. gy

E An all-purpose reference

_, uide for first-time P ROG RAMMER'S
e A REFERENCE
rj programmers! . G U | DE

L, . . .

C' commodore

s COMPUTER VM110

Vic 20
Programmer’s

Guide

A. Finkel

N. Harris

P. Higginbottom
M. Tomczyk

i
i
|
|
§
i
i
| Reference
i
3
i
§
§
i

-~

FIRST EDITION
Fourth printing— 1982

Copyright © 1982 by Commodore Business Machines, Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of Commodore
Business Machines, Inc.

TABLE OF CONTENTS

IsfflTlllllllIBINE THE PROGRAMMER'S BEFEBENBE

VIC 20 APPLICATIONS GUIDE.................................. vii
1 BASIC PROGRAMMING REFERENCE GUIDE............... 1
e VIC BASIC: The Language of the VIC...........ccccceeeeene. 3

O COMMANKS % it i it i s v i asma oA st S s s G 5

@ OIBIBMOIS s i wsiss v vies Tivkadskiaiunatasss 14

8 O - SIAtOMONTS: .. v it oisssansibiornvsetuarstinions deiia 35

0 BASIC FURCHONS i mess i siasivasies 40

® Numbers and Variables.............cceeererinnninnsinrensnessnesanns 54
01T s,y AR SRS O W T 62

@ Lol OOPBRONS. . cvxreiinssensiebnssunesduandsinacenshssossakitesiuitnss 68

2 PROGRAMMING TIPS..............oii, 71
& EARING PrOGrBMIS: . ..ci soatstsoiiis s tussssns sbssssnssssss donsindssos 73

e . Using the GET Statement ... 7L

® How to Crunch BASIC Programs.........cccccceeriiiiinnrinnnn 79

® Working With Graphics.......ccccoiueeinmiieninisniieininesinienn 82
Character Memory........ccocciviieiieiieiuneiniisessesneens 82
Programmable Characters............ccoovviveviiiivniinnnas 82

High Resolution Graphics...........cvcveverrercrereessnenns 88

Multi-Color Mode Graphics.........ccvviinirinsisainnes 92
Superexpander Cantridge..........c.ccveierereierenenns 94

a0 g = o T Lo R A A S 95

3 MACHINE LANGUAGE PROGRAMMING GUIDE..... 107
® System OVervIeW............cccureicnsensnnsisnnsessssnssassiescnns 109

® Introduction to Machine Language............c..cocenurunnee 123

@ Writing “Your-First- Program:....... ocsssesssavssesssssnsspasasss 132

e Special Tips for BEgiNNers.........ccccvvveverreessersserssnnnnas 168

CORLY v aThid) oV e iR B =5 IE. s ORI il e s e B 170

e Useful Memory Locations..........ccocerenmissesssnssmssnsssasesne 178

0 The KERN AL v b s aeisnatasiise et sianes 182

e KERNAL Power Up Activities........ccooeerueincereiraninnennns 211

O VIC CRIPE i s sisassimvissvoama rimts stagess 212

6560 (Video Interface Chip).......cccvvvveerennineneenen 212

6522 (Versatile Interface Adapter)............cceuue 218

4 INPUT/OUTPUTGUIDE...................oooooooo 227

B SO PO i el i v s absons e aana shnaiota vivass sosvRabe Lo s 229

8. The Safal BUB. i amansresanssmmvstinnisn 234

® Using the VIC Graphic Printer..........cccocoeveeveerenrunnne 236

B NG EXDENSION POL. st rs axsrmanss o s kb abush e i s I S 241

8 GameConollers:. .. 5 S s R R 246

dJoystiekc kil s 246

PadTIOS . ciioucisicimiisuaianiin ssisssiisios raiass saniss 248

LIght Pon.:. vt ot vt e 250

® RS-232 Interface Description.........cccccviieiiricciiiiinnnnnn 251

APPENIIBES i i 261

A. Abbreviations for BASIC Keywords..........c..ccccuvrennne 263

B. Screen & Border Color Combinations.........cccceeeueuee. 265

C. Table of Misical'Notes........i.. i caaniidniaiina 266

D Screon PISPIaY [COdes. i iismiivesmviissoiras 267

E.. Screen Memory Maps..........uuiiciissimsinsanissisiies 270

F.. ASClliand CHRS Cod88. i iivmisimisaniomrsnsss 272

G. Deriving Mathematical Functions............ccoveenieriinnnn 275

HEROrIMesSagas:. ...l oiealt L S S8 e e e il s 276

I. Converting Programs to VIC 20 BASIC................... 278

J. Pinouts for Input/Output Devices...........cccecruviinnnenne 280

K. VIC Peripherals & ACCESSOrES........cccueeminiiruniiernne 284

L v aaS MEL KSR olh SR\ Ll 285

s T e e i 1) il 0L U 291
iv

INTRODUCING. . .
THE PROGRAMMER'S
REFERENCE GUIDE!

The Friendly Computer deserves a Friendly Reference Book.

That's why we wrote the VIC 20 PROGRAMMER'S REFER-
ENCE GUIDE . . . a book that gives you more information about
your VIC 20 Personal Computer than any other source. This guide
was compiled from the experience of Commodore’s international
programming staffs in more than half a dozen countries, and is
designed to be used by first-time computerists as well as
experienced programmers.

To cover the areas VIC 20 programmers are most interested in,
we divided the book into four sections: BASIC Programming,
Machine Language Programming, Input/Output Interfacing and
Programming Graphics & Sound.

Here are just a few of the ways the VIC 20 Programmer's
Reference Guide helps meet your programming needs:

—Our complete “dictionary” includes not only BASIC com-
mands but also sample programs to show you how they work.

—Need an introduction to Machine Level Programming? Our
laymen’s overview gets you started.

—The exclusive Kernal helps assure the programs you write
today won't be outdated tomorrow.

—The VIC's Interface section lets you expand your computer . . .
from RS232 for telecommunications to joysticks, game paddles
and lightpens.

—You'll have fun learning about the VIC's graphic, sound and
music capabilities . . . including the unique “multicolor” mode.

—You'll discover POKEs you never knew about, and probably
PEEK into some memory locations you never knew existed.

v

There are lots of fascinating hours ahead of you. Let the
Programmer’'s Reference Guide be your companion as you
continue to explore your VIC 20 Personal Computer System.

And . .. if you find any errors in this book, please send us a
postcard or letter in care of VIC PROGRAMMER'S REFERENCE
GUIDE, VIC Product Marketing Group, Commodore Business
Machines, Inc., 681 Moore Road, King of Prussia, PA 19406. We'd
appreciate your assistance in helping us “debug” our reference
guide for future printings.

Enjoy your new reference guide . . . and happy programming!

—The Authors

Vi

VIG 20
APPLICATIONS
| GUIDE

e More than 30 applications
for your VIC 20
Personal Computer

—

VIC 20 APPLICATIONS GUIDE

When you first considered buying a computer, the chances are
you said something like, “l know computers are good things to have
and it's nice that they're finally affordable, but. . . what can | do with

one?”

The great thing about a computer is that you can tailor the
machine to do what you want it to—you can make it calculate your
home budget, play arcade-style action games—you can even
make it talk! And the best thing is, if your VIC 20 does only ONE of
the things listed below, it's well worth the price you paid for it.

Here then, is a list of applications for your VIC 20—in case you've

asked yourself, “Yes, but what else can | do with it?”

APPLICATION

ADVENTURE
GAMES

ADVERTISING &

MERCHANDISING

ANIMATION

BABYSITTING

COMMENTS/REQUIRE-
MENTS

COMMODORE provides 5 Scott
Adams Adventure games on car-
tridge, decoded to “talk” with the
VOTRAX “Type N Talk™™,

Hook the VIC to a television and put
itin a store window with an animated
message flashing and you've got a
great point of purchase store dis-
play.

The VIC is well-suited to screen
animation . . . a special aid called
THE PROGRAMMABLE CHARAC-
TER SET & GAMEGRAPHICS
EDITOR is available from COM-
MODORE on tape cassette.

The VIC HOME BABYSITTER car-
tridge can keep your child occupied
for hours and teach keyboard sym-
bols, special learning concepts and
relationships. A “first” from COM-
MODORE.

BASIC
PROGRAMMING

BIORHYTHM

CHARTING

CHESS GAME

COLLECTIONS

COMMUNICATION

COMPOSING
SONGS

DEXTERITY

The VIC owner’'s guide and the
TEACH YOURSELF PROGRAM-
MING series of books and tapes are
excellent starting points. A PRO-
GRAMMERS AID CARTRIDGE is
available from COMMODORE.

COMMODORE'S Biorhythm pro-
gram on tape has a special compati-
bility feature which lets you compare
yourself to anyone else by simply
typing in your birthdates.

SARGON Il (on cartridge from
COMMODORE) has been called
the most powerful microcomputer
chess program anywhere.

COMMODORE will provide a car-
tridge which allows collectors to
record their collections (stamps,
coins or other items) on tape or
floppy diskettes, and print out these
lists on the VIC GRAPHIC PRINT-
ER.

VICMODEM™, VICNET™ and VIC-
TERM™ are all products which allow
VIC owners to communicate by
telephone with other computer
owners, or telecomputing services
like CompuServe ™ or The Source™.

The VIC’s 3 tone generators cover 5
octaves and may be used to write
and record music. The best music
writing accessory is the SUPEREX-
PANDER CARTRIDGE which lets
you write music in note form and
save it on tape or disk.

Hand-to-eye coordination and man-
ual dexterity are aided by several of
COMMODORE'’s VIC games ...
including the “Jupiter Lander” and
night driving simulations, among
others.

X

EDUCATION

EXPENSE
RECORDS

FOREIGN
LANGUAGE

FORMULA/FIGURES

GAMBLING

GAMES

GRAPHICS
PLOTTING

The COMMODORE Educational
Computing Resource Book con-
tains information on educational
uses of computers in general as well
as educational software lists for the
VIC 20. Available through COM-
MODORE computer dealers.

A CALENDAR/EXPENSE REC-
ORD tape is offered by COMMO-
DORE.

The VIC Programmable Character
Set Editor lets any user replace the
VIC character set with user-defined
foreign language characters.

The VIC has the same powerful
math routines built into its operating
system as the COMMODORE
PET/CBM microcomputers. Com-
plex formulas may be calculated
quickly and easily either directly or
under program control (see the
OPERATORS section of the VIC
user manual and/or the matching
section in this book).

COMMODORE provides several
games which provide hours of gam-
bling fun without risking any money
... programs like VIC21 Casino
Style Blackjack (on tape), SU-
PERSLOT (cartridge) and DRAW
POKER (cartridge).

Everything from space games on
cartridge to Blackjack on tape, plus
REAL ARCADE games adapted
from the most popular coin-operat-
ed games in the world.

The SUPEREXPANDER CAR-
TRIDGE offers 3K memory expan-
sion, hi-resolution multi-color
graphics plotting, easy function key
definition, and musicwriting com-
mands . . . all in one cartridge.

Xi

HOME INVENTORY

INSTRUMENT
CONTROL

JOURNALS OR
CREATIVE
WRITING

LIGHTPEN
CONTROL

LOAN/MORTGAGE
CALCULATION

MACHINE CODE
PROGRAMMING

MATH PRACTICE
TOOL

The HOME INVENTORY tape in
COMMODORE’'s HOME CALCU-
LATION SIXPACK provides a low
priced method for storing and up-
dating lists of belongings for insur-
ance purposes, business purposes,
etc.

The VIC has a serial port, RS-232
port and |IEEE-4888 adapter car-
tridge for use in a variety of special
industrial applications.

The VIC is excellent for making daily
journal entries, using the VIC TYPE-
WRITER or VICWRITER. Informa-
tion can be stored on the VIC
DATASSETTE tape recorder or VIC
DISK DRIVE, and printed out on a
VIC GRAPHIC PRINTER.

Applications using a lightpen to
specify items can use any commer-
cial lightpen which fits the VIC game
port connector ... at least two
makers market lightpens which
work with the VIC.

Try the LOAN/MORTGAGE CAL-
CULATOR from COMMODORE.

COMMODORE’'s PROGRAM-
MER'S REFERENCE GUIDE in-
cludes a machine language section.
The VICMON™ machine language
monitor cartridge is recommended.
VIC machine language programs
may also be written in assembly
language on the PET/CBM using the
COMMODORE Assembler Develop-
ment System.

Several software companies offer
educational programs on tape for
the VIC. COMMODORE's first math
practice program, called “SPACE-
MATH,” is available on tape.

Xii

el

[

(=]

NETWORKING &
DISTRIBUTED
PROCESSING

PAYROLL &
FORMS PRINTOUT

PERSONAL
BUDGET

PORTFOLIO
ANALYSIS

PRINT
INFORMATION ON
PAPER

RECIPES

SIMULATIONS

SPORTS DATA

Networking may be achieved by
using the VIC as part of a telephone
or RS-232 hookup, or by using a
commercially available network
system.

The VIC can be programmed to
handle a variety of entry-type busi-
ness applications. Upper/lower
case letters combined with VIC
“business form” graphics make it
easy to design forms, which can be
easily printed out on the VIC
GRAPHIC PRINTER.

COMMODORE provides PERSON-
AL FINANCE programs on tape and
on plug-in cartridge.

Business software which performs
this function is available as printed
programs in books available from
most computer stores. This service
is also available through telecom-
puting services.

The VIC GRAPHIC PRINTER prints
letters, numbers and graphics in
high quality dot matrix format. RS-
232 PRINTERS including letter
quality printers may also be used
with the proper interfacing. An IEEE
488 INTERFACE cartridge may also
allow IEEE printer use.

See the recipe program called
“MIKE'S CHICKEN SOUP” in the
VIC owner's manual, or check a
computer book rack (most “practi-
cal” program books contain recipe
programs).

Computer simulations permit dan-
gerous or expensive experiments to
be performed at minimum risk &
expense.

The Source™ and CompuServe™
both provide sports information.

Xiii

STOCK QUOTES

TALKING VIC

TERM PAPERS
& REPORTS

TERMINAL &
MODEM

TYPING PRACTICE

WORDPROCESSING

The VIC, a modem, and a subscrip-
tion to The Source™ or Compu-
Serve™ can cost less than $500.

Connect the VIC to a voice synthe-
sizer such as the “Type N Talk™
manufactured by VOTRAX INC.

The VIC helps students research
current library-type sources over the
telephone ... and compose, edit
and print out their reports on the VIC
and VIC GRAPHIC PRINTER ...
the same type of computer services
which were previously available
only through large institutions at a
cost of many thousands of dollars.

VIC accessories include an RS-232
modem interface (for use with RS-
232 modems) or the ultra low-priced
VICMODEM™

The reverse side of the VIC TYPE-
WRITER has a “TYPING TUTOR"

program.

THE VIC TYPEWRITER™ is avail-
able on tape and the VIC-
WRITER™ cartridge also provides
wordprocessing power. Both work
with the VIC GRAPHIC PRINTER.

Xiv

-—

€

.

3

1

BASIC PROGRAMMING
REFERENCE GUIDE

e VIC BASIC: The Language
of the VIC

e Commands

e Statements

e |/O Statements

® BASIC Functions

¢ Numbers and Variables
® Logical Operators

NIRRT e L T . -l s BT & mea . T B T BT

VIC BASIC: THE LANGUAGE OF
THE VIC

The BASIC computing language is a powerful and easy-to-use
means of communicating instructions to your VIC 20 Personal
Computer. VIC BASIC is the same language used in the
Commodore PET/CBM line of microcomputers, and is nearly
identical to the BASIC used in most other personal computers.
Learning BASIC now can prepare you to move up to a more
sophisticated computer in the future, and can also give you the
foundation you need to learn other “higher level” computing
languages.

If you're a first-time computerist, you'll be pleased to know you
can write your first BASIC program on the VIC within 15 minutes,
using the VIC 20 PERSONAL COMPUTER GUIDE which comes
with the machine. Additional self-teaching aids are available from
Commodore as part of the TEACH YOURSELF PROGRAMMING
SERIES, and classes offered by schools, computer centers and
retail stores can give you a solid grounding in the fundamentals of
BASIC within 4-6 hours.

The VIC BASIC instructions which follow will provide a valuable
reference as you learn to write BASIC, or as you put into practice
the techniques you've already learned. Each entry in the listing
explains how the instruction is used, with practical examples.
Additional programming tips are included in a separate “BASIC
PROGRAMMING TIPS” section.

BASIC has approximately’ 60 words in its vocabulary and is
surprisingly easy to learn. That doesn't mean you can't keep
improving, however. Like any language, BASIC has its own
“idioms” and complexities which you can use to write increasingly
sophisticated programs. VIC BASIC even has a sort of “slang” in
that you can abbreviate most of the commands by typing the first
letter of the instruction and the SHIFTED second letter. Using
abbreviated commands to write programs makes programming the
VIC fast and convenient. (Note that if you LIST a program written in
abbreviated form, the full-length commands are displayed to help
you read your program.)

In BASIC, all instructions are commonly referred to as
“commands,” although technically the BASIC instruction set can
be broken down into several areas . . . which is how we've grouped
them in the following VIC BASIC “vocabulary” guide. We've
included separate sections on several types of BASIC instructions:
Commands, Statements, Input/Output Statements, Functions,
Numbers and Variables, and Operators.

3

It should also be noted here that while we communicate with the
VIC through the BASIC language, the VIC's “native” vocabulary is
Machine Language which is based on a binary or hexadecimal
numbering system. BASIC is really a translation of Machine
Language into terms we humans can understand . . . which is why
BASIC programs generally run slower than Machine Language
programs, since BASIC programs have to be interpreted into
Machine Language before they run, while Machine Language
programs run immediately. See “Introduction to Machine Lan-
guage Programming” for more information.

Of course, you don'’t have to know BASIC to take advantage of
the VIC's computing power . . . you don’t even have to know how to
type. We like to say that with the VIC 20, the first thing you do is
learn “computing” . . . not “programming.” You don’t have to be an
auto mechanic to drive a car, and by the same token you don't have
to be a programmer to “drive” your VIC 20. Still, knowing something
about how your car works mechanically helps you maintain and use
your car to best advantage. Likewise, knowing how the computer is
programmed helps you get the most out of your VIC 20.

In the future, being able to ““speak’ a computer language will give
you a tremendous advantage over those who can't. . . notbecause
you can write a computer program, but because you'll have a better
understanding of what a computer is and does, and you'll be able to
make better use of computing at school, on the job and at home.
Learning BASIC. . . or at least how it works . . . will bring you close
to the future and prepare you for the dramatic technological
changes that are already occurring as part of the “Computer
Revolution.”

TO AVOID CONFUSION, PLEASE NOTE:

O = letter O as in OPEN

0 = ZERO

| = letter | as in INPUT

1 = number ONE

* = type the large asterisk key

Format = all format entries shall be typed in on one line
[] = information contained inside brackets in the Format
lines is optional.

WARM START—If you get into trouble or want to break out
of a program while it's running, you can hold down the
RUN/STOP key and hit the RESTORE key. This combination
resets the VIC without losing your program. Now you can
LIST or RUN your program again.

4

COMMANDS

BASIC commands tell the VIC to do something with a program.
For example, you “command” the VIC to list, run, stop, continue,
save and load programs.

BASIC commands may be used in direct mode (without line
numbers) or as instructions in BASIC programs. In direct mode,
commands are executed as soon as the RETURN key is pressed.

In a BASIC program, commands are included like any other
instruction, and executed when you type RUN. The only command
which may not be used in a program is CONT.

VIC BASIC commands include the following:

CONT
LIST
LOAD
NEW
RUN
SAVE
VERIFY

CONT

Format: Abbreviation: Screen Display:

CONT co c

This commanid is used to re-start the execution of a program
which has been stopped by either using the STOP key, a STOP
statement, or an END statement within the program. The program
will re-start at the exact place from which it left off. While the
program is stopped, the user can inspect or change any variables
or look at the program. CONT will not work if you have changed or
added lines of the program (or even just moved the cursor to a
program line and hit RETURN without changing anything), or if the
program halted due to an error, or if you caused an error before
typing to re-start the program. The message in this case is CAN'T
CONTINUE ERROR.

This is a handy tool when debugging a program. It lets you place
STOP statements at strategic locations in the program, and
examine variable values when the program stops. You can keep
using STOP and CONT until you find what you're looking for.

5

EXAMPLE:

10PlI =0:C = 1

20 Pl = Pl + 4/C — 4/(C + 2)
30 PRINT PI

40C = C + 4:.GOTO 20

This program calculates the value of Pl. RUN this program, and
after a short while hit the [l key. You will see the display:

STOP
BREAK IN 20

Type the command PRINT C to see how far the VIC has gotten.
Then use CONT to resume from where the VIC left off.

LIST

Format:* Abbreviation: Screen Display:

LIST [from line number] L IEHIZMN | L K]

— [to line number]

The LIST command allows you to look at lines of the BASIC
program currently in the VIC’s memory. The VIC's powerful screen
editor allows you to easily and quickly edit programs which you
have LISTed.

The LIST command can specify which program line numbers will
be shown. If you type LIST and a single line number, only that line
will be displayed. If the number is followed by a hyphen (-), all the
lines from that number forward will be shown. If the number is
preceded by the hyphen, all lines from the beginning to that line will
be shown. You can LIST a range of line numbers by typing the two
line numbers separated by a hyphen, in which case the lines from
the first number to the second number are shown. [fLIST 0 is typed,
the whole program will be LISTed and not just line 0.

If the program length exceeds the length of the screen display,
the first lines in the program will scroll off the screen during LISTing.

To slow down the scrolling, hold down the SRR key. To stop

RUN

the program during a LIST, hit the STo0

key.

The LIST command may also be used as a statement within a

BASIC program, but the program will stop as soon as the LIST is
finished.

*All format entries should be typed in one line.

6

i

EXAMPLES OF LIST COMMAND

LIST LISTs whole program
LIST 0 LISTs whole program
LIST 100 Line 100 only

LIST 100- Everything from 100 on

LIST -100 Shows from start to 100
LIST 100-150 Starts at 100 and stops with 150

EXAMPLE OF LIST STATEMENT
(Program Mode)

10 PRINT“THIS IS LINE 10”
20 LIST
30 PRINT“THIS IS LINE 30"

LOAD

Format: Abbreviation: Screen Display:

LOAD [“filename”, ¥ SHIFT [e] Uy R

device, command]

The LOAD command transfers a program from cassette tape or
disk into the VIC's memory, where it can be used or changed.

LOAD FROM TAPE

If the program to be LOADed is the first one on the tape, all you
have to type is the word LOAD by itself. Unless the PLAY key was
already down, the VIC answers with the message:

PRESS PLAY ON TAPE.

Once the recorder has been started, the VIC says:

OK
SEARCHING
FOUND
LOADING
At this point, any program that had been in memory is lost,
because the new one has begun to take its place. (If you use the
:rUan key to halt the LOAD, there will likely be a spot in the
program with garbage, just at the point where you stopped it.)

Once the program has finished the LOAD, the VIC says:
READY.

When the program is not the first on the tape, or you're not sure
that it is, the VIC can search for the program you want. Type LOAD
and the name of the program inside quote marks ("), or the name of
a string variable containing the name of the program. The VIC will

show any other programs or files that it sees on the tape with the
message:

FOUND name

The VIC will only LOAD the correct program, and will not LOAD a
data file on that tape.

LOAD FROM DISK

In order to bring in a program from a device other than the tape, a
device number is used. Following the name of the program, type a
comma (,) and the number (or variable containing the number). The
cassette is device number 1. The disk drive is device number 8. See
the manual of the device for its number.

If the program with that name is not found on the device, a FILE
NOT FOUND ERROR will result. This doesn’t happen on tape,
since the VIC has no way of sensing that there are no more
programs on a tape. It is possible to put an end-of-tape marker on
the tape, using the SAVE or OPEN statements, and if the VIC reads
this marker while searching a tape, an error message appears.

The VIC will automatically LOAD the program into the beginning
of BASIC program memory, at location 4096 in a machine without
an extra 3K of memory, or at 1024 with the extra 3K. For certain
applications this may not be convenient. By following the device
number with a comma and the command number 1, the VIC will be
sure to LOAD the program in the same spot in memory from which it
was SAVEd.

LOAD can be used as a statement in a BASIC program. The
program will be RUN as soon as LOADIng is finished. Variables
used in the first program will not be cleared as long as the new
program is shorter in length than the older one. If a longer program
is LOADed on a short one, the BASIC program lines will over-write
the variables, and changing a variable will mess up the program.

Note that using an asterisk can save loading time (see
examples).

EXAMPLES:

LOAD Reads in the next program from tape.

LOAD “HELLO” Searches tape until the program called
HELLO is found, then it is LOADed.

LOAD A$ Uses the name in A$ to search.

8

L)

LOAD *“*”, 8 LOADs first program from disk.

LOAD “AB*”, 8 Loads first program beginning with AB.

LOAD “HELLO", 8 Looks for a program on device 8 (disk
drive).

LOAD “"1,1 Looks for the first program on tape, and
LOADs it into the same part of memory that
it came from.

10 LOAD“NEXT”, 8 Finds the program called NEXT on device
8, LOADs, then RUNs it.

Because of possible problems with old tapes or misaligned
recorders, it is possible that the program will not LOAD correctly.
The VIC stores two copies of the program on the tape. If they don't
match, the message LOAD ERROR is displayed. The program may
LIST correctly, but probably won't. In any case, there is most likely
some problem, some section of memory that is not right, and the
program should be re-LOADed. It is wise to make an extra copy of
any program, in case you run into this problem at some time.

In the case of a very bad LOAD, some of the important memory
locations inside the VIC may be changed. If you get weird results
after a LOAD, like the VIC not understanding normal BASIC
commands anymore, you'll have to turn the VIC off and then on
again.

NEW
Format: Abbreviation: Screen Display:
NEW None None

NEW is used to tell the VIC to erase a current program from
memory so a different program can be used. Unless the program is
stored (on tape or disk), it will be lost unless it is typed in again from
the beginning. For this reason, you should BE CAREFUL when
using this command! Not clearing out an old program before typing
in a new one can result in a confusing mixing of the two programs.

NEW can also be used as a statement within a program. When
this instruction is executed, the program in memory is erased, and
the program stops. This is not a good programming technique,
especially if you RUN the program and it erases itself while you're
writing or debugging it.

EXAMPLE:

NEW Clears the program & variables.
10 NEW Performs the NEW operation and stops the program.

9

RUN

Format: Abbreviation: Screen Display:

RUN [line number] R I3l U R[A

This command causes a BASIC program to begin operating. The
command RUN by itself starts the program at the lowest numbered
line. All variable values are cleared when this command is given.

RUN followed by a number causes the program to start working
from another line than the lowest numbered one. If that line number
does not exist, the message UNDEF'D STATEMENT ERROR
appears. RUN followed by a variable will first clear the value of that
variable, and try to start the program at line 0, if it exists.

RUN can also be used as a statement within a program. Keep in
mind that all variables are cleared when this statement is executed.

EXAMPLES:

RUN Starts at the beginning

RUN 100 Starts at line 100

RUN X Starts at line 0, or UNDEF'D
STATEMENT ERROR if no line 0

SAVE

Format: Abbreviation: Screen Display:

SAVE [“filename”, SEIAM A S (4]
device, command]

The SAVE command stores a program currently in memory on
tape or disk. The program being SAVEd is not affected and remains
inthe VIC's memory after the save operation. Programs on tape are
stored twice automatically, so the VIC can check for errors when
LOADing the program back in.

The command SAVE all by itself sends the program to the
cassette deck without a name. When the command is given, the
VIC will say:

PRESS RECORD AND PLAY ON TAPE

Holding down the RECORD button, press PLAY, and the VIC will
say:

OK
SAVING

10

[=-]

L}

LE g

=t

and begin storing. The VIC cannot check the RECORD key; it can
only sense that the tape is moving, so be sure to press RECORD. If
PLAY was already pressed, no message appears.

When the program has been SAVEd, the VIC will give the
message:

READY.

The VIC has no way of searching for a blank spot on the tape, but
just records wherever it is, erasing any information that may have
been there. However, the VERIFY command can be used to find
the end of the last program.

SAVE can be followed by a program name in quotes or in a string
variable. The VIC will then write the program name before the
program on the tape, which lets the VIC find it more easily.

The program can be SAVEd on a device other than the tape deck
by giving a device number. To do this, put a comma after the
program name, and then the number of the device. The cassette
deck is device number 1, and the disk is number 8. (See examples.)

Itis possible to instruct the VIC to SAVE a program so it will not be
moved in memory when LOADed. Using command number 1 after
the device number will do this. This is useful when working with
different memory configurations which may cause VIC memory
locations to shift.

To prevent a user from accidentally trying to read past the last
information on the tape, the VIC can also write an end-of-tape
marker after the program. To do this, follow the device number with
acomma and command number 2. When the VIC finds this marker,
it will stop and show the message DEVICE NOT PRESENT
ERROR.

Command number 3 is a combination of 1 and 2, telling the
program on tape not to relocate and to put an end-of-tape marker
after the program.

SAVE can also be used as a statement within a BASIC program.
When this statement is hit, the program will be SAVEd normally,
with the usual prompts appearing on the screen. The program
resumes normally after the SAVE.

EXAMPLES

SAVE Stores program on tape without name
SAVE “HELLO" Stores on tape with name HELLO
SAVE A$ Stores on tape with name in A$

SAVE “HELLO",8 Stores on device number 8 (disk drive)
SAVE "HELLO",1,1 Won't relocate HELLO upon re-LOADing

11

SAVE “HELLO”",1,2 Puts an end-of-tape marker after the
program.

SAVE “HELLO",1,3 Won't relocate & end-of-tape marker

10 SAVE“HELLO” Saves the program, then goes on with the
next program line.

VERIFY

Format: Abbreviation: Screen Display:

VERIFY “filename”, VEaM E "Am
device

This command checks the program on tape or disk against the
programin the VIC’s memory. VERIFY is normally used right after a
SAVE, to make sure the program was stored correctly on the tape
or disk. VERIFYing a program after it has been LOADed is useless,
since the same incorrect program could be in both places.

When you tell the VIC to VERIFY, this message shows:

PRESS PLAY ON TAPE

Once the tape is moving, the VIC checks the program against
memory, reading until the end of the program. If the copies match,
the VIC says:

OK
READY.

If there is a problem, you will see this message:
?VERIFY ERROR

In this case, you should immediately SAVE the program on a
different tape or disk and try again.

The format of the VERIFY command is similar to the LOAD
command. A program name can be given either in quotes or a string
variable, and the VIC will search for that program. If acomma and a
device number follow the name, the VIC will look at the device
designated.

VERIFY is also used to position a tape just past the last program,
S0 a new program can be added to the tape without over-writing an
older one. Just VERIFY with the name of the last program there; the
VIC searches, checks the program, and stops with a VERIFY
ERROR. However, your program is still in memory, and now the
tape is at a blank spot. You can SAVE without worry.

12

=

EXAMPLES:

VERIFY Checks the first program on tape.
VERIFY “HELLO” Searches for HELLO, then checks
VERIFY “HELLO",8 Looks on device 8 for the program.

13

STATEMENTS

CLR

DATA

DEF FN

DIM

END

FOR. .. 1O .5 STEP
GET

GOsuB

GOTO or GO TO

IF.. THEN

INPUT

LET

NEXT
ON
POKE
PRINT
READ
REM
RESTORE
RETURN
STOP
SYS
WAIT

CLR

Format: Abbreviation: Screen Display:

CLR CL c[]

This statement clears out any variables that have been defined,
un-DIMensions any arrays, and RESTOREs the DATA pointer
back to the beginning. This makes available all the RAM memory
that the variables had used so that it can be used for something
different. The RUN command automatically performs the CLR
operation, as does LOADing a new program or doing a NEW. Don't

confuse this statement with the H‘;‘JE

key, which clears the screen.

14

EXAMPLE:

100 A = 1014
110 CLR
120 PRINT A

When RUN, this program PRINTs a zero on the screen.

DATA
Format: Abbreviation: Screen Display:
DATA value bl SHIFT [D [#]

[, value, ..., value]

The DATA statement holds information that will fill variables in a
READ statement. Any type of information can be stored here,
separated by commas. If a comma, space, or colon are to be used
as data, they must be enclosed in quote marks (). Two commas
with nothing in between will be read as zero, or an empty string.
Note: the information in brackets is optional.

The line containing the DATA statement doesn'’t actually have to
be executed while RUNning the program, so most programmers
leave all the DATA statements at the end of the program, out of the
way.

EXAMPLE:

10 READ A : PRINT A

20 READ A, B, C : PRINT A; B; C

30 READ AS : PRINT A$

40 FOR L = 1to 5 : READ A : PRINT A; : NEXT

50 READ AS, A, B, B$: PRINT AS$, A, B, B$

60 END : REM YOU NEVER ACTUALLY HAVE TO HIT THE
DATA STATEMENTS!

960 DATA 1

970 DATA 1,2,3

980 DATA ABC

990 DATA 2,3,5,7,11,"HELLO” -1.2445E-5, 69.7767, "A, B, C”

DEF FN

Format: Abbreviation: Screen Display:
DEF FN [name] DE b
(variable) = formula
15

When a long mathematical formula is used several times in
different lines of a program, program memory and typing time can
be saved by using a defined function for the formula. The functionis
then used throughout the program in place of the lengthy formula.

The name of the function will be the letters FN and any variable
name you choose, one or two letters long. The DEF FN statement
must be executed at least once for the program to use it, so this
statement is normally placed at the beginning of the program.

The function name is followed by a variable name inside
parentheses. Next comes an equal sign, and then the formula.

Here's an example of a simple formula definition, with an
example of its use in the program.

EXAMPLE 1:

10 DEF FNAX) = 7* X
20 PRINT FNA(1)
30 PRINT FNA(3)

The result of line 20 is 7, and the result in line 30 is 21.

EXAMPLE 2:

10 DEF FNA(X) = INT(RND(1)*6) + 1
20 PRINT FNA(10)

When the function in this example is used in the program, the
value of the number in parentheses in line 20 doesn't have any
effect on the result. This is because in line 10 the variable (X) in the
parentheses doesn't appear in the formula on the right.

The next example does use the variable name in the formula.

EXAMPLE 3:

10 DEF FNA(X) = INT(RND(1)*X) + 1
20 PRINT FNA(10)

In this case, the number in the parentheses in line 20 does affect
the result. The number in the parentheses in line 20 is the largest
random number that will be picked.

The result of a defined formula must always be a number,; there
are no defined functions for string variables.

16

DIM

Format: Abbreviation: Screen Display:
DIM variable DI D]

(number, ... ,number),

[variable (number, ... , number), ..]

This statement defines an array or matrix of variables, which
allows you to use the variable name with a subscript. The subscript
points to the element in the array being used. The lowest element
number in an array is zero, and the highest is the number given in
the DIM statement. If an array variable is used without a DIM
statement to create it, it is automatically DIMensioned to 10 in each
dimension.

Let's suppose we wanted to keep track of the score of a football
game. There are 2 teams, and four quarters plus a possible
overtime quarter in the game. We could use a matrix to hold the
scores in each quarter. Here is a program that asks you for the
score of each team in each quarter:

EXAMPLE:

100 DIM S(1,5) , T$(1)

110 INPUT “TEAM NAMES” ; T$(0), T$(1)
120 FORQ = 1 TO 5

130 FORT = 0 TO 1

140 PRINT T$(T), “SCORE IN QUARTER" Q
150 INPUT S(T,Q)

160 S(T,0) = S(T, 0) + S(T, Q)

170 NEXT T,Q

180 PRINT CHR$(147) “SCOREBOARD”
190 PRINT "QUARTER”;

200 FORQ = 1TO 5

210 PRINT TAB(Q*2 +9) Q;

220 NEXT

230 PRINT TAB (15) “TOTAL"

240 FORT = 0 TO 1

250 PRINT T$(T);

260 FORQ = 1 TO5

270 PRINT TAB (Q*2 +9) S(T, Q);

280 NEXT

290 PRINT TAB(15) S(T,0)

300 NEXT

17

The element numbers in every dimension start at 0 and end at the
number in the DIM statement. The number of elements created in
any dimension is the maximum subscript number PLUS 1. The total
number of elements is equal to the product of the number of
elements in all dimension multiplied together.

There may be any number of dimensions and any number of
elements in an array, limited only by the amount of RAM memory
that is available to hold the variables. The array may be made up of
normal numeric variables, as shown above, or of strings or integer
numbers. If the variables are to be other than normal numeric,
simply use the $ or % signs after the variable name to indicate string
or integer variables.

It's easy to calculate the amount of memory that will be used up
by an array:

MEMORY USED = 5 bytes for variable name
2 bytes for each dimension
2 bytes/element for integer variables
5 bytes/element for normal numeric variables
3 bytes/element for string variables
1 byte for each character in each string
element

END

Format: Abbreviation: Screen Display:

END [SHIFT I E[/]

This statement will finish the program when RUNning and return
complete control of the VIC to the person operating it. The CONT
command can be used to resume execution of the program after
the END statement was reached, because no variables or pointers
are cleared.

The END statement results in the message: READY.

The difference between STOP and END statements is slight: the
STOP statement displays the message:

BREAK IN LINE XXX

Neither STOP nor END is required to appear at any point in the
program in VIC BASIC, because a program running out of lines to
execute will END all by itself.

18

=1

[

FOR. .. 10 . . STER. &,

Format: Abbreviation: Screen Display:

FOR variable = F I3l O FI

start TO limit [STEP increment]

This is a special BASIC statement that lets you easily use a
variable as a counter. You must specify certain parameters: the
variable name, its starting value, the limit of the count, and how
much to add during each cycle.

Here is a simple BASIC program that counts from 1 to 10,
PRINTing each number and ENDing when complete, and using no
FOR statements:

100L = 1

110 PRINT L

120L =L + 1

130 IF L <= 10 THEN 110
140 END

Using the FOR statement, here is the same program:

100 FORL = 1 TO 10
110 PRINT L

120 NEXT L

130 END

As you can see, the program is shorter and easier to understand
using the FOR statement. Here is a closer look at the parameters,
to see how everything works.

The variable can be any numeric variable name except an array
variable. When the program reaches a FOR statement, variable is
settothe value of start. The program proceeds with the statements,
until a statement containing the word NEXT is reached.

At that point, increment is added to variable’s value. The STEP is
optional, and if there is no STEP shown increment is assumed to be
+1.

After increment has been added to variable, the value of variable
is compared to limit. If the limit has not been exceeded the program
continues with the line after the FOR statement. If the limit has been
passed, the line to be executed is the line following the NEXT
statement. Note: if the STEP value is positive, variable will exceed
limit when its value is greater than limit, and if the STEP value is
negative, the variable must be less than limit to end the
count. The loop will always be executed at least once, re-
gardless of the values in “‘start"” and “limit"".

19

EXAMPLE:

100 FOR L = 100 TO 0 STEP -1
100 FOR L = PI TO 6*PI STEP .01
100 FOR AA = 3TO 3

GET
Format: Abbreviation: Screen Display:
GET variable G 3 E G

This statement lets you input one character at a time from the
keyboard. Whatever character was hit goes into the variable. If no
key was pressed, a zero is placed in a numeric variable, or an
empty value (") in a string variable. This differs from the INPUT
statement in one major respect: if no key is typed, the program
continues running here, and in the INPUT statement it waits for the
user to type something.

The GET statement is usually placed in a loop to wait for the
keystroke.

EXAMPLE 1:
10 GET A$: IF A$ = “’ THEN 10

The GET can also be used to allow the program to continue
processing while waiting for data. Example 2 is a simple GET editor
with a blinking cursor.

EXAMPLE 2:

10C=0:Q = 18

20 GETA$:C = C + 1

30IFC=10THENQ = 164 - Q:C = 0

40 PRINT CHR$(Q) CHR$(32) CHR$(146) CHRS(157);
50 PRINT A$; : GOTO 20

GOSUB
Format: Abbreviation: Screen Display:
Gosus fine number GO ([[SIAR) S GO [v]

-

kzg

This is a specialized form of the GOTO statement, with the
important difference that GOSUB remembers where it came from.
When the RETURN statement (different from the RETURN key on
the keyboard) is reached in the program, the program jumps back
to the statement immediately following the original GOSUB
statement from which it came.

The major use of a subroutine (GOSUB really means GO to a
SUBroutine) is when there is a small section of program that is used
by different sections of the program. By using subroutines rather
than repeating the same lines over and over at different places in
the program, you can save lots of program space. In this way,
GOSUB is similar in use to DEF FN: DEF FN lets you save space
when using a formula, and GOSUB saves space when using a
several-line routine.

Here is an inefficient program that doesn’'t use GOSUB:

100 PRINT “THIS PROGRAM PRINTS”
110 FOR L = 1 TO 500 : NEXT

120 PRINT “SLOWLY ON THE SCREEN"
130 FOR L = 1 TO 500 : NEXT

140 PRINT “USING A SIMPLE LOOP”
150 FOR L = 1 TO 500 : NEXT

160 PRINT “AS A TIME DELAY.”

170 FOR L = 1 TO 500 : NEXT

Here is the same program using GOSUB:

100 PRINT “THIS PROGRAM PRINTS”
110 GOSUB 200

120 PRINT “SLOWLY ON THE SCREEN"
130 GOSUB 200

140 PRINT “USING A SIMPLE LOOP”
150 GOSUB 200

160 PRINT “AS A TIME DELAY.”

170 GOSUB 200

180 END

200 FOR L = 1 TO 500 : NEXT

210 RETURN

Each time the program executes a GOSUB, the line number and
position in the program line are saved in a special area called the
“stack,” which takes up 256 bytes of your memory. This limits the
amount of data that can be stored in the stack. Therefore, the
number of subroutine return addresses that can be stored is limited,
and care should be taken to make sure every GOSUB hits the
corresponding RETURN, or else you'll run out of memory even
though you have plenty of bytes free.

21

GOTO or GO TO

Format: Abbreviation: Screen Display:

GOTO line number Gz O G D

This simple statement allows the BASIC program to execute
lines out of numerical order. The word GOTO followed by a number
will make the program jump to the line with that number. GOTO
cannot be followed by a variable, but must have the line number
typed after the word GOTO.

EXAMPLE 1:
10 GOTO 10

Notice that the loop in the example never ends, since the
program keeps running the same line over and over. This is called

an “infinite loop,” and can be utilized when you want a program to
stop in place and wait. The only way to stop an infinite loop is with

RUN
the SroH key.

EXAMPLE 2:

10 PRINT "HELLO";
20 GOTO 10

IE .« THEN

Format Choices: Abbreviation: Screen Display:

IF expression THEN line number None None
IF expression THEN statement

This is the statement that gives BASIC most of its “intelligence,”
the ability to evaluate conditions and take different actions
depending on the outcome.

The word IF is followed by an expression, which can include
variables, strings, numbers, comparisons, and logical operators.
The word THEN is followed on the same line by either a line number
or one or more BASIC statements. When the expression is false,
everything after the word THEN on that line is ignored, and

22

L=}

L

execution continues with the next line number in the program. A
true result makes the program either branch to the line number after
the word THEN or execute whatever other BASIC statements are
found on that line.

EXAMPLE 1:

100 INPUT “TYPE A NUMBER”; N

110 IF N <= 0 THEN 200

120 PRINT “"SQUARE ROOT=" SQR(N)
130 GOTO 100

200 PRINT “NUMBER MUST BE >0"
210 GOTO 100

This program prints out the square root of any positive number.
The IF statement here is used to validate the result of the INPUT.
When the result of N <= 0 is true, the program skips to line 200,
and when the result is false the next line to be executed is 120. Note
that GOTO is not needed with IF . . . THEN, as in line 110 where
THEN 200 actually means THEN GOTO 200.

EXAMPLE 2:

100 FOR L = 1 TO 100

110 IF RND(1) < 5 THEN X = X + 1 : GOTO 130
1200 = Y.+ 1

130 NEXT L

140 PRINT “HEADS= " X

150 PRINT “TAILS= " Y

The IF in line 120 tests a random number to seeif itis less than .5.
When the result is true, the whole series of statements following the
word THEN is executed: first X is incremented by 1, then the
program skips to line 130. When the result is false, the program
drops to the next statement, line 120.

EXAMPLE 3:

100 PRINT CHR$(147);

110 FOR X = 1 TO 23

120 FORY = 1 TO 22

130 IFX = 23 ANDY = 22 THEN PRINT CHRS$ (157) CHRS (148);
140 PRINT “Z";

150 NEXT:NEXT

160 GOTO 160

This program will fill the entire screen with Z's, including the
bottom right corner, and then freeze. The IF in line 120 checks for
both X=23 and Y =22 being true, or else the program just drops
through to line 130. When the conditions are true, the VIC PRINTs a
cursor left and an insert.

By the way, this really is a trick to PRINT in the lower right corner
in the screen without forcing the screen to scroll up a line. This is
because you never really PRINT in that position, you insert in the
position before that, which pushes the character into position.

For those of you using cartridges that add extra commands to
BASIC, like “Super Expander” and “Programmers Aid,” make sure
that you put a colon between the word THEN and one of the extra
commands.

EXAMPLE 4:
100 IF X=4 THEN : GRAPHIC 4

INPUT

Format: Abbreviation: Screen Display:

INPUT [“prompt™;] None None
variable

This is a statement that lets the person running the program
“feed” information into the computer. When executed, this
statement PRINTs a question mark (?) on the screen, and positions
the cursor 2 spaces to the right of the question mark. Now the
computer waits, cursor blinking, for the operator to type in the
answer and press the RETURN key.

The word INPUT may be followed by any text contained in quote
marks (”). This text is PRINTed on the screen, followed by the
question mark.

After the text comes the name of one or more variables
separated by commas. This variable is where the computer stores
the information that the operator types. The variable can be any
legal variable name, and you can have several different variable
names, each for a different input.

EXAMPLE 1:

100 INPUT A
110 INPUT B, C, D
120 INPUT “PROMPT"; E

24

When this program runs, the question mark appears to prompt
the operator that the VIC is expecting an input for line 100. Any
number typed in goes into A, for later use in the program. If the
answer typed was not a number, the ?REDO FROM START
message appears, which means that a string was received when a
number was expected. If the operator just hit RETURN without
typing anything, the variable's value doesn't change.

Now the next question mark, for line 110, appears. If we type only
one number and hit RETURN, the VIC will now display 2 question
marks (??), which means that more input is required. You can just
type as many inputs as you need separated by commas, which
prevents the double question mark from appearing. If you type
more data than the INPUT statement requested, the 7EXTRA
IGNORED message appears, which means that the extra items
you typed were not put into any variables.

Line 120 displays the word PROMPT before the question mark
appears. The semicolon is required between the prompt and any
list of variables. Note: The only way to end a program during
an INPUT statement is to hold down the RUN/STOP key and
hit RESTORE.

EXAMPLE 2:

10 PRINT “INPUT A WORD":INPUT A$
20 PRINT “YOUR INPUT WAS"A$

30 GOTO 10

LET

Format: Abbreviation: Screen Display:

[LET] variable = LR E W
expression

The LET statement is used to set a variable to a value. The value
can be a constant (like 5) another variable (like C), or a complex
formula (like PI"R + 3). The LET statement also works with string
variables.

Since the LET statement is used so often in BASIC programs, the
word 'LET’ has been made optional, since it did nothing but take up
memory. Advanced programmers always leave it out.

LET B=1 This is the same as B=1
A=3"3+33-B A will equal 41
A$="CAT"+“DOG" AS$ will equal "CATDOG”

25

NEXT

Format: Abbreviation: Screen Display:
NEXT [variable , variable N3l E N
, - .., variable]

This statement completes a loop that was started by a FOR
statement. If the word NEXT is not followed by a variable name, the
loop completed is the last one that was started. If there is a variable
name given, that loop is finished. If the loop being finished wasn't
the last one started, any loops between the last one and the one
specified in the NEXT statement are lost.

Care must be taken when placing loops within other loops, to
complete them properly. Here is an example of correct placement
(“nesting”) of loops.

EXAMPLE 1:

10 FORL = 1 TO 100
20 FORM = 1TO 10
30 NEXT M

40 NEXT L

Notice that the first loop finished is the last one that was started.
Here are some general examples of the NEXT statement.
EXAMPLE 2:

NEXT
NEXT J
NEXT |, J, K

ON

Formats: Abbreviation: Screen Display:

ON variable GOTO number [, number , . .., number]
ON variable GOSUB number [, number , . .., number]

This statement allows the program to choose from a list of line
numbers to go to. If the variable has a value of 1, the first line
number is the one chosen. If the value is 2, the second number in
the listis used, and so on. If the value in the variable is less than 1 or
greater than the number of line numbers in the list, the program just

26

oy

e

e

[

ignores the statement and continues with the statement following
the ON statement.

EXAMPLE 1:
ON X GOTO 100, 130, 180, 220
ON X+3 GOSUB 9000,20,9000

ON is really an under-used variant of the IF ... THEN ...
statement, which can send the program to one of many possible
lines. Using formulas and logical operators, one ON statement can
replace a whole list of IF statements.

EXAMPLE 2: IF statements

IF A=7 THEN 400
IF A=3 THEN 900
IF A <3 THEN 1000
IF A> 7 THEN 100

EXAMPLE 3: ON ... GOTO ...
ON —(A=7) —2" (A=3) —3" (A<3) —4* (A>7) GOTO 400, 900,

IF A=7 is true,
the expression’s value
is —1, and its value
is 0 if false!

POKE

Format: Abbreviation:

POKE location, value P B8RO0

This statement allows you to alter the value of any RAM location
in memory. There are a possible 65,536 locations in the VIC’s
memory, and in an unexpanded VIC a little more than 5K of them
are RAM and can be changed. Your 5K of RAM is in locations
numbered from 0 to 1023 and from 4096 to 8191. The memory
maps in Chapter 3 describe the contents of the first 1K. Your BASIC
program, variables, and the screen memory all go in the 4K area.

Screen Display:

P[]

27

Color RAM is an extra half-K block of memory starting at 38400.
There are also alterable areas in some of the chips, like the VIC chip
from 36864 to 36879 and the 6522 chips above that.

Because each memory location holds 1 byte, which can have a

value from 0 to 255, only numbers in that range can be POKEd into
memory.

EXAMPLE:

POKE 36879 , 8
POKE A , B

PRINT Abbreviation: ?

There is no statement in BASIC with more variety than the PRINT
statement. There are so many symbols, functions, and parameters
associated with this statement that it might almost be considered as
a language of its own within BASIC, a language specially designed
for writing on the screen.

Quote mode

Once the quote mark (SHIFT 2) is typed, the cursor controls stop
operating and start displaying reversed characters which actually
stand for the cursor control you are hitting. This allows you to
program these cursor controls, because once the text inside the
quotes is PRINTed they perform their functions. The DEL key is the
only cursor control not affected by “quote mode.”

1. Cursor movement

The cursor controls which can be “programmed” in quote mode
are:

Key Appears as
CRSR :]

@
CRSR [T

1

ou 8
INST [l:|

28

i

[

[

If you wanted the word HELLO to PRINT diagonally from the
upper left corner of the screen, you would type:

PRINT * M H E L m LM o
or

PRINT* [S] H [@Q E [@Q L [Q L [Q o

2. Reverse characters

Holding down '(hekt-':yr and hitting mwill cause a @
to appear inside the quotes. This will make all characters start
printing in reverse video (like a negative of a picture). To end the
reverse printing, hit m. which prints a Qor else
PRINT a. (Just ending the PRINT statement without a
semicolon or comma will take care of this.)

3. Color controls

Holding down the CTRL key with any of the 8 color keys will make
a special reversed character appear in the quotes. When the
character is PRINTed, then the color change will occur.

Color Appears as

PBbbbbBB
BHEHEP MmO

If you wanted to PRINT the word HELLO in cyan and the word
THERE in green, type:

PRINT * B +evo B tEre
or

PRINT “ |\ HELLO [4]| THERE"
29

4. Insert mode

The spaces created by using the insert key have some of
the same characteristics as quote mode. The cursor controls and
color controls show up as reversed characters. The only difference
is in the and [l , which performs its normal function
even in quote mode, now creates the | T| . And . which created

a special character in quote mode, inserts spaces normally.

Because of this, it is possible to create a PRINT statement
containing DELetes, which cannot be PRINTed in quote mode.
Here is an example of how this is done:

10 PRINT*HELLO" W -

which displays as
10 PRINT*HELLO[T][T]P"

When the above line is RUN, the word displayed will be HELP,
because the last two letters are deleted and the P is put in their
place.

WARNING: The DELetes will work when LISTing as well as
PRINTIng, so editing a line with these characters will be difficult.

The “insert mode"” condition is ended when the RETURN (or
SHIFT RETURN) key is hit, or when as many characters have been
typed as spaces were inserted.

5. Other special characters

There are some other characters that can be PRINTed for
special functions, although they are not easily available from the
keyboard. In order to get these into quotes, you must leave empty
spaces forthemin the line, hit RETURN or SHIFT RETURN, and go
back to the spaces with the cursor controls. Now you must hit CTRL
RVS ON, to start typing reversed characters, and type the keys
shown below:

Function Type
SHIFT RETURN SHIFT M
switch to lower case N

switch to upper case SHIFT N

disable case-switching keys H
enable case-switching keys |

The SHIFT RETURN will work in the LISTing as well as
PRINTIing, so editing will be almost impossible if this character is
used. The LISTing will also look very strange.

30

e=a

s

READ

Format: Abbreviation: Screen Display:

READ variable list R @llagl E R

This works with the DATA statement to fill variables with values
stored within the program. The information is usually in the form of a
list thatis READ in at the beginning of the program, or a table that is
re-READ during the program. READ works just like INPUT, except
that the information comes from DATA statements instead of the
person working the program.

EXAMPLE:

10 READ A, B, C$
20 DATA 1, 2, HELLO THERE!

REM
Format: Abbreviation: Screen Display:
REM any text None None

This statement makes your program more easily understood
when LISTed. It is a reminder to yourself to tell you what you had in
mind when writing each section. For instance, you might tell what a
variable is used for, what date the program was written, or some
other useful piece of information. The REMark can be any text,
word, or character, including the colon (:) or BASIC keywords.
Therefore, the REM statement is the last one on a line that the
program sees.

If you try to use graphic characters in a REM statement without
using a quote mark (“) first, when you LIST the line you'll see BASIC
keywords instead of the graphic characters. This is because the
VIC thinks these characters are the “tokens” for those commands.
The BASIC tokens are discussed in the last part of this chapter.

EXAMPLE:

REM PROGRAM BY SUE M. 10/6/81 Good example
REM A$ HOLDS 22 CURSOR DOWNS Good example
LET A=1 : REMPUTA1INA Bad example

31

RESTORE

Format: Abbreviation: Screen Display:

RESTORE B SHIFT B RE [v]

This statement sets the DATA statement pointer back to the first
DATA statement in the program. Each time you READ the DATA,
the pointer advances through all the items in the first DATA
statement, then through the items in the next DATA statement, and
so on through all the DATA statements in the program. In order to
re-READ the items, use the RESTORE statement.

EXAMPLE:

10 DATA 1, 2, 3, 4

20 DATA 5,6, 7, 8

30 FORL =1TO8
40 READ A : PRINT A
50 NEXT

60 RESTORE

70 FOR L=1TO 8

80 READ A : PRINT A
90 NEXT

RETURN

Format: Abbreviation: Screen Display:

RETURN RE BRLIZNN T RE []

This statement completes a subroutine that was begun with the
GOSUB statement. When the GOSUB is performed, the VIC
remembers which line it came from. When it later hits a RETURN
statement, it goes back to the statement right after the original
GOSUB. This is similar to a GOTO, except the GOSUB subroutine
can be performed and the program continued from the original
GOSUB line.

EXAMPLE:

10 PRINT “THIS IS THE PROGRAM"
20 GOSUB 1000
30 PRINT “PROGRAM CONTINUES”

32

o=y

40 GOSUB 1000
50 PRINT “MORE PROGRAM"
60 END
1000 PRINT “THIS IS THE GOSUB”: RETURN

STOP

Format: Abbreviation: Screen Display:

STOP ST s

This statement will halt a program and return control to the user.
The only difference between the STOP and END statements is that

the message BREAK IN LINE XXXX appears when STOP is used,
just as if the user had pressed the :TUDNP key.

EXAMPLE:
100 STOP

SYS

Format: Abbreviation: Screen Display:

SYS location SIllagl Y s

This is the most common way to mix a BASIC program with a
machine language program. The machine language program
begins at the location given in the SYS statement. When the
machine language instruction RTS (return from subroutine) is
reached, the program jumps back to the BASIC program, right after
the SYS statement. A machine language program can be POKEd
into memory from BASIC or created with the aid of VICMON™.

EXAMPLE:

SYS 64802 resets the VIC from power-up
POKE 4400 , 96 : SYS 4400 returns immediately

33

WAIT

Format: Abbreviation: Screen Display:

WAIT location, WA W [4]
mask1[, mask2]

For most programmers, this statement should never be used. It
causes the program to halt until a specific memory location’s bits
change in a specified way. This is used for arcane |/O operations
and almost nothing else.

The WAIT statement takes the value in the memory location and
performs alogical AND operation with the value in mask1. Ifthere is
a mask2 in the statement, the result of the first operation is
exclusive-ORed with mask2. This sounds confusing, but there’s an
easier way to look at it. The mask1 value “filters out” any bits that
we don't want to test. Where the bitis 0 in mask1, the corresponding
bitin the result will always be 0. The mask2 value will flip any bits, so
we can test for an off condition as well as on. Any bits being tested
for a 0 should have a 1 in the corresponding position in mask2.

EXAMPLE:
WAIT 36868 , 144 , 16
What are we testing for here? Here’s a binary look at our two
masks:
144 = 10010000
16 = 00010000

This WAIT statement will halt the program until either the 128 bit
is on or the 32 bit is off.

34

f

/O STATEMENTS

CLOSE
CMD
GET#
INPUT#
OPEN
PRINT#

CLOSE

Format: Abbreviation: Screen Display:

CLOSE file# CL o oL]

This closes the file that was started in an OPEN statement. It is
recommended that a PRINT# to that file be performed before
closing the file, to make sure that all data has been transmitted. Not
closing an OPEN file results in a FILE OPEN ERROR.

EXAMPLE:

OPEN 1,4 : PRINT#1 , “HI THERE!" : CLOSE 1

CMD

Format: Abbreviation: Screen Display:

CMD file# o] SHIFT LY cN\

This changes the normal output device of the VIC from the
screen to the file specified. In this way, data and LISTings can be
sent to other devices, like the printer, disk, or tape drive. When
finished transmitting, to reset output to the screen, do a PRINT#
and CLOSE the file.

EXAMPLE:
OPEN1,4:CMD 1:PRINT “HELLO THERE!" : PRINT#1 : CLOSE 1

35

GET#

Format: Abbreviation: Screen Display:
GET# file#, None None
variable

This statement receives data one byte at a time from any
OPENed device. If no data is available, it works the same as the
GET statement, returning a null value. The INPUT# statement can
get more than one character, and will get all the characters upto a
carriage return (CHR$(13)). The GET# will receive any characters,
1 atatime, including special characters like the carriage return and
quote marks.

EXAMPLE:

10 OPEN 1, 3

20 PRINT CHR$(147) "HELLO THERE" CHR$(19);
30 FORL = 1TO 22

40 GET#1, B$: A$ = AS + BS$

50 NEXT : PRINT A$: CLOSE 1

If you examine A$ when this program is finished, you'll see that

the last character is a CHR$(13), a carriage return, which
terminates the line.

INPUT#

Format: Abbreviation: Screen Display:

INPUT# file#, | N I/

variable 1[, variable 2, etc.]

This usually is the fastest and easiest way to retrieve data that
was stored in a file on tape or disk. The data is in the form of whole
variables, as opposed to the one-byte-at-a-time method of GET#.
Firstthe file must have been OPENed, then you can use INPUT# to
fill your variables.

EXAMPLE:

10 OPEN{, 1, 0, “TAPE FILE NAME"
20 PRINT “FILE IS OPEN OK”

30 INPUT# 1, AS, B$

40 CLOSE 1

36

-y

When using the screen (device # 3) as an input device, the
INPUT# statement can be used to read any whole line of text
from the screen. The last character of the line will be read as
a CHR$(13), as if the screen hit the RETURN key at the end
of the line!

However, there are times when it's not always practical to use
INPUT#, and some precautions are in order. If a string variable put
on the file has certain characters, using INPUT# could have
unexpected results. If you use CHR$(13), or a comma (,) or
semicolon (;) or colon (:), the VIC will think that this marks the end of
your variable. If you put quote marks (CHR$(34)) at the start and
end of your string when it is written, it will come back intact.

INPUT # may also be used to “INPUT" data without the question
mark (7) prompt being displayed. This is very useful for a variety of
applications, for example if you want to set up a graphic chart and
let the operator INPUT data to the chart without question marks
being displayed.

EXAMPLE:

10 OPEN 1,0

20 PRINT “ENTER A NUMBER": INPUT#1, A
30 PRINT A “TIMES” 5 "EQUALS" A%5
OPEN

Format: Abbreviation: Screen Display:

OPEN file#, OF' o]

[device#, command#, string]

This statement OPENs a channel for input and/or output to a
device. This device can be part of the VIC, like the screen and
keyboard, or an accessory, like the tape recorder, printer, or disk
drive. When OPENIing a channel to an external device, the VIC sets
up a buffer for the data, and only transmits and receives whole
buffers at a time.

The file# can be any number from 1 to 255, and is the same
number that will be used in the INPUT#, GET#, and PRINT#
statements to work with this device. The device# specifies which
device, and is set within that device.

37

DEVICE# DEVICE

0 keyboard

1 cassette deck

2 RS232 device

3 screen

& printer

5 printer

8 disk drive
4-127 serial bus device

128-255 serial bus device—send If after cr

The command# is specific to each different device. Here are
some of the command numbers:

DEVICE | COMMAND# EFFECT
Cassette 0 read tape file

1 write tape file

2 write tape file, put EOT marker at

end

Disk 1-14 open data channel

15 open command channel
Keyboard 1-255 no effect
Screen 1-255 no effect
Printer 0 upper case/graphics

7 upper/lower case
RS232 See RS232 (Section 4)

The string at the end is sent to the printer or screen as if a
PRINT# were performed to that device. With the cassette deck, it is
used for the filename, and with disk it can be a filename or some
control information.

EXAMPLE:
OPEN 1, 0 Read the keyboard
OPEN 1, 1, 0, “name” Read from cassette

38

s

e

OPEN 1, 1, 1, “name” Write to cassette

OPEN 1, 1, 2, “name” Write to tape, put EOT marker
after file

OPEN 1, 2, 0, "string” Open channel to RS232 device

OPEN 1, 3 Read/write screen

OPEN 1, 4, 0, “string” Send upper case/graphics to
printer

OPEN 1, 4, 7, “string” Send upper/lower case to printer

OPEN 1, 5, 0, "string” Send upper/lower case to printer,

device# switched
OPEN 1, 8, 15, “command” Send command to disk

PRINT#

Format: Abbreviation: Screen Display:

PrINT# fie#, P ([IRRR P
variable list

This sends the contents of the variables in the list to the device
that was previously OPENed. They will be transmitted in the same
format as if PRINTed to the screen; if commas are used as
separators extra spaces will appear, if semicolons are used no
space will appear, and a CHR$(13) is the last character sent if there
isn'ta comma or semicolon atthe end of the line. The easiest way to
write more than one variable to a file on tape or disk is to set a string
variable to CHR$(13), and use that string in between all the other
variables when writing the file.

EXAMPLE:

100 OPEN 1, 1, 1, “TAPE FILE"

110 R$ = CHR$(13)

120 PRINT#1, 1: R$; 2; RS; 3; R$; 4; R$; 5
130 PRINT#1, 6

140 PRINT#1, 7

The example shows how to write a tape file that can be easily
read back using INPUT# statements, since each variable has a
CHR$(13) printed after it. You can also print “,” or “;" to separate
the variables.

39

VIC 20 BASIC FUNCTIONS

The intrinsic functions provided by BASIC are presented in the
following paragraphs. The functions may be called from any
program without further definition.

Arguments to functions are always enclosed in parentheses. In
the formats given for the functions in this chapter, the arguments
have been abbreviated as follows:

Xand Y Represent any numeric expression

| and J Represent integer expressions
X$ and Y§ Represent string expressions

If a floating point value is supplied where an integer is required,
BASIC will round the fractional portion and use the resulting
integer.

VIC 20 BASIC Functions

FUNCTION RESULT
Numeric String
ABS X
ASC X
ATN X
CHR$ X
CcOos X
EXP X
FRE X
INT X
LEFT$ X
LEN X
LOG X
MID$ X
PEEK X
POS X
RIGHT$ X
RND X
40

bed

SGN X
SIN X
SPC X
SQR X
STATUS X
STR$ X
TAB X
TAN X
TIME X
TIMES X
USR X
VAL X

ABS

Format: Abbreviation: Screen Display:

ABS(X) A B A 1]

Action: Returns the absolute value of the expression X.

EXAMPLE:

PRINT ABS (7*(-5))
35
READY.

ASC

Format: Abbreviation: Screen Display:

ASC(XS) AS AVl

Action: Returns a numerical value that is the ASCII code of the first
character of the string X$. (See Appendix F for ASCI| codes.) If X$
is null, an “ILLEGAL QUANTITY" error is returned.

41

EXAMPLE:

10 X$ = “TEST”
20 PRINT ASC(X$)
RUN

84

READY.

See the CHR$ function for ASCII-to-string conversion.

ATN
Format: Abbreviation: Screen Display:
ATN(X) Y SHIFT W Alll

Action: Returns the arctangent of X in radians. Result is in the
range — pi/2to pi/2. The expression X may be any numeric type, but
the evaluation of ATN is always performed in floating point binary.

EXAMPLE:

10 INPUT X
20 PRINT ATN(X)
RUN
7?73

1.24904577
READY.

CHRS$

Format: Abbreviation: Screen Display:

CHRS()) CH cl

Action: Returns a string whose one element has ASCII code |.
(ASCllI codes are listed in Appendix F.) CHR$ is commonly used to
send a special character to the terminal. For instance, a screen
clear could be sent (CHR$(147)) to clear the CRT screen and return
the cursor to the home position, as a preface to an error message.

EXAMPLE:

PRINT CHR$(66)
B
READY.

42

See the ASC function for ASCII-to-numeric conversion.

COS
Format: Abbreviation: Screen Display:
COS(X) None None

Action: Returns the cosine of X in radians. The calculation of
COS(X) is performed in floating point binary.

EXAMPLE:

10 X=2*COS(.4)
20 PRINT X
RUN
1.84212199
READY.

EXP

Format: Abbreviation: Screen Display:

EXP(X) EX E [%]

Action: Returns e to the power of X. X must be <= 88.02969191. If
EXP overflows, the "OVERFLOW" error message is displayed.

EXAMPLE:

10 X=5
20 PRINT EXP (X—1)
RUN
54.5981501
READY.

FRE

Format: Abbreviation: Screen Display:

FRE(X) F R F

Action: Arguments to FRE are dummy arguments. FRE returns the
number of bytes in memory not being used by BASIC.

43

EXAMPLE:
PRINT FRE(0)

14542
READY.
INT
Format: Abbreviation: Screen Display:
INT(X) None None

Action: Returns the largest integer <=X.

EXAMPLE:

PRINT INT(99.4343), INT(—12.34)

99 -13

Ready.

LEFTS

Format: Abbreviation: Screen Display:
LEFT$(XS, 1) B3 SHIFT I3 LE

Action: Returns a string comprised of the leftmost | characters of
X$. | must be in the range 0 to 255. If | is greater than LEN(X$), the
entire string (X$) will be returned. If | =0, the null string (length zero)
is returned.

EXAMPLE:

10 A$ = “COMMODORE COMPUTER”
20 B$ = LEFTS$(AS, 9)

30 PRINT BS

COMMODORE

READY.

Also see the MID$ and RIGHTS$ functions.

44

LEN

Format: Abbreviation: Screen Display:
LEN(X$) None None

Action: Returns the number of characters in X$. Non-printing
characters and blanks are counted.
EXAMPLE:

10 X$ = “COMMODORE COMPUTER"
20 PRINT LEN (X$)

18
READY.
LOG
Format: Abbreviation: Screen Display:
LOG(X) None None

Action: Returns the natural logarithm of X. X must be greater than
zero.

EXAMPLE:

PRINT LOG (45/7)
1.86075234
READY.

MID$

Format: Abbreviation: Screen Display:

MIDS(XS, ILJ) M | MK]

Action: Returns a string of length J characters from X$ beginning
with the Ith character. | and J must be in the range 0 to 255. If J is
omitted or if there are fewer than J characters to the right of the Ith
character, all rightmost characters beginning with the Ith character
are returned. If I>LEN(X$), MID$ returns a null string.

45

EXAMPLE:
LIST
10 A$="GOOD"

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)

RUN

GOOD EVENING

READY.

Also see the LEFTS and RIGHT$ functions.

PEEK

Format: Abbreviation: Screen Display:

PEEK(I) I SHIFT |3 PE

Action: Returns the byte (decimal integer in the range 0 to 255)
read from memory location I. | must be in the range 0 to 65535.
PEEK is the complementary function to the POKE statement.

EXAMPLE:
PRINT PEEK(36879)

This will return the value of the screen background color byte.

POS
Format: Abbreviation: Screen Display:
POS(X) None None

Action: Returns the current cursor position. The leftmost position is
0. X is a dummy argument.

EXAMPLE:
IF POS(X) >20 THEN PRINT CHR$(13)

46

RIGHTS

Format: Abbreviation: Screen Display:

RIGHTS(XS, 1) Fll RK]

Action: Returns the rightmost | characters of string X$. If
|=LEN(X$), returns X$. If |=0, the null string (length zero) is
returned.

EXAMPLE:

10 A$="COMMODORE BUSINESS MACHINES”
20 PRINT RIGHTS$(AS, 8)

RUN

MACHINES

READY.

Also see the MID$ and LEFT$ functions.

RND

Format: Abbreviation: Screen Display:

RND(X) R N R/

Action: Returns a random number between 0 and 1. X>0 returns
the same pseudo-random number sequence for any random
number seed. X<0 reseeds the sequence, each X producing a
different seed. The sequence is seeded at random on power-up.
X=0 generates a random number from a free running clock.

EXAMPLE:

10 FOR =1 TO 5

20 PRINT INT(RND(X)*100);
30 NEXT

RUN

24 30 31 51 5
READY.

47

SGN

Format: Abbreviation: Screen Display:

SGN(X) s G s[]

Action: IF X>0, SGN(X) returns 1. If X=0, SGN(X) returns 0. If
X<0, SGN(X) returns —1.

EXAMPLE:

ON SGN(X)+2 GOTO 100, 200, 300 100 if X is negative,
200 if X is 0 and
300 if X is positive.

SIN

Format: Abbreviation: Screen Display:

SIN(X) s | sRK]

Action: Returns the sine of X in radians. SIN(X) is calculated in
floating point binary. COS(X)=SIN(X +3.14159265/2)

EXAMPLE:

PRINT SIN (1.5)
997494987
READY.

SPC

Format: Abbreviation: Screen Display:

SPC() SP s

Action: Prints | blanks on the screen. SPC may only be used
with PRINT. | must be in the range 0 to 255.

EXAMPLE:

PRINT “OVER” SPC(15) “THERE”
OVER THERE
READY

48

-

=,

SQR

Format: Abbreviation: Screen Display:

SQR(X)] siFr [o s

Action: Returns the square root of X. X must be >=0.

EXAMPLE:

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT
RUN
10 3.16227766
15 3.87298335
20 4.47213595
25 5
READY.
STATUS
Format: Abbreviation: Screen Display:
STATUS ST ST

Action: Returns the CBM status corresponding to the last I/O
operation, whether over cassette, screen, keyboard or serial bus.

ST ST Cassette Serial Bus | Tape
bit numeric | Read R/W verify
position | value + load
0 1 time out
write
1 2 time out
read
short block short block
long block long block
16 unrecover- any mismatch
able read
error

49

ST ST Cassette Serial Bus | Tape
bit numeric | Read RW verify
position | value + load

5 32 checksum checksum

error error
64 end of file EOI
i —128| end of tape | device not | end of tape
present

EXAMPLE:
10 OPEN 2,1,2, "MASTER FILE"
12 GET#2,A$
14 IF STATUS AND 64 THEN 20
16 7A$
18 GOTO12
20 ?A%: CLOSE2
STR$
Format: Abbreviation: Screen Display:
STR$(X) ST R ST

Action: Returns a string representation of value of X.

EXAMPLE:

5 REM LINE UP DECIMAL POINTS
10 INPUT “TYPE A NUMBER”;N
20 A$ = STR$(N): Q = LEN(AS)
30 FORL = Q TO 1 STEP —1

40 IF MID$(AS$, L, 1) <> “.” THEN NEXT: A$ = A$ + “.00":

GOTO 60
50IFL=Q - 1THEN A$ = A$ + “0"
60 PRINT TAB(10)A%
70 GOTO 10
Also see the VAL function.

50

-

el

TAB

Format: Abbreviation: Screen Display:
TAB() TR A T[4]

Action: Spaces to position | on the screen. If the current
print position is already beyond space |, TAB goes to that
position on the next line. Space 0 is the leftmost position,
and the rightmost position is the width minus one. | must be
in the range 0 to 255. TAB may only be used in PRINT.

EXAMPLE:

10 PRINT “NAME” TAB(15) “AMOUNT” : PRINT
20 READ A$, B$

30 PRINT A$ TAB(15)B$

40 DATA “G.T. JONES”, "$25.00"

RUN

NAME AMOUNT

G. T. JONES $25.00

READY

TAN

Format: Abbreviation: Screen Display:
TAN(X) None None

Action: Returns the tangent of X in radians. TAN(X) is calculated in
binary. If TAN overflows, the “OVERFLOW" error message is
displayed.

EXAMPLE:

10 Y = Q*"TAN(X)/2

TIME
Format: Abbreviation: Screen Display:
TI None None

51

Action: Used to read the internal interval timer and return a
value in one-tenth seconds. This is a real-time clock. This
value is initialized only when TI$ is envoked.

EXAMPLE:

10 PRINT T1/60 “SECONDS SINCE POWER UP"

TIMES
Format: Abbreviation: Screen Display:
TI$ None None

Action: Used to read the internal interval timer and return a string of
6 characters in hours, minutes, seconds. May be used in an input
statement or on the left hand side of an expression to initialize the
timer.

EXAMPLE:

10 TI$ = “000000"

20 FOR I=1 TO 10000:NEXT
30 PRINT TI$

RUN

000010

READY.

USR

Format: Abbreviation: Screen Display:

USR(X) U S Ul

Action: Calls the user's assembly language subroutine whose
starting address is stored in locations 1 and 2. The argument is
stored in the floating point accumulator (see memory map), and the
result is the value residing there when the routine returns to BASIC.

52

EXAMPLE:

40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)
etc.
VAL
Format: Abbreviation: Screen Display:
VAL(XS$) 4 SHIFT [v

Action: Returns the numerical value of string X$. If the first
character of X$ is not +, —, $, or a digit, VAL(X$)=0

EXAMPLE:

10 READ NAMES, CITY$, STATES, ZIP$
20 IF VAL (ZIP$) < 90000 OR VAL (ZIP$) > 96699 THEN PRINT
NAMES$ TAB(25) "OUT OF STATE”

30 IF VAL(ZIP$)>=90801 AND VAL(ZIP$)<=90815 THEN
PRINT NAMES$ TAB(25) “LONG BEACH"

40 DATA “SUE M.”, “MEDIA”, “PA”, "19063"

(See the STR$ function for numeric to string conversion.)

53

NUMBERS AND VARIABLES

The numbers printed by VIC 20 are governed by limitations within
their formats. The numbers are stored internally to over ten digits of
accuracy. However, when a number is printed, only nine digits are
displayed. Each number may also have an exponent (a
power-of-ten scaling factor).

Numbers are used all the time when working with VIC 20. There
are two kinds of numbers that can be stored: floating point numbers
(also called real numbers) and integers.

Floating pointis the standard number representation used by the

VIC. The VIC does its arithmetic using floating point numbers. A
floating point number can be a whole number, a fractional number
preceded by a decimal point, or a combination. The number can be
signed negative (—) or positive (+). If the number has no sign, itis
assumed to be positive.

Consider the following examples of floating point numbers:

Whole number equivalent to an integer:
5

-15

65000

161

0

Numbers with a decimal point:
0.5
0.0165432
—0.00009
1.6
24.0085
—65.6
3.1416

Notice that if you put a comma in a number and ask the VIC to
assign it to a variable, you will get a Syntax Error message. For
example, you must use 65000, not 65,000.

Numbers always have at least eight digits of precision; they can
have up to nine, depending on the number. The VIC rounds any
additional significant digits. It rounds up when the nextdigit is five or
more; it rounds down when the next digit is four or less.

Rounding numbers will sometimes cause fractional numbers to
look inaccurate. Here are some examples:

54

|

You type: ?.56555555556

VIC prints: .555555555

(VIC appears to round down on 6 or less; up on 7 or more.)
You type: $.5555555557

VIC prints: .555555556

You type: ?2.1111111115

VIC types: J11111111

(VIC appears to round down on 5 or less; up on 6 or more).
You type: 71111111116

VIC types: Jd11111112

These quirks result from the manner in which computers store
floating point numbers.

Floating point numbers can also be represented in scientific
notation. When numbers with ten or more digits are entered, the
VIC automatically converts them to scientific notation. Scientific
notation allows the VIC to accurately display these large numbers
using fewer digits. For example:

READY.
21111111114
1.11111111E+09

READY.
21111111115
1.11111112E+09

A number in scientific notation has the form:
numberE +ee

Where:
number is an integer, fraction, or combination, as illustrated

above. The “number” portion contains the number's

significant digits; it is called the “coefficient.” If no

decimal point appears, it is assumed to be to the

right of the coefficient.

is the upper case letter E.

is an optional plus sign or minus sign which indicates

the sign of the exponent.

ee is a one- or two-digit exponent. The exponent
specifies the magnitude of the number; that is, the
number of places to the right (positive exponent) or
to the left (negative exponent) that the decimal point
must be moved to give the true decimal point
location.

i+ m

55

Here are some examples:

Scientific Notation Standard Notation
2E1 20
10.5E+4 105000
66E+2 6600
66E—-2 0.66
—-66E—-2 -0.66
1E-10 0.0000000001
94E20 9400000000000000000000

Asthe last two examples show, scientific notation is a much more
convenient way of expressing very large or very small numbers.
VIC BASIC prints numbers ranging between 0.01 and 999,999,999
using standard notation; however, numbers outside of this range
are printed using scientific notation.

Consider the following out-of-range examples:

?.009
9E-03

READY.
?.01
.01

READY.
7999989998.9
999999999

READY.
7999999999.6
1E+09

There is a limit to the magnitude of a number that the VIC can
handle, even in scientific notation. The range limits are:

Largest floating point number: +1.70141183E + 38
Smallest floating point number: =2.93873588E —39

Any number of larger magnitude will give an overflow error. For
example:
?1.70141184E + 38

?0VERFLOW ERROR
READY.

Any number of a smaller magnitude will yield a zero result. For
example:

72.93873587E -39
0

56

READY.

An integer is a number that has no fractional portion or decimal
point. The number can be signed negative (—) or positive (+). An
unsigned number is assumed to be positive. Integer numbers have
a limited range of values, from —32768 to +32767.

The following are examples of integers:

0

1

44
32699
=15

Any number that is an integer can also be represented in floating
point format since integers are a subset of floating point numbers.
VIC BASIC converts any integers to floating point representation
before doing arithmetic with them. The most important difference
between floating point numbers and integers is that an integer array
uses less storage space in memory (two bytes for an integer,
versus five bytes for a floating point number).

We have already used strings as messages to be printed on the
display screen. A string consists of one or more characters
enclosed in double quotation marks.

Consider the following examples of strings:

“HI”
“SYNERGY"

“12345”

“$10.89 IS THE AMOUNT”

All of the data keys (alphabetic, numeric, special symbols, and
graphics), the three cursor control keys (Clear Screen/Home,
Cursor Up/Down, Cursor Left/Right), as well as the Reverse On/Off
key, Insert/Delete, and Stop keys can be included in a string. The
only keys that cannot be used within a string are Return, CTRL,
Shift, and the Logo key.

All characters within the string are displayed as they appear. The
cursor control and Reverse On/Off keys, however, normally do not
print anything themselves; to show that they are present in a string,
certain reverse field symbols are used. They are shown in Table
2-1.

When you enter a string from the keyboard, it can have any
length up to the space available within an 88-character line (that is,
any character spaces not taken up by the line number and other
required parts of the statement). However, strings of up to 255
characters can be stored in the VIC's memory. You get long strings

57

by pushing together, or concatenating, two separate strings to form

one longer string. We will describe this further when we discuss
string variables in general.
Earlier in the chapter, we introduced the concept of a variable. In
this discussion variables are described more thoroughly.
Avariable is a data item whose value may be changed. The value
is determined by the number assigned to the variable. If you type
the immediate mode statement:

PRINT 10, 20, 30
10 20 30

The VIC will display the same three numbers (as illustrated
above) whenever the PRINT statement is executed; that is

because this PRINT statement used constant data. However, you
can write the immediate mode statement:

A=10: B=20: C=30: PRINT A, B, C
10 20 30

The same three numbers, 10, 20, 30, are displayed; however, A,
B, and C are variables, not constants. By changing the values
assigned to A, B, and C, you can change the values printed out by
the PRINT statement. Consider the following example of this:

A= —4: B=45: C=4E2: PRINT A, B, C
=4 45 400

You will notice that variables appear in virtually all computer
programs.

Variables are identified by names. We used A, B, and C as
variable names in the illustrations above. A variable has two parts:
its name and a value. The variable name represents a location at
which the current value is stored. In the following illustration, the
current value of A is 14; for B it is 15; and for C it is 0.

Variable
Name Contents
A 14
B 15
C 0

If we change A to —1 using the immediate mode statement:
A=—1

then the Location Contents, stored under the variable-name A, will
change from 14 to —1.
This is an excellent way of looking at variables because it is, in

58

=

ey

fact, the way they are handled by the VIC. A variable name
represents an address in memory; and at that memory location, the
current value of the variable is stored. The important pointto note is
that variable names—which are names that programmers make
up—are arbitrary; they have no innate relationship to the value that
the variables represent.

A variable name can have one or two characters. The first
character must be an alphabetic character from A to Z; the second
character can be either alphabetic or numeric (numeric characters
must be in the range from 0 to 9). A third character can be included
to indicate the type of number (integer or string), % or $.

Floating variables represent floating point numbers. This is
probably the most common type of variable that you will use.

The following are examples of floating point variables:

A
B
A1
AA
Z5

Integer variables represent integers. Names for integer variables
are followed by the % symbol as the following examples indicate:

A%
B%
Al1%
MN%
X4%

Remember, floating point variables can also represenht integers;
but you should use integer variables in arrays whenever possible
since they use less memory—two bytes versus five for a floating
point array element.

A string variable represents a string of text. The following are
examples of string variables:

AS
M$
MN$
M1$
ZX$
F6$

You can use variable names having more than two alphanumeric
characters; but if you do, only the first two characters count. To VIC

59

BASIC, therefore, BANANA and BANDAGE are the same name
since both begin with BA.

The advantage of using longer variable names is that they make
programs easier to read. PARTNO, for example, is more
meaningful than PA as a variable name describing a part number in
an inventory program.

VIC BASIC allows variable names to have up to 255 characters.
The following are examples of names with more than the minimum
number of characters:

MEMBERS
T1234567
BBB$
ABCDPG%
PARTY

If you use extended variable names, keep in mind the following:

1. Only the first two characters, plus the identifier symbol, are
significant in identifying a variable. Do not use extended
names like LOOP1 and LOOP2; these refer to the same
variable: LO.

2. VIC BASIC has what are called “reserved words.” These are
words that have special meaning for the VIC BASIC
interpreter. No variable can contain a reserved word. Inlonger
names you have to be very careful that a reserved word does
not occur embedded anywhere in the name.

3. The additional characters need extra memory space, which
you might need for longer programs.

The BASIC interpreter recognizes certain words as requests for
specific operations. Names that are used to call up certain
operations are called “reserved words.” These words cannot be
used as variable names because the interpreter will recognize the
word as a request for the corresponding operation. Moreover, you
cannot use a reserved word as any part of your variable name;
BASIC will still find it and treat it as a request for an operation.

ARRAYS

An array is a sequence of related variables. A table of numbers,
for example, may be visualized as an array. The individual numbers
within the table become “elements” of the array.

Arrays are a useful shorthand means of describing a large
number of related variables. Consider, for example, a table of
numbers containing ten rows of numbers, with twenty numbers in

60

gt

g

L J

each row. There are 200 numbers in the table. How would you like it
if you have to assign a unique name to each of the 200 numbers? It
would be far simpler to give the entire table one name, and identify
individual numbers within the table by their table location. That is
precisely what an array does for you.

Arrays of up to eleven elements (subscripts 0 to 10 for a
one-dimensional array) may be used where needed in VIC BASIC,
just as variables can be used as needed. Arrays containing more
than eleven elements need to be “declared” in a Dimension
statement. Dimension statements are described later in this and in
Chapter 3. An array (always with subscripts) and a single variable
of the same name are treated as separate items by VIC BASIC.
Once dimensioned, an array cannot be referenced with different
dimensions.

61

OPERATORS

An operator is a special symbol that VIC BASIC recognizes as
representing an operation to be performed on the variables or
constant data. One or more operators, combined with one or more
terms, form an “expression.”

VIC BASIC provides arithmetic operators, relational operators,
and Boolean operators.

An arithmetic operator defines an arithmetic operation to be
performed on the adjoining terms. Arithmetic operations are
performed using floating point numbers. Integers are converted to
floating point numbers before an arithmetic operation is performed;

the result is converted back to an integer. Consider the following
operations and their symbols:

a. Addition (+). The plus sign specifies that the term on the left
is to be added to the term on the right. For numeric quantities this is
straightforward addition. Examples:

252
A+B+C
X%+ 1
BR+10E-2

The plus sign can be used to add strings; but rather than adding
their values, they are joined together, or concatenated, forming one
longer string. The difference between numeric addition and string
concatenation can be visualized as follows:

Addition numbers:
numi1+num2=num3

Addition of strings:
string1 + string2 = string1string2

By concatenation, strings containing up to 255 characters can be
developed.

EXAMPLES:

“FOR”+"“WARD” results in “FORWARD"
“HI" +“THERE" results in “HITHERE”
A$+B$ results in AB

b. Subtraction (—). The minus sign specifies that the term to the
right of the minus sign is to be subtracted from the term to the left.

62

=

=X

EXAMPLES:

4-1 results in 3

100-64 results in 36

A-B results in the difference between
the value of the two variables.

55—142 results in —87

The minus can also be used as a unary minus; that is, the minus
sign preceding a negative number.

EXAMPLES:

4——2 same as 4+2

c. Multiplication (*). An asterisk specifies that the term on the
right is multiplied by the term on the left.

EXAMPLES:

100*2 results in 200
50"0 results in 0
A*X1

R%*14

d. Division (/). The slash specifies that the term on the left is to be
divided by the term on the right.

EXAMPLES:

10/2 results in 5
6400/4 results in 1600
A/B

4E2/XR

e. Exponentiation (1). The up arrow specifies that the term on
the left is raised to the power specified by the term on the right. If the
term on the right is 2, the number on the left is squared; if the term
on the right is 3, the number on the left is cubed, etc. The exponent
can be any number, variable, or expression, as long as the
exponentiation yields a number in the VIC's range.

63

EXAMPLES:

212 results in 4
1212 results in 144
113 results in 1

When an expression has multiple operations, as in:
A+C*10/212

There is a built-in hierarchy for evaluating the expression. First,
the exponentiation is considered, followed by the unary minus (-),
followed by the multiplication and division (*/), followed then by the
addition and subtraction (+ —). Operators of the same hierarchy
are evaluated from left to right.

This natural order of operation can be overridden by the use of
parentheses. Any operation within parentheses is performed first.

EXAMPLES:

4+1%2 results in 6
(4+1)2 results in 10
100%4/2 -1 results in 199
100*(4/2—-1) results in 100
100*(4/(2—1)) results in 400

When parentheses are present, VIC BASIC evaluates the
innermost set first, then the next innermost, etc. Parentheses can
be nested to any level and may be used freely to clarify the order of
operations being performed in an expression.

A relational operator specifies a “true” or “false” relationship
between adjacent terms. The specified comparison is made, and
then the relational expression is replaced by a value of true (—1) or
false (0). Relational operators are evaluated after all arithmetic
operations have been performed.

EXAMPLES:

1=5—-4 results in true (1)
14>66 results in false (0)
15>=15 results in true (—1)

Relational operators can be used to compare strings. For
comparison purposes, the letters of the alphabet have the order
A<B, B<C, C<D, etc. Strings are compared by comparing their
stored character values. Characters are stored using a special

64

L

L

ey

L)

-

L]

binary code called “ASCIL."” The Appendix lists the ASCIl code
assigned to every VIC character.

EXAMPLES:

“A'<“B” results in true (—1)
X = "XX" results in false (0)
C$=A%$+B3%

The Boolean operators AND, OR, and NOT specify a Boolean
logic operation to be performed on two variables, on adjacent sides
of the operator. In the case of NOT, only the term to the right is
considered. Boolean operations are not performed until all
arithmetic and relational operations have been completed.

EXAMPLES:

IF A= 100 AND B=100 THEN 10
If both A and B are equal to 100, branch to
statement 10.

IF X<Y AND B>=44 THEN F=0
If X is less than Y, and B is greater than
or equal to 44, then set F equal to 0.

IF A=100 or B=100 THEN 20
If either A or B has a value of 100, branch to
statement 20.

IF X<Y OR B>=44 THEN F=0
F is set to 0 if X is less than Y, or B is greater
than 43.

Asingle term being tested for “true” or “false” can be specified by
the term itself, with an implied “<>0" following it. Any non-zero
value is considered true; a zero value is considered false.

EXAMPLES:

IF ATHEN B=2
IF A<>0 THEN B=2
The above two statements are equivalent.
IF NOT B THEN 100
Branch if B is false, i.e., equal to zero. This is
probably better written as:
IF B=0 THEN 100

65

The three Boolean operators can also be used to perform logic
operations on the individual binary digits of two adjacent terms (or
just the term to the right in the case of NOT). But the terms must be
in the integer range. Boolean operations are defined by groups of
statements, which taken together constitute a “truth table.” The

following table lists the truth tables for the Boolean operators used
by VIC BASIC.

Boolean Truth Table

The AND operation results in a 1 only if both bits are 1.

1AND1 =1
0OAND1 =0
1ANDO =0
OANDO =0
The OR operation results in a 1 if either bit is 1.
10R1 =1
OOR1 =1
10RO =1
0OORO0 =0
The NOT operation logically complements each bit.
NOT1 =0
NOTO = 1

This discussion of binary digit (bit) oriented Boolean operations is
presented for those who are interested in the details of how these
operations are performed. If you do not understand it, skip it. You
are not skipping anything you must know. Recall that a single term
has an implied “<>0" following it. The expression therefore
becomes:

IF 0<>0 GOTO 40

Thus, the branch is not taken.
In contrast, a Boolean operation performed on two variables may
yield any integer number:

IF A% AND B% GOTO 40

Assume that A% = 255 and B% =240. The Boolean operation 255
AND 240 yields 240. The statement, therefore, is equivalent to:

66

-

bad

IF 240 GOTO 40
or, with the “<>0":
IF 240 <>0 GOTO 40

Therefore the branch will be taken.
Now compare the two assignment statements™

A = A AND 10
A = A<10

In the first example, the current value of A is logically ANDed with
10 and the result becomes the new value of A. A must be in the
integer range + 32767 to —32768. In the second example, the
relational expression A<10 is evaluated to — 1 or 0, so A must end
up with a value of —1 or 0.

67

LOGICAL OPERATORS

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator returns a
bitwise result which is either “true” (not zero) or “false” (zero). Inan
expression, logical operations are performed after arithmetic and
relational operations. The outcome of a logical operation is
determined as shown inthe following table. The operators are listed
in order of precedence.

NOT

X NOT X

ERL

gr=rd

AND
X Y XANDY
i 1
TR 0
0% o 0
0 0 0

OR
X Y XORY
B ey | 1
L 1
0 5 1
§aie 0

Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more
relations and return a true or false value to be used in a decision.
For example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

68

Logical operators work by converting their operands to
sixteen-bit, signed, two’s-complement integers in the range
—32768 to +32767. (If the operands are not in this range, an error
results.) If both operands are supplied as 0 or — 1, logical operators
return 0 or — 1. The given operation is performed on these integers
in bitwise fashion, i.e., each bit of the result is determined by the
corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For example, the AND operator may be used
to “mask” all but one of the bits of a status byte at a machine 1/O
port. The OR operator may be used to “merge” two bytes to create
a particular binary value. The following examples will demonstrate
how the logical operators work:

63 AND 16 = 16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16=16

15 AND 14 = 14 15 = binary 1111 and 14 = binary
1110, so 15 AND 14 = 14 (binary 1110)

—-1AND8 = 8 -1 = binary 11111111 and 8 =
binary 1000, so —1 AND 8 = 8

40R2= 6 4 = binary 100 and 2 = binary 10, so 4

or 2 = 6 (binary 110)

100OR10 = 10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)

-10R -2 = -1 —1 = binary 11111111 and —2 = binary
11111110, so

—10OR —2 = —1. The bit complement of
sixteen zeros is sixteen ones, which

is the two's complement representation

ot —1.

NOT X=(=X)+1 The two's complement of any integer is
the bit complement plus one.

STRING OPERATIONS

Strings may be concatenated using +. For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + BS

30 PRINT “NEW” + A$ + BS$
RUN

FILENAME

NEW FILENAME

69

Strings may be compared using the same relational operators that
are used with numbers:

e o e A DR R

String comparisons are made by taking one character at a time
from each string and comparing the ASCII codes. If all the ASCI|
codes are the same, the strings are equal. If the ASCII codes differ,
the lower code number precedes the higher. If, during string
comparison, the end of one string is reached, the shorter string is
said to be smaller. Leading and trailing blanks are significant.
Examples:

‘lAA" (IGABII

“FILENAME” = “FILENAME”

lesfl > le#l’

10l e WOLE

"kg" < “KG"

“SMYTH" < “SMYTHE"

B$ < “9/12/78” where B$ = “8/12/78"

70

L)

)

ated

2

PROGRAMMING TIPS

® Editing Programs

® Using the GET Statement
e Crunching Programs

® Working With Graphics

® Sound and Music

71

EDITING PROGRAMS

CURSOR CONTROLS

One of the most important features of the VIC is the ability to
move the cursor around the screen and make changes to program
lines. This is called “screen editing.” The VIC will allow cursor
movement around the screen in any direction, inserting extra
spaces into a line, and erasing unwanted characters. The VIC's
editor is one of the most powerful and easy to use of any computer.

There are 6 keys on the keyboard that are used for editing. These
arethe, , , , , and the
bar. These are all dual purpose keys, with different actions
when the or @ keys are pressed. The ,
CEH : , and will all repeat if held down for at
least a second.

CLR
a. [

When unshifted, this moves the cursor to the upper left corner of
the screen, called the “home position.”

With the (or @ key) held down, this key will
erase everything on the screen and move the cursor to the home
position. This does not erase a program, variables, or anything else
currently in memory.

INST
b,

Without the , this key serves to delete the character to
the left of the cursor. Anything else on the line to the right of the de-
leted character is moved one space to the left, filling in the gap.

With the , this becomes an insert key. A space is cre-
ated atthe cursor’s position, and everything else on the line to the
right of the cursor is moved one more space to the right. if this
pushes the last character on the line pastthe right end of the line, all
lines below the current one are pushed down one line. Once the
line is filled all the way to the end of 4 screen lines (88 characters),
this key has no effect. (See also QUOTE MODE.)

73

g

This will move the cursor up or down one line on the screen,
without affecting anything displayed on the screen. Unshifted, the
cursor moves down, and if you hold down the (or the

key) the cursor moves up.

. &

This causes the cursor to move one space sideways. Unshifted,
the move is to the right; and shifted, the cursor moves left. All
characters remain on the screen without being erased. Notice that if
the cursor moves beyond the right edge of the screen, it “wraps”
one line down, to the left edge. If you move to the left edge the
cursor wraps to the right side of the next line up (except from the
home position).

.. (I

The primary purpose of this key is to “enter” an instruction,
calculation, or line of instructions. In direct mode the VIC executes
the instruction or calculation. In program mode (when the
instruction is preceded by a line number) the RETURN key causes
the program line to be stored in memory. However, when you hold
down the SHIFT key and hit RETURN, the VIC moves the cursor to
the next line and the left edge of the screen but does not affect the
line orinstruction—SHIFT RETURN is a fast method for moving the
cursor down the screen.

f.

When you hit the bar (at the bottom of the keyboard) a
blank space appears on the screen and the cursor moves one
space to the right, erasing any character that was previously on that
position.

If the or G keys are held down while typing the

N 7\W3W bar, a character is printed that looks like a space but is
actually treated by the VIC as a graphic character.

EDITING LINES

Anything displayed on the screen can be edited using the cursor
controls. This can be a program line that is LISTed or typed in, or a
command without a line number. To edit a line simply move the

74

cursor until it is on the line, then make the required changes,
inserting or deleting as needed. Once you are finished, just hit the
m key. Allthe changes will be stored as made. If you just
want to get the cursor past the line itis on, just hold thile
hitting m and the VIC will ignore the lines it passes.
In order to delete a line from a program, just type the line number
and hit . There is no command for deleting more than 1
line at a time, although there is a trick for erasing all but a few lines.
This involves LISTing the good portion of the program on the
screen, typing NEW, moving the cursor to the top line displayed,

and hitting B2 ¥:{'R on all the lines. This method only works if the
section to be kept is very small (less than one screenful).

a. Direct Mode/*‘Calculator” Mode
If you enter a command or set of commands without a line
number, they will execute as soon as you press the BHINEI'R key.

This is called “Direct Mode" or “Immediate Mode."”

Since the VIC allows multiple statements on a line by using the
colon (:), you can actually get a short program to run without
entering line numbers. This is especially helpful when there is
already a program in memory that you don't want to disturb. The
maximum length of a program line is 4 screen lines, or 88
characters. In other words, if you enter a line numbered 10 you can
display four 22-character lines on the screen but the VIC will store
and interpret the information as one 88-character program line.

Here is a sample immediate mode program for a sound effect:

(don’t hit WAL until you've typed the whole line)

POKE 36878,15:FOR L=254 To 128 STEP-1:POKE 36876,
L:POKE 36876,0:NEXT:POKE 36878,0

Some people also call this “calculator mode,” because one of the
most common things you can do with a VIC is perform calculations
that don't require a program.

Here are some examples of calculations:
PRINT 5+4

PRINT (2+4)*5/9

PRINT SIN(37)

Certain commands can’t be used in direct mode. These are:
INPUT, INPUT#, GET, GET#, and DEF FN. The DATA statement

75

may be typed but has absolutely no effect. The first four commands
shown can’t be used because the same buffer that holds the
statement being executed is also used to hold the characters being
input. The DEF FN statement requires a line number so that the
formula may be referenced later.

b. Program Mode

Instructions beyond a basic level of complexity require a
program, as opposed to direct mode commands which can perform
simple commands in a single line of instructions. A program is one
or more lines, each having its own unique number and containing
a statement or group of statements. Line numbers must be whole
numbers from 0o 63999. Programs are usually written using every
10th number, or even 100th number, since most programmers
want to add more lines later between two existing lines, as the
program is developed or edited.

Line numbers are stored in numerical order regardless of the
order in which they are typed. The program will, when RUN,
execute from the lowest to highest numbered lines, unless there is

a command to jump to a different line, like GOTO, IF . . . THEN, or
GOSUB.

76

("}

(=

USING THE GET STATEMENT

Most simple programs use the INPUT statement to get data from
the person operating the computer. When dealing with more
complex needs, such as protection from typing errors, the GET
statement offers more flexibility and gives the program more
intelligence. This section shows you how to use the GET statement
to add some special screen editing features to your programs.

The VIC has a keyboard buffer that holds up to 10 characters.
This means if the computer is busy doing some operation and is not
reading the keyboard, you can still type in up to 10 characters, and
the VIC will use them as soon as it finishes what it was doing.

This can be demonstrated with a simple program. Type in the
program shown below. When you tell it to RUN, type the word
HELLO on the keyboard. Since the VIC is busy in a loop, nothing
appears on the screen—until the program stops after 15 seconds,
and the word HELLO that you typed appears on the screen.

10 TI$ = “000000"
20 IF TI$ < “000015” THEN 20

The VIC's input buffer is also called a queue, which is a good
image to use to better understand how it works. Imagine standing in
line waiting to buy a ticket to get into a movie. The first person in line
is the firstto get a ticket and leave the line, and the last personin line
isthe last to get aticket. (In accounting, this is called the “firstin, first
out” method, or FIFO, as opposed to the “last in, first out”, or LIFO
method.)

The GET statement in the VIC acts as the ticket taker. First it
looks to see if there are any characters “in line” (if a key or keys
have been typed). If there are, the first character typed gets placed
in a “variable” and out of the queue. If no characters are waiting in
the buffer, then an empty value is returned.

One other point should be mentioned when talking about the
queue. Any characters typed on the VIC's keyboard after the queue
is full are lost, since the queue was full. So imagine that the ticket
line is long enough to hold 10 people, and there is a cliff at the end of
the line. Anyone trying to get into the line after the line is full simply
falls off the cliff, never to be seen again.

Since the GET statement will keep going even when no character
was typed, it is often necessary to put the GET statement into a
loop, having it wait until the operator hits a key (actually, until a
character has been received). Here is the recommended form:

(Type NEW to erase the previous program.)
10 GET A$: IF A$ = “” THEN 10

77

There must be NO SPACE between the quotes in this line, to
indicate an empty value. When the person is not typing anything,
the empty value goes into the string variable (in this case
represented by A$ and the IF statement sends the program back to
the GET statement. This loop repeats indefinitely, until the person
operating the computer hits any key on the keyboard. At this point,
the program continues with the line following line 10.

Add this line to the program:

100 PRINT A$; : GOTO 10

Now RUN the program. No cursor appears on the screen, but any
character you type will be printed on the screen. This includes all
special functions, like cursor and color controls and clearing the
screen. This two-line program can be developed into a screen
editor, shown below.

There are many features that you could use in a screen editor. A
flashing cursor is nice to have, and can be programmed. Also, you
may wish to “trap” certain keys, like H%L:E , SO as not to
erase the screen accidentally. Or you may wish to program the
function keys for whole words. The following lines give each
function key a special purpose. Remember, this is only the
beginning of a program that you can customize for your needs, like
word processing or data capture.

20 IF A$ = CHR$(133) THEN POKE 36879,8: GOTO 10

30 IF A$ = CHR$(134) THEN POKE 36879,27: GOTO 10

40 IF A$ = CHR$(135) THEN A$="DEAR SIR:" +
CHR$(13)

50 IF A$ = CHR$(136) THEN A$="SINCERELY,” +
CHR$(13)

The CHR$ numbers in the parentheses come from the CHR$
code chart in the Appendix, which lists a different number for each
key character. The four function keys are activated here to perform
the tasks represented by the instructions which immediately follow
the word THEN in each line . . . of course you could designate
different keys by changing the CHR$ number in parentheses, and
different instructions after the THEN statement.

78

e

HOW TO CRUNCH BASIC
PROGRAMS

You can pack more instructions—and power—into your BASIC
programs by making each program as short as possible. This
process of shortening programs is called “crunching.”

Crunching programs lets you squeeze the maximum possible
number of instructions into your program. It also helps you reduce
the size of programs which might not otherwise run in a given size;
and if you're writing a program which requires the input of data such
asinventory items, numbers or text, a short program will leave more
memory space free to hold data.

But whether you're using an unexpanded VIC or a 32K VIC
System, your programs will benefit from the following crunching
techniques.

ABBREVIATING KEYWORDS

A list of keyword abbreviations is given in the Appendix A. This is
helpful when you program because you can actually crowd more
information on each line using abbreviations. The most frequently
used abbreviation is the question mark (?) which is the BASIC
abbreviation for the PRINT command. However, if you LIST a
program that has abbreviations, the VIC will automatically print out
the listing with the full-length keywords. If any program line exceeds
88 characters (4 lines on the screen) with the keywords
unabbreviated, and you want to change it, you will have to re-enter
that line with the abbreviations before saving the program.
SAVEIing a program incorporates the keywords without inflating
any lines because BASIC keywords are tokenized by the VIC.
Usually, abbreviations are added after a program is written and do
not have to be LISTed any more before SAVEing.

SHORTENING PROGRAM LINE NUMBERS

Most programmers start their programs at line 100 and number
each line at intervals of 10 (i.e., 100, 120, 130). This allows extra
lines of instruction to be added (111, 112, etc.) as the program is
developed. One means of crunching the program after it is
completed is to change the line numbers to the lowest numbers
possible (i.e., 1, 2, 3) because longer line numbers take more
memory than shorter numbers. For instance, the number 100 uses

79

3 bytes of memory (one for each number) while the number 1 uses
only 1 byte.

PUTTING MULTIPLE INSTRUCTIONS ON
EACH LINE

You can put more than one instruction on each numbered line in
your program by separating them by a colon. The only limitation is
that all the instructions on each line, including colons, should not
exceed the standard 88-character line length. Here is an example

of two programs, before and after crunching:
BEFORE CRUNCHING: AFTER CRUNCHING:

10 PRINT "HELLO..."; 10 PRINT “HELLO. . .";:FOR
T = 1 TO 500:NEXT:PRINT
20 FORT = 1TO500:NEXT “HELLO,AGAIN. . .":GOTO10

30 PRINT “HELLO, AGAIN. . .”
40 GOTO10

REMOVING REM STATEMENTS

REM statements are helpful in reminding yourseit—or showing
other programmers—what a particular section of a program is
doing. However, when the program is completed and ready to use,
you probably won't need those REM statements anymore and you
can save quite a bit of space by removing the REM statements. If
you plan to revise or study the program structure in the future, it's a
good idea to keep a copy on file with the REM statements intact.

USING VARIABLES

If a number, word or sentence is used repeatedly in your program
it's usually best to define those long words or numbers with a one or
two letter variable. Numbers can be defined as single letters. Words
and sentences can be defined as string variables using a letter and
dollar sign. Here's one example:

BEFORE CRUNCHING AFTER CRUNCHING

10 POKE 36878, 15 10 POKE 36878, 15: S=36874

20 POKE 36874, 200 30 POKES, 200:POKES, 250:POKES,
30 POKE 36874, 250 150

40 POKE 36874, 150

80

USING READ AND DATA STATEMENTS

Large amounts of data can be typed in as one piece of data at a
time, over and over again . . . or you can print the instructional part
of the program ONCE and print all the data to be handled in a long
running list called the DATA statement. This is especially good for
crowding large lists of numbers into a program.

USING ARRAYS AND MATRICES

Arrays and matrices are similar to DATA statements in that long
amounts of data can be handled as a list, with the data handling
portion of the program drawing from that list, in sequence. Arrays
differ in that the list can be two or three dimensional.

ELIMINATING SPACES

One of the easiest ways to reduce the size of your program is to
eliminate all the spaces. Although we often include spaces in
sample programs to provide clarity, you actually don't need any
spaces in your program and will save space if you eliminate them.

USING GOSUB ROUTINES

If you use a particular line or instruction over and over, it might be
wise to GOSUB to the line from several places in your program,
rather than write the whole line or instruction every time you use it.

USING TAB AND SPC

Instead of PRINTing several cursor commands to position a
character on the screen, it is often more economical to use the TAB
and SPC instructions to position words or characters on the screen.

81

WORKING WITH GRAPHICS

The graphics ability of the VIC 20 is more powerful and
sophisticated than many users realize. The following material is a
concept-by-concept guide to help you make better use of these
graphics features to enhance your games and other programs.

CHARACTER MEMORY

Each character is formed in an 8-by-8 grid of dots, where each
dot may be either “on” or “off.” The character images are stored in
a special chip called the “Character Generator ROM.” The

characters are stored as a set of 8 bytes for each character, with
each byte representing the dot pattern of a row in the character, and
each bit representing a dot. A zero (0) bit means that dot is off, and
a one (1) bit means the dot is on.

The character memory in ROM begins at location 32768. The
first 8 bytes contain the pattern for the @ sign, which has a
character code value of zero on the screen. The next 8 bytes, from
location 32776 to 32783, contain the information for forming the
letter A.

IMAGE BINARY PEEK
i 00011000 24
* : 00100100 36
i . 01000010 66
A 01111110 126
. i 01000010 66
* i 01000010 66
] e 01000010 66
¥ ¥ 00000000 0

Each complete character set takes up 2K of memory, 8 bytes per
character and 256 characters. Since there are two character sets,
one for upper case and graphics and the other with upper and lower
case, the character generator ROM takes up a total of 4K.

PROGRAMMABLE CHARACTERS

Since the characters are stored in ROM, it would seem like there
is no way to change them for customizing characters. However, the
memory location that tells the VIC where to find the characters is in
a RAM location in the VIC chip, which can be changed to point to

82

L

miesh

o)

many sections of memory. By changing the character memory
pointer to point to RAM, the character set may be programmed for

any need.
The VIC'’s standard characters are stored as follows:

HEX DECIMAL DESCRIPTION

8000 32768 Upper case with full graphics

8400 33792 Upper case & graphics—reversed

8800 34816 Upper and lower case with some
graphics

8C00 35840 Upper & lower with some graphics—re-
versed

The register which controls where the chip gets its character
information is at location 36869 decimal (9005 HEX). Its value is
normally 240 (upper case and graphics) or 242 (upper/lower case).

The programmed character set cannot be put into expansion
RAM, since the VIC chip doesn't have access to that memory.
Therefore, any programmed characters must begin at a memory
location between 4096 and 7168. Since BASIC programs are
normally stored beginning at 4096, and strings start at the top of
available memory and work their way down, precautions must be
taken to protect the character set from being overwritten by BASIC.
If the BASIC program begins at 4096, the normal procedure is to
change the pointers to the top of available RAM at locations 52 and
56 so that they point below the character set. The following chart
shows the possible locations of character sets, and the POKES to
protect them.

Num- | Location of | Contents

ber |Characters | of Location POKE 52 & 56

240 | 32768 Character ROM
241 | 33792 Character ROM
242 | 34816 Character ROM
243 | 35840 Character ROM

244 | (36864) VIC Chip, /O
245 | (37888) Color RAM
246 | (38912) nothing

247 | (39936) nothing

248 | (0) Zero Page RAM
249 | (1024) Expansion RAM
250 | (2048) Expansion RAM
251 | (3192) Expansion RAM
252 | 4096 Start of BASIC RAM

83

253 | 5120 BASIC RAM 20
254 | 6144 BASIC RAM 24
| 255 | 7168 BASIC RAM 28

This table assumes that screen memory starts at 7680 (1E00).
However, it can be moved to other locations. The number of
characters you have to work with at each location might change in
that case.

There are two problems involved in creating your own special
characters. First, itis an all or nothing process. Generally, if you use

your own character set by telling the VIC chip to get the character
information from the area you have prepared in RAM, the standard
VIC characters are unavailable to you. To solve this problem, you
must copy any letters, numbers, or standard VIC graphics you

intend to use into your own character memory in RAM. You can pick
and choose, take only the ones you want, and don't even have to
keep them in order!

The second problem with programmable characters is that your
character set takes memory space away from your BASIC
program. This is a trade off situation, since you only have a limited
amount of RAM available. If you decide to create a character set for
a program, the program has to be smaller than a program which
uses the standard VIC characters.

There are two locations in the VIC to start your character set that
should not be used with BASIC—0 and 4096. The first should not
be used because BASIC stores important data on page 0. The
second can't be used because that is where your BASIC program
starts! (If you expand your VIC, or use machine language, you can
start your characters at 4096 if you want. This limit only applies to
the unexpanded VIC.)

The best place to put your character set for use with BASIC while
experimenting is at 7168. This is done by POKEing location 36869
with 255, giving you 64 characters to work with. Try the POKE now,
like this:

POKE 36869,255

Immediately all the letters on the screen turn to garbage. This is
because there are no characters set up at location 7168 right now
... only random bytes. Set the VIC back to normal by using the
RUN/STOP and RESTORE keys.

Now let's begin creating graphics characters. To protect your
character set from BASIC, you should reduce the amount of
memory BASIC thinks that it has. The amount of memory in your
computer stays the same . . . it's just that you've told BASIC not to
use some of it.

84

=

[

Type:

PRINT FRE(0)

The number displayed is the amount of memory space left
unused. Now type the following:

POKE 52, 28: POKES6, 28: CLR
Now type:

PRINT FRE(0)

See the change? BASIC now thinks it has 512 bytes less memory
to work with. The memory you just reclaimed from BASIC is where
you are going to put your character set, safe from actions of BASIC.

The next step is to put your characters into RAM. When you
begin, there is random data beginning at 7168. You must put
character patterns in RAM (in the same style as the ones in ROM)
for the VIC to use.

The following one line program moves 64 characters from ROM
to your character set RAM:

FOR I= 7168 TO 7679: POKE |, PEEK(l+25600): NEXT

Now POKE 36869 with 255. Nothing happens, right? Well,
almost nothing. The VIC is now getting its character information
from your RAM, instead of from ROM. But since we copied the
characters from ROM exactly, no difference can be seen . . . yet.

You can easily change the characters now. Clear the screen and
type an @ sign. Move the cursor down a couple of lines, then type:

FOR | = 7168 TO 7168+ 7:POKE |, 255 — PEEK(l) : NEXT
You just created a reversed @ sign!

o)

At}

)

w

VIC TIP: Reversed characters are just characters with their bit
patterns in character memory reversed!

Now move the cursor up to the program again and hit return
again to re-reverse the character (bring it back to normal). By
looking at the table of screen display codes, you can figure out
where in RAM each character is. Just remember that each
character takes eight memory locations to store.

Here are a few examples just to get you started:

CHARAC- | DISPLAY | CURRENT STARTING LOCATION
TER CODE IN RAM
@ 0 7168
A 1 7176
! 33 7432
> 62 7664

85

Remember that we only took the first 64 characters, though.
Something else will have to be done if you want one of the other

characters.

What if you wanted character number 154, a reversed Z? Well,
you could make it yourself, by reversing a Z, or you could copy the
set of reversed characters from the ROM, or just take the one
character you want from ROM and replace one of the characters
you have in RAM that you don't need.

Suppose you decide that you won't need the > sign. Let's
replace the > sign with the reversed Z. Type this:

FORI=7664 TO 7671: POKE |, PEEK(l+26336): NEXT

Now type a > sign. It comes up as a reversed Z. No matter how
many times you type the >, it comes out as a reversed Z. (This
change is really an llusion. Though the > sign looks like a reversed

Z, it still acts like a > in a program. Try something that needs a >
sign. It will still work fine, only it will look strange.)

A quick review: We can now copy characters from ROM into
RAM. We can even pick and choose only the ones we want, There's
only one step left in programmable characters (the best step!) . . .
making your own characters.

Remember how characters are stored in ROM? Each character
is stored as a group of eight bytes. The bit patterns of the bytes
directly control the character. If you arrange 8 bytes, one on top of
another, and write out each byte as eight binary digits, it forms an
eight-by-eight matrix, looking like the characters. When a bit is a
one, there is a dot at that location. When a bit is a zero, there is a
space at that location.

When creating your own characters, you set up the same kind of
table in memory. Type this program:

10 FORC= 7328 TO 7335: READ A: POKE C,A: NEXT

20 DATA 60, 66, 165, 129, 165, 153, 66, 60

Now type RUN. The program will replace the letter T with a smile
face character. Type a few T's to see the face. Each of the numbers
inthe DATA statement in line 20 is a row in the smile face character.
The matrix for the face looks like this:

7.6/ 5 4 3 2.1 0 DECIMAL BINARY

ROW O MR 60 00111100
1 = : 66 01000010
2 x x 3 3 165 10100101
3 " ¥ 129 10000001
4 " % ¥ 5 165 10100101
5 e SR ¥ 153 10011001
6 2 : 66 01000010
ROW 7 i i 60 00111100
86

it

(=8}

The sheet on this page will help you design your own characters.
There is an 8-by-8 matrix on the sheet, with row numbers, and
numbers at the top of each column. (If you view each row as a
binary word, the numbers are the value of that bit position. Eachis a
power of 2. The leftmost bit is equal to 128 or 2 to the 7th power, the
next is equal to 64 or 2 to the 6th, and so on, until you reach the
rightmost bit (bit 0) which is equal to 1 or 2 to the Oth power.)

Place an X on the matrix at every location where you want adotto
be in your character. When your character is ready you can create
the DATA statement for your character.

Begin with the first row. Wherever you placed an X, take the
number at the top of the column, and write it down. When you have
the numbers for every column of the first row, add them together.
Write this number down, next to the row. This is the number that you
will put into the DATA statement to draw this row.

Do the same thing with all of the other rows (1-7). When you are
finished you should have 8 numbers between 0 and 255. If any of
your numbers are not within range, recheck your addition. The
numbers must be in this range to be correct! If you have less than 8
numbers, you missed a row. It's OK if some are 0. The 0 rows are
just as important as the other numbers.

£iii B 10l BB v & 2l D

e DR o R o) S - SR TR

Programmable Character Worksheet
87

Replace the numbers in the DATA statement in line 20 with the
numbers you just calculated, and RUN the program. Thentype aT.

Every time you type it, you see your own character!

If you don't like the way the character turned out, just change the
numbers in the DATA statement and re-RUN the program until you
are happy with your character.

That's all there is to it!

HIGH RESOLUTION GRAPHICS

When writing games or other types of programs, sooner or later
you get to the point at which you want a high resolution display, or
smooth movement of objects on the screen. A regular character
can move one space at a time, which is 8 rows or columns of dots.
For smoother movement, characters should be moved one row of
dots at a time, using high-resolution graphics.

The VIC can handle this need: high resolution is available
through bit mapping the screen. Bit mapping is the name of the
method where each possible dot (pixel) of resolution on the screen
is assigned its own bit in memory. If that memory bit is a one, the dot
itis assigned tois on. If the bit is set to zero, the dot is off. You can bit
map the entire screen of the VIC, or only a portion of it. You can mix
HI-RES, programmable characters and regular graphics.

High resolution has a few drawbacks, which is why it is not used
all the time. If takes a lot of memory to bit map the entire screen.
Because every pixel must have a memory bit to control it, you are
going to need one bit of memory per pixel (or one byte for 8 pixels).
Since each character is 8-by-8, and there are 23 lines of 22
characters, the resolution is 176 by 184 for the whole screen. That
gives you 32384 separate dots, each of which requires a bit in
memory, or 4048 bytes of memory needed to map the whole
screen.

Fear not, you can still use high resolution graphics on the
unexpanded VIC! You just don’t bit map the entire screen. Instead,
you bit map just as much of the screen as you have memory for, and
either use the rest of the screen as a border, or use it for text. A 64
dot by 64 dot screen section will be fairly easy to work with for this
section.

Generally, high resolution operations are made of many short,
simple, repetitive routines. Unfortunately, this kind of thing is rather
slow using BASIC, so high resolution routines written in BASIC are
usually rather slow. However, short, simple, repetitive routines are
exactly what machine language does best. The solution is to either
write your programs entirely in machine language (painful), or call

88

HI-RES subroutines from your BASIC program, using the SYS
command from BASIC. That way you get both the ease of writing in
BASIC, and the speed (for graphics) of machine language. The
SUPER-EXPANDER cartridge also is available to add HI-RES
commands to VIC BASIC.

All of the examples given in this section will be in BASIC to make
them clear. In the future, you can add the routines to your own
programs to give you easy HI-RES graphics. Now to the technical
details.

Remember programmable characters? Well, bit mapping is
done almost the same way. When you created a programmable
character, you could watch it form before your eyes, if the character
was on the screen when you were changing it.

To see this again, type this program in and RUN it.

100 POKE 36869 , 255

110 FOR | = 7168 TO 7679 : POKE I, PEEK(I +25600) : NEXT
120 PRINT CHR$(147) “A”

130 FORI=7176 TO 7183

140 FOR L = 1 TO 1000 : NEXT

150 READ A : POKE I, A : NEXT

160 DATA 60,36,36,36,36,36,255,255

The character changed from an A to a top hat as you watched!
This is the trick behind HI-RES graphics on the VIC—making
changes directly on the character memory. When the character is
already on the screen you see the changes right away!

The best way to set up the HI-RES display screen for the 64-dot
by 64-dot HI-RES display is to print out 64 characters in a square
box or matrix.

Setting up the HI-RES display screen is the first step in HI-RES
graphics. The following short program section will set up the display
screen.

Type NEW, then

10 POKE 36879,8:PRINT CHR$(147)
20FORL=0TO7:FORM=0TO 7
30 POKE 7680 + M*22 + L, L*8+M
40 NEXT : NEXT

Now RUN the program. We now have 64 characters on the
screen; they can't be changed in any way, since the codes for the
letters are in ROM. If we change the character memory register to

89

point to RAM, however, we will be displaying memory that we can
change any way we want.
Add the following line to the program:

5 POKE 36869,255

(This will give us 64 programmable characters, which we can set
up as an 8-by-8 character matrix, which will give us a 64-dot by
64-dot HI-RES screen—ijust what we were looking for.)

RUN the program now. Garbage appeared on the screen,
right? Just like the regular screen, we have to clear the
HI-RES screen before we use it. Printing a key won't work in
this case. Instead we have to clear out the section of memory
used for our programmable characters. Add the following
line to your program to clear the HI-RES screen:

6 FOR |= 7168 TO 7679 : POKE I, 0 : NEXT

Now RUN the program again. You should see nothing but black
on the screen—your program is a success. What we want to add
now is the means to turn dots on and off on the HI-RES screen.

To SET a dot (turn the dot on) or UNSET a dot you must know
how to find the correct bit in the character memory that you must set
to one. In other words, you have to find the character you need to
change, the row of the character, and which bit of the row that you
have to change. We need a formula to calculate this.

We will use X and Y to stand for the horizontal and vertical
position of the dot. The dot where X=0and Y =0 is at the upper-left
of the display. Dots to the right have higher X values, and the dots
toward the bottom have higher Y values.

0 X 09

Y

63

The dots where 0<=X<=7 and 0<=Y< =7 are in character
number 0, which we placed at the upper-left corner of the screen.
Each character contains 64 dots, 8 rows of 8 dots each.

These are the simple calculations to decide which dot of which
character is being altered:

The character number is. . .
CHAR = INT(X/8) "8 + INT(Y/8)

90

[

[l

This gives the display code of the character you want to change.
To find the proper row in the character, use this formula:

ROW = (Y/8 — INT(Y/8)) *8

Therefore, the byte in which character memory dot (X,Y) is
located is calculated by:

BYTE = 7168 + CHAR'8 + ROW

The last thing we have to calculate is which bit should be
modified. This is given by:

BIT = 7— (X— (INT(X/8)*8)
To turn on any bit on the grid with coordinates (X,Y), use this line:
POKE BYTE, PEEK (BYTE) OR (2 1 BIT)

Let's add these calculations to the program. In the following
example, the VIC will plot a sine curve:

50 FOR X = 0 TO 63

60 Y = INT(32 + 31 * SIN (X/10))
70 CH = INT(X/8)*8 + INT(Y/8)

80 RO = (Y/8 — INT(Y/8)) * 8

90 BY = 7168 + 8'CH + RO

100 Bl = 7— (X— INT(X/8)*8)

110 POKE BY, PEEK(BY) OR (2 1 BI)
120 NEXT

130 GOTO 130

The calculation in line 60 will change the values for the sine
function from a range of + 1 to — 1 to arange from 0 to 63. Lines 70
to 100 calculate the character, row, byte, and bit being affected,
using the formulas as given before. Line 130 freezes the program
by putting it into an infinite loop. When you have finished looking at
the display, just hold down RUN/STOP and hit RESTORE.

As a further example, you can modify the sine curve program to
display a circle. Here are the lines to type to make the changes:

55 Y1 = 32 + SQR(64"X —X*X)

56 Y2 = 32 — SQR(64"X —X*X)

60 FOR Y = Y1 TO Y2 STEP Y2-Y1
125 NEXT

o

This will create a circle in the HI-RES area of the screen. Notice
that the rest of the screen fills up with a stripe pattern. This is
because the empty spaces on the screen are filled with character
code 32, which is normally a space—and is now one of the

a1

programmable characters in the grid. If you didn’'t want the screen
to fill up with that garbage, just fill the screen with characters with a
code you're not using. In this case, code 160 would work nicely,
since that points to the blank space character in ROM. Here is aline
that cleans up the rest of the screen:

11 FOR | = 7680 TO 8185 : POKE 1,160 : NEXT

MULTI-COLOR MODE GRAPHICS

High resolution graphics gives you control of very small dots on
the screen. Each dot in character memory can have 2 possible
values, 1 foron and 0 for off. When a dot is off, the dot on the screen
is drawn with the screen color. If the dot is on, the dot is colored with
the character color for that screen position. All the dots within each

8 x 8 character can either have the screen color or the character
color. This limits the color resolution within that space.

Multi-color mode gives a solution to this problem. Each dot in
multi-color mode can be one of 4 colors: screen color, character
color, border color, or auxiliary color. The only sacrifice is in the
horizontal resolution, because each multi-color mode dot is twice
as wide as a high-resolution dot. This loss of resolution is more than
compensated for by the extra abilities of multi-color mode, like the
ability to color dots in one of 16 colors, instead of the usual 8.

Multi-color mode is set on or off for each space on the screen, so
that multi-color graphics can be mixed with high-resolution
graphics. This is controlled in color memory. Color memory is in
locations beginning at either 37888 or 38400, depending on the
size of memory in the VIC. To find the current location of color
memory, use the formula:

C = 37888 + 4 * (PEEK (36866) AND 128)

The memory in this location is a little different from that in the rest
of the VIC. It is wired up as nibbles instead of bytes, meaning that
each memory location has 4 bits instead of the usual 8. When
PEEKing values from this section of memory, the value should
always be ANDed with 15 to “filter out” any random bits that appear
in the upper 4 bits.

By POKEing a number into color memory, you can change the
color of the character in that position on the screen. POKEing a
number from O to 7 gives the normal character colors. POKEing a
number between 8 and 15 puts the space into multi-color mode. In
other words, turning the high bit on in color memory sets multi-color
mode, and turning off the high bit in color memory sets normal (or
high-resolution) mode.

Once multi-color mode is set in a space, the bits in the character

92

determine which colors are displayed for the dots. For example,
here is a picture of the letter A, and its bit pattern:

IMAGE BIT PATTERN

i 00011000
E * 00100100

4 * 01000010
et 9 (0 [[fE S B0
= * 01000010
% * 01000010
* ** 01000010

00000000

In normal or high-resolution mode, the screen color is displayed
everywhere there is a 0 bit, and the character color is displayed
where the bit is a 1. Multi-color mode uses the bits in pairs, like so:

IMAGE BIT PATTERN

AABB 00 01 10 00
BBAA 00 10 01 00
AA BB 010000 10
AACCCCBB 01 11 11 10
AA BB 01 00 00 10
AA BB 010000 10
AA BB 0100 00 10
00 00 00 00

In the image area above, the spaces marked AA are drawn
in the border color, the spaces marked BB use the character
color, and the spaces marked CC use the auxiliary color. The
bit pairs determine this, according to the chart below:

BIT PAIR | COLOR REGISTER

00 Screen color

01 Border color
10 Character color
11 Auxiliary color

Turn the VIC off and on, and type this demonstration program:

100 C = 37888 + 4 * (PEEK (36866) AND 128)
110 POKE 36878, 11 * 16 : REM SET AUX COLOR
120 PRINT CHRS$(147) “AAAAAAAAAA"

130 FORL = 0 TO 9

93

140 POKEC + L, 8
150 NEXT

The screen color is white, the border color is cyan, the
character color is black, and the auxiliary color is light cyan.

You're not really putting color codes in the space for screen,
border, and auxiliary color; you're putting references to the
registers associated with those colors. This conserves memory,
since 2 bits can be used to pick 16 colors (screen and auxiliary) or 8
colors (character and border). This also makes some neat tricks
possible. Simply changing one of the indirect registers will change
every dot drawn in that color. So everything drawn in the screen,
border, or auxiliary color can be changed on the whole screen
instantly. Here is an example using the auxiliary color:

100 PRINT CHR$(147) CHR$(18);

110 POKE 646 , 8

115 FOR L = 1 TO 22 : PRINT CHR$(32); : NEXT
120 POKE 646 , 6

130 PRINT “HIT A KEY”

140 GET A$: IF A§ ="" THEN 140

150 X = INT (RND (1) *16)

160 POKE 36878 , X * 16

170 GOTO 140

There is a memory location in the VIC that is especially useful
with multi-color mode. Location 646 is the color that is currently
being PRINTed. When a color control key is pressed this location is
changed to the new color code. By POKEIing this location, the
characters to PRINT can be changed to any color, including
multi-color characters. For example, type this command:

POKE 646,10

The word READY and anything else you type will be displayed in
multi-color mode. Any color control will set you back to regular text.

SUPEREXPANDER CARTRIDGE

There is a cartridge program called the VIC SUPER EX-
PANDER. This cartridge is programmed with many special
functions, including a graphics package. This allows drawing of
lines, dots, and circles, coloring in of areas on the screen, and full
control over graphic modes. For programs in BASIC, it will be
considerably easier to use graphics with the SUPER EXPANDER
than by use of cumbersome pokes. The SUPER EXPANDER also
includes 3K of extra RAM to give you enough room to do any
high-resolution operation.

94

(=]

(]

SOUND AND MUSIC

Sound effects and music can improve almost any computer
program, whether in BASIC or Machine Language. Obviously, a
computer game is more exciting if you can hear the guns blazing
and the rockets exploding. Likewise, a clever little tune provides an
audio “theme” for a game or other program, or might become the
“reward” if the player reaches a special “high” score.

Beyond games, sound effects serve other useful purposes. For
example, a business or calculation program may be faster and
easier to use if the computerist can enter a long string of numbers or
formulas without looking up from a chart or balance sheet. A quick
tone at the end of each entry indicates when a number has been
entered . . . a “buzz” might sound if the number entered has too
many decimal places . .. and different tones might be used to
distinguish one kind of entry from another.

These are just a few ideas about how sound and music are used
in computer programming. The following information is provided to
help you the programmer understand how to use the VIC's sound
capability to best advantage.

FOUR “SPEAKERS” AND 5 “OCTAVES”

The VIC has 3 tone generators (for music), and one white noise
generator (for sound effects). The tone generators cover 3 octaves
each but are staggered slightly so you can actually reach a total of 5
separate octaves.

The VIC's speakers and volume control are stored in specific
memory locations which you can access and control by using the
POKE command. Whenever you poke one of these locations you
activate that tone generator, or the volume control.

When programming sound—especially music—it is often helpful
to think of these various sound controls as “speakers,” and the
volume setting as a standard “volume” control.

Here, briefly, is a list of memory locations relating to sound:

36878 (VOLUME SETTING)

36874 (SPEAKER 1—MUSIC—LOWEST)
36875 (SPEAKER 2—MUSIC—MIDDLE)
36876 (SPEAKER 3—MUSIC—HIGHEST)
36877 (SPEAKER 4—NOISE)

There are 15 volume settings. Therefore to set the volume you must
type the POKE command, followed by a comma, and a number

95

from 1 to 15. We suggest you always use 15, unless you're playing
with the amplitude as part of a sound effect.

Each speaker has a range of 128 separate settings. To “play” a
particular note you must POKE one of the speaker settings, which
happen to be numbered from 128 to 255. If you POKE a number
lower than 128 or higher than 255 you will get no sound (which
suggests one way to interrupt a speaker while it's “on").
Here's an example of how to play a note on the VIC:

20 POKE 36878,15 SETS VOLUME AT MAXIMUM

30 POKE 36875,200 TURNS ON SPEAKER NUMBER 2
40 FOR X=1T0O1000: THISIS A 1000 COUNT TIME DELAY
NEXT

50 POKE 36878,0 THIS TURNS THE SPEAKER OFF

AFTER COUNTING TO 1000
RUN

The VIC uses the television speaker as its “voice,” so the volume
can also be adjusted by turning the television speaker (or other
external amplifier).

ABBREVIATING THE SOUND COMMANDS

You can abbreviate the lengthy POKE commands described above
by converting these to programming “shorthand.” One way is
shown below:

10 V=386878:51=36874:52=236875:53 = 36876:54 = 36877

Now if you want to turn on a particular speaker, or set volume, you
can use the abbreviations . . . like, for instance:

20 POKEV,15
30 POKES2,200
40 FORX=1TO1000:NEXT

|

50 POKEV.0
{- N
)
VICTIP s

In line 10, we put all the commands on one line instead of five
lines because we want to demonstrate economical program-
ming techniques. You can save memory and “crunch” longer
programs into less space if you put several commands on a
single line, with each command separated by a colon, as |
shown.]'

96

e

Keep this “programming shorthand” in mind as we show you some
more examples of using the VIC speakers.

HOW MUSIC WORKS ON THE VIC

As already mentioned, the VIC's speakers each cover 3 octaves,
but together reach a total range of 5 octaves. This is because the
VIC’s 3 tone generators are “staggered” so the octaves of the
different speakers overlap. A more graphic picture of which
speakers cover which octaves and how they overlap is shown in the
chart on page 99. Musical note values are shown below:

TABLE OF MUSICAL NOTES

APPROX. APPROX.

NOTE VALUE NOTE VALUE
C 135 G 215
C# 143 G# 217
D 147 A 219
D# 151 A# 221
E 159 B 223
F 163 C 225
F# 167 C# 227
G 175 D 228
G# 179 D# 229
A 183 E 231
A# 187 F 232
B 191 F# 233
C 195 G 235
C# 199 G# 236
D 201 A 237
D# 203 A# 238
E 207 B 239
F 209 C 240
F# 212 C# 241

SPEAKER

COMMANDS: WHERE X CAN BE: FUNCTION:
POKE 36878,X 0to 15 sets volume
POKE 36874,X 128 to 255 plays tone
POKE 36875,X 128 to 255 plays tone
POKE 36876,X 128 to 255 plays tone
POKE 36877,X 128 to 255 plays “noise”

97

The Octave Chart illustrates the three octaves contained in each
speaker register. It also shows how several octaves overlap . . . for
instance, the lowest octave of Speaker 3 contains the same notes
as the middle octave of Speaker 2. Of course, the same note played
on different speakers may sound slightly different . . . just as the
same note played on a piano may sound different from the same
note played on a harpsichord. Also, some television sets and
speakers may cause varying results in terms of tonal qualities.

The Table of Musical Notes on page 97 is intended to help you
approximate note values in your computer program using the VIC.
The number values are approximate only and may be adjusted by
using values between those shown.

MUSIC PROGRAMMING TECHNIQUES

There are four basic parameters in programming music:

1. Volume

2. Speaker/Sound Register Selection

3. Note

4. Duration
In other words, the things you have to consider when programming
music are which volume to set, which speaker(s) to use, the notes
being played by each speaker, and the duration of each note. Let's
consider some techniques for putting these parameters in your
program:

EXAMPLE 1: MUSIC USING DATA STATEMENT
10 POKE 36878, 15 Set volume to highest level (15).

20 S2=36875 Set speaker to equal S2 (any variable).
30 READ N,D Read duration & note from DATA
below.

40 IF N=—-1THEN Turn off speaker & end programat — 1.

POKES2,0:END
50 POKE S2,N Play note N from DATA on Speaker S2.
60 FORT=1TOD: Duration loop to set up time value.
NEXT
70 GOTO30 Keeps going back to DATA list to get

duration & note (N,D) values.
80 DATA 225,250,226, DATA statements . . . the first number

250,227,250,228, is the note from the note value chart
250,229,250,230, earlier in text, and the second
250,231,250,232, number is the duration the note is
250,233,250,234, played.

250,235,250, 1,

=iy
98

VIC OCTAVE COMPARISON CHART

S3 (36876)

HIGHEST OCTAVE

S2 (36875)

QOR<>wom
OWL d<moO

S1 (36874)

OOF<>wm
OWwuw O<«<moO

CQORL<>wauwn
OWwuw O<mO

OCOR<C<>Won| OO0 <>Wwan| O0KF<>W+~
QUWLO<< DO | OWwLO<<nO| OwWwLG<moO

QOFF<>Wwan| OO0 <> W~
OQOWLOO<< OO OwwL <<mo

OQOF<>uwWw-~
OWww d«<mo

LOWEST OCTAVE

99

Pay special attention to the fact that N,D is actually each PAIR of
values in the DATA statement in line 80. For example, 225,250 is

the note (225) and time duration (250 jiffies) the note is played. The
next note is 226 which is also held for a duration of 250, and so on
until the computer comes to the DATA pair of —1,—1, which is the
signal to END the program. There are two ways to end the music
portion of a program. To turn off the music and continue the
program you should simply POKE the speaker(s) with a zero to turn
them off when the program reaches your DATA signal (the signal
here is —1,—1 but it could be any number). To end the entire
program when the music stops POKE the speaker(s) off with a
zero and END the program by using the END command as shown

in line 40.

EXAMPLE 2: MUSIC USING MULTIPLE SPEAKERS

10 POKE 36878,15

20 S1=36874:52=236875:
S3=36876

30 READ D,N1,N2,N3

40 IF D= —1THENPOKESH1,
0:POKES2,0:POKESS,
0:END

50 POKE S1,N1

60 POKE S2,N2

70 POKE S3,N3

80 FORT=1TOD:NEXT

90 GOTO30

100DATA500,225,225,225,
0,0,0,0,500,225,225,225,
500,232,232,232,0,0,0,0,
500,232,232,232

110DATA250,240,240,240,
250,239,239,239,
125,237,237,237,
67.5,235,235,235,
33,232,232,232

120DATA33,231,231,231,
33,228,228,228,
33,225,225,225,
33,223,223,223,
500,195,195,195

130DATA500,240,240,240

140DATA-1,0,0,0

This program is essentially the
same as Example 1, except
several speakers are used, and
each speaker must be desig-
nated separately. If you're not
familiar with DATA statements,
here's a good example of how
they work. In the previous ex-
ample we told the VIC to scan
through the DATA and READ
N,D where the first number was
the NOTE and the second num-
ber was the DURATION. In this
example, we are rearranging
the program so the VIC reads
the DATA numbers in a slightly
different order. Line 30 instructs
the VIC to READ the data in this
order: DURATION, NOTE 1,
NOTE 2, NOTE 3. These notes
are only played on their corre-
sponding speakers per lines
60-70. The music is the same as
EXAMPLE 1 except we're using
three speakers and setting the
same duration for all 3 notes so
they play simultaneously. If you
want different speakers to play

100

=il

different durations, (as in most
songs) you would change line
30 to: READ D1,N1,D2,N2,D3,-
N3 and put matching dura-
tion/note pairs in the DATA
statements. This is how you
achieve 3-voice harmony.

Notice also in Example 2 that the simple tune is played with all
similar notes, then speeded up by shortening the duration values.
The duration values may be any number, including decimal
numbers like the “67.5" in line 110 which is included as an example.
The note values may be any number between 128 and 255, with
notes corresponding to the note value chart earlier in this chapter.

Another parameter which you might consider changing is
volume. An example of how volume may be changed is found inthe
“"OCEAN WAVES" sound effect program on page 137 of the VIC 20
Personal Computer Guide (owner's manual).

If you want to get even more sophisticated in your music/sound
effects programming, try frequency modulation, which entails
rapidly switching back and forth between two notes to achieve the
illusion of a “middle” note between the two values. Example 3
illustrates this technique and plays a "“true” scale.

EXAMPLE 3: TRUE NOTE SCALE USING FREQUENCY
MODULATION

READY.
MUSE

READY.

90 S1=36874:52=S51+1:83=S1+2:V=S1+4

100 DIMN(37,1):FORI=0TO37:READN(I,0),N(l,1):NEXT

200 FORI=0TO37:POKEV,15:FORJ=0TO49:POKES1,N(l,0):
POKES1,N(1,1):NEXTJ:POKEV,0:NEXTI

9000 DATA131,131,140,140,145,145,151,151,158,158,161,162,
166,167,173,174,178,178,181,182

9010 DATA185,186,189,190,192,195,197,197,200,200,203,203,
206,207,208,209,211,212,214,214

9020 DATA216,216,218,219,220,221,222,223,224,224,226,226,
227,228,299,229,231,231,232,232

9030 DATA233,233,234,235,235,236,237,237,237,238,239,239,
239,240,240,241
READY.

101

(=1
MUSICAL NOTE VALUES -
The accompanying chart shows the two values to modulate -
between to get the “true” note in the first column. Using the
program in Example 3 above, POKE the first value, then the second |
value in line 100 to get the “true” modulated tone. —
NOTE VALUE 1 VALUE 2 -
C 131 -~
C# 140
D 145 ™~
D# 151 U]
E 158
F 161 162 =
F# 166 167
G 173 174 -
G# 178
A 181 182 i
A# 185 186 d
B 189 190
C 192 195 -
C# 197
D 200 i
D# 203 =
E 206 207
F 208 209 wl
F# 211 212
G 214 -
G# 216 ™
A 218 219
A# 220 221 i
B 222 223
C 224 -
C# 226
D 227 228" |
D# 229 1
E 231
B 232 -
F# 233
G 234 235 -
G# 238 236 &
A 237
A# 237 238 e
B 239
s |

102

Cc 239 240
C# 240 241

If two note values are given, vary the sound register on the VIC
between those two values. If only one value is given, don'’t vary the
register (just POKE the value in twice).

)

\%

VIC TIP: Here are a few additional comments about using
DATA statements in your programs. In Example 2 (page 100)
we show each note set (duration, note 1, 2 and 3) on a separate
line to emphasize that the notes are arranged and played
simultaneously ... when you enter this DATA in your
computer, however, you should not break up the segments
but instead type all the numbers and commas without any
spaces between the characters. Typing programs without
spaces is a good way to conserve memory and reduces the
possibility of error.

EXAMPLE 4: THE VIC PIANO

Finally, to give you a more familiar representation of how music
works on the VIC, here's a program which converts the VIC
keyboard to a “piano.”

10 REM STORE SOUND REGISTERS

Abbreviates
the voice

20 S2=36875 Tod
30 V =36878 B9 iers e
40 POKE S2,0 needa ana turns

them off

100 REM STORE B MAJOR SCALE
110 FOR N=1 TO 8

120 READ A (N)

130 NEXT N

Reads B major
scale from lines
140-160

Contains POKE
values for B
major scale

140 DATA 223, 227, 230
150 DATA 231, 234, 236
160 DATA 238, 239

200 REM PLAY KEYBOARD Turns on the volume

210 POKE V, 15

Finds out what key
is being pressed

220 GET AS$: IF A$="" THEN 220
230 N=VAL (A$)

103

Ends the program
if you've pressed
0" or.“9"

240 IF N=0 OR N=9 THEN 300

250 POKE S2,0

between notes. . .

270 POKE S2, A (N)
280 GOTO 220

Plays the tone
and returns to

300 REM ENDING MODULE look for another

310 POKE 82, 0 Turn off the sound

before you go

Now, when you type RUN (and press RETURN), you can play

tunes on your VIC. The keys in the top row with numbers on them
control the various notes:

1 2 3 4 5 6 7 8
DO RE MI FA SOL LA Tl DO

The VIC will keep playing the note you hit last until you hit another
note. When you're done, press either 0 or 9, and it will turn off. To
start the VIC piano again, just reRUN the program.

Try the following:

1. 100508064615 OR:
4-4-3 3§ 221

55 4 4 3 3 2 3 3 45 5 4 3 2
5 5 4 4 3 3 2 o e B e
R e T T i 3 345 5 432
4 4.3 3 227 8) P e S
9 0

THE WHITE NOISE GENERATOR

One of the “speakers” we've ignored thus far is the White Noise
Generator, or Speaker 4. This fourth speaker produces a blank
noise sound like that on your television set when you fall asleep late
at night. It has the same 3 octave range as the tone generators
described above, and is used primarily for sound effects, either by
itself or in conjunction with the other speakers. The combination of
white noise and tones can produce some stunning effects. Twenty
or so sample sound effects are listed in the VIC 20 owner’'s manual
(PERSONAL COMPUTING ON THE VIC 20).

104

(=]

To try out the White Noise generator, try typing this:

10 POKE36878,15 (if you don't have vol on yet)
20 POKES36877,240

30 FORT=1TO1000:NEXT

50 POKE36877,0

)

VIC TIP:

If you turn a particular speaker on it will STAY ON UNTIL YOU
TURN IT OFF. Example: POKE 36875,200 turns Speaker 2 on
with a high-pitched tone. You must POKE 36875,0 to turn the
speaker off. Just POKEing the Volume to zero will not turn the
speaker off. For example, turn the volume on (POKE36878,15)
then POKE a speaker on. Now turn the volume off
(POKE36878,0) then turn it on again (POKE36878,15). The tone
comes back on again automatically, right? That’s because it
| was never turned off. Just the volume was turned to zero. It's
like a radio set on the same station. Whenever you turn the
volume up the same station comes on. You have to turn the
speaker to a different tone, turn it off by pokeing zero, or poke
it to a number outside of its range to get a “silent” reading
(under 128).

MIXING SOUND AND GRAPHICS

Ninety percent of the programs being written with sound or music
will combine graphics with sound effects, so here are 3 sample
programs which combine graphics and sound:

EXAMPLE 1: CARD GRAPHICS

10 A=97: B=20: C=122: D=115
20 POKE36878,15: S2=36875
30 POKES2,200:PRINTCHRS$(A);
40 FORI=1TO100:NEXTI

50 POKES2,205:PRINTCHRS(B);
60 FORI=1TO100:NEXTI

70 POKES2,210:PRINTCHR$(C);
80 FORI=1TO100:NEXTI

90 POKES2,215:PRINTCHR$(D);
100 FORI=1TO100:NEXTI
110GOTO30

105

EXAMPLE 2: CALCULATING FORMULA WITH BLIPS

10 POKE36878,15:PRINT“ENTER FIRST NUMBER":INPUTA
20 FORX=200TO120STEP —2:POKE36875,X:NEXT

30 PRINT"ENTER SECOND NUMBER”:INPUTB

40 FORX=200TO120STEP —2:POKE36875,X:NEXT

50 FORT =1TO200:NEXT

60 PRINTA"MULTIPLIED TIMES” B
“="A*B:FORX=150TO250STEP2:POKE36875,
X:NEXT:POKE36875,0

70 FORT=1TO5000:NEXT:GOTO10

EXAMPLE 3: MUSICAL KEYBOARD

10 POKE36878,15:X=128

20 IFX>255THENGOTO10

30 GETAS:IFA$=""THENGOTO30
40 PRINTAS;

50 POKE36876,X

60 X=X+5:GOTO20

106

wail

=

3

MACHINE LANGUAGE
PROGRAMMING GUIDE

e System Overview

e Introduction to Machine Lan-
guage

e Writing Your First Program

e Special Tips for Beginners

e Memory Maps

e Useful Memory Locations

e The KERNAL

e KERNAL Power Up Activities

e VIC Chips
—6560 Video Interface Chip
—6522 Versatile Interface
Adapter

107

—

SYSTEM OVERVIEW

This chapter provides an overall functional description of the VIC
20 and ties hardware and software operations together to give the
programmer more of an understanding of the way VIC 20
processes his programs within the system.

A simplified functional block diagram of the computer is shown in
Figure 1-1. The major system components include the micropro-
cessor, the program-storage read-only memories (ROMs), the
data-storage random-access memories (RAMs), the versatile
interface devices (VIAs, 6522), the character generator chip
(2332), and the VIC chip which provides video and sound for the
display.

The 6502 microprocessor is the most complex device on the
electronics printed circuit board. This device is primarily responsi-
ble for controlling all computer operations. These operations are
controlled by addressing programs in the read-only memory
(ROM), and then interpreting and executing these sequential
program instructions. The interpretation and execution of instruc-
tions are accomplished during the processor's fetch and execute
cycles. Inthe fetch cycle, a program instruction is “fetched” into the
processor’s instruction register. The program counter (indicates
the location of the instruction in ROM) is counted up, ready for the
next instruction in sequence to be fetched into the instruction
register. In the execute cycle, the processor executes the
instruction which performs the operation indicated. Addresses
indicating the destination of data being transferred are derived from
the instruction, or calculated using program data and data from the
internal registers.

These controls exercised by the processor are performed by
communicating through the 16-bit address bus, the 8-bit bi-direc-
tional data lines, and the write-enable line. The information on the
address bus determines the destination of the data being
transferred, the bi-directional data bus functions as a path for data
transferred into and out of the microprocessor, and the write-enable
line determines the direction of the data being transferred.

Consider the microprocessor’'s inputs and outputs. We can
divide these into three groups. Each of these groups forms a “bus”
which consists of a set of parallel paths used to transfer binary
information between the devices in the system.

The address bus is used to carry the address generated by the
microprocessor to the address inputs of the memory and
input/output (I/O) devices.

109

DATA BUS

DATA BUS

114 IKx 4 ||i|" o
2 X g “ § 2
2 18 § Q g [cmos
g P 1 4066 ‘!.T 1
3 53 &
2014 IKx4 f o
zu
3 i
I3 §x 2|,
% g3 "
2114 or pss o
74LS145 32'2“' B Tuuinks o j
- 2 T coLoRm g
RIW
E J— A3 &
[]]
HIGH SPEED SHARED ADDRESS BUS 2,0MHZ 9 "I*|=8
3 L1 x
iz P & i = = _..2"
oo S : 2 =F
'2 e Y]
FEEY
+] b d
,OMHz uP ADDRESS BUS
. - o = B
£ 7 SN el
» 0 53 o i
- @ w . a
=% ¥ S Rl
= oy < <| { o
m o .
EERE . 2 =3
per Ui

BT
DBO

Figure 3-1. VIC system functional block diagram.

110

———

The data bus consists of eight bi-directional data lines. During a
write operation, these lines transfer data from the processor to a
memory location selected by the address lines. During a read
operation, data is transferred from memory to the processor along
the same lines. The data bus is, therefore, used to carry all data and
instructions to and from the processor, memory, and the peripheral
devices.

To understand the operation of the control lines which comprise
the control bus, we will examine one individually. Since the data bus
is bi-directional, the processor must have some method of
signalling to memory or I/O to which direction data transfer will take
place (whether memory or the I/O is to be read or written to). This
function is performed by the R/W (Read/Write) output from the
processor. When this line is high, all data transfers will take place
from memory to the processors—a read operation. If the R/W line is
low, then the processor will write data out to memory.

Other control lines which comprise the control bus are: system
clock timing—used to time the operation of the system including
data transfers; reset (RST) line—used to initialize the processor
when the machine is switched on; and interrupt (IRQ and NMI)
lines—used to cause the processor to stop its current program and
start a new program at a specified location.

The program memory is the storage for the sequence of BASIC
instructions which comprise the system programs. The micropro-
cessor fetches these instructions by placing the appropriate
address on the address bus. In response, the memory puts the
instruction, in the form of a pattern of 1's and 0’s, on the data bus.

The program memory is called a read-only memory because the
microprocessor cannot store information into the ROM device.
However, by addressing the ROM, the processor can cause the
corresponding 8 bits of data to be transferred on the data bus. The
ROM is a nonvolatile device, i.e., data is not destroyed when power
is disconnected from the system.

The read-write, random-access memory (RAM) provides tem-
porary storage for input data, arithmetic operations, and other data
manipulations. Each RAM address corresponds to eight memory
cells. However, when power is removed from the system, all
RAM-stored data is lost; the RAM is therefore a volatile memory
device.

The versatile interface adapters provide interface for the
keyboard, user port, control port, and the serial bus. The serial bus
provides the communication for peripheral units, such as floppy
disk drives, printers and etc. Each port is assigned a unique
address to permit communication with the microprocessor (Figure
3-3).

111

AGY

.

A mm |] mm Em | -l ¢
0. b —= gy
“8 ny 43
ﬂl-... N = > 9gv
200534 S z
NOILINYLSNI & m
= cqv
e ol < (s) m
¥31S193Y
INIOd = .
K1 owis 2 g [v
)
—= £aY
i X
HALSIOTA
K X3aNL L » 78V
A A A
> (av
= A
21901 ¥31S1934
LAN¥YIINI K= X4aNI L » oav
IWN Ol S3d

NOILD3S TOHINOD

NOILDIS ¥3LSIDIY ——=

sng
SS3¥aayv

Figure 3-2. The 6502 microprocessor

112

S15NA0¥d X0S9SIW THL 40 HIV3
- HLIM A¥VA SNOILJO TOHINOD
980 = ANV ALITIEVAYD ONISSTHAQY T
560 = "[0S9SIW NO a3anTIoNI
AN LI)= _ sne A0 -= 1ON SI HOLY¥INIOD D01 1 ‘ILON
viva £40 --
ANITLIE § = a0 <%
190 -
080 -
‘aN3na1
N YYYYYYY & Yy Y &
- _||. —
43151934 2 ¥344n4 siay
NOILINYLSNI sNd viva
ECT]
= pigyv
MY --——
e
(10s9) 1n0 ¢ _’ a) . 2R
| HOLV] flay
(10s9) 1nole
e Yiva Hv
y 1NdNI 3
(s'p°€°2059) 1ndNI —p| HOLYHINID HILSIDIY - =3 » 218V
(N1 % Y20 N0 SNLYLS —
MOSSII0Nd
» — |19y
(1059) K= HOd 14
(N T@ -
g =
b 5| 1d - = 018V
IND Tg —— 1 m
(1059) + 5 !
= z — 68V
- m >
TOUINOD | g ﬂhnv Y .ul.
ONIWIL HOLVINWNIIY
= _l.NI-.... f g > RV

113

functional block diagram

Decimal Hex

37136 9110
I/0-0

i 37887 93FF

38912 9800
I/O-2

39936 9C00
1/0-3

40959 9FFF

49152 C000
BASIC ROM

57344 E000
Kernal ROM

65535 EEEE

Figure 3-3. VIA port assignments.

The video interface chip (VIC) implements color video graphics
for the system. It provides all circuitry necessary for generating
color programmable character graphics with high resolution. VIC
also incorporates sound effects and A/D converters to accommo-
date video games. Its on-chip sound system includes three
independent, programmable tone generators, a white-noise
generator and an amplitude modulator.

The VIC 20 character generator contains all characters used in
the system. There are two complete character sets used: (1) Upper
case with full graphics, and (2) upper case and lower case with
limited graphics. Also, each of these character sets is represented
in its reverse mode. These characters are stored in the ASCII 6-bit
code and are arranged in 8 x 8 bit cells. Also, each character is
stored every 8 bytes in the memory. The diagram in Figure 3-4
shows the character generator memory layout.

VIC's 6502 microprocessor can access up to 32,000 indepen-
dent user-RAM memory locations (with memory expansion). You
can think of VIC’'s memory as a book with up to 256 “pages,” with
256 memory locations on each page. For example, page $80 is the
256 memory locations beginning at location $8000 and ending at
location $80FF. Since the 6502 uses two 8-bit bytes to form the
address of any memory location, you can think of one of the bytes
as the page number and the other as the location within the page.

The amount of active RAM may be 3.58K (addresses 4096 to

114

Decimal Hex
32768 8000
Upper case and
graphics 1K
33792 8400
Upper case and
graphics
reversed 1K
33816 8800
Upper case and
lower case 1K
35840 8C00
Upper case and
lower case
reversed 1K
36863 8FFF
Figure 3-4. Character generator memory layout.
Decimal Hex
0 0000
Working Storage
RAM 1K
1024 0400
Expansion RAM
3K
4096 1000
User BASIC
Program RAM 4K
7680 1E00
Screen RAM
8192 2000
Expansion
RAM/ROM 8K
16384 4000
Expansion
RAM/ROM 8K
24576 6000
Expansion
RAM/ROM 8K
32768 8000
Character ROM
4K
36863 8FFF

Figure 3-5. VIC20 memory locations.

115

Decimal Hex

36864 9000
VIC Chip

37136 9110
1/0-0

37888 9400
Color RAM

38912 9800
I/0-2

39936 9C00
I/0-3

40960 A000
Expansion ROM 8K

49152 C000
BASIC ROM 8K

57344 E000
KERNAL ROM 8K

65535 FFFF

Figure 3-5. (cont).

7679), 6.65K (addresses 1024 to 7679), or a total of 32K by adding
24K more RAM (addresses 8192 to 37267. Addresses 40960 to
49151 are allocated for the expansion of ROM. The first 1K-byte
allocation (to 1024) is fixed; the larger the memory size, the more
space is available in the user program area.

VIC has three types of memory: random-access memory (RAM),
read-only memory (ROM), and input/output locations (I/O). Figure
3-5 shows a typical VIC 20 memory, the different types, and the
operations for which they are used.

Each portion of the memory is described in more detail in the
following text.

The first 1K-byte of RAM (Addresses 0 — 1023) is allocated
to working storage, the stack, and tape buffers. Byte ad-
dresses 4096 through 8191 are allocated to screen storage
and storage of user programs (Figure 3-6).

Locations 256 through 511 are used for the stack area for BASIC,
KERNAL and the microprocessor. The stack begins at location 511
and proceeds downward. Storage is allocated dynamically as
needed by BASIC and the hardware. An OUT-OF-MEMORY error
occurs if the stack pointer reaches the end of available space in this
area.

Locations 512 through 827 are used as additional BASIC and
KERNAL working-storage locations.

Locations 828 through 1023 form a tape buffer area for the tape
cassette.

116

ed

tisst

-

Decimal

0
BASIC
Working Storage
144
KERNAL
Working Storage
256
BASIC & KERNAL
Stack
512
BASIC & KERNAL
Working Storage
828
Tape Buffer
Working Storage
1024
Expansion RAM
4096
User BASIC Text
Variables
&
Arrays
Strings
7680
Screen RAM
8191

Hex
0000

0090

0100

0200

033C

0400

1000

1E00

1FFF

Figure 3-6. Working storage and user programs.

Locations 4096 through 7679 are used for storage of the user
program and variables. The program begins at location 4096 and is
stored upward toward the end of memory. Variable storage begins
after the end of the program. Array storage begins at the end of
variable storage. Strings are stored beginning at the end of memory
and working downward. An OUT-OF-MEMORY error occurs if an
upgoing pointer meets the downgoing pointer (Figure 3-6).

Addresses 1024 through 4095 are allocated for the expansion of
RAM. Addresses 8192 through 32767 are allocated for the
expansion of either RAM or ROM, up to 32K-bytes. Addresses
40960 through 49151 are allocated for ROM expansion only

(Figure 3-7).

117

Decimal Hex
1024 0400

Expansion RAM
3K
4095 OFFF
8192 2000
Expansion
RAM/ROM 8K
16384 4000
Expansion
RAM/ROM 8K
24576 6000
Expansion
RAM/ROM 8K
32767 7FFF
40960 A000
Expansion ROM
8K
49151 BFFF

Figure 3-7. Expansion RAM/ROM.

Locations 37136 through 37887, and 38912 through 40959 are
the memory-mapped /O locations. Locations 49152 through
65535 comprise the BASIC interpreter and KERNAL routines
(Figure 3-8).

Decimal Hex

37136 9110
I/0-0

37887 93FF

38912 9800
I/0-2

39936 9C00
1/0-3

40959 9FFF

49152 C000
BASIC ROM

57344 E000
KERNAL ROM

65535 FFFF

Figure 3-8. BASIC, KERNAL, and I/O locations.
118

Location 65535 is the end of the VIC memory.

The VIC BASIC interpreter executes a user program by
interpreting each source line stored in memory in its compressed
form. First, however, a discussion about how the program is stored
in memory is necessary.

When a program line is entered from the keyboard, the screen
editor takes control, allowing you to edit the line until you press the
RETURN key. When the RETURN key is pressed, the BASIC
interpreter performs two actions: first, the program line is translated
into its compressed form, that is, reserved words and logical-opera-
tor keywords are represented by their one-byte tokens; then, the
interpreter stores the program line in memory in its ascending line
number order. When the RETURN key is pressed, the BASIC
interpreter searches memory for the same line number. If there is a
line with the same number, it is replaced with the new line. If there is
not a line with the same number, the next higher line number is
encountered and the interpreter then inserts the new line into
memory.

Program lines are stored at the beginning of the user program
area of memory which starts at memory location 4096. Variables
are stored in memory above the program lines, and arrays are
stored above the variables. All three areas begin at lower
addresses and build upwards to higher addresses. Strings are
stored beginning at the top of memory and work downwards. The
BASIC interpreter builds all four areas, moving them as necessary
and adjusting pointers for insertions and deletions. Eight pairs of
memory locations contain pointers to the division points in the user
program area of memory. These pointers are shown in Figure 3-9.

Pointer Address Typical Values
(2B,2C) Start of Text 4097
BASIC
Statements
(41,42) DATA Statement Pointer 5879
(2D,2E) Start of variables 5018
Variables
(2F,30) End of variables 5144
Arrays
(31,32) End of arrays 5303
(33,34) End of strings 7657
Strings
(37,38) Top of memory 7679

Figure 3-9. Principal pointers in user program area.

119

Next, we will discuss the formats in which BASIC statements,
variables, arrays, and strings are stored in their respective areas.

The BASIC statement storage table (Figure 3-10) shows the
format in which BASIC statements are stored. Memory location
4097 contains a pointer to the beginning of the first BASIC
statement. The pointer, like all addresses in the VIC, is stored in
low-byte, high-byte order. The pointer is a link to the memory
address of the next link. A link address of zero denotes the end of
the text; i.e., there are no more links and no more statements.
BASIC statements are stored in order of ascending line numbers,
eventhough there are links to the next statement. Links are used to
quickly search through line numbers.

The statement line number (stored in low-byte, high-byte
order) follows the link address. Line numbers go from 0 to
63999 (stored as 0 and 0, and 255 and 249 respectively).

4097 4098 4099 4101 END
Link Line# Compressed BASIC Text 0
End of
statement
Link Line# Compressed BASIC Text 0 is flagged
by zero
: byte.

Link Line# Compressed BASIC Text 0
00 (End of text is indicated by

two link bytes of zero.)

Figure 3-10. BASIC statement storage.

After the line number, the BASIC statement text begins.
Reserved words and logical-operator keywords are stored in a
compressed format. A one-byte token is used to represent a
keyword. All keywords are encoded such that the high-order bit is
set to 1. Other elements of the BASIC text are represented by their
stored ASCI| code. Other elements are comprised of constants,
variable and array names, and special symbols other than
operators and are coded just as they appear in the original BASIC
statement. The BASIC keywords table (Table 3-1) shows the byte
codes for all values from 0 to 255 that may appear in the
compressed BASIC text. Codes are interpreted according to this
table except after an odd number of double quotation marks

120

L__J

el

enclosing a character string; within a character string the VIC ASCII
codes prevail.

Table 3-1. VIC 20 BASIC Keyword Codes

Code |Character/| Code | Character/| Code |Character/| Code |Character/

(decimal) | Keyword |(decimal)| Keyword |(decimal)| Keyword |(decimal)| Keyword
0 End of line| 66 B 133 |INPUT 169 STEP
1-31 |Unused 67 c 134 |DIM 170 -
32 |space 68 D 135 |READ 171 -
33 ! 69 E 136 |LET 172 .
34 . 70 F 137 |GOTO 173 /
35 # 71 G 138 |RUN 174 |
36 $ 72 H 139 |IF 175 AND
37 % 73 | 140 |RESTORE| 176 OR
38 & 74 J 141 |GOSUB 177 >

39 1 75 K 142 |RETURN 178 =
40 (76 L 143 |REM 179 <

41) 77 M 144 |STOP 180 SGN
42 . 78 N 145 |[ON 181 INT
43 - 79 0 146 |WAIT 182 ABS
44 ; 80 P 147 |LOAD 183 USR
45 - 81 Q 148 |SAVE 184 FRE
46 . 82 R 149 |VERIFY 185 POS
47 / 83 S 150 |DEF 186 SQR
48 0 84 i 151 |POKE 187 RND
49 1 85 U 152 | PRINT# 188 LOG
50 2 86 v 153 | PRINT 189 EXP
51 3 87 W 154 |CONT 190 cos
52 4 88 X 155 |LIST 191 SIN
53 5 89 ¥ 156 |CLR 192 TAN
54 6 90 Zz 157 |CMD 193 ATN
55 7 91 [158 |SYS 194 PEEK
56 8 92 \ 159 |OPEN 195 LEN
57 9 93 1 160 |CLOSE 196 STR$
58 ’ 94 t 161 |GET 197 VAL
59 £ 95 — 162 |NEW 198 ASC
60 < 96-127 | Unused 163 | TAB(199 CHR$
61 = 128 END 164 |TO 200 LEFTS
62 > 129 FOR 165 |FN 201 RIGHTS
63 ? 130 NEXT 166 | SPC(202 MID$
64 @ 131 DATA 167 |THEN 203-254 | Unused
65 A 132 INPUT#| 168 |NOT 255 T

Note that the left parenthesis is stored as part of the one-byte
token for functions TAB and SPC; however, the other functions use
a separate byte for this symbol. For example, the line

10 IF INT(A)<5 THEN PRINT TAB(X)

would be coded as the following bytes (in decimal):

121

| LINK[10[o[139]32]181]40[65]41]179[53]32]167]32]153[32]163[88[41] 0]
= A < 5 ' X

] ‘ ())
Line
Number

IF INT THEN PRINT TAB(

The operators (+ —*/ <= > as well as the words AND, OR, and
NOT are given keyword codes (high-order bit set) since they
“drive” the BASIC interpreter just as reserved words do (e.g., 179
for <). The standard ASCII codes for these symbols (e.g., 60 for <)
appear only in the text of a string.

Spaces in the source line are stored except for the space

between the line number and first keyword. This space is supplied
on LISTing when a stored statement is expanded to its original
form. You can conserve memory storage space by eliminating
blanks (but this makes the program harder to read). You can also
conserve space by putting more than one statement on a line, since
the five bytes of link, line number, and 0 end byte are stored only
once.

The size of each statement is variable and is terminated by a byte
of zero to indicate the end of the statement. (An ASCIl zero
anywhere within the text is stored as 48.) Zero-byte flags are used
by the BASIC interpreter in executing a program when it goes
through the compressed BASIC text from left to right picking out
keywords and performing the indicated operations. A zero byte
indicates the end of the statement; the next four bytes are the link
to the line number of the next statement. Instead of search-
ing through the text and using 0 byte indicators to locate the
next statement, links are used when searching the state-
ments for their line numbers. Three consecutive bytes of
zero (the last statement's 0 byte followed by two zero link
bytes) flag the end of text when executing the program.

A program stored onto cassette tape is in the same format as
shown in Figure 3-10 for memory storage. Therefore, it is basically
“dumped" onto tape in a continuous block, including link addresses
and 0 end bytes.

The use of tokens in place of keywords is not unique to the VIC,
but there is no standard coding from one interpreter to another.
Thus, a BASIC source program SAVEd on tape by VIC BASIC is
not compatible with other BASICs, nor can BASIC programs
generated on other (non-CBM) machines normally be loaded by
the VIC BASIC interpreter.

122

INTRODUCTION TO MACHINE
LANGUAGE

WHAT IS MACHINE LANGUAGE?

At the heart of every microcomputer, there is a central
microprocessor, a very special microchip which is the “brain” of the
computer. The VIC 20's microprocessor is the 6502 chip. Every
microprocessor understands its own language of instructions, and
these instructions are called the machine language instructions of
that chip. To put it more precisely, machine language is the ONLY
programming language that your VIC 20 really understands. It is
the native language of the machine.

If machine language is the only language that the VIC 20
understands, then how does it understand the VIC BASIC
programming language? If VIC BASIC is not the machine language
of the VIC 20, what makes the VIC 20 understand VIC BASIC
instructions such as PRINT and GOTO?

To answer this question, we must first see what happens to your
VIC 20 when you turn it on. How does your.computer know what to
do when it is first turned on? Well, apart from the microprocessor
which is the brain of the VIC 20, there is a huge machine language
program which is “burnt” into a special type of memory called ROM
that cannot be changed, and does not get erased when the VIC 20
is turned off, unlike a program that you put into the VIC’s RAM. This
huge program is in two parts, one taking care of the BASIC
language, and the other called the “operating system.”

The operating system is in charge of “organizing” all the memory
in your machine for various tasks, looks at what characters you type
on the keyboard and puts them onto the screen, and a whole
number of other functions. The operating system can be thought of
as the “intelligence and personality” of the VIC 20 (or any computer
for that matter). So when you turn on your VIC 20, the operating
system takes control of your machine, and after it has done its
housework, it then says:

READY.

The operating system of the VIC 20 then allows you to type on the
keyboard, and use the built-in “screen editor” on the VIC 20. The
screen editor allows you to move the cursor, DELete, INSert, etc.,
and is, in fact, only one part of the operating system that is built-in
for your convenience.

123

All of the commands that are available in VIC BASIC are simply
recognized by another huge machine language program built into

your VIC 20. This huge program “RUN" s the appropriate piece of
machine language depending on which VIC BASIC command is
being executed. This program is called the “BASIC interpreter,”
because it interprets each command, one by one, unless it
encounters a command it does not understand, and then the
familiar message appears:

7SYNTAX
ERROR
READY.

WHAT DOES MACHINE CODE LOOK LIKE?

You should be familiar with the PEEK, and POKE commands in
the CBM BASIC language for changing memory locations. You will
probably have used them for graphics on the screen, and for sound
effects. The memory locations will have been 36874, 36875,
36876, 36877, 36878 for sound effects. This memory location
number is known as the “address” of a memory location. If you can
imagine the memory in the VIC 20 as a street of houses, the number
on the door is, of course, the address. Now we will look at which
parts of the street are used for which purpose.

SIMPLE MEMORY MAP OF THE VIC 20

Address Description

0 Start of memory.

to Memory used by BASIC and the operating system.
1023
1024

to This is a gap in memory for a 3K memory expansion
4095 module
4096

This is YOUR memory. This is where your BASIC or
machine language programs, or both, are stored.
This is also where the screen memory would begin

o on a VIC 20 that has at least 8K of RAM expansion
memory, in which case the screen RAM that
follows would become user memory space,

7679 continuing up to the top of the expansion memory.

124

whdl

7680
to
8185
to
32768
to
36863
36864

to
36879
37136

to
37167
37888

to
38399

38400
to
38911
38912
to
40959
40960
to
49151
49152
to
57343
57344
to
65535

This is the screen memory.
This is a gap in memory for memory expansion.

Character representations.

The VIC chip registers.

Input and output chip registers.

Character color control table in expanded VIC 20

Character color control table.

Unused.

Expansion ROM.

8K VIC BASIC Interpreter.

8K VIC KERNAL OPERATING SYSTEM

Don't worry if you don't understand what the description of each
part of memory means. This will become clear from other parts of
this manual.

Machine language programs consist of instructions which may or
may not have operands (parameters) associated with them. Each
instruction takes up one memory location, and any operand will be
contained in one or two locations following the instruction.

In your BASIC programs, words like PRINT, and GOTO do, in
fact, only take up one memory location, rather than one for each
character of the word. The contents of the location that represents a
particular BASIC keyword is called a “token.” In machine language,

125

there are different tokens for different instructions, which also take
up just one byte (memory location = byte).

Machine language instructions are very simple, i.e., each
individual instruction cannot achieve a great deal. Machine
language instructions either change the contents of a memory
location, or change one of the internal registers (special storage
locations) inside the microprocessor. The internal registers form
the very basis of machine language.

REGISTERS INSIDE THE 6502
MICROPROCESSOR

THE ACCUMULATOR—This is THE most important register in the
microprocessor. Various machine language instructions allow you

to copy the contents of a memory location into the accumulator, or
copy the contents of the accumulator into a memory location, or
modify the contents of the accumulator or some other register
directly, without affecting any memory. Also, the accumulator is the
only register that has instructions to perform math on it.

THE X INDEX REGISTER—There are instructions to do nearly all
of the transformations you can do to the accumulator, and other
instructions to do things that only the X register can do. Again,
various machine language instructions allow you to copy the
contents of a memory location into the X register, or copy the
contents of the X register into a memory location, or modify the
contents of the X, or some other register directly, without affecting
any memory.

THE Y INDEX REGISTER—There are instructions to do nearly all
of the transformations you can do to the accumulator, and the X
register, and other instructions to do things that only the Y register
can do. Again, various machine language instructions allow you to
copy the contents of a memory location into the Y register, or copy
the contents of the Y register into a memory location, or modify the
contents of the Y, or some other register directly, without affecting
any memory.

THE STATUS REGISTER—This register consists of eight “flags”
(aflag = something that indicates that something has, or has not,
occurred).

THE PROGRAM COUNTER—This contains the address of the
current machine language instruction being executed. Since the

126

[

operating system is always “RUN"ning in the VIC 20 (or, for that
matter, any computer), the program counter is always changing. It
could only be stopped by halting the microprocessor in some way.

The Stack Pointer—This register contains the location of the first
empty place on the stack. The stack is used for temporary storage
by machine language programs, and by the computer.

THE TOOLS AVAILABLE; GETTING
READY. ..

How Can You Write Machine Language Programs?

Since machine language programs reside in memory, and there
is no facility in your VIC 20 for writing and editing machine language
programs, you must use either a program to do this, or write for
yourself a BASIC program that “allows” you to write machine
language.

Most commonly used to write machine language programs are
“assemblers.” These packages allow you to write machine
language instructions in a standardized “mnemonic” format, which
makes the machine language program a good deal more readable
than a stream of numbers. To recap: A program that allows you to
write machine language programs in mnemonic format is called an
“assembler,” and also, a program that displays a machine
language program in mnemonic format is called a “disassembler.”
Available for your VIC 20 is a machine language monitor cartridge
(with assembler/disassembler, etc.) made by Commodore.

VICMon

The VICMon cartridge available from your local dealer is a
program that allows you to escape from the world of VIC BASIC,
into the land of machine language. It can display the contents of the
internal registers in the 6502 microprocessor, and it allows you to
display portions of memory, and change them on the screen, using
the screen editor. It also has a built-in assembler and disassembler,
and many other features that allow you to write and edit machine
language programs easily.

You don't HAVE to use an assembler to write machine language,
but the task is considerably easier with it. If you wish to write
machine language programs, it is advised strongly that you buy an
assembler of some sort. Without an assembler you will probably
have to “POKE” the machine language program into memory,
which, if you value your sanity, is totally inadvisable. This manual

127

will give examples in the format that VICMon uses from now on.
Nearly all assembler formats are the same, therefore the machine
language examples shown will almost certainly be compatible with
any assembler other than the one incorporated in VICMon.

Hexadecimal Notation

This is a notation which most machine language programmers
refer to when referring to a number or address in a machine
language program.

Some assemblers let you refer to addresses and numbers in
decimal (base 10), binary (base 2), or even octal (base 8) as well as
hexadecimal (or just “hex” as most people say). These assemblers
do the conversions for you.

Hexadecimal will probably seem a little hard to grasp at first, but
like most things it doesn'’t take long (with practice) to master it.

By looking at decimal (base 10) numbers, you will see that each
digit in that number ranges between zero and a number equal to the
base less one, i.e., > 9. THIS IS TRUE OF ALL NUMBER BASES.
Binary (base 2) numbers have digits ranging from zero to one
(which is one less than the base). Similarly hexadecimal numbers
should have digits ranging from zero to fifteen, but we do not have
any single digit figures for the numbers ten to fifteen, so the first six
letters of the alphabet are used instead:

DECIMAL HEXADECIMAL BINARY
0 — 0 = 00000000
1 —_ 1 00000001
2 - 2 —_ 00000010
3 —_ 3 00000011
4 — & —_ 00000100
5 —_ 5 00000101
6 — 6 — 00000110
7 — 7 00000111
8 — 8 —_ 00001000
9 = 9 00001001

10 —= A —_ 00001010
11 - B 00001011
12 — Cc — 00001100
13 = D 00001101
14 — E _— 00001110
15 - E 00001111

0 = 00010000

o

oo
|

-

If that's confusing, let's try to look at it another way:

128

Example of how a base 10 (decimal number) is constructed.

Base raised by S N
increasing powers..10 10 10 10

Equalssss e 1000 100 10 1

Consider 4569 (base10)4569 = 4x1000+5x100+6x10+9

Example of how a base 16 (hexadecimal number) is
constructed.

Base raised by 3 AR
increasing powers..16 16 16 16

EqQUaIS st it 4096 256 16 1

Consider 11D9 (base16) 1 1 D9 = 1*4096+1*256+13"16+9

Therefore 4569(Base10) = 11D9(Base16)

The range for addressable memory locations is 0 — 65535 (as
was stated earlier). This range is therefore 0 — FFFF in
hexadecimal notation.

Usually hexadecimal numbers are prefixed with a dollar sign, to
distinguish them from decimal numbers. Let’s look at some “hex”
numbers, using VICMon by displaying the contents of some
memory. VICMon shows you:

B'(

PC SR AC XR YR SP

.; 0401 32 04 5E 00 F6 (these may be different)

Then if you type in:
.M 0000 0020 (and press RETURN).

You will see rows of 6 hex numbers. The first 4 digit one is the
address of the first byte of memory being shown in that row, and the
other five numbers are the actual contents of the memory locations
beginning at that start address.

You should endeavor to learn to “think” in hexadecimal. This is
not difficult, since there is no need to think in decimal. For example,
if it is said that a particular value is stored at $14ED instead of 5357,
this shouldn’t cause any headaches.

129

YOUR FIRST MACHINE LANGUAGE
INSTRUCTION

“LDA"—Load the Accumulator

In 6502 assembly language, mnemonics are always three
characters. LDA represents “load accumulator with. . .”, and what
the accumulator should be loaded with is decided by the
parameter(s) associated with that instruction. The assembler
knows which token is represented by each mnemonic, and when it
"assembles” an instruction, it simply puts into memory (at whatever
address has been specified), the token and what parameters are
given. Some assemblers give error messages, or warnings when
the user has tried to assemble something that either the assembler

or the 6502 microprocessor cannot do.

If we put a “#" symbol in front of the parameter associated with
the instruction, this means that we wish the register specified in the
instruction to be loaded with the “value” after the “#". For
example:—

LDA #$05

This instruction will put $05 (decimal 5) into the accumulator
register. The assembler will put into the specified address for this
instruction, $A9 (which is the token for this particular instruction, in
this mode), and it will put $05 into the next location after the location
containing the instruction ($A9).

If the parameter to be used by an instruction has “#" before it,
i.e., the parameter is a “value,” rather than the contents of a
memory location, or another register, the instruction is said to be in
the “immediate” mode. To put this into perspective, let us compare
this with another mode.

If we want to put the contents of memory location $102E into the
accumulator, we are using the “absolute” mode of instruction:

LDA $102E

The assembler can distinguish between the two different modes
because the latter does not have a "#" before the parameter. The
6502 microprocessor can distinguish between the immediate
mode and the absolute mode of the LDA instruction because they
have slightly different tokens. LDA (immediate) has $A9 (as stated
previously), and LDA (absolute) has $AD.

The mnemonic representing an instruction usually implies what it
does. For instance, if we consider another instruction, “LDX,” what
do you think this does?

If you said “load the X register with. . ."”, go to the top of the class.

130

If you didn’t, then don’t worry; learning machine language does take
patience, and cannot be accomplished in a day.

The various internal registers can be thought of as special
memory locations, because they too can hold one byte of
information. It is not necessary for us to explain the binary
numbering system (base 2) since it follows the same rules as
outlined for hexadecimal and decimal outlined previously, but one
“bit” is one binary digit and eight bits make up one byte.

The maximum number that can be contained in a byte is the
largest number that an eight digit binary number can be. This
number is 11111111 (binary), which equals $FF (hexadecimal),
which equals 255 (decimal). You have probably wondered why only
numbers from zero to two hundred and fifty-five could be put into a
memory location. If you try POKE 7680,260 (which is a BASIC
statement that “says”:— "“Put the number two hundred and sixty
into memory location seven thousand, six hundred and eighty."
The BASIC interpreter knows that only numbers 0 — 255 can be put
in a memory location, and your VIC 20 will reply with:

?ILLEGAL QUANTITY
ERROR
READY.

If the limit of one byte is $FF (hex), how is the address parameter
in the absolute instruction “LDA $102E" expressed in memory?

Well, it is expressed in two bytes (it won't fit into one, of course).
The lower (rightmost) two digits of the hexadecimal address form
the “low byte” of the address, and the upper (leftmost) two digits
form the “high byte.”

The 6502 requires any address to be specified with its low byte
first, and then the high byte. This means that the instruction “LDA
$102E" is represented in memory by the three consecutive values:

$AD, $2E, $10

We need to know one more instruction before we can write our
first program. That instruction is “BRK.” For a full explanation of this
instruction, refer to M.O.S 6502 Programming Manual. You can
think of it as the “END” instruction in machine language.

If we write a program with VICMon and put the BRK instruction at
the end, the program will return to VICMon when it is finished. This
might not happen if there is a mistake in your program, or if the BRK
instruction is never reached (just like an “END" statément in BASIC
may never get executed, and thus if the VIC 20 didn’t have a STOP
key, you wouldn't be able to abort your BASIC programs!)

131

WRITING YOUR FIRST PROGRAM

If you have used the POKE statement in BASIC to put characters
onto the screen, you will be aware that the character codes for
POKEing are different to CBM ASCII character values. For
example, if you enter:

PRINT ASC(“A”) (and press <RETURN>)
The VIC 20 will respond with:

65
READY.

However, to put an “A” onto the screen by POKEing, the code is
1. Since the screen memory starts at 7680 (decimal), or 4096 if you
have 8K or more of expansion memory, by entering:

<CLR> (To clear the screen)

POKE 7680,1 (and <RETURN>) (NOTE: POKE 4096,1 ona
VIC 20
with 8K or more of
expansion memory)

The “P” in the POKE statement should now be an “A.” We will
now do this in machine language. Type the following in VICMon:

(Your cursor should be flashing alongside a “.” right now.)
.A 1400 LDA #801 (and press <RETURN>)

The VIC will prompt you with:
A 1402 *
Type:

.A 1402 STA $1E00 (or STA $1000 on a VIC 20
with 8K or more of expansion memory)

The STA instruction stores the contents of the accumulator in a
specified memory location. The VIC will now prompt you with:

A 1405 *
Now enter:
A 1405 BRK
Clear the screen, and type:
G 1400
132

The G should turn into an “A” if you have done everything
correctly. You have now written your first machine language
program! Its purpose is to store one character, the letter A, in the
first byte of screen memory.

ADDRESSING MODES
ZERO PAGE

As shown earlier, absolute addresses are expressed in terms of
a high order and a low order byte. The high order byte is often
referred to as the page of memory. For example, the address $1637
isin page $16 (22), and $0277 is in page $02 (2). There is, however,
a special mode of addressing known as “zero page” addressing
and it is, as the name implies, associated with the addressing of
memory locations in page zero. These addresses have a high order
byte of zero. The zero page mode of addressing only expects one
byte to describe the address, rather than two when using an
absolute address, which saves speed and time. This mode tells the
microprocessor to assume that the high order address is zero.
Therefore zero page addressing can reference memory locations
whose addresses are between $0000, and $00FF.

THE STACK

The 6502 microprocessor (like almost all others) has what is
known as a “stack.” This is used both by the programmer and the
microprocessor to temporarily remember things, and to remember
the order of events. The GOSUB statement in BASIC, which allows
the programmer to call a “subroutine,” must remember where it is
being called from. When the RETURN statement is executed in the
subroutine, the BASIC interpreter “knows” where to go back in
order to continue executing. When a GOSUB statement is
encountered in a program by the BASIC interpreter, the BASIC
interpreter “pushes” its current position onto the stack before going
to do the subroutine, and when a RETURN is executed, the
interpreter “pulls” from the stack the information that tells it where it
was before the subroutine call was made, so that it may continue as
if nothing had happened. The interpreter uses instructions like PHA
which will push the contents of the accumulator onto the stack, and
PLA (the inverse) which will pull a value off the stack into the
accumulator. The status register can also be pushed and pulled
with the PHP, and PLP respectively.

The stack is 256 bytes long, and is located in page one of
memory. It is therefore from $0100 to $O1FF. It is organized

133

backwards in memory, i.e., the first position in the stack is at $01FF,
and the last is at $0100. Another register in the 6502 microproces-
sorthat hasn't been mentioned yet is called the “stack pointer,” and
it always points at the next available location in the stack. When
something is pushed onto the stack, it is placed where the stack
pointer points to, and the stack pointer is moved down to the next
position (decremented). When something is pulled off the stack, the
stack pointer is incremented, and the byte pointed to by the stack
pointer (at $0100 offset by the contents of the stack pointer) is
placed into the specified register.

Up to this point, we have covered immediate, zero page, and
absolute mode instructions. We have also covered (but have not
stated) the “implied” mode, which means that the instruction itself
tells what registers/flags/memory the instruction is referring to. The
examples we have seen are PHA, PLA, PHP, and PLP, which refer
to stack processing and the accumulator and status registers.

The X register will be referred to as X from now on, and similarly
with A — accumulator, Y — Y index register, S — stack pointer, and
P — processor status).

INDEXING

Indexing plays an extremely important part in the running of the
6502 microprocessor. It can be defined as “creating an actual
address from a base address plus the contents of either the X or Y
index registers.”

Forexample, if X contains $05, and the microprocessor executes
an LDA instruction in the “absolute X indexed mode"” with base
address, e.g., $9000, then the actual location that is loaded into the
A register is $9000 + $05 = $9005. The mnemonic format of an
absolute indexed instruction is the same as an absolute instruction
except a “,X" or ",Y" denoting the index is added to the address,
e.g.

LDA $9000,X

INDIRECT INDEXED ADDRESSING

This mode allows the program to choose a memory location from
256 adjacent locations. The address of the lowest location is stored
in zero page, and the value inthe Y register is added to that address
to choose the final address.

For example, we will place a $45 in location $01, and a $1E in
location $02. We will use the instruction to load the accumulator in
the indirect indexed mode, specifying zero page address $01 as the

134

(==

)

location where the address to be used is held. Then the actual
address will be comprised of:

low address byte = contents of $01 = $45

high address byte =

Y register = $10

contents of $02 = $1E

The actual address = $1E45 + Y = $1E55
If you think of indexed addressing like delivering junk mail
through a post office, here is the principle for indirect indexed

addressing:

We will deliver the letters to all the houses on the block starting at
$1E00 Memory St. and continuing for 256 houses. Here is the
equivalent program for VICMon:

* A 1200 LDA #$00
* A 1202 STA $01

« A 1204 STA $FE
* A 1206 LDA #$1E
* A 1208 STA $02

* A 120A LDA #8$96
* A 120C STA S$FF

* A 120E LDY #8$00
* A 1210 LDA #8966

. A 1212 STA ($01),Y

- A 1214 LDA #S0A
« A 1216 STA ($FE),Y

« A 1218 INY

+ A 1219 BNE $1210
*« A 121B BRK

+ G 1200

load low order actual base address
set the low byte of the first indirect
address

set the low byte of the second address
load high order indirect address

set the high byte of the first indirect
address

load the second address’s high byte
setthe high byte of the second address
set the indirect index ()

66 is the value of our “letter” to the first
“block”

store the “letter” in the house on the
first “block”

0A is the value of our second “letter”
store the “letter” in the house on the
second “block”

add 1 to index

branch back & send next letter
return to VICMon when done

sends the “letter"—fills the top of the
screen with blue & red lines!

INDEXED INDIRECT ADDRESSING

This mode allows the program to choose an address from a table
in page zero. Since page zero space is limited to 256 bytes, thisisa
mode that isn't used too often.

This mode only works with the X register. It is like indirect

indexed, except that the zero page location is indexed, rather than
an address stored in zero page. Therefore, the address stored in

135

page zero is the actual address because the index has already
been used in the indirection.

Let us fill location $05 with $45, and location $06 with $1E. If the
instruction to load the accumulator in the indexed indirect mode is
executed and the specified zero page address is $01, then the
actual address will be comprised of:

low order = contents of (301 + X)
high order = contents of ($02+ X)
X register = $04

Thus the actual address will be in = $01 + X = $05
Therefore, the actual address will be the indirect address
contained in $05 and $06 which is $1E45
This is like sending a mailing to a specific list of addresses. We
will store a listin zero page, and send the “letter” only to those in the

list. Suppose the list of addresses starts at $00. Here is a program
to send a “letter” to one of the addresses:

LDA #8$00 —load low order actual base address
STA $06 —set the low byte of the indirect address
LDA #$16 —load high order indirect address

STA $07 —set the high byte of the indirect address
LDX #$06 —set the indirect index (X)

LDA ($00,X) —load indirectly indexed by X.

BRANCHES AND TESTING

Another very important principle in machine language is the
ability to test, and detect certain conditions, in a similar fashion to
the “IF. . .THEN" structure in VIC BASIC.

The various “flags” in the status register are affected by different
instructions in different ways. For example, there is a flag that is set
when an instruction has caused a zero result, and is reset when a
result is not zero.

LDA #$00

This instruction will cause “the zero result flag” to be set,
because the instruction has resulted in the accumulator containing
a zero.

There is a set of instructions that will, given a particular condition,
“branch” to another part of the program. An example of a branch
instruction is "BEQ", which means “branch if result equal to zero.”
The branch instructions will “branch” if the condition is true, and if
not, the program will continue onto the next instruction, as if nothing
had occurred. The branch instructions branch not by the result of

136

14

3

L

the previous instruction(s), but by internally examining the status
register.

As was just mentioned, there is a “zero result” flag in the status
register. The “BEQ" instruction branches if the “zero result” flag
(known as “Z") is set. Every branch instruction has an opposite
branch instruction. The BEQ instruction has an opposite instruction
“BNE" (“branch on result NOT equal to zero,” i.e., “Z" not set).

The index registers have a number of associated instructions
which modify their contents. For example, the “INX" instruction will
“increment the X index register.” If the X register contained $FF
before it was incremented (the maximum number the X register can
contain), it will “wrap around” back to zero. If we wanted a program
to continue to do something until we had performed the increment
of the X index that pushed it around to zero, we could use the BNE
instruction to continue “looping” around, until X became zero.

Apart from INX, there is “DEX”, which will decrement the X index
register. If it is zero, it will wrap around to $FF. Similarly, there are
“INY" and “DEY” for the Y index register.

But what if a program didn’t want to wait until X or Y had reached
(or not reached) zero? Well there are comparison instructions,
“CPX"and “"CPY", which allow the machine language programmer
to test the index registers with specified values, or even the
contents of memory locations. If we wanted to see if the X register
contained $40, we would use the instruction:

CPX #%$40 compare X with the “value” $40.

BEQ (some other branch to somewhere else in the program, if
part of the this condition is “true.”
program)

The compare and branch instructions play a major part in any
machine language program.

The operand specified in a branch instruction when using
VICMon is the address of the part of the program the branch should
goto, iftaken. However, the operand is only, in fact, an “offset” from
where the program currently is, to the address specified. This offset
is just one byte, and therefore the range that a branch instruction
can branch to is limited from 128 bytes backward, to 127 bytes
forward; this is a total range of 255 bytes, which is, of course, the
maximum range of values one byte can contain. VICMon will tell
you if you branch out of range, by refusing to “assemble” that
instruction. It is unlikely that you will be doing such huge branches
for quite a while anyway. For nearly all situations this is adequate
anyway. The branch is a “quick” instruction by machine language
standards because of this “offset” principle as opposed to an

137

absolute address. VICMon allows you to type in an absolute
address, and it calculates the correct offset. This is just one of the
“comforts” of using an assembler.

Subroutines

In machine language (in the same way as using BASIC), you can
call subroutines. The instruction to call a subroutine is “JSR" (jump
to subroutine), followed by the specified absolute address.

Incorporated in the operating system is a machine language

subroutine that will PRINT a character to the screen. The CBM
ASCII code of the character should be in the accumulator before
calling the subroutine. The address of this subroutine is $FFD2.

Therefore, to print “HI” to the screen, the following program
should be entered:

» A 1400 LDA #$48 load the CBM ASCII code of “H”

* A 1402 JSR $FFD2 print it

= A 1405 LDA #$49 load the CBM ASCII code of “I”

* A 1407 JSR $FFD2 print that too

« A 140A LDA #3%0D print a carriage return as well

« A 140C JSR $FFD2

* A 140F BRK return to VICMon.

G 1400 will print “HI"” and return to VICMon

The “PRINT a character” routine we have just used is part of the
KERNAL “jump table.” The instruction similar to GOTO in BASIC,
is “JMP,"” which means “jump to the specified absolute address.”
The KERNAL is a long list of “standardized” subroutines that
control ALL input and output of the VIC 20. Each entry in the
KERNAL JMP's to a subroutine in the operating system. This “jump
table” resides at $FF84 to $FFF5 in the operating system. A full
explanation of the KERNAL is in the "KERNAL REFERENCE
SECTION" in this manual, but certain routines will be used here to
show how easy, and effective, the KERNAL is.

We will now use these new principles in another program which
will help you to put these instructions into context:

This program will display the alphabet using a KERNAL routine.

The only new instruction introduced here is TXA “transfer the
contents of the X index register, into the accumulator.”

+ A 1400 LDX #%41 X=CBM ASCII of “A".

* A 1402 TXA A=X.
» A 1403 JSR $FFD2 print character.
« A 1406 INX bump count.

« A 1407 CPX #8$51 have we gone past “Z" ?

138

el

+ A 1409 BNE $1402 no—go back and do more.
* A 140B BRK yes—return to VICMon.

To see the VIC print the alphabet, type the familiar command:
.G 1400

The comments that are beside the program explain the program
flow, and logic. If you are writing a program, write it on paper first,
and test it in small parts if possible.

139

MCS6501-MCS6505 MICROPROCESSOR

ADC
AND
ASL

BCC

BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS

CLC
CLD
CLI

CLV
CmpP
CPX
CPY

DEC
DEX
DEY
EOR
INC
INX
INY

JMP

Add Memory to Accumulator with Carry
“AND’" Memory with Accumulator
Shift Left One Bit (Memory or Accumulator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One

Decrement Index X by One

Decrement Index Y by One
“Exclusive-Or’” Memory with Accumulator
Increment Memory by One

Increment Index X by One

Increment Index Y by One

Jump to New Location

140

INSTRUCTION SET — ALPHABETIC SEQUENCE

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
XS
TYA

Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator)

No Operation
"“OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

141

£ 3

=
l.
[
=
The following notation applies to this summary: {
[
A Accumulator =
X, Y Index Registers ;
[
M Memory
P Processor Status Register e
|
S Stack Pointer .
vt
Y Change
Iy No Change ~
+ Add |
N Logical AND
- Subtract i {
i Logical Exclusive Or -
+ Transfer from Stack
+ Transfer to Stack -
> Transfer to -
* Transfer from
)
v Logical OR |
PC Program Counter -
PCH Program Counter High -
PCL Program Counter Low i
e
OPER OPERAND
IMMEDIATE ADDRESSING MODE —
et
Note: At the top of each table is located in parentheses a
reference number (Ref: XX) which directs the user to -
that Section in the MCS6500 Microcomputer Family _.
Programming Manual in which the instruction is defined
and discussed. [|
et

AD(Add memory to accumulator with carry AD(

Operation: A+ M+ C+ A, C NEZCIDV
W i
(Ref: 2.2.1) G g
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Immediate ADC { Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 3 b%
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC (Oper, X) (31 2 6
(Indirect), Y ADC (Oper), Y 71 2 5%

* Add 1 if page boundary is crossed.

AND “AND" 'y with acci lator A"D

Logical AND to the accumulator

Operation: AN M-+ A NZ2CIDV
(Ref: 2.2.3.0) == —
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes | Cycles
Immediate AND { Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 [
Absolute, Y AND Oper, Y 39 3 4%
(Indirect, X) AND (Oper, X) 21 2
(Indirect), Y AND (Oper), Y 31 2 £

* Add 1 if page boundary is crossed.

143

ASl ASL Shift Left One Bit (Memory or Accumulator) ASl
Operation: C‘- E E 0 NZCIDV
Sl ===
(Ref: 10.2)
Addressing Assembly Language OP No No.
Mode Form CODE | Bytes | Cycles
Accumulator ASL A BA 1 2
Zero Page ASL Oper #6 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper (1] 3 6
Absolute, X ASL Oper, X 1E 3 7
B(c BCC Branch on Carry Clear Bcc
Operation: Branch on C =@ HNZCIDV
(Ref: 4.1.1.3)
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes Cycles
Relative BCC Oper 99 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
'cs BCS Branch on carry set Bcs
Operation: Branch on C = 1 N & BT DY
(Ref: 4.1.1.4) L
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes Cycles
Relative BCS Oper Bd 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

144

Gl o

G O .

| -

aE U e =N

- -y N &

BEQ

BEQ Branch on result zero

BEQ

Operation: Branch on 2 = 1 NZ2CIDYV
(4 R W SR AR, S
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Relative BEQ Oper F@ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

BIT

BIT Test bits in memory with accumulator

BIT

Operation: A A M, M? + N, H6 +V
Bit 6 and 7 are transferred to the status register. NZ2CIDYV
If the result of AAM is zero then Z = 1, otherwise M?/ ===l
e (Ref: 4.2.1.1)
Addressing Assembly Language OoP No. No.
Mode Form CODE | Bytes | Cycles
Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
n"' BMI Branch on result minus ﬂﬂl
Operation: Branch on N = 1 NZ2CIDYV
CRab i R o e = T
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Relative BMI Oper 30 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

145

BNE BNE Branch on result not zero BNE
Operation: Branch on Z = 0 NZCIDV
(Ref: 4.1.1.6)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BNE Oper D@ 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
Bpl BPL Branch on result plus 'Pl
Operation: Branch on N = @ NECI1IDV
(4 Ty LR v 10 R e AT S
Addressing Assembly Language opP No. No.
Mode Form CODE | Bytes | Cycles
Relative BPL Oper 10 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BRK BRK Force Break BRK
Operation: Forced Interrupt PC + 2 + P + N2CIDV
——— 1 ——
(Ref: 9.11)
Addressing Assembly Language OoP No. No.
Mode Form CODE | Bytes | Cycles
Implied BRK o0 1 7

1. A BRK command cannot be masked by setting I.

146

an e

e]

B

3

£

-) G S G G =

| -

BV(BVC Branch on overflow clear BV(

Operation: Branch on V=0 N#CITDYV
FREE T AT EI R PR o e S
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Relative BVC Oper 50 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

nvs BVS Branch on overflow set BVS

Operation: Branch on V = 1 NEgCIDV

(Ref: 4.1.1.7)

Addressing Assembly Language op No. No.
Mode Form CODE | Bytes | Cycles
Relative BVS Oper 79 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

CIC CLC Clear carry flag CLC

Operation: @ + C NBCIDV
(Ref: 3.0.2) st
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Implied CLC 18 1 2

147

CLb

CLD Clear decimal mode

(LD

Operation: § + D NZCIDYV
————g -
(Ref: 3.3.2)
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Implied CLD D8 1 2
CI.I CLI Clear interrupt disable bit CI_I
Operation: @ + I HZCIDV
(Ref: 3.2.2) ol bl
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied CLI 58 1 2

CLy

CLV Clear overflow flag

CLy

Operation: @ + V NZCIDYV
~~~~~ 0
(Ref: 3.6.1)
Addressing Assembly Language ()4 No. No.
Mode Form CODE | Bytes | Cycles
Implied CLV B8 1 2
148

A T & & @

} N Gl &



CMP

CMP Compare memory and accumulator

CMP

Operation: A - M NECIDV
Vi e
(Ref: 4.2.1)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate CMP #Oper c9 2 2
Zero Page CMP Oper c5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper cD 3 4
Absolute, X CMP Oper, X DD 3 4*
Absolute, Y CMP Oper, Y ] 3 b%
(Indirect, X) CMP (Oper, X) cl i 6
(Indirect), Y CMP (Oper), Y Dl 2 5%
* Add 1 if page boundary is crossed.
CPx CPX Compare Memory and Index X CPX
Operatiom: X - M NZ2CIDYV
o ——=
(Ref: 7.8)
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes Cycles
Immediate CPX #Oper E@ 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
CPY CPY Compare memory and index Y CPY
Operation: Y - M N & C=T DX
AN ===
(Ref: 7.9)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Immediate CPY #0Oper cg 2 2
Zero Page CPY Oper o 2 3
Absolute CPY Oper cC 3 &4

149



D[C DEC Decrement memory by one DE(
Operation: M - 1 » M NZCIDYV
Jfi
(Ref: 10.7)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Zero Page DEC Oper cé 2 5
Zero Page, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 T
Dﬂ DEX Decrement index X by one DEx
Operation: X - 1 + X NZCIDV
(Ref: 7.6) e ] =
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes Cycles
Implied DEX CA 1 2
DEY DEY Decrement index Y by one DEY
Operation: Y - 1 + Y NECIDV
A —— ==
(Ref: 7.7)
Addressing Assembly Language 0P No. No.
Mode Form CODE | Bytes Cycles
Implied DEY 88 1 2
150

1

[ .

] N =

Bl N G N N D N N - .

| .



EOR EOR ‘“Exclusive—Or" memory with accumulator EOR

Operation: A ¥ M+ A NE2CIDV
Ve Bl U
(Ref: 2.2.3.2) 2
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Immediate EOR # Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 b*
Absolute, Y EOR Oper, Y 59 3 4%
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect),Y EOR (Oper), Y 51 2 5%

* Add 1 if page boundary is crossed.

|“c INC Increment memory by one “c
Operation: M+ 1 + M NEZCIDYV
V= —
(Ref: 10.6)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X Fé 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
I"x INX Increment Index X by one l"x
Operation: X + 1 » X NECIDV
VA —= ==
(Ref: 7.4)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied INX E8 1 2

151



l"Y INY Increment Index Y by one l“Y
Operation: Y + 1 + Y NZCIDV
f i o ne
(Ref: 7.5)
Addressing Assembly Language opP No. No.
Mode Form * CODE | Bytes | Cycles
Implied INY c8 1 2
JMP IMP Jump to new location jMP
Operation: (PC + 1) + PCL NZaCIDV
pow (Reby a0y v - Sel SR
L s (Ref: 9.8.1)
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes | Cycles
Absolute JMP Oper 4C 3 3
Indirect JMP  (Oper) 6C 3 5
jsn ISR Jump to new location saving return address ’ JSR
Operation: PC + 2 4, (BC + 1) - PCL NZ2CIDV
@CiFH ) PCH . 0 Slean oo
(Ref: 8.1)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Absolute JSR Oper 20 3 6
152

E 1 ]

S m =

i



LDA

LDA Load accumulator with memory

LDA

Operation: M + A NZCIDV
V-
(Ref: 2.1.1)
Addressing Assembly Language oP No No.
Mode Form CODE | Bytes | Cycles

Immediate LDA # Oper A9 2 2
Zero Page LDA Oper A5 2 3
Zero Page, X LDA Oper, X B5 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4*
Absolute, Y LDA Oper, Y B9 3 4*
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y Bl 2 an

* Add 1 if page boundary is crossed.

le LDX Load index X with memory I.Dx

Operation: M + X NECIDV

(Ref: 7.0) Vle=mrs
Addressing Assembly Language oP No No.
Mode Form CODE | Bytes Cycles

Immediate LDX # Oper A2 2 2
Zero Page LDX Oper A6 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AE 3 4
Absolute, Y LDX Oper, Y BE 3 4%

* Add 1 when page boundary is crossed.

153




LDY

LDY Load index Y with memory

LDY

Operation: M + Y NBCIDY
==
(Ref: 7.1)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Immediate LDY #Oper AQ 2 2
Zero Page LDY Oper Ab 2 3
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4k
* Add 1 when page boundary is crossed.
I-SR LSR Shift right one bit (memory or accumulator) I.sn
Operation: @ — EBHEEE —C NZCIDYV
B/ ———
(Ref: 10.1)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Aczumulator LSR A 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X 5E 3 7
HOP NOP No operation NOP
Operation: No Operation (2 cycles) NBCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied NOP EA 1 2
154

-y N EEa .

=

L

1

-l B

Ea bl

ay s



ORA

ORA “OR" memory with accumulator

ORA

Operation: AVM -+ A NZCIDV
V=t
(Ref: 2.2.3.1)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Immediate ORA #0per @9 2 2
Zero Page ORA Oper @5 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper )] 3 4
Absolute, X ORA Oper, X 1D 3 4%
Absolute, Y ORA Oper, Y 19 3 4%
(Indirect, X) ORA (Oper, X) g1 2 6
(Indirect), Y ORA (Oper), Y 11 2 5
* Add 1 on page crossing
PHA PHA Push accumulator on stack PHA
Operation: A + NECIDV
CRAE TSI Sy L el S T T
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied PHA 48 1 3

PHP

Operation: P+

PHP Push processor status on stack

PHP

NBCIDY
CRafs 78,11y b T I ER N TS S
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied PHP @8 i 3

155



PLA

PLA Pull accumulator from stack

PLA

Operation: A t N2CIDYV
(Ref: 8.6) A
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied PLA 68 1 4
Plp PLP Pull processor status from stack Plp
Operation: P ¢ NZ2CIDV

Frem Stack

(Ref: 8.12)
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Implied PLP 28 1 4
RO[ ROL Rotate one bit left (memory or accumulator) ROL
M or A
Operation: [7]6]5]4]3]2[1]e] « & « NZECIDV
VA ———
(Ref: 10.3)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7
156

L8

]

L

£ 3

b |

S -




ROR ROR  Rotate one bit right (memory or accumulator) ROR

Operation:?[6|5'ﬂ[3[21115|J NZCIDUV

(Ref: 10.4) Y e
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page,X ROR Oper,X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute,X ROR Oper,X 7E 3 T

Note: ROR instruction will be available on MCS650X micro-
processors after June, 1976.

RTI RTI Return from interrupt RTI
Operation: P+ PCt N ek R
F
(Ref: 9.6) rom Stack
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Implied RTI 4@ 1 6

RTS RTS Return from subroutine RTS

Operation: PCt, PC+ 15 PC NZ2CIDV
(EEESC Ao == o O R =R e
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes | Cycles
Implied RTS 60 1 6

157



SBC SBC Subtract memory from accumulator with borrow SBC

Operation: A - M- C+ A NZCIDV
Note: C = Borrow (Ref: 2.2.2) Y/ ==
Addressing Assembly Language oP No. No.

Mode Form CODE | Bytes | Cycles
Immediate SBC #Oper E9 2 2
Zero Page SBC Oper E5 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4%
Absolute, Y SBC Oper, Y F9 3 4%
(Indirect, X) SBC (Oper, X) El 2 6
(Indirect), Y SBC (Oper), Y F1 2 5%
* Add 1 when page boundary is crossed.
SE( SEC Set carry flag SEC
Operation: 1 - C N'BC|E DV
(Ref: 3.0.1) AN
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles

Implied SEC 38 1 2

SED

SED Set decimal mode

SED

Operation: 1 + D NBCIDV
—— —— 1 _—
(Ref: 3.3.1)
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Implied SED F8 1 2
158

BN N Ea

1

[ -

i1



SH SEI Set interrupt disable status SEI

Operation: 1+ 1 N2CIDYV
—— — 1_ ——
(Ref: 3.2.1)
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Implied SEI 78 1 2
STA STA Store accumulator in memory STA
Operation: A + M NE2CIDYV

(Ref: 2.1.2)

Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6

sn STX Store index X in memory STX

Operation: X + M NECIDV
AT TN e Tl &
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper BE 3 4

159



STY STY Store index Y in memory STY

Operation: Y + M NZ2CIDV
(Ref: 7.3)
Addressing Assembly Language OoP No. No.
Mode Form CODE | Bytes | Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8C 3 4
TAx TAX Transfer accumulator to index X T“
Operation: A+ X NBECIDV
VA
(Ref: 7.11)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied TAX AA 1 2
TAY TAY Transfer accumulator to index Y TAY
Operation: A+ Y NZ2CIDYV
Yy /== ==
(Ref: 7.13)
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Implied TAY A8 1 2

160




TSX

TSX Transfer stack pointer to index X

TSX

Operation: S + X NBCIDV
(Ref: 8.9) AN TR
Addressing Assembly Language opP No. No.
Mode Form CODE | Bytes | Cycles
Implied TSX BA 1 2
TXA TXA Transfer index X to accumulator TXA
Operation: X =+ A NaCI1IDbV
(Ref: 7.12) ool e
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied TXA BA 1 2
sz TXS Transfer index X to stack pointer sz
Operation: X =+ NEZECIDV
CRe LS8 Bl il Tl T L
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied TXS 9A 1 2
TYA TYA Transfer index Y to accumulator TYA
Operation: Y -+ A i e oy SO
Vo —— ==
(Ref: 7.14)
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycles
Implied TYA 98 1 2

161



INSTRUCTION ADDRESSING MODES AND

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS
CcLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP

* Add one cycle if indexing across page boundary

** Add one cycle if branch is taken, Add one additional

8
X > %
I
N - . & o
- B ® @ 9 - w0
E§§m=5553§sss
1Ecec 2382338533
e b= '5
dEN8NIAEE LT
2 3 4 4 4*4* . 0D
R 4 4% 4* 6 5"
Zomnon o6 6 7 e
: o ; P s
) 4 2|l‘
. 2 2
3 4 o i
T g
e 7 hipt
CHE 252
= P s
e ; R L s AT
203 4 4 - 4* 47 6 5" .
240 I JEASs . SRR S fe i
Pkt e L e et g
. -5 6 G 7 B i
2 3 4 4 4% 4* 6 5L
. 08 6 7 ; B
e e 2 !
p 2 '
3 : 5

162

=}

bl



RELATED EXECUTION TIMES (in clock cycles)

Zero Page, X
Zero Page, Y
Absolute
Absolute, Y
Relative
(Indirect, X)
(Indirect),Y
Absolute Indirect

Absolute, X
Implied

Accumulator
Immediate
Zero Page

JSR
LDA
LDX
LDY .
LSR 2
NOP i 2
ORA D
PHA R e 3
PHP A N 2t 20 T e
4

*

CTNNNC

T W TwWWww-
SR SR W YO
b ObbbOD
£ £

* *

IS

*

[=)]

3]

PLA
PLP i S
ROL 2 =864, 6

ROR 2 5

RTI 6
RTS T e R SN N
SBC SE2NF sS4 4T
SEC SR v O TR T e
SED e ST SrE TR S
SEI 2
STA RREE W
STX* PN - ISR
STY** 3 . 4
TAX
TAY
TSX
TXA
TXS
TYA

if branching operation crosses page boundary

163



00
@1
g2
§3
#4
P5
g6
g7
@8
#9

PA
@B
#c
¢D
P
§F
19
11
12
13
14
15
16
17
18
19

1B
1c
1D
1E
1F

BRK

ORA - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page
ASL - Zero Page
Future Expansion

PHP
ORA - Immediate

ASL - Accumulator

Future Expansion
Future Expansion
ORA - Absolute
ASL - Absolute
Future Expansion
BPL

ORA - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page,X
ASL - Zero Page,X
Future Expansion
CLC

ORA - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ORA - Absolute,X
ASL - Absolute,X

Future Expansion

164

20
21
22
23
24

25
26
27
28
29
24

2B
2C
2D
2E
2F
3¢
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

JSR

AND - (Indirect,X)
Future Expansion
Future Expansion
BIT - Zero Page
AND - Zero Page
ROL - Zero Page
Future Expansion
PLP

AND - Immediate

ROL - Accumulator

Future Expansion
BIT - Absolute
AND - Absolute
ROL - Absolute
Future Expansion
BM1L

AND - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND - Zero Page,X
ROL - Zero Page,X
Future Expansion
SEC

AND - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND - Absolute,X
ROL - Absolute,X

Future Expansion

i

-




4
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
5
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

RTL

EOR - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
LSR - Zero Page
Future Expansion
PHA

EOR - Immediate
LSR - Accumulator
Future Expansion
JMP - Absolute
EOR - Absolute
LSR - Absolute
Future Expansion
BVC

EOR - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page,X
LSR - Zero Page,X
Future Expansion
CLI

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute,X
LSR - Absolute,X

Future Expansion

165

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
IF

RTS

ADC - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page
ROR - Zero Page
Future Expansion
PLA

ADC - Immediate
ROR - Accumulator
Future Expansion
JMP - Indirect
ADC - Absolute
ROR - Absolute
Future Expansion
BVS

ADC - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page,X
ROR - Zero Page,X
Future Expansion
SEI

ADC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC - Absolute,X
ROR - Absolute,X

Future Expansion



8¢
81
82
83
84
85
86
87
88
89
8A
8B
8¢

8D
8E

99
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

Future Expausion
STA - (Indirect,X)
Future Expansion
Future Expansion
STY - Zero Page
STA - Zero Page
STX - Zero Page
Future Expansion

DEY

Future Expansion
TXA

Future Expansion
STY - Absolute
STA - Absolute
STX - Absolute
Future Expansion
BCC

STA - (Indirect),Y
Future Expansion
Future Expansion
STY - Zero Page,X
STA - Zero Page,X
STX - Zero Page,Y
Future Expansion
TYA

STA - Absolute,Y
TXS

Future Expansion
Future Expansion
STA - Absolute,X
Future Expansion

Future Expansion

166

AQ
Al
A2
A3
A4
A5
Ab
A7
A8
A9

m BB 3B E

B
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

LDY - Immediate
LDA - (Indirect,X)
LDX - Immediate
Future Expansion

LDY - Zero Page
LDA - Zero Page
LDX - Zero Page
Future Expansion
TAY

LDA - Immediate
TAX

Future Expansion
LDY - Absolute
LDA - Absolute
LDX - Absolute
Future Expansion
BCS

LDA - (Indirect),Y
Future Expansion
Future Expansion
LDY - Zero Page,X
LDA - Zero Page,X
LDX - Zero Page,Y
Future Expansion
CLV

LDA - Absolute,Y
TSX

Future Expansion
LDY - Absolute,X
LDA - Absolute,X
LDX - Absolute,Y

Future Expansion

£

€1

1

G B N BN O aEm =

[ . |

s .

s




cg
Ccl
c2
c3
o
C5
Cé
c7
c8
c9
CA
CB
cc
cD
CE
CF
D@
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

CPY - Immediate
CMP - (Indirect,X)
Future Expansion
Future Expansion
CPY - Zero Page
CMP - Zero Page
DEC - Zero Page
Future Expansion
INY

CMP - Immediate
DEX

Future Expansion
CPY - Absolute
CMP - Absolute
DEC - Absolute
Future Expansion
BNE

CMP - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
CMP - Zero Page,X
DEC - Zero Page,X
Future Expansion
CLD

CMP - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
CMP - Absolute,X
DEC - Absolute,X

Future Expansion

167

CPX - Immediate
SBC - (Indirect,X)
Future Expansion
Future Expansion
CPX - Zero Page
SBC - Zero Page
INC - Zero Page
Future Expansion
INX

SBC - Immediate
NOP

Future Expansion
CPX - Absolute
SBC - Absolute
INC - Absolute
Future Expansion
BEQ

SBC - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
SBC - Zero Page,X
INC - Zero Page,X
Future Expansion
SED

SBC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
SBC - Absolute,X
INC - Absolute,X

Future Expansion



SPECIAL TIPS FOR BEGINNERS

Learning to write machine language programs is a discipline
which is very useful in programming. Since machine language is at
the same level as the internal workings of the machine, your brain is
stretched that much further, when trying to organize things in your
mind and in the VIC-20.

One of the best ways to learn machine language is to look at
other people’s machine language programs. These are published
allthe time, in magazines and newsletters, even if the article is fora
different computer that also has the 6502 microprocessor (there
are many). You should make sure that you thoroughly understand
the code that you look at. This may require perseverance,

especially when you see a new technique that you have never
come across before. This can be infuriating, but if patience prevails,
you will be the VICtor (sorry about that).

Having looked at other machine language programs, you MUST
write your own. These may be utilities for your BASIC programs, or
may be an all machine language program. You should also use the
utilities that are available, either in your computer, or in a program,
that aid you in writing, editing, or tracking down errors in a machine
language program. An example would be the KERNAL, which
allows you to check the keyboard, print text, control peripheral
devices like disk drives, printers, modems, etc., manage memory
and the screen. It is extremely powerful and it is advised strongly
that it is used (refer to KERNAL section).

ADVANTAGES OF WRITING PROGRAMS IN
MACHINE LANGUAGE

1. Speed—Machine language is hundreds, and in some cases
thousands, of times faster than a high level language such as
BASIC.

2. Tightness—A machine language program can be made totally
“watertight,” i.e., the user can be made to do ONLY what the
program allows, and no more. With a high level language, you are
relying on the user not “crashing” the BASIC interpreter by
entering, for example, a zero which later causes a:

?DIVISION BY ZERO
ERROR IN LINE 830
READY.

168

L=

(&2 )



In essence, the computer belongs to the machine language
programmer.

APPROACHING A LARGE TASK

When approaching a large task in machine language, a certain
amount of subconscious thought has usually taken place, in
thinking about how certain processes would be implemented in
machine language. When the task is started, it is usually a good
idea to set out on paper block diagrams of memory usage,
functional modules of code required, and a program flow. Let’s say
that we wanted to write a roulette game in machine language. We
can outline this as shown below.

Display title

Ask if player requires instructions
YES—display them—Go to START
NO—Go to START

START Initialize everything

MAIN display roulette table

Take in bets

Spin wheel

Slow wheel to stop

Check bets with result

Inform player

Player any money left

YES—Go to MAIN

NO—Inform user!, and Go to START

This is the main outline, which, as each module is approached,
can then be broken down further. If you look upon a large
indigestible problem as something that once broken down into
small enough pieces can all be eaten, then this will enable you to
approach something that seems impossible, and you will be
surprised at how swiftly it all falls into place. This process obviously
improves with practice, but KEEP TRYING.

169



MEMORY MAPS

The following memory maps provide a guide which shows which
special locations are set aside for use by the VIC's operating
system . . . and what those locations are used for.

Memory Map
HEX DECIMAL DESCRIPTION
0000 0 Jump for USR
0001-0002 1-2 Vector for USR
0003-0004 3-4 Float-Fixed vector
0005-0006 5-6 Fixed-Float vector
0007 7 Search character
0008 8 Scan-quotes flag
0009 9 TAB column save
000A 10 0=LOAD, 1=VERIFY
000B 11 Input buffer pointer/# subscript
000C 12 Default DIM flag
000D 13 Type: FF=string, 00 =numeric
000E 14 Type: 80=integer, 00 =floating point
000F 15 DATA scan/LIST quote/memory flag
0010 16 Subscript/FNx flag
0011 7 0=INPUT;$40=GET;$98 = READ
0012 18 ATN sign/Comparison eval flag
0013 19 Current 1/O prompt flag
*0014-0015 20-21 Integer value
0016 22 Pointer: temporary string stack
0017-0018 23-24 Last temp string vector
0019-0021 25-33 Stack for temporary strings
0022-0025 34-37 Utility pointer area
0026-002A 38-42 Product area for multiplication
*002B-002C 43-44 Pointer: Start of Basic
*002D-002E 45-46 Pointer: Start of Variables
*002F-0030 47-48 Pointer: Start of Arrays
*0031-0032 49-50 Pointer: End of Arrays
*0033-0034 51-52 Pointer: String storage (moving down)
0035-0036 53-54 Utility string pointer
*0037-0038 55-56 Pointer: Limit of memory
0039-003A 57-58 Current Basic line number
003B-003C 59-60 Previous Basic line number
003D-003E 61-62 Pointer: Basic statement for CONT
003F-0040 63-64 Current DATA line number
0041-0042 65-66 Current DATA address
*0043-0044 67-68 Input vector
* Useful memory location

170



HEX

0045-0045

0047-0048

0049-004A

004B-004C

004D

004E-0053

0054-0056

0057-0060
*0061
*0062-0065
*0066

0067

0068
*0069-006E

006F

0070

0071-0072
*0073-008A

007A-007B

008B-008F
"0090

0091

0092

0093

0094

0085

0096

0097
*0098
*0099
*009A

008B

009C

009D

009E

00SF
*00A0-00A2
00A3

00A4

00A5

00A6

00A7

00A8

00A9

DECIMAL

69-70
71-72
73-74
75-76
77
78-83
84-86
87-96
97
98-101

102

103

104

105-110

111

112

113-114

115-138

122-123

139-143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160-162

163

164

165

166

167

168

169

* Useful memory location

DESCRIPTION

Current variable name

Current variable address

Variable pointer for FOR/NEXT
Y-save; op-save; Basic pointer save
Comparison symbol accumulator
Misc work area, pointers, etc

Jump vector for functions

Misc numeric work area

Accum#1: Exponent

Accum#1: Mantissa

Accum#1: Sign

Series evaluation constant pointer
Accum#1 hi-order (overflow)
Accum#2: Exponent, etc.

Sign comparison, Acc#1 vs #2
Accum#1 lo-order (rounding)
Cassette buffer length/Series pointer
CHRGET subroutine (get BASIC char)
Basic pointer (within subroutine)
RND seed value

Status word ST

Keyswitch PIA: STOP and RVS flags
Timing constant for tape

Load=0, Verify=1

Serial output: deferred char flag
Serial deferred character

Tape EOT received

Register save

How many open files

Input device (normally 0)

Output (CMD) device, normally 3
Tape character parity

Byte-received flag
Direct=$80/RUN=0 output control
Tape Pass 1 error log/char buffer
Tape Pass 2 error log corrected
Jiffy Clock (HML)

Serial bit count/EOI flag

Cycle count

Countdown, tape write/bit count
Pointer: tape buffer

Tape Write Idr count/Read pass/inbit
Tape Write new byte/Read error/inbit
cnt

Write start bit/Read bit err/stbit

171



HEX

00AA

00AB
00AC-00AD
00AE-00AF
00B0-00B1
*00B2-00B3
00B4
00B5
00B6
*00B7
*00B8
*00B9
*00BA
*00BB-00BC
008D
00BE
00BF
00CO
00C1-00C2
00C3-00C4
*00C5
*00C6
*00C7
00C8
00C9-00CA
*00CB
oocc
00CD
00CE
00CF
00D0
*00D1-00D2
*00D3
00D4
*00D5
*00D6
00D7
*00D8
*00D9-00F0
00F1
00F2
*00F3-00F4
00F5-00F6
00F7-00F8
00F9-00FA

DECIMAL

170
171
172-173
174-175
176-177
178-179
180
181
182
183
184
185
186
187-188
189
180
191
192
193-194
195-196
197
198
199
200
201-202
203
204
205
206
207
208
209-210
21
212
213
214
215
216
217-240
241
242
243-244
245-246
247-248
249-250

* Useful memory location

DESCRIPTION

Tape Scan;Cnt;Ld;End/byte assy
Write lead length/Rd checksum/parity
Pointer: tape buffer, scrolling

Tape end addresses/End of program
Tape timing constants

Pointer: start of tape buffer

Tape timer (1=enable); bit cnt
Tape EOT/RS-232 next bit to send
Read character error/outbyte buffer
# characters in file name

Current logical file

Current secondary address
Current device

Pointer: to file name

Write shift word/Read input char

# blocks remaining to Write/Read
Serial word buffer

Tape motor interlock

I/O start addresses

KERNAL setup pointer

Current key pressed

# chars in keyboard buffer
Screen reverse flag

Pointer: End-of-line for input

Input cursor log (row, column)
Which key: 64 if no key

cursor enable (0=flash cursor)
Cursor timing countdown
Character under cursor

Cursor in blink phase

Input from screen/from keyboard
Pointer to screen line

Position of cursor on above line
0=direct cursor, else programmed
Current screen line length

Row where cursor lives

Last inkey/checksum/buffer

# of INSERTs outstanding

Screen line link table

Dummy screen link

Screen row marker

Screen color pointer

Keyboard pointer

RS-232 Rcv pointer

RS-232 Tx pointer

172

=y

e

-y

L]



HEX

*00FB-00FE
00FF

0100-010A
0100-013E
0100-01FF

*0200-0258
*0259-0262
*0263-026C
*026D-0276
*0277-0280
*0281-0282
*0283-0284

0285
*0286

0287
*0288
*0289
*028A
*028B

028C
*028D

028E

028F-0290
*0291

0292
0293
0294
0295-0296
0297
0298
0299-029A
029B
029C
029D
029E
029F-02A0
02A1-02FF

*0300-0301
0302-0303
0304-0305
0306-0307
0308-0309

DECIMAL

251-254
255

256-266
256-318
256-511

512-600
601-610
611-620
621-630
631-640
641-642
643-644
645
646
647
648
649
650
651
652
653
654
655-656
657

658
659
660
661-662
663
664
665-666
667
668
669
670
671-672
673-767

768-769
770-771
772-773
774-775
776-777

* Useful memory location

DESCRIPTION

Operating system free zero page space
Basic storage

Floating to ASCII work area
Tape error log
Processor stack area

Basic input buffer

Logical file table

Device # table

Secondary Address table
Keyboard buffer

Start of memory for op system
Top of memory for op system
Serial bus timeout flag

Current color code

Color under cursor

Screen memory page

Max size of keyboard buffer

Key repeat (128 =repeat all keys)
Repeat speed counter

Repeat delay counter

Keyboard Shift/Control flag

Last keyboard shift pattern
Pointer: decode logic

Shift mode switch (0=enabled, 128-
locked)

Auto scroll down flag (0= on, <>0= off)
RS-232 control register

RS-232 command register
Nonstandard (Bit time/2-100)
RS-232 status register

Number of bits to send

Baud rate (full) bit time

RS-232 receive pointer

RS-232 input pointer

RS-232 transmit pointer

RS-232 output pointer

Holds IRQ during tape operations
Program indirects

Error message link

Basic warm start link
Crunch Basic tokens link
Print tokens link

Start new Basic code link

173



HEX

030A-030B

030C
030D
030E
030F
0310-0313
0314-0315
0316-0317
0318-0319
031A-031B

031C-031D
031E-031F
0320-0321
0322-0323
0324-0325
0326-0327
0328-0329
032A-032B
032C-032D
032E-032F
0330-0331
0332-0333
0334-033B
*033C-03FB
0400-0FFF
1000-1DFF
1E00-1FFF
2000-3FFF
4000-5FFF
6000-7FFF

DECIMAL

778-779
780
781
782
783
784-787
788-789
790-791
792-793
794-795

796-797
798-799
800-801
802-803

804-805
806-807
808-809
810-811
812-813
814-815
816-817
818-819
820-827
828-1019
1024-4095
4096-7679
7680-8191
8192-16383
16384-24575
24576-32767

DESCRIPTION

Get arithmetic element link

Storage for 6502 A register
Storage for 6502 .X register
Storage for 6502 .Y register

Storage for 6502 .P register
?7?

Hardware (IRQ) interrupt vector (EABF)

Break interrupt vector
NMI interrupt vector
OPEN vector

CLOSE vector
Set-input vector
Set-output vector
Restore 1/0 vector
INPUT vector
Output vector
Test-STOP vector
GET vector

Abort 1/0O vector
user vector

Link to load RAM
Link to save RAM
27

Cassette buffer
3K expansion RAM area
User Basic area
Screen memory

(FED2)

(FEAD)

(F40A)
(F34A)
(F2C7)
(F309)
(F3F3)
(F20E)
(F27A)
(F770)
(F1F5)
(F3EF)
(FED2)
(F549)
(F685)

8K expansion RAM/ROM block 1
8K expansion RAM/ROM block 2
8K expansion RAM/ROM block 3

NOTE: When additional memory is added to block 1 (and 2 and 3), the

KERNAL relocates the following things for BASIC:

1000-11FF 4096-4607 Screen memory
1200-? 4608-? User Basic area
9400-95FF 37888=38399 Color RAM
8000-8FFF 32768-36863 4K Character generator ROM
8000-83FF 32768-33791  Upper case and graphics
8400-87FF 33792-33815 Reversed upper case and graphics
8800-8BFF 33816-35839  Upper and lower case
8CO00-8FFF 35840-36863 Reversed upper and lower case
9000-93FF 36864-37887 /O BLOCK O
* Useful memory location

174

{

!

£



HEX

8000-900F
9000

9001
9002

9003

9004
9005

9006
9007
9008
9009
900A

900B
900C

900D
900E

DECIMAL

36864-36879
36864

36865
36866

36867

36868
36869

36870
36871
36872
36873
36874

36875
36876

36877
36878

36879

DESCRIPTION

Address of VIC chip registers

bits 0-6 horizontal centering

bit 7 sets interlace scan

vertical centering

bits 0-6 set # of columns

bit 7 is part of video matrix address
bits 1-6 set # of rows

bit 0 sets 8 x8 or 16 x8 chars

TV raster beam line

bits 0-3 start of character memory

(default=0)

bits 4-7 is rest of video address

(default=F)

BITS 3,2,1,0 CM starting address
HEX DEC

0000 ROM 8000 32768

0001 8400 33792

0010 8800 34816

0011 8C00 35840

1000 RAM 0000 0000

1001 00K

1010 XXxx  unavail.

1011 YOO

1100 1000 4096

1101 1400 5120

1110 1800 6144

1111 1C00 7168

horizontal position of light pen
vertical position of light pen
Digitized value of paddle X
Digitized value of paddle Y
Frequency for oscillator 1 (low)
(on: 128-255)
Frequency for oscillator 2 (medium)
(on: 128-255)
Frequency for oscillator 3 (high)
on: 128-255)
Frequency of noise source
bit 0-3 sets volume of all sound
bits 4-7 are auxiliary color information
Screen and border color register
bits 4-7 select background color
bits 0-2 select border color
bit 3 selects inverted or normal mode

175



HEX

9110-911F
9110

9111

9112
9113
9114
9115
9116
9117
9118
9119
911A
911B
911C

911D

DECIMAL

37136-37151
37136

DESCRIPTION

6522 VIA#1

Port B output register
(user port and RS-232 lines)

PIN 6522 DESCRIPTION EIA ABV

ID ID
C PBO Received data (BB) Sin
D PB1 Request to Send  (CA) RTS
E PB2 Data terminal ready (CD) DTR
F PB3 Ring indicator (CE) RI
H PB4 Received line signal (CF) DCD
J PB5 Unassigned () XXX
K PB6 Clear to send (CB) CTS
L PB7 Data set ready (CC) DSR
B CB1 Interrupt for Sin (BB) Sin
M CB2 Transmitted data (BA) Sout
A GND Protective ground  (AA) GND
N GND Signal ground (AB) GND
37137 Port A output register
(PAO) Bit 0=Serial CLK IN
(PA1) Bit 1=_Serial DATA IN
(PA2) Bit 2=Joy 0
(PA3) Bit 3=Joy 1
(PA4) Bit 4=Joy 2
(PA5) Bit 5= Lightpen/Fire button
(PAB) Bit 6=Cassette switch sense
(PA7) Bit 7=Serial ATN out
37138 Data direction register B
37139 Data direction register A
37140 Timer 1 low byte
37141 Timer 1 high byte & counter
37142 Timer 1 low byte
37143 Timer 1 high byte
37144 Timer 2 low byte
37145 Timer 2 high byte
37146 Shift register
37147 Auxiliary control register
37148 Peripheral control register
(CA1, CA2, CB1, CB2)
CA1 =restore key (Bit 0)
CA2 =cassette motor control (Bits 1-3)
CB1 =interrupt signal for received
RS-232 data (Bit 4)
CB2 =transmitted RS-232 data (Bits
5-7)
37149 Interrupt flag register

176



HEX DECIMAL DESCRIPTION

911E 37150 Interrupt enable register

911F 37151 Port A (Sense cassette switch)
9120-912F 37152-37167 6522 VIA#2

9120 37152 Port B output register

keyboard column scan
(PB3) Bit 3 =cassette write line
(PB7) Bit7 =Joy 3

9121 37153 Port A output register
keyboard row scan
9122 37154 Data direction register B
9123 37155 Data direction register A
9124 37156 Timer 1, low byte latch
9125 37157 Timer 1, high byte latch
9126 37158 Timer 1, low byte counter
9127 37159 Timer 1, high byte counter

timer 1 is used for the
60 time/second interrupt

9128 37160 Timer 2, low byte latch
9129 37161 Timer 2, high byte latch
912A 37162 Shift register

912B 37163 Auxiliary control register
912C 37164 Peripheral control register

CA1 Cassette read line (Bit 0)
CA2 Serial clock out (Bits 1-3)
CB1 Serial SRQ IN (Bit 4)

CB2 Serial data out (Bits 5-7)

912D 37165 Interrupt flag register
912E 37166 Interrupt enable register
912F 37167 Port A output register

9400-95FF 37888-38399 location of COLOR RAM with
additional RAM at blk 1

9600-97FF 38400-38911  Normal location of COLOR RAM

9800-9BFF 38912-39935 |/O block 2

9C00-9FFF 39936-40959  |/O block 3

A000-BFFF 40960-49152 8K decoded block for expansion ROM

C000-DFFF 49152-57343 8K Basic ROM

E000-FFFF 57344-65535 8K KERNAL ROM

177



USEFUL MEMORY LOCATIONS

This is a more in-depth guide to some of the memory locations

you can use.

HEX
0014-0015

002B-002C

002D-002E

002F-0030

0031-0032
0033-0034

0037-0038
0043-0044
0061-0066
0069-006E

0073-008A

0090
0098
0099

009A

DECIMAL
20-21

43-44

45-46

47-48

49-50
51-52

55-56
67-68
97-102
105-110

115-138

144
152
153

154

DESCRIPTION

Where BASIC stores integer variables
used in calculations. The fixed-float and
float-fixed routines (vectors at 3-4 and
5-6) use the value in this area.

The start of the BASIC program in
memory. Location 43 contains the low
byte, and location 44 has the high byte.
To compute the start of BASIC in
decimal, use the formula: PEEK(43) +
256 * PEEK(44)

The start of the numeric variables,
which is usually immediately after the
end of the BASIC program.

The start of arrays in memory, usually
immediately following the numeric vari-
ables.

The end of the arrays in memory.
Bottom of string storage, moving from
the top of available memory down to the
top of arrays.

The top of free RAM. By lowering this
value, some RAM can be “protected”
against BASIC putting values here.
Jump vector for INPUT statement.
Floating point accumulator #1 for cal-
culations.

Floating point accumulator #2.

The CHRGET subroutine resides here.
This routine gets the next BASIC
character from machine language.
Status word ST.

Number of open files.

Device number for input, normally 0
(keyboard).

Output (CMD) device, normally 3
(screen).

178



HEX DECIMAL DESCRIPTION

00AO0-00A2 160-162 3 byte jiffy clock. The Tl and TI$
variables are translations of these loca-
tions.

00B2-00B3 178-179 Points to the start of the tape buffer. Can

be used as an indirect zero-page jump
to a routine in the buffer.

00B7 183 Number of characters in filename.

00B9 185 Which secondary address is currently
being used.

00BA 186 Currentdevice number being accessed.

00BB-00BC 187-188 Points to location of filename in memo-
ry.

00C5 197 Current key being held down. There will

be a 64 here if nothing is held down. If
more than 1 key is down, the key with
the highest number on the chart is what
shows up here.

#  key #  key #  key #  key

0 1 16 none 32 space 48 Q

1 3 17 A B3 7 48 E

2 5 i8 D 34 C BOF T

3 7 19 G 39 B 51 U

4 9 20 38 M 52/ 0O

5 + s [ 37 = 5 @

6 £ 2l 38 none 54 ¢

7 DEL 23 B 39 55: 15

8 o 24 STOP 40 none 56 2

9 w 25 none 41 S 57 4

10 R 26 X 42 F 58 6

1Y 27 N 43 H 58 8

120 0 28 N 44 K 60 0

137 P 29y A5 ; /2% s

14 = 30 / 46 = 62 HOME

15 RETURN 31 & 47 13 63 f7

00C6 198 Number of characters currently in key-
board buffer.

00C7 199 Flag for reverse on/off. A1 hereison, a
0 is off.

00CB 203 Same as 197.

00D1-00D2 209-210 Address of start of line where cursor is.

00D3 211 Position of cursor on line.

00D5 213 Current screen line length—either 21,
43, 65, or 87.

179



HEX
00D6

00D8

00D9-00F0

00F3-00F4

00FB-00FE
0200-0258

0259-0262
0263-026C

026D-0276
0277-0280

0281-0282
0283-0284
0286

0288

0289
028A

028B

028D

DECIMAL

214

216

217-240

243-244

251-254
512-600
601-610
611-620

621-630
631-640

641-642
643-644
646

648

649

650

651

653

DESCRIPTION

Screen row where cursor is. To change
the cursor position, locations 201, 210,
211, and 214 must be changed.
Number of spaces leftin INSERT mode.
POKEing this to a zero will turn off insert
mode.

Screen line link table. A 158 means that
the line is finished at the end of that line,
and a 30 means that the line continues
on the next line.

Pointer to the current space in color
memory.

Available locations in zero page.

BASIC input buffer—where the charac-
ters being INPUT will go.

Logic 1 file table for OPEN files.
Device # table for OPEN files.
Secondary address table

Keyboard buffer. If characters are
POKEGd in here and location 198 (# of
characters in buffer) is changed, it will
be as if the characters were typed from
the keyboard.

Start of memory pointer.

Top of memory pointer.

Current color code. This holds the color
number that goes into color memory
during PRINT operations.

Screen memory page. If you want the
operating system to know where screen
memory is, this must be changed as well
as the VIC chip.

Maximum size of keyboard buffer. If this
is set greater than 10, vital pointers will
be destroyed.

Keyboard repeat flag. If this is a 0, only
cursor controls repeat; if 128, all keys
repeat.

This determines how long the VIC waits
before repeating key.

Keyboard SHIFT, CTRL, Commodore
flag. The SHIFT sets the 1 bit, Commo-
dore sets the 2 bit, and the CTRL sets
the 4 bit.

180



HEX
0291

0300-0301

033C-03FB

DECIMAL

657

768-769

828-1019

DESCRIPTION

Setting this location to 128 will disable
switching case, and a 0 here enables
the ability to switch.

This is the jump vector for errors. By
changing this vector, a routine can
intercept any error condition.
Cassette buffer. This is where data files
are held before they are INPUT. When
not using files, this is available for
POKEing or machine language pro-
grams.

181



THE KERNAL

One of the toughest problems facing programmers in the
microcomputer field is the question of what to do when changes are
made to the operating system of the computer by the company.
Machine language programs which took much time to develop
might no longer work, forcing major revisions in the program. To
alleviate this problem, Commodore has developed a method of
protecting software writers called the KERNAL.

Essentially, the KERNAL is a standardized JUMP TABLE to the
input, output, and memory management routines in the operating
system. The locations of each routine in ROM might change as the
systemis upgraded. But the KERNAL jump table will be changed to

match. If your machine language routines only use the system
ROM routines through the KERNAL, it will take much less work to
modify them. The KERNAL is the operating system of the VIC
computer. All input, output, and memory management are
controlled by the KERNAL.

To simplify the machine language program you write, and to
make sure that future versions of the VIC operating system don’t
make your machine language programs obsolete, the KERNAL
contains a jump table for you to use. By taking advantage of the 39
input/output routines and other utilities accessible from the table,
not only will you save time, but you will also make it easier to
translate your programs from one Commodore computer to
another.

The jump table is located on the last page of memory, in
read-only memory.

To use the KERNAL jump table, first you set up the parameters
that the KERNAL routine needs to work. Then JSR to the proper
place in the KERNAL jump table. After performing its function, the
KERNAL transfers control back to your machine language
program. Depending on which KERNAL routine you are using,
certain registers may pass parameters back to your program. The
particular registers for each KERNAL routine may be found in the
individual descriptions of KERNAL subroutines.

A good question at this point is why use the jump table at all? Why
not just JSR directly to the KERNAL subroutine involved? The jump
table is used so that if the KERNAL or BASIC is changed, your
machine language programs will still work. In future operating
systems the routines may be moved in memory . . . but the jump
table will still work correctly!

182

it

iy

-

=



HOW TO USE THE KERNAL

When writing machine language programs it is often convenient
to use the routines which are already part of the operating system
for input/output, access to the system clock, memory management,
and similar operations. It is an unnecessary duplication of effort to
write these routines again, so easy access to the operating system
helps speed machine language programming.

As mentioned before, the KERNAL is a jump table. This is just a
collection of JMP instructions to many operating system routines.

To use a KERNAL routine you must first make all preparations
that the routine demands . . . if the routine says that you must have
called another KERNAL routine first, then that routine must be
called. If the routine expects you to put a number in the
accumulator, then that number must be there. Otherwise your
routines have little chance of working the way you expect them to
work.

After all preparations are made, you must call the routine by
means of the JSR instruction. All KERNAL routines you can access
are structured as SUBROUTINES, ending with an RTS instruction.
When the KERNAL routine has finished its task, control will be
returned to your program at the instruction after the JSR.

Many of the KERNAL routines return error codes in the status
word or the accumulator in case of problems. Good programming
practice and the success of your machine language programs
demand that you handle this properly. If you ignore an error return,
the rest of your program might bomb.

That's all there is in using the KERNAL—these three steps—

1. Set up
2. Call the routine
3. Error handling

The following conventions are used in describing the KERNAL
routines.
FUNCTION NAME: Name of the KERNAL routine.
CALL ADDRESS: This is the call address of the KERNAL routine,
given in hexadecimal.
COMMUNICATION REGISTERS: Registers listed under this
heading are used to pass parameters to and from the KERNAL
routines.
PREPARATORY ROUTINES: Certain KERNAL routines require
that data be set up before they can operate. The routines needed
are listed here.

183



ERROR RETURNS: A return from a KERNAL routine with the
CARRY set indicates that an error was encountered in processing.
The accumulator will contain the number of the error.

STACK REQUIREMENTS: This is the actual number of stack
bytes used by the KERNAL routine.

REGISTERS AFFECTED: All registers used by the KERNAL
routine are listed here.

DESCRIPTION: A short tutorial on the function of the KERNAL
routine is given here.

The list of the KERNAL routines follows.

USER CALLABLE KERNAL ROUTINES

NAME ADDRESS FUNCTION

HEX DECIMAL

ACPTR  $FFAS5 65445 Input byte from serial port

CHKIN  $FFC6 65478 Open channel for input

CHKOUT $FFC9 65481 Open channel for output

CHRIN $FFCF 65487 Input character from channel

CHROUT $FFD2 65490 Output character to channel

CIOUT  $FFA8 65448 Ouput byte to serial port

CLALL  $FFE7 65511 Close all channels and files

CLOSE $FFC3 65475 Close a specified logical file

CLRCHN $FFCC65484 Close input and output channels

GETIN $FFE4 65512 Get character from keyboad queue
(keyboard buffer)

IOBASE $FFF3 65523 Returns base address of /O de-
vices

LISTEN $FFB1 65457 Command devices on the serial
bus to LISTEN

LOAD $FFD5 65493 Load RAM from a device

MEMBOT $FF9C 65436 Read/set the bottom of memory

MEMTOP $FF99 65433 Read/set the top of memory

OPEN $FFCO 65472 Open a logical file

PLOT $FFF0 65520 Read/set X,Y cursor position

RDTIM $FFDE 65502 Read real time clock

READST S$FFB7 65463 Read 1/O status word

RESTOR $FF8A 65415 Restore default /0 vectors

SAVE $FFD8 65496 Save RAM to device

SCNKEY $FF9F 65439 Scan keyboard

SCREEN $FFED 65517 Return X,Y organization of screen

184

L]

-y



NAME

SECOND

ADDRESS

HEX DECIMAL

$FF93 65427

FUNCTION

Send secondary address after
LISTEN

SETLFS $FFBA 65466 Set logical, first, and second ad-
dresses

SETMSG $FF90 65424 Control KERNAL messages

SETNAM $FFBD 65469 Set filename

SETTIM $FFDB 65499 Set real time clock

SETTMO $FFA2 65442 Set timeout on serial bus

STOP $FFE1 65505 Scan stop key

TALK $FFB4 65460 Command serial bus device to
TALK

TKSA $FF96 65430 Send secondary address after
TALK

UDTIM $FFEA 65514 Increment real time clock

UNLSN  SFFAE 65454 Command serial bus to UNLISTEN

UNTLK  $FFAB 65451 Command serial bus to UNTALK

VECTOR $FF84 65412 Read/set vectored I/O

B-1. Function name: ACPTR
Purpose: Get data from the serial bus
Call address: $FFAS
Communication registers: .A
Preparatory routines: TALK ,TKSA
Error returns: See READST
Stack requirements: 13
Registers affected: .A, .X

Description: This is the routine to use to get information from a
device on the serial bus (like the disk). This routine gets a byte of
data off the serial bus using full handshaking. The data is returned
in the accumulator. To prepare for this routine the TALK routine
must have been called first to command the device on the serial bus
to send data on the bus. If the input device needs a secondary
command, it must be sent by using the TKSA KERNAL routine
before calling this routine. Errors are returned in the status word.
The READST routine is used to read the status word.

To use this routine:

0) Command a device on the serial bus to prepare to send data
to the VIC.

(Use the TALK and TKSA kernal routines).

1) Call this routine (using JSR)

2) Store or otherwise use the data.

185



EXAMPLE:
Get a byte from the bus

1) JSR ACPTR
2) STA DATA

B-2. Function name: CHKIN

Purpose: Open a channel for input

Call address: $FFC6

Communication registers: .X

Preparatory routines: (OPEN)

Error returns: 3,5,6

Stack requirements: None

Registers affected: .A, .X

Description: Any logical file that has already been opened by
the KERNAL OPEN routine can be defined as an input channel by
this routine. Naturally, the device on the channel must be an input
device. Otherwise, an error will occur, and the routine will abort.

If you are getting data from anywhere other than the keyboard,
this routine must be called before using either the CHRIN or the
GETIN KERNAL routines for data input. If input from the keyboard
is desired, and no other input channels are opened, then the calls to
this routine, and to the OPEN routine, are not needed.

When this routine is used with a device on the serial bus, this
routine automatically sends the talk address (and the secondary
address if one was specified by the OPEN routine) over the bus.

To use this routine:

0) OPEN the logical file (if necessary; see description above).

1) Loadthe .X register with number of the logical file to be used.

2) Call this routine (using a JSR command).

Possible errors are:

#3: File not open
#5: Device not present
#6: File not an input file

EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL FILE 2

1) LDX #2
2) JSR CHKIN

B-3. Function name: CHKOUT
Purpose: Open a channel for output
Call address: $FFC9
Communication registers: .X

186



Preparatory routines: (OPEN)

Error returns: 3,5,7

Stack requirements: None

Registers Affected: .A, .X

Description: Any logical file number which has been created by
the KERNAL routine OPEN can be defined as an output channel.
Of course, the device you intend opening a channel to must be an
output device. Otherwise, an error will occur, and the routine will be
aborted.

This routine must be called before any data is sent to any output
device unless you want to use the VIC screen as your output
device. If screen output is desired, and there are no other output
channels already defined, then the calls to this routine, and to the
OPEN routine are not needed.

When used to open a channel to a device on the serial bus, this
routine will automatically send the LISTEN address specified by the
OPEN routine (and a secondary address if there was one).

How to use: Remember: this routine is NOT NEEDED to send
data to the screen. 0) Use the KERNAL OPEN routine to specify a
logical file number, a LISTEN address, and a secondary address (if
needed).

1) Load the .X register with the logical file number used in the
open statement.

2) Call this routine (by using the JSR instruction).

;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL

1) LDX #3

2) JSR CHKOUT

Possible error returns:
3: File not open
5: Device not present

7: Not an output file

B-4. Function name: CHRIN

Purpose: Get a character from the input channel

Call address: $FFCF

Communication registers: .A

Preparatory routines: (OPEN, CHKIN)

Error returns: See READST

Stack requirements: None

Registers affected: .A, .X

Description: This routine will get a byte of data from the channel
already set up as the input channel by the KERNAL routine CHKIN.

187



If the CHKIN has not been used to define another input channel,
data is expected from the keyboard. The data byte is returned in the
accumulator. The channel remains open after the call.

Input from the keyboard is handled in a special way. First, the
cursor is turned on, and will blink until a carriage return is typed on
the keyboard. All characters on the line (up to 88 characters) will be
stored in the BASIC input buffer. Then the characters can be
retrieved one at a time by calling this routine once for each
character. When the carriage return is retrieved, the entire line has
been processed. The next time this routine is called, the whole
process begins again, i.e., by flashing the cursor.

How to use:

FROM THE KEYBOARD

1) Call this routine (using the JSR instruction).

2) Retrieve a byte of data by calling this routine.
3) Store the data byte.
4) Checkifitisthe lastdatabyte (isita CR ?). If not, go to step 2.

EXAMPLE:
1) LDX $#00 ;Store 00 in the .X register

2) RD JSR CHRIN
STA DATA,X ;store the Xth data byte in the Xth

INX ;location in the data area.
3) CMP #CR ;Is it a carriage return?
4) BNE RD ;no, get another data byte
EXAMPLE:
JSR CHRIN
STA DATA

FROM OTHER DEVICES
0) Use the KERNAL OPEN and CHKIN routines.
1) Call this routine (using a JSR instruction).
2) Store the data.

EXAMPLE:

JSR CHRIN
STA DATA

B-5. Function name: CHROUT
Purpose: Output a character
Call address: $FFD2

188



Communication registers: .A

Preparatory routines: (CHKOUT, OPEN)

Error returns: See READST

Stack requirements: None

Registers affected: None

Description: This routine will output a character to an already
opened channel. Use the KERNAL OPEN and CHKOUT routines
to set up the output channel before calling this routine. If this call is
omitted, data will be sent to the default output device (number 3, on
the screen). The data byte to be output is loaded into the
accumulator, and this routine is called. The data is then sent to the
specified output device. The channel is left open after the call.

NOTE: Care must be taken when using this routine to send
data to a serial device since data will be sent to all open output
channels on the bus. Unless this is desired, all open output
channels on the serial bus other than the actually intended
destination channel must be closed by a call to the KERNAL
close channel routine.

How to use:

0) Use the CHKOUT KERNAL routine if needed (see
description above).

1) Load the data to be output into the accumulator.

2) Call this routine.

EXAMPLE:
;Duplicate the BASIC instruction CMD 4, “A”;
LDX #4 ;LOGICAL FILE #4
JSR CHKOUT ;OPEN CHANNEL OUT
LDA #'A

JSR CHROUT ;SEND CHARACTER

B-6. Function name: CIOUT

Purpose: Transmit a byte over the serial bus

Call address: $FFA8

Communication registers: .A

Preparatory routines: LISTEN, [SECOND]

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine is used to send information to devices
on the serial bus. A call to this routine will put a data byte onto the
serial bus using full serial handshaking. Before this routine is called,
the LISTEN KERNAL routine must be used to command a device

189



on the serial bus to get ready to receive data. (If a device needs a

secondary address, it must also be sent by using the SECOND
KERNAL routine.)

The accumulator is loaded with a byte to handshake as data on
the serial bus. A device must be listening or the status word will
return a timeout. This routine always buffers one character. (The
routine holds the previous character to be sent back.) So when a
call to the KERNAL UNLSN routine is made to end the data
transmission, the buffered character is sent with EQI set. Then the
UNLSN command is sent to the device.

How to use:

0) Usethe LISTEN KERNAL routine (and the SECOND routine
if needed).

1) Load the accumulator with a byte of data.

2) Call this routine to send the data byte.

EXAMPLE:

;:Send an X to the serial bus
LDA #'X
JSR CIOUT

B-7. Function name: CLALL
Purpose: Close all files
Call address: $FFE7
Communication registers: None
Preparatory routines: None
Error returns: None
Stack requirements: 11
Registers affected: .A, .X

Description: This routine closes all open files. When this routine
is called, the pointers into the open file table are reset, closing all
files. Also, the routine automatically resets the /O channels.

How to use:

1) Call this routine.

EXAMPLE:

JUSED AT START OF EXECUTION FOR INITIALIZATION
JSR CLRCHN ;CLOSE FILES
JMP RUN ;BEGIN EXECUTION

B-8. Function name: CLOSE
Purpose: Close a logical file
Call address: $FFC3

190



Communication registers: .A
Preparatory routines: None
Error returns: None

Stack requirements: None
Registers affected: .A, .X

Description: This routine is used to close a logical file after all I/O
operations have been completed on that file. This routine is called
after the accumulator is loaded with the logical file number to be
closed (the same number used when the file was opened using the
OPEN routine).

How to use:

1) Load the accumulator with the number of the logical file to be
closed.

2) Call this routine.

EXAMPLE:

;CLOSE 15
LDA #15
JSR CLOSE

B-9. Function name: CLRCHN
Purpose: Clear I/O channels
Call address: $FFCC
Communication registers: None
Preparatory routines: None
Error routines: None
Stack requirements: 9
Registers affected: .A, .X

Description: This routine is called to clear all open channels and
restore the I/O channels to their original default values. It is usually
called after opening other I/O channels (like to the disk or tape
drive) and using them for input/output operations. The default input
device is 0O (keyboard). The default output device is 3 (the VIC
screen).

If one of the channels to be closed is to the serial port, an
UNTALK signal is sent first to clear the input channel or an
UNLISTEN is sent to clear the output channel. By not calling this
routine (and leaving listener(s) active on the serial bus) several
devices can receive the same data from the VIC at the same time.
One way to take advantage of this would be to command the printer
to TALK and the disk to LISTEN. This would allow direct printing of a
disk file.

191



How to use:
1) Call this routine using the JSR instruction

EXAMPLE:
JSR CLRCHN

B-10. Function name: GETIN
Purpose: Get a character from the keyboard buffer
Call address: $FFE4
Communication registers: .A
Preparatory routines: None
Error returns: None
Stack requirements: None
Registers affected: .A, .X

Description: This subroutine removes one character from the
keyboard queue and returns it as an ASCIl value in the
accumulator. If the queue is empty, the value returned in the
accumulator will be zero. Characters are put into the queue
automatically by an interrupt driven keyboard scan routine which
calls the SCNKEY routine. The keyboard buffer can hold up to ten
characters. After the buffer is filled, additional characters are
ignored until at least one character has been removed from the
queue.

How to use:

1) Call this routine using a JSR instruction

2) Check for a zero in the accumulator (empty buffer)

3) Process the data

EXAMPLE:

;WAIT FOR A CHARACTER
WAIT JSR GETIN

CMP #0

BEQ WAIT

B-11. Function name: IOBASE

Purpose: Define I1/O memory page

Call address: $FFF3

Communication registers: XY

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine will set the X and Y registers to the
address of the memory section where the memory mapped I/O
devices are located. This address can then be used with an offsetto

192

-



access the memory mapped I/O devices in the VIC. The offset will
be the number of locations from the beginning of the page that the
desired I/O register is located. The .X register will contain the low
order address byte, while the .Y register will contain the high order
address byte.

This routine exists to provide compatibility between the VIC 20
and future models of the VIC. IF the /O locations for a machine
language program are set by a call to this routine, they should still
remain compatible with future versions of the VIC, the KERNAL and
BASIC.

How to use:

1) Call this routine by using the JSR instruction.

2) Store the .X and the .Y registers in consecutive locations.

3) Load the .Y register with the offset.

4) Access that I/O location.

EXAMPLE:

; Set the data direction register of the user port to 0 (input)
1) JSR IOBASE

2) STX POINT ;set base registers
STY POINT +1
3) LDY #2
4) LDA #0 ;offset for DDR of the user port

STA (POINT)Y Set DDRto 0

B-12. Function name: LISTEN

Purpose: Command a device to LISTEN

Call Address: $FFB1

Communication registers: .A

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine will command a device on the serial
bus to receive data. The accumulator must be loaded with a device
number between 4 and 31 before calling the routine. LISTEN will
OR the number bit by bit to convert to a listen address, then transmit
this data as a command on the serial bus. The specified device will
then go into listen mode, and be ready to accept information.

How to use:

1) Load the accumulator with the number of the device to
command to LISTEN.

2) Call this routine using the JSR instruction.

193



EXAMPLE:

;,COMMAND DEVICE #8 TO LISTEN

LDA #8
JSR LISTEN

B-13. Function name: LOAD
Purpose: Load RAM from device
Call address: $FFD5
Communication registers: .A, X, .Y
Preparatory routines: SETLFS, SETNAM
Error returns: 0,4,5,8,9
Stack requirements: None
Registers affected: .A, X, .Y

Description: This routine will load data bytes from any input
device directly into the memory of the VIC. It can also be used fora

verify operation, comparing data from a device with the data
already in memory, leaving the data stored in RAM unchanged. The
accumulator (.A) must be set to 0 for a load operation, or 1 for a
verify. If the input device was OPENed with a secondary address
(SA) of 0, the header information from device will be ignored. In this
case, the .X and .Y registers must contain the starting address for
the load. If the device was addressed with a secondary address of
0,1, or 2 the data will load into memory starting at the location
specified by the header. This routine returns the address of the
highest RAM location which was loaded.

Before this routine can be called, the KERNAL SETLFS, and
SETNAM routines must be called.

How to use

0) Callthe SETLFS, and SETNAM routines. If a relocated load
is desired, use the SETLFS routine to send a secondary address of
3.

1) Set the .A register to 0 for load, 1 for verify.

2) Ifarelocated load is desired, the .X and .Y registers must be
set to the start address for the load.

3) Call the routine using the JSR instruction.

EXAMPLE:
;LOAD A FILE FROM TAPE
0) LDA  #DEVICE1 ;set device number
LDX  #FILENO ;set logical file number
LDY CMD1 ;set secondary address
JSR  SETLFS
LDA  #NAME1-—-NAME ;load .A with number of char-
acters
;in filename

194

=t}

[==]

(==

wad



LDX #<NAME :Load .X and .Y with address of

LDY #>NAME filename
JSR SETNAM
1) LDA #0 ;set flag for a load
2) LDX  #$FF :default start
LDY  #$FF
3) JSR LOAD
STX VARTAB ;end of load
STY VARTAB+1
JMP  START
NAME .BYT ‘FILE NAME'
NAME 1;

B-14. Function name: MEMBOT

Purpose: Set bottom of memory

Call address: $FF9C

Communication registers: .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: .X, .Y

Description: This routine is used to set the bottom of the
memory. If the accumulator carry bit is set when this routine is
called, a pointer to the lowest byte of RAM will be returned in the .X
and .Y registers. On the unexpanded VIC the initial value of this
pointer is $1000. If the accumulator carry bit is clear (= 0) when this
routine is called, the values of the .X and .Y registers will be
transferred to the low and high bytes respectively of the pointer to
the beginning of RAM.

How to use:

TO READ THE BOTTOM OF RAM

1) Set the carry.

2) Call this routine.

TO SET THE BOTTOM OF MEMORY
1) Clear the carry.
2) Call this routine.

EXAMPLE:

; MOVE BOTTOM OF MEMORY UP 1 PAGE

SEC ;READ MEMORY BOTTOM

JSR MEMBOT

INY

CLC ;SET MEMORY BOTTOM TO NEW VALUE
JSR MEMBOT

195



B-15. Function name: MEMTOP

Purpose: Set the top of RAM

Call address: $FF99

Communication registers: .X,.Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine is used to set the top of RAM. When
this routine is called with the carry bit of the accumulator set, the
pointer to the top of RAM will be loaded into the .X and .Y registers.
When this routine is called with the accumulator carry bit clear, the
contents of the .X and .Y registers will be loaded in the top of
memory pointer, changing the top of memory.

EXAMPLE:

;DEALLOCATE THE RS-232 BUFFER

SEC

JSR MEMTOP ;READ TOP OF MEMORY
DEX

CLC

JSR MEMTOP ;SET NEW TOP OF MEMORY

B-16. Function name: OPEN

Purpose: Open a logical file

Call address: $FFCO

Communication registers: None

Preparatory routines: SETLFS, SETNAM

Error returns: 1,2,4,5,6

Stack requirements: None

Registers affected: .A, X, .Y

Description: This routine is used to open a logical file. Once the
logical file is set up, it can be used for input/output operations. Most
of the I/O KERNAL routines call on this routine to create the logical
files to operate on. No arguments need to be set up to use this
routine, but both the SETLFS and SETNAM KERNAL routines
must be called before using this routine.

How to use:

0) Use the SETLFS routine.

1) Use the SETNAM routine.

2) Call this routine.

196

e

=

=]

e

e



EXAMPLE:

This is an implementation of the BASIC statement: OPEN
15,8,15,"1/0"
LDA #NAME2—-NAME ;;LENGTH OF FILE NAME FOR

SETLFS
LDY #>NAME
JSR SETNAM
LDA #15
LDX #8
LDY #15
JSR SETLFS
JSR OPEN
NAME .BYT 1O’
NAME2

B-17. Function name: PLOT

Purpose: Set cursor location

Call address: $FFFO0

Communication registers: .A,X,Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X, .Y

Description: A call to this routine, with the accumulator carry flag
set, loads the current position of the cursor on the screen (in X,Y
coordinates) into the .X and .Y registers. X is the column number of
the cursor location (0-21), and Y is the row number of the location of
the cursor (0-22). A call with the carry bit clear moves the cursor to
X,Y as determined by the .X and .Y registers.

How to use:

READING CURSOR LOCATION

1) Set the carry flag.

2) Call this routine.

3) Get the X and Y position from the .X and .Y registers
respectively.

SETTING CURSOR LOCATION

1) Clear carry flag.

2) Set the .X and .Y registers to the desired cursor location.

3) Call this routine.

197



EXAMPLE:

; MOVE THE CURSOR TO 5,5
LDX #5

LDY #5

CLC

JSR PLOT

B-18. Function name: RDTIM

Purpose: Read system clock

Call address: $FFDE

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, X, .Y

Description: This routine is used to read the system clock. The
clock’s resolution is a 60th of a second. Three bytes are returned by
the routine. The accumulator contains the most significant byte, the
X index register contains the next most significant byte, and the Y
index register contains the least significant byte.

EXAMPLE:

JSR RDTIM
STY TIME
STX TIME +1
STA TIME+2

TIME *=*+3

B-19. Function name: READST

Purpose: Read status word

Call address: $FFB7

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A

Description: This routine returns the current status of the I/O
devices in the accumulator. The routine is usually called after new
communication to an I/O device. The routine will give information
about device status, or errors that have occurred during the /O
operation.

198

-

ey

=l



The bits returned in the accumulator contain the following
information (see table below):

How to use:

1) Call this routine.

2) Decode the information in the .A register as it refers to your
program.

EXAMPLE:

;: CHECK FOR END OF FILE DURING READ
JSR READST

AND #64 :check eof bit

BNE EOF :branch on eof

ST ST Tape
Bit Numeric  Cassette Serial/RW Verify
Position  Value Read + Load
0 1) Time out
write
1 2 Time out
read
2 4 Short block Short block
3 8 Long block Long block
4 16  Unrecoverable Any
read error mismatch
5 32 Checksum Checksum
error error
6 64 End of file EOQI line
7 —-128 End of tape Device not End of
present tape

B-20. Function name: RESTOR

Purpose: Restore default system and interrupt vectors

Call address: SFF8A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine restores the default values of all
system vectors used in KERNAL and BASIC routines and
interrupts. (See appendix D for the default vector contents). The
KERNAL VECTOR routine is used to read and alter individual
system vectors.

199



How to use:
1) Call this routine.

EXAMPLE:
JSR RESTOR

B-21. Function name: SAVE
Purpose: Save memory to a device
Call address: $FFD8
Communication registers: .A, .X, .Y
Preparatory routines: SETLFS, SETNAM
Error returns: 5,8,9
Stack requirements: None
Registers affected: A, X, .Y
Description: This routine saves a section of memory. Memory is

saved from an indirect address on page O specified by the

accumulator to the address stored in the .X and .Y registers to a
logical file (an input/output device). The SETLFS and SETNAM
routines must be used before calling this routine. However, a file
name is not required to SAVE to device 1 (the cassette tape
recorder). Any attempt to save to other devices without using a file
name results in an error.
NOTE: Device 0 (the keyboard) and device 3 (the screen) cannot
be SAVEd to. If the attempt is made, an error will occur, and the
SAVE stopped.

How to use:

0) Usethe SETLFS routine and the SETNAM routine (unless a
SAVE with no file name is desired on a save to the tape recorder).

1) Load two consecutive locations on page 0 with a pointer to
the start of your save (in standard 6502 low byte first, high byte next
format).

2) Load the accumulator with the single byte page zero offset to
the pointer.

3) Loadthe .X and.Y registers with the low byte and high byte
respectively of the location of the end of the save.

4) Call this routine.

EXAMPLE:
LDA #1 ;DEVICE=1: CASSETTE
JSR SETLFS
LDA #0 ;NO FILE NAME
JSR SETNAM
LDA PROG ;LOAD START ADDRESS OF SAVE
STA TXTTAB ; (LOW BYTE)
LDA PROG +1
STA TXTTAB+1 (HIGH BYTE)
200

(™)



LDX VARTAB ;Load .X WITH LOW BYTE OF END OF SAVE
LDY VAR

TAB+1 ; .Y WITH HIGH BYTE

LDA

#<TXTTAB  ;LOAD ACCUMLATOR WITH PAGE 0 OFF-
SET

JSR SAVE

B-22. Function name: SCNKEY

Purpose: Scan the keyboard

Call address: $FF9F

Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: A, X, .Y

Description: This routine will scan the VIC keyboard and check
for pressed keys. It is the same routine called by the interrupt
handler. If a key is down, its ASCII value is placed in the keyboard

queue.
How to use:
1) Call this routine
EXAMPLE:
GET JSR SCNKEY ;SCAN KEYBOARD
JSR GETIN :GET CHARACTER
CMP #0 ;IS IT NULL?
BEQ GET ;YES. . .SCAN AGAIN

JSR CHROUT  PRINT IT

B-23. Function name: SCREEN

Purpose: Return screen format

Call address: $FFED

Communication registers: X,.Y

Preparatory routines: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine returns the format of the screen, e.g.,
22 columns in .X and 23 lines in .Y. This routine can be used to
determine what machine a program is running on, and has been
implemented on the VIC to help upward compatibility in programs.

How to use:

1) Call this routine.

EXAMPLE:
JSR SCREEN
201



STX MAXCOL
STY MAXROW

B-24. Function name: SECOND
Purpose: Send secondary address for LISTEN
Call address: $FF93
Communication registers: .A
Preparatory routines: LISTEN
Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine is used to send a secondary address
to an I/O device after a call to the LISTEN routine is made, and the
device commanded to LISTEN. The routine cannot be used to send
a secondary address after a call to the TALK routine.

A secondary address is usually used to give set-up information to
a device before /O operations begin.

When a secondary address is to be sent to a device on the serial
bus, the address must first be ORed with $60.

How to use:

1) Load the accumulator with the secondary address to be
sent.

2) Call this routine.

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECONDARY
ADDRESS) #15

LDA #8

JSR LISTEN

LDA #15

ORA #60

JSR SECOND

B-25. Function name: SETLFS

Purpose: Set up a logical file

Call address: $FFBA

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description: This routine will set the logical file number, device
address, and secondary address (command number) for other
KERNAL routines.

The logical file number is used by the system as a key to the file
table created by the OPEN file routine. Device addresses can

202

e

Tl

hadh



range from 0 to 30. The following codes are used by the VIC to
stand for the following CBM devices.

ADDRESS DEVICE

Keyboard

Cassette #1

RS-232C device

CRT display

Serial Bus printer

CBM Serial bus disk drive

Device numbers 4 or greater automatically refer to devices onthe
serial bus.

A command to the device is sent as a secondary address on the
serial bus after the device number is sent during the serial attention
handshaking sequence. If no secondary address is to be sent, the
.Y index register should be set to 255.

How to use:

1) Load the accumulator with the logical file number.

2) Load the .X index register with the device number.

3) Load the .Y index register with the command.

EXAMPLE:
For logical file 32, device #4, and no command:

LDA #32
LDX #4
LDY #255
JSR SETLFS

B-26. Function name: SETMSG

Purpose: Control system message output

Call address: $FF90

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A

Description: This routine controls the printing of error and
control messages by the KERNAL. Either print error messages or
print control messages can be selected by setting the accumulator
when the routine is called. FILE NOT FOUND is an example of an
error message. PRESS PLAY ON CASSETTE is an example of a
control message.

Bits 6 and 7 of this value determine where the message will come
from. If bit 7 is 1, one of the error messages from the KERNAL will
be printed. If bit 6 is set, a control message will be printed.

203

oL WON-—-O



How to use:

1) Set accumulator to desired value.
2) Call this routine.

EXAMPLE:

LDA #%40

JSR SETMSG ;TURN ON CONTROL MESSAGES
LDA #$80 :
JSR SETMSG TURN ON ERROR MES-
SAGES

LDA #0

JSR SETMSG ;TURN OFF ALL KERNAL MESSAGES

B-27. Function name: SETNAM

Purpose: Set up file name

Call address: $FFBD

Communication registers: .A, .X, .Y

Preparatory routines: None

Stack requirements: None

Registers affected: None

Description: This routine is used to set up the file name for the
OPEN, SAVE, or LOAD routines. The accumulator must be loaded
with the length of the file name. The .X and .Y registers must be
loaded with the address of the file name, in standard 6502 low byte,
high byte format. The address can be any valid memory address in
the system where a string of characters for the file name is stored. If
no file name is desired, the accumulator must be set to 0,
representing a zerofile length. The .X and .Y registers may be setto
any memory address in that case.

How to use:

1) Load the accumulator with the length of the file name.

2) Load the .X index register with the low order address of the
file name.

3) Load the .Y index register with the high order address.

4) Call this routine.

EXAMPLE:
LDA #NAME2-NAME ;LOAD LENGTH OF FILE NAME
LDX #<NAME
LDY #>NAME
JSR SETNAM

B-28. Function name: SETTIM
Purpose: Set the system clock
Call address: $FFDB

204

-3

(S

4

-8



Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description: A system clock is maintained by an interrupt
routine that updates the clock every 1/60th of a second (one ‘jiffy’).
The clock is three bytes long, which gives it the capability to count
up to 5,184,000 jiffies (24 hours). At that point the clock resets to
zero. Before calling this routine to set the clock, the accumulator
must contain the most significant byte, the .X index register the next
most significant byte, and the .Y index register the least significant
byte of the initial time setting (in jiffies).

How to use:

1) Load the accumulator with the MSB of the 3 byte number to
set the clock.

2) Load the .X register with the next byte.

3) Load the .Y register with the LSB.

4) Call this routine.

EXAMPLE:
SET THE CLOCK TO 10 MINUTES = 3600 JIFFIES
LDA #0 ; MOST SIGNIFICANT
LDX #>3600
LDY #<3600 ; LEAST SIGNIFICANT
JSR SETTIM

B-29. Function name: SETTMO

Purpose: Set serial bus timeout flag

Call address: $FFA2

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description: This routine sets the timeout flag for the serial bus.
When the timeout flag is set, the VIC will wait for a device on the
serial port for 64 milliseconds. If the device does not respond to the
VIC’s DAV signal within that time the VIC will recognize an error
condition and leave the handshake sequence. When this routine is
called when the accumulator contains a 0 in bit 7, timeouts are
enabled. A 1 in bit 7 will disable the timeouts. NOTE: The VIC uses
the timeout feature to communicate that a disk file is not found on an
attempt to OPEN a file.

205



How to use:
TO SET THE TIMEOUT FLAG

1) Set bit 7 of the accumulator to 0.
2) Call this routine.

TO RESET THE TIMEOUT FLAG

1) Set bit 7 of the accumulator to 1.
2) Call this routine.

EXAMPLE:

;DISABLE TIMEOUT
LDA #0
JSR SYSTMO

B-30. Function name: STOP

Purpose: Check if stop key is pressed

Call address: $FFE1

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: .A, .X

Description: If the STOP key on the keyboard is pressed when
this routine is called, the Z flag will be set. All other flags remain
unchanged. If the STOP key is not pressed then the accumulator
will contain a byte representing the last row of the keyboard scan.
The user can also check for certain other keys this way.

How to use this routine:

1) Call this routine.

2) Test for the zero flag.

EXAMPLE:
JSR STOP
BNE *+5 ;KEY NOT DOWN
JMP READY ;=...STOP

B-31. Function name: TALK
Purpose: Command a device on the serial bus to TALK
Call address: $FFB4
Communication registers: .A
Preparatory routines: None
Error returns: See READST
Stack requirements: None
Registers affected: .A

206



Description: To use this routine the accumulator must first be
loaded with a device number between 4 and 30. When called, this
routine then ORs bit by bits to convert this device number to a talk
address. Then this data is transmitted as a command on the Serial
bus.

How to use:

0)

1) Load the accumulator with the device number.

2) Call this routine.

EXAMPLE:

;COMMAND DEVICE #4 TO TALK
LDA #4
JSR TALK

B-32. Function name: TKSA

Purpose: Send a secondary address to a device commanded to
TALK

Call address: $FF96

Communication registers: .A

Preparatory routines: TALK

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine transmits a secondary address on the
serial bus for a TALK device. This routine must be called with a
number between 4 and 31 in the accumulator. The routine will send
this number as a secondary address command over the serial bus.
This routine can only be called after a call to the TALK routine. It will
not work after a LISTEN.

How to use:

0) Use the TALK routine.

1) Load the accumulator with the secondary address.

2) Call this routine.

EXAMPLE:

;TELL DEVICE #4 TO TALK WITH COMMAND #7
LDA #4

JSR TALK

LDA #7

JSR TALKSA

207



B-33. Function name: UDTIM
Call address: $SFFEA

Purpose: Update the system clock

Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X

Description: This routine updates the system clock. Normally
this routine is called by the normal KERNAL interrupt routine every
1/60th of a second. If the user program processes its own interrupts
this routine must be called to update the time. Also, the STOP key
routine must be called, if the stop key is to remain functional.

How to use:

1) Call this routine.

EXAMPLE:
JSR UDTIM

B-34. Function name: UNLSN

Purpose: Send an UNLISTEN command

Call address: $FFAE

Communication registers: None

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine commands all devices on the serial
bus to stop receiving data from the VIC. (i.e., UNLISTEN). Calling
this routine results in an UNLISTEN command being transmitted on
the serial bus. Only devices previously commanded to listen will be
affected. This routine is normally used after the VIC is finished
sending data to external devices. Sending the UNLISTEN will
command the listening devices to get off the serial bus so it can be
used for other purposes.

How to use:

1) Call this routine.

EXAMPLE:
JSR UNLSN

208

pud

[

[=L]

==

L5t 4



B-35. Function name: UNTLK

Purpose: Send an UNTALK command

Call address: $FFAB

Communication registers: None

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine will transmit an UNTALK command on
the serial bus. All devices previously set to TALK will stop sending
data when this command is received.

How to use:

1) Call this routine.

EXAMPLE:
JSR UNTALK

B-36. Function name: VECTOR

Purpose: Manage RAM vectors

Call address: $FF8D

Communication registers: .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine manages all system vector jump
addresses stored in RAM. Calling this routine with the accumulator
carry bit set will store the current contents of the RAM vectors in a
list pointed to by the .X and .Y registers. When this routine is called
with the carry clear, the user list pointed to by the .X and .Y registers
is transferred to the system RAM vectors. NOTE: This routine
requires caution in its use. The best way to use it is to first read the
entire vector contents into the user area, alter the desired vectors,
and then copy the contents back to the system vectors.

How to use:

READ THE SYSTEM RAM VECTORS

1) Set the carry.

2) Setthe .X and .Y registers to the address to put the vectors.

3) Call this routine.

209



LOAD THE SYSTEM RAM VECTORS

1) Clear the carry bit.

2) Setthe.Xand.Y registers to the address of the vector list in
RAM that must be loaded

3) Call this routine.

EXAMPLE:

CHANGE THE INPUT ROUTINES TO NEW SYSTEM
LDX #<USER
LDY #>USER
SEC
JSR VECTOR  ;read old vectors
LDA #<MYINP ;change input
STA USER+10
LDA #>MYINP
STA USER+ 11
LDX #<USER
LDY #>USER
CLC
JSR VECTOR  ;alter system

USER *=*+26

ERROR CODES

The following is a list of error messages which can occur when
using the KERNAL routines. If an error occurs during a KERNAL
routine, the carry bit of the accumulator is set, and the number of the
error message is returned in the accumulator.

NUMBER MEANING

Routine terminated by the STOP key
Too many open files

File already open

File not open

File not found [
Device not present

File is not an input file
File is not an output file
File name is missing
lllegal device number

oo~ WON=O

210



KERNAL POWER UP ACTIVITIES

1) KERNAL checks for the presence of ROM at $A000

The KERNAL looks in memory at $A000 for the AUTO START
ROM SEQUENCE. If this sequence is present, control is
transferred to the ROM program.

If this AUTO START ROM code is not present normal system
initialization continues.

2) RAM test

The RAM TEST routine first clears memory from $0000-$00FF
and from $0200-$03FF. The cassette buffer pointer is initialized to
$033C.

The RAM test starts at location $0400 and works upward,
checking for the first byte of RAM memory (start-of-RAM). If this
location is greater than $1000, then memory is considered bad and
an error screen is shown.

Once the test has found the start of RAM it continues, checking
upward for the first non-RAM location (top-of-RAM). If this location
is <$2000, then memory is considered bad and an error screen is
shown.

If the top-of-RAM location is greater or equal to $2100, then the
screen is set to start at $1000, the bottom-of-memory is set to
$1200, and the top-of-memory is set to the top-of-RAM location.

If the top-of-RAM location is less than $2100, then the screen is
set to start at $1E00, the bottom-of-memory is set to start-of-RAM,
and the top-of-memory is set to $1E00.

3) Other Activities

I/0O vectors are set to default values.

The indirect jump table in low memory is established.

The GETCHAR routine is created on page zero.

The screen is then cleared, and the ‘BYTES FREE' power up
message is displayed. Control of the system is turned over to
BASIC and the user.

211



VIC CHIPS

6560 VIDEO INTERFACE CHIP

The 6560 Video Interface Chip (VIC) is designed for color video
graphics applications such as low cost CRT terminals, biomedical
monitors, control system displays and arcade or home video
games. It provides all of the circuitry necessary for generating color
programmable character graphics with high screen resolution. VIC
also incorporates sound effects and A/D converters for use in a
video game environment.

FEATURES

® Fully expandable system with a 16K byte address space

e System uses industry standard 8 bit wide ROMS and 4 bit wide
RAMS

® Mask programmable sync generation, NTSC-6560, PAL-6561

@ On-chip color generation (16 colors)

e Up to 600 independently programmable and movable back-
ground locations on a standard TV

e Screen centering capability

® Screen grid size up to 192 Horizontal by 200 Vertical dots

® Two selectable graphic character sizes

@ On-chip sound system including:
a) Three independent, programmable tone generators
b) White noise generator
¢) Amplitude modulator

e Two on-chip 8 bit A/D converters

@ ON-chip DMA and address generation

e No CPU wait states or screen hash during screen refresh

@ |nterlaced/Non-Interlaced switch

® 16 addressable control registers

e Light gun/pen for target games

e 2 modes of color operation

212



PIN CONFIGURATION

6560

N.C. O
COMP COLOR [
SYNC & LUMIN O
RW O

DB, O

DBW C

DB, O

DB, O

DB, O

oB, G

DB, g

DB, O

DB, O

DB, O

DB, O

0B, G

POT X O

POT Y O

COMP SND ([

Ve

SS

—

© O N O s W N

10
11
12
13

40
39

37

35
34
33
32

30
29
28
27
26
25
24
23
22
21

:] VDD
0 o IN
0 ¢, IN
0 OPTION
0 Po,
0 Po,
0 A
: A!?
[ A,
D A,
A

D A,

0 A,

0 A

O A,
DA,
DA,
DA,
A,

D0 A

A: Interlace mode: A normal video frame is sent to the TV 60
times each second. Interlace mode cuts the number of repetitions
in half. When used with multiplexing equipment, this allows the VIC
picture to be blended with a picture from another source.

To turn off: POKE 36864, PEEK(36864) AND 127

To turn on: POKE 36864, PEEK(36864) OR 128

B: Screen origin—horizontal: This determines the positioning
of the image on the TV screen. The normal value is 5. Lowering the
value moves the screen to the left, and increasing it moves the

image to the right.

To change value: POKE 36864, PEEK(36864) AND 128 OR X

213



VIC CHIP

LOC START VALUE-5K VIC Bit

Hex Binary Decimal Function
9000 | 00000101 5 ABBBBBBB
9001 00011001 25 Cccccccce
9002 | 10010110 150 HDDDDDDD
9003 | v0101110 46 or 176 GEEEEEEF
9004 | wvvvvvwy v GGGGGGGG
9005 | 11110000 240 HHHHIII

9006 | 00000000 0 JJIJIJUJ
9007 | 00000000 0 KKKKKKKK
9008 | 11111111 255 LLLLLLLL
9009 | 11111111 255 MMMMMMMM
900A | 00000000 0 NRRRRRRR
900B | 00000000 0 OSSSSSSS
900C | 00000000 0 PTTTELET
900D | 00000000 0 QuUUUUUUU
900E | 00000000 0 WWWWVVVV
900F | 00011011 27 XXXXYZZZ

A: Interlace mode: 0 = off,
1=o0n

B: Screen origin—horizontal

C: Screen origin—vertical

D: Number of video columns

E: Number of video rows

F: Character size: 0=8x8,
1=8x16

G: Raster value

H: Screen memory location

I: Character memory location

J: Light pen—horizontal

K: Light pen—vertical

L: Paddle 1

M: Paddle 2

: Bass sound switch

: Alto sound switch

: Soprano sound switch
: Noise switch

: Bass Frequency

. Alto Frequency

: Soprano Frequency

: Noise Frequency

: Loudness of sounds
W: Auxiliary color

X: Screen color

Y: Reverse mode: 0 =o0n, 1 =off
Z: Border color

=l et i p Lot Y o g e e

C: Screen origin—vertical:

This determines the up-down

placement of the screen image. The normal value is 25. Lower-
ing this causes the screen to move up by 2 rows of dots for
each number lowered, and raising it moves the screen down.
To change value: POKE 36865, X
D: Number of video columns: Normally, this is set to 22.

214




Changing this will change the display accordingly. Numbers over
27 will give a 27 column screen. The cursor controls are based on a
fixed number of 22 columns, and changing this number makes the
cursor controls misbehave.

To change: POKE 36866, PEEK(36866) AND 128 OR X.

E: Number of video rows: The number of rows may range from
0 to 23. A larger number of rows causes garbage to appear on the
bottom of the screen.

To change: POKE 36867, PEEK(36867) AND 129 OR (X*2)

F: Character size: This bit determined the size of the matrix
used for each character. A 0 here sets normal mode, in which
characters are 8 by 8 dots. A 1 sets 8 by 16 mode, where each
character is now twice as tall. 8 by 16 mode is normally used for
high resolution graphics, where it is likely to have many unique
characters on the screen.

To set 8 by 8 mode: POKE 36867, PEEK(36867) AND 254

To set 8 by 16 mode: POKE 36867, PEEK(36867) OR 1

G: Raster value: This number is used to synchronize the light
pen with the TV picture.

H: Screen memory location: This determines where in memory
the VIC keeps the image of the screen. The highest bit in location
36869 must be a 1. Bits 4-6 of location 36869 are bits 10-12 of the
screen’s address, and bit 7 of location 36866 is bit 9 of the address
of the screen. To determine the location of the screen, use the
formula:

S = 4" (PEEK (36866) AND 128) + 64* (PEEK (36869) AND

112)
Note that bit 7 of location 36866 also determines the location of
color memory. If this bit is a 0, color memory starts at location
37888. If this bit is a 1, color memory begins at 38400. Here is a
formula for this:

C = 37888 + 4" (PEEK (36866) AND 128)

I: Character memory location: This determines where
information on the shapes of characters are stored. Normally this
pointer is to the character generator ROM, which contains both the
upper case/graphics or the upper/lower case set. However, a
simple POKE command can change this pointer to a RAM location,
allowing custom character sets and high resolution graphics.

To change: POKE 36869, PEEK(36869) AND 15 OR(X*16)

(See chart on next page.)

J: Light pen horizontal: This contains the latched number of the
dot under the light pen, from the left of the screen.

K: Light pen vertical: The latched number of the dot under the
pen, counted from the top of the screen.

215



X Location Contents
Value | HEX |Decimal
0 8000 | 32768 | Upper case normal characters
1 8400 | 33792 | Upper case reversed characters
2 8800 | 34816 | Lower case normal characters
3 8C00 | 35840 | Lower case reversed characters
4 9000 | 36864 | unavailable
5 9400 | 37888 | unavailable
6 9800 | 38912 | VIC chip-unavailable
7 9400 | 39936 | ROM-unavailable
8 0000 0 unavailable
9 —— | —— | unavailable
10 —— | —— | unavailable
11 —— | —— | unavailable
12 1000 | 4096 | RAM
13 1400 | 5120 | RAM
14 1800 6144 RAM
15 1C00 | 7168 | RAM

L: Paddle X: This contains the digitized value of a variable
resistance (game paddle). The number reads from O to 255.

M: Paddle Y: Same as Paddle X, for a second analog input.

N: Bass switch: If this bitis a 0, no sound is played from Voice 1.
A 1 in this bit results in a tone determined by Frequency 1.

To turn on: POKE 36874, PEEK(36874) OR 128

To turn off: POKE 36874, PEEK(36874) AND 127

0: Alto switch: See Bass switch.

To turn on: POKE 36875, PEEK(36875) OR 128

To turn off: POKE 36875, PEEK(36875) AND 127

P: Soprano switch: See Bass switch.

To turn on: POKE 36876, PEEK(36876) OR 128

To turn off: POKE 36876, PEEK(36876) AND 127

Q: Noise switch: See Bass switch.

To turn on: POKE 36877, PEEK(36877) OR 128

To turn off: POKE 36877, PEEK(36877) AND 127

R: Bass Frequency: This is a value corresponding to the
frequency of the tone being played. The larger the number, the
higher the pitch of the tone.

The actual frequency of the sound in cycles per second (hertz) is
determined by the following formula:

Clock
Frequency =(1 27— X)

216



X is the number from 0 to 127 that is put into the frequency
register. If X is 127, then use — 1 for X in the formula. The value of
Clock comes from the following table:

Register NTSC (US TV’s) PAL (European)
36874 3995 4329
36875 7990 8659
36876 15980 17320
36877 31960 34640

To set: POKE 36874, PEEK(36874) AND 128 OR X

S: Alto Frequency: This is a value corresponding to the
frequency of the tone being played. The larger the number, the
higher the pitch of the tone.

T: Soprano Frequency: This is a value corresponding to the
frequency of the tone being played. The larger the number, the
higher the pitch of the tone.

To set: POKE 36876, PEEK(36876) AND 128 OR X

U: Noise Frequency: This is a value corresponding to the
frequency of the noise being played. The larger the number, the
higher the pitch of the noise.

To set: POKE 36877, PEEK(36877) AND 128 OR X

V: Loudness of sounds: This is the volume control for all the
sounds playing. 0 is off, and 15 is the loudest sound.

To set: POKE 36878, PEEK(36878) AND 240 OR X

W: Auxiliary color: This register holds the color number of the
auxiliary color. The value can be from 0 to 15.

To set: POKE 36878, PEEK(36878) AND 15 OR (16*X)

X: Screen color: A number from 0 to 15 sets the color of the
screen.

To set: POKE 36879, PEEK(36879) AND 240 OR X

Y: Reverse mode: A 1 in this bit indicates normal characters,
and a 0 here causes all characters to be displayed as if reversed.

To turn on reverse mode: POKE 36879, PEEK(36879) AND 247

To turn off reverse mode: POKE 36879, PEEK(36879) OR 8

Z: Border color: A number from 0 to 7 sets the color of the
screen.

To set: POKE 36879, PEEK(36879) AND 248 OR X

217



6522 VERSATILE INTERFACE ADAPTER

The 6522 Versatile Interface Adapter (VIA) provides the VIC with
two peripheral ports with input latching, two powerful interval
timers, and a serial-to-parallel/parallel-to-serial shift register.

Basically, the VIC chip handles Audio/Video input/output, and
the 6522 handles the rest. . .cassette operations, joysticks,
RS-232, and user port.

6522 Versatile Interface Adapter Description

ADDRESS DESCRIPTION REGISTER
9110 Port B AAAAAAAA
9111 Port A (with handshaking) | BBBBBBBB
9112 Data Direction B CCCCCCCC
9113 Data Direction A DDDDDDDD
9114 Timer #1, low byte EEEEEEEE
9115 Timer #1, high byte FFFFFFFF

9116 Timer #1, low byte to load | GGGGGGGG
9117 Timer #1, high byte to load | HHHHHHHH

9118 Timer #2, low byte T

9119 Timer #2, high byte JJdJdddddd
911A Shift Register KKKKKKKK
911B Auxiliary Control LLMNNNOP
911C Peripheral Control QQQRSSST
911D Interrupt Flags UVWXYZab
911E Interrupt Enable cdefghij
911F Port A (no handshaking) kkkkkkkk

PORT A I/O REGISTER

These eight bits are connected to the eight pins which make up
port B. Each pin can be set for either input or output.

Input latching is available on this port. When latch mode is
enabled the data in the register freezes when the CB1 interrupt flag
is set. The register stays latched until the interrupt flag is cleared.

Handshaking is available for output from this port. CB2 will act as
a DATA READY SIGNAL. This must be controlled by the user
program. CB1 acts as the DATA ACCEPTED signal, and must be
controlled by the device connected to the port. When DATA
ACCEPTED is sent to the 6522, the DATA READY line is cleared,
and the interrupt flag is set.

218

(=4

[



PORT B /0 REGISTER

These eight bits are connected to the eight pins which make up
port A. Each pin can be set for either input or output. Handshaking is
available for both read and write operations. Write handshaking is
similar to that on PORT B. Read handshaking is automatic. The
CA1 input pin acts as a DATA READY signal. The CA2 pin (used for
output) is used for a DATA ACCEPTED signal. When a DATA
READY signal is received a flag is set. The chip can be set to
generate an interrupt or the flag can be polled under program
control. The DATA ACCEPTED signal can either be a pulse oraDC
level. It is set low by the CPU and cleared by the DATA READY
signal.

DATA DIRECTION FOR PORT B

This register is used to control whether a particular bitin PORT B
is used for input or output. Each bit of the data direction register
(DDR) is associated with a bit of port B. If a bitinthe DDR is setto 1,
the corresponding bit of the port will be an OUTPUT. If a bit in the
DDR is 0, the corresponding bit of the port will be an INPUT.

For example, ifthe DDR is setto 7, port B will be set up as follows:

BITS NUMBER DDR PORT B FUNCTION

0 1 OUTPUT
1 1 OUTPUT
2 1 OUTPUT
3 0 INPUT
4 0 INPUT
5 0 INPUT
6 0 INPUT
7 0 INPUT

DATA DIRECTION REGISTER FOR PORT A

This is similar to the DDR for port B, except that it works on PORT
A.

E,F,G,H: TIMER CONTROLS

There are two timers on the 6522 chip. The timers can be set to
count down automatically or count pulses received by the VIA. The
mode of operation is selected by the Auxiliary Control register.

TIMER T1 on the 6522 consists of two 8-bit latches and a 16-bit
counter. The various modes of the TIMER are selected by setting
the AUXILIARY CONTROL REGISTER (ACR). The latches are

219



used to store a 16-bit data word to load into the counter. Loading a
number into the latches does not affect the count in progress.

Afteritis set, the counter will begin decrementing at 1MHz. When
the counter reaches zero, an interrupt flag will be set, and the IRQ
will go low. Depending on how the TIMER is set, either further
interrupts will be disabled, or it will automatically load the two
latches into the counter and continue counting. The TIMER can
also be set to invert the output signal on a peripheral pin each time it
reaches zero and resets.

The TIMER locations work differently on reading and writing.

WRITING TO THE TIMER:

E: Write into the low order latch. This latch can be loaded into the
low byte of the 16-bit counter.

F: Write into the high order latch, write into the high order counter,
transfer low order latch into the low order counter, and reset the
TIMER T1 interrupt flag. In other words, when this location is set the
counter is loaded.

G: Same as E.

H: Write into the high order latch and reset the TIMER T1
interrupt flag.

READ TIMER T1

E: Readthe TIMER T1 low order counter and reset the TIMER
T1 interrupt flag.

F: Read the TIMER T1 high order counter.

G: Read the TIMER T1 low order latch.

H: Read the TIMER T1 high order latch.

TIMER T2

This TIMER operates as an interval timer (in one-shot mode), or
as a counter for counting negative pulses on PORT B pin 6. A bit in
the ACR selects which mode TIMER T2 is in.

WRITING TO TIMER T2

I: Write TIMER T2 low order byte of latch.

J: Write TIMER T2 high order counter byte, transfer low order
latch to low order counter, clear TIMER T2 interrupt flag.
READING TIMER T2

I: Read TIMER T2 low order counter byte, and clear TIMER T2
interrupt flag.

220

-

(=1}

-



J: Read TIMER T2 high order counter byte.
K: SHIFT REGISTER

A shift register is a register which will rotate itself through the CB2
pin. The shift register can be loaded with any 8-bit pattern which can
be shifted out through the CB1 pin, or input to the CB1 pin can be
shifted into the shift register and then read. This makes it highly
useful for serial to parallel and parallel to serial conversions.

The shift register is controlled by bits 2-4 of the Auxiliary Control
register.

L,M,N,O,P: AUXILIARY CONTROL REGISTER

L: TIMER 1 CONTROL

BIT# 7 6
0 0 One-shot mode (output to PB7 disabled)
0 1 Free running mode (output to PB7 disabled)
1 0 One-shot mode (output to PB7 enabled)
1 1 Free running mode (output to PB7 enabled)

M: TIMER 2 CONTROL

TIMER 2 has 2 modes. If this bit is'0, TIMER 2 acts as an interval
timer in one-shot mode. If this bit is 1, TIMER 2 will count a
predetermined number of pulses on pin PB6.

N: SHIFT REGISTER CONTROL

BIT# 4 3 2

0 0 O SHIFT REGISTER DISABLED

0 0 1 SHIFT IN (FROM CB1) UNDER CON-
TROL OF TIMER 2

0 1 0 SHIFT IN UNDER CONTROL OF SYS-
TEM CLOCK PULSES

0 1 1 SHIFT IN UNDER CONTROL OF EX-
TERNAL CLOCK PULSES

1 0 0 FREE RUN MODE AT RATE SET BT
TIMER 2

1 0 1 SHIFT OUT UNDER CONTROL OF
TIMER 2

1 1 0 SHIFT OUT UNDER CONTROL OF
SYSTEM CLOCK PULSES

1 1 1 SHIFT OUT UNDER CONTROL OF
EXTERNAL CLOCK PULSES

221



O: PORT B LATCH ENABLE

As long as this bit is 0, the PORT B register will directly reflect the
data on the pins.

If this bit is set to one, the data present on the input pins of PORT
A will be latched within the chip when the CB1 INTERRUPT FLAG
is set. As long as the CB1 INTERRUPT FLAG is set, the data on the
pins can change without affecting the contents of the PORT B
register. Note that the CPU always reads the register (the latches)
rather than the pins.

Input latching can be used with any of the input or output modes
available for CB2.

P: PORT A LATCH ENABLE

As long as this bitis 0, the PORT A register will directly reflect the
data on the pins.

If this bit is set to one, the data present on the input pins of PORT
A will be latched within the chip when the CA1 INTERRUPT FLAG
is set. As long as the CA1 INTERRUPT FLAG is set, the data on the
pins can change without affecting the contents of the PORT A
register. Note that the CPU always reads the register (the latches)
rather than the pins.

Input latching can be used with any of the input or output modes
available for CA2.

Q,R,S,T THE PERIPHERAL CONTROL REGISTER
Q: CB2 CONTROL

Q Q@ a
BIT# 7 6 5 DESCRIPTION

0 0 O |Interrupt Input Mode

0 0 1 Independent Interrupt Input Mode

0 1 0 Input Mode

0 1 1 Independent Input Mode

1 0 0 Handshake Output Mode

1 0 1 Pulse Output Mode

1 1 0 Manual Output Mode (CB2 is held
LOW)

1 1 1 Manual Output Mode (CB2 is held
HIGH)

INTERRUPT INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a negative
(high-to-low) transition on the CB2 input line. The CB2 interrupt bit
will be cleared on a read or write to PORT B.

222

[T

(=¥ ]

e



INDEPENDENT INTERRUPT INPUT MODE:

As above, the CB2 interrupt flag will be set on a negative
transition on the CB2 input line. However, reading or writing to
PORT B does not clear the flag.

INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a positive
(low-to-high) transition of the CB2 line. The CB2 flag will be cleared
on a read or write of PORT B.

INDEPENDENT INPUT MODE:

As above, the CB2 interrupt flag will be set on a positive transition
on the CB2 line. However, reading or writing PORT B does not
affect the flag.

HANDSHAKE OUTPUT MODE:
The CB2 line will be set low on a write to PORT B. It will be reset
high again when there is an active transition on the CB1 line.

PULSE OUTPUT MODE:

The CB2 line is set low for one cycle after a write to PORT B.

MANUAL OUTPUT MODE:
The CB2 line is held low.

MANUAL OUTPUT MODE:
The CB2 line is held high.

R: CB1 CONTROL

This bit selects the active transition of the input signal applied to
the CB1 pin. If this bit is 0, the CB1 interrupt flag will be set on a
negative transition (high-to-low). If this bit is a 1, the CB1 interrupt
flag will be set on a positive (low-to-high) transition.

S: CA2 CONTROL

S SS
BIT# 3 2 1 DESCRIPTION
0 0 0 Interrupt Input Mode
0 O 1 Independent Interrupt Input Mode
0 1 0 Input Mode
0 1 1 Independent Input Mode

223



Handshake Output Mode

Pulse Output Mode

1 1 0 Manual Output Mode (CA2 is held
LOW)

1 1 1 Manual Output Mode (CA2 is held

HIGH)

o o
- O

INTERRUPT INPUT MODE:

The CA2 interrupt flag (IFR bit 0) will be set on a negative
(high-to-low) transition on the CA2 input line. The CA2 interrupt bit
will be cleared on a read or write to PORT A.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CA2 interrupt flag will be set on a negative
transition on the CA2 input line. However, reading or writing to
PORT A does not clear the flag.

INPUT MODE:

The CA2 interrupt flag (IFR bit 0) will be set on a positive
(low-to-high) transition of the CA2 line. The CA2 flag will be cleared
on a read or write of PORT A.

INDEPENDENT INPUT MODE:

As above, the CA2 interrupt flag will be set on a positive transition
on the CA2 line. However, reading or writing PORT A does not
affect the flag.

HANDSHAKE OUTPUT MODE:

The CA2line will be set low on aread or write to PORT A. It will be

reset high again when there is an active transition on the CA1 line.

PULSE OUTPUT MODE:

The CA2 line is set low for one cycle after a read or write to PORT
A.

MANUAL OUTPUT MODE:
The CA2 line is held low.

MANUAL OUTPUT MODE:
The CA2 line is held high.

224



T: CA1 CONTROL

This bit of the PCR selects the active transition of the input signal
appliedtothe CA1 input pin. If this bitis 0, the CA1 interrupt flag (Bit)
will be set by a negative transition (high-to-low) on the CA1 pin. If
this bit is 1, the CA1 interrupt flag will be set by a positive transition
(low-to-high).

There are two registers associated with interrupts: The
INTERRUPT FLAG REGISTER (IFR) and the INTERRUPT
ENABLE REGISTER (IER). The IFR has eight bits, each one
connected to a register in the 6522. Each bit in the IFR has an
associated bit in the IER. The flag is set when a register wants to
interrupt. However, no interrupt will take place unless the
corresponding bit in the |IER is set.

UVWXYZab: INTERRUPT FLAG REGISTER

When the flag is set, the pin associated with that flag is
attempting to interrupt the 6502. Bit U is not a normal flag. It goes
high if both the flag and the corresponding bit in the INTERRUPT
ENABLE REGISTER are set. It can be cleared only by clearing all
the flags in the IFR or disabling all active interrupts in the IER.

SET BY CLEARED BY
U IRQ STATUS
V  TIMER 1 time-out Reading TIMER 1 low order

counter and writing TIMER
1 high order latch

W  TIMER 2 time-out Reading TIMER 2 low order
counter and writing TIMER
2 high order counter

X  CB1 pin active transition Reading or writing PORT B

Y CB2 pin active transition Reading or writing PORT B

Z  Completion of 8 shifts Reading or writing the shift
register

a  CAT1 pin active transition Reading or writing PORT A
(BBBBBBBB in above
chart)

b  CA2 pin active transition Reading or writing PORT A
(BBBBBBBB in above
chart)

cdefghij: INTERRUPT ENABLE REGISTER
c: ENABLE CONTROL
If this bit is a 0 during a write to this register, each 1 in bits 0-6

225



clears the corresponding bit in the IER. If this bit is a 1 during this
register, each 1 in bits 0-6 will set the corresponding |IER bit.
d TIMER 1 time-out enable

TIMER 2 time-out enable

CB1 interrupt enable

CB2 interrupt enable

Shift interrupt enable

CA1 interrupt enable

CA2 interrupt enable

— a0

kkkkkkkk: PORT A
This is similar to BBBBBBBB, except that the handshaking lines
(CA1 and CA2) are unaffected by operations on this port.

226

e



a4

INPUT/OUTPUT GUIDE

e User Port

® The Serial Bus

® Using the VIC
Graphic Printer

e VIC Expansion
Port

e Game Controllers
—Joystick
—Paddles
—Light Pen

e RS-232 Interface

Description







THE USER PORT

The user port is meant to connect the VIC to the outside world. By
using the lines available at this port, you can connect the VIC to a
printer, a Votrax Type and Talk, a MODEM, a second joystick, even
another computer.

The port on the VIC is directly connected to one of the 6522 VIA
chips. By programming, the VIA will connect to many other devices.

Port Pin Description

PIN # DESCRIPTION

UPPER SIDE

1 GROUND

2 +5V (100mA MAX.)

3 RESET By grounding this pin, the VIC will do a

COLD START, resetting completely
and erasing any program in memory.

4 JOY 0 This pin is connected to joystick
switch 0 (See GAME PORT).
5 JOY 1 (See GAME PORT.)
6 JOY 2 (See GAME PORT.)
i LIGHT This pin also acts as the input for the
PEN joystick FIRE button (See GAME PORT).
8 CASSETTE This pin is connected to the SENSE cassette
SWITCH switch line.
9 SERIAL This pin is connected to the ATN IN line
ATN IN of the serial bus.
10 9VAC Connected directly to the VIC transformer
11 & 9VAC
12 GND
BOTTOM SIDE
A GND The VIC gives you complete control over
B CB1 Port B on VIA chip #1. Eight lines for input or
C PBO output are available, as well as 2 lines for
D PB1 handshaking with an outside device. The I/O
E PB2 lines for PORT B are controlled by two
F PB3 locations. One is the PORT itself, and is
H PB4 located at 37136 ($9110 HEX). Naturally you
J PB5 PEEK it to read an INPUT, or POKE it to set
K PB6 an OUTPUT. Each of the eight I/O lines can

229



L PB7 be set up as either an INPUT or an OUTPUT

M CB2 by setting the DATA DIRECTION REGIS-

N GND TER properly. It is located at 37138 ($9112
hex).

Each of the eight lines in the PORT has a BIT in the 8 bit DATA
DIRECTION REGISTER (DDR) which controls whether that line
will be an input or an output. If a bit in the DDR is a ONE, the
corresponding line of the PORT will be an OUTPUT. If a bit in the
DDR is a ZERO, the corresponding line of the PORT will be an
INPUT. For example, if bit 3 of the DDR is set to 1, then line 3 of the
PORT will be an output. As another example, if the DDR is set like

this:

BIT #: 76543210
VALUE: 00111000

You can see that lines 5,4, and 3 will be outputs since those bits are
ones. The rest of the lines will be inputs, since those lines are zeros.

To PEEK or POKE the USER port, it is necessary to use both the
DDR and the PORT itself.

Remember that the PEEK and POKE statements want a number
from 0-255. The numbers given in the example must be translated
into decimal before they could be used. (The value would be: 25 + 2¢
+2° = 32+16+8 =56. See Section 1 on numbers for more
details.)

The other two lines, CB1 and CB2 are different from the rest of
the USER PORT. These two lines are mainly for HANDSHAKING,
and are programmed differently from port B.

Handshaking is needed when two devices communicate. Since
one device may run at a different speed than another device, it is
necessary to give the devices some way of knowing what the other
is doing. Even when the devices are operating at the same speed,
handshaking is necessary to let the other know when data is to be
sent, and if it has been received. Both the CB1 and CB2 lines have
special characteristics which make them well suited for handshak-
ing.

CB1 is usually used as an input (except under SHIFT REGISTER
control). CB2 can be used both for input and output, but is usually
used for output.

It is not possible to read CB1 directly. CB1 is designed to set a
flag (bit 4) in the INTERRUPT FLAG register (located at 37149 or
$911D HEX) when a transition occurs on the CB1 line. Bit 4 of the
PERIPHERAL CONTROL REGISTER (PCR) located at 37148
($911C hex) determines whether CB1 will set the flag on a

230

L

)



low-to-high transition or on a high-to-low transition. Once the CB1
flag is set, it will stay set until you clear it by a Peek or POKE to
PORT B which resets the CB1 flag bit. If bit 4 in the INTERRUPT
ENABLE register is set, and interrupts are enabled, the transition
will also cause an INTERRUPT REQUEST (IRQ).

CB2 is controlled by the PCR. Bits 7,6 control whether CB2 will
be an input or an output. Bit 5 controls the setting of CB2.
BIT # DESCRIPTION
Interrupt Input Mode
Independent Interrupt Input Mode
Input Mode
Independent Input Mode
Handshake Output Mode
Pulse Output Mode
Manual Output Mode (CB2 is held LOW)

7
0
0
0
0
1
1
1
1 Manual Output Mode (CB2 is held HIGH)

- 4 002000
- O—-0O0--0-=0WOU

INTERRUPT INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a negative
(high-to-low) transition on the CB2 input line. The CB2 interrupt bit
will be cleared on a read or write to PORT B.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CB2 interrupt flag will be set on a negative
transition on the CB2 input line. However, reading or writing to
PORT B does not clear the flag.

INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a positive
(low-to-high) transition of the CB2 line. The CB2 flag will be cleared
on a read or write of PORT B.

INDEPENDENT INPUT MODE:

As above, the CB2 interrupt flag will be set on a positive transition
on the CB2 line. However, reading or writing PORT B does not
affect the flag.

HANDSHAKE OUTPUT MODE:

The CB2 line will be set low on a write to PORT B. It will be reset
high again when there is an active transition on the CB1 line.

231



PULSE OUTPUT MODE:
The CB2 line is set low for one cycle after a write to PORT B.

MANUAL OUTPUT MODE:
The CB2 line is held low.

MANUAL OUTPUT MODE:
The CB2 line is held high.

MORE MUSIC FOR THE VIC

Now that you know about the USER PORT, there is little surprise
left. Up to now, the VIC has had 4 musical voices . . . three music
registers and a white noise register. By connecting a small amplifier
and speaker to the USER PORT, and doing a little programming,
you can get another musical voice.

THEORY

Most music is made up of square waves of different amplitudes
and frequencies. One of the functions of the 6522 chip is to
generate square waves through the CB2 line. If we connect the
CB2 line to a speaker, we will be able to hear the square waves
generated by the VIC.

NOTE: Connecting a speaker directly to CB2 may damage your
VIC. You must connect the speaker through an amplifier to protect
the VIC.

PARTS NEEDED

1. Small battery powered speaker/amplifier

2. User Port Connector (12 position, 24 contact edge connector
with .156" spacing

3. Wire

CONNECTING TO YOUR VIC
1. Wirethe GROUND of the amplifier to the GROUND of the USER
PORT (pin N).
2. Wire the SIGNAL of the amplifier to the CB2 output of the USER
PORT (pin M).

You are now ready to add your other voice through a BASIC
program.

232



BASIC PROGRAM STEPS:
1. Set the 6522 shift register to free running mode by:
POKE 37147,16
2. Set the shift rate by:

POKE 37144,C where C is an integer from 0 to 255
C is the note to be played.

3. Load the shift register by:

POKE 37146,D where D =15, 51, or 85 for a square wave.
This step sets the octave for the note.

This step must be done last, since as soon as it is set, the VIC
starts generating the square waves.

The frequency of the square wave can be found by the following
formula:

FREQUENCY = 500000 Hz Where D1=8 when D=15
D1=4 when D=51
Ex2x O D1=2 when D=85

When you are in this mode, the VIC will not read or write to
cassette. To restore normal operations, you must:

POKE 37147,0

The following program demonstrates music using this method.
By hitting a letter the note will be played.

10 PRINT “MUSICAL USING CB2.”

15 PRINT “HIT + TO GO UP AN OCTAVE”

16 PRINT “HIT — TO GO DOWN AN OCTAVE"

17 PRINT: PRINT “USE E TO EXIT.”

20 POKE37147,16:DIMA(30):FORK = 1TO30:READA(K):
NEXT

40 GETAS:IFAS =""THEN40

42 IFA$="E” THEN POKE37147,0:END

45 IFA$="+" THEN SF=SF— (SF<2):G0T040

50 IFA$="—" THEN SF=SF + (SF<0):GOT040

60 A=8—ASC(A$)+64:IF A>7 OR A<1 THEN 40

70 POKE 37144,A(A— (SF=1)*10— (SF =2)*20)

80 POKE37146, — (SF=0)*15— (SF=1)*51 — (SF =2)*85

90 GOTO40

100 DATA 59,61,65,69,73,77,82,87,90,93

110 DATA 99,104,111,117,120,124,132,140,149,157

120 DATA 167,177,182,188,199,211,224,237,244,251

233



THE SERIAL BUS

The serial bus is a daisy chain arrangement designed to let the
VIC communicate with the VIC-1540 DISK DRIVE and the
VIC-1515 GRAPHICS PRINTER. Up to 5 devices can be
connected to the serial bus at one time.

All devices connected on the serial bus will receive all the data
transmitted over the bus. To allow the VIC to route data to its
intended destination, each device has a bus ADDRESS. By using
this device address, the VIC can control access to the bus.
Addresses on the serial bus range from 4 to 31.

The VIC can COMMAND a particular device to TALK or LISTEN.
When the VIC commands a device to TALK, the device will begin

putting data onto the serial bus. When VIC commands a device to
LISTEN, the device addressed will get ready to receive data (from
the VIC or from another device on the bus). Only one device can
TALK on the bus at a time; otherwise the data will collide and the
system will crash in confusion. However, any number of devices
can LISTEN at the same time to one TALKER.

COMMON SERIAL BUS ADDRESSES

Number Device
4o0r5 VIC-1515 GRAPHIC PRINTER
8 VIC DISK DRIVE

Other device addresses are possible. Each device is wired to an
address. Certain devices (like the VIC printer) provide a choice
between two addresses for the convenience of the user.

The SECONDARY ADDRESS is to let the VIC transmit set up
information to a device. For example, to OPEN a connection on the
bus to the printer, and have it printin UPPER/LOWER case, use the
following:

OPEN 1,4,7

Where 1 is the logical file number (the number you PRINT# to)

4 is the ADDRESS of the printer
and 7isthe SECONDARY ADDRESS that tells the printer to
go into UPPER/LOWER case mode.

SERIAL BUS PINOUTS

PIN #
1 SERIAL SRQ IN
2 GND

234



SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
NO CONNECTION

(o204 LI N

SERIAL SRQ IN: (SERIAL SERVICE REQUEST IN)

Any device on the serial bus can bring this signal LOW when it
requires attention from the VIC. The VIC will then take care of the
device.

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The VIC uses this signal to start a command sequence for a
device on the serial bus. When the VIC brings this signal LOW, all
other devices on the bus start listening for the VIC to transmit an
address. The device addressed must respond in a preset period of
time; otherwise the VIC will assume that the device addressed is
not on the bus, and will return an error in the STATUS WORD.

SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)
This signal is used for timing on the serial bus.

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this line.



USING THE VIC GRAPHIC
PRINTER '

The VIC Graphic Printer connects to the serial port on the back of
the VIC and is used for printing out listings of programs, statistical
data, graphs, charts and even graphic plotting. The VIC printer can
also be used with the VICWriter wordprocessing cartridge to write
reports, transcribe school notes, write letters and other documents.

Programmers use dot matrix printers to make paper copies of
program listings which are easier to debug and edit on paper. It's
also helpful to print out text and graphics displayed on the screen
through what is called a “screen dump to the printer.”

Several short programs which demonstrate the use of the printer
are included below. We've even included a special “typing”
program which lets you use the VIC as a typewriter to enter words
or graphics directly from the keyboard.

LISTING DATA ON YOUR VIC PRINTER

The proper format for printing out a listing of a program which
resides in memory is to enter the following line and type RUN.

OPEN4,4:.CMD4:LIST

Note that if you have left a printer file open you will get a FILE
OPEN error. If this happens, type CLOSE4, and hit RETURN. Then
retype the above.

If you're developing a new program, you probably want to list out
each revision so you can edit it on paper before proceeding to the
next step. A good way to do this is to (1) type in your program, (2)
include an END statement at the end of the program, (3) include the
list-to-printer instruction at a high line number above the END
statement, and (4) RUN the line with the printer instruction
whenever you want to list out the program. This technique lets you
RUN and edit your program normally, but it saves you the trouble of
having to type in the LIST line every time you want a listing on
paper. In the following example, if you type RUN, the program will
print out line 10. If you type RUN 5000, the program will list to the
printer.

10 PRINT“THIS IS MY PROGRAM”
20 END
5000 CLOSE4: OPEN4,4:CMD4:LIST

236



VIC GRAPHIC PRINTER COMMAND CHART

The VIC Graphic Printer includes a strong “language” of special
print commands, as described in the following chart. Insert the
CHR$ command to use these commands:

10 PRINT#4,CHR$ (14) “PUT DATA HERE".

PRINT COMMAND DESCRIPTION
CHRS$ (10) Line feed after printing
CHRS$ (13) Carriage return
CHRS$ (8) Graphic mode command
CHRS$ (14) Double width characters
CHRS$ (15) Standard character mode
(type this to get back to normal)
CHRS$ (16) Print start position addressing
CHRS$ (27) When followed by the CHR$ (16) position

code this command is used to specify a
start position by dot address (in contrast to
character address)

CHRS$ (26) Repeat graphic select command

CHR$ (145) Cursor up (Upper case) mode

CHRS$ (17) Cursor down (Upper/Lower case) mode
CHR$ (18) Reverse field on command

CHR$ (146) Reverse field off command

PRINTING DOT PROGRAMMABLE GRAPHICS

There are two fairly easy ways to print your own graphic
characters—in other words, “dot programmable graphics.” One
way is to purchase Commodore's PROGRAMMABLE CHARAC-
TER SET & GAMEGRAPHICS EDITOR, which is available on tape
at an economical price. The other way is to define your own
characters TO THE PRINTER using a character matrix of 7x7
dots. You have to define each character in terms of its binary code
and the best way to do this is to use DATA statements. Look at the
following matrix and decide which dot pattern you would like to
design. A sample is shown. Now, to print this out, you have to add
up the binary values for each column. Count zero for empty blocks,
count the value shown on the left of the pattern if there is a dot there,
then add up all the values for the column. The total of each column
is shown at the bottom in our sample on page 238.

237




PRINTING IN DIRECT MODE

You can use your printer like a typewriter by printing in the DIRECT
MODE. In this mode, the printer prints everything between the
quotation marks including graphics and reversed characters.
Here’'s a sample of how it's done:

SAMPLE PROGRAM

1@ DRTA156,162,193,193,182, 162
28 FORI=1TO6

39 RERDR

42 A$=A$+CHRS(A)

98 NEXT

60 OPEN4,4

70 FORI={TO4

80 PRINT#4,CHR$(B)AS;

90 PRINT#4,CHR$(15)" COMMODORE"
198 NEXT

After typing RUN, you get this result:

¢ COMMODORE
G COMMODORE
¢ COMMODORE
¢ COMMODORE
YOU TYPE: SCREEN DISPLAYS: PRINTER
PRINTS:
OPEN4,4 OPEN4,4 No response.
READY.
CMD4 No Response. READY.

PRINT#4, “HELLO, PRINT#4, “"HELLO, HELLO,LOVE

LOVE i LOVE y

CLOSE4 CLOSE4 READY.
READY.

PRINTING DOUBLE WIDTH CHARACTERS

Double width characters have many applications, from enlarging
graphics on paper to printing bold face headlines and titles. The
following program demonstrates how to use CHR$ (14) to print
double spaced letters . . . and also shows how to get back to normal
letters by typing CHR$ (15).

10 OPEN4,4:PRINT#4,CHR$ (14) "“DOUBLE LETTERS”
20 PRINT#4, “STILL DOUBLE”

238



30 PRINT#4, CHR$ (15) “NORMAL AGAIN”
40 PRINT"HELLO AGAIN IN NORMAL MODE”

(If you change PRINT#4 to CMD4 in line 30 it still works.)

PRINTING REVERSE CHARACTERS

You may use the codes shown in the VIC Graphic Printer
Command chart to tell the printer to print reverse characters by
including these lines:

Reverse On: 10 OPEN4,4: PRINT#4,CHRS (18)

Print Info: 20 PRINT#4, “VIC 20"

Reverse Off: 30 PRINT#4,CHR$(146)

Normal Again: 40 PRINT#4,"VIC 20"

PRINTING WHAT IS DISPLAYED ON THE SCREEN

Type and run these lines as a program or as a subroutine to geta
printout of what is displayed on the screen from your program.
When you use it, add a line or command that says: GOSUB 60000
and enter this program as shown. Lines 10 through 25 are included
to give you an example of how this can work and are not part of the
screen dump program. Your own program would have different
commands here, of course.

You can type different “screens” of information in the course of a
program. One way to do this is to add a line in your program that
would scan the keyboard and look for a function key. Try adding this
line as the first line of your program: 10 GETX$:IFX$ = CHR$ (133)
THEN GOSUBB60000. This line lets you print out whatever is on the
screen whenever you hit Function Key 1.

10 PRINT “SAMPLE"

20 GOSUB60000

25 END

60000 REM SCREEN COPY

60010 R$=CHR$(145):V$=CHRS$(146):0PEN4,
4:PRINT#4:G =PEEK(648)*256:PRINT#4,R$FORP =
GTOG + 505

60020 C=PEEK(P):C$="":IF(P-G)/22=INT((P-G)/22)THEN
PRINT#4,CHR$(8)+ CHR$(13)+CHR$(15);

60030 IFC>128THENC =C-128:C$ =CHR$(18)

60040 IFC<320RC>95THENC =C + 64:GOTO60060

60050 IFC>63ANDC<96THENC=C+ 128

60060 C$=C$+CHRS$(C):IFLEN(C$)>1THENCS=CS$ +
V$+R$

60070 PRINT#4,C3; :NEXT:PRINT#4:CLOSE4:RETURN

239

241



This port is used for expansions of the VIC system which require
access to the address bus or the data bus of the computer. Caution
is necessary when using the expansion bus, as it is possible to
damage the VIC by malfunctioning user equipment.

The signals available on the connector are as follows:

NAME PIN # DESCRIPTION

GND 1 System ground

CDo 2 Data bus bit 0

CD1 3 Data bus bit 1

cD2 4 Data bus bit 2

CcD3 5  Data bus bit 3

CD4 6 Data bus bit 4

CD5 74 Data bus bit 5

CDé6 8 Data bus bit 6

CD7 9  Data bus bit 7

BLK1 10 8K decoded RAM/ROM block 1, @ $2000

$ iy (active low)

BLK2 11 8K decoded RAM/ROM block 2, @ $4000

e sall (active low)

BLKS 12 8K decoded RAM/ROM block 3, @ $6000
(active low)

BLK5 13 8K decoded ROM block 5, @ $A000
(active low)

RAM1 14 1K decoded RAM block, @ $0400
(active low)

RAM2 15 1K decoded RAM block @ $0800
(active low)

RAM3 16 1K decoded RAM block @ $0C00

Ty (active low)
VR/W 7 Read/Write line from VIC chip
o (high-read, low-write)

CR/W 18 Read/Write line from CPU
(high-read, low-write)

IRQ 19  Interrupt Request line to 6502 (active low)

(NC) 20

+5V 21

GND 22

GND A

CAO0 B Address bus bit 0

CA1 C Address bus bit 1

CA2 D Address bus bit 2

CA3 E Address bus bit 3

CA4 E Address bus bit 4

242

B3

L1

(. [ | L1 [ |

[ . )

L2

[ |



CA5 H  Address bus bit 5

CA6 J Address bus bit 6

CA7 K Address bus bit 7

CA8 L Address bus bit 8

CA9 M Address bus bit 9

CA10 N Address bus bit 10

CA11 P Address bus bit 11

CA12 R Address bus bit 12

CA13 S Address bus bit 13

1/02 T  1/O block 2 (located at $9600)
103 U  1/O block 3 (located at $9C00)
S/02 V  Phase 2 system clock

NMI W 6502 Non Maskable Interrupt (active low)
RESET X 6502 RESET pin (active low)
(NC) Y

GND Z

RAM Signals—RAM 1, 2, and 3 are active low signals which are
used to decode memory placed in the 3K block from $0400 to
$1000. Each of the RAM signals controls a 1K block of memory.
When a RAM signal goes low, it indicates that the block of memory
it controls is being addressed.

BLK Signals—The four block signals are also for memory
expansion of the system. In this case, however, each decodes a
different 8K block of memory. As with the RAM signals, each is
active low. Blocks 1, 2, and 3 can be used for either RAM or ROM.
Memory in those locations can (and will) be used by BASIC.
Memory in Block 5, however, should be ROM, as this area is not
accessible to BASIC. If RAM is placed here it can only be utilized by
machine language programs.

IMPORTANT NOTE: If the additional memory is added to the VIC
using the BLOCK decoding signals, memory added by using the
RAM signals can not be used by BASIC for storage of BASIC text.
This is because BASIC demands a continuous area for programs.
With additional memory in the BLOCK decoded areas, the screen
moves to $1000, breaking up the area. Memory placed in those
RAM areas can still be used by machine language programs.

1RQ—This is the interrupt request line. The VIC uses this internally
for keyboard scan and the system clock.

RESET—When this line is grounded, it causes a COLD START of
the VIC. Everything is RESET, including memory, so any program
in the VIC at that time is destroyed.

243



NMI—When this line is grounded, it causes a VIC WARM START
(just like RUN/STOP-RESTORE).

Address Bus—The address bus controls what memory loation or
I/O device the VIC will read from or write to. Only 14 bits appear on
the connector, even though the address bus size is 16 bits,
because two bits are decoded into the BLOCK and I/O signals.

Data Bus—The data bus is used by the VIC to move data to or from
memory or /O devices.

I/0 Signals—These two signals can be used to add additional /O
devices tothe VIC. The IEEE adapter from Commodore uses these
signals.

Read/Write Signals—These signals inform the memory or the

device being addressed whether the VIC wants to write data or read
data. If the signal is high, a read is expected. If the signal is low, a
write is desired.

There are two R/W signals available on the expansion port. One
(CR/W) is connected to the 6502. The other (VR/W) is connected to
the VIC chip. Memory expansion will normally use the VR/W signal.
Other devices may need the CR/W signal.

WHAT HAPPENS WHEN MEMORY IS
EXPANDED

The VIC comes with 5K of random access memory (RAM)
located from 0 to 1023 ($0000 to $03FF) for operating system use,
4096-8192 ($1000 to $1FFF) which is BASIC program area, and
from 38400 to 38911 ($9600 to $97FF) which is COLOR memory
area.

When additional memory is added the VIC screen location, color
memory location, or the start of BASIC might change.

Start of Start of Start of Start of
Added MemoryScreen Color Memory BASIC
10244095 7680 ($1E00) 38400 ($9600) 1024 ($0400)
8192 on up 4096 ($1000) 37888 ($9400) 4608 ($1200)
($2000-3FFF)

($4000-5FFF)

($6000-7FFF)

The VIC has 2 areas to add additional memory—a 3K space from
1024 to 4095 ($0400 to $OFFF) and a 24K section from 8192 to

244



32767 ($2000 to $7FFF). When the large expansion area is used,
BASIC cannot use the 3K area as program area.

When memory is added in the 3K area, the BASIC program area
will start at the beginning of the new RAM area. The screen will still
begin at 7680 and color memory will still begin at 38400. However,
the start of BASIC will be at 1024.

The VIC chip cannot access any of this new memory, so screen
memory and programmable character memory must be in VIC
internal memory (4096 to 8191).

Memory is added to the larger expansion area in 8K blocks,
beginning at 8192 ($2000). BASIC demands a continuous area for
programs. This is why the screen is moved—otherwise, the video
screen will be in the middle of your program. The same reason
prevents the 3K RAM area from being used by BASIC when
additional memory is added to the large expansion area. However,
machine language programs can still use this area though.

The start of BASIC will begin at 4608 ($1200), the video screen
will start a 4096 ($1000) and color memory will start at 37888
($9400).

See Section 3 for the formulas to use to calculate the screen start
address. If you want your programs to work on any VIC memory
configuration, your program must use these formulas in POKEs
and PEEKs to the screen. The best way to use this is at the
beginning, set a variable to the start of screen memory and one to
the start of color memory. Then, do any POKEs or PEEKSs to the
screen relative to those variables. (Example: if C is the start of the
screen, to put an ‘A’ on the first line on the 10th column of the
screen, type: POKEC+10,1.)

245



GAME CONTROLLERS

USING A JOYSTICK ON THE VIC

Like all other input and output, the joysticks are controlled using
the VIC'S 6522 Versatile Interface Adapters (VIAs). The 6522 is a
very versatile and complex device. Fortunately, itisn't necessary to
delve deeply into the mysteries of the 6522 VIA to read the
joysticks.

Each 6522 has two Input/Output ports, called port A and port B.
Each of the ports has a control register attached, called the DATA
DIRECTION REGISTER (DDR). This highly important register
controls the direction of the port. By using this register you can use

the port for input, output, or both at the same time. To set one bit of
the port to output, set the corresponding bit of the Data Direction
Register to 1. To set a bit of the port for input, set the corresponding
bit of the DDR to 0. For example, to set bit 7 of port A to input, and
the rest of the bits to output, poke 127 in the DDR for port A.

To read the joystick, one port (and one DDR) of each of the 6522
VIAs on the VIC must be used.

The joystick switches are arranged as follows:

TOP
FIRE BUT-
TON
Switch 4
(FR)
Switch 0
(S0)
I
!
!
Switch 2 —— —— Switch 3
(S2) ! (S3)
I
!
(S1)
Switch 1

Switch 0, Switch 1, Switch 2, and the Fire button can be read from
VIA #1, which is located beginning at location $9110. Switch 3
must be read from the other 6522 (VIA #2) which is located
beginning at location $9120.

246

3



Now, the key locations for the joystick are as follows:

HEX DECIMAL PURPOSE

9113 37139 Data direction register for I/O port A on
VIA #1
9111 37137 Output register A

Bit 2 Joy switch 0
Bit 3 Joy switch 1
Bit 4 Joy switch 2
Bit 5 Fire button

9122 37154 Data direction register for I/O port B on
VIA #2
9120 37152 Output register B

Bit 7 Joy switch 3

Toread the joystick inputs, you first set the ports to input mode by
setting the DDR to 0. This can be done by a POKE. Then the value
of the switches can be read by two peeks. Sounds easy, right?
There is only one problem . . . VIA#2 is also used for reading the
keyboard. Setting the DDR can mess up the keyscan rather badly.
So you have to make sure you restore the DDR to the original
condition if you want to use the keyboard afterwards.

To make things really easy, you can use the following program.
Lines 10 to 25 are initialization. The rest of the program, beginning
at line 9000, can be called as a subroutine whenever you want to
read the joystick.

10 DIM JS(2,2):POKE37139,0:DD=37154:PA=37137:
PB=37152

20 FORI=0TO2:FORJ=0TO2:READJS (J,I):NEXTJ,I
25 DATA-23,-22,—-21,—1,0,1,21,22,23

30 GOSUBS000:PRINT JS(X+1,Y +1):GOTO30

9000 POKEDD,127:S3= — ((PEEK(PB)AND128) =0):
POKEDD,255

9010 P=PEEK(PA):S1= — ((PAND8) =0):S2 = ((PAND16) =0)
:S0=((PAND4) =0)

9020 FR= — ((PAND32) =0):X = S2 + S3:Y = S0+ S1:RETURN

The variables S0, S1, S2, and S3 will be 0 normally, and will be
setto 1 (or — 1) when the joystick is pointed in that direction. Two of

247



the variables will be set to 1 on diagonal moves. FR will be 1 when
the firing button is pressed, 0 otherwise.

The AND function is used to pick out one bit of the joystick port.
The bits are numbered from 7 (most significant bit) to 0 (least
significant bit). By ANDing the 6522 port with a number whose
value is a power of two, a single bit is selected. (For example, to pick
bit 3, AND using 2,3 or 8).

The JS array in the program is set up to make moving around the
screen using the joystick easy. The numbers in the DATA
statement of line 25 can easily be changed for other purposes. For

example . . .
To “decode” the joystick in this pattern:
TOP
FIRE

0

Tale)

6—8—2

bl

4

The data statement should be changed to:
25 DATA 7,0,1,6,8,2,5,4,3

USING PADDLES ON THE VIC

The paddles are read using both the VIC chip and the VIC's 6522
Versatile Interface Adapters (VIAs).

The values of the paddles are read through the VIC chip. There
are two registers, one for each paddle, which will contain the
current value of the paddle. This data will be in digitized form, as a
value from O to 255.

The switches on each paddle are read from the VIA chips. Each
VIA has two INPUT/OUTPUT ports, called PORT A and PORT B.
Each of the ports has a control register attached, called the DATA
DIRECTION REGISTER (DDR). This register controls the direction
of the port. By using this register you can use the port for input,
output, or both at the same time. To set one bit of the port to output,
set the corresponding bit of the Data Direction Registerto 1. To set
a bit of the port for input, set the corresponding bit of the DDR to 0.
For example, to set bit 7 of port A to input, and the rest of the bits to
output, poke 127 in the DDR for port A.

To read the paddle switches, one port (and one DDR) of each of
the 6522 VIAs on the VIC must be used.

248



The joystick switches are arranged as follows:
Paddle X — —— Paddle Y

(S2)

(S3)

Switch 2 can be read from VIA #1, which is located beginning at
location $9110. Switch 3 must be read from the other 6522 (VIA #2)
which is located beginning at location $9120.

Now, the key locations for the paddle are as follows:

HEX
9008
9009
9113

9111

9122

9120

DECIMAL
36872
36873
37139

37137

37154

37152

PURPOSE
Digitized value of PADDLE X
Digitized value of PADDLE Y

Data direction register for I/O port A on
VIA #1

Output register A
Bit 4 PADDLE SWITCH X

Data direction register for 1/0 port B on
VIA #2

Output register B
Bit 7 PADDLE SWITCH Y

To read the paddle inputs, you first set the ports to input mode by
setting the DDR to 0. This can be done by a POKE. Then the value
of the switches can be read by two peeks. Sounds easy, right?
There is only one problem . . . VIA#2 is also used for reading the
keyboard. Setting the DDR can mess up the keyscan rather badly.
So you have to make sure you restore the DDR to the original
condition if you want to use the keyboard afterwards.

To make things really easy, you can use the following program.
Lines 10 to 25 are initialization. The rest of the program, beginning
at line 9000, can be called as a subroutine whenever you want to
read the paddle.

10 POKE37139,0:DD=37154:PA=37137:PB=37152
20 PX=36872:PY=36873
30 GOSUBS9000:PRINT PEEK (PX);PEEK (PY);X;Y:GOTOS30

9000POKEDD, 127:Y = -((PEEK(PB)AND128) = 0):PO
KEDD,255

9010 X =-((PEEK(PA)AND16)=0):RETURN

The variables X and Y will be 0 normally, and will be set to 1 when
that paddle button is pressed.

249



The AND function is used to pick out one bit of the paddie port.
The bits are numbered from 7 (most significant bit) to 0 (least
significant bit). By ANDing the 6522 port with a number whose
value is a power of two, a single bitis selected. (For example, to pick
bit 3, AND using 8.)

USING A LIGHT PEN ON THE VIC

One of the benefits of using the VIC chip as the controller for the
VIC 20 is that it is easy to add certain input/output devices for

games and educational software. Itis as easy to add a light pen as it
is to add game paddles and joysticks.
The principle behind the light pen is simple. Basically, the penis a

light detector, set to detect either the presence or absence of light.
The television picture is not put on the screen all at once—rather, it
is put on the screen one row at a time, scanning from left to right
very quickly.

When the scan passes the area where the pen is, a signal is sent
to the VIC chip. When this signal is received, the VIC chip, which
keeps track of where the scan line is at any particular moment, will
record the exact location of the scan in two registers, 36870 (9006
HEX) for the X direction and 36871 (9007) in the Y direction. You
can read and use this information in your programs.

The light pen trigger is connected to pin 6 of the game port. The
light pen trigger input can also be reached from pin 7 of the user
port. Note that you can't use a joystick and a light pen at the same
time, because the same line that is used as the light pen trigger
input is used as the joystick fire button input (you would get false
readings).

The VIC chip constantly keeps track of the scan position on the
television in two registers. When the light pen trigger input is
brought low, the VIC freezes the two registers. You can then read
and use this information. After reading the two registers, the trigger
line will be cleared, so that scan information can be placed again in
the two registers.

250



RS-232 INTERFACE
DESCRIPTION — BUILT-IN SOFTWARE

GENERAL OUTLINE

The VIC has a built-in RS-232 interface for connection to any
RS-232 modem, printer, or other device. To connect the device to
the VIC a cable is required, as well as some programming.

RS-232 on the VIC is standard RS-232 format, but the voltages
are TTL levels (0 to 5V) rather than the normal RS-232 -12 to 12 volt
range. The cable between the VIC and the RS-232 device should
take care of the voltage conversions needed. The Commodore VIC
RS-232 interface cartridge handles this properly.

The RS-232 interface software can be accessed from BASIC or
from the KERNAL for machine language programming. RS-232 on
the BASIC level uses the normal BASIC commands: OPEN,
CLOSE, CMD, INPUT#, GET#, PRINT#, and the reserved
variable ST. INPUT#( CHRIN for the machine language program-
mers in the audience) and GET#( GETIN) fetch data from the
receiving buffer, while PRINT# (chrout) and CMD place data into
the transmitting buffer. The use of these commands (and
examples) will be described more fully later.

The RS-232 KERNAL byte/bit level handlers run under the
control of the 6522 device timers and interrupts. The 6522
generates NMI| requests for RS-232 processing. This allows
background RS-232 processing to take place during BASIC and
machine language programs. There are built-in hold-offs in the
KERNAL cassette and serial bus routines to prevent disruption of
data storage/transmission by the NMI's generated by the RS-232
routines. During cassette or serial bus activities data cannot be
received from RS-232 devices. Because these hold-offs are only
local (assuming care is taken in programming) no interference
should result.

There are two buffers in the VIC RS-232 interface to help prevent
loss of data when transmitting or receiving RS-232. The VIC 20
RS-232 KERNAL buffers consist of two first-in/first-out (FIFO)
buffers, each 256 bytes long, at the top of memory. The OPENing of
an RS-232 channel automatically allocates 512 bytes of memory
for these buffers. If there is not enough free space beyond the end
of your BASIC program no error message will be printed, and the
end of your program will be destroyed. SO BE CAREFUL!

These buffers are automatically removed by the CLOSE
command.

251



OPENING AN RS-232 CHANNEL

Only one RS-232 channel should be open at any time; a second
OPEN statement will cause the buffer pointers to be reset. Any
characters in either the transmit buffer or the received buffer will be
lost.

Up to 4 characters may be sent in the filename field. The first two
are the control and command register characters; the other two are
reserved for future system options. Baud rate, parity, and other
options can be selected through this feature.

No error-checking is done on the control word to detect a
nonimplemented baud rate, so that any illegal control word will
cause the system output to operate at a very slow rate (below 50
baud).

BASIC SYNTAX

OPENIf,2,0,"<control register><command register>"

If—Normal logical file id (1-255). If If>127 then linefeed follows
carriage return.

<control register>—Single byte character (see Figure 1)
(required to specify baud rate)

<command register>—Single byte character (see Figure 2)
(this character is NOT required)
KERNAL ENTRY

OPEN ($FFCO0)—See KERNAL spec. for more information
on entry conditions and instructions.

NOTE

IMPORTANT: In a BASIC program, the RS-232 OPEN com-
mand should be performed before using any variable or DIM
statement, since an automatic CLR is performed when an
RS-232 channel is OPENed (because of the allocation of 512
bytes at the top of memory.) Also remember that your program
will be destroyed if 512 bytes of space are not available at the
time of the OPEN statement.

GETTING DATA FROM RS-232 CHANNEL

When getting data, the VIC receiver buffer will hold 255
characters before a buffer overflow. This is indicated in the RS-232
status word (ST from BASIC, rsstat from machine language). If this
occurs, all characters received during a full buffer condition are lost.
Obviously it pays to keep the buffer as clear as possible.

252

] N =N

L



If you wish to receive RS-232 data at high speeds (BASIC can
only go so fast, especially considering garbage collects. This can
cause the receiver buffer to overflow), you will have to use machine
language routines to handle the data bursts.

=1
—{=]
'
—(=]
(@]

BAUD RATE
0[0|0|0|USER RATE [NI]

STOP BITS 0|0[0f1 50 BAUD

0-1 STOP BIT

1-2 STOP BITS QIEOLECHRS i
ojlof[1]1] 110
0|1[0|0]| 1345
o|l1[o|1]| 150
o|l1[1|0]| 300

WORD LENGTH ol1lal1] eoo

BIT DATA

6] 5| WORD LENGTH 110]0|0| 1200

0|0 8 BITS 1{0|0]|1] (1800) 2400

01 7 BITS 1]0|1]|0]| 2400

1|0 6 BITS 1{0]1[1| 3600 (N1]

RS 5 BITS 1{1]0|0| 4800 [N1]
1{1]0[1| 7200 [NI)

UNUSED
1(1]1|0| 9600 [N1)
111]1]1]19200 [N1]

Figure 4-1. Control register.

BASIC SYNTAX
Recommended: GET#|f,<string variable>
NOT Recommended: INPUT#If,<variable list>

253



E@@E

PARITY OPTIONS

BIT|BIT|BIT
71615

OPERATIONS

-1-]0

PARITY DISABLED, NONE
GENERATED/RECEIVED

ODD PARITY
RECEIVER/TRANSMITTER

EVEN PARITY
RECEIVER/TRANSMITTER

MARK TRANSMITTED
PARITY CHECK DISABLED

SPACE TRANSMITTED
PARITY CHECK DISABLED

DUPLEX

0-
1-

FULL DUPLEX
HALF DUPLEX

UNUSED

UNUSED

UNUSED

Figure 4-2. Command register.

KERNAL ENTRIES

CHKIN ($FFC6)—See Section 3 for more information on entry
and exit conditions.
GETIN ($FFE4)—See Section 3 for more information on entry
and exit conditions.
CHRIN ($FFCF)—See Section 3 for more information on entry
and exit conditions.

254

HANDSHAKE

0-3 LINE
1-X LINE

L

.3

| S |

=

} =N

i




NOTES

If the word length is less than 8 bits, all unused bit(s) will be
assigned a value of zero.

If a GET# does not find any data in the buffer, the character "' (a
null) is returned.

If INPUT# is used, then the system will hang until a non-null
character and a following carriage return is received. Thus, if the
CTS or DSR line(s) disappear during character INPUT#, the
system will hang in a RESTORE-only state. This is why the
INPUT# and CHRIN routines are NOT recommended.

The routine CHKIN handles the x-line handshake which follows
the EIA standard (August 1979) for RS-232-C interfaces. (The
RTS, and DCD lines are implemented with the VIC computer
defined as the Data Terminal device.)

255



SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 256 characters
before a full buffer hold-off occurs. The system will wait in the
CHROUT routine until transmission is allowed or the RUN/STOP-
RESTORE keys are used to recover the system through a WARM
START.

BASIC SYNTAX

CMD li—acts same as in BASIC spec.
PRINT#If,<variable list>

KERNAL ENTRIES
CHKOUT ($FFC9)—See Section 3 for more information on entry
and exit conditions.

CHROUT ($FFD2)—See Section 3 for more information on entry
conditions.

NOTES

IMPORTANT: There is no carriage-return delay built into the output
channel so a normal RS-232 printer cannot correctly print, unless
some form of hold-off (asking the VIC to wait) or internal buffering is
implemented by the printer. The hold-off can easily be implemented
in your program. If a CTS (x-line) handshake is implemented, the
VIC buffer will fill and hold off more output until transmission is
allowed by the RS-232 device.

The routine CHKOUT handles the x-line handshake, which
follows the EIA standard (August 1979) for RS-232-C interfaces.
The RTS, and DCD lines are implemented with the VIC defined as
the Data Terminal Device.

CLOSING AN RS-232 DATA CHANNEL

Closing an RS-232 file discards all data in the buffers at the time
of execution (whether or not it had been transmitted or printed out),
stops all RS-232 transmitting and receiving, sets the RTS and Sout
lines high, and removes both RS-232 buffers.

BASIC SYNTAX

CLOSE If

256

1

-l -

£.3

}

BN N - =

| &




KERNAL ENTRY

CLOSE ($SFFC3)—See Section 3 for more information on entry
and exit conditions.

NOTE
Care should be taken to ensure all data is transmitted before
closing the channel. A way to check this from BASIC is:

100 IF ST=0 AND (PEEK(37151) AND 64)=1 GOTO 100
110 CLOSE if

Table 4-1. USER-PORT LINES
(6522 DEVICE #1 loc $9110-911F)

PIN 6522 IN/

D ID DESCRIPTION EIA ABV OUT

MODES

C PBO RECEIVED DATA (BB)Sin IN 12
D PB1 REQUEST TO SEND (CA) RTS OUT 1*2
E PB2 DATA TERMINAL READY (CD)DTR OUT 1*2
F  PB3 RING INDICATOR (CEfRI IN 3
H PB4 RECEIVED LINE SIGNAL  (CF) DCDIN 2
J PB5 UNASSIGNED () XXXIN 3
K PB6 CLEAR TO SEND (CB)CTSIN 3
L PB7 DATA SET READY (CC)DSRIN 2
B CB1 RECEIVED DATA (BB)Sin IN 12
M CB2 TRANSMITTED DATA (BA) Sout OUT 1 2
A GND PROTECTIVE GROUND  (AA)GND 12
N GND SIGNAL GROUND (AB)GND 123
MODES

1)—3-LINE INTERFACE (Sin,Sout,GND)

2)—X-LINE INTERFACE (Full handshaking)

3)—USER AVAILABLE ONLY (Unused/unimplemented in code.)
*—These lines are held high during 3-LINE mode.

*Note: PB6 CLEAR TO SEND is not implemented and must
be read with a short machine language routine.

257




[71061[51[4]1(3][2][1][0](Machine lang.—rsstat)
: I : : : I : I—PAFIITY ERROR BIT

FRAMING ERROR BIT

RECEIVER BUFFER
OVERRUN BIT

UNUSED BIT

CTS SIGNAL MISSING
BIT

UNUSED BIT

DSR SIGNAL MISSING BIT

BREAK DETECTED BIT

Figure 4-3. RS-232 Status Register

|

NOTES

If the BIT=0, then no error has been detected.

The RS-232 status register can be read from BASIC using the
variable ST.

If ST is read by BASIC or by using the KERNAL READST routine
the RS-232 status word is cleared upon exit. If multiple uses of the
STATUS word are necessary the ST should be assigned to another
variable, i.e.

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232
channel was the last external I/O used.

SAMPLE BASIC PROGRAM

10 REM THIS PROGRAM SENDS AND RECEIVES DATA
TO/FROM A SILENT 700 TERMINAL MODIFIED FOR PET
ASCII

20 REM TI SILENT 700 SET-UP: 300 BAUD, 7-BIT ASCII,
MARK PARITY, FULL DUPLEX

258

£

B

}

G N E

B N .

3



30 REM SAME SET-UP AT COMPUTER USING 3-LINE
INTERFACE

100 OPEN 2,2,3,CHRS$ (6 + 32) + CHR$ (32 + 128): REM OPEN
THE CHANNEL

110 GET#2,A$: REM TURN ON THE RECEIVER CHANNEL
(TOSS A NULL)
200 REM MAIN LOOP
210 GET BS: REM GET FROM COMPUTER KEYBOARD
220 IF B$<>"" THEN PRINT#2,B$;: REM IF A KEY
PRESSED, SEND TO TERMINAL

230 GET#2,C$: REM GET A KEY FROM THE TERMINAL
240 PRINT B$:C$: REM PRINT ALL INPUTS TO THE
COMPUTER SCREEN

250 SR=ST: IF SR=0 THEN 200: REM CHECK STATUS, IF
GOOD THEN CONTINUE

300 REM ERROR REPORTING

310 PRINT “ERROR: ";

320 IF SR AND 1 THEN PRINT “PARITY"

330 IF SR AND 2 THEN PRINT “FRAME”

340 IF SR AND 4 THEN PRINT “RECEIVER BUFFER FULL"
350 IF SR AND 128 THEN PRINT “BREAK”

360 IF (PEEK(37151) AND 64)=1 THEN 360: REM WAIT
UNTIL ALL CHARS TRANSMITTED

370 CLOSE 2: END

RECEIVER/TRANSMITTER BUFFER BASE
LOCATION POINTERS

$00F7-RIBUF A two byte pointer to the Receiver Buffer base
location.

$00F9-ROBUF A two byte pointer to the Transmitter Buffer base
location.

The two locations above are set up by the KERNAL OPEN
routine, each pointing to a different 256 byte buffer. They are
de-allocated by writing a zero into the high order bytes, ($00F8 and
$00F9), which is done by the KERNAL CLOSE entry. They may
also be allocated/de-allocated by the machine language program-
mer for his/her own purposes, removing/creating only the buffer(s)
required. Both the OPEN and CLOSE routines will not notice that
their jobs might have been done already. When using a machine
language program that allocates these buffers, care must be taken
to make sure that the top of memory pointers stay correct,
especially if BASIC programs are expected to run at the same time.

259



ZERO-PAGE MEMORY LOCATIONS AND
USAGE FOR RS-232 SYSTEM INTERFACE

SO00A7-INBIT Receiver input bit temp storage.

$00A8-BITCI Receiver bit count in.

$00A9-RINONE Receiver flag Start bit check.

S00AA-RIDATA Receiver byte buffer/assembly location.

$00AB-RIPRTY Receiver parity bit storage.

$00B4-BITTS Transmitter bit count out.

$00B5—NXTBIT Transmitter next bit to be sent

$00B6- RODATA Transmitter byte buffer/disassembly location.

All the above zero page locations are used locally and are only
given as a guide to understand the associated routines. These
cannot be used directly by the BASIC or KERNAL level

programmer to do RS-232 type things. The system RS-232
routines must be used.

NONZERO-PAGE MEMORY LOCATIONS
AND USAGE FOR RS-232 SYSTEM INTER-
FACE

General RS-232 storage:

$0293-M51CTR Pseudo 6551 control register (see Figure 4-1).

$0294-M51CDR Pseudo 6551 command register (see Figure
4-2).

$0295-M51AJB Two bytes following the control and command
registers in the file name field. (For future use.)

$0297-RSSTAT The RS-232 status register (see Figure 4-3).

$0298-BITNUM The number of bits to be sent/received.

$0299-BAUDOF Two bytes that are equal to the time of one bit
cell. (Based on system clock/baud rate.)

$029B-RIDBE The byte index to the end of the receiver FIFO
buffer.

$029C-RIDBS The byte index to the start of the receiver FIFO
buffer.

$029D-RODBS The byte index to the start of the transmitter
FIFO buffer.

$029E-RODBE The byte index to the end of the transmitter FIFO
buffer.

260



APPENDICES

261







APPENDIX A

ABBREVIATIONS FOR BASIC KEYWORDS

As a time saver when typing in programs and commands, VIC BASIC
allows the user to abbreviate most keywords. The abbreviation for the word
PRINT is a question mark. The abbreviations for the other words are made
by typing the first one or two letters of the keyword, followed by the
SHIFTed next letter of the word. If the abbreviations are used in a program
line, the keyword will LIST in the longer form. Note that some of the
keywords when abbreviated include the first parenthesis, and others do

not.

Looks like Looks like
Command Abbreviation this on screen Command Abbreviation this on screen
ABS A B A m INPUT# I N EZ]
AND A A Z LET L £ AE E
ASC ns A E] LEFTS LEF LE Q
ATN AT A[D LIST LI LB
CHRS c H c [j] LOAD L o- 'L D
CLOSE cL o cL D MIDS M HEhiM E
CLA c L e D NEXT N Sl E
CMD c M c [S NOT N o N D
CONT co c[:] OPEN OF' OD
DATA nn D PEEK PE E E'
DEF DE DEI POKE PO PD
DIM D | D m PRINT ? ?
END E N £ Z PRINT# P R P Q
EXP E X E E] READ R E R E
FOR F o F[] RESTORE  RE s re (Y]
FRE F A F Q RETURN RE T RE m
GET GE s [ RIGHTS n N
GOSUB GO s GO IE] AND CH SHIFT ] Z

GOTO SHIFT Hsl G D

263

AUN

R

SHIFT

N



Looks like Looks like
Command Abbreviation this on screen Command Abbreviation this on screen

SAVE O} sHiFT ENEECEEY sYs s Ial v sEﬂ
SGN s IGal ¢ Sﬂj TAB il sHIFT FNEERArY

SN S shirT [N THEN Hag: ]

SPC( N sHIFT B SD USR u Al s u@

SQR so :J LA va v@
STEP ST E STE VERIFY \,I'E u[:]
STOP $ T s[l:l WAIT wn w( A

STRS Sl SHIFT STQ

COLOR CODE TABLE

Following are the various colors the VIC can display . . . note
that colors 8-15 can only be used as a SCREEN COLOR or an
AUXILIARY COLOR (see pg. 93 for explanation of auxiliary
colors used in MULTICOLOR MODE). As an example, these
color numbers are used to POKE a color into “color mem-
ory'" when coloring characters POKEd to the screen. If you
POKE 7680, 81 this places a “‘ball” on the screen but it will be
“invisible’ until you add the color by typing POKE 38400, 0
(BLACK). Try POKE38400,2 for RED, etc. (Numbers 8-15 can-
not be used as character colors)

BLACK 0
WHITE 1
RED 2
CYAN 3
PURPLE BT A
GREEN 5
BLUE 6
YELLOW 7
ORANGE 8
LT. ORANGE 9
PINK 10
LT. CYAN 11
LT. PURPLE 12
LT. GREEN 13
LT.BLUE 14
LT. YELLOW 15

b



APPENDIX B

SCREEN & BORDER COLOR

COMBINATIONS

You can change the screen and border colors of the VIC anytime, in or
out of a program, by typing

border and white screen.

POKE 36879, X

where X is one of the numbers shown in the chart below. POKE 36879, 27
returns the screen to the normal color combination, which is a CYAN

Try typing POKE 36879,8. Then type CTRL m and you have
white letters on a totally black screen! Try some other combinations. This

POKE command is a quick and easy way to change screen colors in a

program.
BORDER
SCREEN BLK WHT RED CYAN PUR GRN BLU YEL
BLACK 8 9 10 1 12 13 14 15
WHITE 24 25 26 27 28 28 30 3
RED 40 41 42 43 44 45 46 47
CYAN 56 57 58 58 60 61 62 63
PURPLE 72 73 74 75 76 77 78 79
GREEN 88 89 90 91 92 93 94 95
BLUE 104 105 106 107 108 109 110 111
YELLOW 120 121 122 123 124 125 126 127
ORANGE 136 137 138 139 140 141 142 143
LT. ORANGE 152 153 154 155 156 157 158 159
PINK 168 169 170 171 172 173 174 175
LT. CYAN 184 185 186 187 188 189 190 191
LT. PURPLE 200 201 202 203 204 205 206 207
LT. GREEN 216 217 218 219 220 221 222 223
LT. BLUE 232 233 234 235 236 237 238 239
LT. YELLOW 248 249 250 251 252 253 254 255

265



APPENDIX C

TABLE OF MUSICAL NOTES

APPROX. APPROX.

NOTE VALUE NOTE VALUE
Cc 135 G 215
C# 143 G# 217
D 147 A 219
D# 151 A# 221
E 159 B 223
E 163 c 225
F# 167 C# 227
G 175 D 228
G# 179 D# 229
A 183 E 231
A# 187 F 232
B 191 F# 233
Cc 195 G 235
C# 199 G# 236
D 201 A 237
D# 203 A# 238
E 207 B 239
F 209 Cc 240
F# 212 C# 241

SPEAKER COMMANDS: WHERE X CAN BE: FUNCTION:

POKE 36878, X 0to 15 sets volume

POKE 36874, X 128 to 255 plays tone

POKE 36875, X 128 to 255 plays tone

POKE 36876, X 128 to 255 plays tone

POKE 36877, X 128 to 255 plays “noise”

266

[ - |

E 3

J

e

Il B N = s

L1

EE

L1

3



APPENDIX D

SCREEN DISPLAY CODES

The following chart lists all of the characters built-in to the VIC 20
character sets. It shows which numbers should be POKEd into screen
memory (locations 7680 to 8185) to get a desired character. Also, it shows
what character corresponds to a number PEEKed from the screen.

The two character sets are available, but only one set at a time. This
means that you cannot have characters from one set on the screen at the
same time you have characters from the other set displayed. The sets are
switched by holding down the SHIFT and COMMODORE keys
simultaneously. This actually changes the 2 bit in memory location 36869,
which means that the statement POKE 36869, 240 will set the character
set to upper case, and POKE 36869, 242 switches to lower case.

If you want to do some serious animation, you will find that it is easier to
control objects on the screen by POKEing them into screen memory (and
erasing them by POKEing a 32, which is the code for a blank space, into the
same memory location), than by PRINTIng to the screen by using cursor
control characters.

Any number shown on the chart may also be displayed in REVERSE.
Reverse characters are not shown, but the reverse of any character may
be obtained by adding 128 to the numbers shown.

NOTE: SEE SCREEN MEMORY MAP APPENDIX E

If you want to display a heart at screen location 7800, find the number of
the character you want to display there (in this case a heart) in this chart . . .
the number for the heart is 83 . . . then type in a POKE statement with the
number of the screen location (7800) and the number of the symbol (83)
like this:

POKE 7800,83

A white heart should appear in the middle area of the screen. Note that it
will be invisible if the screen is white. Try changing the position by chang-
ing the larger number, or type in different symbols using the numbers from
the chart.

If you want to change the COLOR of the symbol being displayed, consult
the Color Codes Memory Map in Appendix E which lists the COLOR
NUMBERS for EACH MEMORY LOCATION. In other words, to get a
different colored symbol at a particular location, this requires another
POKE command.

267



For example, to get a red heart, type the following:
POKE 38520, 2

In screen pokes
this color is

one less than
the numbers on the
keyboard color keys

This changes the color of the symbol at location 7800 to red. If you had a
different symbol there, that symbol would now be red. You can display any
character in any of the available colors by combining these two charts.
These POKE commands can be added in your programs and are very
effective especially in animation—and also provide a means to PEEK at
certain locations if you are doing sophisticated programming such as
bouncing a ball, which requires this information.

SCREEN CODES

SET1 SET2 POKE | SET1 SET2 POKE | SET1 SET2 POKE
@ 0 R r 18 $ 36
A a 1 S s 19 % 37
B b 2 T t 20 & 38
C c 3 U u 21 : 39
D d B Vv v 22 ( 40
E e 5 W w 23 ) 41
F f 6 X X 24 * 42
G g 7 Y y 25 + 43
H h 8 7 z 26 ; 44

| i 9 [ 27 = 45
J j 10 £ 28 : 46
K k 11 ] 29 / 47
IS | 12 1 30 0 48
M m 13 = 31 1 49
N n 14 32 2 50
(@] (o] 15 ! 33 3 bi
P p 16 3 34 4 52
Q q 17 # 35 5 53

R e



POKE

20
2
22
23
24
25
126
127

SET 1

5 N S

5 ENOBEEOCOMABCEOEEODAO NNl
2 P2z 98338858885883488538383838
mOPQHSTUVNXYZ ESE

i _H_DHQEEEXE@@@EEEEBWEQDDDED
5 38858338c8838888RFANRIRERER
m C; 5 « o BN o= T 1S TEVS £ JEn ol Sl FE = (1B«

orwoo - v~ EEN00NOEENN0DN

Codes from 128-255 are reversed images of codes 0-127.

269



APPENDIX E

SCREEN MEMORY MAPS

Use this appendix to find the memory location of any position on the
screen. Just find the position in the grid and add the numbers on the row
and column together. For example, if you want to poke the graphic “ball”
character onto the center of the screen, add the numbers at the edge of row
11 and column 11 (7900 + 10) for a total of 7910. If you poke the code for a
ball (81, see Appendix D) into location 7910 by typing POKE 7910,81, a

white ball appears on the screen. To change the color of the ball (or other
character), find the corresponding position on the color codes memory
map, add the row and column numbers together (38620 + 10, or 38630) for
the color code and type a second poke statement. For example, if you poke
a color code into this location, POKE 38630,3 the ball will change color to
cyan. Note that when POKEing, the character color numbers are one less
than the numbers on the color keys—as shown below.

Abbreviated List of Color Codes:

Code Color
Black
White
Red
Cyan
Purple
Green
Blue
Yellow

Noonps,wWN =0

270



7680
7702
7724
7746
7768
7790
7812
7834
7856
7878
7900
7922
7944
7966
7988
8010
8032
8054
8076
8098
8120
8142
8164

38422
38444

38488
38510
38532
38554
38576
38598
38620
38642
38664

38708
38730
38752
38774
38796
38818

38862
38884

012345678 9101112131415 1617181920 21

Screen Character Codes

012345678 9101112131415 16171819 20 21

Color Codes Memory Map

271




APPENDIX F

ASCIl AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT
CHR$ (X), for all possible values of X. It will also show the values obtained
by typing PRINT ASC (“x") where x is any character you can type. This is
useful in evaluating the character received in a GET statement, converting
upper/lower case, and printing character-based commands (like switch to
upper/lower case) that could not be enclosed in quotes.

PRINTS  CHRS | PRINTS CHRS | PRINTS CHRS | PRINTS CHRS
0 22 . 44 B 66
1 23 - 45 c 67
2 24 : 46 D 68
3 25 / 47 E 69
4 26 0 48 : 70
2 5 27 1 49 G 71
6 | 28 2 50 H 72
7 | B 29 3 51 1 73
osacsEMRS | BB %0 4 52 J 74
everes IR0 | A 31 5 53 K 75
10 32 6 . 54 L 76
1 ! 33 7 55 M 77
12 ) 34 8 56 N 78
13 # 35 9 87 0 79
oot L $ 36 : 58 P 80
15 % 37 : 59 Q 81
16 & 38 | < 60 R 82
m 17 . 39 = 61 S 83
B 18 ( 40 e T 84
19 ) 41 ? 63 u 85
e S R - 5 e SR - Y R ISRE
21 + 43 A 65 w 87
272

bt

il



PRINTS CHR$ PRINTS CHR$ PRINTS CHRS PRINTS CHRS
X 88 [ [] 114 | f8 140 | BB 166
Y 89 | [v] 115 EEBEED41 | [ ] 167
z 90 | [] 118 142 | g 168
[ i A 1P B ) 143 | P 169
£ o2 | X 18| fBA 4| [1 170
] 93 119 s | (B 1m
1 94 120 | BB 146 | (& 172
e o5 | [I 121 w7 | (Y 173
— o6 | # 122 | @ 18| B] 174
(4] o7 | HH 123 149 | [ 175
il 98 | B] 124 150 | [d 176
— go | [I] 125 151 | 5 177
i B | 126 152 | B 178
= 101 | N 127 153 | H] 179
= 102 128 15 | [] 180
] 103 129 155 | [] 181
L1 104 130 | gE 156 | (A 182
Rl 105 131 | B 57| ) 183
N 106 132 | A 158 | M 184
Pl o7 | 11 133 | BB 159 | [md 185
L 8| & 13 160 | [] 186
N 19| 5 13| ] 161 | ml 187
Z 110 | 7 136 | pd 162 | (W 188
& 111 2 1874 [E] -3 | B . 4ee
| 12| f4 138 | [J 14| M 1900
13| 6 139 | [] 15| MW 10
CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

273



ASCII Character Codes (decimal)*

ASCHl
Code
000
001

002
003
004
005
006
007
008
009
010
011

012
013
014
015
016
017
018
019
020
021

022
023
024
025
026
027
028
029
030
031

032
033
034
035

036
037
038
039
040
041

042

Character
NULL
SOH
STX

ETX
EOT
ENQ
ACK
BEL
BS
HT

LF

ASCH
Code

045

070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085

Character
+

W oo~ WD = O -

CHOWIDDVOZErXRc—IQTMMOOODEB 2V I A- -

ASCII
Code
086
087
088
089
090
091

092
093
094

095
096

097
098
099
100
101
102
103
104
105
108
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Character

—N< X =<

bkslash

up arrow
back arr

8

%V|IJ\-N*EXE{C—-WH.Q‘UO:‘la-,r-—-—'—:‘lﬂ-wmﬂ.oO‘W

*VIC character codes differ from ASCII codes. This table is provided as a reference for

ASCIIVIC conversions.

274

a .

S |



APPENDIX G

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to VIC BASIC may be calculated as
follows:

FUNCTION VIC BASIC EQUIVALENT

SECANT SEC(X)=1/COS(X)

COSECANT CSC(X)=1/SIN(X)

COTANGENT COT(X) =1/TAN(X)

INVERSE SINE ARCSIN(X)=ATN(X/SQR(—X*X+1))

INVERSE COSINE ARCCOS(X)= — ATN(X/SQR
(=X*X+1))+ =n/2

INVERSE SECANT ARCSEC(X) =ATN(X/SQR(X"X—1))

INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X-1))
+(SGN(X) —1*m/2

INVERSE COTANGENT ARCOT(X) = ATN(X) + w/2

HYPERBOLIC SINE SINH(X) = (EXP(X) — EXP(— X))/2

HYPERBOLIC COSINE COSH(X) = (EXP(X)+ EXP(—X))/2

HYPERBOLIC TANGENT TANH(X) = EXP(— X)/(EXP(x) + EXP
(=X)2+1

HYPERBOLIC SECANT SECH(X)=2/(EXP(X) + EXP(— X))

HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X) — EXP(- X))

HYPERBOLIC COTANGENT COTH(X) = EXP(— X)/((EXP(X)
—EXP(—X))*2+1

INVERSE HYPERBOLIC SINE ARCSINH(X) =LOG(X +SQR(X*X+1))

INVERSE HYPERBOLIC COSINE ARCCOSH(X) =LOG(X + SQR(X*X—1))

INVERSE HYPERBOLIC TANGENT | ARCTANH(X)=LOG((1+X)/(1-X))/2

INVERSE HYPERBOLIC SECANT ARCSECH(X) =LOG((SQR
(=X*X+1)+1/X)

INVERSE HYPERBOLIC COSECANT | ARCCSCH(X)=LOG((SGN(X)*SQR
(X*X+1/x)

INVERSE HYPERBOLIC COTAN- ARCCOTH(X) =LOG((X+ 1)/(X—1))/2

GENT

275




APPENDIX H

ERROR MESSAGES

This appendix contains a complete list of the error messages generated
by the VIC, with a description of the causes.

BAD DATA String data was received from an open file, but the program
was expecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element of an
array whose number is outside of the range specified in the DIM statement.
CAN'T CONTINUE The CONT command will not work, either because
the program was never RUN, there has been an error, or a line has been
edited.

DEVICE NOT PRESENT The required I/O device was not available for
an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not
allowed.

EXTRAIGNORED Too many items of data were typed in response to an
INPUT statement. Only the first few items were accepted.

FILE NOT FOUND If you were looking for a file on tape, and
END-OF-TAPE marker was found. If you were looking on disk, no file with
that name exists.

FILE NOT OPEN The file specified in a CLOSE, CMD, PRINT#,
INPUT#, or GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the number of an
already open file.

FORMULA TOO COMPLEX The string expression being evaluated
should be split into at least two parts for the system to work with.
ILLEGAL DIRECT The INPUT statement can only be used within a
program, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or
statement is out of the allowable range.

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loops
or having a variable name in a NEXT statement that doesn't correspond
with one in a FOR statement.

NOTINPUT FILE An attempt was made to INPUT or GET data from a file
which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which
was specified as input only.

OUTOFDATA AREAD statement was executed but there is no data left
unREAD in a DATA statement.

276

- | 1 N

|



OUT OF MEMORY There is no more RAM available for program or
variables. This may also occur when too many FOR loops have been
nested, or when there are too many GOSUBs in effect.

OVERFLOW The result of a computation is larger than the largest
number allowed, which is 1.70141884E + 38.

REDIM’'D ARRAY An array may only be DIMensioned once. If an array
variable is used before that array is DIM'd, an automatic DIM operation is
performed on that array setting the number of elements to ten, and any
subsequent DIMs will cause this error.

REDO FROM START Character data was typed in during an INPUT
statement when numeric data was expected. Just re-type the entry so that
it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered,
and no GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.
SYNTAX A statement is unrecognizable by the VIC. A missing or extra
parenthesis, misspelled keywords, etc.

TYPEMISMATCH This error occurs when a number is used in place of a
string, or vice-versa.

UNDEF'D FUNCTION A userdefined function was referenced, but it has
never been defined using the DEF FN statement.

UNDEF’'D STATEMENT An attempt was made to GOTO or GOSUB or
RUN a line number that doesn't exist.

VERIFY The program on tape or disk does not match the program
currently in memory.

277



APPENDIX I

CONVERTING PROGRAMS TO VIC 20
BASIC

If you have programs written in a BASIC other than VIC 20 BASIC, some
minor adjustments may be necessary before running them with VIC 20
BASIC. The following paragraphs specify things to look for when
converting BASIC programs.

String Dimensions

Delete all statements that are used to declare the length of strings. A
statement such as DIM A§ (1,J), which dimensions a string array for J
elements of length |, should be converted to the VIC 20 BASIC statement
DIM A$ (J).

Some BASICs use a comma or ampersand for string concatenation.
Each of these must be changed to a plus sign, which is the operator for VIC
20 BASIC string concatenation.

In VIC 20 BASIC, the MID$, RIGHT$, and LEFT$ functions are used to
take substrings of strings. Forms such as A$(l) to access the Ith character
in A$, or A$(1,J) to take a substring of A$ from position | to position J, must
be changed as follows:

Other BASIC  VIC 20 BASIC
A$()=X$  A$=LEFTS$ (AS,I-1)+X$+MID$ (A$,+1)
AS$(1J)=X$  A$=LEFTS (AS,I-1)+X$+MID$ (A$,J+1)

Muiltiple Assignments
To set Band C equalto zero, some BASICs allow statements of the form:

10 LET B=C=0

VIC 20 BASIC would interpret the second equal sign as a logical
operator and set B equal to —1 if C equaled 0. Instead, convert this
statement to two assignment statements:

10 C=0:B=0

Multiple Statements

Some BASICs use a backslash (\) to separate multiple statementsona
line. With \iC-20 BASIC, be sure all statements on a line are separated by
a colon (:).

Mat Functions
Programs using the MAT functions available in some BASICs must be
rewritten using FOR . . . NEXT loops to execute properly.

Character Tokens
To conserve user space, BASIC keywords are translated to 1-character
tokens. The token values are shown in the following table.

278



TOKENS FOR VIC 20 BASIC

BASIC BASIC
Token keyword Token keyword
128 END 167 THEN
129 FOR 168 NOT
130 NEXT 169 STEP
131 DATA 170 +
132 INPUT# 171 -
133 INPUT 172 x
134 DIM 173 /
135 READ 174
136 LET 175 AND
137 GOTO 176 OR
138 RUN 177 >
139 IF 178 =
140 RESTORE 179 <
141 GOosuB 180 SGN
142 RETURN 181 INT
143 REM 182 ABS
144 STOP 183 USR
145 ON 184 FRE
146 WAIT 185 POS
147 LOAD 186 SQR
148 SAVE 187 RND
149 VERIFY 188 LOG
150 DEF 189 EXP
151 POKE 190 COos
152 PRINT# 191 SIN
153 PRINT 192 TAN
154 CONT 193 ATN
155 LIST 194 PEEK
156 CLR 195 LEN
157 CMD 196 STR$
158 SYS 197 VAL
159 OPEN 198 ASC
160 CLOSE 199 CHR$
161 GET 200 LEFT$
162 NEW 201 RIGHT$
163 TAB ( 202 MID$
164 TO 203 GO
165 FN 204
166 SPC ( (1) ?SYNTAX ERROR

Note: (1) The token after used token produces this error when listed.

279




APPENDIX J

PINOUTS FOR INPUT/OUTPUT DEVICES

Here is a picture of the I/O ports on the VIC:

2 3 5 6
1) Game /O 4) Serial /0 (disk)
2) Memory Expansion  5) Cassette
3) Audio and Video 6) User Port (modem)
Game |/0
PIN # TYPE NOTE
1 2 5 1 |JOYD
o o 2 |JOY1
3 [JOY2
oI Co)li o JSe 4 |JOY3
BN 8.8 5 |POTY
6 [LIGHT PEN
7 |+5V MAX.100mA
8 |[GND
9 |[POTX

280




Memory Expansion

1234567 8910111213141516171819202122

ABCDEFHJKLMNPRSTUVWXYZ

PIN #| TYPE PIN #| TYPE
1 |GND 12 |BLK3
2 |cDo 13 |BLK5S
3 |CcD1 14 |RAM1
4 |CD2 15 | RAM2
5 (CD3 16 |RAM3
6 |[CD4 17 |VRW
7 |CD5 18 |CRW
8 |CDé 19 [IRQ
9 |CD7 20 [NC

10 |BLK1 21 | +5V

11 |BLK2 22 |GND
PIN #| TYPE PIN #| TYPE

A GND N |[cA10

B CA0 P |CA11

c CA1 R |[cA12

D CA2 S |cA13

E CA3 T |1o2

F CA4 u |13

- CA5 Vv [s02

J CA6 w INMI

K CA7 X |RESET

L= CA8 Y |NC

M CA9 Z |GND

281



Audio/Video

PIN #

TYPE NOTE

(4 I S LI\

+5V REG 10mA MAX
GND

AUDIO
VIDEO LOW
VIDEO HIGH

Serial I/0

TYPE

DB WN =

SERIAL SRQ IN

GND

SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
RESET

Cassette

1 203 4 5§

PIN #

TYPE

ASBRG DN E F

A-1
B-2
C-3
D-4

F-6

GND

+5V

CASSETTE MOTOR
CASSETTE READ
CASSETTE WRITE
CASSETTE SWITCH

282

| S

=3

.3

e 3

=2

-l N

N G E

) D Wl




User 11O

12 34 .5 6. %7 8 910 1112

ACBEG D EE E HEGE K B MG

— B E BN EEEEE®NEN
W W W W W W W W W

PIN # TYPE NOTE PIN #| TYPE | NOTE
1 | GND A |GND
2 sy 100mA MAX. B |CB1
3 | RESET C |PBO
4 | JOYO D |PB1
5 |[JOY1 E [|'PB2
6 |JOY2 s IiEB3
7 | LIGHT PEN H | PB4
8 | CASSETTE SWITCH J  |'PBS
9 [ SERIAL ATN IN K | PB6

10 | +9V 100mA MAX. L1 PB?
11 | +9V M | CB2
12 | GND N | GND

283




APPENDIX K

VIC PERIPHERALS & ACCESSORIES .

Here is a list including just a few of the growing number of
peripherals, accessories and programming tools which are
available from Commodore for your VIC 20:

COMMODORE DATASSETTE ... for loading your own
programs and replaying inexpensive pre-recorded tape programs.

VIC 1540 SINGLE DISK DRIVE . .. stores up to 170K of data on
a floppy diskette, for fast, high-capacity data storage and
retrieval.

VIC GRAPHIC PRINTER . . . 80 column dot matrix printer for
making paper printouts; prints VIC graphics, letters, numbers and
programmable characters.

VICMODEM ... Commodore’s exclusive “affordable’ modem
on cartridge turns the VIC into a telecommunications terminal.
Originate/answer, direct connect, 300 baud. VICTERM | tape
included.

VIC 3K MEMORY EXPANDER ... 3K memory expansion on
cartridge.

VIC 8K MEMORY EXPANDER ... 8K RAM memory expansion
cartridge.

VIC 16K MEMORY EXPANDER ... 16K RAM memory expansion
cartridge.

RS232 TERMINAL INTERFACE ... adapter cartridge for RS232
applications (connects to user port).

IEEE-488 INTERFACE CARTRIDGE ... for IEEE applications &
PET/CBM accessories.

GAME JOYSTICK ... for playing Commodore games on
cartridge or tape.

TWO PLAYER PADDLES... for games and other programs.

LIGHTPEN ... for screen-touch programs such as
computerized drawing.

PROGRAMMING AIDS

PROGRAMMER’S AID CARTRIDGE ... more than 20 BASIC
program editing commands.

VIC SUPEREXPANDER CARTRIDGE ... graphics plotting,
music, 3K expansion all on one cartridge.

VICMON . .. Machine Language Monitor for writing/editing
machine code programs.

PROGRAMMABLE CHARACTER/GAMEGRAPHICS EDITOR. ..
tape program lets you create your own VIC characters, symbols,
alphabets.

TEACH YOURSELF PROGRAMMING SERIES . .. self-teaching
books and tapes for VIC owners who want to learn more about
programming. Begins with INTRODUCTION TO PROGRAMMING,
Part 1.

284






INDEX

A

Abbreviating sound commands, 96

Abbreviations, BASIC commands,
79, 263

ABS function, 41

ASC function, 41

Accumulator, 126, 140

Addition, 62

Addressing, VIC, 113

Adventure games, ix

AND operator, 65, 68

Applications, ix

Arithmetic formulas, 62, 275

Arithmetic operators, 62

Arrays, 60, 81

ASC function, 41

ASCIl & CHR$ Codes, 272

Asterisk (multiplication), 64

ATN function, 42

Auxiliary color, 93, 217

B
BASIC, 1
abbreviations, 79, 263
commands, 5
keyword codes, 121
locations, 116-120, 118-119
operators, 62, 68
statements, 14
variables, 58, 80
Beginning machine code, 132, 168
Bit mapping, 88
Bit patterns, 93
Boolean operators, 62
Boolean truth table, 66
Border color, 93
Buffer, 77
Bus
address, 109
control, 111
data, 111
Byte, 131

c

Calculator mode, 75
Character generator ROM, 82
Character memory, 82
Character size, 215

Chess (Sargon Il), x

CHRS$ function, 40, 42

CHR$ codes, 272

Chips
6502 chip, 113
VIC chip, 113

CLR statement, 14
CLR/HOME key, 73
Clock, 179, 184-5, 204
CLOSE statement, 35

286

CMD statement, 35
Color

auxiliary, 217

border, 217

keys, 29

memory map,

register, 93

screen and border,
Columns, video, 214
Commands, BASIC, 5
Commodore key, 73
Communication, x
Concatenation, 58, 62, 69
Connecting the VIC (see owners

guide)
CONT command, 5
Control bus, 111
Converting PET to VIC, 278
COSine function, 43
CRSR keys, 28, 73, 74
Crunching BASIC programs, 79
CTRL key, 29

D

DATA statement, 15, 81, 86
DELete key, 73

Deriving math functions, 275
Device addressing, 38

Device number addressing, 38
DIMension statement, 17, 61
Direct mode, 75

Disk, 8

E

Editing programs, 74
Eliminating spaces, 81
END statement, 18

Error messages, 276
Expansion port, 241, 244
Expansion RAM/ROM, 118
EXPonent function, 43
Exponentiation, 63

F

Fetch cycle, 109

Filenames, 70

Floating point variables, 54, 59
FOR statement, 19

FOR ... NEXT loop, 19

FRE function, 43, 85
Frequency modulation, 101
Functional block diagram, 110
Functions, BASIC, 40
Function keys, 78

G

Game controls, 246

Game port, 246

GET statement, 20, 77

GET# statement, 36

GOSUB statement, 20, 81, 133




GOTO statement, 22

Graphics, 82
character memory, 82
programmable characters, 82
high resolution, 87

Greater than symbol, 64

H

Hexadecimal notation, 128, 131,
170, 178

High resolution, 87

Home position, 73

Horizontal screen origin, 213

|

|IEEE-488 Interface, 244

IF ... THEN statement, 22
Immediate mode, 75

Indexed indirect addressing, 135
Indexing, 34

Indirect indexed addressing, 134
Input buffer, 77

INPUT statement, 24

INPUT# statement, 36

INSert key, 30, 73

Instruction set (6502), 140
INTeger function, 44

Integer variables, 54, 57
Interface mode, 213
Interpreter, BASIC, 119, 125
11O guide, 227

1/O ports, addressing, 113, 184
1/0 registers, 218

1/0 statements, 35

/O status, 49

IRQ, 243

J
Joystick, 246
Jump table, 138

K
Keyboard buffer, 77, 180
Keywords, 120-121
KERNAL, 114, 116, 125, 138, 182,
251, 259
power-up activities, 211
user callable routines, 184

L

LDA (load accumulator), 130
LEFT$ function, 44

LENgth function, 45

LET statement, 25

Light pen, xii, 215, 250

Line numbers, 79, 120

LIST command, 6

LOAD command, 7
Loan/Mortgage Calculation, xii
LOGarithm function, 45
Logical operators, 68

M

Machine language programming,
107, 123

Machine code

Memory expansion, 124, 244

Memory map, 124, 170

Microprocessor (6502), 109

MID$ function, 45

Minus sign, 63

Mixing sound & graphics, 105

Multicolor mode, 92

Multiple speakers, 100

Multiple statements on a line, 75,
80

Music, 95, 96, 232

Musical note table, 266

Music, frequency modulation, 101

Music programming techniques, 98

N

NEW command, 9
NEXT statement, 26
NOT operator, 68
Number bases, 128
Numbers, 54

0

Octave comparison chart, 99
Octaves, 95

ON statement, 26
Operators, 62

OR operator, 68

P
Paddles, 216, 246
Parantheses (in formulas), 64
PEEK function, 46
Piano program, 103
Pin configuration, 213, 241
Pinouts for I/O devices, 280
POKE statement, 27
POS function, 46
PRINT statement, 28
PRINT#, 39
Printer, 236
Program counter, 126
Programmable characters, 82, 237
Programming music, 98
Programming tips, 71
Program mode, 75
Programs, 76

editing, 73

line numbering, 78

Q
Quote mode, 29

R

RAM memory, 85, 109, 111, 115
RAM starting locations, 85, 118
Raster value, 215

287



READ statement, 31, 81
Register, 126

Relational operators, 62, 64
REMark statement, 31, 80
Reserved Words, 60, 120
Reset, 243, 4

RESTORE statement, 32
Return key, 73

RETURN statement, 32
Reversed characters, 29, 85, 217, 239
RIGHT$ function, 47

RND function, 47

ROM, 109, 114, 115
Rounding numbers, 54
Rows, video, 215

RS-232 interface, 251

RUN command, 10
RUN/STOP RESTORE, 4, 25

S

SAVE command, 10
Schematic (inside back cover)
Scientific notation, 56
Screen & border colors, 265
Screen display codes, 267
Screen editing, 73

Screen formatting, 201
Screen memory location, 215, 270
Screen RAM, 115

Serial bus, 234

SGN function, 48

Shift register, 221
Shortening programs, 79
SINe function, 48

Sound commands, 96
Sound, programming, 95, 216
Space, 74, 81

SPC function, 48, 81
Speakers, 95

SQR function, 49, 91

ST numeric value, 50

Stack, 133, 141

Stack pointer, 127, 134

Start of text, 119; of memory, 124
Statements, BASIC, 14
Status function, 49

Status register, 126

STOP command, 33, 4

STR$ function, 50

String comparisons, 70
String operations, 57, 70
String variables, 57

288

Subroutines, 138-9
Subtraction, 62
Super expander, 94
SYS statement, 33
System clock, 204
System overview, 109

T
TAB function, 51, 81, 121
Talking VIC, xiv

TAN function, 51

Tl variable, 52

TI$ variable, 52, 77, 179
Time, setting VIC clock, 52
Timer, 220

Top of memory, 119
Truelfalse testing, 65, 68

U

Upper/lower case, 115

USR function, 52

User-defined function, 52

Useful memory locations, 178

User port, 229

User program, memory location, 119

Vv

VALue function, 53

Variables, 58, 80

Variables, extended names, 60

VERIFY command, 12

Versatile interface devices, 109, 111,
218

Vertical screen origin, 214

VICMON, 127, 135, 137

VICTIPs, 85, 96, 103, 105

Video interface chip, 116, 212

Volume, 95

w

WAIT statement, 34

Warm start, 4

White noise generator, 104
Writing machine code, 132

X
X Index register, 126

Y
Y Index register, 126

z
Zero page, 133

]I EEE

L

:

S i

" |

b |

A B N fm Eam n

£



c, THE MICROCOMPUTER
= MAGAZINE

commodore

The Commodore Magazine provides a vehicle for sharing the latest product
information on Commodore systems, programming techniques, hardware
interfacing, and applications for the CBM, PET, SuperPET and VIC
systems.

Each issue contains features of interest to anyone that owns, or is thinking
about, purchasing Commodore equipment:

® Application articles examine how users from various backgrounds use
Commodore computers in business, education, and the home.

® Columns by leading experts explain ways to get the most out of your
computer in clear, concise language.

® The latest news on user clubs, a question/answer hotline column, and
reviews of the newest books and software round out the most complete
magazine devoted exclusively to Commodore computers.

Readers are also encouraged to submit articles for publication and share
their experiences using Commodore computers.

Commodore Magazine is published 6 times a year by Commodore Business
Machines, Inc. The subscription fee is $15.00 for six issues within the
United States and its possessions and $25.00 for Canada and Mexico.

Commodore Magazine Subscription Form
Name:

Address:

City: State: Zip:—

Renewal Subscription New Subscription

Equipment Use: _ Personal Education = ____ Business
My subscription began with issue number
Enclosed is a check or money order for §.
for issues of Commodore Magazine

Make checks payable to Commodore Business Machines, Inc.
681 Moore Road
King of Prussia, PA 19406
Attn: Editor, Commodore Magazine

289






F1

4700uF/16V

FUSE

AC9V

c3

]

0.14FI50V

+5V 5V
c21 c19 c23
I O-1wuFisov T O-tuFIsOV T 0AuFisOV
8 | = al vAQ 8 u| 7
/TR y A0 Vce A0 Vee VAL :2 Vee
AT 5 h; " ATVERRN
~ PR A3 A
CA; 4
VIS A4 fYAVAs A4
 CA A5 A5 AS
yCA Z]e A6 r,,-YAL—-'--- A6
CAS a7 A7 [ YAz A7
y CAT 23|, PRI [ VA8 23158 MPS
[ Ch8_ 22,4 MPS 218 Mps (A 24% 2332
y CAS_ 19 191 A10 1 ja10
" CAlo 18]A10 2364 8|a 2364 VA P
a2 ) /!A.LZ_ZL_CSZ
(—’5-—3—»2 A2 VA13 20 Jo2
can2 . ICST 58000 -— $8FFF
9 $C000 — $DFFF g $E000 — SFFFF
oo 5] —]® [ 1 g‘}
Co1 4y g; 11 g; 211]5]
co2 13} 13 BD3 13
v mraty 4] e 50414 o
15 1o L 15 ps5 /mm
cos b5 05 BO6 16
D6 v —18406 uDe {06 12
08 |- BD7 17
cor o7 707 = L ——o7 uct Vss—:l
Y CS Vss cs Vss
12 =
20J 2] » VAQ — VA12
+5v B11
AR
+5v +5V,
20| &M
\Co018 [V VD8 VD11 ) l
cD17 vao 8
B2 L 800 4 Va3 V08 (AGas Voo
18183 3 BD1 A
D315 9 a2} 3801 BD1 11 uc2 Voo N VA2 |
84 3 4 BD2 N 10 A2
CD41d 1gs ¢y Adlgos 7 XH
CO513 jgg o M oot \ B02 1 4066 PRLELY | S VT
5 o~ L0612 1g7 I~ AS 7805 H BD3 vD 11 A5 2114
=] = CO7 11 LA \B3 8 9 N___YAG |
o z B8 A6 |-rt A6
(3] ICRW 1 A7 A - Mo N—YAZ | A7
| DIR ER:A WWw Vss VA8
[ Vss A8 L5'I'6' VET, A8
8 2 o] uce 27 wDoz_ \__vas |0
h = ] 74504
1]
+5v
+5V
c25 20 619
I 0.1uFI50V rg CAO 2| A‘VC(.I G
g| = [ORCAT 3 A2 B1[ 18 \
Nl B2[ 17
N—33 | pao VCC  ABO —}J | A3 5 A3 9 oo
32 ] DA1 AB1 "9-‘11 2 A4 Ad o~ 15
+5V N3] o2 as2 1A L8 a5 el T +8v
Q 2 oA3 AB3 12 A6 k= B85 =
1 = L R <
DA4 +pv 12
DAS ABS A e 87 < <o
S N_27 | e ane |15 DIR UC4 B8 T
NG NN 28 pa7 A7 6 Vss
NG g NC —Z sYNC 17
o Ne —3 Ne ass I 0
b3 4 IR6 MPS  aBg :_:_/ L
NHI  §502A  AB10 1A =
— b'g_‘[:!a gg' AB11 —-—-/2220 +5v
Ne — 3 | ne AB12 =]
" 3% AB13 12
NC NC
— NG | AB14 |24
21©un AB15 |25
4 31 2, 3lgg
UE2 39 0 Nl _[VA101] o, wvwc O
- @2(0un — A2 3 B4 15 The
74504 3 CuOL AS 9 85|14 N _MAl12] 5 203
AG 86 13 sz
1 {ves N A58, T ool btz 5  74LS138 3
2 RW A8 88|11 (RAMY 3|
vss UDE4 4 VA13 6] G 6
L w DIR vest 10 R 7
= 18 U3 1 4
‘o - -
%‘ 74504
[ +5V RAM3
o LY
s02 S22 ¢ a1 vec EE EE11 }
LA BIK
2
cann] _;_ " 2
16 CA142 T2 <
= ‘ o[~ 7aLs138 L[2H sez |/
UE2 <h_ca153 5 |10 1
+5V +5V [} 0 (o] (BLK) (9] ke 1
N 5 7as02 I g 713 m—s
= usu % 28 U1 ol P
g < 3l X o3 1,
-4 . 6 1 5 =
3 o +5V
;_ 5 +5V
7406 .
>
8
w
£
3 16
N_CA10 [ vec D18 NC
CA112 T[4 NC
—E 1iRe
Sazilc 7415138 2fine
Caag G wo g
N_CAMA c2a <0
+9V wae; G28 HL
7
UNREGULATED ub2
Vss
8
N > | VAt -!—
&) POWER § o .
JACK 3 = S1-3554M . - >
3 = gl S +5V 3A
2 3+ ] 2
T S CR3
5 3




PV +5V
c23 0.14FI50V
| T ouFis0v T oo
- 40 =
vao_ 21
’° ATz Voo N
At
VAT 33,
f( VAT 24,5
VA4 25 {4
4 VA5 26 | A5 @,IN
—VAE 27 | a0
; VA I
55 VA8 AB Po2 CR4
32 —— ‘VvAw A9 ]
VAT A10 comp 1uFI6V
AlY SND e
(._f 5_5,3_. A2 g | o L C1
VA3 54 103 MPS e | LTS ! avoio | °
 — $8FFF +5V p VD8 g ps 6560 PEN N 5 oS e
(—8; D9 porx HL 2 ° °= - v 180 R2 +6V -
o Vb1 5 010 18 gk V= ! §
5 Y _NC_3] 01 PoTY s 2 - c8 100uF16V
o] Po2 +5v LIRS g
Ne |L—NcC
] 8 0.14FI50V GND 2
2 /Bb1 5] 20 3 X 2l
12 e L15] oy 5 8 x — 2
4 Vss /—B.QI'B LN ey § P& - e
_ D3 73] 100pF '3 BT T+ co  ° 25C1959 >
= 2D 121 b4 o 1} at
VAQ — VA12 805 1 o UAR? oor L35 Tce pT 1T 1 e .-
] il e 07 Iz - - Sk ‘
+5V +5V, — C3 = L
I =
L —
vao 8] wT A
= UE3
sca Vo8 k—-vn— :(l)cs Ve 12
10700 SN2l o |
—YA3 5 ucs g 16310
2 VD10 JIN—_VYA4 | MPS 2 3L
N—va5 |4 D2 LT
9vnn \ a8 |8 2114 3 §
. h—az |48 03 s =e=
Zluer, | A8 vefi 40
13 —YAD 1o - GND
74504 -
CAO — CA13
TD0 — CD7
BO4— BD7 _ +5V + 5V +5V
AY - AW A
y OTuF1B0V | AR ) Y YoV PRR
- |ovley ) -l < - s ~ -
Q
~ | 213188 HEE HEEE glBl3k| = 3838 853
11 hahaha = 5 1l2hapefre ;5 11 2|1314]1 JRIL L S T I iifi2fafraf 5 2y 1
ohEEEE 5 HNBE88 S gPRa88 SFof0B588 S gNRaB8 8 SR 88 |
gl - —Sar > 8 a1 A1 > L 3
mm A2 : '—-‘—AAZ A2 ] A2 A2 e A2
A3 3 5 —3-1 A3 0 a3 A3 5189
M MPS  HF{A MPS (M MPS  f—ac MPS  [—la MPS {4 MPS A MPS 1M MPS
M4 2114 A5 2114 A5 2114 —jAs 2114 1A 2114 —As 2114 A5 2114 [—AS 2114
71 A6 —-FAs =2 A6 F——{A6 7146 318 7716 5148
AL pos LI a7 117 fa7 RIS a7 Il a7 A7 a7
16 i 16 18 16 16 16
(5| A2 15148 5]h8 15] A8 75| A8 75]48 T5|A8 518
L 15140 (129 L1 fag L %9 A9 a9 A9 121 a9
UA3 uB3 UA4 uBs UBs
| "0lpw Elww L 10 law | Oy UB [ Ol W [ TOgy Do U8 19w
&S Vss [<3 Vss Cs Vss [ Vss CS Vss 3 Vss ol Vss| Vst
& =S 8 oL 9 e 8 s L9 s 8 L = 8 s L
BD0— BD7
+5V
—_ +5V c17
CAO—CA5 b cie
T 0.14FI50V
| = OTFEOV I
5v RAM3 0 2] - 10
\BDO_33
FAM3 |14 8OO xf v G \BD1 2] Vee S5 L m—
= |ns 1112 \B0T 72 ce2[12 &2 31 12 \
g = D1 oW D2 PB2 [3 un
T 3 74L8133 hB802 3] o PAO fn%ow 3 NBD3 301 s pa3 HE—— e
EE el N8BR3 dof o2 PAT LS NBD4 291 pBa HA—J
32 BIX |3 5 o4 P oW No2-2os ] rm—
3g L[] 02 17 yag 0s s [6_ROW 4 \eor =] pae
5l 8ks 19 Doe—2l106 pd [T ROWB N S o7 pa7 [
9 =111 o7 I 8
2 BLKE 1 NCag [, MPS  pas 2 DZHE] (Sl MPs SBlhe
z h—_CA1_37] 6522  PA7 RS 2[9
%%L“‘ {RS1 10 COL 0 h\_.CA2 36 6522 g2
oMK h_caz RSt PBO S22 NCTEREL VS pas [ [LGHT PEN
—_— 03 15 RS3 PB1|=— 6
cas_adlce pez12 SO0 T EA et P [0V 1
v +5v RES Feaa4 COL 4 —ZS’BQE_S PA2 {4 JOYO
SERIAL SRQ IN i pas HAZ0L 42; RG  ypgg  pal
1 +5Vv
,_.__EC 3 UDE? PBG‘ 17_COL 7" 23 % PAO
CRW_29|C%2 PB7 I 55 pa7 2
{ Vss . % § |——— RW Vss
1 = g CRW L
This NC JEl) =
ol TS
3 [3RC SERIAL ATN IN
38 §[12 NC SERIAL CLKIN
Tho SERIAL DATA IN
s %) +5V
— o o
L gl & 8
x! coLs
vss §§ x
8 UE3
S —— L7
L 4 3 SERIAL DATA OUT co | 1
7406 f] -
v ooa SERIAL ATN OUT ol k5|33 ‘ .8
: 8 UE3 7408 5l5B|2 58 slalels g | = ”%J
- —— 3 o|@ = wi
£ CR3 10 1 SERIAL CLK OUT SR [ERRIREEITIRJO o
,; 7406 TOwO~N NOQOQOWLINX 30 (zv-?_tng:
USER PORT
CR I,‘{,’ W
& S
£ L8
| b
N - v o »oelcns ~Noeor O

SERIAL PORT




10 — 90pF

\8
+5v

14.31818MHz

PDDZZIrFr XCINMMOO®D©DNDNbWN

EXPANSION

L = = = N
oS e ooa =

=)

8%m—)<§£x<c—i

25C1815 i’:
R9
Q2 1uFI6V
>
T w%_[] SCHEMATIC MAIN LOGIC VERSION E
LTy o AUDIO
5 I g
o= = +oV R2 +6V =
Tl
Vo=
* - c8 100uF/16V o
1=}
co
0.1uFI50V GND 2
<}
X b3 - 8
o « - g
, @ 25C1959 >
at
v
X 5 4
g. 3
L] g
: 15515
:1:1
8 8
S —o—
CRW
VAW
+5V
TaFI50V 1
A 2
AN glalnl + H
31218 ém a| @ 5
2314 18 :_Et 11 [12j13]14] 1 5 s
588 g[*°8588 8 5
$glu —4 :
——{A2 1
7 4
A 1 3
MPS 1A MPS  —5 i
2114 —2as 2114 ras 2114 —{As 2114
e Tl e
76| A7 vt
15 :: Blae :g
- s e u " A uB6
usd | Wigw | Olrw | aw U4
ves = vss| | TS vss| | wE vss
T e & s L
RAM 1
RAM 2
AM 3
K1
BLK2
K3
BLKS
02
103
502
RES |
i
NM I
GND
_N
'UNREGULATED +9V
.ROW! 9‘1'\ > T
ROW2Z N g0
ROW3 N )
ROW £ 25C1815 har CN2
ROW5 cho sl 1K R12 < —
ROW 6 a7 MpPs  CB[ae
ROW 7 \C“_“Ra g520 A2l
2oL 0} %RSZ Cn2[7 GGt pen 3
,otv\ mnsg pagfe JOY 2
:TSL N \CA4_“dlcs, ] EXTeT I 82
.—\ —_'!F?f PAz‘ JOYQ = - § cs w
COL 5 "G PAG [y E
COl +5v CA1 UDES Pa1 5 I %
COL 7)Y s PAO I'g °
—23{csz E A
\ x28 RW Vss Paz -J— ‘ 5
F =9 'L -
1 L CASSSW |
CASSWRITE |
CASSREAD | o
L
-
a
— Jovor e
sovil, [&
—_ovzl? (3
IGHT 312
cour sov 318 | £
Tz Y ‘7 8
.- z GND | ©
L g 8 s|eory
a ol |3/ = = o[POT X
SRR AR = &
i ﬁ"- o lalala|a|a [
CewnOo~ NOQOOWLT DX «z-rNmO T
ol CN1 CNS

USER PORT

© 1980




ABOUT THE VIC 20
PROGRAMMERS REFERENCE GUIDE...

This easy-to-use manual gives you a ready source of
information on VIC 20 software and hardware, with
detailed explanations of each topic and “friendly”
tips throughout to help you use your VIC 20 to best
advantage.

The VIC PROGRAMMERS REFERENCE GUIDE is
actually four guides in one. It includes (1) a BASIC
VOCABULARY GUIDE which explains the complete
VIC BASIC language instruction set along with (2) a
PROGRAMMING TIPS GUIDE with suggestions on
how to improve your programming, (3) a MACHINE
LANGUAGE PROGRAMMING GUIDE to help you
talk to the VIC in its “own” binary/hexadecimal
language, and (4) a special section on INPUT/
OUTPUT OPERATIONS giving you the information
needed to connect your VIC to special peripherals
like RS232 devices, lightpens and others.

This guide was compiled from information provided
by Commodore programming staffs working in more
than half a dozen countries worldwide.

Whether you're a first-time computerist or an expert
programmer, you'll find a wide variety of program-
ming aids available through your Commodore dealer.
In addition to books and manuals, Commodore
provides several special programming cartridges and
the TEACH YOURSELF PROGRAMMING (tm)
instruction series.

Tr commodore

COMPUTER

DISTRIBUTED BY
Howard W. Sams & Co., Inc.
4300 W. 62nd Street, Indianapolis, Indiana 46268 USA
$16.95/21948 ISBN: 0-672-21948-4

snndwod Ajpuapay L






