187
188
19
190
193

152
193
L
193
19&
197
198
195
200

203
204
205
20&
207
w08
209
210
211
2la
213

214

CLRSCR LDY #$2F
BNE CLRSCE
CLRTOP LDY #%27
CLREC2 B8TY w2
LDY #$27
LRSC3 LDA #%00
STA COLOR
JER VL INE
DEY
BPL CLRSC3
RTS
PAGE
GHASCALC PHa
LGSR &
AND 0803
OR& #%04
5Ta& GBEASH
PLA
AND W 1B
BCC GECALC
ADC #STF
GECALC 5STA GBASL
ASL 4
ASL A
ORa GEASL
5TA GBASL

LDA COLOR

ADC #803
SETCOL AND #s0F
STA COLOR

A

OR& COLOR
STA COLOR

ECRN LSR &

JSR GBASCALL
LD#& (GBASLI. Y

SCRNZ BCC RTHSKI
A

-

&
LER &
RTHEKZ AND #EOF

INSDE!l LDX PCL
LDY PCH
JSR PRYXZ2
JSR PRELNK
INEDS2 LDA (PCL. X

L]
ECC IEVEN
A

BCS ERR

CHP #sa2

BEG ERR

AND WEET
1EVEN LER &

Tax

LDA FMT1, %

JSR BCRANZ

BNE GETFMT
ERR LDY #s80

LDA #s00
GETFMT TAX

138

[F1 [E. (€] 'E. [EF1 [EL [F1 [El [¥1 [Fl [El

[El

'Fl TEl K]

IFi

'l 1K

TR R R EEEEE R r e rrreees

FBAA
FBAD
FBAaF
FEE1
FBR3
FaG4

FBEA:
FBB7:

FBEE
FEBEA
FBBC
FBEE

FEBF .

FBC1

Fec2
FBCZ
FBCS
FEC&
FBece
FBCY
FaCaA
Facc

FBCD:

by
FBDC
FBD3
FED4
FBL&
Fans?
FHEDE
FEOE
FBED
FBE!
FBES
FBES
FBE?
FBE®
FBEA
FBEE
FEEE
FBFO

FEF3:

FEFs
FeF?
FEFS

FEFE:

FBFD

FBFE:

FBFF
F901
F303
FRO&

FSQ7:

F50%
FeoC

FROE:

FRi0

Feia:

FRid4
F?l&
FF1B8
F71B
F1E

Fe21:

Fs23

Fe2&a:
F?27:

F929
Fo2a

F92B:
F92D:
F730:
Fe32:

AL FT

=
=

03

=F

BF

o3
=]
OB

0B

20

Fa

34
D&
o1
L4
2F
Fi
o3
o4
Fa

co
&l
o0
20
oo

) ©5

=,
2

Fa
BF

EC
48
2F
O&
o3

-
=

0E
B3
ED
BY
Q3
ED

E7

E7
DA

-
=

EB

FF

FB

FD

F5

Fe

Fa

FD

Fe

Fy

Fe

FD

FD

bl
221
222
o

22

=24
222
Zab

oy
=227

228
225
230
231
232
233
234

FNNDX 1

MNNDX2

MMNDES

INSTDSP

PRNTOF

PRNTBL

NETCOL

PRFNZ

PRADR 1

PRADRZ

PRADR3

PRADR4

PRADRS

LDa&
5Ta
anD
8TA
TYa
AND
Tax
TYA
Loy
CPX
BEG
LSR
BCC
LER
LSR
OR&
DEY
BHE
INY
DEY
BNE
RTS
DFB
PaGE
JER
PHA
LDA
JER
LDX
JER
CPY
IMNY
BCC
LDx
cPY
BCC
FLa
TaY
LD&
S5Ta
LD#&
ETA
LA
LDY
AasL
ROL
ROL
DEY
BNE
aDc
JSR
DEX
BNE
JER
LDY
LDx
CRX
BEG
ASL
BEC
LD
JER
LD#&
BEG
JSR
DEX
BNE
RTS
DEY
Bml
JER
LDA
CHP

FMT2. £
FORMAT
w03

LENGTH

#SE0F

#303
#EBA
MNNDX3
Iy
MNNDES
=Y

&

#4220

HMNNDX 2

MNNDX 1
%FF, FF, $FF
INSDE!L

(PCLY. ¥
PREYTE
#E01
PRELZ2
LENGTH

PRNTOF
#s03
#8504
PRNTEL

MMEML, ¥
LMHEM
MMNEMR . ¥
RHNEM
#8500
#8505
RMNEM
LMNEM

A

PRHMNZ
wROF
couT

NXTCOL
PRELNK
LENGTH

L Jel)

HE03
PRADRS
FORMAT
PRADRG
CHAR1=1, X
couT
CHARZ2-1. X
PRADR3
couT

PRADR 1
PRADRE
PRBYTE

FORMAT
#$EB

139

F934.
Fade:

Fe3g
FS38

FY3E:

Fe3c
Feap
Foar

F940-

Fea1
Foa4

Fe4q5:

ELE]
Foaa
FRac
FoaF
Fo50
o5z
Fes3
Fe54
Fens

F58:

F755%
FesE
Fesc
FF5E
Fo&D
Feél
Fraz
a3
Frad
Fo45
Foas
F9&7
FaE
Foas
FRah
FS&B
FR&C
FRan
FRAE
FoaF

F970:
F971:

Fe72
F973
F974
F97s

FR7&:

FS77
Fe78
FeTs
Fe7Ta
Fe7n
FS7¢C
Fe7D
FS7E
F97F
FeB0
FRE1

Fega
FRE2
Fog4
FT85
F98a
FPE7
Feag
FyE?
FFaa
F¥ER
F3BC
F3BD

F9BE.

3A

-1

-
=

3n
o1

34
a1

Fo

FD

333

334

33&
32ar
338
339
340
341
342
343
344
345
344
347
348
345
35C
351
asz
353
254
ass
I%e
337
ase
sy
350

RELADR

PRNTY X
PRNTAX
PRNTX

PRELNK
PRELE
PRBEL3

FCADJ
FoaDJ2
PCADJ3

PCADSS

RTEZ
FMT1

LD&
BCC
PAGE
JER
TalX
Ty
EMNE
INY
TY&
JER
TEA
JHP
LDX
LD
JER
DEX
BNE
RTS
SEC
LD
Loy
Tax
BPL
DEY
ADC
BCC
TNy
RTE
DFE
DFE
DFE
DFE
DFB
DFB
DFE
DFE
DFE
DFE
DFB
DFE
DFB
DFE
DF D
DFE
DFB
DFH
DFB
OFB
DFE
OFE
DFE
DFB
DFE
DFB
DFE
DFB
DFB
DFB
DFo
DFE
DFB
CFDB
DFB
DFH
DFE
DFB
DFB
DFE
DFE
DFE
OFE
DFE
CFB

tPCLY. ¥
FPRADR 4

FLADJ2

PRHTYX

PREBYTE

PREYTE
Li Juke
#2400
couT

PRELZ

LEMGTH
PCH

PCADJA

PCL
RTE2

04
L e]
L 121
%30
s0D
$BO
04
70
03
S22
%54
%33
®0D
| =Tl
s0a
550
s04
$20
54
$33
00
$B80
804
S0
%04
20
LET
%38
0D
B0
04
70
w00
%22
44
%33
00
$CH
$44
00
$il
k=
s44
%33
0D

140

[El TEl [El [F1 [E1 [EL [El

[El [El [IEl

IFl

'Fl 'F1 [FI

m mn ' FiI 'Fi

TR Ve e

F98F

Fo50
Feg1
Fe5a
Fe%3
F554

Fo9s.

F99s

Fag7:

Fo98
Fe99
FI94
F99E

Fo5C

Fo50
FI9E
Fo5F
Fa0
Foal
Foa
Fead
Foad
Foas
Fons
Foa7
FFag
Foa%
Foai
FoAE
FaL
FFaD
FoaE
FRAF
FYBO
FeE1
FoB2
FoE3
FTES
F9BS
FeD&
FSE7
F7EE
Feps
FFBRA
FSBE
F¥BC
F5ED
FSEE
FSBF
FeCo
FeC)l
Feca
FeC3
F5ea
F5Cs
F5Ce
F5C7
FICE
FeCs
FRCA
F9CE
FoCe
F5CD
FSCE
FICF
FSD0
Fep1
Fep2
i
F9D4
Fo0s
F5De
Fe07

430
431
432

433

FMT2

CHAR1

CHARZ2

MNEML

DFB
DFEB
DFB
DFB
DFE
DFB
DFD
DFD
DFB
DFG
DFE
DFB
DFE
DFB
DFB
DFB
DFB
DFD
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFE
DFB
DFE
DFB
DFB
DFEB
DFB
DFB
DFB
DFE
DFE
DFE
DFE
DFE
DFE
DFB
DFE
DFE
DFE
DFB
DFEB
oFo
OFHE
LFD
DFEB
DFE
DFE
DFE
DFE
DFE
DFB
DFE
DFB
DFE
OFE
DFB
DFB
DFE
DFEB
DFB
DFB
DFH
DFE
DFR
DFB

sCE
$4.8
AT
$01
%22
$44
%33
w00
B8O

570
£01
S22
%44
=32
0D
%830
04
270
24
531
87
198
00
21
%81
=82
s00
300
£59
+40
$£71
72
85
244
sS85
7D
®AC
AT
HAC
A3
SAE
L
sD9

sDE
LT
hA
s00
s1C
$EA
$1C
23
5D
%50
%10
L

85D
sBA
$1D
23
90
$88
1D
41

*00
229
15
SAE
8455
4B
519
$23

141

F9DE
FIDY
FoDA
FDE
FeDC
FTDD
FSDE
FRDF
FREC
FRE1
F9E2
FPE3
FYE4
F9ES
FIEL
FSE7
FREE

FYEA:

434
435
438
837
438
439
440
441
442
aa3

447
S48
435
450
451
452
453
454
455
456
457
438
455
4&0
4461
42
453
4e4
445
484
447
448
a4aT
470
471

473
474
475
476
477
478
47%
agc
481
482
483
484
483
4845
|87
485
age
490
491
a5z
493
454
a95
a5y
497
4598
4395
S00
501
502
503
el
305
504

MNEMR

DFE
DFB
OFE
DFB
DFB
DFE
DFB
DFB
DFEB
DFB
DFC
DFE
DFE
DFB
DFEB
DFB
DFB
DFB
DFE
DFE
DFD
DFD
DFD
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFD
DFB
DFa
DFa
DFE
DFD
DFE
DFB
DFE
DFO
DFB
DFE
CFB
DFE
DFB
DFB
DFEB
DFD
DFEB
DFE
DFE
DFEB

DFB
DFE
DFEB
DFE
DFE
DFB
DFE
DFE
DFB
DFB
DFE

DFE
DFB
DFe
DFE
DFE
DFB
DFE
DFE

24
853
$1E
$23
524
€53
%19
LS|
00
14
%58
*50
BAS
L
E24
L =0
SAE
FAE
HAD
SAD
27
s00
*7C
00
%15
$5C
&40
*7C
AR
4T

53
*84
%13
s34
%11
SAS
65
€23
A0
sDE
k 104
54
$4E
24
HhH
€54
+8E
254
w44
sCB
54
L 1=z
%44
SEB
94
*00
04
08
w54
874
04
528
SALE
s74

sCC
L T
72
sF2
SA4
B84
$00

142

1

Fl /A 'FL O(EL OTEL IR OTEL OTEL JFL E1 IEL [F1 TEL (E1 [E1 I¥F1 TEL

T IE MR R

L)

LR A

FAD1:

FAZ2
FaZd
FAZ4
FAZS

FAZ&

FAZT

FA2B:
FA29:
FhAZA:

Fa2B
Fa2C
FazD
FA2E
Fa2F
Fa30
Fall
Fa32
Fa3lz
Fada
FA3S
FA3L
FA37
FA3E
FA2S
FA3A
FASIE
FA3C
FA3D
FA3E
FaaF
Faad
FA40
Faaz
Faad
FA&4
FA4S
Fédéy
FA&T7
Fa4g
Fa4c
FALD
FASD
FAS]
FAS2
FaSa
FaSs
FAST
FaSsC
FasF
Fa&2
Fa&3

Fabd

Fass
FasC
FALF
FAT2
FATS
FATE
FATE
FAYE
FAB1L
FAB2
FABS
FaB8
FABA
FABD
FagF
FAS2
FAT4

FATa:
FATS:

Fas3

03
FE

o3

o3

03

o3

507
508
509
510
511

512
513
514
519
=0T
517
518
519
520
521

sag
223
524
325
s52&
527
s2e
s29
530

533

=34
535

539 IRG

S4T7 BREAK

854 DLDBRK

557 RESET

562 INITAN

565
Sb6&
ST
S&EE NEWMON
26T
570
271
=
273
374
573
5764
577
578
379 FIXBEV

DFB

244
BA2
s42
874
74
74
72
$44
%468
%02
432

00
=22

L 3R
1A
24
524
572
572
%88
®C8
$C4
SCA
24
48
544
$44
A2
%LEB

PAGE

5TA
PL&
PHA
ASL
ASL
ASL
BrI

JMP
PLF
JSR
PLA
STA
PLA
STA
JHP
JSR
JSR
JHP
CLD
JSR
JSR
J5R

LDa
LDA
LD#A
LD#&
LD&
BIT
cLD
JER
LDA
EOR
cHP
BNE
LDA
BNE
LD
cHP
BME
LDY

ACC

A

A

i

BREAR
{IRGLOC)

5AVI
FCL

PCH
(BRKV) | BRKV WRITTEN OVER BY DISW BOOT

INSDS1
RGDSP 1
MO

i DO THISE FIRST THIE TIME
SETNORM
INIT
BETVID
SETKED
SETaAMO . AND = TTL HI
SETAML 4 AN1 = TTL HI
CLRANZ i ANZ = TTL LO
CLRANI i AN3 = TTL LO

CLARROM : TURN OFF EXTNSN ROM
KBDSTRE . CLEAR KEYDOARD

BELL i CAUSES DELAY IF KEY BOUNCES
SOFTEV+1l 1 IE RESET HI

wEAD I A FUNNY COMPLEMENT OF THE
PWREDUP | PWR UP BYTE 777

PWRUFP i NO 50 PWRUF

SOFTEY i YEE SEE IF COLD START
NOFIX HAS BEEN DONE YET?

WREQ) AT

SOFTEW+1 | 7?7

NOFIX YES S0 REENTER SYSTEM

&3 » NO SO POINT AT WARM START

143

FasD

Fasal
Faad:

Faas

Fana:

Faag
Faas
Faad
FanE
FaBL

FAB2:

FaB4
FABS

FaBB:

FABA
FaBC
FAEE
FaCo

FACD

FACH:

FACZ7?

FACS:
Facc:

FACE
FacF

FADG:

FaDz
FADS
FAD&

FADT.

FaD7
FADA
Fapc

FADE:

FagD

FaER:

FAES

FAEs

Fass

FAEC:
FaEF:
FAFL:

FAF4
FAF4

FAFa:
FAFT:
FaFa:
FaFC:

FAFD

FAFF-

Fooa
FBOS
FBO&
FBO%

FBOC:

FBOF
FEL1
FBi1
FBi4

FBl&

FB1%

FE1%:
FBIC:

FB1E
FB21

FB21:
FB23:
FE24:
FB23.
FE28:
FE24:

FE2BE
FE2D

Fa2
oo
F2

&
Oa

FB

03

03

FB

Fé
03

o7

FB

[e]e}

FD

FD
Fa
ED

Fo

a5
oo

ac
Do
AD
L |
FF
D®

co

co

580
=81
582
583
584
383
585
587
588
89
350
991
o272
353
594
393
594
ag7?
S5¥E
S99
&a00
s}
e
&03
ala
&03
&lla
&07
&08
&0
&10
&11
12
&13
&la
CE k-
blé
417
eld
&1%
&0
azl
a2
&3
&4
ags
Salh
&7
&28
&9

&30
631
&32
633
&34
635
&36
&37
538
639
640
a4l
&42
643
e
&a45
s
6847
&48
649
&80
&51

STY SOFTEY FOR MEXT RESET
JHP BASIC | AND DO THE COLD STaRT

NOF I X JMP (SOFTEV) | SOFT ENTRY VECTOR
et g LA & 2 8 LA L 2]
PHHUP JER APPLEIL
SETPGI EGQU = i SET PASE 3 VECTORS
LDxX w5
SETPLP LDA PHRCON-1.% ; WITH CNTRL O ADRS
STA BRKV-1,X | OF CURRENT BASIC
DEX
BMNE SETPLP
LDA w3CE i LDAD HI SLOT +1
STX LOCO i SETPG3 MUST RETURN x=0
5TA LOC1 i BET PTR H
SLOOP LDY w7 + ¥ IS BYTE PTR
DEC LDOC1
LDA LDC1
CMP #$CO i AT LAST SLOT YET?
BEG FIXSEY i YES AND IT CANT BE A DISw
STA MSLOT
MYXTBYT LDA (LDCO). ¥ . FETCH A SLOT BYTE
CMP DISKID-1.%¥ : IS IT A DISK 77
BME SLOOF NO SO NEXT SLOT DOWN
DEY
DEY i YES S0 CHECK MEXT BYTE
BPL NXTBYT i UNTIL 4 CHECKED
JHP (LOCO)
NOF
NOF

+ REGDSP MUST ORG s$FADY
REGDESP JSR CROUT
RGDSF1 LDA #$45
ETA A3L
LDA WS00
BETA A3H
LDX #%FB
RDSP1 LDA ®HSAD
JSR COUT
LDA RTBL-251, ¥
WJSR COUT
LDA ®SBD
JER COUT
= LDA ACC+S, X
DFE #B5. 44
JER PRBYTE
INX
BMI RD&F1
RTS
FWRCON DW OLDERK
DFE %00, SEQ, $45

DISKID DFE %20, $FF, $00, 8FF
DFB $03. $FF, $3C
TITLE DFE =C1.%D0, $DC
DFE #CC, $C5, sAD
DFE %DD, sDB
XLTBL EQU
DFE ®C4, $C2, $C1
DFB &FF, #C3
DFB &FF, 8FF, 8FF
* MUST ORG SFB1Y?
RTBL DFB %C1, $DB. $D%
DFE ®DO. $D3
PREAD LDA PTRIG
LET ON
LDY #8000
wOP
NOP
FREADZ2 LDA PADDLO. X
BPFL RTS2D
INY
BNE PREADZ
DEY

144

El (Bl IFl [IFI

IF1

'Fl1 IE1 'El TF1 (F1 IF1 O IF1 E1 O EL IED IEI IFL (E] IF. IE] IFL [EI]

Fldrar—

VO

FB2EX &0 &52 RTS20D RTE

FE2F A% 0D = INIT LDA #8500
FBE31 BS5 48 3 STh STATUS
FE33 AD S5& CO 4 LDA LORES
FE3& AD 34 CO - LDA LOWSCR
FE3Y AD 51 CO & BETTXT LDA TATSET
FB3L: A% OO ¥ LDA #£00

FB3E: FO 0D B BEG SETWND

FB4O, aD S0 CO 2 SETGR LDA TETCLR

FBE43 AD %3 CO j ¥=] LDA MIKSET

FE&E 20 3& FB i1 JSR CLRTOP

FE4% AT 14 iz LDA ws14

FB4B. B85 22 13 SETWUND STA WNDTOFP

FBSD: A% 00 14 LDA #300

FoarF 3 2 15 STA WNDLFT

FES1: AT 28 it LDA waz28

FBESZ3 S 21 17 ETA WNDWDTH

FESS AR 18 18 LDA #s18

FEST B85 23 1% STA WNDETH

FESS A% L7 20 LDA w17

FESE: 8BS 25 21 TABV S5TA CW

FESD. &4C 28 FC =2 JMP WTAD

FE&D: 20 S8 FC =3 APPLEII JSR HOME i CLEAR THE BCRM
FE&3 AQ CH 24 LDY w8

FB&S: B 08 FB =25 BTITLE LDA TITLE-1.Y ; GET A CHAR

FB&B: 79 OE ©4 ab 5TA LINE1+14,Y

FB&E BB 27 DEY

FB&C: DO F7 =8 BNE STITLE

FB&E: &0 27 RTS

FE&F: AD F3 03 30 SETPWRC LDA SOFTEWV+1

FET7Z2 4% A5 ai EOR #%A5

FB74: BD Fa Q3 32 ETA PWREDUP

FB77: &0 3 RTS

FB7E 34 VIDWAIT EGU # ; CHECH FOR A PAUSE
FE7E8. €% ap 3s CMP #%8D o DMLY WHEH 1 HAVE & CR
FB7&- DO 18 3& BNE NOWAIT o NOT 50, DO REGULAR
FB7C: AC 00 CO ar LDY WaD i IS KEY PRESSED?
FB7F. 10 13 38 EPL NOWAIT & NO

FeBaL CO %3 a9 CPY #%%3 i I8 IT €TL B. 7
FBE3: DO OF 40 BME NOWAIT i NO SO IGNORE

FEES =2C 10 €O a1 GI1T KBDSTRB : CLEAR STROBE

FEBE aAC 00 CO 42 WBDWAIT LDY KBD i WAIT TILL NEXT KEY TO RESUME
FBEBB: 10 FB 43 BPFL KBDWAIT i WAIT FOR KEYPRESS
FBBD: CO B3 G4 CPY wWEB3 i IE 1T COWNTROL C 7
FBBF: FO 03 4% BEG NOWAIT i ¥YES S0 LEAVE IT
FE¥1: 2C 10 CO 44 BIT WBDSTRE + CLR STROBE

FB94. 4C FD FB 47 NOWAIT JMP WVIDOUT DO AE BEFORE

FB57 4E PAGE

FB®7: 38 4% ESCOLD SEC i INSURE CARRY SET
FB®B: 4C 2C FC S0 JMP ESC1

FBEFE- a8 51 ESCHNOW TAY i WUBE CHaR AS INDEX
FESC: BY 48 Fa 82 LDA XLTHL-%C9 ¥ . XLATE IJ¥M TO CBAD
FESF: 20 ¥7 FB 53 JER ESCOLD ¢ DO THIS CURSDR MOTIDN
FEA2: 20 OC FD 54 JSR/ RDKEY AND GET MNEXT

FBAS C9% CE 55 EECMEW CMP wsCE i IS5 THIS AN N 7

FBAY BO EE 1] BCS ESCOLD ; N OR GREATER DO IT
FBa%: C% C% 57 CHMP #ECT : LESS THAN I 7

FBAR, %0 EA 58 BCC ESCOLD : YES SD OLD WAY
FBAD: C% CC 59 CMF g3CC 7 IBIT AL.7

FBAF. FD E& &0 BEG ESCOLD . DO NORMAL

FBBL: DO EB &1 BNE ESCNOW 60 DO IT

FBEB3: EA& 2 NOP

FEB4: EA &3 NOP

FBBS: EA bd NOP

FEB&: EA &5 NOP

FEE7. EA B& NOP

FEBE: EA a7 NOP

FERY EA LB NOP

FEBA: EA &y NOP

145

FBBE
FOBC

FBBD:

FBBRE
FBBF
FBCO
FBC1
FBC1

FBC2:

FEC3
FBCS
FBC7
FBCY
FECA

FECC:

FBCE
FBDO
FBD2Z
FBD3
FBD4
FBD&
FBDS

FBDT
FBDE.

FBDD

FBDF .
FBE2:
FBE4:

FBE&

FBEYS:

FBEC

FBED:
FBEF:

FBFO
FBFC
FEF2
FBF&
FEF&
FBFE
FEFA
FBFC
FEFD
FBFF
FCOo1
Fcoz
FCO4
FCO&
FCo8
FCOA
FEoc

FCOE:
FC10:
FCia:
FC14:

FClé

FCi@:
FClA:

FCiC
FC1E

FC20:
FC22:

FC24
FC27

FC2%:
FC2B:

FCeC
FC2E
FC30

FC32:
FC34:
FC3s&:
FC38:
FCaa:

o3
a9

1B
o2
7F
28

AB
30

FC

FC
co

FB

1aa

123
124
127
128
129
130
131

132
133
133
13%
136
137
138
139
140
141
142

NDP
NOP
NOP
NOP
NOP
NOP

- MUST ORE SFBC1

BASCALC FPHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
BABCLC2 BTA
ASL
ASL
ORA
BTA
RTE
BELL1 cmP
BNE
LDA

LDY
BELLZ LDA
JER
LDA
DEY
BNE
RTS528 RTS

A

w03
#s04
BASH

#%18
BASCLCRE
WETF
BASL

A

&

BABL
BASL

ws87
RTS2B
#5430
WATT
#SCO
#80C
WATT
SPKR

BELLZ

FaGE

STORADV LDY
BTA
ADVANCE INC

cH
(BABL . Y
CH

LDA CH

CHP
BCS
RTS3 RTS
VvIDOUT CMP
BCS
TAaY
BPL

BEGQ
cHe
BEG
cHP
BMNE
BS DEC
BRFL
LDA
5TA
DEC

CHP
BCS
DEC
VTAB LDA
VTABI JER
ADC
5TA
RTS4 RTS
ESC1 EOR
BEG
ADC
BCC
BEG

BCC
BEG

WNDWDTH
CR

#8AD
STORADV

STORADV
#3850

HWNDWDTH
CH

CH
WNDTOP
cv
RTS4
cv

cy
BASCALC
WNDLFT
BASL

#sC0 i EBC & 7

HOME v 1F S50 DD HOME AND CLEAR
#EFD i EBC—A OR B CHECH
ADVANCE ; A, ADVANCE

BS i B. BACHMSPACE

wEFD : EEBC-C OR D CHECK

LF i Cy DOWN

up i D, 80 uP

146

IE. El IEL O IE1 OIE. [EY IF. TEl IE! [El [El [El [IF! [E!

I

i 1El '®1 el i e =i

VO VI L

FC3C:
FCIE

FCao:
Foaz:
FCa4:
FCas:
FCa7:

FCaa:

FC4D

FCaF:
FC50:
FC32

FCS54:
FCoSé
FCB8
FC54
FC5C
FC3E
FC&0
FC&2
FC&2
FC&d
FC&é
FC&E
FC&A
FC&C
FC&E
FC70
FC72

FC73:
FC7&!

FCTE
FC7A
FC7C
FCTE
FCBO
FCE1
Fce2

FCB4:

FCB&
FCae

FCas:
FCBC:
FCBE:

FC90
FE91
FC93

FC95
FCaT:
FCA:

FERC
FCYE

FCAD:
FCAZ:
FCA3:

FCAS
FCaZ7
FCAB

FCAR:

FCAA

FCAC:

FCAE

FCAF:
FCEL.
FCB3:

FCBa
FCB&
FCBE
FCBA
FCBC

FCBE:
FCCO:

Fcca

o1
23
oD

24
28
28

Fg
El
oo
FE
B&
24

28

=21
Fs

o1
FC

FC
FC

FC

FC

FC

179
180
181

182
183
184
185
1B&
187
188
189
170
191

192
193
194
195
1964
197
198
199
200
201
202
203
204
205
206
=207
=208
209

211

e
2l

213
214
213

CLREDOP

CLEOP1

HOME

CR

LF

SCROLL

SCRL1

SCRLZ2

SCRL3

CLREOL
CLEOLZ
CLEOLZ

WALT
HAITZ
WALIT3

NETAL

NXTAL

ADC
BCC
BNE
LDY
LDA
PHA
JER
JSR
LDy
PLA
ADC
cHP
BEC
BCS
LDA
STA
LDY
ETY
BEG

#SFD
CLREOL
RTE4]
CH

cv

VTABZ
CLEOLZ
w00

®#$00
WNDBTH
CLEOP1
VTAR
WNDTOP

FPAGE

LD&
STA
INC
LD&
CHMP
BCC
DEC
LDA
PHA
JSR
LD&
STA
LDA&
=R
LDY
DEY
PLA
ADC
cmMP
BCS
PHA
JER
LDA
S5TA
DEY
BPL
BMI
LDY
JSR
BCS
LDv
LD&
STA

CPY
BCC
RTS
SEC
PHA
8BC
BNE
PLA
SBC

RTS
INC
BNE
INC
LDa
CHP
LDA
SBC
INC

WNDTOP

YTABZ
BASL
BASZL
BASH
BAS2H
WHNDWOTH

#5201
WNDBETM
SCRL3

VTABI
(BASL .Y
(BAS2LY. Y

BCRLZ2
SCRL1
w800
CLEDOLZ
VTAB

CH

HEAD
(BASLI: Y

WNDWDTH
CLEOLZ2

w01
HAIT3

#E01
WAITZ

adL
MNXTAIL
AdH
AlL
AL
AlH
AZH
All

147

ESC-E OR F CKECHK

E, CLEAR TO END OF LINE
ELSE NOT F.RETURN

ESC F 15 CLR TD END OF PAGE

FCCa
FCC&
FCCB
FCCw
FCCH
FCCE
FCCE
FCDO

FCD2:

FCD4

FCDh&:

FCD%

FCpa:

FCOE

FCDC:
FCDE:
FCEQ:
FCEZ:

FCE3

FCES:

FCEB
FCE&
FCED
FCEC
FCEE
FCEF

FCF2;

FCF3

FCFa4:

FCF&
FCF7

FCF5:
FCFA:
FCFD

FCFE
FDo1

FDO3:
FDOS:

FDo7

FDO%:
Fooa:
FDOC;
FDOE:
FD10:

FD11

FD13:
FD15:
FD17:

FD18
FDLE

FD1D:

FD1F

FD21:

FD24
FD2&

FD28:

FD2B
FD2E

FoaF:

FD32

FD35:
FD38:

FD3A

FD3C
FD3L

FD3D-

FD3F
FDao

FD42:

FD44
Foa7
FD4A
FD4E

-
=

3o

4E
el
F9
FE
Fs

21

DE

FD
[+]-]

-
=

FD

2C

o8

Fy

3A

FF
32
oo
ED

3z

FC

FC

co

FC

FC

co

o0

co

=
!

FD

218
217
218
219
220
22z
223
228

228
228
227
228
229
230
231

232
233
234
239
238
237
238
239
240
241

242
243
244
245
248
247
248
249
280
231

82
253
254
235
256
257
2se
259
280
261

262
263
264
265
268
267
268
269
270
271
272
273
274
278
276
277
278
279
280
281

282
283
294
285
286
287
288

ATE4E

HEADR

WRBIT

IERDLY

ONEDLY

WRTAPE

RDBYTE
RDBYT2

RO2ZBIT
RDBIT

ROKEY

KEYIN

KEYINZ

ESC

RDCHAR

NOTCR

BNE RTS4E
INC AlH
RTE

PAGE

LDY es4p
JSR ZERDLY
BNE HEADR
ADC BSFE
BCS HEADR
LDY #%21
JER IERDLY
INY

INY

DEY

BNE ZERDLY
BCC WRTAPE
LDY we32
DEY

BEME OMEDLY
LDY TAPEOUT
LDY #%2C
DEY

RTS

LDX ®sSO8
PHA

JER RD2ZBIT
PLA

ROL &

LDY #%3A
DEx

BNE RDBYTZ2
RTS

JSR RDEIT
DEY

LDA TAPEIN
EOR LASTIN
BPL ROBIT
EOR LASTIN
STA LASTIN
CPY #%B80

LDY CH
LDA (BASL), ¥

AND #83F
DRA #%40
ETA (BABL), Y

JHP (WSKL)
INC RMDL

BNE KEYINZ
INC RNDH

BIT KEBD i
BPL KEYIN
STA (BASL), Y
LDA KED

BIT KBDSTRE

JER RDHEY
JER ESCNEW
JER RDKEY
CHF ®s%0
BEG EBC

LDA INVFLG
LDA #%FF
5Ta INVFLG
LDA IN. X
JSR CcOUT

STA INVFLG

148

READ WEYBOARD

Fl IFI 'F1 'El 'F1 IEI I|Fl FI [FI 'FL IF1 1E. IF1 IFl [|F1l IFL IFl IFl [Fl IFl IF1l IFl IFi

IF

BRI R R E e EE e e e rrerm.

FD4D:

FDs0
FDS2
FD54

FDS&:

FDS8

FoSa-
FDSC:

FDSF
FD&o
FD&2
FD&4
FD&7

FD&A:

FD&C
FD&F
FD71

Fo7a:

FD74

FD75:

FD78

FD74A:
FO7C:
FD7E:

FDBO

FDBEZ:

FDB4
FDET

FDB%:

FDEE

FDBEE:
FD?0:
FD92:

FD94
FD9&
FD9%
FDC
FD?E
FDAQ
FDAZ
FDAZ
FDAS

FDAT:

FDAT
FDAB
FDAD
FDAF

FDEL:
FLB3:

FDB&
FDBEB

FDEB:

FDBD
FDCO
FDC3
FDCS
FDC&
FDC7
FDCY
FDCA
FDCH
FDCD
FDCF
FDD1
FDD3
FDD4
FDD&
FDD%

FDDA:

FODB
FDoC
FDDD
FDDE

F3

a5
2%
o2
2B
EQ

-
=

oF
oo
8o

-
=

B0
58
3D
3c
BE
40
o0
AD
ED

ac
3E
3D
aF
ac
o7
03

AD

3ac
DA
Ba
E8

E&

3=
o2
FF
ac

BD
ED

0w

FE

FD
FD

FD

FD

o2

FC

FD

F¥

FD

FD
FD

FD
FC

FD

=89
290
291

292
293
294
275
294
297
298
299
300
301
302
303
304
305
30&
307
308
309
310
3it

aiz
al3
314
3.
316
a7
318
aw
320
321

322
323
324
a2s
326
g7
328
329
230
331

332
333
33&
33s
336
337
33se
339
340
341

342
343
344
343
344
347
348
349
380
as1

as2
as53
354
ass
354
as7
358
359
3460
341

NOTCR1
CANCEL
GETLNZ
GETLN

BCKSPC

NYXTCHAR

CAPTET

ADDINP

CROUT
PRAL

PRY X2

XAME

MODBCHK

XAM
DATADUT

RTS4LC
XAMPM

ADD

FPRBYTE

LDA
CHP
BEG
cmP
BEG
CPX
BCC
JSR
INX

LD#&

JER
LDA

LDX
TXA
BEG
DEX
JSR
cMP
BNE
LDA
cmMP
BCC
AND
STA
cmP
BNE
JER
LDA
BNE
LDY
LDX
JSR
JER
Loy
LDA
JME
PACE
LDA
ORA
ETA
LDa
BETA
LD#&
AND
BNE
JER
LDA
JER
LD
JBR

BECC
RTE
LSR
Bce
LSR
LSR
LDa&
BCC
EOR
ADC
PHA
LDA

PLA
PHA
LSR
LSR
LSR
LSR

IN, X
Lil=1=]

BCKEPC

Lt b=]

CANCEL

#sFB

NOTCR1

BELL

NETCHAR

#40C
couT
CROUT

PROMPT

couTt
LL16h

GETLNZ

RDCHAR

Ll L]

CAPTST
{BASL). ¥

HEED

ADDINP

#8DF
IN, X
#$BD
NOTCR

CLREDOL

WsED
couT
ALH
AlL
CROUT

PRNTY X

L1 Teie]
wsAD
couT

AlL
#6807
AZL
AlH
AZH
AlL
#5007

DATAOUT

PRAL
HEAD
couT

(AlL) .,

¥

PRBYTE

NXTAL

MODEC HK

A
XAM
A

A
A2l
ADD
WSFF
ALL

WSED
couT

b3

149

SHIFT TO UPPER CASE

FODF:

FDEZ
FDE3

FDES:
FDE?:

FDE®
FDEB

FDED:

FDFQ

FOF4:

FDFs
FDFE

FDF5:

FDFC
FDFD
FDFF
FEOD
FEOD

FEQZ2:

FEO4

FEOS:

FEQ7

FEO®:
FEQB:
FEQD:
FEOF:

FEl1l
FEL3

FE13:

FE17

FEi18:;

FELA

FELD:
FELF:

FEZ20
FEQ2

FE24:
FE2&:

FEZ®
FE2%

FE2B:
FE2C:
FEZE!

FE30
FE33
FE33
FEDS
FE2B
FE3A
FE3C
FE3F
FE41
FE44
FE&&
FE&49
FE4B

FE4E-

FESO
FES3
FESS
FESE
FESB
FESD
FESE
FE&1
FE&3
FE&4
FE&7

FE&A:
FEAC:
FEAE:

FE&F

35

34
oF

14
BA
BB
31
3E
40
40
o2
41

34
FF
a1
o1

42
a4

oo

FE

01

FC

FD
FD
FD
FD
FD
FD
FC

FE

F8

Jaz2
343
364
3a5
b4
3&a7

3465
370
371
372
373
374
375
37&
ar7
a7e
379
380
381
3s2
383
384
383
38
387
Jes
389
370
a7
vz
73
374
393
374
w7
378
399
400
401
402
403
404
403
404
407
408
409
410
411
a1z
413
414
413
414
417
418
419
420
421
42
423

42

a3a

FRHEX
PRHEX 2

couT
CouT1

couTI

BLL

BLAMNH

STOR

ATSS
SETMODE

SETMDI

LT
LT2

FMOVE

VFY

VFEYOR

LIST

LIST2

LDA

STA
DEX
BPL
RTS
LDA
5TA
JSR

RTS
LD&
CHP
BEG
JSR
LDA
WJSR
LDA
JSR
LD&A
JER
LD#A
JER
LD#A
~JSR
JSR
BCC
RTS
JER
LDA
PHA

JSR
STA
BTY
PLA
SEC

PRHEXI

WEOF
#EB0
#SEA
couT
0L
(CEWL)
#EAD
couTz
INVFLE
YSAW]

VIDWAIT

Y5avi

YEAY
1AME

SETHDI
#55A
LAMPM
MODE
AL
(AL Y
A3l
RTES
AdH

YSAV
IN-1., ¥
MODE

#3801

AZL. X
AdL, X
AL, X

LT2

talla. Y
(AgL) .Y
NXTAS
FMOVE

(ALY Y
(ARLY, ¥
VFYOR
FRAL
(AlL), ¥
PREYTE
#8340
couTt
#5408
couTt
tAaL), ¥
PRBYTE
HEAT
couTt
METAL
WFY

ALPC
w814

INSTDSP
PCADJ
PCL
PCH

150

G0 CHECK FOR

PAUSE

'F. IF1 (F 1Pl (F [F1 IFL IFl [Fl IF1 [F1 [Pl [Fl [FL

¥l IEI 'El1 'El 'Rl IEi IKI

B U VO U A A A A A A

FE7O
FE72
FET74
FE?S
FE7?S

FE7&:

FE78
FE7A
FE7C
FE7D

FETF:
FEBQ:

FEB2
FEB4
FEB&

FEBB:

FEBS

FEBB:

FEBD
FEBF

FE%1:
FET3:

FE?3

FET7:

FEF%?
FE?B

FE9D
FESF:

FEAL

FEAZ3:
FEAS:

FEAT
FEAT
FEAT
FEABR
FEAD
FEAE
FEAF
FEBO
FEB3

FEB&:
FEBR®:
FEBC:
FEBF:

FECZ
FEC3
FEC3
FEC4
FECS

FEC&:
FEC?:

FECS
FEC®
FECA

FECD:
FECD:
FECF:

FED2
FED4
FED&
FEDH
FED®
FEDE
FEDE
FEE1
FEE3
FEE4
FEE&
FEES
FEEE
FEED

FEEF:
FEFO:

o1

+F
3C
&

Fs

o0

7%
aF
3a
D7

F8

40
ce
a7

ac

ac
ED
Ba
iD

EE
=22
ED
4D
10

D&

03

FC

FE
FC

FE

FC

438
a3s
437
438
439
440
441

aagz
483
484

445
4455
447
448
aaqq
450
451

452
453
454
453
4585
457
458
359
4&0
441

a4s2
a&3
ET-]
ass
E1-1-1
E-r
asB
459
|70
471
472
473
474
473
478
477
478
475
480
481
482
483
484
485
a484
487
488
487
450
491

asz
453
454
495
294
457
493
a9
=00
201

302
503
S04
SO0
206
807

A1PC

A1PCLP

ALPCRTSE
SETINV

SETNORM
SETIFLG

SETHED

INPORT
INPRT

BETVID
ODUTPORT
OUTPRT

IDPRT

IOPRT1
IOPRT2

XBASIC
BASCONT
@0

REGZI
TRACE
TRACE

STEPZ

UsSR

WRITE

WA 1

WRBYTE
WROYTZ

s0C
BME
RTS
PARE
ThA
BEG
LDt
BTa
DEX
BPL
RTS
LDY
BME
LDY
STy
RTS
LDA
5TA
LDX
Loy
ONE
LDA
STA
LDX
LDY
LD#A
AND
BEG
OR&
LDY¥
BEG
LD&
EGU
5TY
ST
RTE
NOP
NDP
HP
JHP
JER
JER
JMP
JHP
RTE

wEO 1

LisT2

ALPCRT
a1l X
PCL: X
ALPCLP

#E3IF

=]

SETIFLE

WEFFE
INVFLG

#5300
=l

#ASWL

SREYIN

IOPRT
#E00
A2l
HTSkL
#COUTI
AL
#50F
IOPRTL

#10ADR /256

#E00

IOPRT2
#COUTL1 /256

»
LOCO. X
LOC1, X

BASIC

BasIC2

ALRC
RESTOR
(PCL)

REGDSP

15 GONE

NDOP
RTS
NOP
NOP
WOP
noP
NOF
JHP
PAG
LDA
JER
LDY
LDX
EOR
PH#A
LDA
WER
JER
LDY
PLA
BCC
LDY
JER
BEG
LDX
ASL
JER

USRADR
E

w40
HEADR
#e27
w800
LALL. X

(ALlL, X
WRBYTE
NXTAL
#s1D

WR 1
w22
WREYTE
BELL
#810

A
WREIT

1

151

w74, s00
95, 801

STEP IS5 GONE

FEF3

FEFS:
FEF&:

FEF%

FEFA:
FEFB:

FEFD
FFOOQ
FFO2

FFO3:

FFO7
FFOA

FFOC:
FFOF:

FF11
FF14

FFlé
FFL5

FFiB
FF1D

FF1F:

FFa2

FF24:

FF2&4

FFa9:

FF2E

FF2D:
FF2F
FF32:

FFa4
FF37

FF3A:
FF3C:

FFaF

FF&l1
FFaz

FFa4:

FFas&

FFag8:
FFag:

FFas
FFac
FF&E

FFaQ:
FF31:
FFSa:

FF54

FF55:
FFS7:
FF58:
FFS5%:

FFSC
FFSF

FF&2:

FF&S
FF&S

FF&b:

FF&e

FF&B:

FF&D
FF70
FF73
FF7&
FF78
FF7A
FF7B
FF7D
FFad

FFaa:

FFBS
FFB7
FFBA

48
45

45
57

a3
&k
a7
ag

45

FE

FC
FC
FC
FC
FC

FC

FC

FC

FD

FD
FD

FD

FD

FF

FF
FF

FF

=08
508
310
511
5i2
513
Si4
515
514
17
518
"9
520
21
SR
523
S24
529
S2&
27
=28
ST
520
531
S3a
533
534
535
234
8537
538
53%
540
541
sS4z
543
544
545
Sde
547
548
545
530
1=} |
332
353
554
===
236
557
53568
=1
&0
S&1
542
243
564
58T
Shd
367
548
2a9
570
371
572
373
574
ST
57a&
577
57
575
380

CRMON

READ

RDZ2

RD3

PRERR

BELL

RESTORE

RESTR1

SAVE
SaAV1

QOLDRST

FMOK

MONZ

NXTITH

CHRSACH

D1G

JSR
LDY
BCC
JSR
CHMP
BEG
LDA
JSR
LD&
JER
JER
LDA
JMP
PAGE
LDA
PHA
LDA
LDX
LDy
PLP
RTS
BTA
STX
STY
PHE
PLA&
STA
T5X
85TX
cLD
RTS
JSR
JSR
JER
JER
PAGE
cLp
J5R
LD&
5T4
«JBR
JER
JER
STY
LDY
DEY
EMI
cmP
BENE
JSR
LDY
JHP
LDX

WRBYTZ

BL1

MONZ
RD2BIT
w1
HEADR
CHKSUM
ROD2EBIT
#E24
RDBIT
RDZ
RDBIT
#8538
RDBYTE
{AlL. X
CHRSUM
CHKEUM
METAL
835
RD3
RDBYTE
CHKEUM
BELL
#8CS
couT
#sD2
couTt
couT
#3887
couT

STATUS

A5H
KREG
YREG

ASH
XREG
YREG

STATUS

SPNT

SETNORM
INIT
SETVID
SETKED

BELL
#8A4
PROMPT
GETLNZ
ZMODE
GETNUM
YSAY
#s17

HON
CHRTBL. ¥
CHRSRCH
TOSUB
YSEAN
NXTITM
#%03

152

k

A

k

L L T

| JU O U SO 4

1
k

| fE.'F) IFLO'RLOTRLO'RL P OTRL'FD TR TR TR TR (FL O TF

VO e e O

FFEC
FFED
FFEE
FFeF
FF90
FF91
FFe3
FF95
FF9&

FF7E:

FF9a

FFoC:

FE9C
FFSE
FF9E
FFAD
FFAD
FFaz
FEAZ
FFAD

FFAT:

FFAT
FFAB
FFAD
FFEO
FFE1
FFEZ
FFES

FFB7:

FFB7
FFEE
FFED
FFEE

FFCO:
FFC1:
FFC4:

FFCs
FFC?

FFC®

FFCH
FFCC
FFCC

FFCD

FFCE:

FFCF
FFDO
FFD1
FFD2
FFD3
FFD4
FFDS
FFD&
FFD7
FFDE
FFDY
FFDA
FFDB
FFDC
FFDD
FFDE
FFDF
FFED
FFE1L
FFE2
FFE3

FFE4.

FFES
FFE&
FFE7
FFEB
FFES

FFEA:

FFEB

0s

oA
[+1]
O
26
2&
CA
10

Do

3
aF

FB

O&

E3

a1
{vla]

581

=1
583
564
985
586
s87
5868
589
570
591
5=
293
554
593
594
597
598
a9
&00
&01

03
&04
&05
&0&
&07
408
a0%
&10
&11
&l
413
ald
al13
&lb
&17
&18
51%
620
&zl

Sad
a3
aZd
&25
-pad
627
&28
&25
430
631

632
633
&34
435

&3&
&37
&38
637
&a0
&4l
=T
&483
&ad
aas
[-E -]
e4q7
&48
&85
&50
&51
&352

&53

NETEBIT

NETBAS

s

+

NXTOSE

GETNUM

NXTCHR

TOSUE

ZMODE

CHRTEL

SUBTEL

ASL
AEL
ASL
ASL
ASL
ROL
ROL
DE X
BPL
LDA
BNE

LDA
STA

5TA
INX

DFB
DFB
DFE
DFB
DFB
DFB
DFE
DFB
DFE
oFe
DFB
DFB
DFB

>>>P D>

L
Ak

NXTBIT
MODE
NETBS2
AZH X
ALH X

AJH, X

NYXTBAS
NYXTCHR

. %00

AL
A2H
IN: Y

#EEB0
WEOA
DiG
#sBB
HEFA
DI1G

WE0/29
SUBTBL

MODE
#2000
MODE

%EC
$B2
$BE
sB=2
%EF
ot
%62
BAT
sBD
L 12T
L -7
s0&
L L

i BO7

02
$05
sFO
£00
SEE
73
L T%
®Ch
99
s02
sCY
SHE
sC1
$35
s8C
sC4
$94
BAF

-1

Y

T CMD NOW LIKE UBR

E CHMD NOW LIKE USR

FFEC: 17 454 DFE s17
FFED: 17 &5% DFE %17
FFEE 26 =1 DFE 2B
FFEF: 1F &57 DFE $1F
FFFOQ: B3 &58 DFE sB3
FFF1 TF A&5F OFE s7F
FFF2. SD &80 DFE $50
FFF3. CC 581 DFB SC
FFFa BS a4 DFE =05
FFF3: FC (-1-t] OFE ®FC
FFF& 17 &&4 DFE »17
FFF7: 17 665 DFE %17
FFFE: F5 Bh& DFE $F5
FFF5: 03 a&7 DFE $03
FEFA: FO 03 &68 WoONMI
FFFC. &2 Fh 869 DW RESET
FFFE &0 Fa &70 DW IRG
ENDASH

IF IF

IFl

i d

¥

Fl

IF

‘'K 'Rl 'FL 'R IR R ED IFL IFL TF

|

B T e e

STATUS

Falu:
Faul:
Fau2:
Faus:
Fedg:
Faud:
Foldd:
FdlC:
FBOE:
FELO:
FBl2:
Fel4:
Falb:
FBla:
FEl9:
FE1C:
FglE:
FB20:
Fedl:
Faa4:
FHdG:
Fada:
Fd29:
F8ac:
Fa2b:
FaaF:
Fall:
Fegi2:
Fdid:
Filig:
Fgia:

FB3A:
FBIC:
FBIE:
FB40:
Fad43:
FE44:
Fod6:
Fe47:
FBdg:

F8

FB

Fa

FB

o4

1iy
lul

Lud

SPRT
RNDL
RNDH
ACL
ACE
XTHOL
KXTNDH
AUXL
AUXE
PICK
IN
USRADR
HMI
IRGLOC
I0ADR
KBD
KBDSTRB
TAFEQUT
SPKR
TATCLR
TATSET
MIXCLR
MIXSET
LOWSCR
HISCR
LORES
HIRES
TAPEIN
FADDLO
PTRIG
dASIC

BASIC2

PLOT

ATMASK
PLOT1

HLINE
HLINE1

VLINEZ
VLINE

RTS51
CLRSCR

CLRTOP

CLRSCZ
.

CLRSC3

GBAECALC

EPZ

LDA
EQR
AND
EOR
5TA
RTS
JER
CPY
BCS
INY
JSR
BCC
ADC
PHA
JER
PLA
CHP
BCC
RIS
LDY
BNE
LDY
5TY

Ly
LDA
5TA
JSR
DEY
8FL
RIS
PHA
LSR

549
S4E
S4F
550
£51
552
553
554
55
395
F020u
$03Fm
SU3FB
$03FE
5C000
sCuuo
scoln
sCo2o
SC030
SCus0
3C051
sCu52
$C053
sCU54
5C055
SCuU5a
3CU57
SCOBU
30064
SCATd
SEQUQ
SEUU
SFaYU ®OM START ADDRESE
A Y-COORD/2

SAVE L5B IN CARRY
CBASCALC CALC BASE ABR I GBEASL.H

RESTORE.LSB FRCH CARRY
$50F HASK S50F IF EVEN
ATMASKE
$SEU MASK SF0 IF DD
MASK
(GBASL), ¥ DATA
COLOR X¥OR COLOR
MASK AND MASK
{GBASL) , Y XOR DATA
(GBASL) , ¥ TO DATA
PLOT PLOT SQUARE
a2 DONE?
ATS1 YE5, RETURN

NO, INCR INDEX (X-COORD)
PLOT1 PLOT NEXT SQUARE
HLINE] ALWAYS TAKEN
$501 NEXT ¥-COORD

SAVE ON STACK
PLOT PLOT SQUARE
V2 DONE?
VLINEZ HO, LOOP.
152F MAX Y, FULL SCRN CLR
CLRSC2Z ALWAYS TAKEN
#3527 MAX Y, TOP SCEN CLR
vz STDRE AS BCTTCM COORD

FOR VLINE CALLS

£527 RIGHTMOST X-COORD (COLUMN)
850 TOP COORD FOR VLINE CALLS
COLOR CLEAR COLOR (BLACK)
VLINE DRAW VLINE

YEXT LEFTMOST X-COCRD
CLRSC1 LOOP UNTIL DOME.

FOR INPUT OQOQODEFGH
A

156

F I 1 IEl

1

i IEl 'H1 I/Fl N1 1INl 'EI I IR T I¥iT I¥ IE1 IF F IF 1) 4

B\ I I VA A L

Fd49:
Fgd4B:
FB4D:
FE4F:
Fd50:
PE52:
FB54:
FB56:
Fe58:
FE59:
FBS5A:
FE3C:
FB3E:
Fasf:
Fael:
Fa6a:
Fbobd:
FHA6:
Fubd:
FB69:
FBBA:
FeaB:
FH6C:
FE6E:
Fuius:
EB7l:
| 3-Fir
Fa73:
FB76:
F878:
Fd79:
Fe7B:
FE7C:
Fg7Dh:
PEIE:
Fa7F:
Fodl:
Fddd:
FBa4:
Febb:
FEE9:
FaBC:
FHEE:
FddF:
F890:
Fa92:
Fa9d:
Fay¥s:
Fo9l:
FEY9:
FoyB:
FESC:
FEsb:
FBAG:
FBAd:
FHAS:
Fdf:
Fea9:
FBAA:
F8AD:
FaaF:

FeBl:
Fga3:
FdBa:
FdB&:
FoB7:
FoBg:
FHEBA:
FEBC:
FGBE:
FeBF:
FBCLl:

29
s

a1
ud
27

18
g2
[4
6

o
i

47
6

Ui

JF

ia
96
41
ELY

s

Fa

FD
F9

FE

Fo

143

T
165
1oé
107
168
169
1740
171
172
173
174
175
178
177
178
178
lao
14l

196
197

202
243

208
209

211
212
211
214
215

GBCALC

NXTCOL

SETCOL

SCRN

SCRN2

RTMSKZ

INSDS1

IN5D52

IEVEN

ERR

GETFMT

MBNDXL

JSR
LDA
PLP
BCC
LSR
L5SR
L5R
L5R
AND
RTS
LDX
LDY
JSR
J5R

BHNE

TAX
LOA
5TA
AND

STA
TYA
ARD
TAX
TYA
LDY
CEX
BEC
LSR
acc
LSR

GBASCALC
(GEASL) ¥

RTMSKEZ
A
A
A

A
#50F

BCL
FCH
FRYX2
PRELNEK
{PCL,X)

A
IEVEN
A

ERR
#5A2
ERR
587
A

FMTL, X
SCRNZ
GETFMT
1580
150

FUTZ, X
FORMAT
Frud
{F=1 BYTE,
LENGTH

#58F

503
FSEA
MNNDX3
A
MNHDX 3
LY

157

GEMERATE GBASH=0C0U(0LFG

AND GBASL=HDEDE (00

INCREMENT COLOR BY 3

SETS COLOR=17+A MOD lé

BOTH HALF BYTES OF COLOR EQUAL

READ SCREEN ¥Y-COORD/2
SAVE LS5B (CARRY)

CALC BASE ADDRESS

GET BYTE

RESTORE LSB FRCM CARRY
IFf EVEN, USE LO H

SHIFT HIGH HALF BYTE DOWN
MASK 4-BITS

PRINT PCL,H

FOLLOWED BY A BLANK

GET OF CCDE

EVEN/0DD TEST

BIT 1 TEST
AXXXXN11 INVALID GP

OPCODE $89 INVALID
MASK BITS
LS8 INTC CARRY FOR L/R TEST

GET FORMAT INDEX BYTE
G/L H-BYTE ON CARRY

SUBSTITUTE 580 FOR INVALID OFS
SET BRINT FORMAT INDEX TG 0

INDEX INTO PRINT FORMAT TABLE
SAVE FOR ADR FIELD FORMATTING
MASK FOR 2-BIT LENGTH

BYTE, 2=3 BYTE)

CFCODE

MASK FOR 1XXX10lu TEST

SAVE IT
QPCODE TO A ARGAIN

FORM INDEX INTC MNEMONIC TABLE

FoC2:
FaCa:
FeCos
FaCa:
PBCH:
FHCY:
FeCh:
FHECC:
FBCD:
FED0:
FdD3:
FdD4:
FdDb:
FeDS:
FaDB:
FBDE:
FEEU:
FEE1:
FdE 3:
FEES:
FHET:
FHE9:
FHEA:
FHEB:
FBEE:
FaFu:
FAF 3:
FHFS5:
FEF7:
FEP9:
FaFB:
FdFD:
FdFE:
FdFF:
Foul:
Fo0ld:
FOlLG:
Fou7:
Faug:
F30C:
FOdJE:
F3l0:
Fal2:
Fald:
F9l6;:
F9li:
F9l5:
F91E:
F%2l:
Fu2i:
FY9la:
F927:
F92%9:
F92a:z
F9za:
F320:
Folil0:
F932:
F934:
FP%3a:
F9id:
F33B:
F93C:
F93D:
F43F:
F94u:
Fad4l:
Fadd:
F9d45:
F948:
F3dh:
F94C:
F94F:

4A
us
LE]
[#]7]
Cd
B8
ou
[20]
F¥
24

Bl
u
AZ
20
Ca
Ce
dd
Az
co
Su
.1
AB
BY
a3
B9
5
L]
Al
Jb
26
2A
LE|
oy
b4
20
CA
Lu
2y
A4
A
Eu
Fu
bh
qu
a0
i
B
Fu
2u
A
(a1}
ou
g8
34
2d
A3
c4
Bl
L 1]
20
AR
Eg
Cu
Ce
98
24
8a
4
A2
A%
2d
CA

24

FA

oA

ui
Ad
ED

* FF

Fa

FO

29

F4

FA

FO

7S

Ft
FD
Fd

FD

FD

Fa

FD

FD

FD

11e
Fi]
218
219
224
221
222
223
224
225
228

228
229
230
231
232
233
234
233
235
2137
216
21%
240
241
242

245

245

233

284
283
246
287
248

MNNDX2

MNNDX3

INSTDSP

PRRTOP

BRNTBL

PRMNL

PRMNZ

FPRAEBR1

FPRADRZ

PRADR]

PRADRY

PRADRS

RELADR

PENTYX
PENTAX
PRKETX

PRBLNK
PRBL2
PRBLI

3TA
LDA
LDY
ASL
ROL
RAL
DEY
BNE
ADRC
J5SR
DEX
BHE
JSR
LDY
LDX

BEQ
ASL
BCC
LOA
JSR
LDA
8EQ
JER
CEX
BHE

TS
CEY
2MI
JER
LCA
Cup
LDA
BCC
J5R
TAX
INX
aNE
INY
TYA
JSR

JNP
LDX
LDA
JER
DEX

A
#524

MNNDKZ

MNRDXL

SEF, SFF,SFF
INSOS51

{PCLj , ¥
PRAYTE
2501
PREL2
LENGIH

PRNTOR
#3503
504
BRNTEL

MBEML, ¥
LMNEY
MNEMR, ¥
RMNEM
#3500
%505
RMNEM
LMREM

A

PRMNZ
§58F
couTr

PRMN 1
PRELNEK
LENGTH
EED L

LETE |
PRACRS
FOCRMAT
PRADR3
CHAR1~-1,X
couT
CHAR2-1,X
PRALRI
cour

FRADR1

ERADRZ
PRBYTE
FORMAT
$5E8
{PCL) . ¥
FRADRY
PCADJ3

PRNTYX

PRBYTE

PRBYTE
503
#5a0
cour

158

b

1
k

1) 1XXXLI01Um»00LlUlaXK

3) XXXYYYUla>UUlLlIXXX
3) XXXYYY¥LC=»uUlluXsX

4y XXAYY1UU=dGu]l ubXXX
51 MAXAXNOUO=»U000XKNKLN

m Ir

GEN FMT, LEN BYTES3
SAVE WNEMONIC TABLE INGEX

rl [T

PRINT 2 BLANKS

g

PRINT INST (1=-1 3YTIES)
IN & 12 CHR FIELD

CHAR COUNT FOR MNENGHNIC PRINT

rl

RECOVER MNEMONIC INDEX

I

FETCH 3-CHAR MNEMUONIC
(FACKED Im 2-BYTES)

¥l

v
L

SHIFT 5 BITS CF
CHARACTER INIC A
{CLEARS CARRY)

IFl

ADD "7 QFFSET
JUTPUT A CHAR OF MNEY

OQUTFUT 3 BLANKS

U

CHT FOR 6 SORMAY BITS

| 4

IF X=3 THER ADDR.

M F A

¥

HANDLE REL ADR MODE
SPECIAL (PRINT TARGET,
NOT CFFSET)

PCL, PCH+OFFSET+1 TO A, Y

| I J

+1 TO Y, X

Tl

CUTPUT TARGET ADR
OF BEANCH AND RETURN

BLANK COUNT
LOAD & SPACE
OUTPUT & 3LANK

. m n

BRI R e ees

F950: DU F8 289 dNE PRBLZ LOOF UNTIL COUNT=0
F352: &0 254 RTS
F851: 3d 291 PCADJ SEC d=1-BYTE 2-BYTE,
Fi54: AS 2F 2392 PCADJ2 LDA LENGTH i=3=BY
F956: A4 38 293 PCADJ] LDY BCH
F938: AA 294 TAX
F959: 10 491 235 BFL PCALCJ4
F338: did 296 DEY
9 65 1A 297 PCADJ4 ADC
F 30 gl 238 3cc PCL+LENGTH(OR DISPL)+1 TO
Cb 239 INY CARRY INTC ¥ (PCRH)
F2sl L12 jud RTS2 RTS
30l * FMT1 BYTES: AEXEARY D
jua o [F ¥Y=0 THEN LEFT
33 ol IF ¥=1 THEN
£V E-
20 54
ul U5 FMTL DFA 504,520,554,5
U4 9u
232 ldb DFE S8U,5U4,5590,%
33 uo
u4 3d7 DFE 554,533,50D.5
g4 Zu
33 jgd DFB 390,304,520,5

UL
54
8u DFR 520,%54,538,5%
D]
44 DFE 504,590,500.%
[}
"y OFB §33,5UD,5C4,5
] OFB $11,522,544.,5
44
22 OFB 03,544,585, 5
ua DEB $44,%33,300,5
Wi
13 DF8 $90,%41,322,5
au
pFe $0D,3B0,5u4,5
il
ODFE 526,%531,587,5Z2XXXY01l INSTR'S
FMT2 ODFB 500
DER $21
DEE §$81
UFB $82
DFB 500
oFB sud
DFB §59
DFB 54D
DFR 591
DFB 592
DFB 386
DF8 54A
DFEB 585
DFB §S9D
AY
Ab 7 CHARL ASC ", (8"
Y]
ha CHARZ CFB 5D9,500,%08,%
*CHARZ: vy®, 0, "xss",0
il MNEML I8 OF FORM:
b (A} XEXXXUUU
L (B) XXXYY¥1lo0
. (€] 1x¥xiuvlu
. (B) XRAY¥YYLQ
] [E} HXXYYYO1
. (X=IHNDEX)
1 BA
1 23 5D MNEML DFB 51C.5BA,51C,5
FaCe: 183 Al

159

Foce:
F9CC:
FYCF:
F9D2:
FYD3:
Febd:
FaDB:
FS9L0E:
F9EU:
F9E3:
F9EG:
F9Eds:
FIEB:
FPYER:
FaFD:
FO9F3:
F3Fo:
F3Fa3:
FoFge:
FIFE:
FAGU:
FaQ3:
Fads:
FaQ9:
FAUC:
FAUF:
FAl2:
FAlS:
Fald:
FAlB:
FALE:
FA20:
FAZ3:
FA2G:
FA2B:
FA2B:
FA2E:
FAal0:
FA33:
FAl&:
FAZB:
FA3B:
FAJE:
FA40:
FA43:
Fade:
FA47:
FA49:
Fada:
FA4C:
FA4E:
FASl:
FA53:
FAS4:
FASE:
FASS:
FASA:
FASC:
FASE:
FAed:
Faed:
FhAo4:
FAgb:
FAwd:
Fhoh:
FAeC:
FAgE:
FRTd:
FAT2:
FAT4:
FATo:
FATB:
FATA:

BA
3D
Al
19
Ad
24
23

19

ud
5B
24
AE

Al 2

e
e

15
3C
23
B4
11

23 A
Cd 4

48
94
44
111
94
e
B4
74
45
Ad
(el]
Al
74
44
2
22
1A
26
88
C4
48
A
FF
20
11
B5
ba
a5
A2
8D
55
Cha
a1}
Al
Fu
Ad
cg
FO
cy
Fu
=g
FU
ca
Fu
co
Fo
239
449
ch
Fd
a8l
93

1o 2

a3 1lp
uu 29
AE 09
1% 23
531 1B
24 53

1A 5B
AS B4

Ch 2o
44 44

FE FF
DU F8

10 FB

3C ua

144

3u7
384
i3
384
391
392
343
394
395
i%4a
397
i98
3s9
40u

MHNE™MR

STEP

KQINI

Xg1
XQz

DFB
DFa

DFB
DFB

CFB
DFB

oDFB
orFe

CFB
DFB

DFB
OFB

DF8
DFB
DFBE
OFB

CFB
DFB

OFB
DFB

DF8
DFB

DFB
DFB

51B,5Al1,590D,5
$9D,%88,51D,5
319,5AE, 569,58

$24,%53,518B,§
§19,5al

500,51A,558,5
524,524

SAE, SAE,SAd, S
F7C, 500

515,59C, 560, 5
529,353

584,513,%34,5
323, 3A0

$DEB,562.55A,.5
$94,5d8,554,8§
$68,544,5E6,5
sud,584,574,5

574,5F4,5CC, 5
A4, 58A

S00,5AR, 5A2,5
§74,572

544,.568,5B2,5
522,500

$1A,51A,526,5
548,508

5C4,5CA,526,5
S5A2,35CH
SPF,SEF,SFF
INSTDSE

RTHNL

RTWNH

508
INITRL-1,%
XQT,. X

XQINIT
(PCL, X%}
ABRK
LENGTH
#5324
XJSR
560
XRTS
#34C
XJHP
#56C
AJMPAT
¥540
XRTI
$51F
#514
$5ud
xQ2
[BCL) . Y
NOTNE , ¥

160

[A} FORMAT ABOVE

(B} FORMAT
(T} FORMAT
(D) FORMAT
[E) FORMAT
[A) FORMAT
(B} FORMAT
{C) FORMAT
{0] FORMAT
(&) FORMAT

DISASSEMBLE CHE
AT (FCL,H)
ADJUST TC USER
STACK. SAVE

ATH ADR.

INST

INIT XEQ AREA

USER OPCCDE BYTE
SPECIAL IF BREAK
LEN FROM CISASSEMBLY

HANDLE J5R, RTS, JWE,
JHE { }+» RTI SPECIAL

<OPY USER INST TO XEQ AREA
WITH TRALLIKG NOPS
CHANGE REL BRANCH
DISP TO 4 FOR

|

L oMPL ML MPC MPLOTEL ML MPL ML TPL TP

N MM OB OTFOTR TR TR

m

| 4]

BN NNNN N

FATD:
FATE:
FABU:
FAB3:
FAadse:
Fhdd:
FAHD:
FhAdA:
FAbOB:
FAHC:
FAHD:
FABF:
FA92Z:
FA93:
FASe:
FAQ7:
FagG:
FASA:
FAGC:
FAYF:
FAAZ:
FAAS:
FAAG:
FAAT:
FhAs:
FAAA:
FARAC:
FAAD:
FAAF:
FABl:
FaBd:
FA3a:
FABTY:
FAB9S:
FABA:
FABD:
FABE:
FaaF:
FACwu:
FACl:
FAC2:
FRC4:
FACS:
Facy:
FACAH:
FACS:
FACH:
FACLC:
FACE:
FADL:
FAD3:
FAC4:
FADG:
FADT:
FADA:
FADC:
FADE :
FAEU:
FAEZ:
FAE&:
FAEG:
FAES:
FAEC:
FAEF:
FAFL:
FAF4:
FAFG:
FAFg9:
FAFA:
FAFC:
FAFD:
FAFE:
FEQu:

03
FE

4ac
I
3B
B2

DA
85

4B
A
iB
iF
56
g

14

a2

3A

in
iB
3A
Fi
2D

gl
ELY

FF
ud

03

FF

Fa
FA
FF

FYy

F9

FD

FD
FD
FD

FD

4ul
4u2
403
404
4U5
406
407
LIoL]
4u39
410
411
412
4113
ql4
415
416
417
4le
419
424
5321
422
423
424
425
4286
427
428
429
434
431
432
433
434
435
T
437
LT
38
440
441
dda
443
244
445
446
447
448
44%
450
451
452
453
454
455
458
457
454
459
4ad
461
462
4683
164
465
466
4a7
4ob
464
470
471
472
473

IRQ

BREAK

KBRE

XRTI

XRTS

PCINCZ
PCINC3

XJSR

XJIMP
XJIMPAT

NEWPCL
aTRJIMEP

REGDSP

RGDSF1

ROSFL

BRANCH

DEY
BPL
JSR
JUP
STA

PHA
ASL
ASL
ASL
BMI
JME
PLFP
JSR
PLA
STA
PLA
aThA
J5R
JER
JMP
CLC
PLA
3TA
ELA
STA
PLA
STA
LD&
JER
STY
CLC
Bcc

J5R
TAX
TYA
FHA
TXA
PHA
LDY
CLC
LDA
TAX
DEY
LDA
STX
STA
BCS
LOA
PHA
LDA
PHA
JER
LDA
5TA
LDA
STA
LDx
LDA
JSR
LDA
JER
Loa
JSR
LDA
J5R
INX
BMI
RTS
CLC
Loy
LDA

X3l
RESTCRE
AQTNZ
ACC

A
A
A

BREAK
{IRQLOC)

SAV1
PCL

BCH
INsDS1
RGD5P1
MON

STATUS
PCL

PCH
LENGTH
2CADJ 3
BCH

HBEWFCL

ECALJZ

#50U2

(PCL) . ¥

{BCL) , ¥
BCH

PCL
Aaup
RTNH

RTNL

CROUT
#RCC

A3L

FACC /156
AlH

Sk
ESAU
cour
RTBL-5FB, X
cour
#58D
cour
ACC+5, %
FRBYTE

RDSF1

FSul
{PCL) .Y

161

JMP TO BRANCE CR
MERANCH FROM XEQ.
RESTORE USER REG CONTENTS.
XEQ USER OP FRCM RAM
{RETURN TO NBRANCH)

s*IRQ HANDLER

TEST FOR BREAK
USER ROUTINE VECTOR IN RAM

SAVE REG'S ON BREAK
INCLUDING PC

PRINT USER PC.
AND REG'S
GJ TO MCHNITCR

SIMULATE RTI BY EXPECTING
STATUS FROH STACK, THEN
RATS SIMOLATION
EXTRACT PC FAGH STACK

RTS

AND UPDATE BC BY 1 [LEN=q)

UPDATE PC BY LEN

UPDATE PC AND FPUSH
CNTC STATR FOR
J5k SIMULATE

LOAD PC FQR JNF,
(J4F} SIMULATE.

DISFLAY USER REG
CONTENTS WITH
LABELS

ERANCH TAEKEN,
ADD LEN+2 TO BC

FBUZ:
FBUS:
FBuv:
FBuUa:
FBUY:
FBuUB:
FBUE:
FBUF 3
¥Bell:
FBl2:
FB13:
FBlG:
FBlY:
FBlA:
FB1B:
FBlS:
F810:
FBIE:
Fa2l:
FB23:
FB24:
Faa5:
FE28:
FB2A:
FBZA:
FB2G:
FBIE:
FRIP:
FB3l:
FB33:
FE36
FBi%:
FE3C
FB3E
FB4u
FB43:
FEda:
FB43:
FB48:
FB4D:
FBAF:
FBS51:
FBS3:
FB55:
FBS1:
FERS59:
FBIB
FBSD
FBou:
FBG]:
FBES:
FB6T:
Fa68
FHBA
FB&E:
FBGD:
FBGF:
FB71:
FE73:
FO74:
FBla:
FBig:
FB79:
FBIA:
FBiB:
FRID:
FBIE:
FBHO:
FBH1:
FRU4:
Fbga:
FBuH:
FBEA:

T

eoeow

oo owe oan

=2]
A

Al
44

9

us
FD

Fit]
[+ 1]

FE
54
56
54

F7
ul

FF

Fo
Fa

Cu

Cd

ca

Cu
Cu
Fa

FC
FE

FB

492
2393
254
445
4%a
A4l
454
4599
504U
56l
Su2
303
304
505
508
507
5us
50%
51U
511

521
522

53u
531
532
533
534
535
518
537
5348
519
54U
541
542
543
544
545
Sdo

NBENCH

INITBL

RTBL

PREAD

PREADZ

RTSID
INIT

SETTKT

SETGR

SETWKD

TABV

MULPM
MUL
MuL2

MUL3

MUL4
MULS

DIVPM
piv
DIva

JSR
5TA
TYA
SEC
acs
JER
5EC
BCS
NOB
WOP
JME
JMP
DFBE
LEB
DFB
DFE
DFE
Loa
LDY
HoP
NOP
LoA
BPL
INY
SKE
DEY
RTS
LEA
sTA
LDA
LDA
LDA
LDA
dEQ
LDA
LDA
J&R
LDA
S5TA
LCA
5TA
LDA
5TA
Loa
3TA
LDA
STA
JHP
JSR
LoY
LOa
LSR
BCC
CLC
LOX
LDA
ADC
STA
INX
AKRE
LOX
oFB
CFB
CEX
BPFL
DEY
3NE
RTS
JER
LOY
ASL
ROL
ROL

PCADJ]
PCL

PCINC2
SAVE

PCINC3

WERNCH
BRANCH
3C1
5Da
D9
SDU
D13
PIRIG
#gaud

PADDLO, X
RTE=2D

PREADZ

B304
STATUS
LORES
LOWSCR
TXTSET
F5Uu
SETWHND
IXTCLR
MIXSET
CLRTCP
§514
WHDTOPR
#3500
WHNDLFT
#5268
WHDWDTH
514
WNDETM
517
cv
VTAB
Mol
510
ACL

A

MUL4

+5FE

ATHDL+2, %
AUXL+2,x
XTHDL+2, X

MUL3
503
LENE
#5550

MULS
MULZ
MB1
51U
ACL

ACH
XTHOL

162

HORMAL RETURN AFTER
KEQ USER OF
GO UPDATE EC

DUMMY FILL FOR
KEC MREA

IRIGGER PADLLES
INIT COUNT

COMPENSATE FOR 15T COUNT

COUNT Y-REG EVERY
12 USEC

EXIT AT 235 mAX

CLR STAILS FOR DEBUG
SOFTWARE

INIT VIDEO MODE
SET FOR TEXT MODE
FULL SCREEN wINDOW

SET FOR GRAPHICS MOLE
LOWER 4 LINES AS
TEXT WINDOW

SET FCR 40 COL WINDOW
TOF IN A-REG,
B8TTM AT LINE 24

VTAR TO ROW 23
VTABS TC ROW IN A-REG

RBE VAL OF AC AUX
INCEX FOR 16 BITS
ACX ®* AUX + XTND
T2 AC, XIND
IF WO CARAY,
RO PARTIAL PROD.

ACD MPLCNC (AUX)

TCO PARTIAL PRODG
(XIND] .

ABE VAL CF AC, AUX.
INDEX FCR 16 31TsS

XTHE/AUX

F'] F'] "I "l F'q ['I f'ﬂ !'q f’l "q r'i ff1 ’!1 r!1 f'q_ "1 Frl frl rrL ﬂFL

m m

| ~m m

Vo —
—
| FEHC: 547 ROL XTNDH To AL,
. FBdE: 34 SEC
L S4% LDA XTHDL
I = FEBYl: 350 3BC AUXL MCD TO XTHD.
FBG3: 551 TAX
Ry FUU4: 532 LDA XTHDH
-_ FhUg: 553 S5BC AUXH
I FBuY: 534 BCC 3
- FEOA: dé 32 5§85 5TX
Mol cpuc. 55 53 STA
I FEYE: Eb 30 INC
FBAu: dd givia CEY
Vo FfEAl: Du E3 3NE
= FBAl: 6u ATS
FBA4: AU ul sel MDI LOY &S00 ABS VAL OF AC, AUX
L FBAG: B4 2F 562 STY SIGH WITH RESULT SIGH
— FBAS: AZ 54 563 LDX #AUXL IN LSB OF SIGN.
I FBAA: 20 AF FB 564 JSR MD2
. FBAD: A2 35U 565 LDX #ACL
Bt FpaF: B3 Ul 566 MD2 LDA LOC1,X X SPECIFIES AC OR AUX
FBA1: 10 OO 567 BPL MDRTS
FBAZ: 34 Shi SEC
Lo FEB4: 39 565 MD3 I'eA
FBBS: FS 00 570 SBC LOCO,X COMPL SPECIFIED REG
I FBBY: 495 U 571 STA LOCO,X IF NEG.
FBBS: 58 572 TYA
et ppa: P35 ol 573 SBC LOC1,X
I FBEC: 95 ul 574 STA LOC1,X
FBBE: Ef 27 575 INC SIGN
bl FECU: 60 576 MOHTS RTS
FACL: 4H 577 BASCALC EHA CALC BASE ADR IN BASL,H
I FBC2: A 578 LSR A& FOR GIVEN LINE NO.
— FBC3: 23 Ui 579 AND 4503 O<=LINE NO.<w§17
FBCS: U9 ud sau ORA 4504 ARG=00UABCDE, GENERATE
| FBC7: d5 2% 34l 5TA BASH BASH=0U00012D
FBCS: 6 582 PLA AKD
bl Fuca: 29 1 63 AND #3518 BAS L=EABABUGD
| FACC: 9y u2 544 BCC BSCLC2
FBCE: 69 iF 545 ADC $57F
bl F3DU: 85 28 546 BSCLCZ STA BASL
FED2: 0A 567 ASL A
I FBDZ: UA S48 ASL A
FBD4: U5 24 589 ORA BASL
Bl opls: 85 28 590 5TA BASL
I FECH: 60 591 ATS
FBOY: <9 87 592 BELLL CMP #587 BELL CHAR? [CHTRL-G)
e PEOBE: DU 12 593 9NE RTS2B MO, RETURN
FEOO: A% 40 594 LDA #3400 BELAY .ul SECONDS
I FBDF: 20 AB FC 395 JSR WALT
b PEL AU Cu 536 LDY¥ psCO
FBE4: AY uC 397 BELL2 LDA #30C TOGGLE SPEAKER AT
I FBE6: 20 AB FC 598 JSR WAIT 1 #H2Z FOR .1 SEC,
FBEY: AD 30 CO 599 LDA SPKR
R 3 A R T s00 DEY
FBED: [u F5 801 BNE BELL2Z
FEEF: =&u Gu2 RTS28 RTS
jsml FBEU: A 24 003 STOADV LOY CH CURSER H INCEX TO ¥-REG
FBFZ: 91 2o T STA (BASL),Y STOR CHAR IN LINE
| FBF4: Eo 24 au5 ADVANCE INC CH INCAEMENT CURSER 4 INCEX
FBF6: A5 4 Bub LDA CH (MOVE RIGHT)
ool C5 o2l 6U7 CMP WNDWDTH SEYOND WINDOW WIDTH?
FBFA: Bd 66 60d acs CR YES CR TQ NEXT LINE
FRFC: od 609 RTS)J ars X3, RETURN
sl FBFC: T3 Al 51y VIDoUuT CHAP #5AU CONTROL CHAR?
FBFF: BU E 811 8C5 STOADV ¥3,0UTPUT IT.
| PCUl: A 612 TAY INVERSE VIDEO?
b FC02: lu EC e BPL STOADV ¥YES, QUTPUT IT.
Cu4: €3 ab 614 CMP §S8D CR?
FCd6: Fu 35A 615 3EC CR YES.
L— FCOd: C9 dA olé CMP $5dA LINE FEED?
f— ECUA: FuU 5A 617 8EQ LF IF 50, DO IT.
FCOC: C9 a8 514 CMP 588 BACK SPACE? (CNTRL-H)
I FCUE: Du C9 519 8NE BELLL NO, CHECK FOR 2ELL.
L‘
premn sl

163

FCla:
FCl2:
FCl1l4:
PCle:
FCld:
FClA:
FC1Z:
EC1lE:
FC2u:
EC23:
FC24;
FC27:
FC249:
FC28:
Foac:
FC2E:
FC30:
FC32:
FCis:
FC36:
FCld:
PFCIA:
FC3C:
FCIE:
FC40:
FC42:
FC44:
FC4n:
FC47:
FC4A:
FCAD:
FC4F:
[=1
FTh2:
PC54:
FCS54:
FCSB:
FC3A:
FCSCs
PC3E:
FChil:
Fowd:
FCB4:
FC&h:
FCad:
PCEA:
FC&C:
FCBE:
FCId:
FCV2:
PC73:
FCibs
FCi8:
FCia:
FCiC:
FCIE:
FCBU:
FCEL:
FCB2:
FCa4d:
Flda:
FCHA:
FCHBI:
FCaC:
FCuiE:
FC9d:
Fo%ls
FC91:
C935:
Ca7:
FCaA:
FCoC:
PCOE:

Cé
1y
A5
&5
Cé
AS
c5
=41
Chb
AS
20
65
BS

49
Fd
69
ELY]
Fu
69
a0
Fu

90
oo
A4
A3
4H
20
2d
AU
1]
LT
Lo
u
Bu
L]
&5
Au
o4
Fu
AS
LR
Eg
a5
C5
Yu
Chb
A3
448
20
AS
85
AS
B3
Al
1]
od

CE]

Cs
80
48
]
Bl
91
Bd
10
30
Al
20
Bu
Aq
AY

FB

FC
FC

FC

FC

648

651
852
853
o34
E55
ES58
657
854
659
-1-17]
686l
662
-1 %)
abd
BB
11
Ba7
ol
[T
670
a7l
672
873

85

up

VTAB
VTABZ

RTS54
ESC1

CLREGP

CLEGP1

HOME

Ca

LF

SCROLL

SCRL1

SCARLZ

SCRL3

CLREOL
CLEOLZ

CEC
BPL
LDA
5TA
LEC
LCA
Cup
BCS
DEC

LOY¥
LDA
PHA
J5R
J5R
LDY
PLA
ADC
CHFP
BCC
BCS
LbA
STA
LD¥
STY¥

CHP

LA
FHA
JSR
LDA
STA
LDA
STA
Loy
DEY
PLA

CMP
B8CS
PHA
JSR
LDA
5Th
DEY
BFL
BM1
Loy
JSE
8Cs
LDY
LoA

CH
RTS3
WHDWDTH
CH

CH
ANDTOP

BASCALC
WHDLFT
BASL

§¥5CU
HOME
#5FD
ADVANCE
B3

#3500
WHDETH
CLEQPL
VTAR
WNDTOP

cv
NNDTOP

VTABZ
BASBL
SASZL
BASH
BASIH
WHNDWOTH

501
WHNDBTM
SCRL3

VTABRZ
(BASL), ¥
(BASZL) . ¥

SCRL2
SCRL1
#3500
CLECQLZ
VTAB
CH
15A0

164

DECREMENT CURSER H INDEX
IF POS, OK. ELSE HOVE UP
SET CH TO WhNDWDTH=-1

[RIGHTMCST SCREEN PDS)
CURSER V INDEX

IF TCOP LINE THEN RETURN
DECR CURSER V-INDEX

GET CURSER V-INDEX
GENERATE BASE ADDR

ADD WINDOW LEFT INDEX
T3 BASL

ESC?

IF SO, CC HCHME ANG CLEAR

ESC-A OH 8 CHECK
A, ADVANCE
B, BACKSPACE

ESC-C O D CHECK
C, COWN
3, GO UP

ESC-E UR F CHECK
E, CLEAR TC ENC COF LINE
NOT F, RETURN

CURSOR U TO ¥ INDEX

CURSCR ¥ TO A-REGISTER

SAVE CURRENT LINE CN STK

CALC BASE ADDRESS

CLEAR TO EOQL, SET CARRY

CLEAR PROM H INDEX=u FOR BEST

INCREMENT CURRENT LINE

{CARRY IS SET)

DONE TO BOTTCHM OF JINDOW?
HO, KEEF CLEARING LIKES
YES, TAB TO CURRENT LINE

1HIT CURSOR V
AND H-INDICES

THEN CLEAR TO ENC OF PAGE

CURSCR TC LEFT COF INDEX
(RET CURSOR Hw=wu)
INCR CURSOR W(DCWN 1 LINE)

QFF SCREEN?

¥O, SET BASE ADCR
DECR CURSCAR W(EBACHK TO 30TTOM)
START AT TOPF GF SCRL WhDW

GENERATE BASE ADDRESS
COPY BASL,H
TO BASIL,H

INIT ¥ TO RIGHTMOST INDEX
OF SCROLLING WINDOW

INCR LINE NUMBER
DONE?
YES, FINISH

FORM BASL,H (BASE ADDR)
MOVE A CHE UP CN LINE

NEXT CHAR CF LINE

NEXT LINE

CLEAR BOTTOM LINE

GET BASE ADDR FOR BOTTOM LINE
CARRY IS SET

CURSCR H INCDEX

i @y 'E1 Il (el T (1 IR YUY R AT | .0 BN | DU | - U) AU | A | | I’ I IFl IFl 1F]] 3

R

FCAu: 91 24 o931 CLEOL2 STA (BASL).Y¥ STORE BLANKS FROH 'HERE'
FoAd: Ca 44 INY TO END OF LINES (wWHDWODTH)
FCAl: C4§ 21 695 CPY ‘WHDWDTH
FCAS: 9uJ F9 a%6 BCC CLEOLZ
FCAT: Bu ad7 RTS
FCAa: I8 a%4 WAIT SEC
FCA%: do 639 WALITZ PHA
Jud WALIT3 SBC #501
Jal BNE WAITI] 1.0204 USEC
Tu2 PLA (134271 2%p+512%p2)
ul 3BC #501
Tu4 BNE WAIT2Z
Tus RTS
706 NXTA4 INC A4L INCR 2-8YTE A4
67 BNE WXTAI AND Al
708 INC AdH
Tu3 HNXETAL LODA AIL INCR 2=-BYTE Al.
710 CMF AZL
711 LOA AlH AND COMPARE T0 a2
112 58C AZH
113 INC 1L [CARRY SET IF 2=}
il4 SBNE RTS4B
715 INC AlH
716 RTS48 RTS
717 HEADR LDY #3548 ARITE A*258 'LONG 1°'
ild J5R ZERDLY HALF CYCLES
ils BNE HEALDR (650 USEC EACH)
720 ADC #SFE
721 ACS HEACR THEN A ‘'SHORT W'
722 LOY 3§21 [4uu EZY
121 WRBIT J5R ZERBLY WRITE TWO HALF CYCLES
724 INY OF 250 USEC ('G")
725 INY 2R 500 USEC ('Q')
726 ZERDLY EY
127 BNE ZERDLY
728 B8CC WERTAPE ¥ IS COUNT FOR
129 LDY #532 FIMING LOOP
730 ONEDLY DEY
7131 BNE ONEDLY
732 WRTAPE LDY TAPEOUT
733 LDY #S2C
714 DEX
735 RT3
7i6 RDBYTE LDX #%uUE B BITS TO READ
7317 RDBYT2 PHA READR TWO TRANSITIONS
738 JSR RD2BIT [FIND EDGE)
7319 FLA
140 RCL A NEXT 8IT
741 LDY #S3A COUNT FPUR SAMPLES
42 DEX
143 BNE RDBYTZ
l44 RTS
745 RDIBIT JSR RDBIT
746 ADBIT CEY DECR Y UNTIL
747 LoA TAPEIN TAPE TRANSITICN
744 ECR LASTIN
149 2PL ROBIT
150 LASTIN
731 LASTIN
152 ¥580 SET CARRY QN Y=-HEG.
153
154 ROKEY LY CH
7155 {BASL) ,Y¥ SCREEN TO FLASH
756
757 F§IF
735d F740
759 {BASL) , Y
oy
7al [KSWL) GO TO USER KEY-IN
B2 KEYIN RHDL
76l E KEYIN2 INCE RND NUMBER
164 INC RNDH
765 HKEYINZ BIT KBD KEY DOWN?

165

FLzd4:
FGLib:
FOza:
FD2s:
FD3E:
FOZF:
FLl2:
FO35:
FO33:
FE3A:
FO3C:
FD3D:
FOIF:
PhdU:
FO42:
FC44:
FL47:
3L
FO48:
FC4D:
FD: Jz
FD52:
FD54:
FDSa:
FD53:
FCoA:
FESC:
FOSF:
FOBO:
FOE2:
FD&d:
FLoeT:
FhaoA:
FOeC:
FLaF:
FD7l:
Poi2:
Foid:
FC735:
FDYd:
FOi&:
FLICz
FDIE:z
Fidalu:
FCBZ:
Fosg4:
FCiov:
FLEI
FoeB:
FORE:
FD9ds
FD9%:
FOU4:
Fo%9a:
FBaY:
FRaCs:
FLYE:
FhOal:
FDA3:
FoAS:
FOAT:
FLAZ:
FDAB:
FLAD:
FOAF:
FCBl:
FDB3:
FoBG:
FDBAE:
FOBB:
FOBRD:
FDCO:

F5

-

FD
FC

Fi

uz
FD

a2

EF.

FD
FO

FO

ud

FG
F3

FC

FD
FD

FO

C

ink
iad
-1
Tns
ER]
171
{72
373
e
175
176
T
T3a
s |
ER-11
78l
782
783
Td4
785
iga
¥
T8y
789
T9u
731
V32
193
T94
745
798
787
7948
799
]
Eul
Bud
Bul
aud
Hus
dua
Hu?
duB
4ug
10
Bll
Bl2
dl3

C 8l4

8ls
Ele
Bl7
5l8
glyg
S20
B21
822
823
824
B25
426
E27

437

ESC

RDCHAR

NOTCRI
CAMCEL
GETLMNZ
GETLN

BCKSPC

NATCHAR

CAPTST

ADDINP

CROUT
FRAL

PRYXZ

AANE

MODYCHK

AAM
DATACUT

2FL
5TA
LDA
31T
RTS
J3R
JER
J5R
CHP
BEC
RTS
LOA
FliA
Lo
5TA
LOA
JER
PLA
5TA
LDA

JSR
INX

REYLIH
(BASL) . ¥
KD

K305 TR3

RDKEY
ESC1
RDEEY
558
ESC

INVF LG

#5FF
INVFLG
IN, X
cauT

INVE LG
IN,X
g5bd
BCRSEC
£595
CANCEL
&5F8
NOTCEL
BELL

NXTCHAR
#50C
cour
CROUT
FROMET
couT
FSUL

GETLNZ

RCCHAR
gFICK
CAFTST
(BASL) , ¥
s5EU

CLREOL
¥58D
cout
AlH
AlL
CROUT
PRNTYX
#3500
#5AC
cour
AlL
#5807
AZL
AlR
AZH
AlL
§507
CATAQUT
PRAL
§5A0
cour
(AILY .Y
FRBYTE
MEATAL

166

LoGF
REFLACE FLASHING SCREEN
GET KEYCCDE
CLR KEY STRUBE

GET KEYCODE

HAMDLE ESC PUNC.
READ HKEY
ESC?

YES, CON'T RETURN

ECHO USER LINE
NIN INVERSE

CHECK FOR ECIT REYS
85, CTAL-X.
MARGIN?

YES, 50UND BELL
ADVANCE INPUT INDEX

BACKSLASH AFTER CANCELLED

CUTPUT CR

CUTPUT ERCHPT CHAR
INIT INPUT INCEX
WILL BACKSPACE TO J

USE SCREEN CHAR
FOR CTRL-U

CONVERT TO CAFS

ADD TC INPUT BUF

CLR TGO ECOL IF CR

FRINT CR,AL IN HEX

PRINT *-°

SET TO FINISH AT
#0p a=J

OUTPUT BLANK

OUITPUT BYTE IN HEX

'm 'Mm 'nm 'm A A S | A AT | AU | JE 4 I T IFL TR IFL M OIFL P

A MO 'A

FDC7: 90 EA

FDCB: A5 3E
FOCD: 9u w2
FOCF: 49 FF

FDD&: AY BD
FODb: ZEu E

FoOF: 2u ES

FDE3: 29 wuF
FOES: J% 3u

FDE2: 90 uZ
FDEB: oY% UB
FOED: el 33
FDFO: C9 AR
FOF2: 49y W2

FOFG: d4 3
FOF9: 24 FD

FCFD: Ad 35

I I A A L T A A A A A |

FD

FD

ud

FB

FD

FD

aul

871
87l
873
Hi4
a75
8676
a8ir
B78
678
&gy
gl
Bd2
Hal
nh4
a3
586
bd
HEs
Hag
B9u
631
892
B93
894
B95
dYo
897
BS8
g9y
EL
41
Ju2
903
Gu4
Jus
EDT
907
408
ELVE
9lu

RTS4C
KAMEM

ADD

DRBYTE

PHHEX
PRHEXI

BLl1

BLAN

3TOR

RT55

SETMOLE

MOVE

VFY

BCC
RTS
LSR
Bcc
L3R
LSR
LDA
BEC
EQOR
ADC
EHA
LDA
JSR
PLA
PHA

MODACHK

A
KAM
A
A
AZL
ADD
#SFF
AlL

#3BD
corr

e

PRHEXZ

ESUF
380
238a
couT
#5086
{CEWL]
g3al
couT2
INVFLG
¥YSAVL

vipaur
YSAV]L

YSAV
XaME

SETMDZ
#5BA
KAMPH
MCDE
AZL
(A3L) .Y
AJL
RTS5
AJH

¥3av
InN=1,Y
MODE

sl

AL, X
AdL, X
ASL,X

LT2

(ALL), Y
(AGL) , X
NETA4
MOVE

[(AIL), Y
(A4L) . Y
VFYOR
PRAL
[ALL) , ¥
PRBYTE
$5AU
cour

167

CHECK IF TIME TG,
FRINT ADDR

DETERMINE IF MCk
MODE IS XAHM
ADD, OR 5UB

SUB: FCRM 2'5 CCOHMPLEMENT

PRINT '=', THEN RESULT

PRINT SY¥TE AS 2 HEX
DIGITS, DESTRCYS A-REG

PRINT HEX DIG IN A-REG
Lsa's

VECTCR TC USER CSUTPUT RCUTINE

DON'T QUTPUT CTRL'S INVERSE
MASK WITH INVERSE FLAG
SAV Y-REG
S5AV A-REG
CUTPUT A-REG AS ASCII
RESTCRE A-REG

AND Y-REG

THEH RETURN

SLANE TO MOk
AFTER BLANK
CATA STORE MORE?
w0, XAM, ADD CR 508
XEEP IN STCRE MCLE

S5TCHRE A5 LOW BYTE AS (A3)
INCE A2, RETUERN

SAVE CONWERTED ':", '+!',
'=t, ', AS MODE.

COPY AZ (2 BYTES) TO
A4 AND A5

MCVE (Al TO AZ) TD
(ag)

VERIFY (Al TO A2) WITH
(A4}

Fed49:
FE48:
FE4E:
FES0z
FES53:
FE55:
FES54d:
FESB:
FESD:
FESE:
FEgl:
FE63:
FEb4:
EEa7:
FE&A:
FEBLC s
FEBE:
FEG&F :
FEiu:
FE72:
FET4:
FEY5:
FE7a:
FE7d:
FETA:
FETC:
FETD:
FEIF:
FEdU:
FPEHZ:
FEB4:
FEBG:
FEBG:
FEHI:
FEBB:
FEBD:
FEBF:
FE9l:
FEY93:
FEu5:
FE97:
FE99:
FE9B:
FE9D:
FE9F:
FEALl:
FEAJ:
FEAS:
FEAT:
FEAY:
FEAB:
FEAD:
FEAE:
FEAF:
FEBU:
FEB3:
FE3G:
FEB%:
FEBC:
FEQF:
FEC2:
FEC4:
FECT:
FECA:
FECD:
FECF:
FEDZ:
FED 4z
FECa:
FED8:
FEQY:

oo
53

ig

FDR

FD
FC

FE

ED
Ed
FE
EF
Ul
FA

FE

3 Fa

Jl

911
491z
9113
9l4
415
916

446
447
448
349
450
451
952
551
954
455
456
957
458
459
960
9ol
y6d
90l
964
985
Yo
ELY]
968
9649
970
571

9173
374
275
976
377
374
979
Sau
481

VEYCR

LIisT2

ALPC

AlPCLF

ALPCRTS
SETINV

SETNORM
SETIFLG

SETKBD
IRPORT
INERT

SETVID
QUTPORT
OUTPRT

IOFRT

IOPRT1
IoPRT2

XBASIC
BASCONT
GO

REGE
TRACE
STEPZ

DsSR
WRITE

BSE
Loy
STY
RTS

STA
LCX
LDY
BHE
LOA
STA
LDX
LDY
LA
AND
BEC
QRA
Loy
BEQ
LDA
3TY
STA
RTS
Hop
NOP
JHE
JME
J3R
JSR
JHP
JMP
CEC
JSR
JHP
JMF
LoA
JSR
LDY
LOX
EQR
PHA
LDA

53
ceur
[AdL), ¥
FHBYTE
F5A5
cour
NATA4
VEY

alpc
3514

IH3TLSP
ECADJ
PCL

ECH

#5UL
LIST2

ALPCRTS
AlL, X
PCL, X

ALPCLP

$533F
SETIFLG
#5FF
INVFLG

Faud

AZL

FREWL
#REYIN
IDPRT

#3504

AZL

FCSWL
§COUT1
A2L

FSUF
I0FRT1
#ICADR/ 256
LRI
IGPRT2
#COUTL /256
LCCu, X
LoCl, X

BASIC
BASICZ
A1PC
RESTCHE
(PCL)
REGDSF
¥YSAV
ALPC
STEP
USRADR
#1540
HEADR
#5217
Fouud

(ALL,K)

(ALL,X)

168

MOVE Al (2 3YTES) TO
PC IF SPEC'C ANEG
DISSEMBLE 2J INSIRS

ACJUST PC EACH INSTR

HEXT OF dv INSTRE

IF USER SFEC'D ADR
COPY FROM Al TO FC

SET FGR INVERSE VID
VIA COUTL
SET FCR NORMAL VID

SIMULATE PCRT #0 INPUT
SFECIPIED (KEYIN ROUTINE)

SIMNULATE POAT w#su OUTPUT
SPECIFIED (COUT1 ROUTINE)

SET RAM IN/OUT VECTORS

TC BASIC WITH SCRATCH
CONTINUE 8ASIC

ADR TO PC IF SPEC'D
RESTORE META REGS

GO TO USER SUBR

TO REG DISPLAY

ADR TO PC IF SPEC'D
TRKE ONE ETEP
T3 L3R SUBA AT USRADR

ARITE 1U-5EC HEADER

IFl IFl [IFI

IFl

]

IF1

| JE J (B R IO i IF

d]|

U J|

FFSu; w8
FES1: o4
FF52: &5 4E
FF54: BA
FE35: 8o 49
FF57: ©Ld
FF5a: (")

FF53: 20 o4
FESC: 20 2F
FFSF: 2u 53
Frod: 20 =3

FFa&: 20 1A
FFG%: AG As
FFaB: g5 31
FF&D: 24 B7
FF70: 2u €7
EF73: 2d AV
FFig: 84 14

V1 LA L L L L L A L

FE
EC

FE

FC
FC
FC
FC
FC

FC

FE
FB

FE
EPE
FD

PP
FF

342
983
Fd4
343
Ei-1]
287
ddd
9849
I
991
932
293
F94

WRBYTE
“RBYTZ

CRMON

READ

RDZ

RD3

PRERE

3ELL

RESTORE

RESTR1

SAVE
SAV]

RESET

MON

MONZ

NXTITM

JER
JSR
LDY
LA
3CC
LDY
JSR
BEQ
LDX
ASL
J5R
BHE
RTS
JSR
PLA

WRAYTE
NXATAL
#3510

WR1
iS22
WHBYTE
BELL
#3510

A
WRBIT
WHBYT2

8L1

MONZ
RDZBIT
§5l6
HEADR
CHESUM
ROZBIT
524
ADBIT
RDZ
ADBIT
#5318
RCBYTE
{AlL,X)
CHESUN
CHESUM
HXTAL
535
RDJ
RACBYITE
CHESUM
BELL
#5C5
cour
#5D2
cour
caur
FRET
CouT
STATUS

ACC
XREG
YREG

acc
XREG
YREG

STATUS

SENT

SETHORH
INIT
SETVID
SETKBD

BELL
F5AA
BROMPT
GETLNZ
ZMODE
GETNUM
¥5av

169

HANDLE CR AZ BLANK
THEN POP STACK
AND RTHN TO MON

FiND TAPEIN EDGE

DELAY 1,5 SECONECS
INIT CHESUM=35FF
FIND TAPEIN EDCE
LCCK FOR S¥NC BIT
(SHORT)
LOQF UNTIL FOURD
SH1P SECOND SYNC H-CYCLE
INDEX FOR ds1 TEST
READ A BYTE
STORE AT (Al)

UPDATE HUNNING CHESUM
INCR Al, COMPARE TC AZ
COMFENSATE u/1 INDEX
LOCP UNTIL DONE

nREAD CHKS5UM BYTE

Gocoo,

PRINT "ERR", THEN BELL

OUTPUT BELL AND RETURM

RESTCRE 6502 REG CCHTENTS
USED DY CEBUG SCFTWARE

SAVE 5502 REG CONTENTS

SET SCREEN MODE
AND INIT KED/SCREEN
AS 1/0 DEV'S

MUST SET HEX MCQDE!

*#! PROMPT FOR MCHN

READ A LINE
CLEAR ¥MON HMODE, SCAN IDX
GET ITEM, KON-HEX

CHAR IN A-REG

SOUNG BELL AND RETURN

FFid:
FETA:
FF78:
FFID:
FFaou:
Fred:
FFPES:
FFui:
FFaf:
FFai:
FFuD:
FFdE:
FFaF:
FFaU:
FF39l:
FFra3:
FF95:
FFYa:
FFYds
PESA:
FESC:
FE9E:
FFAU:
FEAZ:
FEAS:
FFAS:
FFAY:
FFA%:
FPAB:
FFAD:
FFBU:
FFBL:
FFBE3:
FFB5:
PFBT:
FFB32:
FFBad:
FEBLC:
FFBE:
FEPCU:
ERCL3
FPC4:
FFC5:
FPCT:
FECY:
FFCB:
FFCC:
FECD:
FFPCE:
FFCF:
FRDU:
FFDL:
FFOZ:
EFFD3:
FFC4:
FFES:
FFDGA:
FFD7:
FFDH:
FFC9:
FEDA:
FFDB:
FFOC:
FEDD:
FFOE:
FFOF:
FFEUJ:
FFEl:
FFE2:
FEE3:
FFE4:
FFES:

17

E8
C

F&
BE
34
73
ul

FE

FE

g2

1u35
1u56
1057
1058
Lass
lubu
1408l
1082
lusld
lue4
1ub5
Iues
1da7
1uss
lusy
id
1471
1u72
1u7i
1u74
1073
Lu7e
uly
1078
1079
1ugya
ludl
luk2
1083
lusd
lubs
luss
10s?
lied
l1ue9
1d5u
lu9gl
lud2
T E]
luddg
luzs
1ude
1d4y
li=a
lusg
11luw
llel
Llu2
1103
1lua
1145
llus
11407
llos
1169
1119
1111
1112
1113
1114
1115
1116
1117
1118
1119
1124
1121
1122
1123
1124
1125
1126

CHRSRCH

DIG

NXTBLIT

MNETBAS

NXTBS2

GETHUM

NATCHR

rosue

ZMUDE

CHRTBL

5UBTBL

LDY
LEY
aMI
CMP
ENE
J5R
LDY
JHp
LOX
ASL
ASL
ASL
ASL
ASL
ROL
ROL
DEX
3PL
LEA
BNE
LDA
ST

INX
3EC
SNE

isl7

MON
CHRTBL, ¥
CHRSRCH
TCEUB
YAV
NATITH
#5343

A

fut

A

A

A

AZL

A2H

NXTBIT
MCLE
NXTBS2
AZH,X
AlH,X
A3H,X

NXTBAZS
NETCHR
5uUl
AL
AZH

IN, Y

500
#5048
DIG
FedE
#5FA
DilG

FG0/256
SUBTaL, Y

MODE
FSJU
MODE

$8C
582
SHE
SED
SEF
Chal |
SEC
SAD
4B
3AB
SAd
SUG
595
507
502
505
SFD
s0u
SEB
593
SAT
506
599
gBASCONT =1
FUSR-1
¢HEGE=1

170

X-REG=ly IF X0 HEX I[HPUT

MeT FOUND, GO TO MON

FIND CMND CHAR IN TEL

FOUNC, CALL CCRRESPONDING
SUBROUTINE

GOT HEX DIG,
SHIFT INTO A2

LEAVE X=3FF IF LCIC

IF MODE IZ ZERQ
THEN CCPY A2 10
Al AND Al

<LEAR AZ

SET CHAR

1F HEX DIG, THER

PUSH HICH-ORDER
SUBR ACR < STK

P0SH LOW CRLER
SUBR ACR ON STE

CLR MJCE, OLD MGDE

TO A-REG
G3 TOC SUBR VIA kTS
F("CTRL-C")
P{"CTRL=Y")
F("CTRL=E™)
FL”TI.:'
L
F{"CTRL-K")
F("s™)
F("CTRL-P")
E({"CTRL-8%)
E“H_l]
E‘ﬁ_‘_n]
F({"N"] (F=EX-0R 580+589)
*‘{Il -]
P
FivIn
FrL"y
BLW")
Fi®G")
£{"R")
o |
F'; II.H1
F("CR")
FBLANE)

-

DFA #TRACE-1
OFB sVi¥-1

ODF8 #INPRT-1
CFB #3TEPZ-1
OF8 pOUTPRT-1
OF8 #X8ASIC-1
DFB #SETMODE-1
DFEB sSETMCDE-1
OFB #MOVE=-1
CFa ¢LT-1

oFB FSETNORM=-1
OF8 §SETINV-1
pFB #LIST-1
DFB #4RITE-1
DFB dGO=1

DFE #READ-1
DFB #SETMCDE-1
ODFB §5ETMOCE-1
OF8 #CEMON-1
OF3 #BLANK=-1

CFB FaAMI #MI WECICR
OF8 $NMI/ 256
OFB #RESET RESET VECTCE
OF8 #RE T/Z58
DFE +# IRG VECTCR
CFB ¢

l153 XQTHE ECO 5

LU U L T U LA LL LT U U A |

=
=

|

|

|

|

SYMBOL TABLE
(NUMERICAL ORDER)

Q000
oozz
0024
0024
0ozD
002E
0030
0034
Qo038
003cC
0040
0044
o047
004F
03F2
O3FB
cooo
Co30
cos3
Co57
cos5n
COSF
CFFF
F80oC
FB26
FB3s6
FB5&6
FB7F
FBAS
FaCe
FBFS
Fe2&
Fa40
F24A
F?5&4
FRad
FADD
Fa&2
FAA3
FABA
FAE4
FB11
FBE2E
FB4B
FB&F
FB97
FBDO
FBFO
FC10
FC2B
FC38

LOCO
WNDTOP
GBASL
BAS2L
va
FORMAT
COLOR
YSAY
KSWL
AlL
A3L
ASL
YREG
RNDH
SOFTEV
NMI
I0ADR
SPKR
MIXSET
HIRES
CLRAN1
CLRANI
CLRROM
RTMASK
VLINEZ
CLRTOF
GBCALC
RTHMSEKZ
ERR
MNNDX3
NXTCOL
PRADR3
PRNTYX
PREBLZ
FPCADJ3
FMTZ2
MNEMR
RESET
NOFIX
SLO0OP
RDSF1
XLTBL
RTS2D
SETHWND
SETPWRC
ESCOLD
BASCLCZ2
STORADV
BS
RTS4
HOME

FC7&
FCIE
FCaa
FCCo
FCES
FCFD
FD2F
FD&2
0001
o023
ocoz27
0028
002D
Q02F
0031
0035
o039
Q03D
0041
00435
0048
Q093
O3F 4
O3FE
COQ0
CO30
cos4
coss
CO5C
C0&0
ECOO
F80E
F8=28
FE38
F8&4
Faea
FEAT
F8DO
FBFY
FI24a
FI41
F?4C
F?SC
F?B4
FA40
FasF
Faas
FAC7
FAFD
FE1%
FB2F

SCRL1
CLEOLZ
WAIT3
HEADR
WRTAPE
RDBIT
ESC
CANCEL
Loc1
WHMDBTM
GBASH
BAS2H
RMNEM
LASTIN
MODE
YSaV1
KSWH
AlH
ASH
ASH
STATUS
FPICK
PWREDUP
IRGLOC
KBD
TXTCLR
LOWSCR
SETANO
SETANZ
TAPEIN
BASIC
PLOTI1
VLINE
CLRSCZ2
SETCOL
INSDS1
GETFMT
INSTDSP
PRMNZ
PRADR4
PRNTAX
FPRBL3
FCADJA
CHAR1
IRG
INITAN
PWRUFP
NXTBYT
PWRCON
RTEL
INIT

172

FESB
FB78
FBD
FBDY
FBF4
FC1A
FC2C
FC&2
FC8C
FCAO
FCB4
FCD&
FCEC
FDOC
FD35
FD&7
0020
0024
0028
002C
002E
002F
0032
0036
0034
003E
0042
0045
0049
0200
03F5
0400
€010
co51
€055
co5%
cosD
Co&4
E003
FB819
Fe31
F83C
FB871
Faac
FBBE
F8D4
F910
F930
FS44
F753
Fo61

TABY
VIDWAIT
ESCNOW
BELL1
ADVANCE
UpP
ESC1
CR
SCRL2Z2
CLEOLZ2
NXTAL
WRBIT
RDBYTE
RDKEY
RDCHAR
GETLNZ
WNDLFT
CH
BASL
H2
MASK
LENGTH
INVFLG
CSWL
PCL
AZL
AdL
ACC
SPNT
IN
AMPERV
LINE]
KBDSTRE
TXTSET
HISCR
CLRANO
CLRANZ
PADDLO
BASIC2
HL INE
RTS1
CLRSC3
SCRN
INSDS2
MNNDX 1
PRNTOP
PRADR1
PRADRS
PRNTX
PCADJ
RTS2

AU | | S|

[Fl

L

| 4

. IFL IFL IFL IFL TFL IF

(3] -1 = "1 :ri 1mi ¥l

{41

B VO

F7EA
FA4C
FAB1
FAAT
FAD7
FROZ2
FBL1E
FB39
FBE&O
FEBEB
FBAS
FBE4
FEBFC
Fcaa
Fcaz
FC&&
FC93
FCAB
FCBA
FCDB
FCEE
FD1B
FD3D
FD&A
0021
0025
o029
ooz2C
002E
002F
0033
0037
0038
003F
0043
0046
004E
03F0
03F8
07F8
€oz20
cos2
CO5&
CO354
CO5E
co70
Fao0o
Faic
Faaz
F847
FB7%
FBTB
Faca2
FE8DE

CHaR2
BREAK
NEWMON
SETPG3
REGDSP
DISKID
PREAD
SETTXT
APPLETII
KEDWAIT
ESCNEW
BELLZ2
RTS3
YTAB
CLREOP
LF
SCRL3
WALT
MNXTAl
ZERDLY
RDBYT2
KEYIN
NOTCR
GETLN
WNDWDTH
cv
BASH
LMNEM
CHKREUM
SIGN
PROMPT
CSWH
PCH
AZH
A4H
XREG
RNDL
BRKV
USRADR
MSLOT
TAPEOQUT
MIXCLR
LORES
SETAN1
BETAND
PTRIG
PLOT
HLINE1
CLRSCR
GBASCALC
SCRN2
IEVEN
MMNND X2
PRNTBL

F914
F938
Fo48
F?54
FR&2
FCO
FAS?
FA9B
FAAB
FADA
FBO9
FB25
FB40
FB&5
FB94
FEC1
FBEF
FBFD
Fc24
FC45
FC70
FC9C
FCAS
FCCB
FCE2
FCFA
FD21
FDSF
FD71
FD75
FD92
FDB3
FDD1
FDED
FEO4
FE1D
FE36
FE75
FEB4
FEBD
FESB
FEB3
FEC4
FEED
FFOA
FF3F
FF59
FF7A
FFAZ
FFC7
FD7E
FD%6&6
FDB6
FDDA

PRADRZ
RELADR
PRBLMNK
PCADJZ
FMT1
MMNEML
OLDBRK
FIXSEV
SETPLP
RGDSF1
TITLE
PREADZ
SETGR
STITLE
NOWAIT
BASCALC
RTSz2B
VIDOUT
VTABZ
CLEOP1
SCROLL
CLREOL
WAITZ2
RTS40
ONEDLY
RD2BIT
KEY IN2
NOTCR1
BCKSPC
NXTCHAR
FRA1
XaM

ADD
CouT
BLANK
SETMDZ
VFY
AlPC
SETMORM
INPRT
IOPRT
BASCONT
STEPZ
WRBYTE
RD2
RESTORE
OLDRST
CHRSRCH
NXTBS2
ZMODE
CAPTST
PRYX2
DATADUT
PRBYTE

173

FDFO
FEOB
FE20
FESE
FE78
FEB&
FE93
FEA7
FEB&
FECA
FEEF
FFié
FFa4
FF&S
FFBA
FFAT
FFCC
FDB4
FDA3
FDCS
FDE3
FDF&
FE17
FE22
FESE
FE7F
FEBY
FE95
FEA9
FEBF
FECD
FEF&
FF2D
FFaA
FF&9
FF90
FFAD
FFE3
FDBE
FDAD
FDC&
FDES
FEOO
FE1B
FE2C
FE&3
FEBO
FEBH
FE97
FEBO
FEC2
FED4
FEFD
FF3A

couT1
STOR
LT
VEYOK
A1PCLP
SETIFLG
SETVID
IOPRT1
@0

USR
WREBYTZ2
RD3
RESTR1
MOM
DIG
GETNUM
CHRTBL
ADDINP
XamM8
RTS4C
PRHEX
couTtz
RTSS
LT2
LIST
A1PCRTS
SETKED
OUTPORT
IOPRT2
REGZ
WRITE
CRMON
PRERR
SAVE
MONZ
NXTBIT
NXTCHR
SUBTBL
CROUT
MODBCHK
XAMPM
PRHEXZ
BL1
SETMODE
MOVE
LISTZ
SETINV
INPORT
OUTPRT
XBASIC
TRACE
WR1
READ
BELL

FF4C
FF73
FFo8
FFBE

S5AV1
NXTITM
NXTBAS
TOSUB

SYMBOL TABLE
(ALPHABETICAL ORDER)

003D
FE7F
0040
0044
FBF4
002A
0029
FD71

FEGO
FC10
FIBA
0024
co59
FCoC

FB83c

FDED
FC&2
0025
FBAS
FB97
F9Ab
0026
FD&A
FCCY
FB19
0200
Fes8z
co00
03FE
€000
0038
0400
0000
FE22
cos3
Feca
FF&%
FAB1
FDSF
FF98
FD75
FAS
FE97

AlH
ALPCRTS
AJL
ASL
ADVANCE
BASZL
BASH
BCKSPC
BLL1
BS
CHARZ
CH
CLRANO
CLREOL
CLRSC3
couT
CR
cv
ERR
ESCOLD
FMTZ2
GBASL
GETLN
HEADR
HLINE
IN
INSDE1
IDADR
IRGLOC
WBD
KSWL
LINE1
L.OCO
LT2
MIXSET
MNNDX2
MONZ
NEWMON
NOTCR1
NXTBAS
NXTCHAR
OLDBRK
OUTPRT

F956
0095
F910
F930
FDDA
FDE3
FEDB
0033
03F4
FF16
FD35
FAD7
FF3F
004F
FB7F
Fo&1
003C
003F
0043
0045
03F5
FBC1
E000
FBD9
FEO4
FD&2
002E
FCAO
CO5B
Fcaz
FB3z
FDFO
FEF&
FDB&
FC2c
FD2F
002E
FB56
FFA7
co57
FCS8
FB2F
Fesc

PCADJ3
PICK
PRADR1
FRADRS
PRBYTE
PRHEX
PRNTBL
PROMPT
PWREDUP
RD3
RDCHAR
REGDSF
RESTORE
RNDH
RTMSKZ
RTS2
ALl
AZH
A4H
ACC
AMPERV
BASCALC
BASIC
BELL1
BLANK
CANCEL
CHKSUM
CLEOLZ
CLRANL
CLREOP
CLRSCR
couT1
CRMON
DaTADUT
ESC1
ESC
FORMAT
GECALC
GETNUM
HIRES
HOME
INIT
INSDS2

174

FEA7
FA40
FD1B
002F
FESE
0001
FE20
F9CO
FBCY
FF&S
O3FB
FB94
FF90
FFAD
FF59
COb4
F95C

FBOE
F914
FaFaa
FB1E
FDES
FBD4
FD9&
FAAS
FCFD
FDOC

FEBF
FF44
004E
FB31

FBFC

FE78
0O03E
0042
FDB4
FB&O
FBDO
E003
FBE4
FAAC
FD7E
FF7A

IOFRT1
IRG
KEYIN
LASTIN
LIST
LOC1
LT
MMEML
MNMND X3
MON
MNMI
NOWAIT
MXTBIT
NXTCHR
OLDRST
FADDLO
PCADJA
PLOT1
FRADRZ2
PRBLZ2
FREAD
PRHEXZ
PRNTCP
PRYXZ2
PHRUP
RDBIT
RDKEY
REGZ
RESTR1
RNDL
RTS1
RTS3
ALPCLP
AZL
A4L
ADDINP
APPLEII
BABCLCZ
BASICZ
BELLZ
BREAK
CAPTET
CHRSRCH

3 i (L] m (] L ¥l [l 3 |

FC9E
cosD
CFFF
FB3a&
FDF &
0037
FFBA
FBAS
FATB
F8a7
F8a7
FEB&
CO55
FBYB
FEBB
FBDO
FEAT
CO10
FD21
002F
FE&3
Co5&
002E
FAQO
FDAD
FEZC
FaAd
FCBA
FFaz
FB8F3
FCEZ2
F?54
003B
FBOO
FI2&
Fe4C
FBR2S5
FBF 9
F744
Co70
FCFa
FCEE
FaE4
Fe38
FaDa
FB12
FBEF
FCcce
FE735
0041
0045
FDD1
00ze
FEE3
o028

R O

I\\

CLEOLZ
CLRANZ2
CLRROM
CLRTOP
couTzZ
CSWH
DIG
ESCNEW
FIXSEV
GBABCALC
GETFMT
eln)
HISCR
IEVEN
INPORT
INSTDSP
IOPRT2
KEDSTRDE
KEY INZ
LENGTH
LISTZ2
LORES
MASK
MNEMR
MODBCHK
MOVE
NOFIX
NXTAL
NXTBS2
NXTCOL
ONEDL Y
PCaDJ2
PCH
PLOT
PRADR3
FPRBEL3
PREAD2
PRMNZ
PRNTX
PTRIG
RD2ZBIT
RDBYT2
RDSP1
RELADR
RGDSF1
RTBL
RTE28
RTS4B
ALPC
A3H
ASH
ADD
BASZH
BASCONT
BASL

FF3A
03FO0
FoB4
FFCC
FC46
COSF
FB38
0030
FDBE
0036
FBOZ
FB9B
Fo&2
0027
FD&7
0o02c
FB1C
FA&F
FEBD
0032
FESB
FBEB
0039
FCéé
ooac
cos4
cosa
FEBE
0031
07F8
FD3D
FCB4
FACTY
FF73
FE?S
Fe93
003A
FD92
Fo2a
F548
FFaD
F941
F940
FAFD
FFOA
FCEC
FEFD
Fa&a=
Q02D
FBOC
FB2E
FDCS
FE17
FC2B
FC76
FB7%

BELL
BRIV
CHARI
CHRTBL
CLEOP1
CLRAN3
CLRSC=2
COLOR
CROUT
CSWL
DISKID
ESCNOW
FMT1
GEASH
GETLNZ
H2
HLINE1
INITAN
INPRT
INVFLG
IOPRT
KBDWAIT
KESWH
LF
LMNEM
LOWSCR
MIXCLR
MNNDX 1
MODE
MSLOT
NOTCR
MNXTA4
NXTBYT
NXTITM
OUTPORT
PCADJ
PCL
FRA1
PRADR A
PRBL NK,
FRERR
PRNTAX
PRNTY X
PWRCON
RD2
RDBYTE
READ
RESET
RMNEM
RTHMASK
RTS2D
RTS4C
RTSS
RTS4
SCRL1
SCRNZ

175

CO5C
FEB&
FE18
FB&F
002F
0049
FEOB
€040
FEC2
FECA
FES8
Fe28
FcaB
0022
FEEF
FDA3
FB11
0034
Feac
FC70
COSE
FEBO
FEB4
FE3%
FABA
0048
FBFO
€020
€050
03FB
FBFD
FC24
FCAA
0021

FEED
FDC&
0046
FCDB

FFac

FC95
cose
FB&4
FEB9
FAAT
FEF3
03F2
FEC4
FFE3
FBOY
co51

002D
FB78
Fcaz
0023
FED4

SETANZ
SETIFLG
SETMODE
SETPWRC
SIGN
SPNT
STOR
TAPEIN
TRACE
USR
VFYOK
VLINE
WAIT
WNDTOP
WREBYTZ2
xamMe
XLTBL
Ys5av
SCRL2
SCROLL
SETAN3
SETINV
SETNORM
SETTXT
sLoorP
STATUS
STORADV
TAPEOUT
TXTCLR
USRADR
vIDOUT
VTABZ
WAIT3
WHNDWDTH
WRBYTE
XAMPM
XREG
ZERDLY
S5avi
SCRLZ
SETANO
SETCOL
SETKED
SETPG3
SETVID
SOFTEV
STEPZ
SUBTEL
TITLE
TXTSET
va
VIDWAIT
VTAB
WNDETM
WR1

FECD
FDB3
0047
FFC7
FFAA
FB71
COSA
FB40
FE1D
FaAaal
FB4B
€0o30
FB&S
FBS5B
FFBE
FC1A
FE36
FB26
FCAS
0020
FCD&
FCES
FEBO
0035

SYMBOL TABLE SIIE
BYTES USED
REMAINING

2587
2531 BYTES
SLIST 44

WRITE
XA
YREG
ZMODE
SAVE
SCRN
SETAN1
SETGR
SETMDZ
SETPLP
SETWND
SPKR
STITLE
TABYV
TOSUB
UF

VFY
VLINEZ
WAITZ2
WNDLFT
WRBIT
WRTAPE
XBASIC
¥YS5AV1

176

| T | O | O | O | O | O | | g

E. M TF. (R

[TR JONT T SO

e e ' R

ir;

GLOSSARY

65#2: The manufacturer's name for the microprocessor at the heart of your Apple.

Address: As a noun: the particular number associated with each memory location. On the
Apple, an address is a number between @ and 65535 (or S8@@@ and SFFFF hexadecimal). As a
verb: to refer to a particular memory location.

Address Bus: The set of wires, or the signal on those wires, which carry the binary-encoded
address from the microprocessor to the rest of the computer.

Addressing mode: The Apple’s 6502 microprocessor has thirteen distinct ways of referring to
most locations in memory. These thirteen methods of forming addresses are called addressing
modes.

Analog: Analog measurements, as opposed to digital measurements, use an continuously vari-
able physical quantity (such as length, voltage, or resistance} to represent values. Digital meas-
urements use precise, limited quantities (such as presence or absence of voltages or magnetic
fields) to represent values.

AND: A binary function which is **on’” if and only if all of its inputs are “‘on™.

Apple: 1. The round fleshy fruit of a Rosaceous tree (Pyrus Malus). 2. A brand of personal
computer. 3) Apple Computer, Inc., manufacturer of home and personal computers,

ASCII: An acronym for the American Standard Code for Information Interchange (ofien called
“USASCII™ or misinterpreted as “*ASC-II""). This standard code assigns a unigue value from @
to 127 to each of 128 numbers, letters, special characters, and control characters.

Assembler: 1) One who assembes electronic or mechanical equipment. 2) A program which
converts the mmemonics and symbols of assembly language into the opcodes and operands of
machine language.

Assembly language: A language similar in structure to machine language, but made up of
mnemonics and symbols. Programs writien in assembly language are slightly less difficult to write
and understand than programs in machine language.

BASIC: Acronym for “Beginner's All-Purpose Symbolic Instruction Code™. BASIC is a higher-
level language, similar in structure to FORTRAN but somewhat easier to learn. It was invented
by Kemney and Kurtz at Dartmouth College in 1963 and has proved to be the most popular
language for personal computers.

Binary: A number system with two digits, @' and **1"", with each digit in a binary number
representing a power of two, Most digital computers are binary, deep down inside. A binary sig-
nal is easily expressed by the presence or absence of something, such as an electrical potential or
a magnetic field.

Binary Function: An operation performed by an electronic circuit which has one or more inputs
and only one output. All inputs and outputs are binary signals. See AND OR, and Exclusive-OR.

Bit: A Binary diglT. The smallest amount of information which a computer can hold. A single
bit specifies a single value: @' or **1"". Bits can be grouped to form larger values (see Byre and
Nybble).

Board: See Printed Circuit Board.

178

fFL L

. TFL TFL IR

| JO 4

Tr e 'er ‘e 'mr im 'ELOVELOIEL OTEL OTFL OTEL OTFLOTRLOTEL

ke

IR e

Bootstrap (**boet™): To get a system running from a cold-start. The name comes from the
machine’s attempts to “*pull itsef off the ground by tugging on its own bootstraps.”

Buffer: A device or area of memory which is used to hold something temporarily. The *“*picture
buffer’” contains graphic information to be displayed on the video screen; the “‘input buffer”
holds a partially formed input line.

Bug: An error. A hardware bug is a physical or electrical malfunction or design error. A soffware
bug 1s an error in programming, either in the logic of the program or typographical in nature. See
“feature"’.

Bus: A set of wires or fraces in a computer which carry a related set of data from one place to
another, or the data which is on such a bus,

Byte: A basic unit of measure of a computer’s memory. A byle usualy comprises eight bis.
Thus, it can have a value from @ 1o 255. Each character in the ASCH/ can be represented in one
byte. The Apple’s memory locations are all one byte, and the Apple’s addresses of these loca-
tions consist of two bytes,

Call: As a verb: to leave the program or subroutine which is currently executing and 1o begin
another, usualy with the intent to return to the original program or subroutine. As a noun; an
instruction which calls a subroutine.

Character: Any grapiiic symbol which has a specific meaning to people. Letters (both upper- and
lower-case), numbers, and various symbols (such as punctuation marks) are all characters.

Chip: See Integrated Circurt,

Code: A method of representing something in terms of something else. The ASCII code
represents characters us binary numbers, the BASIC language represents algorithms in terms of
program statements, Code is also used to refer to programs, usually in fow-level languages.

Cold-start: To begin to operate a computer which has just been turned on.

Color burst: A signal which color television sets recognize and convert to the colored dots you
see on a color TV screen, Without the color burst signal, all pictures would be black-and-white.

Computer: Any device which can recieve and store a set of instructions, and then act upon those
instructions in a predetermined and predictable fashion. The definition implies that both the
instruction and the data upon which the instructions act can be changed. A device whose instruc-
tions cannot be changed is not a computer.

Control (CTRL) character: Characters in the ASCIH character set which usually have no graphic
representation, but are used to control various functions. For example, the RETURN control
character is a signal to the Apple that you have finished typing an input line and you wish the
computer to act upon il

CRT: Acronym for **Cathode-Ray Tube”, meaning any television screen, or a device containing
such a screen.

Cursor: A special symbol which reminds vou of a certain position on something. The cursor on

a shde rule lets you line up numbers: the cursor on the Apple’s screen reminds you of where vou
are when you are typing.

179

Data (datum): Information of any type.
Debug: To find bugs and eliminate them.
DIP: Acronym for **Dual In-line Package™’, the most common container for an Integrated Cir-
cuit. DIPs have two parallel rows of pins, spaced on one-tenth of an inch centers. DIPs usually

come in 14-, 16-, 18-, 20-, 24-, and 40-pin configurations.

Disassembler: A program which converts the opcodes of machine language to the mnemonics of
assembly language. The opposite of an assembler,

Display: As a noun: any sort of output device for a computer, usually a video screen. As a
noun: to place information on such a screen.

Edge connector: A sockel which mates with the edge of a printed circuir board in order 1o
exchange electrical signals.

Entry point: The location used by a machine-language subroutine which contains the first exe-
cutable instruction in that subroutine; consequently, often the beginning of the subroutine.

Excusive-OR: A binary function whose value is **off”" only if all of its inputs are “*ofl™", or all of
its inputs are “‘on’".

Execute: To perform the intention of a command or instruction, Also, 10 run a program or a
portion of a program.

Feature: A bugas described by the marketing department.

Format: As a noun: the physical form in which something appears. As a verb: to specify such a
form.

Graphic: Visible as a distinct, recognizable shape or color.

Graphics: A system to display graphic items or a collection of such ilems.

Hardware: The physical parts of a computer.

Hexadecimal: A number system which uses the ten digits @ through 9 and the six letiers A
through F to represent values in base 16, Each hexadecimal digit in a hexadecimal number
represents a power of 16, In this manual, all hexadecimal numbers are preceded by a dollar sign
(%),

High-level Language: A language which is more intelligible to humans than it is to machines.

High-order: The most important, or item with the highest vaue, of a sel of similar items. The
high-order bit of a byte is that which has the highest place value.

High part: The high-order byte of a two-byte address. In decimal, the high part of an address is
the guotient of the address divided by 256. In the 6582, as in many other microprocessors, the
high part of an address comes last when that address is stored in memory.

Hz (Hertz): Cycles per second. A bicycle wheel which makes two revolutions in one second is
running at 2Hz. The Apple’s microprocessor runs at 1,023,000Hz.

180

IE\

k

¥l IF

[El { el TEL YEL IEL TEL TEL

[E]

la=2 s TR lea I Imi i |EIl

IV e e e L L L

1/0: See Input/Ouiput.
IC: See Integrated Circuir,

Input: As a noun: data which flows from the outside world into the computer. As a verb: to
obtain data from the oulside world,

Input/Output (1/0): The software or hardware which exchanges data with the outside word.

Instruction: The smallest portion of a program that a computer can execute, In 6582 machine
language, an instruction comprises one, two, or three bytes; in a higher-level language, instruc-
tions may be many characters long,

Integrated circuit: A small (less than the size of a fingernail and about as thin) wafer of a glassy
material (usually silicon) into which has been etched an electronic circuit. A single IC can con-
tain from ten to ten thousand discrete electronic components. 1Cs are usually housed in DIPs
(see above), and the term IC is sometimes used to refer to both the circuit and its package.

Interface: An exchange of information between one thing and another, or the mechanisms
which make such an exchange possible.

Interpreter: A program, usualy written in machine language, which understands and executes a
higher-level language.

Interrupt: A physical ettect which causes the compuler to jump to a special interrupt-handling
subroutine, When the interrupt has been taken care of, the computer resumes execution of the
interrupted program with no noticeable change. Interrupts are used to signal the computer that a
particular device wants attention.

K: Stands for the greek prefix **Kilo", meaning one thousand. In common computer-reated
usage, “‘K"" usually represents the quantity 2'%, or 1824 (hexadecimal $40).

Kilobyte: 1,024 bytes.

Language: A computer language is a code which (hopefully!) both a programmer and his com-
puter understand. The programmer expresses what he wants to do in this code, and the com-
puter understands the code and performs the desired actions,

Line: On a video screen, a “line" is a horizontal sequence of graphic symbols extending from
one edge of the screen to the other. To the Apple, an inpur line is a sequence of up to 254 char-
acters, terminated by the control character RETURN. In most places which do not have personal
computers, a line is something you wail in to use the computer.

Low-level Language: A language which is more intelligible to machines than it is to humans,

Low-order: The least important, or item with the least vaue, of a set of items. The low-order bit
in a byte is the bit with the least place vaue.

Low part: The low-order byte of a two-byte address. In decimal, the low part of an address is the
remainder of the address divided by 256, also called the *‘address modulo 256."" In the 6502, as
in many other microprocessors, the low part of an address comes first when that address is stored
in memory,

Machine language: The lowest level language which a computer understands. Machine

181

languages are usually binary in nature. Instructions in machine language are single-byle opcodes
sometimes followed by various operamnds.

Memory address: A memory address is a two-byte value which selects a single memory location
out of the memory map. Memory addresses in the Apple are stored with their low-order bytes
first, followed by their high-order bytes.

Memory location: The smallest subdivision of the memory map to which the computer can
refer. Each memory location has associated with it a unique address and a certain valne. Memory
locations on the Apple comprise one byte gach.

Memory Map: This term is used to refer to the set of all memory locations which the micropro-
cesor can address directly. It is also used to describe a graphic representation of a system's
memory.

Microcomputer: A term used to described a computer which is based upon a microprocessor,

Microprocessor: An integrated circuit which understands and executes machine language pro-
grams.

Mnemonic: An acronym lor any other symbol) used in the place of something more difficut to
remember. In Assembly Language, each machine language opcode is given a three letter
mnemonic (for example, the opcode $68 is given the mnemonic RTS, meaning “*ReTurn from
Subrouting™).

Mode: A condition or set of conditions under which a certain set of rules apply.

Modulo: An arithmetic function with two operands. Modulo takes the first operand, divides it by
the second, and returns the remainder of the division.

Monitor: 1) A closed-circuit television receiver. 2) A program which allows yvou to use your
compulter at a very low level, often with the values and addresses of individual memory locations.

Multiplexer: An electronic circuit which has many data inputs, a few selector inputs, and one
output. A multiplexer connects one of its many data inputs to its output. The data mnput it
chooses to connect to the output is determined by the selector inputs.

Mux: See Multiplexer.

Nybble: Colloquial term for half of a byte, or four bits.

Opeode: A machine language instruction, numerical (often binary) in nature,

OR: A binary function whose value is “‘on™ if al least one of its inputs are “‘on™".

Output: As a noun, data generated by the computer whose destination is the real world. As a
verb, the process of generating or transmitting such data.

Page: 1) A screenfull of information on a video display. 2) A quantity of memory locations,
addressible with one byte. On the Apple, a **page” of memory contains 256 locations.

Pascal: A noted French scientist.

PC board: See Printed Circuit Board,

182

el TE. TET TEC (E1 QEL IEL VEL IEL IEL VEL TE. IF.

IEi

1l |

¥

=t fF1 P2

et

R R R R R R R R R R

Peripheral: Something attached to the computer which is not part of the computer itself. Most
peripherals are input and/or output devices.

Personal Computer: A computer with memory, languages, and peripherals which are well-suited
for use in a home, office, or school.

Pinout: A description of the function of each pin on an IC, often presented in the form of a
diagram.

Potentiometer: An electronic component whose resistance lo the flow of electrons is propor-
tional to the setting of a dial or knob. Also known as a “*pot’” or “*variable resistor™.

Printed Circuit Board: A sheet of fiberglass or epoxy onto which a thin layer of metal has been
applied, then etched away to form iraces. Electronic components can then be attaiched to the
board with molten solder, and they can exchange electronic signals via the etched traces on the
board. Small printed circuit boards are often called **cards’, especially if they are meant to con-
nect with edge connectors.

Program: A sequence of instructions which describes a process.
PROM: Acronym for ** Programmable Read-Only Memory’”. A PROM is a ROM whose contents

can be altered by electrical means. Information in PROMs does not disappear when the power is
turned off. Some PROMSs can be erased by ultraviolet light and be reprogrammed.

RAM: See Random-Access Memory.

Random-Access Memory (RAM): This is the main memory of a computer. The acronym RAM
can be used to refer either to the integrated circuits which make up this type of memory or the
memory itself. The computer can store values in distinct locations in RAM and recall them
again, or alter and re-store them if it wishes. On the Apple, as with most small computers, the
values which are in RAM memory are lost when the power 1o the computer is turned off.
Read-Only Memory (ROM): This type of memory is usually used to hold important programs
or data which must be available to the computer when the power is first turned on. Information
in ROMs is placed there in the process of manufacturing the ROMs and is unalterable. Informa-
tion stored in ROMs does not disappear when the power is turned off.

Reference: 1) A source of information, such as this manual. 2) As a verb, the action of examin-
ing or altering the contents of a memory location. As a noun, such an action.

Return: To exit a subroutine and go back to the program which called it.
ROM: See Read-Only Memory.

Run: To follow the sequence of instructions which comprise a program, and to complete the
process outlined by the instructions.

Scan line: A single sweep of a cathode beam across the face of a carhode-ray tube.

Schematic: A diagram which represents the electrical interconnections and circuitry of an elec-
tronic device.

Scroll: To move all the text on a display (usually upwards) to make room for more (usually at
the bottom).

183

Soft switch: A two-position switch which can be *‘thrown' either way by the software of a com-
puter.

Software: The programs which give the hardware something to do.

Stack: A reserved area in memory which can be used to store information temporarily, The
information in a stack is referenced not by address, but in the order in which it was placed on the
stack. The last datum which was “‘pushed’ onto the stack will be the first one to be “popped”
off it

Strobe: A momentary signal which indicates the occurrence of a specific event.

Subroutine: A segment of a program which can be executed by a single call Subroutines are
used to perform the same sequence of instructions at many different places in one program.

Syntax: The structure of instructions in a given language. If you make a mistake in entering an
instruction and garble the syntax, the computer sometimes calls this a “*SYNTAX ERROR."”

Text: Characters, usually letters and numbers. “*Text’" usually refers to large chunks of English,
rather than computer, language.

Toggle switch: A two-position switch which can only flip from one position to the other and
back again, and cannot be directly set either way.

Trace: An etched conductive path on a Printed-Circuit Board which serves 1o electronically con-
nect components,

Video: 1) Anything visual. 2) Information presented on the face of a cathode-ray tube.

Warm-start: To restart the operation of a computer after you have lost control of its language or
operating system.

Window: Something out of which you jump when the power fails and you lose a large program.
Really: a reserved area on a display which is dedicated to some special purpose.

184

fFl el R IFL TPD T TEL T TED | fF1 . el rED e OIEL O (ED O IED OIEDL O IEL OIEl OIEL IE!

el

BIBLIOGRAPHY

Here are some other publications which you might enjoy:

Synertek/MOS Technology 6500 Programming Manual

This manual is an introduction to machine language programming for the MC6582 microproces-
sor. It describes the machine lanuage operation of the Apple’s microprocessor in meticulous
detail. However, it contains no specific information about the Apple.

This book is available from Apple. Order part number A2L0003.

Synertek/MOS Technology 6500 Hardware Manual
This manual contains a detailed description of the internal operations of the Apple's 6582
microprocessor. It also has much information regarding interfacing the microprocessor to exter-
nal devices, some of which is pertinent to the Apple.

This book is also available lrom Apple. Order part number A2L0002.

The Apple 11 Monitor Peeled
This book contains a thorough, well-done description of the operating subroutines within the
Apple’s original Monitor ROM.

This is available from the author:

William E. Dougherty
14349 San Jose Street
Los Angeles, CA 91345

Programming the 6582
This book, written by Rodnay Zaks, is an excellent tutorial manual on machine and assembly-
language programming for the Apple’s 6582 microprocessor.

This manual is available from Sybex Incorporated, 2020 Milvia, Berkeley, CA 94704, It should
also be available at your local computer retailer or bookstore. Order book number C202.

6502 Applications
This book, also written by Rodnay Zaks, describes many applications of the Apple's 6502
MICTOProcessor.

This is also available from Sybex. Order book number D302,
System Description: The Apple 11
Written by Steve Wozniak, the designer of the Apple computers, this article describes the basic

construction and operation of the Apple I1.

This article was originally published in the May, 1977 issue of BYTE magazine, and is available
from BYTE Publications, Inc. Peterborough, NH 30458,

186

. TEL

| IE1 IEL IEi IEl [IEl IF

IE|

El

IEl

IE!

¥l IFl E1 [E

IFl

Fr 'F1 TFI

'Fi

FEl

BREEERE TR

SWEETI16: The 6582 Dream Machine
Also written by Steve Wozniak, this article describes the SWEETI6® interpretive machine

language enclosed in the Apple's Integer BASIC ROMs,

This article appeared in the October, 1977 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 30458,

More Colors for your Apple

This article, written by Allen Watson 111, describes in detail the Apple High-Resolution Graphics
mode. Also included is a reply by Steve Wozniak, the designer of the Apple, describing a
modification you can make to update your Revision @ Apple to add the two extra colors available
on the Revision | board.

This article appeared in the June, 1979 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 30458,

Call APPLE (Apple Puget Sound Program Library Exchange)
This is one of the largest Apple user group newsletters. For information, write:

Apple Puget Sound Program Library Exchange
6708 39th Ave. Southwest
Seatte, Wash., 98136

The Cider Press
This is another large club newsletter. For information, write:

The Cider Press

¢/o The Apple Core of San Francisco
Box 4816

San Francisco, CA 94101

187

|

(E TR VT T VT TR T T T T VI T T T VI TR P T VIV VI VR VR /R E /R

188

GENERAL INDEX

@ boards, ReViSion......ooeiieicieiieens 3, 26
| board, Revision ..
2716 type PRDM.s G
50Hz modification, Eurapple 10
6592 instruction sel.. ..Appendix A

6502 internal rcgislers...................,...._..53-. 81
6502 MICrOProOCESSON, .ovvevriceeeerriereseeienn d, BB
S e

Access Memory (RAM), Random................ 3
address and data busesoccoivvvnninn. 88, 90
address multiplexer, RAMoooovveviinnns 96
addresses and data................ .40
addressing modes..... .66
ANALOE IMPULS e iiciers e isacre e rsianeies 24
annunciator nulpuls - A &
annunciator special Iu-cauons

Apple Firmware card .,
Apple Language u..n‘ri
Apple main board, the ...
Apple Mini-assembler.....
Apple, photo of the........
Apple power supply, the.
Apple, setting up the......
Apples, varieties of.......o..covvevrveviiemerree i
ASCII character code.................. !

ASCII codes, keys and ...
Autostart ROM listing.....
Autostart ROM Reset..
Autostart ROM special locations .
Autostart ROM...
auxiliary video connector

i

backspace ChAMACIET...ccccciivveerrmrerinerinnns 30
bac A Ry T it e e
BASIC, entering
BASIC, reenlering...ccvociiiiivirimnvssrsnin
bell charaoter ... i i R
block pinout, configuration....
blocks, RAM configuration ...
board 1/0; peripheral.......c.couiiiiii.
board, Revigion B..........cocviiiinniiniiiinian
board, Revision |

board, the Apple main
board schematic, main....
buffer, picture.............
buffer, input ...
built=in O G nasanmmnisiasnmi

buses, address and data................oe.......88, 90
DYL®, DOWET-UD, .. qvnscnsns soiusiinsipisnsvsiniad Ta B0
=il

card, Apple LANEUARE.......ocoiciiecrraeirinesessnnnans

card, Apple Firmware....
cassetie interface Jacks.......occoveeeinnn,
cassette INerfaceovvvvvviniice i
cassette tape, saving 1o
casselle tape, reading from..
changing memoryc..coo.....
character code, ASCII_.........
character, backspace -
character, line-feed..........c......... RUES——
character, RETURN ..o
character, bell
characters, prumpling
characters, keyboard...
characters, control .,
clearing the keyb:::drd suobe
code, ASCII character..............
codes, escape .. .
codes, keys and ASC‘II
cold start ...
colors, Low-Res.....coooooiiiiiniiiiiiiieinn, :
colors, High-Res.......ooooeviiiiiiiiciinnnns
colors, European High-Res...
command loops, Monitor ...
commands, crealing your oWn.........coeoeeen...
commands, summary of Monitor ...
COMPATIAE MEMOTY .evererriesriresineanns .
configuration block pinout.........ccocoveieenn,
configuration blocks, RAM ..o,
configuration, RAM memory ..
connector pinout, peripheral....
connector, keyboard
conneclor, power ...
connector, speaker......
connector, Game /O ...
connector, auxiliary videoooocoiiiiiiinnnns
connector, video........ceveinn
connectors, peripheral
connneclor pinouts, keyboard....,
control characters .. i
control values, Normal."[merse
Controllers, (_mme
COUT, KEYIN switches.........ccccconimnnisesnninns
COUT standard output subroutine
creating your own commands ...
CEW/KSW switches ... oo oot

FL TFL TR

FL TEL TR

fEL TFL TFL L 'L TR

'Fl

F1 [Fi

'Fi

'Fl

Tl Kl

Tl FI F1 'F

lm

Cursor.,
Ccursor, uutpul

s D

data, addresses and..
debugging progrdms

o T

i rlﬁlﬁlﬂlﬁﬂ'

editing an inputl HNe ..o
diling Teatures oo

entering BASIC

entering the Monitor ...
entry vector, Sofl...........cooovevveivineiveennns

escape (ESC) codes..............
Eurapple 50Hz modification
European High-Res colors....

EXAMININE MEMOTY 1ieveeeririiireeiimnanrsessemanersenes
expansion ROM ... vsnnsreees

0

features, input/output
features, editing..................

features, power supply.......

format, Text screen

e g

Game 1/0 connector
generator, the videocooocvvvies
GETLN and input lines..............
graphics modes
graphics, High-Res ...

.

O

{

data buses, address andooovreierennens

display special Im.duons udeo....................
display, VIR0, ..o seee e eeeeieeneeeaas

feature, the Stop-Listccoveeeieiienirenne
features, kevboard v
features, MiCrOProCeEsSOr........cverieniiseninnnes

Firmware card, Apple.........cceimemmissssnnsis
(**Nag’) inputs, ome-bit.............coccciiin

format, Low-Res SCreencccoeeevvcevireness
format, High-Res screencocoeeicecnnnn.
from cassette tape, reading...........ccccoeeeeen.

Game Controllers ...

graphics, Low-Bes ... ciiiimaibs

hexadecimal notalion............ccccviinvinnnnnis
High-Res colors, European...................

cycle, the RESET ... """

191

High-Res graphics..........comeiiimimiimmmenssnssins
High-Res screen, the ooooooeeeeiiiineiinn
High-Res video mode, the ..
High-Res colors................

input buffer.....coooooiiiieeeeein
input line, editing an ...
input lines, GETLN and...
input prompling..
input subroutine, RDKEY 5mndard
input/output features.....
input/output special location
input/output ...
inputs, data...
inputs, one- bLt E‘ E‘I.Jg“}

IMputs, analogoocvveennes
inputs, single-bit pushbutlnn
instruction set, 63502
instructions, Mini-Assembler 66
interface jacks, casselle......... 22, 103
INLErface, CASSELLEcccovveeriinnressiiiirissnnniens b0

internal registers, 6502...........cccevevenn 53, Bl
INLETTUPLS ooevreeeeresrees65, 107, 108
inverse text mode.........occovveeveiiiiiinnnnnnn 32, 54

I/O connector, GAMEveeevvveerreerineenn. 23, 100
1/0 programming suggestionsB0
I/0 special locations .
1/O, built-in..
/0, penpheral buard T S LGRS 1
[/O, peripheral 5[0!?9

e

Jacks, cassette interface............oceoevee 22, 103
jacks, Widen OULPUTcouvemmesremmasssessansnnnsreesssd T

jumper, “USER 1™ .99
B

key, backospaos .G s e
key, retype... R e R R e
keyboard charactcrs oy B
keyboard connector 102

keyboard connnector pinouts
keyboard featuresc.covievviiciiiiciiinnn,
keyboard schematic...
keyboard special Iocatlom 4l
keyboard slrobe................... X rE ?9 93 i[]2
keyboard strobe, clearing thecccoccevivennnn
keyboard, review of the........

kevboard, reading the.....
KEYIN switches, COUT,coooeviiierieervinnen. 83

keys and ASCIT codes.......cviviiamimieciioniiinmarens

s e

Language card, Apple.........ccociiinninns
leaving the Mini-Assembler ...
line, editing an INPULcconmimninns.
line-feed character............ccciimreesiennmnns
lines, GETLN and]npul
listing, Autostart ROM...

; Apn-endm C

listing, Monitor ROM................... Appendix C
listing machine Idnguage pmgrum’i 49
list of special locations... .Appendix B
locations, list of spccial Appendix B

locations, annunciator specialcccoeeieee.
locations, video display special ...
locations, input/output special....
locations, text window special
locations, Autostart ROM special
locations, Monitor special..........cccoociieninn.
locations, keyboard specialcococvvemrinneanens
locations, 170 specialc.ccveivveevvnniisseniinnns
loops. Monitor command ..
Low-Res colors..
Low-Res screen, 1he
Low-Res video mode, Ihe 3
TUKEWATTI SUAML.ciciioen s iviiisianiassasss vobinnesesnssanas

M --

machine language programs, listing.............49
main board, the Apple R

main board schematic....
map, System memory .. ST
maps, Zero page mernr:lr:,r T |
Memory (RAM), Random Accesa Y. |
Memory (ROM), Read-Only
memory configuration, RAM .. v
MEMOTY MAP, SYSIEM Loovernnmiiaisreeriinriesnnaaases
MEMOTY MAPS, ZETO PARE. ..oocverierrivnrssnsersenes
MEMOTY PARES. . .cccvveeernns

Memory, examining....

memory, changing...
memory, moving........
memory, COmparng....
memory, RAM
memory, ROM
microprocessor features.
microprocessor, 6502 ... 3, 88
Mini- Assembler instructions
Mini-Assembler prompt (1) ...
Mini- Assembler, Apple........... o
Mini-Assembler, leaving theoccoveeiiiinnns
mode, the text VIdeooocooviicciiiieieeiiiees

192

mode, the Low-Res videocccceevvnvinnninns
mode, the High-Res video
mode, Inverse text. . iiamanamnaiin
mode, normal text.....

modes, addressing ..
maodes, graphics...

modification, Eurapple SOHI Frawadi)
Monitor command loops .. 56
Monitor commands, summary ol' . |
Manitor prompt (+) .. S 40

Monitor ROM RESET..
Monitor ROM listing....

Monitor- BROM. oo s i 25
Monitor special locations... P IEIA 1 |
Monitor subroutines, some useful 6l

Monitor, entering the..
mMoVing Memory .. i
multiplexer, RAM 1ddress

.

normal text mode ..
Normal/lnverse contrnl values

notation, hexadecimal................

number, random........... .33
., -

one (system stack), PaEe ... 69

one-bit (**flag’™) inputs.....
OULPUL CUTSOM ..ovvviiinninnns
CULPUL JAcKS, VIDBO wivisiivrosiviiisnmvrsrimranisss

output subroutine, COUT standard 30
output, utility SITObe......cocuiviimrimsmrreimanssnans 25
OULPULS, ANMUNCIALOL, ... irensisesiisnssansasanassanns 23

GULPULE, BITOBE. ... icusrosopensssiuninissngssiimsirninas T8
own coymmands, creating your.........oc..e.eee 57
= Pas

PAEE TMEMOTY MAPS, ZET0......cccveriirniseesssnss 74
page one (System Stack)cooumsvincirinsnsina, 69
Page 7e10 .ovevenn. 69, 74
pages, screen ... e 12
PARES, TNEIMIONY ©.oviiemsisnssiiensssnssrinnssnssiiensrrnnns 68
peripheral board /O ..o 19
peripheral connector pinout........ccoveeerennns 106

peripheral connectors

peripheral slot 1/O ..o, 79
peripheral slot RAMooooviiiiiiiiiiiiieeee, 82
peripheral slot ROMcoocoeevviiieiveeneecvneee 80
photo of the Apple .o 2
picture buffer.............coiinnn w12
pinout, peripheral connector........ . 106

IFL 'Rl TR

L TR TRL TR TRL O TRL TRL

IFl

T OAOEELTATRD TR TR

F

Fi Fi

|

T_\Tl\']ﬂ\'l\'ll\'iﬁlﬁlﬁlﬂlrﬂ'ﬂ'drﬂ'&F&ﬂ[ﬂ[ﬁ[ﬂ[ﬁ!ﬁ[ﬁﬂ_

pinout, configuration block...........cccceeeevn 71
pinout, ROM
pinout, RAM
pinouts, keyboard connnector.........c.eoveee. 103
POWET COMMECIONuvveeiiiniiiniias
power supply features..
power supply schematic......
power supply, the Apple

power-up byte... : . #3765
pProgramming suggeslmns l!‘O visirienn B0
programs, running machine 1angudgc 48
programs, listing machine language....
programs, debugging ..o

PROM, peripheral card...........ccooccicmnnnnnnnns
PROM, expansion ROM or..........ccccoennnnnne

PROMSs, 2716 typeooccoeeie
prompt (+), Monitor..............
prompt (1), Mini-Assembler.....
prompting characters ..
prompting, inpul.............
pushbutton inputs, smgle hlt

~R--

RAM address multiplexer ...
RAM configuration blocks....
RAM memory configuration .
RAM MEMOTY iiiviieeaininiiain i i
BAM PIOOUE cii i viianiis vivvinsosis
RAM, peripheral slot... . .
random access memaory {RAM}
random number...

RDKEY standard mpul submuun 32
reading from cassette @ape.........ove. 47
reading the keyboardcovveeviciiiesiiiinneannd 6
read-only memory (ROM) ... 3
reentering BASIC 34, 54
registers, 6502 internal................ .33, 81
relationships, timing signals and...

RESET cvcle, theconmine

RESET, Autostart ROM..
RESET, Monitor ROM..........cccooeeiiciinnnninn
return character ..

retype key...

review of LhE keyhnurd
Revision @ boards........
Revision 1 board
ROM listing, Autostart. .
ROM listing, Monitor...........ccce.e.
ROM DMLY« ovveins s ssoss iosussssivsnssiss ins
ROM pinout .. v
ROM RESET, Aulo&tart
ROM RESET, Monitor...
ROM special locations, Auluslarl 37

193

ROM, AULOSERLT |, i i s i st s 25
ROM, Monitor
ROM, peripheral sloL........coooceviiemrrenninennrennn 80
ROM or PROM, expansion.........................84
running machine language programs........... 48

-

saving to cassette LAPeo.covimmenimnsiionns
schematic, keyboard

schematic, power supply....

schematic, main board.......

screen format........oo... %
screen Tormat, TeXL.....coouivvivmmensrsssimnsarssnn
screen format, High-Res ..o 21
screen format, Low-Res ...

SCTEEN PAGES....oiiiveianbiasisien

screen soft switches.......
screen, the text..............
screen, the Low-Res......

screen, the High-Res.......iiiiiiiiin
sel, 6582 instruclionocoeeeas

setting up the AppIe ..ot
signals and relationships, timing. il
single-bit pushbutton inputs....... il
slot 170, peripheral........cc....... i 19
slot RAM, peripheral..... .82

slot ROM, peripheral.........cccoviennsinnivnssssscrsB0

SOt BNITY VECLOT . cooveiiriieesionnrinrssies b)
soft switches............... 12 ?'? 98
soft switches, SCreEn......ccocinnvimmiiiniiasiisans 12
SPEAKBL COMNMBCHOL . v vsissmiersenaisniriniais 105
special locations, hsl ul' s Appendix B
special locations, video dlﬁp]ay ____________________ 13
special locations, input/output.... 13
special locations, text window e |
special locations, Autostart ROM)
special locations, Monitor........... ..65
special locations, keyboardcocccivvviinnninn 6
special locations, I/Oooviveeiicccenccienieenns 79
stack), page one (SYStEMcccveeeeeeee .69
standard input subroutine, RDKEY o
standard output subroutine, COUT30
st COMd... . e s s e .36
start, lukewarm. .36
FEATL WAL o snsnmsrs vt s gn s atmnns s 36
STEP and TRACEooooiviiiiiiiiiiinn 26, 51
Stop-List feature, the ... 26, 30
strobe output, utility...... —
Sirobe OULPULS...oivieiiieenanes -
strobe, clearing the keyboardcocovvevviennns 6
subroutine, COUT standard oulpul .30

subroutineg, RDKEY standard mput32
subroutines, some useful Monitor...............

suggestions, 1/0 programming ...
summary of Monitor commands ...
supply features, POWer.....ccevcvrivennns

supply schematic, POWETccccvveericcrenenn 93
supply, the Apple powercccoeeeee 2. 28, 92
switches, Sofl...coeeeecveeviiiecennnnn 12, 79, 98
switches, screen soft ..o 12
switches, toggle... o'
switches, COUT, KFYN .83
switches, CSW/KSW83
system memaory map...... .. 08
(system stack), page one.........cccoevierne. 69
system Hming ..., ek e e T 90
i

tape, SAVINE 10 CASSEIE .ooivweiiemiinnnrsmneraenanans
tape, reading from cassetle... 2
R s i s e

text mode,
bt o, TOPINALL oo s iveravast covi e eadisatiai
text screen, the..........
text video mode, the ...occoceeen.
text window special locations...
text window, the. ... e |
timing signals and relationships.. w91
HMINE, SYSIEM ...coivieiintiniesiiniinsssensessess 20
togple switches. ... liluiiiiina. 19
TRACE, STEP and...... i aasniudb, 5
T e

“USER 1" jumper.. P et
useful Monitor subroul]nea. bDI‘nE 61
utility strobe output....couiiiiniiamnidd

e T

values, Normal/Inverse control...................
varieties of Apples........,....__.......

vector, soft entry ..
video connector .. .
video connector, auxllm r
video display... =
video display specml Ioc';u.mnb
video generator, the ..

video mode, the lexl

video mode, the Low-Res ...
video mode, the High-Res ...
video outpul Jacks.........cocciiiiiiniean 97
e W -

warm start.. o i "
window spcual Iocatmns lexl N TP i |

194

window, the LeXt. . iaaiimsimimimmimine:
i Wi
your own commands, Creating............co..
e

ZEro Page MEMOY MEAPS....c.ooeerireerireanainins
ZRIG, DR S B i

INDEX OF FIGURES

Map of the Text screen...............
Map of the Low-Res mode
Map of the High-Res screen.......
Cursor-moving escape codes.......
System Memory Map..........co...
Memory Configurations
Configuration Block Pinouts ...
Expansion ROM Enable circuil...
SCFXX decodingcoeavvenirneenns
The Apple Main Board..............
Timing Signals.......ccccommriinminens
Power Supply Schematic ..
ROM Pinout... 2
RAM Fmoutb
Auxiliary Vldeo Cunncclor
Game [/O Connector Pinout...1
Keyboard Schematic Drawing .1
Keyboard connector Pinout.....1
Power Connector.............c...... |
Speaker Connectoroccveees 1
Peripheral Connector Pinout...1
Main Board Schematic......110-1

Figure 1,
Figure 2.
Figure 3.
Figure 4.
Figure 3.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10,
Figure 11.
Figure 12,
Figure 13.
Figure 14.
Figure 15,
Figure 16,
Figure 17.
Figure 18,
Figure 19,
Figure 20.
Figure 21.
Figure 22.

57

74
74

01
03

06
15

Tl FL TR

FL TFL TR

J I

L TFL TR

Fl TE

Fl TF

'Fi

l'ﬁ'ﬂ'ﬂ’ﬂ’ﬂfﬂrﬂ'ﬂ

BRI REREEREEEEEEEEEEEEEEEE

INDEX OF PHOTOS

Photo 1.
Photo 2.
Photo 3.
Photo 4,
Photo 5.
Photo 6.
Photo 7,
Photo 8.

The Apple I .o o 2
The Apple Power Supply ...oooveevveennnane 3
The Apple Keyboard......... .
The Video Connectors ..

Eurapple jumper pads........ il 1
The Apple Character Set...... .14
The Game 1/O Connector................. 23
The USER 1 Jumper.........coocccicencninns 99

INDEX OF TABLES

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19,
Table 20.
Table 21.
Table 22.
Table 23.
Table 24,
Table 25.
Table 26.

Keyboard Special Locations...............c [
Keys and their ASCII codes 7
The ASCII Character Sel.........ccoevinne 8
Video Display Memory Ranges ..
Screen Soft Switches............ccccciinnin
Screen Mode Combinations............... L
ASCII Screen Character Set........
Low-Resolution Colors...............
Annunciator Special Locations
Input/Output Special Locatmns ol
Text Window Special Local]ons |
Normal/Inverse Control Values....... 32
Autostart ROM Special Locations....37
Page Three Monitor Locations 65
Mini-Assembler Address Formais...66
RAM Organization and Usage 69
ROM Organization and Usage 12
Monitor Zero Page Usage
Applesoft Il Zero Page Usage Y
DOS 3.2 Zero Page Usage... e
Integer BASIC Zero Page bs.igc Wy b
Built-In 1/0 Locations .. i?9
Peripheral Card 1/0 Lor::nmns .80
Peripheral Card PROM Locatlons .81
I/O Location Base Addresses...........82
1/O Scratchpad RAM Addresses......83

Signal Descriptions:

Tahle 27.
Table 28.
Table 29.

Table 30.
Table 31.
Table 32.
Table 33.

Timing ...

Auxiliary Video C-utpul
Game /0O Connector ...
Keyboard Connector........ooovevvriens
Power CONNECLOrNccccoeevvemvesneeinas
Speaker Connector....... .
Peripheral Connector........ccvievrvens

195

CAST OF
CHARACTERS

LT T
. {period)...

E<HPRZZCASIQTI@MONOREE@ SV A

CTRL C....
ETRL: B:.csiia PTTTTORRPR..
CTRL G (BElL) .. icvavvoisisassispsssmnsnts

ETRL H %), covissivssumsssssisssns

CTRL J (line feed) ...
CTRL P...
CTRL S..
CTRL U !—-‘p

1

1

i

i

i

14i

'di

14i

|

F

F |

F |

F

(4

[di

id

(4

4

4 4

(4i

196

P9PoIvOvIIUIeVaNanYaagan

-clpple computer inc.
10260 Bandley Drive
Cupertino, California 95014

