dr. dobb’s ‘ journal of $1.50

COMPUTER
isthenics €3 Orthodontia

Running Light Without Ouverbyte

January, 1976 Box 310, Menlo Park CA 94025 Volume 1, Number 1

A REFERENCE JOURNAL FOR USERS OF HOME COMPUTERS

Table of Contents for Volume, 1, Number 1 (20 péges) page

Tiny BASIC Status Letter - Dennis Allison 1
16-Bit Binary-to-Decimal Conversion Routine - Dennis Allison 2
Build Your Own BASIC [reprinted from PCC, Vol. 3, No. 4] - Dennis Allison & others 3
Build Your Own BASIC, Revived [reprinted from PCC, Vol. 4, No. 1] - D. Allison & M. Christoffer 4
Design Notes for Tiny BASIC [reprinted from PCC, Vol. 4, No. 2] - D. Allison, Happy Lady, & friends 5
Tiny BASIC [reprinted from PCC, Vol. 4, No. 3] - D. Allison, B. Greening, H. Lady, & lots of friends 9

Extendable Tiny BASIC - John Rible 10
Corrected Tiny BASIC IL - Bernard Greening 12
Tiny BASIC, Extended Version (TBX), Part 1- Dick Whipple & John Amold

Example, Command Set, Loading Instructions, Octal Listing 14
Letter & Schematics - Dr Robert Suding

Using a calculator chip to add mathematical functions to Tiny BASIC 18

T HI S S A R EPRINT

T H E ORIGINATL

V OLUME N UMSBER

T e < <
DON’T KEEP IT A SECRET!

Let us know what exciting new software and systems you are
working on. We’ll tell everyone else (if you wish). Maybe
someone is also working on the same thing. You can work
together and get results twice as fast. Or, may be someone
else has already done it; no reason for everyone to reinvent
the wheel.

B e I R ————

DR DOBB'S JOURNAL OF
COMPUTER CALISTHENICS & ORTHODONTIA

Box 310, Menlo Park CA 94025
Copyright © 1976 by People’s Computer Company

ha;’eople‘s Computer Company 0
1010 Doyle, Menlo Park, California
(415) 323-3111 °©

Jim C. Warren, Jr.

...................

Publis

Editor

Watchdogs
Bob Albrecht
Dennis Allison

Underdog
Rosehips Malloy

Circulation & Subscriptions
Mary Jo McPhee

Bulk Sales
Dan Rosset

...............................

AXXARARARAARARAALAAAAARARALARD

Printer
Nowels Publications, Menlo Park 94025

POSTMASTER: Please send Form 3579 to: Box 310, Menlo Park
CA 94025. Return postage guaranteed. Application to mail at
second-class postage rates is pending at Menlo Park CA.

Published 10 times per year; monthly, excluding July & December.

U.S. subscriptions:

(Subscriprion blank is on page 33.)
$1.50 for a single fssue.

83 for the first three issues.

$10 per year. :

Foreign subscriptions:
Add §4 per year to U.S.
rates for surface mail

. Add §12 per year to U.S.
rates for asr masl

Discounts available for bulk orders.

Disclaimer
We serve as a communication medium for the exchange of
information. We do not guarantee the validity of that information.

Reprint privileges

Articles herein that are copyrighted by individual authors or
otherwise explicitly marked as having restricted reproduction rights
may not be reprinted or copied without permission from People’s
Computer Company, or the authors, All other articles may be
reprinted for any non-commercial purpose, provided a credit-line is
included. The credst-line should indicate that the material was
reprinted from Dr. Dobb’s Journal of Computer Cslisthenics &
Orthodontia, Box 310, Menlo Psrk CA 94025,

- D <G G < D <G < < < < < < < << < < iR < < < < <y i <> <O < <amm

SUBMITTING ,
ITEMS FOR \
PUBLICATION t

a)

athy . A\Y

DATE’M—Please include your name, address, and date on
all tidbits you send to us.

TYPE’M-If at all possible, items should be typewritten,
double-spaced, on standard, 8% x 11 inch, white paper. If we
can’t read it; we can’t publish it. Remember that we will be
retyping all natural language (as opposed to computer languages)
communications that we publish.

PROGRAM LISTINGS—We will accept hand-written
programs only as a very last resort. Too often, they tend to say
something that the computer would find indigestible. On the
other hand, if the computer typed it, the computer would
probably accept it—particularly if it is a listing pass from an
assembler or other translator.

It is significantly helpful for program listings to be on
continuous paper; either white, or very light blue, roll paper, or
fan-folded paper. Since we reduce the copy in size, submitting it
on individual pages forces us to do a significant amount of extra
cutting and pasting. For the same reason, we prefer that you
exclude pagination or page headings from any listings.

Please, please, please put a new ribbon on your printer
before you run off a listing for publication.

In any natural language documentation accompanying a
program listing, please refer to portions of code by their address
or line number or label, rather than by page number.

DRAWINGS & SCHEMATICS—Please draw them sigrifi-
cantly larger than the size you expect them to be when they are
published. Take your time and make them as neat as possible. We
do not have the staff to retouch or re-draw illustrations. Use a
black-ink pen on white paper.

LETTERS FOR PUBLICATION—We are always interested
in hearing your praise, complaints, opinions, daydreams, etc. In
letters of opinion for publication, however, please back up any
opinions that you present with as much factual information as
possible.

We are quite interested in publishing well-founded,
responsible evaluations and critiques of anything concerning
hobbyist hardware or software, home computers, or computers
and people.

We may withhold your name from a published letter if you
so request. We will not publish correspondence, however, which
is sent to us anonymously. .

We reserve the right to edit letters for purposes of clarity
and brevity.

ADVERTISING—Advertising from manufacturers and
vendors may be accepted by us. However, we reserve the right to
refuse any advertising from companies which we feel fall short of
our rather picky standards for ethical behavior and responsiveness
to consumers. Also, any such commercial advertiser is herewith
informed that we will not hesitate to publish harsh criticisms of
their products or services, if we feel such criticisms are valid.

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box 310, Menlo Park CA 94025

ar dobbs journal of

Box 310, Menlo Park CA 94025

STATUS LETTER
by Dennis Allison

The magic of a good language is the ease with which a
particular idea may be expressed. The assembly language of most
microcomputers is very complex, very powerful, and very hard to
learn. The Tiny BASIC project at PCC represents our attempt to
give the hobbyist a more human-oriented language or notation with
which to encode his programs. This is done at some cost in space
and/or time. As memory still is relatively expensive, we have chosen
to trade features for space (and time for space) where we could.

Our own implementation of Tiny BASIC has been very slow. |
have provided technical direction only on a sporadic basis. The real
work has been done by a number of volunteers; Bernard Greening
has left the project. As might be guessed, Tiny BASIC is a tiny part
of what we do regularly. (And volunteer labor is not the way to run
a software project with any kind of deadline!)

While we’ve been slow, several others have really been fast. In
this issue we publish a version of Tiny BASIC done by Dick Whipple
and John Arnold in Tyler, Texas. (And other versions can’t be far

behind.)
() (]] () () () () () () () () () () ()
MY, HOW TINY BASIC GROWED!

Once upon a time, in PCC, Tiny BASIC started out to be:

t a BASIC-like language for tiny kids, to be used for games,
recreations, and the stuff you find in elementary school math books.
t an exercise in getting people together to develop FREE soft-

ware.
T portable-machine independent.
1 open-ended--a toy for software tinkerers.
T small.

Then . .. (fanfare!) . . . along came Dick Whipple and John
Arnold. They built Tiny BASIC Extended. It works. See pp 13-17
and 19 in this issue for more information. More next issue.

WANTED: More Tiny BASICs up and running.

WANTED: More articles for this newsletter.

WANTED: Tiny other languages. | might be able to live with Tiny
FORTRAN but, | implore you, no Tiny COBOL! How about Tiny
APL? Or Tiny PASCAL (whatever that is)? i

WANTED: Entirely new, never before seen, Tiny Languages,)
imported from another planet or invented here on Earth. Especially
languages for kids using home computers that talk to tvs or play
music or run model trainsor . ..

Tiny BASIC
alisthenics & Orthodontia

Running Light Without Ouverbyte

Volume 1, Number 1

BASIC

BASIC, Beginners’ All-purpose Symbolic Instruction Code, was
initially developed in 1963 and 1964 by Professors John Kemeny
and Thomas Kurtz of Dartmouth College, with partial Isupport from
the National Science Foundation under the terms of Grant NSF GE
3864. For information on Dartmouth BASIC publications, get
Publications List (TM 086) from Documents Clerk, Kiewit Compu-
tation Center, Dartmouth College, Hanover NH 03755. Telephone
603-646-2643.

Try these: TMO028 BAS/C: A Specification $3.15

TMO075 BASIC $4.50

ok sk K K oK 5K oK KoK K oK Sk K 5K Sk sk Sk sk Sk sk

It would help a lot if you would each send us a 3x5 card with your
name, address (including zip), telephone number, and a rather
complete description of your hardware.

KKK KKK K KA KK KKk K KKK KKK

DRAGON THOUGHTS

t We promised three issues. After these are done, shall we
continue?

t If we do, we will change the name and include languages other
than BASIC.

1 This newsletter is meant to be a sharing experience, intended to
disseminate FREE software. It’s OK to charge a few bucks for tape
cassettes or paper tape or otherwise recover the cost of sharing. But
please make documentation essentially free, including annotated
source code.

t If we do continue, we will have to charge about $1 per issue to
recover our costs. In Xeroxed form, we can provide about 20-24
pages per issue of tiny eye-strain stuff. If we get big bunches of
subscriptions, we’ll print it and expand the number of pages,
depending on the number of subscribers.

t So, let us know . . . shall we continue?

e —— 0 2 0 — 0 0

For our new readers, and those who have been following
articles on Tiny BASIC as they appeared in People’s
Computer Company, we have reprinted on pages 3-12 the
best of Tiny BASIC from PCC as an introduction, and as
a reference.

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 2

TECHNIQUES & PRACNIQUES t=v+y;
Cust+t Computes 10 - x
by Dennis Allison, 12/1/75 =u+u+t
u=n-u Byte only as high order must be
(This will be a continuing column of tricks, algorithms, and . equal ‘)
other good stuff everyone needs when writing software. Contribu- if u> 10 then Perhaps one could use a decimal
tions solicited.) do; feature here
:) u=u-10;
16-BIT BINARY TO DECIMAL CONVERSION ROUTINE n=v+i; Corrects for case where [n/10] - 1
end is computed and creates [n/10/ and
T saves characters on stack
. else nmod 10
T performs zero suppressed conversion n=y:
T uses multiplication by 0.1 to obtain n/10 and n mod 10 call push (u): Saves result on stack
define crutch = OFFH; until n = 0; Loop at least once
declare n, u, v, t; BIT (16) These could be registers, or on the
if n <0 then stack ch = pop;
do; do while < > crutch; Write result in reverse order
n=-n; call outch (ch + 030H); Converts digits to ASCI/
call outch(’-'); 0=030H 02 =032H etc.
end; ch = pop; Pop takes one word off the stack
call push (crutch) The crutch marks the end of num- end
ber on the stack
repeat; ©
v =shr (n,1): 9 T Letters from readers are most welcome. Unless they
v=y+shr (v,1); These all are 16 bit shifts 9 note otherwise, we will assume we are free to publish
v=v +shr(v,4); Computes [n/10f or [n/10] - 1 by o and share them.
v =v+shr (v,8); multiplication o)
v =shr (v,3); Call it x % T We hereby assign reprint rights to all who wish to use

Tiny BASIC Calisthenics & Orthodontia for non-
commercial purposes.

t To facilitate connection between our subscribers, we will
in subsequent issues publish our subscriber list (including

pPCC finy BASIC Reorganizes. . . addresses and equipment of access/interest).
vi-is -1 I want to subscribe to
Bsb Albeect « DR. DOBB'S JOURNAL OF
vec

TINY BASIC CALISTHENICS & ORTHODONTIA =

Demnis Allisa (3 issues for $3)

Tw? Bas[c fecls ke o dead NAME
A\l)\{vo$5 ‘\«uwé\ w% V\ec\.’.. X Clg '
wet, fee| e ww\‘«wa e T awy ADDRESS
. Woxe. :
CITY STATE ZIP
Bw
: (If you would like us to publish your name, address, and equip-
.. .and so we procede somewhat more S|ow|y than some ment of access/interest in future issue(s), please indicate VERY
of our readers SPECIFICALLY:
aH000000000000000000000000000000G0 0
a EQUIPMENT
3 Dennis Allison - technical editor OF ACCESS/INTEREST.
E b contributin
9 John Arnold editors 9
3 Dick Whipple
q
pe :;‘?]lg dBar l}:[{tc:’ne-_ C‘ri((:jub]}loq_r'a nager Please send check or money order (purchase order minimum: $6)
3 ors midwite-at-large to TINY BASIC CALISTHENICS & ORTHODONTIA
=

LR LR LR LR R R R R R R R R R R R RL LR) Box 310, Menlo Park CA 94025. Thank you.

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 3

BUILD YOUR OWN BASIC

by Dennis Allison & Others
(reprinted from People’s Computer Company Vol. 3, No.4)

A DO IT YOURSELF KIT FOR BASIC??

Yes, available from PCC with this newspaper and a lot of your time. This is
the beginning of a series of articles in which we will work our way through the
design and implementation of a reasonable BASIC system for your brand X
computer. We'll be working on computers based on the INTEL 8008 and
8080 microprocessors. But it doesn't make much difference — if your machine
is the ZORT 9901 or ACME X you can still build a BASIC for it. But
remember, it's a hard job and will take lots of time particularly if you haven't
done it before. A good BASIC system could easily take one man six months!

We'd like everyone interested to participate in the design. While we could do
it all ourselves, (we have done it before) your ideas may be better than ours.
Maybe we can save you, or you can save us, a lot of work or problems. Write
us and we'll publish your letter and comments.

WHICH BASIC?

There is not any one standard BASIC (yet).

The question is which BASIC should we choose
to implement. A smaller (fewer statements,
fewer features) BASIC is easier to implement
and (more important) takes less space in the
computer. Memory is still expensive so the
smaller the better. Yet maybe we can't give

up some goodies like string variables, dynamic
array allocation, and so on.

There is a standard version of BASIC which is
to be the minimal language which can be called
BASIC. It's a pretty big language with lots of
goodies. Maybe too big. Is there any advantage
to being compatible with, say, the EDU BASICS?
We don't have to make any decision yet; but the
time will come. .. :

COMPILER OR INTERPRETER?

We favor using an interpreter. An interpreter is

a program which will execute the BASIC program
from its textual representation. The program
you write is the one which gets executed. A com-
piler converts the BASIC program into the ma-
chine code for the machine it is to run on. Com-
piled code is a lot faster, but requires more space
and some kind of mass storage device (tape or
disk). Interpretative BASIC is the most common
on small machines.

DIRECT MODE?

HOW MUCH MEMORY? AND...WHAT KIND?

Can we make some guesses about how big the BASIC system will be? Only
if you don't hold us to it. Suppose we want to be able to run a 50 line
BASIC program. We need about 800 bytes to store the program, another
60 or so bytes for storing program values (all numeric) without leaving any
space for the interpreter and its special data. Past experience has shown
that something like 6 to 8 Kbytes are needed for a minimum BASIC inter-
preter and that at least 12K bytes are necessary for a comfortable system.
That’s a lot of memory, but nct too much more than you need to run the

Some kind of “‘desk calculator’” mode of opera-
tion would be nice. At least, we would like to
be able to look at and set different variables in a
program and restart execution at any given point.
This feature makes it easier to find and gently
terminate the existence of *‘bugs.”

DATA STRUCTURES

Data structures are places to put things so you can find them or use them later.
BASIC has at least three important ones: a symbol table which looks up a pro-
gram name, A or Z9 or A$, with its value. If we had a big computer where space
was not a huge problem, we could simply preallocate all storage since BASIC
provides for only 312 different names excluding arrays. When memory is so
costly this doesn’t make much sense. Somewhere, also, we've got to store the
names which BASIC is going to need to know, names like LET and GO TO and
IF. This table gets pretty big when there are lots of statements.

Lastly, we need some information about what is a legal BASIC statement and
which error to report when it isn’t. These tables are called parsing tables since
they control the decomposition of the program into its component parts.

STRATEGY

Divide and Conquer is the programmers maxim. BASIC will consist of a lot of .
smaller pieces which communicate with each other. These pieces themselves
consist of smaller pieces which themselves consist of smaller pieces, and so forth
down to the actual code. A large problem is made manageable by cutting it into
pieces.

What are the pieces, the building blocks of BASIC? We see a bunch of them:

%a supervisor which determines what is to be done next. It receives control
when BASIC is loaded.

%a program and line editor. This program collects lines as they are entered
from the keyboard and puts them into a part of computer memory for
later use.

a line executor routine which executes a single BASIC statement, whatever
that is. - '

#a line sequence which determines which line is to be executed next. -

a floating point package to provide floating point on a machine without the
hardware. .
*terminal I/O handler to input and output information from the Teletype and

provide simple editing (backspace and line deletion).

sa function package to provide all the BASIC functions (RND, INT, TAB, etc.)

#an error handling routine (part of the supervisor).

s%a memory management program which provides dynamic allocation data
objects.

These are the major ones. As we get futher into the system we’ll begin to see
others and we'll begin to be able to more fully define the function of each of
these modules.

TINY BASIC

Pretend you are 7 years old and don’t care
much about floating point arithmetic (what's
that?), logarithms, sines, matrix inversion,
nuclear reactor calculations and stuff like
that.

And . . . your home computer is kinda small,
not too much memory. Maybe its a MARK-8
or an ALTAIR 8800 with less than 4K bytes
and a TV typewriter for input and output.

You would like to use it for homework, math
recreations and games like NUMBER, STARS,
TRAP, HURKLE, SNARK, BAGELS, ...

Consider then, TINY BASIC

@ Integer arithmetic only — 8 bits? 16 bits?
» 26 variables: A,B,C,D,..., 2

s The RND function — of course!

= Seven BASIC statement types

assembler. A‘lot of BASIC could be put into ROM (Read Only Memory) INPUT
once developed and checked out. ROM is a lot cheaper than RAM (Read PRINT
and Write) memory, hut you can't change it. It’s lots better to make sure LET
everything works first. ﬁ:,o TO
But . . . if we can agree on some chunks of code and get it properly checked GOSUB
out, some enterprising person out ther2 might make a few thousand ROMs RETURN

and save us all some $$$. Let's see now . . . how about ROM:s for floating

. 9 . T .
point arithmetic, integer arithmetic, Teletype I/O. .. ® Swings? OK in PRINT statements, not

OK otherwise.

January 1976 Tiny BASIC Callsthemcs & Orthodontla Box 310, Menlo Park CA 94025 Page 4

BUILD YOUR OWN BASIC--REVIVED
(reprinted from People’s Computer Company Vol. 4, No. 1)
WHAT IS TINY BASIC???

TINY BASIC is a very simplified form of BASIC which can be
implemented easily on a microcomputer. Some of its features are:

Integer arithmetic 16 bits only
26 variables (A, B, . .., Z)
Seven BASIC statements

INPUT PRINT LET GOTO
IF GOSUB RETURN

Strings only in PRINT statements

Only 256 line programs (if you’ve got that much memory)
Only a few functions including RND

It’s not really BASIC but it looks and acts a lot like it. I’ll be good
to play with on your ALTAIR or whatever; better, you can change
it to match your requirements and needs.

TINY BASIC LIVES!!!

We are working on a version of TINY BASIC to run on the INTEL
8080. It will be an interpretive system designed to be as conservative
of memory as possible. The interpreter will be programmed in
assembly language, but we’ll try to provide adequate descriptions

of our intent to allow the same system to be programmed for most any
other machine. The next issue of PCC will devote a number of pages
to this project.

9 In the meantime, read one of these.
Compiler Construction For Digital Computers, David Gries, Wiley, 1971
493 pages, $14.95
Theory & Application of a Bottom-Up Syntax Directed Translator
Harvey Abramson, Academic Press, 1973, 160 pages, $11.00

Compiling Techniques, F.R.A. Hopgood, Amencan Elsevier, 126 pages
$6.50

A BASIC Language Interpreter for the Intel 8008 Microprocessor
A.C. Weaver, M.H. Tindall, R.L. Danielson. University of Illinois
Computer Science Dept, Urbana IL 61801. June 1974. Report No.
UIUCDCS-R-74-658. Distributed by National Technical Informa-
tion Service, U.S. Commerce Dept, Springfield VA 22151. $4.25.

A BASIC language interpreter has been designed for use in a
microprocessor environment. This report discusses the develop-
ment of 1) an elaborate text editor and 2) a table-driven interpre-
ter. The entire system, including text editor, interpreter, user
text buffer, and full floating point arithmetic routines fits in

16K 8-bit words.

The TINY BASIC proposal for small home computers
was of great interest to me. The lack of floating point
arithmetic however, tends to limit its usefulness for my
objectives.

As a matter of a suggestion, consideration should be
given to the optional inclusion of floating point
arithmetic, logarithm and trigonmetric calculation
capability via a scientific calculator chip interface.t

The inclusion of such an option would tend to extend -

the interpreter to users who desire these complex calcu-
lation capabilities. A number of calculator chip
proposals have been made, with the Suding unit being
of the most interest.

Thank you for the note of 13 Jue, regarding my letter
on the Tiny BASIC article (PCC Vol. 3 No. 4). It was
with regret that | learned that the series was not con-
tinued in the next volume. Even though few responded
to the article published, conceptually the knowledge
and principles which would be disseminated regarding
a limited lexicon, high level programming language

are of importance to the independent avocational
microcomputer community.

At this time, PCC may not have a wide distribution in
the avocation microcomputer community. This could
be possibly the cause for the low number of respondies
Never the less, this should not detract from the dis-
semination and importance of concepts and principles
which are of significance.

The thrust of my letter of 15 April, 1975, was to suggest
a mechanism for the inclusion of F.P. in a limited
lexicon and memory consumptive BASIC. I hope that
the implication that F.P. must be included was not

read into my letter.

It is my interest that information, concepts and the
principles of compiler/interpreter construction as it
related to microcomputers be available to the limited
budget avocational user. The MITS BASIC, which you
brought up, appears from my viewpoint to he a licensed,
blackbox program which is not currently available to:
(a) 8008 users, (b) IMP-16 users, (c) independent 8080
users (except at a very large expense) or (d) MC6800
users who will shortly be on line.

Presently it appears that microcomputer compiler
interpretor function langauges will be coming available
from a number of sources (MITS, NITS, Processor
Technology and etc.). However, few wnH probably deal
in the conceptualizations which are the basis of the
interpreter. Information which will {ill the void in the
interpreter construction knowledge held by the avocation
builder, should be made availabie.

I strongly urge that the series started with Vol. 3

No. 4 article be continued. Possibly the hardware,
peripheral, machine programming difficulties incurred
by the microcomputer builder, is prohibiting a major
contribution at this time. However, I would expect
that by Autumn a number of builders should have
their construction and peripheral difficulties far enough
along to start thinking about higher level languages.
The previous objective for the article series sounds
reasonable. It was'not my purpose in submitting the
letter to detract from the objective of a very limited
lexicon BASIC, ie., to be attractive and usable by the
young and beginner due to its simplicity.

-If wives, children, neighbors or anyone who is not

machine language or programming oriented is ex pected

to use a home-base unit created under a restrained

budget a high level language will be a necessity. It

is with this foresight that I encourage the continuance

of the “Build Your Own BASIC” series.

This issue aside, I would like to encourage the PCC to

continue the quite creditable activities which have

been its order of business with regard to avocational

computing. Michael Christoffer
4139 12th NE No. 400
Seattle, Wash. 98105

T Please see Dr Robert Suding’s article on p. 18

January 1976 Tiny .BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

Page 5.

DESIGN NOTES FOR TINY BASIC

by Dennis Allison, happy Lady, & friends

(reprinted from People’s Computer Company Vol. 4, No. 2)

SOME MOTIVATIONS

A lot of people have just gotten into having
their own computer. Often they don’t know too
much about software and particularly systems
software, but would like to be able to program in
something other than machine language. The
TINY BASIC project is aimed at you if you are
one of these people. Qur goals are very limited---
to provide a minimal BASIC-like language for
writing simple programs. Later we may make
it more complicated, but now the name of the
game is keep it simple. That translates to a
limited language (no floating point, no sines
and cosines, no arrays, etc.) and even this is
a pretty difficult undertaking.

QOriginally we had planned to limit
ourselves to the 8080, but with a variety of
new machines appearing at very low prices, we
have decided to try to make a portable TINY
3ASIC system even at the cost of some effi-
ciency. Most of the language processor will be
written in a pseudo language which is good for
writing interpreters like TINY BASIC. This
pseudo language (which interprets TINY BASIC)
will then itself be implemented interpretively.
To implement TINY BASIC on a new machine,
one simply writes a simple interpreter for this
pseudo language and not a whole interpreter for
TINY BASIC.

We'd like this to be a participatory design
project. This sequence of design notes follows the
project which we are doing here at PCC. There may
well be errors in content and concept. If you're
making a BASIC along with us, we'd appreciate
your help and your corrections.

Incidentally, were we building a production
interpreter or compiler, we would probably struc-
ture the whole system quite differently. We chose
this scheme because it is easy for people to change
without access to specialized tools like parser
generator programs.

THE TINY BASIC LANGUAGE

There isn’t much to it. TINY BASIC
looks like BASIC but all variables are integers
There are no functions yet (we plan to add RND,
TAB, and some others later). Statement numbers
must be between 1 and 255 so-we can store them
in a single byte. LIST only works on the whole

program. There is no FOR-NEXT statement. We've , ‘

tried to simplify the language to the point where it
will fit into a very small memory so impecunious,
tyros can use the system.

The boxes shown define the language. The
guide gives a quick reference to what ve will include.
The formal grammar defines exactly what is a legal -
TINY BASIC statement. The grammar is important
because our interpreter design will be based upon it.

IT'S ALL DONE WITH MIRRORS------
OR HOW TiNY BASIC WORKS

All the variables in TINY BASIC: the
control information as to which statement is
presently being executed and how the next state-
ment is to be found, the returnaddressesof active
GOSUBS--—-all this information constitutes the
state of the TINY BASIC interpreter.

There are several procedures which act upon
this state. One procedure knows how to execute
any TINY BASIC statement. Given the starting
point in memory of a TINY BASIC statement, it
will execute it changing the state of the machine
as required. For example,

100 LETS = A+6 @
would change the value of S to the sum of the con-
tents of the variable A and the interger 6, and sets
the next line counter to whatever line follows 100,
if the line exists. :

A second procedure really controls the
interpretation process by telling the line interpreter
what to do. When TINY BASIC is loaded, this
control routine performs some initialization, and
then attempts to read a line of information from the
console. The characters typed in are saved in a buffer,
LBUF. It first checks to see if there is a leading
line number. If there is, it incorporates the line
into the program by first deleting the line with the
same line number (if it is present) then inserting
the new line if it is of nonzero length. If there is
no line number present, it attempts to execute
the line directly. With this strategy, all possible
commands, even LIST and CLEAR and RUN are
possible inside programs. .Suicidal' programs are
also certainly possible.

TINY BASIC GRAMMAR

The things in bold.face stand for themselves. The names in lower case
represent classes of things. "::=’is read "is defined as’. The asterisk denotes
zero or more occurances of the object to its immediate left. Parenthesis
group objects. € .is the empty set. | denotes the alternative (the
exclusive-or).

line::= number statement @ | statement @

statement::= PRINT expr-list
IF expression relop expression. THEN statement
GOTO expression
INPUT var-list

LET var = expression
GOSUB expression

RETURN
CLEAR
LIST
RUN
END
“expr-list::= (string | expression) (, (string | expression) *)
var-list::= var {, var)* .
expression::= (4| ~[€) term ((+|~) term)*
term::= factor ((* | /) factor)*®
factor::= var | number | {expression)
var::=A|B IC .. |Y |2Z
number::= digit digit"
digit::= 0/ 112 |...18 19
» relopii=< (>|=1€) | >(<l=1l€)l=
. ABREAK from the console wiil interrupt execution of the program.

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 6

IMPLEMENTATION STRATGIES AND ONIONS

When you write a program in TINY BASIC
there is an abstract machine which is necessary to
execute it. |f you had a compiler it would make
in the machine language of your computer a
program which emulates that abstract machine
for your program. An interpreter implements
the abstract machine for the entire language and
rather than translating the program once to machine
code it translates it dynamically as needed. Inter-
preters are programs and as such have their's as
abstract machines. One can find a better instruc-
tion set than that of any general purpose computer
for writing a particular interpreter. Then one
can write an interpreter to interpret the instruc-
tions of the interpreter which is interpreting the
TINY BASIC program. And if your machine is
microprogrammed (like PACE), the machine
which is interpreting the interpreter interpreting
the interpreter interpreting BASIC is in fact
interpreted.

This multilayered, onion-like approach
géins two things: the interpreter for the inter-
preter is smaller and simpler to write than an
interpreter for all of TINY BASIC, so the resul-
tant system is fairly portable. Secondly, since
the major part of the TINY BASIC is programmed
in a highly memory efficient, tailored instruction
set, the interpreted TINY BASIC will be smaller
than direct coding would allow. The cost is in
execution speed, but there is not such a thing as
a free lunch.)

your machine

your program in TINY BASIC

interpreter for TINY BASIC

interpreter for TINY BASIC's interpreter

LINE STORAGE

The TINY BASIC program is stored, except
for line numbers, just as it is entered from the
console. In some BASIC interpreters, the program
is translated into an intermediate form which speeds
execution and saves space. In the TINY BASIC
environment, the code necessary to provide the

FOR TINY BASIC

LINE FORMAT AND EDITING

e Line numbers must be 1 to 255

contain no unneeded blanks
e ‘<’ deletes last character
o XC deletes the entire line

EXECUTION CONTROL

CLEAR delete all lines and data
RUN run program
LIST list program

1 EXPRESSIONS

PRINT "A STRING’
PRINT "THE ANSWER IS’
INPUT X

INPUT X,Y,Z

ASSIGNMENT STATEMENT.

LET X=3
LET X=-3+5«Y

CONTROL STATEMENTS

GOTO X+10

GOTO 35

GOSUB X+35

GOSUB 50

RETURN

IF X >Y THEN GOTO 30

QOIGE REFERENCE GUIDE

e Lines without numbers executed immediately
o Lines with numbers appended to program

e Line number alone (empty line) deletes line
e Blanks are not significant, but key words must

Operators
Arithmetic Relational
+ - > >=
A L L=
= o<
Variables
A.....Z (26 only)
All arithmetic is modulo 215
(+32762)
INPUT / OUTPUT
PRINT X,Y,Z

transformation would easily exceed the space saved.

When a line is read in from the console device,
it is saved in a 72-byte array called LBUF (Line
BUFfer). At the same time, a pointer, CP, is
maintained to indicate the next available space in
LBUF. Indexing is, of course, from zero.

Delete the leading blanks. If the string
matches the BASIC line, advance the cursor over
the matched string and execute the next IL in-
struction. If the match fails, continue at the IL
instruction labeled Ibl.

|
|

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 7

The TINY BASIC program is stored as an
array called PGM in order of increasing line num-
bers. A pointer, PGP, indicates the first free place
in the array. PGP=0 indicates an empty program;
PGP must be less than the dimension of the array
PGM. The PGM array must be reorganized when
new lines are added, lines replaced, or lines are
deleted.

Insertion and deletion are carried on simul-
taneously. When a new line is to be entered, the
PGM array searches for a Iirje with a line number
greater than or equal to that of the new line.
Notice that lines begin at PGM (0) and at PGM

(j+1) for every j such that PGM (j)=[carriage
return] . If the line numbers are equal, then the
length of the existing line is computed. A space
equal to the length of the new line is created by
moving all lines with line numbers greater than
that of the line being inserted up or down as
appropriate. The empty line is handled as a
special case in that no insertion is made.

TINY BASIC AS STORED IN MEMORY
byte in memory treated as an integer

byte treated as a character

@RUYEND @

a carriage return symbol
ERRORS AND ERROR RECOVERY

There are two places that errors can occur.

If they occur in the TINY BASIC system, they
must be captured and action taken to preserve
the system. |f the error occurs in the TINY
BASIC program entered by the user, the system
should report the error and allow the user to
fix his problem. An error in TINY BASIC can
result from a badly formed statement, an il-
legal action (attempt to divide by zero, for ex-
ample), or the exhaustion of some resource
such as memory space. In any case, the de-
sired response is some kind of error message.
We plan to provide a message of the form:

! mmm AT nnn
where mmm is the error number and nnn is
the line number at which it occurs. For direct
statements, the form will be:

' mmm
since there is no line number.

Some error indications we know we will need are:
1 Syntax error 5 RETURN without GOSUB

free space

N T "PoweER
UTLUN@BPRI
NsNg N ¢
ENLGOTOWL 1

Two different things are going on at the same
time. The routines must determine if the TINY
BASIC line is a legal one and determine its form
according to the grammar; secondly, it must
call appropriate action routines to execute the
line. Consider the TINY BASIC statement:
GOTO 100
At the start of the line, the interpreter looks for
BASIC key words (LET, GO, IF, RETURN, etc.)
In this case, it finds GO, and then finds TO. By
this time it knows that it has found a GOTO
statement. It then calls the routine EXPR to
obtain the destination line number of the GOTO.
The expression routine calls a whole bunch of
other routines, eventually leaving the number 100
(the value of the expression) in a special place, the
top of the arithmetic expression stack. Since
everything is legal, the XFER operator is invoked
to arrange for the execution of line 100 (if it
exists) as the next line to be executed.

Each TINY BASIC statement is handled
similarly. Some procedural section of an IL
program corresponds to tests for the statement
structure and acts to execute the statement.

ENCODING

There are a number of different considerations
in the TINY BASIC design which fall in this general
category. The problem is to make efficient use of
the bits available to store information without
loosing out by requiring a too complex decoding
scheme. o

In a number of places we have to indicate
the end of a string of characters (or else we have
to provide for its length somewhere). Commonly,
one uses a special character (NUL = 00H for ex-
ample) to indicate the end. This costs one byte
per string but is easy to check. A better way de-
pends upon the fact that ASCIi code does not
use the high order bit; normally it is used for parity

ONE POTENTIAL IL ENCODING

~¢=— |L instruction byte

ML

L

A

1%
:'6

subroutine call

~

0 6
PC +a gives

new IL address PC + a gives new

IL address. Current
PC stacked

2 Missing line 6 Expression too complex
3 Line number too large 7 Too many lines 1

/,/‘/’,/(By

4 Too many GOSUBs 8 Division by zero 5

THE BASIC LINE EXECUTOR

The execution routine is written in the inter-
pretive language, IL. .1t consists of a sequence of
instructions which may call subroutines written
in IL, or invoke special instructions which are
really subroutines written in machine language.

6

TST with fail
address PC +a

table of entry
points for ML subs.

V7)) Ll
6

0

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 8

on transmission. We can use it to indicate the end A STATEMENT EXECUTOR WRITTEN IN 1L
(that is, last character) of a string. When we process saren i eroam in (L will xecute s TINY BASIC
the characters we must AND the character with B o i apcr o KT, XPER) movg
07 FH to scrub off the flag bit. ihe curso .t pints t shalher TINY BASIC

The interpreter opcodes can be encoded into THE IL CONTROL SECTION

. . . . 4 START; INIT SINITIALIZE
asingle byte. Operations fall into two distinct o e WRTECRLE e
classes---those which call machine language sub- . TS XEC frfsssrn‘vol'; LINE uwacn
routines, and those which either call or transfer o, B © INITIALIZE FOR EXECUTION

within the IL language itself. The diagram indi-

cates one encoding scheme. The CALL operations STATEMENT EXECUTOR

. - - STMT: 157 SV.'LET . :ISSTATEMENT ALET?
have been subsumed into the IL instruction set. SV sie SYCS! PLACE VAR ADDRESS ON AESTK.
L. N CALL EXPR :PLACE FXPR VALUE ON AESTK.
Addressing is shown to be relative to PC for IL DONE iREPONT ERROR IF cr NOT NEXT.
. - . STORE ;STORE RESULT:
operations. Given the current IL program size, NXT " §AND SEQUENCE TONEXT.
. P st ST $3,°G :GOTO QR GOsus?
this seems adequate. |f it is not, the address TeT - s2.T00 iYES .TO OR .5Us.
i i CALL EXPR SGET LAGEL,
could be used to index an array with the ML DONE {ERNGR IF & NOT NEXT.
. . XPER $SET UP AND JUMP,
class instructions. s2: Ts1 S14, "sug’ JEHROR If NO MATCH,
CALL EXPR JESLS;SI'FHNATIDN,
TINY BASIC INTERPRETIVE OPERATIONS e FeAvEnETURNLINE
XFCR AND JUMP.
TST 1bt, 'string’ delete leading blanks :‘3 'TIS; g? (PRINT IPRINT,
H stving matches the BASIC line, advanca cursor over the § "S‘s v f;gfg‘,‘g'“n?#gﬁ'
malched string and execute the next IL instruction, |fa ss; ST s6,"," . 1S THERE MORE?
match fails, execute the (L instruction at the labeled thl, :‘g s iﬁ_‘;cfu',%':‘i’g‘zmﬁ
. S6: DONE :NO, ERROR IF NO cr.
CALL bt Execute the IL subroutine starting at Ibl. Save the IL ad- : :LIINE
; < ¥ X
dress following the CALL on tha control stack. s CALL | EXPR . GET EXPR VALUE.
PRAN IPRINTIT.
RTN Return to the IL location specified by the top of the con- PAP X3 115 THERE MORE?
trol stack. s8: ST S9,"IF* iIF STATEMENT,
- CALL EXPR i GET [XPRFSSION.
. . . . DETERMINE OPR ANI N STK.
DONE Report a syntax error if after deletion leading blanks the Eﬁtt 25#.“"’ ;gu (::n t‘.’.o’:q‘ O PUT ON STR
cursor is not positioned to read a carriage rer-rn, CNMPR . :Pcl['}"ﬁl*“-" S?X:C;LS’?;G-PERFORMS NEXT IF FALSE,
P STV 3 . 3 .
JMP bt Continue execution of IL at the label specified. 2‘,’3: g\h 3:\7;, INPUT 2{"#‘3,?.!’1’&?3.‘{&
INNUM ;MOv&tuumsen FROM TTY TO AESTK."
PHS Print characters from the BASIC text up to but not including the SIORE - iSTORENT,
closing quote mark. 1f a cr is foun.d in the program text, report an },:} g:", ‘ ;'VSE;“E"E MORE?
error. Move the cursor to the point-fullowing the closing quote. (318 DONE IMUST BE a.
NXT) :SEQUENCE 70 NEXT.
PRN Print number obtained by popping the top of the expres- iz :%LE S$13,"RETURN' as‘s‘:':"; ;'"E”E""
sion stack. . RSTR IRESTORE LINE NUMBER OF CALL.{
NXT I ;SEQUENCE TO NEXT STATEMENT.
SPC Insert spaces to move the print head to next zone. $13: ;’ISJ $14, 'END'
S TST $15, 'LIST HY .
NLINE Output CRLF to Printer, DONE $LIST COMMAND
LST
Ao s direct (line NXT
NXT If the present r.ode is direct (line f\!:mher zero), then s18: TST 516, "RUN" AUN COMMAND.
return to line collection, Otherwise, select the next DONE
sequential line and beqin interprevation. NXT :
S16: TST S17, ‘CLEAR® ;CLCAR COMMAND.
XFER Test valught the t0p of the AE stk to be within fange. O ART
I not, 1eport an error. 1 so, attempt to position cursor .
at that hne. 11 it exasts, begin interpretation there; if not s ERR :SYNTAX ERROR,
feport an error, expR: TST Eo,";')
CALL TER s -
SAV Plure present line number on SBRSTK. Report overfiow NEG ;{“Es,'v‘,ﬁ'},‘g‘f"" N
s error, e EV " INEGATEIT.
€o: g: N Eéh:d :LOOK FOR MORE.
RSTR Replace current line number with value on SBRSTK. If 18 TST E2,°¢ {fi},fﬁ;"g’:&" -
stack is empty, report error, CALL TERM :SUM TERM.
ADD
CMPR Compare ACSTK(SP), the top of the stack, with €2 o8B £ ANY MORE?
AESTKISP-2) s per the relation indicatest by AESTK(SP-1). CALL TERM ;DIFFERENCE TERM.
Delete all from stack. 1 concition specified did not match, sus s
then pertorm NXT action, €3:72: ::‘;:‘ € : ANY MORE?
INNUM 'R':’aigé-;’rzbev from the terminal and push its value onto TERM: CALL FACT
TO: TST T,
FIN Feturn to the line collect routine, CALL FACT :PRODUCT FACTOR.
ERR Report syntax error and return to line collect routine. JM'\:: TO
ADD Replace top two elements of AESTK by their sum, T1: TST T2,/ : ANY MORE?
suB Replace top two elements of AESTK by their difference, g‘l\\le FACT i QUOTIENT FACTOR'
NEG Replace 1op of AESTK with its negative. JMP J0
MUL Replace top two elements of AESTK by their product.
FACT: TSTV FO ;VARIABLE.
Div Replace top two elements of AESTK by their quotient. IND ;YES, GET THE VALUE.[
STORE Place the value at the top of the AESTK into the variable RTN .
designated by the index specificd by the value imimediately FO: TSTN F1 :NUMBER, GET ITS VALUE.
below it. Delete both from the stack. RTN
oy
TSTV bl Test for variable (i.e letter) if present.. Place its index F1: ST F2,°(;PARENTHESIZED EXPR.
value onto the ALSTK and continue execution at rext CALL EXPR .
sutigested location. Otherwise, continue at bl TST le . MATCHING PARENTHESIS
i .
TSTN 1ot Tast for number. 1 present, place its value onto the RTN
AESTK and continue execution at next suggested location, F2: ERR ; ERROR.
Otherwise, continue at 1bl,
IND Reploce top of stack by variable value it indexes. RELOP' TST RO, ="
: .
LST list thi contents of the program area, LT 0 =
RTN
INIT Perforras global initialization RO: TST R4 .< .
Clears program area, emptys GOSUB stack, etc. - TsT R 1' ot
=
GETLINE Input a line to LBUF, LT 2 ;€= R4: TST S17,°y’
s
TSTL Ib) After editing lzading blarks, lock for a line number, Report error if RTN " T|S1T RS: .
invalid; transfer to 1ol if not present. R1: TST R3,) kT 5 ') =
LIT 3 H N
INSRT :::r‘v‘\'lt Irim sfter deleting any line with ssme line RTN < RS5: TST R6, e
er,
R3: LT 1 i¢ T3 L ey
XINIT Perform initialization for each stated execution, RTN R6: LiT4 HE

Empties AEXP stack. RTN

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 9

TINY BASIC

by Dennis Allison, Bernard Greening, happy Lady, & lots
of Friends

(reprinted from People’s Computer Company Vol. 4, No. 3)

Dear People,

After a quick pique at TINY BASIC | have the following
(possibly ill-considered) comments:
1. It looks useful for tiny computers, which is as intended.
2. Those accustomed to extended BASIC, or even the original Dart-
mouth BASIC, will be irked by its limitations. But then, that’s how
the bits byte!

3. How does the interpreter scan the word THEN in an IF statement?
4. Some of the comments for EXPR seem to be on the wrong line, or

my reacling is more biased than usual.

5. Users should note that arithmetic expressions are evaluated left-to-
right unless subexpressions are parenthesized (i.e., there is no implicit

operator procedure).

6. Real numbers would be nice, but would take up a lot more. space.
Probably too much. Ditto for arrays and string variables.

7. Please consider adding semicolon (i.e., unzoned) PRINT format
with a trailing semicolon inhibiting the CRLF. This would be very
useful and would be easy to add.

8. If INPUT prompts with a question mark, please print a blank
character after the question mark (for readability).

9. I suggest allowing THEN as a separator in any multi-statement linz,

not just in IF statements. Since lines like
IF 5¢X THEN IF X<10 THEN GOSUB 100
are already legal, why not allow lines like
LET A=B THEN PRINT A
or any other combination, including silly ones like
GOTO 200 THEN INPUT 2

the second statement of which would never be executed. If THEN
works for |F, it should be possible to-make it work for anything.

10.l aiso suggest allowing comments somehow. At present, comments

must be held to a minimum
are possible via subterfuges such as

IF X<>X THEN PRINT.”THIS IS A COMMENT"

but that seems kind of gauché Naturally, comments must be held to

aminimum in TINY BASIC but sometimes, they may be vital.
11.Doinga

PRINT ™ "

seems to be the only way to print a blank line. Well, all right.

12. Exponentiation via ** would seem fairly easy to add, and might
be worthwhile.

13. By the way, all of this will execute in 1K, won't it?

Jim Day
17042 Gunther St.
Granada Hills, CA 91344

Answering your Questions by number where appropriate:

38&4. Woops! There should be a TST instruction to scan the THEN.
The comments are displaced a line. See the corrected IL listing in
this issue.

5. Expressions are evaluated left-to-right with operator precedence.
That is, 3+2*5 glves 13"andnot-25. -To see this, note that the rou-
tine EXPR which handies addition gets the operands onto the stack
by calling TERM, and TERM will evaluate any product or quotient
before returning.

7. Agreed, but this is intended as a minimal system.

9. One man’s syntatic sugar is anothers poison. | don't like the idea.

Incidentally, how wou!d you interpret
LET A=B THEN GOSUB 200 THEN PRINT 'A’

The GOSUB then has to store a program address which botch-
es up the'tine entry routine or one has to zap the GOSUB stack
whendan error is found. Both are solved only by kiudges.
10-12. See 7. .

13. Maybe. But 2K certainly. See below.

Dear PCC,

| 'am thrilled with your idea of an IL but | think that if you
intend only to write a BASIC interpreter that a good symbolic
assembler would be appropriate. With an assembler similar to
DEC’s PAL 3 or PAL 8 the necessary routines could be written
and used in nearly the same way without having to write the
associated run time material that would be necessary for its
use as an interpreter. A command decoder, a text buffer, and a
line editor would be necessary and all of this uses up a good
amount of space in memory.

If you are aware of all these things and still plan to develop
an IL interpreter, then | suggest you start as DEC did with a
simple symbolic editor as the backbone of the interpreter. In
this way you allow a 2800% increase in development and debug
ging speed (according to Datamation’s comparison of interpreters
and compilers whose fundamental difference is the on line editing
capability). Once this has been implemented and IL is running
on a particular system then the development of interpreters of
all.types is greatly simplified. By suggesting IL you have stumbled
onto the most logical and easiest way to develop a complete
library of interpreters. In addition to BASIC, it is very easy to
write interpreters for: FOCAL, ALGOL, FORTRAN, PL 1, LISP,
COBOL, SNOWBAL, PL/m, APL, and develop custom interpreters
tersswith the ease with which one would write a long BASIC
program!

As | pointed out earlier, all these features take up memory
space and, as you have pointed out, run time is much slower. The
way around this is to define the |L commands in assembly lan-
guage subroutines then assemble the completed interpreter as
calls to these subroutines. Thus the need for the IL interpreter
as a run time space and time consumer is no longer necessary!
(OK symbolic assembler haters, let’s see you do this in machine
language in less than ten man-years!)

- In places where time and space are not so much of a prob-
lem, | suggest the addition of .an interrupt handler and priority
scheduler to allow IL to be used as a simplified and painless
TIMESHARED system enabling many users to run in an inter-
preter and use more than one interpreter at once. Multi-lingual
timeshare systems previously being available to those who have
a highspeed swapping disk, drum, or virtual memory, are now
avaliable to the user who has about 16K of memory and a method
of equitably bringing interpreters in to main memory from the
outside world (a paper tape reader or cassette system is the eas-
iest to come by).

In short, IL as | suggested, in its minor stages would be a
powerful software development aid; and in its final, most com-
plex stages would provide a runtime system of unheard of
inexpense,

I have heard from unofficial sources that ordinarily an
interpreter or compiler requires ten man-years to write and
debug to the noint of use (if one man works the job would
require 10 years, if 10 meri work it would take one year).

Since this is to be expected as the initial development of IL
and since | have a general idea of the circulation of PCC, we
should have IL up and running by the next issue of PCC!!

At this time | would like to request a few reprints of
the article dealing with IL because | want-to get some help
from others in my school in getting a timeshared version
working on our 16K PDP 8/m with DECTAPE. | seem to
have lent my copy of that issue to one of the people | had
been trying to get on this project and he has not returned it
to me. Meanwhile, | need the article to ‘iegin initial work on
the interpreter to insure compatibility with the version coming
across through PCC. | will keep you posted as with regards
to the development. - . L
William Cattey
39 Pequet Road
Wallingford, Ct. 06492

The IL approach to implementation is quite standard and
dates back to Schorre’s META II, Gleenie’s Syntax Machine, and
numerous early compilers. It was widely used in the Digitek
FORTRAN systems. We did not stumble” on to the technique,
we chose it with some deliberation.

You are right that a symbolic assembler can be used either
to assemble the pseudocode into an appropriate form or to

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 10

expand the pseudocode into actual machine instructions with the
attendant cost in space (and decrease in execution time). Our
goal is a small, easily transportable system.” The interpretive ap-
proach seems consistant with this primary goal. We are using

the Intel 8080 assembler’s macro facility to assemble our
pseudocode.

| certainly agree that it is relatively easy (but not simple!)
to implement other languages using the |L approach. From
the users standpoint, provided he is not compute bound, there is
little difference. Interpreters are often a bit more forgiving
of errors and can give better diagnostics.

In my experience, your figure of 10 man-years is high for
some languages and low for others. A figure of two to four
man-years is probably more accurate, and that includes
documentation at both the implementation and user level.
Good luck on your implementation.

....I have found in my adaptation of it (TINY BASIC IL) for full
use that certain commands need strengthening, while some might
be dropped. | will hopefully be coming out with these possible
modifications. Concerning my ideas on space trade-offs; | think
an assembled version would take less space, since each command
is treated as a subroutine call in a program made up of routines,
while the interpreter needs a run time system in the background
which, since it is interpretive in iiself, takes up space.

P.S. You missed my allusion to assembler over strictly octal or
hexidecimal op codes (my meaning was twofold). In DEC's
PALS8 assembler the following syntax is needed to make the most
efficient use of routine calling:

TSTN=JMSI (jump to subroutine indirectly via this location)
10> XTSTN

The assembler shows the binary as if TSTN were like a JMSI 100/
J'/P to subroutine indirectly via 100 (requiring very very little
extra space per routine—one word, to be exact).

| would be happy to resolve any questions regarding com-
dilers vs. interpreters. (Datamation did an article on the writing
of a standard program in several languages then documented
development and run time.) William Cattey

There are several different varieties of interpreters. One
is simply a sequence of subroutine calls. Another is, as you
suggest, a list of indire t references to subroutine calls. We are
considering a different organization where the call address and
some additional information is packed into a single byte. This
is a good strategy vis a vis memory conservation only if the size
of the code memory to decode the packed instruction plus the
size of the encoded instructions is smaller than the size of a
more straightforward encoding. This remains to be seen.

| guess | did miss your point on assemblers. However, let
me assure you that | would never advocate making software by
programming directly in hex or binary. Even an assembler
seems cumbersome and difficult to me; | prefer a good
systems language like PL/M!)

Dear Dennis and other PCCers,

In my last crazily jumbled letter | made some comments
about TINY BASIC. Here is the result of 2-3 days work and
thinking about it. Instead of having an interpretive IL, | chose
to set it up as detailed as possible, then have people with different
machines code up subroutines to perform each |L instruction.
I’'m not convinced that this way would take more space, and I'm
sure it would be faster.

There are a couple of changes'm the syntax from your pub-
lished version: separate commands from statements, add terminal
comma to PRINT, and restrict IF-THEN to a line number (implied
GOTO).

The semantics are separated out from the syntax in IL as
much as possible. This should make it easier to be clear about
what the results of any given syntatic structure. This is most
apparent in the TST instructions, and the elimination of the
NXT instruction. That one in particular was a confusion.

Please let me know how this fits with what you're doing.
| don’t have a micro yet—time, not money, prevents it.

John Rible
51 Davenport St.
Cambridge, MA 02140

Because of space limitatirns, we have not been able to
publish all of John-Rible’s version (dialect) of TINY BASIC.
We'll probably include it in the first issue of the TINY BASIC
NEWSLETTER. Limited space requires it to be in 2nd issue.
By seperating the syntax from the semantics he has
produced a larger and possibly simpler to understand IL.
There are more IL instructions so, | believe, the resultant system
will be larger; further, the speed of execution is roughly pro-
portional to the number of IL instructions (decoding IL is
costly), it will be slower.

EEEDEEEDE D6 66 @R 6 R E 6

EXTENDABLE
TINY
BASIC

JOHN RIBLE

@ INTERMEDIATE LANGUAGE PHILOSOPHY

@ Instead of 1L being interpreted, my goal has been to describe 1L well
fﬂ enough that almost angyone will be able to code the instructions as either

®

)

EEpEDEEEEE®

single machine language mstructions or small subroutines. Besides speed-
ing up TINY BASIC, this should decrease its size. Most of the instruc-
tions are similar to those of Dennis’ (PCC V4 no. 2), but the syntactical
has been seperated from the active routines. This would be useful if
you want the syntax errors to be printed while inputting the line, rather
than when RUNning the-program.

Most subroutines (STMT, EXPR, etc.) are recursively called, so in
addition to the return address being stacked, all the related data must be
stacked. This can use up space quickly.

() (5] () () () () () (o) (O (D ())) () () () () () () (O
@@@@@@@@@D@@@@@@@@@@

SYNTAX for John Rible’s version of TINY BASIC

{PROGRAM) ::=(PLINED*!
¢PLINE) ::=(NUMBER) (STATEMENT >
{ILINE>:: =<COMMAND) | (SSTATEMENT

{COMMANDY::= CLEAR@)|LIST@®IRUN @
(STATEMENT)::= @ |
LET(VARY> =(EXPR)> ®!
GOTOL EXPRY @I
GOSUB(EXPR>ME®!

PRINT CEXPR-LISTY> (41 €) @]
IFCEXPRY { RELOPY{EXPRY
THEN(STATEMENTY @I
INPUT ¢ VAR-LIST Y@
RETURN @ |
END &
CEXPR-LISTY)::= ((STRING) I< EXPRY) (3(CSTRINGY | CEXPRY))42
CSTRINGY::= “CANY CHARY %<
CANY-CHARY:: = any character except *’ or @
CEXPRY::= (+1— | €) CTERMY ((+] =) (TERMY) %2
KTERM?::=C FACTORY ({ ¥|/)<FACTOR y) 2
¢FACTORY ::= CVARY | { NUMBERY | (CEXPRY)
LVAR-LISTY ::=(VARY(3(VAR ?) x
(VARY::= A|B!..|Y|Z ’
<NUMBER>::= <DIGIT Y ¢ DIGIT)3
=011/ ...1819
Gyl er|di=1<rer]| =

IDEEEEEED D5 556 56 6 6 65

notes: € is null character
actual characters are in bold face
*' repeat limited by size of program memory space
#2 repeat limited by length of line
** repeated O to 4 times

EEDEE @6 @6 E 55 5 6 6 6 € E 5 6

EEEEE®@E

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 11

Dear Mr. Allison,

| was very interested in your Tiny BASIC article in PCC.
Your ideas seem quite good. | have a few suggestions regarding
your IL system. | hope | am not being presumptuous or pre-
mature with this. Unless | misunderstood you, your IL encoding
scheme seems inadequate. For instance, IL JMPs must be capa-
ble of going up and down from the current PC. This means
allotting one of the 6 remaining bits of the IL byte as a sign
bit resulting in a maximum PC change of 31 which is not ade-
quate in some cases, ie. the JMP from just above S17 back to
START. May | suggest the following scheme which is based on
2 bytes per IL instruction:

I also wondered about the TST character string. In my
implementation | am using the following technique: the string
follows the TST byte pair immediately with a bit 7 set in the
last character.
Example: ggg} TST fail address in 040006

o
O4E}
1473

On the TSTL, TSTV, and TSTN IL’s, it appears you need
a ML address for the particular sui>routine and 2 additional bytes
for the fail address. At least this is how | am handling it.

| am looking forward to future articles in the series.
Thanks again— keep up the good work!

P.S. | am co-owner of an Altair. We are writing our Tiny BASIC

L ML in Baudot to feed our Model 19's.
- Richard Whipple
MP CALL ST CALL 305 Clemson Dr.
0XX8 IXXB 2XX8 1XX8 (1st byte) Tyler, Tx. 75701
YYYg YYYg YYYg YYYg (2nd byte) We found the same problem with the published IL inter-

preter. We solved it by doing a bit of rearranging and intro-
ducing a new operations code which does jumps relative to the
start of the program, but has the same basic encoding. Your
mechanization will, of course, work, but requires one more
byte per IL instruction, may be harder to implement on some
machines, and takes more code.

We are using the same scheme of string termination (i.e.,
using the parity bit) as you are. It's simple, easy to test, and
difficult to get into the assembler.

There are a few errors and oversights in the IL language
and in the interpreter you didn't mention. See the new
listing in this issue.

Good luck. Keep us informed of your progress.

where XX= lower 6 bits of high part of address (assume upper 2
bits are 00)
YYY-= all 8 bits of low part of address.

The complete address being OXXYYYa. These addresses repre-

sent the locations associated with the IL and ML instructions.

Note that if @ points to a table with a stored address, you have

3 bytes used— my scheme uses only 2 bytes with the same basic
information.

- Dear People at PCC,
| have a couple of comments on Tiny BASIC:
S4 says TST S7, but S7 got left out. T1 says TST on my
paper which | suppose should be TST T2.
What is LIT and all these “or 2000"'? When are we going to
start putting some of this into machine code?

Since the last issue came out, the IL
code, macro definitions for each IL in-
struction, a subroutine address table for
the assembly language routines that exe-
cute the IL functions, the assembly lan-
guage code that executes the IL func-

Sincerely, tions (all except the 16-bit arithmetic
ones), and the IL processor have been
BOB BEARD punched on paper tape in source form.

2530 Hiilegass, No. 109

HOP L
Berkeley CA 94704 OP, TST, TSTN, and TSTL now do

branches +32 relative to the current posi-

tion counter. If the relative branch field

has a zero in it, indicating a branch to

“here”, the IL processor prints out the

syntax error message with the line num-

Dear Tiny BASIC Dragon, ber. The ERR instruction that was in
Please scratch my name onto your list for Tiny BASIC Vol. 1. the old IL code no longer exists.

Enclosed is a coupon for 3 chunks of fire. . IJMP and ICALL are used because
| am really enjoying my subscription to PCC, especially the the Intel 8080 assembler uses JMP and
article on Tiny BASIC. CALL as mnemonics for 8080 instruc-
Someday | am going to build an extended Tiny BASIC that tions. |JMP and ICALL are followed by
will take over the world. one byte with an unsigned number from
Basica“y yours, 0 to 255. This /s added to START to
do an indexed jump or call.

Soon! Ed.

RON YOUNG
2505 Wilburn, No. 144
Bethany OK 73008

Bernard

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 12

; d
3 INTERPRETIVE LANGUAGE SUBROUTINES correcte
3
A TINY BASIC IL
DB *-* OR 2000
1CALL TERM JPUT TERM ON AESTK
NEG 3JNEGATE VALUE ON AESTK
HOP El 3GO GET A TERM B
3 3
E@: TST EB1! JTEST FOR UNARY °+° 3 STATEMENT EXECUTOR WRITTEN IN IL CINTERPRETIVE LANGUAGE)
DB *+° OR 20060 J THIS 1S WRITTEN IN MACROS FOR THE INTEL INTELEC 8/MOD 8@
ECls 1CALL TERM $PUT TERM ON AESTK 3} SYSTEM USING INTEL'S ASSEMBLER.
J
Ele TST E2 JTEST FOR ADDITION 3 CONTROL SECTION
s “+ OR 2000 ;TART INIT JINITIALIZE
CALL TERM JGET SECOND TERM . '
. ERRENT ! NLINE, JVRITE A CR-LF
ADD 3JPUT SUM OF TERMS ON AESTK cos GETLN JWRITE PROMPT AND GET A LINE
HOP El 3LOOP AROUND FOR MORE TSTL XEG JIF NO LINE NUMBER GO EXECUTE IT
3 INSRT JINSERT OR DELETE THE LINE
. 19MP co 3LO0OP FOR ANOTHER LINE
E23 ;gr E3 on géZEST FOR SUBTRACTION XECs XINIT " JINITIALIZE FOR EXECUTION
- 3
CALL TERM JGET SECOND TERM 3
SUB SPUT DIFFERENCE OF TERMS ON AESTK } STATEMENT EXECUTOR
HOP El 3LOOP AROUND FOR MORE STMT: ST s1 JCHECK FOR °LET®
3 DB *LE*,°T°® OR 2880
SEls TSTV SEL JERROR IF NO VARIABLE!
E3: RTN 3THIS CAN BE RECURSIVE SE2: TeT e JERROR IF NO *o%
3 DB =" OR 20800
3 ICALL EXPR JPUT EXPRESSION ON AESTK
3 DONE JCHECK FOR CR LINE TERMINATOR
STORE JPUT VALUE OF EXPRESSION IT 1TS CELL
TERMs ICALL FACT 3GET ONE FACTOR NXT JCONTINUE NEXT LINE
TSt TST T1 JTEST FOR MULTIPLICATION 3
DB *#° OR 20@0 ! " c .
ICALL FACT 3GET A FACTOR ST oe LCHECK FOR GO
MPY 3PUT THE PRODUCT ON AESTK TsT s2 JCHECK FOR *GOTO®
HOP TO JLOOP ARQUND FOR MORE DB °T','0° OR 2000
3 ICALL EXPR JGET THE LABEL
DONE JCHECX FOR CR LINE TERMINATOR
T TST 3TEST FOR DIVISION XFER JDO A "GOTO® TO THE LABEL
DB °/° OR 20060 3
3 .
;EGLL FACT :gg; ggg‘r?gg:ngTAESTx 524 TST s2 JCHECK FOR °*GOSUB', FAILURE 1S AN ERRORI
. DB *SU*,*B' OR 2680
.HOP T0 JLOOP FOR MORE ICALL xpsn' JPUT EXPRESSION ON AESTK
3 DONE JCHECK FOR CR LINE TERMINATOR
SAV JSAVE NEXT LINE NUMBER IN BASIC TEXT
Ia RTN JRETURN TO CALLER XFER JDO A *GOSUB® TO THE LABEL
]
3]
3 53 TST s8 JCHECK FOR °"PRINT®
DB *PRIN','T’ OR 2300
FACTs TSTV Fo JTEST FOR VARIABLE sas ST s7 JCHECK FOR *™* TO BEGIN A STRING
IND 3GET INDES OF THE VARIABLE DB “"* DR 2000
RTN PRS JPRINT THE DATA ENCLOSED IN QUOTES
Fa1 TSTN FI JTEST FOR NUMBER S5t DT 56, ok gy TEANS MORE TO Cowe
RTN SPC 3SPACE TO NEXT ZONE
g HOP sa 3GO BACK FOR MORE
Fls ;gr f:, OR 2$ggR0R IF 1TS NOT A *(s61 DONE JCHECK FOR CR LINE TERMINATOR
NXT JCONTINUE NEXT LINE
ICALL EXPR 3THIS IS A RECURSIVE PROCESS 3 :
3 3
Els TST FEI JEVERY °*(' HAS TO HAVE A °)° S81 ;g? §?"'F' g;ﬂgg:oron CIF°
DB °)* OR 20860 ICALL EXPR JGET THE FIRST EXPRESSION
RTN ICALL RELOP JGET THE RELATIONAL OPPERATOR
3 1CALL EXPR - GET THE SECOND EXPRESSION
S8A1 TST S8A JCHECK FOR °*THEN®
3 DB *THE',*N' OR 2000
3 CMPR 3IF NOT TRUE CONTINUE NEXT LINE
RELOP: TST RO 3CHECK FOR °=° 1JMP STHMT J1F TRUE PROCESS THE REST OF TH!S LINE
DB *=' OR 2000 H
LIT Q9 591 TST s12 JCHECK FOR °INPUT®
RTN DB TINPU','T® OR 20080
3 s181 ICALL VAR JGET THE VARIABLE®S INDEX
R INNUM JGET THE NUMBER FROM THE TELETYPE
RO TST R4 SCHECK FOR ‘«<°* STORE JPUT THE . VALUE OF THE VARIABLE IN ITS CELL
DB '<* OR 20080 TST st 3',* MEANS MORE DATA
ST R1 DB *,* OR 2060
St DONE JCHECK FOR CR LINE TERMINATOR
DB ‘=' OR 2000 . NXT JCONTINUE NEXT LINE
LIT 2 1]
RTN i
3 si2¢ ;gr sllig’ . ;cm:gx FOR "RETURN®
*RETUR®,"N® OR 2000
Rl TST R3 SCHECK FOR *>° DONE JCHECK FOR CR LINE TERMINATOR
DB *>* QOR 2000 RSTR JRETURN TO CALLER
LIt 3)
RTN : 5131 TST s1a JCHECK FOR °END®
3 DB . 'EN','D' OR 2¢00
R33 LIT 1 - FIN) JGO BACK TO CONTROL MODE
RTN 3
H T HEY] TST Sis JCHECK FOR °LIST®
Ras TST R4 - ggné .“S".T'cgzcmgga CR LINE TERMINATOR
0y 3 X A
DB >* OR 20060 LST 3TYPE OUT THE BASIC PROGRAM
;g"' ?5' 2 NXT JCONTINUE NEXT LINE
=’ OR 2080 1)
LIT s :
stse TST s16 JCHECK FOR °RUN®
RTN DB *RU','N°® OR 28€0 -
3 DONE JCHECK FOR CR LINE TERMINATOR
R53s TST Ré NXT 3CONTINUE NEXT LINE
DB et :
LIT 3 si6r TST s16 ICHECK FOR *CLEAR’, FAILURE IS AN ERRORI
RTN LB 'CLEA®, 'R’ OR 2800
3 1JMP START JREINITIALIZE EVERYTHING!
3
R63s LIT 4 2
RTN e

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 13

g

December 12, 1975

The Tyler Branch of the North Texas Computer Club is still having
fun with Tiny BASIC as you can see by examining the print-out that
pn w 3 N

follows. We are now calling it Tiny BASIC Extended after the addi- 88?33 PR ..ﬁ;é.‘;}” TINY PASIC EXTENDED®
tion of FOR-NXT loops, DIMension statements-arrays, and a few 00105 !fETAF Hel

: : ‘1 P; 00110 IN
ther goodies. The LIFE prc’)gram was written by David P‘per., a 00112 PR""S PR "THE BEGINNING-WAIT"S PR"®
high school student of John's (he teaches at Robert E. Lee High 00115 LET B:A&2
School). David is working on KINGDOM now--we can hardly wait. ggigg gé,’;’ g(i‘ Ry ”(B B)
Below are a few comments about our system and Tiny BASIC that ¢9149 FOR 131 To B

may be of interest to your readers. 00150 LET G(I,J)30$ LIT H(I,J)30

1. Our Altair 8800 is interfaced to a Model 19 Baudot Teletype ggi;’g g{:{‘ f, SRUN
at John's and via modems and a leased telephone line to a Model 15 00175 LET M:A&1 LITE UITH TINY PASIC EXTENDED
Teletype at my house about 3/4 mile away. At present the system 00180 FOR J32 TO M THE BEGINNING-VAIT
s . 00190 FOR 132 TO M
is strictly BAUDOT--no ASCII conversion whatsoever. 00200 IN K . 12
2. We use a Suding-type cassette interface that has been very 00210 I¥ K (3 1 GO TO 220 12
. . . 00212 LET I:M 72
reliable. 4K bytes load in about 1 minute 20 seconds. 00214 GO TO 230 12
3. The Tiny BASIC Extended takes about 2.9K bytes of 00220 LET G(I,J):K jgrorvrriririTiat A2
memory 00225 I; KIt i LET FsF&l 15
: .) 00230 NXT 72
4. The storage format for our Tiny BASIC is as follows: 00240 PR""J ; g
byte statement label - 1 byte length of text - i - 00250 NXT CENERATIONS 7 3
2by oyte leng xt - multibyte text - €) 99250 ¥ "GENERATIONS® 31 R
The statement label range is 1 to 656535. The “length of text 00270 IN D GENERATION 0
byte" is used to speed up label searching in GOTO and other 00250 PR"™®
branching 882 3 ER;"S 0 _ fPOPULATION 1S 7
. ’ 287 LE : L_
5. To conserve memory, we have shortened some commandsto 00290 For £:S TO D L
two or three letters (i.e., PR for PRINT, IN for INPUT, 'NXT for ggijg? g;f "GENERATION® JESPR"®
9
NEXT, etc.). 00302 IF F) 0 GO TO 305

6. A “$’ is used to write multi-statement lines. A " isused to 00303 PR TPoPy ULATION Ianzmg':f"R"sEND

H - . - - ¢)
suppress new line output in a PR statement. This allows continuing 93397 s oropgLATIoN IS"5FIPR CENERATION 1
the next PR on the same line. The **;" provides one skipped space in 00315 LFET F:0

a PR statement. ggggg g?_{_sgﬁ 5000 POPULATION 1S §5
7. Functions currently on line are: 00335 PR "HOW MANY MORE";ISIN CSPR™™

RN » generates random numbers between 0 and 10,000 decimal. 00335 PR""
00345 IF C ¢ O END

TB (exp) * TAB function in PR statement produces a number 00350 LET S:ESLET DD&C sanee
of skipped spaces equal to the value of “‘exp,”” an arithmetic 00355 GO TO 250 : : : : :
expression. 05000 FOR I:2 TO M
. 05010 FOR J:2 TO M
8. Memory for arrays is allotted from the top of memory down 5059 LET N30
while the program builds from the bot_tom up. If they cross, you get 55030 LET N:G(I- ~1,d=1)8G (T ,J= 1AGCTLT - 1) &G (T 108G (T&1,d)
error message. Arrays may be 1 or 2 dimension. Max. size: 255 by 05040 LETN:N&G (I~ 1 J&1)&G(f Jat)&G(I&I)
255. 05110 IF G(I,J) y¢’1 6o TO 3180
9. H BAUDOT I 05120 IF N) { GO TO 5150 SENERATION 2
ere e;re some) equivalances: 05130 Ic_vT H(I,J):0
: equal to 05140 GO TO 5210 POPULATION 1S 12
): = (greater than equal to) 82}28 xl_s}:‘TN}{gf,i)Eg To 5200
(: <= (less than equal to) 05170 GO TO 5210
05180 IF N)¢ 3 GO TO 5210
) <> (not equal to) 05200 LET H(I,J)11 PR
& +(plus) 05205 LET FiFh{ ‘, .’
* % (times) 05210 NXT J tes
Parentheses are also used in arithmetic expressions. The system 823%% %;{ % 11 TO B
understands the difference by context. 05240 FOR J 110 B CINERATION 3
= 05250 LET G(I,J)3H(I,J) .
10. FOR 1=1,1000 05260 LET H(I 13130 POPULATION 1S 22
NXT | 05270 NXT J - .
END takes about 1.6 seconds to execute. gg'égg g)g I
11. The colon is used as a Tiny BASIC prompt. 06000 FOR J32 TO 3T
. 0 hy M I ENEN
12. *?" is used as a rubout key and two LTR’s keystrokes are ggg})g %g; 31? To M ¢ 0
used to begin a line over (LTR and FGS are keystrokes used to 06030 IF G(Q ,J) 3 1 LET R31 i’
change case in Model 15/19 Teletypes) 06040 NXT @ ’
: 06050 IF R:0 GO TO 6120
13. Model 15/19 Teletypes are great machines and we have 06060 FOR 1:2 TO M HOW MANY MORE 7 1
proved their worth to computer hobbyists! 06070 IF G(I,J) s 1 GO TO 6100 CENERATEON &
" A
Thanks again for your fme work at PCC, we remain ggggg gg TO éi 10 .
Yours Truly, 06109 PR "#";1 POPULATION IS 16
06110 NXT I
06420 PR ®"
DICK WHIPPLE JOHN ARNOLD 06130 NXT J 10,
305 Clemson Dr. Rt 4, Box 52A ggif;g gg; "SPRE®) ¢
Tyler TX 75701 Tyler TX 75701 0 ¢ H
¢ @
08
HOW MANY MORE ? 0
'

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 14

TINY BASIC, EXTENDED VERSION

6. DM Statement: Ono or two dimensional arrays permitted.

by Dick Whipple (305 Clemson Dr., Tyler TX 75701) : Arrey erguments can be oxpressiona.
& John Arnold (Route 4, Box 52-A, Tyler TX 756701) Exemplo: 10 LE V= 10
- 20 DIM A(20,10),B(2+ V)

INTRODUCTION e

The version of TINY BASIC (TB) presented here is based on Arruy variables can bo used in the same manner as ordinary
the design noted published in September 1975 PCC (Vol. 4, No. 2). variables.
The differences where they exist are noted below. In this issue we 7. FOR and XXI Statements: Step equal to 1 only. Iterative
shall endeavor to present sufficient information to bring the system %ﬂimns Cﬁnege f“Prcs?ti?ﬂﬂ- ;‘estiﬂ&,r’eﬂﬂiﬂﬂd‘ 281'0 'ﬂgst
up on an Itel 8080-based computer such as the Altair 8800. Included md:xxif,;s So:)gs;ﬁefng ® 120p prior to coapletion o
is an octal listing of aur ASCII version of TINY BASIC EXTENDED
(TBX). In subsequent issues, structural details will be presented Beauple : %g ;.gri i;lg to X
along with a source listing. A Suding-type cassette is now available 30 LETY=2% A+B
from the authors (information to_follow). We would greatly ég g{'rxfz I=X{MT I$GOTO 60 *#
appreciate comments and suggestions from readers. Unlike some 6 LET Y=3
software people out there, we hope you will fiddle with TINY . oo s

BASIC EXTENDED and make it /ess Tiny! * Yor explanation of "$" see no. 9.

8, Available Functions:
a) RN: Random nmumber generator. Range 0= RN=10,000.

- No argument permitted.
T Q
ABBREV [(ATED COMMAND SET b) TB(E): Tab function. In a PR statement, TB(E) prints
a mumber of SPACE's equal to the value of expression "E¥,

TB AND THX . STANDARD BAS‘C 9. The dollar sign can be used to write multiple statement lines.
- ‘1 Exanple: 10 INB
LET LET 20 LET A=2%(B+1)$PRASEND
PR I:XRIM ¥hon vsing an IF statenent, a "false" condition transfers
GOTO 0 execution to the noxt wyhered line. Thus in line 40 of
the exaapls of no. 7, the chained statements will not be
gg"?UB SgN oxecuted unless a "true” condition is encountered.
- ’) 10. IST Comnand: Can take anyons of three forms:
iF : IR 1
CIN in Iin INPUT @) LST CR— 1ists all statements in program
LST ™R -)TBX LIST b) LST a CR— lists only statemsat labelled a
- - ¢) LST a,b CB~— 1lists all statements beiween labels a and b
’ RUN R inclusive.
» |
. NEE__.EJ NEW 11, SZE Conmand: Prints two decimal numberas equal to:
o SI?]
SZE ; &F‘b [N a) Number of memory bytes used by current program.
DIM DIMENS LO? b) Number of memory bytes remaining.
F OR FOR Note: Array storage included only after first executlon
MT . . NEXT of program,
) 12, Recording Progrems on Cassette: Core dumps to cassette
¥CLEAR in original TB should begin at 033350 (golit ectal) and contimue through

addross stored at

033354 (low byte of eddress)
033355 (high byte of eddress)

TBX — HOW IT DIFFERS FROM TB Of course thene cassette programs should be loaded
back et 033350.

1. TRX éyatem proupt is a coloz.x”" ",
2. Statement label values 1 to 65535,
3, FError correction during line entry:

a) Rubout (ASCII 177,) to delate a chéracter, Prints
§ : .

T e ‘ IMPLEMANT ING THK
b) Control L (Form Feed ASCII Olig) to delete full line, Memory Allocation:

4o 1N Statement: Termination of numeric input is accomplished I. Misc. Storage (I/0 Routines) CO000O to 000377*
by SPACE keysiroke. All other terminations use CR {Carriage
Return), II, THEX 020000 to 033377

5. PR Statement: A couna is used for zone spacing while a III, TEX Programs 034000 to upper limit of memory.

seaicolonﬂproducos a esingle space. A camna or semicolon
at the end of e line surpreases CR and LF (Line Feed).

To skip a line, use PR by itself, 2 In our gysteam we maintain a Monitor/Editor in the first 1K

byte of memory. 3/4 X is protected and 1/4 K can be used for
system FAM, Such a configuration is useful but not necessary.

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 15

External Program Requirementss:
1. System Entry Routine =

ADRS INST

000000 0615

000001 377 1XI SP

000002 000

000003 303

000004 254, JMP TEK Entry Point
000005 021}

The stack poinmter (SP) must not be in protected memory,
If you desire to relocate the SP change the following
locations accordingly:

a) 000001 (SP low) and 000002 (SP high)
b) 026301 (SP low) and 026302 (SP high)

2, System Recovery Routine ==

ADRS INST
000070 303
000071 000
000072 000

3. Input Subroutine: Your imput subroutine must begin at
000030, It should carry out the following functions:

a) Move an ASCII character from the input device to
register A, The ASCII character should be right
Justified in A with Parity bit equal to zero.

Exsmplo: "B" keystroke should set A to 102..

b) Test for ESC keystroke (ASCII 177g) end jump if
true to 000000. Suggested instructions

CPI 'ESC!?
177
312
000 JPZ System Entry Routine
000

c) Output an echo check of the inmputed cheracter.
d) No registers should be modified except 4.

Lo Output Subroutine: Your output subroutine should begin at
000050, It should move the A3CII character in register 4
to the output device. Parity bit is zero, No registers
including A should be modified.

5, CR~LF Subroutine:
that will output & CR followed by a IF.
A may be modified,

At 000020 you must have a subroutine
Only register

LOADING TBX:

The octal listing of TBX is reproduced later in the text.
Addressing is split octal and gives the address of the first byte of
each line. An octal loader of some kind is almost a necessity. Load-
-ing by front panel switches would be a considerable chore. A
‘Suding-type cassette is available for $5, postpaid, from the authors.
Send check or money order to: TBX Tape c¢/o John Arnold, Route 4,
Box 52-A, Tyler TX 75701. If you are interested in a Baudot version
of TBX, please inquire at the same address.

Use of a cassette tape to store TBX is virtually a necessity.
Every effort has been made to protect TBX against self-destruction
byt nothing is 100% sure!

The highest address available in your system for program
storage must be loaded as follows:

026115 XXXg
026116 XXXg

low part
high part

Example: Suppose you have one 4K board: 026115 377
026116 037

you in debugging. A TBX line is structured as follows:

EXECUTING TBX:
Simply examine 000000 and place the computer in the RUN
mode. A colon indicates the system is operative.

ERROR MESSAGES

The form of error messages is: ERR o, 8 where ¢, is error num-
ber, and { is statement number where error was detected. Label
00000 indicates error occurred in direct execution.

ERROR NUMBER

Input line too long--exceeds 72 characters.
Numeric overflow on input.

Illegal character detected during execution.
No ending quotation mark in PR literal.
Arithmetic expression t20 complex.
Illegal arithmetic expression.

Label does not exist. ’

Division by zero not permitted.
Subroutine nesting too deep.

10 RET executed with no prior GOSUB

11 lllegal variable.

12 unrecognizable statement or command.
13 Error in use of parentheses.

14 Memory depletion.

©CoONOOO~LWN=

EXAMPLE PROGRAM OF TBX
One example program written in TBX follows. It might assist

s £
1 2 3 A 5 Ak (_¥x1 n+l
7/
"Byte No.
1&2 Binary value of label; most significant part in 1.
3 Length of text plus 2 in octal.
4 thrun Text of line.
n+1 CR (015g).

After the last line you should find two 377s. At the end of the
example run is an octal dump of the program area of memory.

EXAMPLE PROGRAM [N TEX

INEW

110 IN A

120 PR® TEST A IS ";A

130 PR

340 GOTO 10

1LST

00010 IN A

00020 PR® TEST A IS ®;A

00030 PR

00040 GOTO 10

TLST 20

00020 PR® TEST A IS *;A

1LST 20,30

00020 PK" TEST A I3 ®;A

00030 PR

1RUN

712 TEST A IS 12

t 356 TEST A I3 356

T

1DP0: 034000 007

034000 000 012 007 040 111 116 040 101

034010 015 000 024 025 040 120 122 042

034020 040 040 124 3195 123 124 040 101

034030 040 111 123 040 042 O73 101 015

024040 000 036 005 040 120 122 015 000

034050 050 012 040 107 117 124 117 040
061 060 015 377 377 +63% 922 900

034060
1

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 16

a10
020000 041 111 020 006 110 337 376 015 TINE BASIC EXTENDED 023000 227 274 302 021 023 275 302 G21
020010 312 036 020 376 177 3i2 040 020 OCTAL LISFING 023010 023 041 004 032 203 343 305 247
020020 376 014 312 0€7 00 167 043 005 - 023020 311 023 032 147 023 032 137 042
020030 312 306 026 303 005 020 167 311 023030 350 033 023 023 301 Ox) 022 032
020040 053 004 076 077 357 303 005 020 023040 343 305 247 331 305 104 115 052
020050 332 0UD 021 078 057 276 322 0G0 i . 023050 361 033 160 043 161 043 042 361
020060 023 3063 371 020 000000 000 327 . 023060 033 301 173 376 177 230 3G3 322
020070 Q76 072 357 076 015 062 007 020 : 023070 026 305 052 361 033 053 106 053
020100 303 00U 020 000 V0L 0VO 00C 000 : 023100 042 361 033 146 175 376 100 150
020110 000 1i4 123 124 040 066 060 060 : : ' 023110 301 320 303 325 026 174 057 147
020120 054 066 062 060 0I5 015 042 124 ‘ 023120 175 057 157 043 311 315 071 023
020130 105 123 (24 061 042 04y 120 122 023130 174 267 362 147 023 315 139 023
020140 040 042 109 116 104 V42 0.5 106 : 023140 076 055 345 315 026 022 341 315
020150 117 122 040 122 1i7 127 040.042 023150 101 022 247 311 345 052 352 033
020160 073 1) 015 015 111 124 040 116 023160 104 115 341 012 274 312 174 023
020170 117 122 105 040 1i4 i)} 116 105 023170 320 303 204 023 003 012 275 312
00200 123 042 015 015 V42 015 057 067 023200 220 023 320 013 003 003 0i2 20
020210 062 010 000 GOY 00D VOO 000 000 ‘ 023210 117 322 163 023 004 303 163 023
020220 000 032 376 060 330 $76 072 320 023220 013 140 451 311 315 971 023 315
020230 246 017 311 000 Q00 000 VOU 00O . 023230 - 154 023 353 312 022 023 303 330
020240 00D 000 0L 0OV 0ud VOO VOO 000 . 023240 026 325 076 077 315 026 022 076
020250 Q0O 00C 000 000 090 VOO 000 000 023250 040 357 062 007 020 3;% Q00U 020
020260 000 000 000 000 J00 C21 11} 020 023260 021 111 020 032 376 055 Oul 000
020270 325 032 376 040 023 312 271 020 023270 000 3i2 312 023 315 331 020 315
020300 035 Qal VU0 00V 376 00 342 320 023300 O44 023 076 015 062 0O7 V20 321
020310 Q20 044 350 033 WC 321 S11 000 023310 247 311 023 315 331 620 315 i15
020340 315 331 020 O42 350 033 067 321 023320 023 303 277 G23 032 376 040 023
020330 311 315 221 020 376 012 320 023 023330 312 324 023 0353 306 30C 320 007
Q20340 104 115 051 051 Qi1 V51 332 311 023340 157 046 Oc4 315 044 G23 067 023
020350 026 117 006 000 O}l 303 331 020 023350 311 032 376 040 023 312 351 023
020360 325 052 350 033 104 115 04t 111 023360 033 376¢ 100.322 310 023 376 050
020370 020 076 071 Ou3 276 303 050 020 023370 310 041 000 000 303 124 024 000
021000 345 026 0031 076 015 276 312 016 024000 000 023 055 050 007 056 073 025
021010 021 024 043 303 005 021 172 062 024010 000 00} 002 029 001 OGO GOl 00
021020 356 033 321 052 352 033 176 270 024020 002 000 001 000 013 000 010 000
021030 312 052 021 322 064 021 043 043 024030 000 Q0O 0VC 00O 070 00Q 025 000
023040 175 206 157 322 026 021 Q44 303 024040 000 GO0 000 GO0 VU0 QOO 002 Q00
021050 026 0Z) 043 176 271 312 170 Q21 024050 324 046 QU4 QUG 002 000 Oul 000
021060 332 057 021 053 053 325 353 052 024060 000 GO0 003 000 126 053 000 023
021070 354 033 345 072 356 033 306 003 024070 016 000 0V4 000 000 023 0VO 023
021100 205 322 105 02} O44 157 315 340 024100 032 023 376 040 312 100 024 033
021410 030 104 115 341 176 002 053 013 024130 376 015 310 376 Ouiy 310 303 314
021120 174 272 302 114 023 175 273 302 024120 026 023 07€ 003 315 331 020 315
021130 114 021 023 052 35D 033 353 162 024130 044 C23 311 315 071 023 106 043
021140 043 163 043 072 356 033 074 i67 024140 146 150 315 Ouy4 023 247 311 315
021150 043 321 032 167 376 015 312 166 024150 071 023 ii4 105 3i5 071 023 160
021160 021 043 023 303 152 021 321 311 024160 043 161 247 311 035 372 034 125
021170 053 345 043 043 043 176 376 015 024370 023 321 076 Q01 311 023 000 023
021200 312 207 021 043 303 175 021 043 024200 315 071 023 104 115 315 071 C23
021210 353 052 354 033 043 104 1i5 34} 024210 031 315 044 023 247 31i 313 071
021220 032 187 Q43 023 172 270 302 220 024220 023 315 115 0235 104 1i5 3195 0N
021230 021 173 271 302 220 021 053 042 024230 023 011 315 044 023 247 31i GO0
021240 354 033 072 356 033 376 001 302 024240 325 006 000 315 071 023 174 267
023250 361 020 321 311 Q41 002 D32 176 024250 374 301 024 353 315 071 023 174
021260 376 200 322 314 021 376 100 322 . 024260 267 374 301 024 315 306 024 Q05
02i270 300 Oc1 043 i5G 147 303 287 023 024270 314 315 023 315 Qa4 023 323 247
021300 346 077 107 043 116 043 345 140 - 024300 311 004 3:5 115 023 311 305 104
021310 151 303 257 021 376 300 322 000 . 024310 115 041 000 000 076 Q21 062 363
021320 022 346 077 107 043 16 043 032 - 024320 033 170 037 107 i71 037 117 322
021330 023 376 040 312327 021 033 325) 024330 333 024 031 174 037 147 175 037
021340 353 03z 376 200 322 363 021 276 024340 157 072 3635 033 075 312 356 024
021350 043 023 312 341 021 321 140 151 024350 062 363 033 303 321 U24 140 151
021360 303 257 021 346 177 276 302 355 024360 301 311 325 006 QU0 315 071 023
0231370 021 353 301 023 043 333 257 021 024370 174 267 374 301 024 353 315 071
022000 346 O77 043 116 043 345 041 015 025000 023 174 267 374 301 024 353 227
02010 022 345 147 151 351 341 322 251 025010 274 302 020 025 <75 312 333 026
022020 021 043 043 303 257 02) 04l 357 02502Q 315 026 025 303 267 024 305 VO¢
022030 033 357 043 U65 350 066 017 311) - 025030 005 174 346 100 302 O4u 025 051
022040 000 000 000 000 VVY LVY V00 000 P 025040 004 303 031 025 17U . U62 363 D33
022050 000 000 000 GO GVY VOO V0D D0 : . . 025050 104 115 041 000 000 173 221 137
022060 0V0 QUD 000 000 VLYY 0VO OVD 000 S 025060 172-230 127 322 117:025 173 201
022070 000 000 0O COO 009 GOV 000 GO0 - 025070 137172 210 127 051 072 365 033
022100 000 345 325 305 553 Q16 000 043 025100 075 312 115 025 062 363 G33 343
022110 020 047 315 147 022 041 357 003 025110 051 353 333 055 025 301 311 951
022120 315 147 022 G4l 144 Q0O 315 147 025120 043 072 363 033 C75 312 115 025
022130 02, 041 Ol2 000 315 147 022 173 025130 303 104 025 315 071 023 315 115
022140 315 201 022 301 321 343 311 006 025140 023 315 Q44 023 247 311 000 000
022150 377 004 173 225 137 172 234 127 : o -025150 000 325 315 071 025 353 315 071
02216C 322 15i 022 173 205 137 172 214) - Lo 025160, 023 345 335 071:023 174 346 200
022170 127 170 2731 310 035 315 201 022 : : - 025170 302 26& 05 172 346 200 302 227
022200 311 000 Q00 000 000 306 040 315 o 025200 025 474 272 312 214 025 322 227
022210 026 022 314 325 052 306 033 053 } C 025210 025 303 224 025 175 2737312 232
022220 104 115 052 304 033 355 033 023 -~ . s 0252200 025 322 2¢7 025 076 001 Q41 076
22 327 170 272 022 171273 Do T e 025230 10047041 076 000 34l 021 242 G257 7
312 278 023 J3¢ 157 o 025240 325 351 312 260 025 321 032 376
315 205 03¢ 376 015 025250 015 312 375 0.2 023 3035 246 G25
312 227 5 315 026 022 025260 321 311} 172 346 200 302 201 025
341 301 303 254 022 321 311 000 025270 303 224 025 376 000 33l 376 001
022300 341 301 345 311 03z 023 376 040 L 025300 311 376 QU0 310 376 001 311 376
Q22310 312 304 022 033 376 015 310 303 : ; - 025310 001 310:37¢ 004 311 376 004 311
022320 022 030 032 C23 37¢ J42 510 376 . R 025320 376 0Q0U-3510, 376094 314 056 273
G22330 015 3512 317 026 315 026 022 303 o ‘ s 025330 001 05§ 276 001056 301 001056
022340 322 Oze O41 360 033 376 040 357 ¥ : e 025340 307 001 056 315 001 056 320 048
022350 065 302 345 002 066 Q17 247 311 oE 025350 . 025 315 044 023247 31i 395 104
022360 041 360 033 066 017 00C 076 012 o i 025360 115 052 364 0537160 043 361 043
022370 357 227 311 000 311 052 350 033 . 025370 042 364 033 301 175 376 177 330

o January- 1976 Tmy BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 17

026000 303 336 026 305 052 364 033 053 031000 052 354 033 053 104 115 052 376
Q26010 106 053 042 364 033 146 (75 376 031010 033 01! 345 052 365 033 104 115
026020 164 130 30) 320 303 341 026 142 . 031020 052 352 033 011 301 2i5 060 031
026030 153 315 356 025 247 311 315 003 - 031030 315 101 022 076 040 357 052 366
026040 026 353 247 311 07€ Jad 315 028 031040 033 104 115 C52 354 033 053 315
026050 022 247 311 ¢OO CDO 000 Q43 077 031050 060 031 3135 101 022 327 247 33!
026C60 026 00} 350 033 176 CO02 175 376 033060 171 225 157 170 234 347 311 052
026070 033 310 003 043 303 064 026 Q00 031070 352 033 042 304 033 052 354 033
026100 000 000 Q34 091 Q34 000 040 Ci7 .7 - 031300 042 306 033 247 311 315 165 03)
026110 100 030 000 164 Ock 377 Qb7 000 0331110 042 304 033 043 043 076 015 043
026120 QCO 056 241 053 221 377.057 377 031120 276 302 117 031 043 043 042 306
026330 377 041 100 030 042 361 033 Qu\-. 031130 033 247 311 000 315 165 031 043
026140 164 024 Q42 384 033 515 020 027 -. . 031140 043 076 Q015 043 276 302 143 03}
026150 052 352 033 126 Qud 136 353 QOO . L . . 031150 043 043 042 306 033 315 165 031
026160 042 350 033 023 023 247 311 476 031160 042 304 033 247 311 319 071 23
© 026170 015 357 303 360 022 327 078 017 031170 315 154 023 310 303 330 026 000
026200 062 360 033 247 311 245 325 305 031200 0920 000 000 000 000 000 000 000
026210 353 016 377 303 107 02¢ QGO 000 031210 000 000 000 009 00O 000 0VO 000
026220 ~ 327 Q09 000 000 Q7§ 105 357 076 031220 000 000 000 00O 000 ©OO 000 000
026230 122 3571 357 G716 04Q 357 Ous 00O : 031230 000 000 000 000 000 000 000 000
026240 000 000 QOO 315 101 022 052 350 031240 000 00O ©00 000 000 Q0L 000 Q00
026250 033 076 049 357 315 «05°026 016 . 031250 000 000 COO 000 000 000 VU0 000
026260 010 043 357 033 021 106 026 032 031260 000 000 000 00V 0LV 0VO 000 000
026270 167 015 302 267 026 041 002 032 031270 000 000 020 000 000 COO 000 000
026300 063 377 000 303.257 021 056 GO) . 031300 233 310 122 316 330 204 322 300
026310 001 0%6 Q02 G2l 056 003 001 058) 031310 232 330 124 302 132 343 330 300
026320 004 001 056 005 001 056 006 00} 031320 322 300 231 331 215 326 175 32
026330 056 007 021 056 010 Q001 056 011 031330 375 232 210 244 325 175 323 034
026340 00} 056 032 U001 056 013 001 056 031340 231 35i 215 3331 067 322 213 322
026350 014 001 056 015 CO1 056 016 Q01 031350 375 132 343 231 366 254 132 343
026360 056 017 001 056 020 303 216 026 031360 331 134 322 213 032 216 331 105
026370 000 000 000 000 000 JUD VGO 000 031370 322 213 032 216 047 041 066 010
027000 000 000 000 000 000 GO0 Q00 00) 032000 326 053 326 1867 320 070 322 360
027010 000 COO GO0 VYO0 000 00O GLO 000 032010 320 265 032 022 320 360 032 CO4
027020 Q76 0i2 357 352 115 0c¢6 042 366! 032020 326 131 232 041 Ll4 105 324 133
027030 033 311 325 315 071 023 353 315 032030 310 132 340 324 147 322 304 322
027040 073 G23 104 115 3i5 Ou4 023 353 032040 375 232 074 107 317 232 057 124
027050 315 044 ©23 321 305 315 240 024 032050 317 132 343 322 304 323 224 232
027060 315 071 023 303 Q72 027 315 0714 032060 275 123 125 302 132 343 324 100
027070 023 345 051 .04 1i5 052 366 Q33 032070 326 027 323 224 232 112 111 306
027100 175 221 147 174 230 107 013 052 032100 132 343 133 114 132 342 325 151
027110 354 033 274 302 120 027 171 275 032110 032 022 233 326 106 117 322 323
027120 332 360 026 140 151 301 160 053 032129 324 326 363 132 340 324 147 226
027130 161 104 1315 Oue2 366 033 315 071 032130 363 124 317 327 305 132 343 322
027140 023 161 043 160 247 3il 315 071 032140 304 322 375 075 046 062 004 032
027150 023 053 051 i04 115 3315 971 023 032150 232 226 120 322 231 322 242 322
027160 011 315 044 023 247 311 315 071 032160 322 232 173 254 322 342 232 332
027170 023 053 315 044 023 052 370 Q33 032170 215 322 375 232 202 273 326 044
Q27200 315 044 023 315 240 024 315 200 032200 032 166 326 1715 322 304 322 375
027230 0z4 303 146 027 032 ©R3 376 040 032210 132 343 323 125 032 161 322 304
027220 312 214 027 023 306 300 320 00/ 032220 322 375 000 000 000 000 232 251
027230 117 023 032 376 050 312 243 027 032230 11) 218§ 133 3i0 223 241 324 147
Q27240 033 247 311 151 046 024 116 043 032240 232 245 254 032 232 322 304 322
027250 146 153 116 043 106 043 315 044 032250 375 232 264 122 105 324 326 036
027260 023 140 151 042 370 033 067 311 032260 322 304 322 375 233 200 105 1i6
027270 300 325 342 0CO 000 000 GOO 000 032270 304 326 167 323 011 232 306 114
027300 000 000 000 00O GO0 325 Q23 032 032300 123 324 031 340 322 375 232 337
027310 376 015 302 064 030 353 315 Q44 032310 122 125 316 322 304 Q032 020 233
027320 Q23 321 247 311 325 315 071 023 032320 101 116 105 327 322 304 332 000
027330 345 116 043 106 315 071 GZ3 353 032330 326 347 232 154 244 325 034 000
027340 315 071 Q23 003 172 270 302 361 032540 232 343 275 232 354 255 133 003
027350 027 173 271 322 361 027 303 006 032350 325 133 032 361 232 357 253 133
027360 030 345 315 044 023 341 353 315 032360 005 232 372 253 135 005 324 200
027370 044 023 341 315 044 023 140 151 032370 J2 361 238 055 255 1383 003 324
030000 315 044 023 341 247 31) 341 315 033000 216 032 36) 133 027 233 216 252
030010 044 023 140 151 315 Ouy4 023 221 033030 133 027 3<c4 240 033 005 233 055
030020 247 311 376 044 302 314 026 303 033020 257 133 027 324 362 033 005 330
030030 033 023 032 376 040 V23 312 032 033030 032 035 035 051 300 327 214 033
030040 030 033 J06 300 329 J¢5 023 032 033040 Qu7 133 254 324 133 322 300 323
030050 306 300 321 520 376 015 310 37¢ 033050 324 033 057 324 133 322 300 223
030060 040 310 067 3il 376 Ouu 312 315 033060 351 033 065 322 300 233 077 250
030070 27 303 306 027 sa7 323 241 324 033070 132 343 233 077 251 322 300 326
030:00 000 120 CD0 V56 0VO QUS QOO 007 033100 352 232 330 123 132 305 331 000
030110 00D 0JO 000 012 0LV 000 020 230 033110 032 216 000 000 233 123 275 325
030120 000 000 000 Q30 326 036 322 375 033120 326 322 300 233 150 274 233 135
030130 230 14) 001 Oi4 211 326 167 323 033130 275 325 334 322 300 233 iuy 276
030140 011 230 155 022 006 005 220 322 033140 325 337 322 300 325 331 322 309
030150 304 22 213 242 375 230 166 012 033150 232 330 276 233 162 275 32% 3u5
030160 007 214 322 3C4 927 320 230 073 033160 322 300 233 171 274 325 337 322
030170 ©Oi4 001 223 22 304 027 300 000 033170 300 325 342 322 300 000 Q00 QLU
030200 204 232 146 C15 041 375 033 Q06 033200 232 275 104 111 315 323 324 3&6
030210 010 176 007 007 OOT 256 027 027) 033210 552 226 355 250 132 343 233 241
030220 055 055 055 176 027 167 054 176 033220 254 132 348 226 355 251 327 032
030230 027 167 054 176 027 167 Q54 176 033230 233 235 254 033 205 122 304 322
230240 027 167 005 302 211 030 GH2 374 033240 375 226 355 251 327 066 033 230
030250 | 033 174 346 077 147 376 247 312 033250 000 000 000 000 226 355 250 132
030260 272 030 322 2G4 030 315 Q44 023 033260 343 233 275 254 132 343 226 355
030270 077 311 175 376 L0 303 262 030 033270 251 327 166 322 300 226 155 251
030300 315 071 023 105 076 040 315 026 033300 327 146 322 300 Qu4 0S4 054 034
030310 022 005 202 304 030 063 063 063 033310 327 2i4 033 220 133 254 322 300
030320 063 063 063 301 341 Q43 043 345 033320 323 324 326 3i4 322 300 232 150
030330 305 C73 973 G75 073 073 073 313 ' 033330 116 130 324 323 3ey 326 352 327
030340 072 367 CG3I3 274 3.2 560 030 332 033340 324 324 147 322 304 322 375 072
030350 360 026 042 J:54 033 311 Q0U 00Q 033350 000 000 000 0J4 054 034 V04 040
030360 O7c 265 033 326 000 275 322 352 033360 Q17 100 030 000 164 D24 377 057
030370 Q30 2GJ 360 026 000 000 000 000 033370 000 Q00 056 Zu) 051 321 317 057

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 18

the digital group
_)g g H | would question the advisability of using these simpler chi
r chi
po box 6528, denver, colorade 80206 ith thei hi .V g mp ps
with their much lower calculation power return. Mos Technology
December 14, 1975 also makes an RPN format calculator IC, the 2529-106 for H.P.
buffs. A metric conversion chip (2529-104) is also available from
:::B l;g?sAé!;;e‘i::r&cg:t::td Greening Mos '_I'echnology. These IC’s have been tried in the circuit. They
o Bow 310 P pany are directly usable in the enclosed circuit.
Menlo Park, CA 94025
The basic functions are roughly equivalent to the T| SR-50, but
Dear Bob and Bernard, the enhanced software version will be considerably better than
I am very interested in helping out with your Tiny BASIC (perhaps the HP-GS pr?lgramm?lble c'algulator due to its message display
Micro BASIC might be more appropriate). Since my specialty is capacity and “almost’ unlimited memory capacity.
Hardware and the lowest level Software to interface this hardware .
to a system, I would like to suggest a simple hardware subsystem. --Dr Robert Suding WOLMD
A scientific calculator IC can be casily interfaced to a micropro-
cessor to provide all of the various mathematical operations very " \ "
accurately with minimal software overhead. I am including a copy ig‘;s;‘-;;chgéaggsagga:LSJBASSE!.BLV
of some of the scientific calculator documentation out by the I i FPEAT RESISTER £ DIGOE
pigital Group. 2EPEAT PESISTER € DIONE METMORK FOR EACH OF §
ETWORK FOR EACH OF .7 RFGMENTS © DECIMAL POINT
This scientific calculator has been interfaced to an 8008 (Mark-8 12 D1GITS s-6x +5
modificd) and MOS Technoloyy 6501/2 system. The softwarce can be I 14
casily modified to support an B0BO cr 6800, thcrcby providing an T T DlGiT StomenT A 1________0 Lse
eany access to building "Tiny BASIC" for 8008, 8080, 6800, 6501 or =
6502 syntems. MOS TECHNOLOGY fr.
. 7404
The major drawback of a calculator chip for math routines is that = 2529-103 =
it is very slow compared to specialized hardware and software systems. CALCULATOR CMIP
The major advantages arc: |3)
? ,
- M ., T0
1. Low software overhead (about 300 bytes ftor interfacing) ’ 3 17 : INPUT
2. Low cost (around $45 worth of parts & PC board) B 10 M PORT 6
3. Quick way to develop Math routines with high accuracy. 5 B M
: 4
I would be happy to assist PCC in developing Tiny BASIC using these 47 ! 6
Scientific Calculator IC's. e = l — 7 MSB
LS8 0wl ye a =
Dr. Robert Suding : 10
- =R ,
c/o The Digital Group 3 Hlge 1771 ',',Pli'; Yo
SCIENTIFIC CALCULATOR slgi? s [2ofr [
Here is a calculator circuit designed to be used with any ;53:," = = gq;,,",i';:,f,’“
computer of 8 bits or more capacity. I am presently using it PORY 7 *5
with an 8008 system, approximately 300 bytes of storage being .
requircd to basically interface this circuit to my TV readout 1 1
and keyboard. Only one B-bit input port and one B8-bit output Lefiryn b N
port is required. M 78062 lfj\
s Lngn i S Py
The heart of the circuit is the 2529-103 calculator IC from 1 L :,,\1,/
Mos Technology. This is a simple IC which gives trig, log, 6 ne k m
menory, square root, ctc., functions. The display is normally pi K et
a 12-digit LED 7-scqment assembly. The segment drivers are 14_
built into the 2529, The 1l2-digit outputs are usually fed to MS8 7 =
a pair of 75492's which scrially scan each of the 12 digits at = 1/6 7405 2.2¢'S
about a G60Hz cycle rate from an internal clock. A matrixed
keybeard is normally attached between the 12 digit outputs of the «7
2529 and 4 keyboard inputs of the 2529, giving a potential
48-kecy input capability, 41 of which are actually uscd. 7
G.gv 1w =
The design required efficient handling of the 12-digit outputs. “;gz:u TENER DICDES fﬁg‘; ADJUST Rl ¢ R2 FOR
Since it was necessary to utilize the digit outputs for both -2 +12 SOMA CRAIN IF USING
data entry and digit segment output, the design was centered h OTHER THAN 12, -V
on a controlled accessing of the asyncronously scanning 12 =7 = + SUPPLY VOLTAGES
digits. The computer has 4 bity of an output port assigned
to the duty of sclecting a given digit by sending its binary
equivalent to the inputs of a 74150 sixtcen input selector.
When the sclected digit becomes present the output at pin 10
of the 74150 goes low as long as the digit is present. By OUTPUT CODES FOR SEGMENT DECODE
combining this input with three more bits from the computer, DIGIT DIGIT AND
‘the desired "keyboard" input is sent to the 2529. The computer INPUT CODES FOR F N RY o
word should be held for at lecast 40 ms to be certain that the UNCTION ENTI ALONE OCTAL' HEX DECIMAL PT OCTAL HEX
a on 1 i digit has been accessed.
syncronously scanning dig < FUNCTION OCTAL HEX FUNCTION OCTAL HEX o 260 B0 0. 220 90
Likewise, the digit output must identify the digit to which the 5 ° 1 275 BD 1. 235 9D
current ;cqmcnt outputs apply. By using the same coding scheme ‘]’_ gg% }; }S\?S O:i g? 2 250 A8 2. 210 88
for the four inputs to the 74150, a computer controlled sampling 023 13 cos 062 32 3 254 AC 3. 214 8C
system is established. - The MSB output from the computer informs j 023 14 AN 063 33 4 245 AS 4. 205 85
the calculator interface that a digit/segment output is desired. 3 025 s N 064 34 5 246 1.3 5. 206 86
When the desired digit finally ripples by, a strobed MSB+ pulse 5 026 16 LOG 065 35 6 243 A3 6.. 203 83
appears on the interface output. This pulse then interrupts s 027 17 RCL 067 37 7 274 BC 7. 234 9cC
the computer to inform it that the segment data for the desired 7 030 18 T 070 18 8 240 A0 8. 200 80
digit is present and valid as long as the MSB stays +. 8 031 19 xey 071 39 9 i“ Ad 9. 204 84
- 57 AP - 217 8F
Several considerations: First, only 5 of the 7 scgments are 9 g:i ;i‘ gsg g;i gg ERROR® 262 B2 ERROR. * 222 92
neceded to decode 0 through 9, minus, blank, and the error + 042 22 CA/CE 074 3¢ or or or or
signs. Each digit may also have a decimal point attached to M 043 23 CHS 053 28 242 A2 202 82
it, so the output becomes 6 bits, plus the MSB strobe bit. Be % 04 22 EEX 054 2 Blank 277 BF Blank. 237 9F
aware that these calculator chips are quite slow. When entering a + 045 25 }("‘ gg‘ 26
- N . . . - 2 (i
data item or especially a function, the.display will go blank up " 8;; §1) 052 2; *(tleftmost digit only)
to 1/3 second while internal processing Fa_kes place. The result /S Ogi ii i,?" igi :2 %' INPUT CODES SENT TO ENTER DIGITS AND FUNCTIONS.
can take on any number of digits, but digit 9 is always used. By i{" }oz 42 . 105 45 CODE MUST BE HELD MORE THAN 4OMS.
. PP " . .
sampling for ““digit 9 not _blank, the_ end of internal processing No Op 000 00 R;.stoie\- 034 1C x SEND DIGIT 9 DATA REQUEST (211 OR 89) AND WAIT
can be detected. When this occurs, either further entries, or sam- ssplay FOR MSB FROM 7402 TO GO +. THIS INDICATES
pling of all 12 digits may proceed without data loss. 8008 pro- INPUT CODES FOR DIGIT DATA REQUEST . INTERNAL CALCULATIONS FINISHEO.
rams have been i i ® SEND DIGITS 12 THROUGH 1 DATA REQUESTS, DECODE
?esult displa an\gn;:‘tttee;‘t:z\;a::\;lceuiggp:f:e:rl;%ard eintry' and tv DIGIT™ OCTAL HEX DIGIT OCTAL HEX EACH WITH SEGMENT ggcoos DATA TASLE As’DATA
play, cti tion operations involving o1 61 207 AVAILABLE MSB LINE FROM 7402 GOES + FOR EACH
messages anf formula building and reiteration. These are avail- % 20% o3 ; i g; DIGIT.
able through the Digital Group. 3 203 83 9 211 89 x |ONGEST CALCULATION DELAY APPEARS TO BE 69!
4 204 84 10 212 8a CABOUT 1/3 SEC).
. . 5 205 85 11 213 8B
T . 3
he 2529 is av§|lab.lg from Mos Technology at $27.50 apiece. 6 206 86 12 214 -8C x RpN (2529-106) AND METRIC-CONVERSION (2529-104)
Some newer scientific calculator chips have been announced by CALCULATOR IC'S FROM MOS TECHNOLOGY WILL WORK
Mos Technology and are being presently sampled. WITH THE SAME CIRCUIT.
Other calculator chips could be used in similar circuits. However, DR. ROBERT SUDING WOLMD

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 19

SNOBOL FOR THE ALTAIR

Dear Dragons,

Thanks for the great publication and other nice things--like
dragon shirts!. What a way to learn.

| have a problem. Without considering any possible consequences,
| have committed myself to writinga SNOBOL Compiler (inter-
preter?) for an Altair 8800. My officemate has built the Altair for
the college at which he teaches, and after many months of promis-
ing some kind of assistance, | finally offered to write a compiler.

To get to the point: does anyone out there have any experience in
compiler writing, particularly in SNOBOL compiler writing? | know
| that some of the sharpest people in this field read PCC, so I’'m really
hoping to hear from someone.

Of course, once | get the compiler working, | will make it avail-
able to other Altair owners and users (for a nominal fee and a lot of
glory).

(I realize all you people are heavily into BASIC, but SNOBOL is a
pretty neat language for things like compiler writing, natural
language translation, and general string manipulation.)

Also, since my friend’s Altair is 75 miles away from my home,
donations of Altairs will be accepted.

using BASIC or FORTRAN as the ““machine,” so this type of thing
is interesting. If only someone had the plans for ALGOL inIL ...

If anyone has done any projects simulating languages/computers
in a high order language, would they please contact me?!

Thanks for everything, PCC!

Respectfully,

REED CHRISTIANSEN
2756 Fernwood No.
Roseville MN 55113

BUEFIN:

TB CODE SHEET
by Dick Whipple

You may be interested in knowing that John Arnold and |
write our programs (like TB) in machine language. We have found it
to be less restrictive and more versatile although not having a source
file of some kind is a disadvantage. We do keep a hand-generated
source listing on coding sheets for our reference. A major program
like TB requires a two-pass development: the first pass ends up with
lots of “fixes” and “patches” to get the program to work, the second
pass is then used to clean-up the mess produced in pass one. The’
coding sheets from pass two represent the nearest thing to source
code we have. For your reference | have included a copy of one of
our coding sheets from TB. The adadresses are split octal.

Cepy

Pm\:ram Plowe: _/,,,), BAsIC- /ﬁ,u) pcc Q’—"L ;)
idye WA R A

8’ O_EW ’ale //)//0/7('l- = 0?0 i

EEN SUPPLE . -
gﬂg%ﬁlrving St L= Q00]0Y0 L= 040 T376} P (7D +040,
Arlington VA 22204 01111 xx H GuFsTRT 41071

0‘:?.‘,3020 42 212 -
(SNOBOL compilers are tough. An interpreter would be easier. A o3iool) ixp BiAvworv ”..f jsof j rz RUBU
good place to start looking for information would be Griswold's book, oy ,haqo C: Case 99 020
The Macro Implementation of SNOBOL, W.H. Freeman, San Fran- 051110 ~ 5P 0451)67 AM
cisco, 1973; and Waite's book, /mplementing Software for Non- CovTY: 025 '3 37 BT Ygloys 1< H
Numeric Applications, Prentice Hall, Englewood Cliffs, New Jersey, €cV73: 007]376 CPI. <FGSD 471303
1971.) — Io 033 -50- 006 Tmre cevTY
1 13'12 s g1 o020
FULL OF HOLES 12 jos21 702 £ FGS: 052 ’iwé mur € ONG,
13 jo2¢ £3 |ovo
I guess you know, Tiny BASIC as presented in its first chapter is N,J.ﬁ(’} crr <LTR) 543303 PP CenTY
full of holes. Look, for example, at what happens if you try to 5 .‘ 037 554 toot
evaluate an expression without aunary plus or minus on the front. Ich. /_". 32 " 51’}."20
Also, | wonder if the interpreted interpreting interpreter interpreter 17jos7y 7372 ¢ LTR: 082,016 ¢ mur ¢ &
executor is viable for a really small, slow system like an 8008 system. -_20..020 3 .60 !000
Talk about crunching! Anyway, | want to see more. I’'m crazy, 21 foos DR L £11337 RST /Y
maybe? Who cares. ‘-.{3'2 621376 } cpr LTR)
Sincerely 23306 p 372 ERR306 3037
’ ‘,’j 026 & '302
FRITZ ROTH #5)376 & loor\ gvz cowr3
A 0o 2‘310'0 crr gcR) eb]oz0
Carbondale IL 62901 27.3/7 §1]327 RST CRLF
__:(0"/07 JPZ ENVD GCTUIVEO' A '07(
AHIGH ORDER 3t fozo 7iloas) E R e
J213767 (pr Lspy ‘7L“35—7 RST ouT
Dear Bob Albrecht, | am writing this letter about many things I' ve 33 looy 73 076 } ot A €2
read about in PCC. The Tiny BASIC project looks like something 33' 3i2 [‘,‘ 0/ 6 ‘
everyone would like to tackle. The interpreter idea is a little costly 75 0‘/f3 72 sP 75357 RST ouT
on time and storage, unless you plan to use it on many systems. Ju‘ 020 75'_303
Otherwise, it's a good idea. I'm interested in simulating languages 37 yzo!t AOR C 27Joo0 %»77”” BUFFIV
conT,

Are you implementing Tiny BASIC or some other software.
Let us know and we’ll let others know. Let’s stand on each
others shoulders and not on each others toes (to paraphrase
C. Strachey).

DR. DOBB'S JOURNAL OF COMPUTER CALISTHENTICS AND ORTHODONTIA is published ten time per year, monthly except in
July and December.

U.S. Subscriptions: For foreign subscriptions:

O $1.50 for a single copy: Vol. , No. O add $4.00 per year for surface mail, or
O $3.00 for the first three issues O add $12.00 per year for air mail
0 $10.00 per year (10 issues/year): Begin with Vol. No.

Payment must accompany the subscription. We do not invoice for subscriptions or single orders. Send to: PCC

Necessary Information: P.0. Box 310

Menlo Park, Ca. 94025
Name (last name first)

Mailing Address

City State Zip Code

O yes [no: This information may be published in directories and lists of individuals interested in
computers in non-commercial environments. ‘
e T N A N N W W W W W W N W S W NN
EEES==s e

Optional Information:

Equipment that you have or are planning on purchasing, immediately:

Make & model Manufacturer
CPU model CPU Manufacturer
1/O Devices

Mass storage peripherals

Primary areas of interest concerning non-commercial and home computers:

Questions: What would you like to see published in pRr. poBB's JOURNAL? It will help guide us if you will rate these, 1 to 10
(1 — minimally desire; 10 — super-eager to see) or O (would prefer we not waste space publishing it).

. Schematics and acticles from all of the computer club newsletters

Short news articles directly related to home computers

Short news articles concerning computers in general, particularly their social implications

Indices to all articles in all other computer hobby publications

Indices to selected articles from other computer, electronic, and trade publications

Letters having technical, critical, or entertaining content

Classified ads (as opposed to display advertising)

Suggestions and “blue skying” about what can be done with home computers in the foreseeable future. 1
OVER

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box 310, Menlo Park CA 94025

Directories of:

Users of home computers and their equipment Computer clubs
Computer stores and distributers Sources of used equipment
Manufacturers of computer kits Microprocessor and minicomputer manufacturers

Source code listings and documentation: ~ For which microprocessors?

Nearly full-sized (much less can be published)
__ Reduced as in recent issues (more difficult to read, but more info included in each issue)

What kind of software would you like to see developed and placed in the public domain?

Importance Rating Software Description

Place

13-cent

stamp

here

DR DOBB'S JOURNAL OF
COMPUTER CALISTHENICS & ORTHODONTIA
PCC
BOX 310
MENLO PARK CA 94025

To use this as a self-mailer: 1. Fold it so this third covers the top third. 2. Place the proper postage, above. 3. If you are subscribing, insert your
check so that it crosses a fold. 4. Staple this closed with a single staple, making sure that the staple pierces the check.
(Better still, stick all of this in your own envelope, and mail it to us.)

What else would you like to see us publish? Please use another page or ten, if you need them.

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box 310, Menlo Park CA 94025

DR DOBB'S JOURNAL OF
COMPUTER CALISTHENICS & ORTHODONTIA

PCC
Box 310

Menlo Park CA 94025

A reference Journal for home computer users

from the People’s Computer Company—

DR. DOBB'S JOURNAL of COMPUTER CALISTHENICS & ORTHODONTIA

Content regularly includes:

— 8% x 11 inch magazine format
— “all meat” content; no display ads

— published monthly, except July & December

Complete documentation on systems software
— Tiny BASIC, interpreters, debuggers, assemblers, compilers, cassette & floppy disc
file systems, TV Dazzler software, graphics programs, music programs, etc.
— User documentation, impiementation details, complete annotated source code listings
Design notes for build-your-own software

Detailed ‘blue skying’ about practical systems projects for the immediate future
— Tiny BASIC was the first such project
(proposed, March, 1975; detailed, September, 1975; 5 systems up & running, March, ‘76)

— English language voice synthesis kits — Electronic telephone book
— Computer music & graphics systems < — Community memory
— Shared mass storage v — Biofeedback

— & much, much more
Reprints of articles & schematics from computer club newsletters (all of ‘em)
Directories: used equipment sources, users & their equipment, clubs & organizations, etc.
Indices: All articles in all major hobbyist publications, & selected articles from other publications

Active consumer advocacy for home computer users
— Supported by magazine sales—not by ads
— No vested interest in good will of manufacturers

