
dr. dobb's journal of $1.so

COMPUTER
Calisthenics & Orthodontia*

Running Light Without Overbyte
February 1976 Box 310, Menlo Park CA 94025 Volume 1, Number 2

*previously

Table of Contents for Volume, 1, Number 1 (20 pages)
Tiny BASIC Status Letter - Dennis Allison 1
16-Bit Binary-to-Decimal Conversion Routine - Dennis Allison 2
Build Your Own BASIC [reprinted from PCC, Vol. 3, No. 4] - Dennis Allison & others 3
Build Your Own BASIC, Revived [reprinted from PCC, Vol. 4, No. 1] - D. Allison & M Christoffer 4
Design Notes for Tiny BASIC [reprinted from PCC, Vol. 4, No. 2] - D. Allison, Happy Lady, & friends 5
Tiny BASIC [reprinted from PCC, Vol. 4, No. 3] - D. Allison, B. Greening, H. Lady, & lots of friends 9
Extendable Tiny BASIC - John Rible IO
Corrected Tiny BASIC IL - Bernard Greening 12
Tiny BASIC, Extended Version (TBX), Part 1- Dick Whipple & John Arnold

Example, Command Set, Loading Instructions, Octal Listing 14
Letter & Schematics - Dr Robert Suding

Usin_g_ a calculator chip to add mathematical functions to Tiny BASIC 18

IN THIS ISSUE ...

What? Another Computer Hobbyist Magazine? - Editorial
A Critical Look at BASIC - Dennis Allison
Music of a Sort - Steve Dampier
SCELBAL: a higher level language for 8008/8080 systems -Mark Arnold &

descriptive information Nat Wadsworth
Tiny BASIC, Extended (TBX), Part 2 - Dick Whipple & John Arnold

complete implementation documentation, source listing,
error corrections, notes on two relocated versions

Computers that Talk - Jim Day & Editor
unlimited English language voice synthesis equipment, available in kit form for $1000

Letters & Notes
TBX Mods for a SWTP TVT-2 -Adolph Stumpf
Tiny BASIC Available for the 6800 - Tom Pittman
Byte Swap (classified ads)

Database Questionnaire, and Subscription Blank

In Future Issues . . .
t DOCUMENTED SOURCE CODE FOR THE DENVER VERSION OF TINY BASIC
t A PUBLlC-DOMAIN FLOPPY DISC FILE SYSTEM
t SCHEMATICS & ARTICLES, REPRINTED FROM MANY COMPUTER CLUB NEWSLETTERS
t DIRECTORIES OF CLUBS & ORGANIZATIONS, COMPUTER HOBBYIST STORES &

DISTRIBUTORS, PUBLlCATIONS, ETC.
t LlSTS OF COMPUTER HOBBYISTS & THEIR EQUIPMENT
t INDICES TO COMPUTER HOBBYIST ARTICLES IN OTHER PUBLlCATIONS
11po11p1pp11p11op1oop1pppo1op1ppp1pop1p101pp1p111p11111
DR COBB'S JOURNAL OF TINY _BASIC CALIST_H_I;NICS & ORTH_ODONTIA

page

3
4
6

8

13

32
33

35

Page 2 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

DR COBB'S JOURNAL. OF

COMPUTER CALISTHENICS & ORTHODONTIA
Volume 1, Number 2; February 1976
Box 310, Menlo Park CA 94025
{1010 Doyle, Menlo Park; (415) 323-6117]

Copyright 1976 by People's Computer Company

People's Computer Company

Editor
Jim C. Warren, Jr.

Contributing Editors
John Arnold
Dick Whipple

Watchdogs
Bob Albrecht
Dennis Allison

Underdog
Rosehips Malloy

Circulation & Subscriptions
Mary Jo McPhee

POSTMASTER: Please send Form 3579 to: Box 310, Menlo Park
CA 94025. Return postage guaranteed. Application to

mail at second-class postage rates is pending at Menlo Park CA.
Published 10 times per year; monthly, excluding July and December.

U.S. subscriptions:
(Subscription blank is inside of back cover)
$1.50 for a single issue.
$3 for the first three issues,
$10 per year.

Foreign subscriptions:
Add $4 per year to the above rates for surface mail.
Add $12 per year to the above rates for air mail.

Discounts available for bulk orders.

Disclaimer

We serve as a communication medium for the exchange of
information. We do not guarantee the validity of that information.

Reprint privileges
Articles herein that are copyrighted by individual authors or

otherwise explicitly marked as having restricted reproduction rights
may not be reprinted or copied without permission from People's
Computer Company. All other articles may be reprinted for any
non-commercial purpose, provided a credit-line is included. The
credit-line should incidate that it was reprinted from DR DOBB'S

JOURNAL OF COMPUTER CALISTHENICS &

ORTHODONTIA, and include our address.

t Documentation & complete source code for a
Denver version of Tiny BASIC

t Touchless sensing for under $100--proximity sensors
that can "see" liquids and solids

t Quik Bits--short news articles concerning home
computing

t Keyboard Loader for Octal Code via the TVT-2
t Details of a Software Contest for the TV Dazzler
t A center for software reproduction and distribution
t More details on the Votrax speech synthesizer kits
t Articles from the computer club newsletters
t Lots o' Letters, & A pointer to a 16K BASIC for

the 8008

and much more

w E R E

This started out to be a one-shot, three-issue
quickie on Tiny BASIC. It was being put together on a
sorta spare-time basis by the PCC mob. Once we
became aware of the information gap that we are now
focusing on filling, it took a coupla weeks or more to
gather together a staff and organize a full-scale
magazine production effort. Thus:

The first issue, "January, 1976," didn't get out
until the end of February.

This second issue is being mailed April 12th, in
spite of it's being dated "February."

Number 3 will go out less than two weeks there
after, however, and the "April" issue should go out in
the first week of May.

Finally ... the May issue will go out about the
third week of May, and (whew!) we'll be on schedule
from there on.

February 1976 Dr Dobb's Journai of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 3

h DDJCC&O II abuu
My gawd! Not another computer hobbyist magazine! That was my first reaction when

People's Computer Company approached me about becoming Editor of their one-issue-old
infant, DR DOBB'S JOURNAL OF TINY BASIC CALISTHENICS & ORTHODONTIA.
PCC had originally planned on publishing three issues of the JOURNAL. The response to
the first, patchquilt issue, however, convinced them (and me) that an area of badly-needed
information is not being covered by the presently existing publications. Furthermore, it
seems unlikely that the other publishers will choose to cover that area; they have their
hands (and pages) full just covering hardware and small bits of software.

What is this area; this information vacuum? It's free and very inexpensive software.
One of the primary thrusts of DR DOBB'S JOURNAL will be to present detailed informa
tion concerning low-cost systems software; interpreters, compilers, structured assemblers,
graphics languages, floppy disc file systems, etc. This will include user documentation and
examples, documentation on implementation including complete source code listings, up
dates giving errors and their fixes, explicit and detailed notes on the design and imple
mentation of such systems software, and so on. This JOURNAL is explicitly available to
serve as a communication medium concerning the design, development, and distribution of
free and low-cost software for the home computer.

We encourage you to send in documented software, as you develop it. We hope that
you will use the software that we publish in this JOURNAL; that you will study it and
modify it to expand its capabilities, and that you will report any bugs you may note to
us and to the authors.

We are also quite interested in publishing evaluations of any software and hardware
that is being sold to the home computer user. We are supported by readers' subscriptions
rather than advertising. We will not hesitate to publish positive and negative evaluations.
We adamantly hold the position that, if a manufacturer of some hardware or software is
going to peddle it to unsuspecting consumers for a healthy profit, their product damn
well ought to perform as well as their advertisements and profit imply it will!

There are some other areas of information that we expect to cover, not seen in most
of the other major computer hobbyist publications. These include complete indices to all
of those publications, directories of computer stores and distributors, listings of computer
clubs and organizations, listings of users and their. equipment, etc. Another tidbit: as long
as we can afford to, we will carry classified ads.

We also plan to begin reprinting articles and schematics from the club newsletters.
We have heard the comment, over and over, "I wish I could see the stuff that's being
printed by all the homebrew groups, but I just c:tn't afford to subscribe to all of them."
We expect to help with this desire.

Finally, we will be doing some fairly detailed "blue skying." Everyone is wondering
where home computers are going, and what the potentials are. We have a number of ideas
(with more rolling in, every day) about what can be done in the immediately foreseeable
future. We will be presenting them and encouraging their realization. The Votrax articles
on page 32 of this issue are one small example of this.

Thank you for reading. We vvant your suggestions. We want your contributions of
software, hardware designs, evaluations, and anything else you're willing to share with
other home computer enthusiasts. And, of course, we want your subscriptions. The more
subscriptions we have; the more pages we can print; the more information we can pass
along to you and your friends. If you like what you see here, we hope you will spread
the word.

Nuf sed, for now. More in a coupla weeks. --Jim C. Warren, Jr., Editor

Page 4 February 1976 Dr Dobb's Journal of Computer Ca~isthenics & Orthodontia Box 310, Menlo Park CA 94025

A CRITICAL LOOK AT BASIC

Dennis Allison, 169 Spruce Ave, Menlo Park CA 94025
Consultant (415) 325-2962

[This article appeared in Timesharing: Past, Present,
Future. Proceedings of the Second Annual Computer
Communications Conference, San Jose, January 1973.]

0. INTRODUCTION

BASIC is the dominate interactive programming
language. It has been widely implemented since
its introduction in 1965 as a component of the
Dartmouth timesharing system. BASIC is presently
widely used as an instructional language at
both the high school and college level. Standard
ization efforts are now in progress, but are
hampered by the proliferation of dialects and
incompatible extensions.

The purpose of this paper is to evaluate the
BASIC language as a problem solving tool. BASIC
is not the language of choice for problem solving
given our present understanding of the programming
process. That is not to say that programs, even
good programs, cannot be written in BASIC. There
is overwhelming evidence which indicates they can
be. Rather, it says that the language structure
makes it difficult to write a clear, concise, well
structured program.

The emerging discipline of software engineering has
provided us with a pair of complementary methodol
ogies which, when properly applied, help minimize
the difficulty of developing error-free software
systems both large and small.

One might say that BASIC is too simple, too easy
to use. It is possible for a novice user to learn
to program in a single day. It is also almost
axiomatic that large programs written by BASIC
programmers will be ridden with bugs. The language
lacks the mechanisms to structure the problem's
algorithm and data well. It breeds bad habits,
habits which are difficult to unlearn.

l. MAKING A PROGRAM

The program development cycle can be summarized as
repetative application of the following:

o Problem definition
o Algorithm development
o Program entry (error prone, mechanical)
o Testing to discover errors
o Debugging (localizing errors)
o UJltlng (mechunicul)

Contemporary timesharing systems support the
mechanical portion of program development and
neglect the conceptual and definitional part.
BASIC systems provide for program entry, syntax
checking, editing, and the like, but don't really
provide much help when it comes to deciding how
to solve the problem at hand. The program is
expected to blossom forth in full bloom from the
gestalt mind of the user. A corollary to the
above observation: BASIC programs written at the

console usually look it.

While little support is given to testing and
proofs of correctness, debugging is well supported
within BASIC. BASIC is usually interpreted, so
the state of the BASIC machine is available to
construct diagnostics. Simple errors, array-bounds
violations are checked and diagnostics reported
at run-time. Many BASIC systems defer reporting
structual errors (for example, a missing NEXT) to
run-time as well, a practice not to be commended.
The ease of finding errors in BASIC programs allows
one to build programs on a pragmatic, experimental
basis. That leads to a false sense of security.
One had best remember Dijkstra's dictum: "Program
testing can be used to show the presence of bugs,
never to show their absence."

2. MODULAR PROGRAMMING

If any rule of the thumb as to how to construct good
programs exists, it is: Divided and Conquer. Problems
are best solved by decomposing them into smaller and
smaller problems until the resultant problem can be
solved in a simple, direct manner.

Dijkstra has pointed out that the process of dividing
a problem into its natural fragments results in the
introduction of levels of abstraction. At each level
of abstraction primative functions are defined which
manipulate primative data aggregates; the operations
and the data structures mirror an abstract model of
the problem being solved. At lower levels of abstraction
these primative operations and data structures are
themselves decomposed into still more primative units.
For example, a sort-merge program may deal on one
level with manipulations of files, and on another
level with records and keys.

BASIC provides few mechanisms for modularity. There
is a one-line arithmetic function capability and an
unparametered subroutine (GOSUB/RETURN) facility.
The first has limited usefulness; it provides a
convenient shorthand for computation, nothing more.
The subroutine facility is very primative. It
requires the user to develop conventions for passing
parameters and for the naming of local data. All
variables are global in BASIC and are shared between
all modules of the program. Subroutines are not
distinct from the corpus of the main program (and
other subroutines); transfers into and out of
subroutines is unrestricted and often unmanageable.
Subroutine reference is by line number rather than
a mnemonic name, a convention which tends to obscure
the functional purpose of the subroutine.

3. STRUCTURED PROGRAMMING

Structured programming is a technique which limits
the control structures which interconnect the modules
of a program to a few well-d_efined forms. Modules
include procedures and collections of statements,
either of which may be nested. The flow of control
utilizes conditional and plcx selection to select
paths and provide for repetition unconditionally,
under control of a boolean expression, or under
control of an indexing variable. Recent systems
provide escape statements which allow control to
exit several nested modules. All systems forbid the
use of unconditional branching.

The rationale behind structured programmin is the
minimization of the connectivity within a program.
Programs which have a well defined, nested structure

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 5

tend to be clear. The logical flow is usually
sufficiently clear that a flowchart is not necessary
to tour all paths in the program. In addition,
the conditions under which any given path ;s to
be executed are clearly spelled out.

BASIC is the antithesis of a language for writing
structured programs. The GOTO and the IF •.• THEN
both result in unstructured transfers of control.
No means is provided for collecting statements
into a group to be executed as a module. And
instead of eliminating labels, BASIC requires all
statements to have one.

True structured programming is difficult in BASIC.
It requires unmitigated attention and discipline
to maintain a structured programming style. And
the clarity which one normally acquires is lost
because module boundaries are not distinct.

4. SUMMARY

BASIC does not provide those features which appear
desireable in an interactive programming language
to be used for real-world problem solving. The
flaws are not superficial; they are buried deeply
in the structure of the language. In particular,
BASIC is not a vehicle for the best techniques
known for the· construction of programs: modular
progranuning and structured progranuning.

Making programs is not an easy task. A problem of
even moderate complexity often cannot be comprehended
in the whole. We must abstract and localize the
processing to make it tractable. Our contention
is that BASIC does not help this process and,
because of its structure, often hinders it. The
time is ripe to find a better language, one more
closely related to our needs.

5. REFERENCES

BASIC

Anon. (1970) BASIC, Fifth Edition, Dartmouth College,
Hanover, New Hampshire.

Lee, J.A,N., The Formal Definition of the BASIC
Language, The Computer Journal, Volume 15
Number 1 (February 1972), pages 37-41.

Ogdin, J., The Case Against BASIC, Datamation
(September 1, 1971), pages 34-41.

Sammet, Jean E., Progranuning Languages, Prentice
-Hall (1969).

Modular and Structured Progranuning

Baker, F. T., System Quality Through Structured
Programming, Proc. FJCC (1972), pages 339-343.

Buxton, J. N. and B. Randell (eds.), Software
Engineering Techniques, Report on a Conference
Sponsored by NATO Science Committee, Rome
Italy (1969).

Dijkstra, E. W., Notes on Structured Progranuning,
Report 241, Technische Hogeschool Eindhoven (1969).

/

Levenworth, B. M., Programming With(out) the GOTO,
Proc. ACM Nat. Conf. (1972), pages 782-786.

Liskov, B. H., A Design Methodology for Reliable
Software Systems, Proc. FJCC (1972), pages 191-199.

Mills, H. D., Mathematical Foundations for Structured
Programming, IBM FSD Report FSC72-6012,
Gaithersburg Maryland (February 1972).

Naur, P. and B. Randell (eds.), Software Engineering,
Report on a Conference Sponsored by the NATO
Science Conunittee, Garmisch Germany (1968).

Wirth, N., Program Development by Stepwise Refinement,
CACM 14 (April 1971).

Wulf, W. A., A Case Against the GOTO, Proc. ACM Nat.
Con£. (1972), pages 791-797.

COMMERCIAL GOODIES OF INTEREST

PC BOARDS
For those inclined to design their own microcomputer sys

tem, Schweber Electronics (Westbury NY 11590, 516-334-7474),
is marketing several PC boards that appear interesting. Their Micro
c~mputer Panel No. 9045-3BD-60 purports to accommodate
nearly all currently available microprocessor kits. Their Memory
Panel No. 9042-3BD-60 accepts any 16-, 18-, 22-, or 28-pin LSI
RAM, ROM, or PROM in 4K increments. These 6"xl O" boards
mate to standard 44-pin edge connectors for ease of system expan
sion. By standardizing pinouts for address and data buses, control
and power lines, it becomes simple to interchange processor boards,
memory boards, I/O boards, etc., all within the same card cage,
regardless of whose LSI devices are on any board.

Schweber has 18 outlets in the U.S. If none of them are
handy for you, contact the manufacturer, Excel Products, 401
Joyce Kilmer Ave, New Brunswick NJ 08903; 201-249-6600.

FAIRCHILD F-8 KITS
If you don't want to do hardware diddling, Fairchild is

peddling a F-8 Microprocessor Kit for $185 (plus tax where applic
able). The "kit" contains a fully assembled and tested unit includ
ing an F8 CPU, a pre-programmed PSU (Program Storage Unit), an
F8 Memory Interface Circuit, and lK bytes of static RAM. It in
cludes a wired edge connector, one end for the board, another for
your TTY, and three wires for power. The board includes 32 TTL
compatible I/Obits, two interrupt levels, two programmable timers,
and all the necessary control circuits. Internal signals have been
brought out to the edge connector for possible system expansion.
Just add power; there is no additional soldering or wiring to do.
The price includes a F8 Programming Manual, F8 Databook, and
the "Fairbug" program in the PSU. Fairbug includes such capabili
ties as a loader, memory dumper, debugger, and TTY and paper tape
I/O drivers. They say its immediately available from Fairchild
Distributers or from Fairchild Microsystems Division, 1725 Tech
nology Dr., San Jose CA 95110.

Page 6 February 1976 Dr [)obb's Journal of Computer Calisthenics & Orthodontia Box 3Hl, Menlo Park CA 94025

MUSIC OF A SORT Data For THE FOOL ON THE HILL Data for "DAISY"
Beatles

Steve Dompier, 2136 Essex St, Berkeley CA 94705; Address i):.i,ta Address Data Address Data Address Data
415-841-1868

..,.._,,,..,_....,.,.,...,.,.. ... ,, _..,,,,,._ ,,_, .. --........ -----.......... ------..... ~ ..
[Reprinted from May 1975 PCC, Vol. 3, No. 5.] 040 105 120 055 170 034 250 040

041 H.:15 121 053 171 034 251 042
IT WORKS! 042 125 122 071 172 034 252 046

I received my ALTAIR 8800 in the mail at 10 a.m., and 043 mo 123 066 173 042 253 034
30 hours later it was up and running with only one bug in the 044 cm 124 100 174 042 254 034

045 063 125 cm 175 042 255 042
memory! That turned out to be a scratch in a printed circuit 046 0.6.3 126 071 176 053 256 046
that took 6 more hours to find. After that was fixed, everything 047 063 127 100 177 053 257 053
worked!!

Now, what do you do with a machine that so far has no 050 071 BO 071 200 053 260 053
I/O boards or peripherals? Well, there's always the front panel 051 063 131 066 201 071 261 053

052 MS :i.32 066 202 071 262 053
switches and machine language, so I was soon busy making up 053 053 133 071 203 071 263 046
programs to test all of the 8080's functions; and getting a good 054 053 134 100 204 063 264 042
set of calluses on my ten input devices. There's a lot of 8080 055 055 135 mo 205 055 265 042
instructions! 056 071 136 100 206 053 266 053

057 063 l37 071 207 063 267 063

ZZZHIPPP
060 046 140 056 210 063 270 063

I had just finished setting in a 'sort' program, and at the 061 046 141 060 211 053 271 053
same time I was listening to a weather broadcast on a little 062 046 142 060 212 071 272 063
transistor, low-frequency radio, which was sitting next to the 063 071 143 066 213 071 273 071
Altair. I hit the 'run' switch on the computer and it took off 064 063 144 071 214 071 274 071
sorting the same list of numbers over and over again. 065 046 !45 066 215 071 275 071

At the same time my radio also took off! 066 046 146 066 216 071 276 071

The computer was sorting numbers and the radio was going
067 053 147 060 217 071 277 071

ZZZHIPP! ZZZIHPP! ZZZIHPP! 070 042 150 053 220 046 300 053
Well, what do ya know! My first peripheral device!!! 071 046 151 046 221 046 301 053

072 046 152 046 222 046 302 042
The radio was picking up the switching noise of the 8800. 073 063 153 046 223 034 303 046

I tried some other programs to see what they sounded like, and 074 071 154 046 224 034 304 046

. after about 8 hours of messing around I had myself a program 075 063 155 044 225 034 305 071
076 053 156 046 226 042 306 053 that could produce musical tones and actually make music; of a 077 053 157 053 227 042 307 053

sort. (Or any other program you have!)
100 063 160 053 230 042 310 042

MUSIC 101 053 161 053 231 053 311 046
The closest sheet of music that I could find was The Fool 102 071 162 053 232 053 312 042

on the Hill by the Beatles, so I translated it into OCTAL code, 103 063 163 053 233 053 313 040
104 063 164 002 234 063 314 034 picked up the Altair, and headed down to Menlo Park for the :i.05 on 165 002 235 055 315 042

3rd meeting of the Bay Area Amateur Computer Users Group- 106 063 166 002 236 053 316 053
Home Brew Computer Club. I thought everyone there should 107 046 167 377 237 046 317 046
see just what a computer can do!

HO 046 '.240 046 320 046

RECITAL lH 046 241 042. 321 071
112 053 242 046 322 053

This being the Altair's first recital, it was a bit shy at first, IB 042 243 046' 323 053
and refused to power up--even though Fred's tape recorder was 114 053 244 046 324 053
plugged into the same wall outlet and working just fine. One HS 046 245 046 325 053
forty-foot extension cord and half an hour later we were ready. H6 046 2% 046 326 002
(Fred's tape machine turned out to be running on its own . 117 053 247 042 327 377
battery power, and all of the wall plugs were dead!)

The recital then proceeded with nary a glitch, much to every-
one's delight. (Although during the demanded encore, the
machine did break into its own rendition of Daisy, apparently
genetically inherited.)

February 1976 Dr Dobb's Journal of Computer Ca!istl)enics & Orthodontia Box 310, Menlo Park CA 94025 Page 7

OCTAL CODES FOR NOTES PROGRAM TO MAKE AN ALTAIR 8800 PLAY MUSIC

c
C#
D
D#
E
F
F#
G
G#
A
A#
B

c
C#
D
D#
E
F
F#
G
G#
A
A#
B

c
C#
D
D#
E
F
F#
G
G#
A
A#
B
c

Q

252
240
230
220
211
?00
172
162
154
146
140
132

125
120
114
110
105
100
075
071
066
063
060
055

053
050
046
044
042
040
036
034
033
031
03C
026
025

002

000

LOW OCTAVE 001
002
003
004
005.

006
007
010

011
012
013
014

MIDDLE OCTAVE 015
016
017

020
021
022
023
024
025
026
027

OOG
031

HIGH OCTAVE

032
033

Note; This is the quietest of the data notes.
It can be used for spaces and rests.
You may also like to put a m.1mber of
these quiet 'notes' at the ~nd of the
music data, to gi1111 a space between
playings,

With a little experimentation, you can makill ail kinds of
interesting so1.mds, ie; sirens, ray-guns, etc.

lXI H 041
b2 xxx - ADDRESS OF FIRST

b3 ID<X DATA ENTRY

MOV A,M 176
CPI 376
b2 377 - START OVER DATA

JZ 312
b2 (M)O

b3 (,00

MVI D 026
b2 JO(X

OCR B 005
TEMPO !)A.TA

JNZ 302
b2 020
b3 000
MOV B,M 106 TO RUN THE PROGRAM: ----------------
OCR C 015

To run the program, push the 'RESET' switch,
then push the 'RUN' switch.

JNZ 302 To stop the program, push the 'STOP' switch.
b2 013
b3 000
OCR D 025 TO MAKE YOUR OWN MUSIC:
JNZ 302 -------------------
b2 013 Begin loading your music data anyplace after

b3 000 address 034. Be sure to load the starting address
into H&l at address 002, 003.

INR l 054
Each data entry will be one beat of music, JMP 303

b2 003
b3 000

NOTES
t Tempo-- The tempo is controlled by the value placed in

address 012. Start out by trying 040.
t To Play Backwards-- Put 377 in front of all music data

(to cause looping). Change address 001 to read the END of the
music data. Change address 030 to DCR L (055).

t To Play all of the Memory-- Change address 001 data to
a NOP (000). Change address 004, 005, 006 to NOP (000). This
will cause program to read all of the memory, including the pro
gram instructions themselves.

t Radio Information-- A low-frequency radio around 330
KC works best, but any AM radio will pick up the music at
quiet places on the dial.

Set the radio on or very close to the computer, start the
program, and turn the dial on the radio until you get good
sound, Some places will be much better than others, and some
will pick up different sounds from the computer. Also, try mov
ing the radio to different positions on or around the computer.
Just rotating the radio 90 degrees can make a lot of difference
in the sound you will get.

Page 8 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

SCELBAL--A HIGHER LEVEL LANGUAGE
FOR 8008/8080 SYSTEMS

Mark Arnold & Nat Wadsworth
Scelbi Computer Consulting, Inc.,
1322 Rear, Boston Post Rd, Milford CT 06460
Copyright 1976 by Scelbi. Reprinted with permission.

[The publication described in the following article will
be sold for around $50, and will contain over 300
pages of information. --J CW, Jr]

'The goal of about ninety percent of small
systems owners appears to be to get their
1ystems up and running with some kind of
1/0 and then procure enough memory to
support a higher level language.

Unfortunately in the past when a system
owner reached the stage of having enough
memory a major problem arose. Unless the
individual had purchased an entire system
from one or two select suppliers, the cost of
a copy of a higher level language was likely
to be out of reach!

Even if one was financially able to pur
chase a higher level lan~uage from an equip
ment manufacturer one was likely to find
that such programs were designed to
operate with specific I/O devices which
the prospective lan~uall"(e user mi~ht not
have access to or desire to obtain. If one
did not have those spl'<'ific devices for
which th<> prnf.(rnm was dl'sign4•d, rnw w1u1

usually in 11 tou~h spot. Despite> adv«>r·
tisements that such programs came "fully
documented," the "full documentation"
was not likely to include a source listing of
the program. Hence, attemptin~ to modify
such a complex program was a risky,
frustratinR, and often downright impossible
task. And, without doing so, one was hard
put to make the lan~ua~e work with
unique types of 1/0 devices. Furthermore,
such programs could not practically be modi
fied to serve the particular wishes of in·
dividual usPrs. If you were not satisfied
with the program and what the program
author's had decided to emphasize or leave.
out, that was simply too bad!

Few "canned" programs can be tailored
to havEi all the features desired by all the

possible potential users. To attempt to do
110 would result in programs requiring more
memory than users could afford. The answer
to this problem is, of course, to supply the
programs in such a manner that they can be
readily modified and altered by the users.
This means, simply. that the detailed source
listing for the program must be made available
to the purchaser. Assisting the program owner
by also providing .. detailed comments with
the listing, a general overview of the pro·
gram's organization and operation, and
general flow charts ~an further enhance the
value of the program to the owner. With
this information available, the program
user can safely proceed to tailor the cap a·
bilities of the program to serve the user's
particular interests and requirements.

This is the approach SCELBI COM
PUTER CONSULTING, INC., has taken
in presenting its new higher level language
for 8008/8080 machines. The language
has been given the name SCELBAL for
SCientific ELementary BAsic Language.
As the reader can easily surmise from the
title it is similar in capabilities to the high·
ly popular language refE>rred to as BASIC.
Thill lnngung«> was Rpedfi<'ally dPv«>lopcd
to be ahle to run on 8008 baRcd micro·
computers. It is believed to be the first
such higher level language to be made
generally available that is capable of
runnini;? in a system equipped with the
ubiquitous 8008 CPU. The program can
of course also be run on systems using
the more powerful 8080 CPU thou§lh it
is not as memory efficient as it could have
been if the program had forsaken 8008
capability.

The language was developed to operate
in an INTF.RPRETIVE mode. This meane
that the entire program resides in memory
at one time along with the program written
in the higher level hm~age that is to be
executed. When the INTERPRETER is given
the RUN command it immediately proceeds
to INTERPRET each line of the higher level
language program and perform the necessary
calculations and functions. This differs from a
COMPILER which would first convert the
higher level language source listing to machine
code, then later execute the machine code.

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 9

A COMPILER oriented system generally ii
cumbersome to run on a small system that
lacks reliable, high speed bulk memory
storage facilities. For instance, if the program
had been designed as a complier, the follow·
ing steps would have been necessary in order
to execute a higher level language program.

First one would have to load an Editor
program into the computer and create the
desired higher level language version of a
program as a source listing. A copy of the
source listing would then have to he saved on
an external memory medium. Next, a portion
of the compiler program the actual
compiler, would have to be loaded into
memory. When it was resident, one would
produce the desired machine code version of
thf' higher level language statements by having
the compiler process the source listing several
times. (Much as an AssE>mbler program would
process the mnemonic listing when program
ming in machine language.) The machine code
produced would have to be stored on an ex
ternal memory device at this stage. Finally,
the RUN TIME portion of the compiler
would have to be loaded into the computer
along with the machine code produced by the
COMPILE portion of the program. The
higher level language program would then
finally be ready to run. Too bad if you made
an error in the original source coding for the
program that was not detected until run time.
You would have to go all the way back to the
Editor program to correct the higher level lan
guage source listing and start the process over
again!

Developing the program as an INTER
PRETER eliminates the requirement for the
constant use of an external bulk memory
device in order to get a program from' the con
cept to execution stage. An INTERPRETER
is definitely a much more convenient program
for the small systems user. The entire INTER
PRETER program resides in memory at one
. time. An area is set aside in memory to hold
the higher level program. An executive por·
~ion of the program allows the user to enter
the hlgher level lanl{Uage listing directly into
the area where it will be operated on when

the program is executed. The executive in
SCELBAL will provide for the user entering a
program from a manual input device 1uch 11 a
keyboard. Or, it the user desires to run a
program that has been developed previously, a
LOAD command will direct the program to
read in a program from an external bulk
memory device such as a magnetic tape peri·
pheral.

SCELBAL has been designed so that it can
operate in a "calculator" mode or operate in a
stored program mode. In the calculator mode,
each statement is executed immediately aft.er
it is entered by the input device. In this mode,
the program is ideal for solving simple for
mulas when the user only needs to obtain a
few values.

When operating in the stored program
mode, the INTERPRETER will follow an
entire series of instructions as direct.ed by
the higher level program. To ent.er a pro
gram that will be operated on as a stored
program, the operator simply assigns a
line · number at the beginning of each
statement.

The executive portion of the package
allows the user to "edit" a program at any
time. Lines may be deleted and new lines
entered anywhere in the program. If the
operator makes a clerical error while
entering a line, a special erase code may be
used to effectively backspace within a line
and then re-enter the correct characters.
Furthermore, the executive checks for
various types of syntax errors as statements
are entered, and will display a two character
error code to the programmer when such
errors are detected.

The executive portion of SCELBAL has
five major commands available to the
operator which are defined and explained
below .

SCR for SCRatch effectively clear• out any
previou1 program 1tored in the
program buffer along with any variable
values.

Page 10 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

LIST causes the present contents of the
program 'buffer to be displayed for review
or to make a copy for record keeping if a
pri.ntinit device is in use.

RUN causes the higher level language
program stored in the program buffer to
he executed hy the INTERPRETER.

SA VE. This command directs the program
to save a copy of the prngram stored in the
program buffer on the user's external bulk
storage device. A program saved in this man
ner can later be re.stored for Pxecution by
using the following command.

LOAD. This command causes the program
to read in a copy of a program from an ex
ternal device that was previously written
using the above SA VE command.

A higher level language program is made up
of STATEMENTS that direct thf' machine to
perform sP.le<'ted types of operations. The
SCELBAL language can execute 12 different
types of STATEMENTS which are explained
bC'low plus the END statemf'nt which is used
to signify the end of a program.

The REM for REMarks sl.:11.Pmf'nt indicates
a cnmments line which is ir.:nored as far as
program execution is concl"merl. Information
on a REMarks line is intRnded only for the
use of programmers and is used to document
a program.

The LET statement is usPd to set a variable
equal to a numerical value, another variable,
or an expression. For instance the statement:

LET X = (Y*Y + 2*Y - 5)*(Z + 3)

' would mean that the variable X was to be
given the value of the exprP.ssion on the right
hand side of the equal sign.

The IF comhinPd with thP THEN state
ment allows the pro~ammcr to have the pro
gram make decisions. SCELBAL will allow
more than orw condition to be expressed in
the statement. Thus:

IF X <= Y THEN LL

states that IF X ia l@u than OR equal to Y
that the program is to go directly to line
number LL. Otherwise, the program is to
continue on to the,,.next statement in the
program.

GOTO directs th~ program to jump
immediately to a specified line number.
The GOTO statement is used to skip
over a block of instructions in a mul·
tiple segment or subroutined program.

The FOR, NEXT and STEP statements
allow the programmer to form program
loops. For exampl~. the series of statements:

FOR X = 1 TO 10
LET Z = X*X + 2*X + 5
NEXT X

would result in Z being calculated for all
the integer values of X from 1 to 10. While
SCELBAL does not require the insertion
of a STEP statement in a FOR · NEXT
loop, a STEP value may be defined. The
implied STEP value i!I always L However,
it may he altered to he an integer value
other than 1 by following the FOR range
stat~ment by the STEP statement and a
parenthesis containing the STEP size. Thus:

FOR X "" 1 TO 10 STEP (2)

would result in X assuming values of 1. 3,
5, 7 and 9 as the FOR - NEXT loop was
traversed.

GOSUB is used to direct the program
to execute a statement or group of state·
ments as a subroutine. The statement is
used by designating the line number in
the program where subroutine execution
is to begin.

The RETURN statement is used to in·
dicate the end of a subroutine. When &

RETURN statement is encountered the
program wm return to the next statement
immediately following the . GOSU:B amte·

February 1976 [h Dobb's Journal o-1 Computer Calisthen~cs & Orthodontia Box 310, Menlo Park CA 94025 Page 11

ment which directed the progr1am to the
subroutine.

SCELBAL permits multiple riesting of
subroutines in a program.

DIM for DIMension is used t.o specify
the fonnation of a one dimensional may
in a program. Up to four such arrays having
a total of up to 64 entries are permitted in
a program when runnin~ SCELBAL. The
statement:

DIM K(20)

sets up space for an array containing 20
entries. (Array size must hP designated by
a numerical value, not a variahl~.)

The DIM is an optional stntt-ment that
may he left out of the prni;:mm to provide
ad<litiom1l program stomg1• space in i;ysteme
hnvi11g limitro mf'mory.

IN PUT is mwd to cnus1' the program to
wait for nn opt•rnt.or to INPUT information
to Uw prn~rnm. Aft.er Uw information has
hPNl rf'<'<•iv«'d, opnntion of Uw pmgra.m
automatknl!y cont.in11e§.

PRINT is used to output information
from the program. Using Uw PRINT state
ment the user may direct th~ program to
display the value of variahles, expressions,
or any information such as messages. The
PRINT statement allows for multiple mixed
output on a single line, and the option of
providin~ a carriage-return and line-feed after
outputting information or suppressing that
function. For instance, the statement:

PRINT 'XIS EQUAL TO: ';X
(

would result in the program first printinR
the mess~e "XIS F.QUJ\L TO:'' and tlum
the Vlll.lue of the variah1e X on the same line.
After the value of ti).e varfahle had been
display('(f, a carriagP-return and line-feed
combination would be issuPd. To suppress
the issuein!? of the CR & LF the prowam
mer would merely iridm:!® another semi-

oolon at the end of the 1tateme:nt! A comma
flign in a PRINT statement will direct the out·
put to start mt the next TAB point in a line.
A 11pecial function may also be called upon
to direct the output to begin at a specified
position in a line to allow for neat formatting,

The power of the language is further
enhanced by the inclusion of seven functionB
that may be used in statements. The seven
functions svailable in SCELBAL are discussed
below.

INT returns the INTeger value of the ex~
pression, variable, or number, requested as the
argument. This is the greatest integer number
less than or equitl to the argument.

SGN returns the SiGN of the variable, num·
ber, or expression. If the value is greater than
zero, the value +1.0 i11 returned. If the value is
less than zero, the value -1.0 is returned. The
value 0 is retu.med when the expression or
variable is zero.

ABS returns the ABSolute value (magniG
tude without r«>gnrd to sign) of the variable
or exprf'ssion irlentifo:~d as th~ argument of
the function.

SQR returns the SQuare Root of the ex·
p:ression, variable, or number.

RND produces a semi-psuedo-RaNDom
number in the range of 0 to 0.99. This fum~
tion is particularly useful to have available
for ~ames programs.

CHR is the CHaRacte:r function. It may be
used in a PRINT statement and will cause the
ASCH character corresponding to the decimal
value of the argument to be displayed. (A
reverse fundion is available for the INPUT
stat,:;Jnent which wm return the decimal
vah.1..:: of a character when it is inputtoo.)

TAB may also be used in a PRINT state·
ment to direct the display device to space
over to the column number specified in the
argument. Thil"l function allows the pmW"am·
mer to form~t the output into neat columnl!l.

Page 12 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 31 O. Menlo Park CA 94025

Ufo~Nlm.AL INFORMATION

'User defined variables ate limited to one or
two characters. A variable must hcgin with e
letter of the alphabet. LimitinR varlahles to a.
maximum of two characters helpR conserve
mc>mory space. Up to twPnty diffN'1!t1t vari·
ahl(>!i mny he def ned in a Rin~le program.

SCELBAL allows the use of fixed and
floating point notation. A minimum of
twenty-three binary bits arP u~d in the man·
tissa portion of all calculations allowing for
six to seven significant decimal digits to be
entered or outputted. The exponent range is
from plus to minus the 38th power. Numbers
may be inputted in either fixed or floating
point notation. Output from the pro~ram is
automatically selected to be either fixed or
floating point, depending on the size of the
number that is to be displayed.

The package, without the optional DIM
statt'mrnt, is designed to run in an SK 8008
or 8080 system leaving approximately 1250
bytes for program stora~e. With this amount
of storage available, surprisingly complex pro
grams can be executed. The program authors
have successfully loaded and run such games
as Lunar Landing in this configuration by re
ducing the number of messages issued to the
player.

The DIM statement requires approximately
three pages of memory. It is recommended
that users desiring to include the DIM capa
bility have more than the minimum SK of
memory available in their system. A parti
cularly attractive feature of SCELBAL is
that users with more than SK of memory can
use the additional space for program storage.
Thus, for example, a 12K system will enable
a user to execute SCELBAL programs having
as many as 150 to 200 statements!·

A major concern of the developers of
SCELBAL was that the 8008 CPU might
make the language oo slow that it was im
practical for the user. Our tests indicate

that the lime to perform typical calcu!ll·
tions, while they are slow comparoo with
more powP.dul machines, are certainly
tolerable. 1'~or instance, the typical response
time between the displaying of a new set of
parameters when nmninR the Lunar Land·
ing Rame is in the ord~r of six to seven
seconds. A program that ralculates the
mor~age payments on a housr on a monthly
basis, and displays such vahws as the pay·
ment · numhf'r and balance after each pay·
ment, requires a few seconds between the
displaying of each new line of information.
A dice playing game responds with new
throws of the dice in the order of a second
or so when using a formula that includes
the use of the random numbn generator.
These times are by no ml'ans fast, but
they are certainly adequate for the intRncted
uses of this language on an 8008 system.
The developers were pleasantly surprised
with the overall speed performance o(the
package. Of course, these response times
can be cut almost in half by using an 8008-1
CPU. Naturally, if the proiuam ii inst.ailed
in an 8080 system, the response time i!I im·
proved an order of magnitude.

Since the program will be supplied in
the form of a publication that includes
a complete highly commented source
listing (as well as assembled object code
for both the 8008 and 8080), the user
who desires to modify or expand the
capabilities of the basic package will be
in a position to do so. It is felt that the
availibility of such a powerful program
in this form will greatly enhance the general
usefulness of small systems and open new
vistas to users. The program in this form
should also be of considerahle value to
educationalists who desire a good reference
framework from which to introduce studenh
to the development of similar packages.

The publication will be made svailable
in June, 1976, by the developer, Scelbi
Computer Consulting, Inc., 1322 Rear •
Boston Post Road, Milford, CT 06460.

February 1976 Dr Dobb's .Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 13

:Tl NY BASIC, EXTENDED (Part Two)

Dick Whipple, 305 Clemson Dr., Tyler TX 75701
John Arnold, Route 4, Box 52-A, Tyler TX 75701

In the preceeding article on TINY BASIC, EXTENDED
(TBX), notes concerning the loading and use of TBX were pre
sented, along with an octal listing of the entire interpreter
[Dr Dobb 's Journal of Tiny BASIC Calisthenics & Orthodontia
Vol. 1, No. 1]. This article presents source code matching that
octal code, documentation of the implementation, some modifi
cations and error corrections, notes on the addition of the DTA
statement, and an announcement of two relocated versions of
TBX requested by some of our readers.

TBX is not meant to be the last word in Tiny BASIC
interpreters. Almost certairily, its users will find ways to improve
it. Please keep its creators, and our readers, informed of those
improvements.

NOTES ON NOTES
Before continuing, a few remarks are necessary concern

ing assumptions and working used in the source listing and the
text that follows it.

1. All addresses will be given in split octal with no sep
aration character, i.e., 012504 (true octal); 025104 (split octal).

2. Registers will be referred to by letter: A, B, etc.
Register pairs will be referred to as BC, DE, and HL. If a register
pair holds an address, the most significant bits will fall in the
first letter.

3. The source listing is NOT the result of computer
assembly. It was hand-typed in a format similar to assembly
language. One caution--labels are unique only within a given
routine. Therefore, in the whole of TBX, labels may be dupli
cated.

4. The terms "label" and "line number" will be used
interchangeably when referring to BASIC lines.

5. On the source listing, double lines are used to
separate major routines.

A NEW FEATURE: The DTA Statement
The DTA statement allows the programmer to initialize

several variables at one time and is thus more convenient to use
than LET statements. DTA is more like DATA statements of
FORTRAN than the READ-DATA statements of BASIC. DTA
statements may be used anywhere in a program and as many
times as required.

EX 1. 12 DTA A(l)=l,2,3,4;B(4)=5,6;X=10
RESULTING VALUES: A(l)=l

A(2)=2
A(3)=3
A(4)=4
B(4)=5
B(5)=6
X=lO

EX 2. 20 DTA A=l0,20,30
RESULTING VALUES: A=lO

B=20
C=30

Changes required in TBX to add DTA statements (octal
dump form):

031200 315 147 024 043 315 044 023 247
031210 311
031230 000 000 000 232 150 104 124 301

031240 133 310 232 330 275 132 343 231
031250 256 254 331 200 031 245 324 147
031260 231 265 273 031 240 322 304 322
031270 375
033326 231 233

RELOCATED VERSIONS OF TBX
At the requests of readers, we have made two relocations

of TBX. As you are no doubt aware, the original TBX began at

020000 split octal. The two new versions begin at 000000 and
011000. The octal listing of the 000000 version will appear in
a later issue of this Journal. The 011000 version seems to es -
pecially interest people with Suding operating systems (Suding
CRT, etc.). At the present, either version--or both--can be
obtained from us on Suding cassette. If you have already
ordered one and received the original version on cassette, we
will provide the relocated version free of charge if you will
return the cassette with your order. The charge for new orders
will be the same as indicated in the preceeding issue: $5, for the
Suding cassette. Be sure to request the version desired, namely
020000, or 011000, or 000000. Send orders to:

TBX Tape
c/o John Arnold
Rt 4, Box 52A
Tyler TX 75701

HOW IT DOES WHAT IT DOES
IL Executor, ILXQT and IL Program (021254-022037, &

031300-033376):
The fundamental IL instruction consists of two bytes. The

two most significant bits of the first byte are used to encode the
type of IL instruction while the remaining bits in the first and
second byte represent an address. The four IL instruction types
are specified in octal as follows:

IL JUMP Oxx Transfers IL Program to IL Instruction at
yyy Oxxyyy.

IL CALL lxx C_alls IL Subroutine at Oxxyyy.
yyy

TST 2xx Compares Character Strings. Test Failure
yyy Transfers IL Program to Oxxyyy.

ML CALL 3xx Calls Machine Language Program at
yyy Oxxyyy.

The IL Executor program, ILXQT, merely sorts out the IL
instructions according to the above list and carries out the
appropriate action. DE is used as the cursor in scanning the
BASIC text. HL serves as the IL program counter. When a pro
gram other than ILXQT has system control, care must be exer
cised not to use DE for a purpose other than scanning unless its
value is saved and returned before returning to ILXQT. BC, HL,
and A may be used by system routines as required. (Note: HL is
pushed and popped by ILXQT to maintain the status of the IL
program counter.)

SPECIAL REMARKS
1. IL JUMP: Note that an IL JUMP and a machine language

jump (JMP) are not the same. After an IL JUMP is executed,
ILXQT expects to find another IL insstruction not a machine
language instruction. Therefore, an IL JUMP cannot he used to

Page 14 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 31 O, Menlo Park CA 94025

transfer to . a machine language program.
2. IL CALL: The same applies to IL CALLs. They cannot

be used to call machine language subroutines. That requires the
ML CALL type IL instruction (see 4., following). The IL return
address for the IL CALL is placed on the 8080 stack for later
use. ML routines must not leave trash on the stack or proper
return within the IL program will not be made.

3. TST: The TST IL instruction is actually more than two
bytes in length. Following the instruction byte pair are the
ASCII string characters to be compared against BASIC text.
There is one byte for each character in the string with the
parity bit (No. 7) set only on the last character. The parity bit
is used by ILXQT to detect the end of the string. As an example,
consider the test for "LET" (see DIR, 032022):

232
041} TST
114 "L"
105 "E"
324 "T" + 200

If the comparison to BASIC text fails, the IL program
transfers to the fail address 032041 for the next IL instruction.
In this case the cursor (DE) is set back to rescan the BASIC
text. If a match is found, the IL program continues at the IL
instruction just after the " 'T' + 200."

4. ML CALL: The greater number of routines used in TBX
are machine language calls made by ILXQT. Return to ILXQT
from such a routine occurs when a machine langauge RET is
executed. A return option is available to the programmer. If the
carry is set upon return to ILXQT, the next IL instruction is
skipped and the second one. is executed. If the carry is reset, the
next IL instruction is executed. This feature allows various tests
to be handled as ML CALLs. TSTL--Test Label-is an example.

S. THE IL PROGRAM can be studied to get an idea of the
manner in which BASIC lines are interpreted. Often used, run
time commands are tested first to achieve greater speed in execu
tion. System commands such as RUN, LST, etc. are placed last
in the test sequence. You will notice that the IL Program is
somewhat disordered. This "house that Jack built" appearance is
the result of adding features to the original TB.

EVOLUfIONARY NOTE
A modification was made to TBX after the octal listing

was published in the previous issue, but before this source listing
was produced. Therefore the source contains the modifications
but the octal listing does not. The change involves the INNUM
and NLINE routines. The net effect of these changes will be that
IN statements will be terminated by a CR--not a SPACE as in the
original TBX. To make the modifications, follow the steps below:

· 1. Re-enter the INNUM routine using the source listing.
2. Re-enter the NUNE routine. using the source listing.
3. Add a test in your INPUf routine that will inhibit echo

of a CR.
4. Make changes in the IL program at locations given

below. Use the source listing to obtain the corrected
values.

031325
031334
032002
032006
032202
0322'71

031326
031335
032003
032007
032203
032272

•

ERRORS & CORRECTIONS
These errors were noted after the listing that follows was

produced. Thus, the corrections given here should be made in
the octal code given in the preceeding issue and in the listing
given in this issue.

ERROR FIX
AD DRS

1. "FOR" statement syntax 032127
error not functioning properly:" 032130

2. "IN" statement does not
issue a crlf. After fix a semi
colon ";" at the end 'of an
"IN" line inhibits crlf. *

3. Array syntax error not
functioning properly.*

4. System destroys itself after
first line entry following turn
on. Issuing a "new" command
first will initialize the system
properly. The fix given is
satisfactory as well.*

5. "SZE" command giving
erroneous values.

6. "TB" function incorrectly
named. It should be called
"SP" for space.

032245
032246
032143
032144
032145
032146
032147

033211
033212
033223
033224
033241
033242
033254
033255
033266
033267
033275
033276

033354
033355
034000
034001

031007
031010

031312
031313

CHANGE
FROM TO
226 232
363 121

322
304

226
355
226
355
226
355
226
355
226
355
226
355

376
033

124
302

032
143
232
202
273
032
216

233
077
233
077
233
077
233
077
233
077
233
077

001
034
377
377

115
026

123
332

* These problems were reported by Linchen Wang with
suggested corrections. Dick Whipple modified the
modifications and submitted these fixes.

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Men lo Park CA 94025 Page 15

TAG ADDRESS !l !2 13

BUf!N

OVER

[Nil

l l!UllOUT

020000
020003
0~0005
020006
020010
0;!0013
020015
020020
020022
020025
020026
020027
020030
020033
020036
020037
0200'10
02004!
020042
0200l!4

---- 020045
J'U!NSR 020050

020053
020055
020056
020061

____ 02006'1
NEWLINE
GET LINE

,

0?0067
0;>0070
020072
0:>0on
020076

041 111 020
006 110
33 1
376 015
312 036 020
376 177
312 040 020
.H6 Olli
.312 067 020
167
0'13
005
312 306 026
303 005 020
167
311
053
001!
076 077
J57
30J 005 020
332 000 021

076 057
276
32?. 000 021
303 371 020
000 000 000
327
076 072
3~7
.)03 000 020
00() 000

MNEMONIC

LX I II BU•STRT
MVI B 720
R'.>T INPUT
CPI 'c.B'
JZ END
CPI 'DEL'
JZ RUBOUT
CPI 'CNTRL l'
JZ NH!l.HIE
MOV M1A
INX H
DCR B
JZ ERR 1
JMP OVER
MOV M1 A
RET
DC)(H
!NR B
MVI A '?'
RST OUTPllT
JMP OVER
JPC CONT

MVI A 'I'
CMP M
JNC CONT
JMP LOOPH2
NOP'S
RST CRLf
MV I A 'l '
RST OUTPUT
JMP BU>IN

COMMENTS

SUBROUTINE TO LOAD aurFER
sn UNE LENGTH

ll.. EN£ TOO LONG

MODIFICATION OF INSERT
SUBROUTINE REQUIRED FOR
~SC!I VERSION OF TBY.

OUTPUT PROMPT

I LOC 020100-0201!0 I5 UNUSED, THE BU~FEr. RESIDES BETWEEN 020111-020220,

ASCH!

,

020221

020222.
02022~
020225
02022'1'
020230
020232

OJ2

.H6 060
331)
'Y76 072
J20
346 017
3 l l

I LOC 020233-020264 IS UNUSED.

TST_L __ 020265

020270
020271
020272
0202741
020275
020JOO
02030!
020304
020306

CMND 020311
020311!
020315
020.316
020317

1.IBL 020320
02032J
0203<!6
0203:.!7
0203.}0

am 02033 t
020334
020.336
020JJ7
0203110
0203'61
0203'12
020.343
020344
0203'!5
020346
020351
020352

02 l UI 020
325
032
J76 OtiO
023
3!2 271 020
()jj

041 000 000
376 !00
332 320 020
0112 350 033
000
321
311
000
315 JJl 020
0112 .350 0.)j
067
32 l
311
315 221 020
376 0!2
J20
023
1011
115
051
051
01!
051
.:l32 J 11 ()26
! l7
006 000

LDAX D

CPI '~'
RC
Cl'! '1'
RNC
AN! OOOOUllB
RET

LXI D BUl'STRT
PUSH D
LDAX D
CPI ':if'
XNX D
JZ SK!I'
DCX D
LXI H $.ID
CPI 'A'-i
JPC LBL
SHL CURLBl
NOP
POP D
RET
NOP
CALL BIN
SHL CURL.BL
STC
POP D
RET
CALL ASCH!
CPI UlD
RNC
IND D
MOV B9U
MOV C1 l
DAD H
DAD H
DAD B
DAD H
JPC ERR2
MOV C1 A
MV I B ll!D

ASCII INPUT SUBROUTINE
rRDM CURSOR LOCATION.
NUMBER DATA MASKED.

TEST fOR LABEL SUBROUTINE

BUFIN: A software buffer is used to hold line data from the
input device. B UFIN is an ML routine used to load and edit
the buffer. Character deletion and whole line erasure are pro
vided for in this routine. B is used to count characters. If B
exceeds 72, an error is reported. If entry to BUFIN is made at
GETLINE (020070), a colon is output at the beginning of the
line. HL is used as cursor in the buffer.

ASCIN: This routine moves a byte from the BASIC text to A
using the cursor DE. If the byte represents an ASCII number
(060-071)., the upper four bits are masked off.

TSTL: This ML routine is used to determine whether the line
in the buffer has a label or not. If so, the label is converted to
binary by BIN and stored in CURLBL (Current Label). The
carry is set and return is made to ILXQT. Otherwise, a zero is
placed in CURLBL and return is made with the carry reset.

BIN: As the text cursor DE scans an ASCII number, BIN con
verts it to binary in HL. The first non-number encountered
signals the end of conversion and return is made to the calling
program.

Page 16 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

TAG ADDRESS Il I2 13 MNEMONIC COMMENTS

020J511 011 DAD il
020J55 JOJ Jll 020 JMP BIN

iNsifT 020J60 J25 PU5H D LINE INSERTION SUBROUTINE INSRT: This ML routine is perhaps the most powerful and
ALSO DELETES AND OVERWRITES intricate program in TBX. It handles virtually all line editing.
AS REQUIRED Lines are inserted by label (line number), deleted, and over-

020J61 052 3,0 OJ3 LHL CURLBL
written as required. Ignoring the label, INSRT gets the length of 020J6'1 101t HOV B,H

020J65 11, HOV C1L the line in the buffer, adds 1, and places the result in COUNT
020J66 0111 111 020 LX:l H BUfSTRT for later use. Beginning at PRGSTRT (Starting location jor
020J71 076 071 MVI A 'j' BASIC programs), INSRT compares the line numbers of/lines

LOOP1 020J7l Oltl INX: H already stored to the line number in CURLBL. If a direct 020J7'1 276 CMP M
match is found, then either a deletion or overwrite is needed. In 020J75 JOJ 050 020 JMP rIXINSR REFER TO PAGE 1

021000 3115 PUSH H either case a branch is made to point OVRDEL. If a match is
021001 026 001 l'IVI D lD not found, comparison continues until the stored line number
02100J 076 01' MVl A '(i.B' exceeds CURLBL. At this point, the program branches to

LOOP2 021005 276 CM? M HERE (021064). 021006 J12 016 021 JZ CONTl
021011 02'1 lNR D
021012 Olt3 INX H
021013 J03 005 021 JM? L00?2

CONT1 021016 172 MOV A,D
021017 062 356 OJJ STA COUNT SAVE LENGTH or TEXT
021022 321 POP D
021023 052 352 03J LHL ?RGSTRT

L00?4 021026 176 110V A1M
021()27 270 CM? B
0210JO 312 052 021 JZ COHT2
02103J 322 061t 021 JNC HERE INSERT LINE HERE
021036 0113 INX- H

LOOP3 021037 0q3 INX H
0210110 175 MOV A1L
0210111 206 ADDR M
0210112 157 MOV L1A
0210113 322 026 021 JNC LOOPll
0210116 Olili INR H
021047 JOJ 026 021 JM? L00?4

CONT2 021052 OllJ INX H
021053 176 MOV A1 11
021054 271 CMP C
021055 312 170 021 JZ OVRDEL
021060 332 031 021 JPC LOOP3
021063 053 DCX H

HERE 02106'6 05J DCX H The HERE routine inserts the new line at the point designated
021065 325 PUSH D in B above. Before insertion begins, a check is made to be sure
021066 35J XCHG that enough memory space is available for the new line. If not, 021067 052 354 033 LHL PRGEND
021072 345 PUSH H an error is called. If all is well, insertion continues. Beginning at
021073 072 356 OJJ LDA COUNT the first stored line number above CURLBL, all BASIC lines
021076 306 OOJ ADI JD are moved up in memory an amount equal to COUNT plus 3
021100 205 ADDR L decimal. Space is thus made available for the new line. The line . 021101 J22 105 021 JNC CONTJ

number, the length of text (as stored in COUNT), and the text 02110'6 0114 lNR H
CONT3 021105 1'7 MOV L1A of the new line are then moved into this space. At this point

021106 Jl5 3110 030 CALL l'IEMTEST CHECK FOR MEMORY DEPLETION normal return is made to ILXQT.
021111 1011 l'IOV B1 H
021112 115 MOV C 1 L
021113 341 POP H

LOOP5 021114 176 MOV A£11
021115 002 STAX
021116 05J DCX H
021117 OIJ DCX B
021120 17'6 l'IOV A1H
021121 272 CMP D
021122 302 114 021 JNZ LOOP5
021125 175 MOV A1 L
021126 27J . Cl'IP E
021127 J02 114 021 JNZ LOOP5
021132 023 INX D
021133 052 350 033 LHL CURLBL
021U6 353 XCHG
021137 162 l'IOV 11.D
021140 0113 INX H
02114 l 163 MOV l'l 1E
021142 0'6J lNX H
0211'63 072 356 033 LDA COUNT
021146 011& lNR A
0211117 167 l'IOV l'l 1A
021150 0q3 INX H
021151 J21 POP D

LOOP6 021152 032 LDAX D
021153 167 l'IOV 11 1 A
021154 J76 01' CPI 'CB'
021156 J12 166 021 JZ END
021161 04J INX H

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 17

TAG

END

OVRDtL

l.OOP7

LOOPS

IUQT
NX"UL

u.
ILJl'IP

KLCAU..

Ht.

iST

1.ooPa

LOOP:i!

tND2

ENDl

ADDRESS

021162
021163
021166
021167
0211.70
021171
021172
021 nJ
0211711
021175
02U16
021200
021203
0212011
021207
021210
021211
021211;,
021215
021216
021217
021220
021221
021222
02!2:.!3
021224
021225
021226
0212.H
021232
021233
021236
021237
0212'12
0.l 12&! 5
021247
021252
021253
021254
021257
021260
021262
021265
021267
021272
021273
021274
021275
021300
021302
021303
021J04
02)305
021J06
021.307
021310
02lJ11
021314
021316
021321
021323
021324
021325
021326
021327
021.3.30
021JJ1
021333
021.536
021337
021340
02131! 1
02131!2
0213411
0213117
021350
021351
021352
02135.5
021356
021357
021360
021363
021365
021366
021371
021372
021373
02137'1

Il 12 u
023
JOJ 152 021
321
Jll
05J
345
04J
04,iJ
04J
176
J76 015
l!2 207 02!
04J
JOJ 175 021
01;,J
J5J
052 J54 OJJ
Ol!J
1011
115
JI! I
032
167
O&iJ
023
172
270
J02 220 021
17J
271
J02 220 021
05J
042 354 033
072 356 OJJ
J76 001
J02 J61 020
321
Jll
041 002 OJ2
176
376 200
J22 Jl4 021
J76 100
J22 JOO 021
04J
156
147
303 257 021
.346 077
107
04J
116
043
345
140
151
JOJ 257 021
376 JOO
322 000 022
J46 071
101
04.3
1i 6
043
OJ2
023
J76 0110
J 12 J27 021
03J
.325
J53
032
316 200
322 JGJ 021
276
04J
02J
J 12 Jll 1 021
J21
140
1.51
303 257 021
346 177
276
J02 J.55 021
35J
301
02J
0113

MNEMONIC

INX D
JMP LOOP6
POP ll
RET
!lCX H
PUSH H
HlX H
INX H
HIX H
MOVA~
CPI ' '
JZ CONTCS
INX H
JMP LOOP7
INX H
XCHG
LHL PRG£ND
INX H
MOV B1 H
MOV Cpl.
POP II
I.DAX ll
110V M1 A
INX H
INX ll
MOV A,ll
CHP B
JNZ LOOPS
MOV A1E
CMP C
JNZ LOOPS
DCX H
SHL PRCEND
lllA COUNT
CPI ID
JNZ INSRT+A
POP D
RET
LXI H lLSTRT
MOV A1M
CPI 200
JNC Ml
CPI 100
JNC II.CALL
lNX H
MOV 1., 11
MOV H,A
JMP NXT!l
ANI OOl!lAUB
MOV B1A
INX H
MOV c,11
lNX H
PUSH H
MOV H1 B
MOV L9C
JMP NXTIL
CPI JOO
JNC Ml.CALL
AN! OOIUUIB
110V B1 A
INX H
MOV C1M
INX H
I.DAX D
INX D
CPI ·~·
JZ l.OOP1
DCX D
PUSH D
XCHC
I.DAX D
CPI 200
JNC ENDl
CMP M
INX H
INX D
JZ LOOP2
POP D
MOV H1 B
MOV L,C
JMP NXTIL
AN! 01 UUUl.l
CMP M
JNZ END2
XCHC
POP B
lNX D.
HIX H

COMMENTS

OVERVRllT[S OR DELETES A LHC OVRDEL first deletes the line with the same number as
CURLBL. The length of this line is determined by scanning and
then all lines above it in memroy are moved down by this
amount. PRGEND (Endling location of BASIC program) is
adjusted to always reflect the end of BASIC line storage. At
this point COUNT is checked. If it is one, a deletion is all that
is requ£red and return to ILXQT is made. Otherwise, the pro
gram branches to near the beginning of INSRT so that the
buffered line can be inserted. This time no match will be found
(the deletion step took care of that).

INTERPRETIVE LAHCUACt Exr~
CUTlON ROUTINE

STRING COHPARASION ROUTINE

When the BASIC program storage area is initialized
after typing NEW, the highest line number (377377) is stored at
the beginning of the area. This is required to establish a base
for INSRT to begin its function.

Page 18 February 1976 Dr Cobb's Journal of Computer Calisthen.ij:s & Orthodontia Box 310, Menlo Park CA 9'4025

TAG ADDRESS 11 12 IJ MNEMONIC COMMENTS

021375 303 257 021 JMP NXTIL
"LCALL 022000 346 077 ANI 00111111B MACHINE LANGUAGE CALLING

RETRN

ASCOUT

I

022002
022003
022004
022005
022006
022011
022012
02201.3
022014
022015
022016
022021
022022
022023
022026
022031

0220.32
0220.33
022034
0220.35
022037

043
116
043
.345
0111 015 022
345
1/i7
151
351
.341
322 257 021
O/i3
043
30.3 257 021
041 357 0.33
357

0/i.3
065
300
066 017
311

, LOC 022040-022100 IS UNUSED
#--
lriilT ~

CNVRT
LOOP

BCDOUT

I.ST

NLINE

022101
022102
022103
022104
022105
022107
022112
022115
022120
022123
022126
02213 l
022134
022137
022140
022 l/i3
022144
022145
022146
022147
022l!H
022152
022153
022154
022155
022156
022157
022160
022163
022164
022165
022166
022167
022170
022171
022172
022173
0221711
022175
022200
022201
0222011
022205
022207
022212
022213

0222111
022217
022220
022221
022222
022225
022226
022227
022230
022231
0222.32
0222JJ
022236
022237
022240

.345
325
.305
353
016 000
041 020 047
315 147 022
041 350 003
.315 147 022
041 144 000
315 147 022
O/il 012 000
315 147 022
173
Jl5 201 022
301
.321
341
311
006 J77
0011
173
225
137
172
234
127
J22 151 022
173
205
137
172
2111
127
170
271
310
015
315 201 022
.311
000 000 000
000
306 060
315 026 022
Jll
325

052 306 033
053
104
115
052 304 OJ3
35.3
033
02.3
.327
170
272
J02 243 022
171
273
312 27' 022

INX H
MOY C1M
INX H
PU5H H
LXI H RETRN
PUSH H
MOV H1A
MOV L1C
PCHL
POP H
JNC NXTIL
INX H
INX H
JMP NXTIL
LXI H ZONE-1
RST OUTPUT

INX H
DCR 11
RNZ
MVI M 15D
RET

PU<;H H
PU5H D
PU5H B
XCHG
MVI C 0
LXI H 10 10000
CALL CNVRT
LXI H l ,OOOD
CALL CNVRT
LXI H IOOD
CALL CNVRT
LXI H lOD
CALL CNVRT
MOV A C
CALL lscouT
POP B
POP D
POP H
RET
MVI B 377
INR B
MOV A1 E
SUB L
MOV E1A
MOV A 1D
SBB H
MOV D1 A
JNC LOOP
MOV A1E
ADDR L
MOV E1 A
MOY A1 D
ADC H
MOV D1A
MOV A,B
CMP C
RZ
DCR C
CALL BCDOUT
RET
NOP'S
NOP
ADI 060
CALL ASCOUT
RET
PUSH D

LHL LSTEND
DCX H
l'IOV B1H
MOY c,L
LHL LSTSTRT
XCHG
DCX H
INX D
RST CRLF
MOV A,B
CMP D
JNZ CONT
MOY A1C
CMI' E
J2 END

PROGRAM

NORMAL RETURN

ALTERNATE RETURN
ASCII OUTPUT ROUTINE
ZONE DECREMENTED AND RESET
AS,REQUIRED

INTEGER OUTPUT ROUTINE
HlL 15 OUTPUTTED IN DECIMAL
PROVISION MADE FOR ZERO
SUPPRESSION.

BCD TO ASCII CONVERSION

SUBROUTINE TO LIST BASIC
PROGRAMS

ASCOUT: This routine outputs an ASCII character via the
external OUTPUT routine and decrements the location called
ZONE. ZONE is used to keep track of print positioning on the
output device. If ZONE should reach zero on a given call of
ASCOUT, it is reset to 15 decimal.

!OUT: !OUT is used to convert the binary number in HL to
ASCII for outputting. The routine works by subtracting binary
equivalents of decreasing powers of 10 from the binary value in
HL. The number of times each power of 10 can be subtracted
without producing a negative result represents the digit for the
respective decimal place. If C is zero, leading zeroes are not
outputted. CNVRT is a subroutine of !OUT that actually does
the conversion and outputting of each digit. BCDOUT is a sub
routine that adds 060 to the BCD value of the digit to produce
the ASCII value. ASCOUT is called s~' that ZONE will be dec
remented.

LST: An ML routine used to list BASCI program lines beginning
at the location stored in LSTSTRT and ending at the location
stored in LSTEND. LBLOUT is used to output the line number
for each line. The text length byte is skipped and the text is
outputted until a CR is detected. The CR produces a new line
and so long as the address in LSTEND is not exceeded, listing
continues.

Febrnary 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 19

TAii ADDRESS 11 12 D
',

022243 032
022244 147
0222l&5 023
0222166 0.32
022247 157
022250 Jl5 205 026
02:.!253 023

LOOP 022254 023
022255 032
0222"6 .376 OH>
022260 312 227 022
022263 J0.5
022264 345
022265 315 026 022
022270 341
022271 301
022272 30.3 254 022

END 022275 321
022276 311
022277 000

RTN 022.300 .341
022.301 JO!
022302 345 - 02230.3 3ll

~ 022304 032

022305 02.3
022306 3"76 040
022310 .312 304 022
022.313 033
022.314 376 015
022316 310

I 022317 .303 022 0.30 ---m-- 022322 032
022.323 02.3
0223211 .376 0112
022.326 .310
022.327 .376 015
022.3.31 312 .317 026
022334 315 026 022
022337 30."5 322 022

SPC 022342 041 .360 0.33

l 1.ooP 022."545 076 Ol&O
02231i7 .357
022350 065
022351 302 345 022
022J5l& 066 017
022356 2117
022357 JU

NI.IN£ 022360 327

022.361 041 .360 0.33
022364 066 017
022366 227
022.367 .311
022.37il 000 000 000
02237.3 000 000

NXT 022375 0!\2 J50 033

023000 227
02.3001 274
02.3002 ."502 021 02.3
023005 27.5 --- 023006 302 021 02.3 -FIN 023011 0161 004 0.32

023014 .:;01
02.3015 343
02.3016 305
023017 247
023020 311

CONT 023021 023
023022 032
0230?3 1117
023024 023
023025 0."52
02.302G 157
02.3027 0'12 350 0.3.3
02.3032 023 --- 0230."53 023

Wtr 023034 301
023035 Olil 022 032
02.3040 .343
02.3041 305
02.3042 2117

MNEMONIC

LDAX D
MOV H9A
rnx o
LDAX D
110V 1. 1 1\
CALL LBLOUi
rnx o
lNX D
I.DAX D
CPI ·~·
J2 NLINE
PUSH B
PUSH H
CALL ASCOUT
POP II
POP B
JMP LOOP
POP D
RET
NOP
POP II
POP B
PUSH II
RET
LDAX D

INX D
CPI 'lf'
J2 DONE
DCX D
CPI ·~·
R2
JMP FIX DONE

LDAX D
INX D
CPI ''"'
RZ
CPI 'c;J'
J'Z ERR4
CALL ASCOUT
JMP PRS
LXI H ZONE

MVI I\ 'SP'
RST OUTPUT
DCR 11
JNZ LOOP
MVI M 15D
ANA A
RET
RST CRLF

LXI H ZONE
MVl !'I 1.5D
SUB A
RET
HOP'S
HOP'S
!..HI. CURI.BL

SUB A
Cl'IP H
JN2 CONT
Cl'IP L
JN2 CONT
1.lrI H ILBGNtl

POP B
XTHL
PUSH B
ANA A
RET
INX D
LDAX D
MOV H9A
INX ll
!.DAX ll
MOV L,A
SHL CURl..BL
INX D
INX D
POP B
LXI H STl'IT
XTHL
PUSH 8
AN/\ A

COl'IMENTS

RTf!: This ML routine terminates an IL CALL. just prior to
calling RTN, the 8080 stack looks like this:

Top - Return address to ILXQT
- Present IL program address
- Return IL program address

RTN simply deletes the "present IL program address" from the
stack producing:

Top - Return address to ILXQT
- Return IL program address

f'll. SUBROUTINE USED TO RETUINILXQT will then start execution at the IL instruction following
AN II. CALL the last IL CALL.

ML SUBROUTINE USED TO roR
TERMINATION or I\ BASIC LINE

MODIFICATION TO PERMIT
MULTI•STATEMENT LINES
ML SUBROUTINE USED TO
PRINT LITERAL

CR ENCOUNTERED IN LITERAL

ML SUBROUTINE USED TO SPACE
TO NEXT ZONE

DONE: DONE is an ML routine that checks for proper line
termination. After scanning over spaces (ASCII 040), DONE
checks for the presence of a CR or dollar sign. If neither is
encountered an error is signalled. If a CR is detected, a
normal return to ILXQT is made. If a dollar sign is found,
another BASIC command exists on the same line. In this case
a branch is made to the NXT routine (see below) where
interpretation is permitted to continue,

PRS: PRS is an ML routine used to output literals in PRint
statements. A quotation mark is used by PRS to signal the end
of a character string. A CR encountered before an ending
quotation mark signals an error.

SPC: An ML routine used to space the output device to the
next zone. The memroy location ZONE is decremented and a
space is output until ZONE reaches zero. ZONE is then reset to
15 decimal and control.returned to ILXQT.

ML SUBROUTINE USED TO ISSUE NLINE: This ML routine issues a CR and LF to produce a new
CR AND U' • ALSO RESETS ZONE Tine on the output device. ZONE is also reset to 15 decimal.

NXT: The NXT routine handles the transition between one
BASIC line and the next during the execution phase. As inter-

! NE U ~.-D TO TRAN"'- pretation of a line finishes, the NXT routine checks to see if the
I'll SUBROUT ""' " · · URLBL · I'• d' t . t FER EXECUTION TO NEXT BASIC line number stored zn C is a zero. 1 so, a zrec zn er-
UNE. ALSO CHECKS FOR DIRECT pretation of a line is indicated. In this case, NXT sets u~ .
IXECUTION<NO LABEL>• GETLINE as the next IL instruction. If not, interpretation zs

set to begin at the next BASIC line in the program area.
CURLBL is updated to the new line number. In this way the
error routine can report at which line an error occurred.

ML SUBROUTINE USED TO RE- FIN: Actually, this routine is part of NXT. When an END
TURN TO UNE COLLECT ROUTH£ statement is encountered, FIN is called and IL execution is

di.reeled to GET LINE. This essentially terminates BASIC
execution.

Page 20

TAG

CONT

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

ADDRESS Il 12 IJ MNEMONIC

02.30113
02.3044

023045
02.3046
0.?.30~7
023052
023053
023054
023055
023056
O<!J06l
0.23062
023063
023065
023066
02307!
023072
023075
023076
023077
023!00
023103
023104
023t05
023107
023110
023 l ll
023112
023115

023U6
023117
023120
023121
023122
023123
023124
023125

023130
0231.31
023!32
023!J5
023 ll10
023142
0231li.3
023 !46
023147
02.3152
023153
02315!\

023!55
023160
023161
023162
023163
023164
02JHi5
023170
02311l
023174
02317 5
02317 6
023l77
023202
023203
023204
023205
023206
023207
023210
0232 l l
02321~
023215
023220
023221
023222
02.3223
02322~

J!l
305

lOli
U!l
052 361 OJJ
160
Ol!.3
161
04.3
042 361 0.33
JO 1
!75
J76 177
330
JOJ 322 026
305
052 361 0.33
053
106
05.3
042 .361 OJJ
146
175
376 100
150
.301
320
JOJ J2!i 026
174

057
lq7
17 5
057
157
Qq.3
311
315 071 023

l71i.
267
362 147 023
3!5 115 023
076 055
345
315 026 022
341
315 J.01 022
247
J 11
345

052 352 033
104
115
34 l
012
214
.H2 174 023
320
303 204 023
003
012
275
312 220 023
320
013
003
003
012
201
l 17
322 163 023
004
303 !63 02.3
01.3
140
151
3 l l
315 07! 023

RET
PUSH B

MOV B1 H
MOV C:,!.
LHL AELVL
MOV M1 ll
INX H
MOV M1C
INX H
SHL AELVL
POP ll
MOV A 1 L
CPI 177
RC
JMP ERR5
PUSH B
LHL AELVL
DCX H
MOV B1M
DCX H
SHI. AELVL
MOV H1 M
MOV A1 L
CPI 100
MOV L1 B
POP B
RNC
JMP ERR6
MOV A1 H

CMA
MOV H1 A
MOV A1 L
CMA
MOV LvA
INX H
RET
CALL POPAE

MOV A1 H
ORA A
JP CONT
CALL TWOCMP
MV I A ' - '
PUSH H
CALL A SCOUT
POP H
CALL !OUT
ANA A
RET
PUSH H

LHL PRGSTRT
MOV B1 H
MOV c,L
POP H
LDAX B
CMP H
JZ NXH

RNC
JMP NEIH
INX B
I.DAX B
CMP L
JZ END
RNC
DCX B
HIX B
INX B
LDAX B
ADDR C
MOV C1 A
JNC OVER
!NH B
JMP OVER
DCX B
MOV H1 B
MOV L1C
RET
CALL POPAE

COMMENTS

SUBROUTINE USED TO PUSH
Ht!. ONTO AE STACK•

J.E TOO COMPLEX
SUBROUTINE USED TO POP TOP
OF AE STACK INTO H&L

SUBROUTINE USED TO TAKE
2'S COMPLEMENT or H&L

SUBROUTINE USED TO OUTPUT
THE TOP OF THE i\E STACK

SUBROUTINE USED TO GET
ADDRESS Of LABEL IN HtL

PSHAE: A subroutine that pushes a binary value in HL onto
the arithmetic stack (separate from 8080 stack). The AE stack
pointer is stored at AEL VL. Each time PSHAE is called, the
pointer is incremented twice. The space reserved for the AE
stack will allow 32 pushes without pops. Exceeding 32 causes
an error condition.

POPAE: This subroutine pops a binary value off the AE stack
into HL. AEL VL is decremented twice. If AEL VL is decrement
ed below the space reserved for the AE stack, an error is
indicated.

TWOCMP: The value in HL is two's complemented and placed
back in HL.

PRN: An ML routine that outputs the numeric value on the
top of the AE stack. If a negative number is detected (most
significant bit of H equal to 1), a minus sign is printed and
TWOCMP called before !OUT prints HL. If the number is
positive, /OUT is called directly.

FNDLBL: The FNDLBL routine is used to search the BASIC
program area for the label stored in HL. A linear search is begun
at PRGSTRT. In order to speed the search, the stored line
length is used to skip over line text. If the label is not found,
return to the calling program is with the :zero status bit reset. If
the label is found, the location is placed in HL and the zero bit
is set before return.

SUBROUTINE USED TO TRANSFER XFER: This ML routine transfers execution to the label stored
EXECUTION TO LABEL ON TOP on the top of the AE stack. The line number is popped off the l J!'5 !;iii 023 CALL VNDLBL Of AE STACK. AE stack into HL and FNDLBL is called. If upon return the

g~;;~~ 353 XCHG zero bit is set, HL contains the location of the next line to be
•. ~._,)_ executed. A branch to the NXT routine completes the transfer

. -~~-~~~.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-pr-o_c_e_ss_·~~--~~~~~~~~~~~~~~~~~~4

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 21

TAG

1NNUl1

ENDl

NEG1

TSTV

TSTN

'

ADDRESS Il I2 13 MNEMONIC

02J23J Jl2 022 02J JZ CONT+l
023236 J03 330 026 JMP ERR7
0232" 1 325 PUSH D

023242
023244
023247
0232!>1
0232!>4
0232!>5
023260
02326J
023264
023266
023271
02J27"
023277
023302
02JJ01j
023305
023306
023J07
023J10
023312
02J3lJ
023J 16
023321
02332'6

023325
02J327
023J30
·023333
02J33'6
023336
02J337
023340
023341
023J43
023Jlj6
023347
023350
023351

023352
02J354
023355
023360
023J6)
023J63
023366
023J70
02337)
023374

076 077
.H5 026 022
076 040
315 026 022
000
3)5 000 020
021 Ul 020
032
J76 055
Qljl 000 000
312 312 02J
315 331 020
Jl5 Qljlj 023
076 0110
357
32)
247
Jll
2'11 311
02J
JI!> J31 020
315 115 023
JOJ 277 023
032

376 0110
023
312 J24 023
033
306 JOO
320
007
157
046 024
315 0411 023
067
02J
Jll
032

376 OliO
02J
312 351 023
OJJ
J76 JOO
322 JIO 023
J76 050
310
041 000 000
J03 12" 02"

MVI A 'T'
CALL ASCOUT
MVl A 'SP'
CALL ASCoUT
NOP
CALL BUFlN
LXI D BUTSTRT
LDAX D
CPI '·'
LXI H JI
JZ NECl
CALL BIN
CALL PSHAE
MVI A 'SP'
RST OUTPUT
POP D
ANA A
RET
NOP'S
INX D
CALL BIN
CALL TWOCMP
JMP ENDl
LDAX D

CPI 'SP'
INX D
JZ TSTV
DCX D
ADI JOO
RNC
RLC
MOV L,A
MVI H 024
CALL PSKAE
STC
INX D
RET
LDAX D

CPI '~'
INX D
JZ TSTN
DCX D
CPI 'A'•l
JNC ENDl
CPI '('
RZ
LXI H /6
Jl'IP CONT

C0111'1ENTS

•cONT· IN NXT SUBROUTINE
LABEL NOT FOUND
11L SUBROUTINE USED TO INPUT
A NUMBER TROl1 TTY AND PLACE
ON AE STACKo

ML SUBROUTINE USED TO TEST
TOR VARIABLE AND PLACE
ADDRESS ON AE STACK.

ML SUBROUTINE USED TO TEST
fOR A NUMBER AND PLACE lT
ON TOP or AE STACK.

I LOC 023377 IS A NOP. LOC 024000•0211077 RESERVED FOR VARIABLES.

' DON EX 0211100 OJ2

02001
0211102
024104
024107
024110
024112
024113
024115
024116
024121
024124
024127
024132
024133

024136
0211137
021j140
024141
0211142
0241'65
021U46
02111117

023
376 OliO
Jl2 100 024
033
J76 015
JlO
376 0114
JlO
303 J14 O:Z6
000 000 000
315 Jll 020
315 04lj 02J
311
J15 071 023

106
0113
146
150
315 01111 023
247
311
315 071 023

LDAX D

INX D
CPI 'SP'
JZ DONEX
DCX D
CPI '<£.8'
RZ
CPI '$'
RZ
JMP ERR3
NOP'S
CALL BIN
CALL PSHAE
RET
CALL POPA£

MOV B,M
INX H
MOV H,l'I
MOV L,B
CALL PSHAE
ANA A
RET
CALL POPAE

ML SUBROUTINE SIMILAR TO
DONE BUT NO PROVISION FOR
TRANSFER.

DONE FAIL

11L SUBROUTINE USED TO
REPLACE TOP or AE STACK
BY VARIABLE IT INDEXES•

ML SUBROUTINE USED TO
PLACE TOP or STACK INTO
VARIABLE INDEXED•

INNUM: INNUM is an ML routine used to input a number from
the input device, convert it to binary, and place it on the AE
stack. The routine first outputs a question mark and a space.
BUFIN is then called permitting the number to be inputted to
the buffer. When a CR is detected, INNUM examines the buffer
to see if a minus sign is present. If so, the program branches to
NEGl. Otherwise, BIN is called to convert the number to binary
and HL is pushed onto the AE stack. For a negative number,
NEGl makes the binary conversion, calls TWOCMP, and then
pushes HL onto the AE stack.

TSTV: TSTV is an ML routine that determines whether the
cursor points to a variable. First, TSTV scans over spaces. 300
is then added to the first non-space value. A no-carry condition
will result if a shifted ch,aracter or number is present. Return
will be made to ILXQT and the next IL instruction executed.
An ASCII letter (A-Z) will produce a carry and at the same
time zero the two most significant bits. In this case, the
address of the variable is computed by doubling A to form the
lower half. The upper half is a constant, 024 •. With A moved to
L·and 024 in H, PSHAE is called to place the variable address ·onJ
the AE stack. The carry is set before return to ILXQT causing
the next IL to be skipped.

TSTN: This routine tests for the presence of a number in the
BASIC text. Spaces are scanned over and the first non-space is
checked to find if it is a letter variable. If so, return to ILXQT
is made with the carry reset. If not, a check is made to see if
the byte is an open parenthesis. If it is, return is made with no

·carry. If the character is not a letter or open parenthesis, it is
assumed to be the first digit of a number. In this case, BIN is
called, HL pushed on the AE stack, and return is made with
the carry set.

DONEX: DONEX is identical to DONE except that detection
of a dollar sign does not lead to transfer in the NXT routine.
Instead, it produces a simple return to ILXQT exactly as a CR
would do.

IND: This ML routine pops the AE s~ai:k to bring the address
of a variable into HL. The value of the variable is then obtained

·and pushed onto the AE stack.

STORE: An ML routine· that first pops a variable address off
the AE stack and places it in BC. A m,imeric value is then
popped off the AE stack and placed at the variable address in
BC.

Page 22 February 1976 Dr Cobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

TAG ADDRESS It 12 lJ

024152 114
024153 105
024154 Jl5 071 02.5
024157 160
024160 04J
024161 161
02Ai162 247
02416J 311

I
I LOC 024164°024177 RESERVED
I
Al'lD 0:.!4200 Jl5 071 023

024203 lOlt
0:<!4204 115
0211205 J15 071 02J
02Ae210 011
024211 Jl5 044 02J
02421Ae 247
024215 Jll

SUB 024216 Jl!I 071 02J

024221 .}15 115 02J
0211224 104
0211225 115
0214226 315 071 023
0211231 011
0211232 315 0114 02J
02Ji235 2Ji7
024236 311
024237 000

mn. 024240 325

024241 006 000
024243 315 071 02J
024246 1711
0242li7 267
0211250 3711 JO 1 02Ae
02425.'I 353
024254 Jl5 071 02J
0211257 174
024260 267
024261 374 .301 024
02Ai264 315 J06 024
0211267 005
0211270 314 115 023
02427J 315 04Ai 023
024276 J21
024277 2117
024JOO Jll

NlNOX 024J01 0016
0211302 315 115 02J
021i.305 311
021iJ06 305

024307 104
0243!0 115
024Jll 0111 000 000
021i314 076 021
024316 062 36J 03.3

1.001' 024321 !70
0211.322 037
024J2J 107
024.324 171
0211.325 0.37
024J26 117
0211.327 322 J3J 0211
0211JJ2 OJ!
024J.3J 174
024.334 OJ7
024335 14 7
024336 175
024337 OJ7
024J40 157
0211J41 072 J6.3 03.3
024344 075
0211.'145 Jl2 J56 024
024350 062 .36.3 03.3
024353 303 J21 021&

IND! 02l!J56 140
024J57 151
02AiJ60 JOl

MNEMONIC

MOV C1 11
MOV B1 L
CALL POPA£
MOV M,B
INX II
MOV M9C
ANA A
RET

C:Ol'lt1ENTS

FOR BASIC SUBROUTINE STACK

CALL l'Ol'AE

MOV 8 1 11
MOV C L
CALL ~OPAE
DAD B
CALL PSllAE
ANA A
RET
CALL POPAE

CALL TWOCMP
MOV B1 H
MOV C 1 L
CALL POPA£
DAD·B
CALL PSllAE
ANA A
RET
NOP
PUS!{ D

MVI B f4
CALL POPA£
MOV A1 11
ORA A
CM NINOX
XCHG
CALL POPA£
MOV A1M
ORA A
CM NINOX
CALL l'IULT
DCR B
CZ TWOCMP
CALL PSHAE
POP D
ANA A
RET
lNR B
CALL TWOCMP
RET
PUSH B

MOV B1 H
MOV C 1 L
LXI II fl
MVI A 17D
STA INDX
MOV A1 B
RAR
l'IOV B1A
l'lOV 11,c
RAR
MOV C1 A
JNC NXTA
DAD D
l'IOV A1 H
RAR
l'IOV 11,A
MOV A1 L
RAR
MOii L1 A
LDA INDX
DCR A
JZ ENDl
STA INDX
JMP LOOP
MOV H,B
MOii L,C
POP B

ML SUBROUTINE U".ED TO ADD
TWO TOPMOST tLtMtNTS ON
STACK.

ML SUBROUTINE USED TO FIND
THE DIFFERENCE or THE TWO
TOPMOST [l[MENTS or THE A[
STACK.

ADD: An ML routine used to perform signed addition on the
two top elements of the AE stack, this sum being placed back on
the AE stack.

SUBTRACT: An ML routine used to perform signed subtrac
tion on the two top elements of the stack, After the first value
is popped off the stack, the two's complement is taken to
produce the subtrahend, From that point on, the routine is
similar to the ADD routine.

Ml SUBROUTINE USED TO MULTI- MUL: This routine performs signed multiplication of the two
PLY TllE TWO TOPMOST [LEMEN'IS top elements of the AE stack, MUL essentially takes care of
Of AE STACK sign determination while another routine, MULT, actually per

forms the multiplication, Register B is used to logically deter
mine if either or both of the factors are negative, B is originally
set to zero and then incremented in NINOX once for each nega
tive factor. In addition, each negative factor is two's comple
mented to produce the corresponding positive value. At the

SUBROUTINE MULTIPLIES H&L
!'IY D&.£ ANSWER IN ll&L

end of MUL if B = 1, then the product should be negative. In
this case two's complement routine is called. All other values of
B indicate a positive product,

NINOX: A routine used with MUL and DIV is sign determina
tion (see MUL).

MULT: This routine multiplies the two 16-bit numbers in HL
and DE. The product is shifted into BC as multiplication takes
place. This routine is a little unconventional and may require
some close study to understand.

February 1976 Dr Dobb's Journal of Compl!ter Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 23

TAC: ADDRESS h 12 u MNEMONIC COMMENTS

024361 JU RET
DIV: This ML routine is basically similar to the MUL routine in

~ 024J62 J25 PUSH D ML SUBROUTINE USED TO DI·
VlDE TWO TOPMOST ELEMENTS that it handles sign determination for division. The quotient of
or At STACK. the two top elements of the stack is taken with the first popped

024J63 006 000 MVI i:l $1 off the stack treated as the divisor. Integer division actually
024J65 315 071 023 CALL POPAE
02AaJ70 174 MOV A9 H takes place in a called routine, DIVD.
02l!371. 267 ORA A
02'6372 J711 JOI. 024 CM NINOX
0211.H5 J5J XCHG
0211376 J15 071 023 CALL POPA[
025001 1711 MOV A,H
025002 267 ORA A
02500J 3711 JOl 0211 CM NINOX
025006 35J XCHG
025007 227 SUB A
025010 2711 CMP H
025011 J02 020 025 JNZ CONT
0250111 275 CMP l.
025015 Jl2 JJJ 026 JZ E:RR8 D111lDE BY 'ZERO

CONT 025020 Jl5 026 025 CALL DIVO
025023 30J 267 0211 JMP NINOX•10

~ 025026 J05 PUSH B DIVD: The contents of DE is divided by the contents of HL in 025027 006 001 11Vl 8 1
LOOP 025031 17'6 il'!OV 11 9 H this routine. The di'visor (HL) is left justzfied before division

025032 J46 100 ANI 010000008 actually begins. The number of left shifts required for this

025034 302 0411 025 JNZ OUT determines the number of shifted subtractions used in the
0250J7 0.51 DAD H binary division process. A check is made for division by zero
025040 004 INR B and an error is reported if this is the case. The quotient is
0250141 303 OJ! 025 JMP LOOP developed in HL.

OUT 025044 170 MOV A1 B
0250115 062 363 OJJ STA IND)(
025050 104 MOii B1H
025051 11.5 MOil C1 L
025052 041 000 000 LXl H Fl

OVER 025055 17J MOii A1 E
025056 221 SUB C
025051 1J7 MOii E1A
025060 172 MOii A1 D
025061 230 SBB B
025062 127 MOii D1 A
02506J 322 117 025 JNC Dill!f
025066 17J MOii A,[
025067 201 ADDR C
025070 137 MOii E1 A
025071 172 MOii A,D
025072 210 ADC 8
025073 127 MOV D1A
025074 051 DAD H
025075 072 36J OJ3 !..DA INDX
025100 075 DCR A
025101 Jl2 H5 025 JZ END

CONT 0251011 062 363 OJ3 STA INDX
025107 35J XCHG
025110 051 DAD H
0251 ll 35J XCllG
025112 303 055 025 Jl'IP OllLR

IND 025115 30 I POP B
025116 Jll RET

~ 025117 051 DAD H
025120 OllJ INX H
025121 072 J6J 0.33 1.DA INDX
0251211 075 OCR A
025125 312 115 025 JZ E:ND
025130 303 1011 025 JMP CONT ML SUBROUTINE USED TO NE- NEG: An ML routine used to negate the top element of the AE

~
0251.53 J15 071 023 CALL POPAE

GATE TOP or AE STACK. stack. The two's complement routine is used and the result is

025136 315 115 023 CALL TWOCMP placed back on the stack.

025141 315 0411 02J CALL PSHAE
02511111 247 ANA A
0251li5 311 RLT CMPR: At the time CMPR is called, the AE stack has at least
025146 000 ooo 000 NOP'S ML SUBROUTINE USED TO COM- three elements consisting of the first expression value, the

~ 025151 325 PUSH ll PARE TWO TOPMOST ELEMENTS logical operator address code (labeled 0:, 1:, 2:, etc. on lz'sting),
Of AE STACK• and a second expression value. Testing is performed on the two

025152 ·J15 071 023 CALL POPA[expression values and A is made a 0, I, or 4 depending on the
025155 35J XCHG numerical comparison:
025156 315 071 023 CALL POPAE Expression values equal A=O
025161 3115 PUSH H First expression greater than second A= 1
025162 315 071 02J CALL POPAE

Second expression greater than first A=4 025165 174 MOV A1 H
025166 .346 200 ANI 100000008 The logical operator address code then sends the program to
025170 302 262 025 JNZ CONT1 one of 6 testing subroutines (labelled 0:, 1:, 2:, etc.) where a
02517 J 172 MOii A D
02517'4 .5116 200 ANI 1&0000008 check is made on A to see if the condition is true or false. If

025176 302 227 025 JNZ 8:46 the zero bit is set upon return then a true condition exists; oth-
CONT2 025201 174 MOii A,H erwise, the condition z's false. For a true condition, execution is

025202 272 CMP 0 set to continue at the next statement following the IF. A false
02520.3 312 21'4 025 JZ OVR cause execution of the next numbered line.

Page 24 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

TAG

CVR

Bil

814

Bl.fl

ALPHA
FALSE
LOOP

TRUE

CONTl

11

21

JI

41

51

LIT~

LIT!

LIT.?

LIT3

LITll

LIT5

POPS BB

ADDRESS It 12 IJ MNEMONIC COMMENTS

025206 322 227 025
025211 .303 2211 025
025214 175
025215 273
025216 312 232 025
025221 322 227 025
0252211 076 001
025226 Olil
025227 076 OOli
025231 Olil
0252.32 076 000
0252311 Jlj l
02523 5 021 2li2 025
0252li0 325
02524 I .351
025242 312 260 025
02524 5 321
025246 032
025247 376 01.!'i
025251 .312 37.!'i 022
025254 02.3
025255 .30.3 246 02.!'i
025260 321
025261 311
025262 172
025263 .346 200
02526, .302 201 025
025270 .303 224 025
025273 376 000
025275 .311
025276 376 001
025.300 311
025.301 376 000
025.303 .310
025.304 3 76 001
025.306 311
025307 376 001
025.311 .310
025312 376 0011
025.314 .311
025.315 .376 OOli
025317 .311
025.320 .376 000
025.322 310
025.323 376 0011
025325 JU
02.5326 056 27.3
0253.30 001
025.331 056 276
025333 001
025334 i 056 .301
025.3.36 001
025.337 056 .307
0253111 001
0253112 056 .315
025.3411 001
025.3li5 056 .320
0253117 0116 025
025351 .315 044 02.3
025354 247
02·5355 .311
025356 .305

025.357 1011
025.360 115
025.361 052 364 033
025.364 160
025.36.!'i 011.3
025366 161
025.367 043
025370 042 364 033
025:HJ :301
0253711 175
025.37 5 376 177
025.377 330
026000 303 336 026
026003 305

0260011 052 364 OJJ
026007 053
026010 106
026011 05.3
026012 042 .364 033
026015 146
026016 175
026017 376 164
026021 1!50
026022 301

JNC B:ll
JMP Bll
MOV A1L
CMP E
JZ B:fl
JNC B:ll
MVI A lD
-SPEC [AL
MVI A llD
SPECIAL
MVI A flD
POP H
LXI D ALPHA
PUSH D
PCHL
JZ TRUE
POP D
LDAX D
CPI '~'
JZ NXT
IN)(D
JMP LOOP

· ·· ... •NXT" SU.BROUTINE

POP D
RET
MOV A D
Mil 1booooooe

Jt''- CONT2
JMP Bil
CPI ilD
RET
CPI 1D
RET
CPI ~D
RZ
CPI lD
RET
CPI lD
RZ
CPI 4D
RET
CPI 4D
RET
CPI ¢D
RZ
CPI llD
RET
MVI L 273
SPECIAL
MVI L 276
SPECIAL
MVI L .301
SPECIAL
MVI L .307
SPECIAL
MVI L 315
SPECIAL
MVI L .320
MVI H 024
CALL PSHAE
ANA A
RET
PUSH B

HOV B1 H
MOV C1L
LHL SBRLVL
MOV M1 B
INX H
MOV M1C
INX H
SHL SBRLVL
POP B
MOV A1L
CPI 177
RC
JMP ERR~
PUSH B

LHL SBRLVL
DCX H
MOV B1 1'1
DCX H
SHL SBRLVL
MOV H1M
MOV A1 L
CPI 164
MOV L1 B
POP B

SUBROUTINE USED TO SAVE
BASIC SUBROUTINE RETURN
ADDRESS•

NESTING TOO DEEP

LITO through LITS: These ML routines are used to put the
logical operator address on the AE stack during execution of an
TF statement. See CMPR.

PSHSBR: A routine used to place the return address of GOSUB
on the subroutine stack. The subroutine stack is separate from
the AE stack. SBRL VL is a pair of locations used to keep track
of the level of subroutining.

SUBROUTINE USED TOO RETRIEVE POPSBR: A routine used to pop the GOSUB return address off
BASIC SUBROUTINE ADDRESS• the subroutine stack.

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 25

TAG ADDRESS I 1 12 IJ MNEMONIC COMMENTS

02602J J20 RNC
026024 JOJ J41 026 JMP ERR10 TOO MANY RETURN STATEMENTS

SA VE: This ML routine· places the GOSUB return address on
~ 026027 142 MOV H1D ML SUBROUTINE USED TO PLACE

RETURN ADDRESS ON SBR STACK. the subroutine stack using PSHSBR.
0260JO 15J MOV L E
0260Jl J15 J56 025 CALL isHSBR
0260J4 247 ANA A
0260J5 Jll RET

RSTR: Upon execution of a RET statement, this ML routine RSTR 0260J6 Jl5 OOJ 026 CALL POPSBR. ML SUBROUTINE USED TO RE• = TRIEVE RETURN ADDRESS FROM uses POPSBR to fetch the return address off the subroutine
SBR STACKo stack.

026041 J53 XCHC:
026042 247 ANA A
026043 JU RtT

SPCONE 026044 076 040 MVI A '~' ML SUBROUTINE USED TO OUT• SPCONE: ML routine that issues one spa<;e on the output PUT ONE SPACE TO TTY. device. This is the execution routine for a semicolon in the 026046 Jl5 026 022 CALL ASCOUT
026051 2117 ANA A PR statement.
026052 311 RET

~ 02605J 000 000 000 NOP'S ML SUBROUTINE USED TO /NIT: This ML routine Initializes the TBX system when a NEW
INITIALIZE BASIC SYSTEMo statement is executed. The program area is preset to that a new 026056• 04 l 077 026 LXI H STRT

026061 001 J50 OJJ LlCI B CURLBL program can be entered.
LOOP 0260611 176 MOV A,M

026065 002 STA)(B
026066 175 MOV A,L
026067 J76 lJO CPI lJO
026071 J10 RZ
026072 003 INlC B
02607J OllJ INX H
0260711 JOJ 0611 026 JMP LOOP
026077 000 DATA
026100 000 000 OJI& DATA
02610J 001 OJI& 000 DATA
026106 0110 017 100 DATA
026111 OJ0,000 164 DATA
026114 024 J77 057 DATA
026117 000 000 056 DATA
026122 241 051 J21 DATA
026125 J77 057 J77 DATA
0261JO J77 DATA

ML SUBROUTINE USED TO XINIT 0261Jl 041 100 OJO LXI H XINIT: When RUN is typed, certain locations in TBX must be - PREPARE SYSTEM FOR EXtCUTICN initiali:zed. The XINIT routine performs the following tasks:
0261J4 0112 J61 OJJ SHL A£LVL 1. AE and subroutine stacks are emptied;
0261J7 011 l 1611 0211 LXI H 2. The array storage area is preset at zero length; and 0261112 0112 J611 OJJ SHL SBRLVL
02611&5 J15 020 027 CALL INIARY 3. The label number .of the first statement to be executed
026150 052 J52 OJJ LHL PRGSTRT is placed in CURLBL.
02615J 126 MOV D,M
026154 OllJ lNlC H
026155 1J6 MOV E1M
026156 J5J XCHG
026157 000 NOP
026160 0112 J50 OJJ SHL CURLBL
02616J 02J INX D
026164 02J INX D
026165 247 ANA A
026166 Jll RET

I
I LOC 026167-026204 IS UNUSED.
I

SUBROUTINE USED TO OUTPUT LBLOUT: This routine is called by LIST to output a label LB LOUT 026205 J45 PUSH H - LABEL(NO ZERO SUPPRESSION> number of a TBX statement. !OUT is used with C preset to
026206 J25 PUSH D 377 octal preventing zero suppression.
026207. J05 PUSH B
026210 J5J XCHG
026211 016 J77 MVI C 377
02621J JOJ 107 022 JMP IOUT+6

ERRMAIN 026216 000 NOP
ERRMAIN: This routine is used to process qn error condition. - 026217 000 NOP

026220 J27 RST CRLF "ERR" is outputted followed by the error number and the
026221 000 000 000 NOP'S CURLBL. Entry to ERRMAIN is made through ERRl, ERR2, :
026221& 076 105 MVI A 'E' etc., where L is set to the error number desired.
026226 J57 RST OUTPUT
026227 076 122 MVI A 'R'
0262J1 J57 RST OUTPUT
026232 J57 RST OUTPUT
0262JJ 076 01&0 MVI A 'SP'
026235 J57 RST OUTPUT
0262J6 01&6 000 MVI H fl
02621&0 000 000 000 NOP'S
026243 Jl5 101 022 CALL lOUT
02621&6 052 J50 OJJ LHL CURLBL
026251 076 040 MVI A 'fil''
02625J J57 RST OUTPUT
026254 Jl5 205 026 CALL LBLOUT
026257 016 010 MVI C SD

Page 26 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

TAG ADDRE<;S 11 12 13

02626! 0111 .:157 033
026264 02 l 106 026

1.001' 026267 0.32
026270 167
026271 015
026272 302 267 026
026275 041 002 0.32
026.300 061 077 002
026.303 JOJ 257 021

ERRLIST9
.ERRl

026.306 056 001

026.HO 001
tRR2 026.311 056 002

026.313 001
ERRJ 026.314 056 003

026316 001
ERRll 026317 056 0011

026321 001
ERR5 0.26322 056 005

026.3211 001
ERR6 026325 056 006

026.327 001
ERR7 026.3.30 056 007

026.3.32 001
ERRS 0263.33 056 010

026335 001
tRR9 026336 056 011

0263110 001
ERRlO 026.311 l 056 012

026.343 001
ERRU 026311li 056 013

0263116 001
ERR12 026.3117 056 0111

026351 001
ERIHJ 026.352 056 015

026351& 001
tRIU4 026355 056 016

026.357 001
ERR15 026360 056 017

026362 001
ER!U6. . 0.l636J 056i 020

026365 .303 2.16 026
{I
I L.OC 026370-027017 IS UNUSED.
II
!Nlf\R'[

l>IM2

CONT

CONH

027020

027022
027C.2J
027026
027031
0270.32

027033
027036
0270:57
027042
027043
OU041!
027047
027050
027053
027054
027055
027060
027063
027066

027071
027072
027073
027074
027075
027100
02710 I
027102
027103
027104
027105
027106
027l07
02711.2
027) 13
027116
027 » l7
027120
027123
027124
027125
027126

076 012

357
052 U5 026
042 366 033
Jll
325

315 071 023
353
315 071 023
104
115
315 0114 023
353
315 Oll4 023
321
305
315 240 021l
315 071 023
303 072 027
315 071 023

345
051
104
115
052 366 OJJ
175
221
117
174
230
107
OlJ
052 J5li 03J
274
302 120 027
171
275
3.32 J60 026
!liO
151
301
160

MNEMONIC

LXI H
LXI D
LDAX D
MOV M1 A
DCR C
JNZ LOOP
LXI H
LXl SP
JMP ILXQT
MV I l lD

SPECIAL
MVI L 20
SPECIAL
MVI L JD
SPECIAL
MV I L 110
SPECIAL
MVI L 5D
SPECIAL
MVI L 60
SPECIAL
MVI l 7D
SPECIAL
MVI L 80
SPECIAL
MVI L 90
SPECIAL
MVI L 100
SPECIAL
MVI L llD
SPECIAL.
MVI L 120
SPECIAL
MVl L lJD
SPEC !AL.
Ml/I L l4D
SPECIAL
Miil L 150
SPECIAL.
MVI L 160
JMP ERRMAIN

MVI A '.!J''
RST OUTPUT
LHL
SHL ARYSTRT
RET
PU:.11 ll

CALL POPAE
XCHG
CALL POPAE
MOV B1 H
MOV C1L
CALL PSHAE
XCllG
CALL PSHAE
POP D
PUSH B
CALL MULT
CALL POPAE
JMP CONT
CALL POPA[

PUSH H
DAD H
MOV B1 II
MOii C 1 L
LHL ARYSTRT
MOV A1 L
sue c
MOii C1A
MOii A1H
SBB B
MOV B1A
DCX fl
LHL PRGEND
CMP H
JNZ CONTl
MOV A1 C
CMP L
JC ERR 15
MOV 11 1 0
MOV L1C
POP B
MOii M,B

COMMENTS

PARTIAL REINITIAL.IZATlON
SEQUENCE

ARRAY INITIALIZATION SUB·
ROUTINE

ML SUBROUTINE USED TO
SET UP TWO DlMENSXONAL
ARRAYS.

ML SUBROUTINE USED TO SET U'
ON~ DIMENSIONAL ARRAYS.

INIARY: A subrouti;ie called by XINIT to preset the array
area of memory.

DIMl and DIM2: These ML routines are used to set up array
storage as a result of execution of a DIMension statement.
DIM2 handles two dimensional arrays while DIMl handles the
one-dimensional arrays. At the time these routines are called,
the array dimensions are on top of the AE stack. MULT and
double register addition are used to calculate memory needed
for a given array dimension. The variable associated with the
array name is used to hold the location of the beginning of
that array.

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 27

TAG: ADDRESS Il I2 IJ

027127 05.3
0271.30 16 l
0271.31 1041
027132 115
02713.3 042 366 0.33
027136 315 071 023
027141 161
027142 04'3
02711!3 160
0271441 247
027145 .311

~ 027146 315 OH 023 -
027151 053
027152 051
027153 101!
027154 115
027155 315 071 02.:l
027160 011
027161 315 044 023
0271611 247
027165 .Hl

ARRAY2 027166 .:115 071 023 --
027171 053
027172 315 044 023
02717 5 052 .370 033
027200 315 044 023
027203 315 240 024
027206 315 200 024
027211 303 146 027

tSTA 027214 032 -
027215 023
027216 376 0110
027220 312 2111 027
027223 033
027224 306 300
027226 320
027227 007
027230 117
027231 023
027232 032
0272.33 376 050

027235 312 243 027
027240 033
0272111 247
027242 311

CONT 027243 151
027244 046 024
027246 116
027247 043
027250 146
027251 151
027252 116
027253 043
027254 106
027255 043
027256 315 044 023
027261 140
027262 151
027263 042 .HO 033
027266 067
027267 ·311
027270 000 000 000

ti
I LOC 027273-027304 IS UNUSED.
Ii

~
027305 325
027306 023
027307 032
027310 376 015
027312 302 064 030

CONT 027315 353
027316 315 044 023
027 321 321
027322 2117
027323 311

NEXT 027324 325
027325 315 071 02J
027330 345
0273J1 116
027332 043
027JJ3 106
027334 .:115 071 023
027337 353
02.73110 315 071 023

MNEMONIC

DCX H
MOV 11uC
110V Bull
MOV C7 1.
SHL ARYSTRT
CALL POPAE
MOV M,C
INX H
110V 11,B
ANA A
RI:T
CALL POPAE

DCX II
DAD H
110V e,11
HOV C,L
CALL POPAI:
DAD B
CALL PSllAE
ANA A
RET
CALL POPAE

DCX II
CALL PSllAE
I.HI. ATl:MP
CALL PSHAE
CALL MULT
CALL ADD
JMP ARRAY!
LDAX D

HIX D
CPI 'fil''
JZ TSTA
DCX D
ADI 300
RNC
RLC
110V C1A
HIX D
LDAX D
CPI '<'
JZ CONT
DCX D
ANA A
RET
MOV t,c
HVI II 024
110V C1M
INX K
110V K1 11
MOV L9C
110V C 1 11
HIX H
MOV B1M
INX H
CALL PSHAE
MOV 11 1 B
MOV L1C
SHL ATEMP
STC
RET
NOP'S

PUSH D
INX D
I.DAX D
CPI '«li'
JNZ fl)'.FOR.
XCHG
CALL PSHAE
POP D
ANA A
RET
PU5H D
CALL POPA[
PUSH I!
110V C1 11
lNX H
MOV 8 1 11
CALL POPAE
XCHG
CALL POPAE

COMMENTS

ML SUBROUTINE USED TO GET
THE ADDRESS OY A ONE DIMEN
SIONAL ARRAY VARIABL[o

ML SUBROUTINE USED TO GET
THE ADDRESS or A TWO DIHEN·
SlONAL ARRAY VARIABLE.

·ARRA Yi and ARRA Y2: These ML routines are used to calcu
late the address of an array variable. The array position valurs
are on the AE stack at the time these routines are called. MULT
and double register addition are used in the calculation.

ML SUBROUTINE USED TO TEST TSTA: An ML routine used to test TBX text for the presence
FOR AN ARRAY. of an array variable. If a letter is immediately followed by an

open parenthesis, then an array is indicated. Other.wise, an
ordinary variable is present.

KL ·SUBROUTINE USED TO SET l.P FOR: When a FOR statement is executed, this ML routine
FOii LOOP. places the address of the next statement following the FOR

on the AE stack.

ML SUBROUTINE USED TO CHECK
END or FOR LOOP.

NEXT: This ML routine is used to process a NXT instruction.
During its execution the following tasks are performed:

1. The index variable is incremented;
2. A check is made to see if the variable limit has been

exceeded;
3. If so, the next TBX instruction is executed; and
4. If not, execution is returned to the statement follow

ing the appropriate FOR statement.

Page 28

CONT

CONT!

HXDONE

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia

ADORESS Il 12 13 MNEMONIC

027.34.3 00.3
027J44 172
027345 270
027346 .302 .361 027
027351 173
027352 271
027.35.3 322 361 027
027356 303 006 030
027361 345
027362 315 044 023
027365 341
027366 353
027367 :.H5 044 023
027.372 3lll
027.H3 315 044 023
027.376 140
027377 151
030000 31.5 Olilj 023
030003 341
030004 247
030005 311
030006 341
030007 315 044 023
030012 140
030013 151
030014 315 044 023
030017 321
030020 247
030021 311
030022 376 044
030024 302 314 026

lNX B
MOV A,D
CMP S
JNZ CONT
MOV A1 E
CMP C
JNZ CONT
JMP CONT 1
PUSH H
CALL PSHAE
POP I!
XCHG
CALL PSHAE
POP H
CALL PSHAE
MOV H1 B
MOV L C
CALL isHAE
POP H
ANA A
RET
POP H
CALL PSHAE
MOV H1 !'11
MOV L1C
CALL PSHAE
POP D
ANA A ,
RET
CPI '$'
JNZ

COMMENTS

Box 310, Menlo Park CA 94025

1:

TST'i =
0.}0027
030032

303
032

033 023 JMP
L!JAX D ML SUBROUTINE USED TO TEST TSTF: A test is performed by this ML routine to check for the I···

030033 376 040 CPI 'SP'
HIX D
JZ TSU
DCX D
ADI 300
RNC

FOR FUNCTION. presence of a function in the TBX text. The function is

030035
030036
030041
030042
030044
0300ti5
030046
0.30047
0.30050
0.30052
030053
030054
030056
030057
030061
0.30062
030063

rnroR 0300611
0.30066
030071 ,

023
312 032 030
033
306 300
320
325
023
032
.306 .300
321
320
.376 015
.HO
.376 040
310
067
.311
.376 044
.312 .315 027
.30.3 .306 027

PUSH D
XNX ti
L!JAX D
ADI 300
POP D
RNC
CPI ·~·
RZ
CPI 'fil''
RZ
STC
RET
CPI '$'
JZ CONT
JMP LOOP

IN •roR' ROUTINE
IN 'FOR' ROUTINE

I LOC 0.30074-0.30077 IS UNUSED. LOC 030100-0.30177 RESERVED TOR At
I LOC 0.30200-0.3020.3 IS UNUSED.
I

STACK.

0.30204 041 375 OJJ LXI H SEED4 ~ ML SUBROUTINE USED TO GENG
ERA TE RANDOM NUMBERS'

0.30207 0015 010 HVI B 8D
l.OOP 0.30211 176 MOV A111

0.30212 007 RLC
030213 007 RLC
0.30214 007 RLC
0.30215 256 XOR M
030216 027 RAL
030217 027 RAL
0.30220 055 DCR L
030221 055 DCR L
0.30222 055 DCR L
0.30223 176 MOV A1 M
0.30224' 027 RAL
0.30225 167 MOV 11 1A
030226 054 INR L
0.30227 176 HOV A1H
0.30230 027 RAL
050231 167 HOV A1M
0.30232 054 INR L
OJ023J 176 MOV A9M
0302.34 027 RAL
0302.35 167 MOV 11,11
0.30236 054 INR l
0.302.37. 176 MOV A1H
050240 027 RAL
0.302111 !67 MOV M1A
030242 005 DCR B
0.50243 .302 211 0.30 JNZ LOOP
0.30246 052 .371! 0.33 LHL SEED.3

recognized by the occurrence of two letters in sequence, i.e., 1:~
RN for the random number function.

RNDM: A random number generator based on a technique by
Jim Parker appearing in "The Computer Hobbyist" (Vol. 1,
No. 5). The routine returns only when a value between 0 and
10,000 decimal is sensed.

I·

I

I
I;,

I}
I

I

I·
I

I

February 1976 Dr Cobb's Journal of Computer Calisthenics & Orthodontia Box 310; Menlo Park CA 94025 Page 29

TAG ADDRESS Il I2 13 MNEMONIC

030251
030252
030254
030255
030257

174
346 077
147
376 047

MOV A,H
ANI 001111118
MOV H,A
CPI 0117
JZ CONTl

C0NT2 030262
312 272 030
322 204 030
315 01111 023
017

JNC RNDM
030265
030270
030271 311

CALL PSHAE
CMC
RET

CONTl 030272 175 MOV A,L
CPI 020
JMP CONT2
CALL POPA£

030273
030275

376 020

TAB 030300 =
303 262 030
315 071 023

030303 105 MOV B,A
LOOP 0303011 076 040 MVI A 'SP'

CALL ASCoUT
DCR B

030306
030311
030312
030315
030320
030323
0303211
030325
030326
030327
030330
0303.H
030334
030337

315 026 022
005
302 304 030
063 063 063
063 063 063
JO 1
3111
0113
0113
3115
305
073 073 073
073 073 073
311

JNZ LOOP
JXINX SP
3XINX SP
POP B
POP H
INX H
INX H
PUSH H
PUSH B
3XDCX SP
3XDCX SP
RET

~ 0303110 072 367 033 LDA ASTRT<H>

030343
0303114
0303117

2711 CMP H
JZ CONT

END 030352

312 360 030
332 360 026
0112 3511 033
.HI

JPC ERR15
SHL PRGEND
RET 030355

030356 000 000 NOP'S
CONT 030360 072 366 033

326 000
LDA ASTRT<L>
SUI pJ

I

030363
030365
030366
030371

275
322 352 030
303 360 026

CMP L
JNC END
Jl1P ERR1'

I LOC 030374-030377 IS NOT USED.
I
$12£. -

DIFF

031000
031003
0310011
031005
031006
031011
031012
031013
031016
031017
031020
031023
0310211
031025
031030
031033
031035
031036
0310111
031042
031043
031046
031047
031052
031055
031056
031057
031060
031061
031062
031063
0310611
031065
0.'1066
031067

052 354 033
053
101i
115
052 376 033
011
345
052 366 033
1011
115
052 352 033
011
301
315 060 031
315 101 022
076 040
351
052 366 033
1011
115
052 3511 033
053
315 060 031
315 101 022
327
2117
311
171
225
157
170
2311
147
311
052 352 033

LHL PRGEND
DCX H
MOV B1H
MOV C 1 H
LHL MEl1END
DAD B
PUSH H
LHL ASTRT
110V B1 H
HOV C1 L
LHI. PRGSTRT
DAD B
POP 8
CALL DU'F
CALL lOUT
MVI A 'fil''
R5T OUTPUT
LHL A'>TRT
MOV B1 H
HOV C 1 L
LHL PRGEND
DCX H
CALL DIFF
CALL IOUT
RST CRLF
ANA A
RET
HOV A1C
SUB L
HOV L1 A
HOV A1 B
SBB H
MOV H1 A
RET
LHL PRGSTRT

031072 042 3011 033 SHL LSTSTRT
031075 052 354 033 LHL PRGEND
031100 Oli2 306 033 SHL LSTEND
031103 2117 ANA A
031104 311 RET
031105 315 165 031 CALL FIND

,O.H 110 042 304 033 SHL LSTSTRT

COMHENTS

HL SUBROUTINE USED TO.PRO
DUCE TAB FUNCTION.

SUBROUTINE USED TO TFST FOR
MEMORY DEPLETION.

TAB: This ML routine spaces over an amount equal to the
value stored on the top of the AE stack.

MEMTEST: A routine used to test for memory depletion. If
array storage area overlaps the program area, an error is
reported.

ML SUBROUT111E USED TO DETER- SIZE: This ML routine computes the amount of memory being
MINE SI:Zt or PROGRAM AND used and the amount left.
AMOUNT or MEMORY REMAINING.

ML SUBROUTINE USED TO LIST LSTO, LSTl, and LST2: These three routines set up LSTSTRT
ENTIRE BASIC PROGRAM. and LSTEND so that when LIST is called, only the required

lines will be listed. LSTO is called if the entire program is to be
listed. LSTl is called to list only one line. LST2 sets up a listing
between trpo given lines.

KL SUBROUTINE USED TO LIST
ONE LINEo

Page 30 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

TAG

LOOP

!:ill -
LOOP

FIND

I

ADDRESS 11 12 13 MNEMONIC

031113
031114
031115
031117
031120
031121
031124
031125
031126
031131
031132
Olll33
Ollllli

Ol11J7
OJ111i0
Ol 1141
OJ 114J
OJI 144
031145
031150
O.H151
031152
0Jl155
031160
OJ116J
031164
0Jll65
031170
03117J
031174

04J
04J
076 Ol:S
OliJ
276
J02 117 OJl
04J
04J
042 306 033
247
311
000
J15 165 031

043
04J
076 Ol:S
04J
276
J02 14J OJI
04J
04J
042 J06 OJJ
.H5 165 OJI
042 JOii OJJ
247
Jll
ll 5 071 02J
Jl:S 154 023
JlO
lOJ 330 026

INX K
INX K
MVI A '~'
INX H
CMP M
JNZ LOOP
INX H
INX H
SHL LSTEND
ANA A
RET
NOP
CALL FIND

INX H
lN>C K
MVI A '~'
INX H
CMP M
JNZ LOOP
INX H
INX H
SHL LSTEND
CALI. HND
SHL LSTE:ND
ANA A
RET
CALL POPA£
CALL FlNDLBL
RZ
JHP ERR7

COMMENTS

ML 5UBROUTINE USED TO LIST
BETlfEEN TWO LINE NUMBERS.

I LOC 031177-031277 IS UNUSED.
I .

fN

.TNO

SSC

SIB

SlU

SlU

OJlJOO
031302
OJ1J04
OJ1J06
OJIJlO
OJ1J12
OJ1J14
OJ1J16
031J20
OJIJ22
031J24
OJ1J25
031J27
OJlJJl
031JJJ
OJ1J34
031JJ6
O.HJ40
OJIJ42
OJ1J4J
OJIJ45
031347
OJ1J51
031353
031355
031356
031360
031362
031364
OJ1J66
031370
031J72

TAG

2Jl JIO
122 JI&
JJO 204
J22 JOO
232 JJO
124 302
1J2 J4J
JJO JOO
J22 JOO
2Jl Jll
215
32Z 360
J22 375
2J2 210
244
J22 360
J2J 034
2Jl 351
215
Jll 067
322 2ll
322 J75
1J2 J4J
2Jl 366
2511
1J2 J4J
JJ 1 1311
322 21J
OJ2 216
JJl 105
322 213
132 216

TST TNO 'RN'

RANDOM
RTN
TST S l7 'TB'

CALL EXPR
TAB
RTN
TST 588 ''11'

NLINE
NXT
TST SS '''

NLINE
NXTX
TST SlliA '£&'
LISTO
LST
NXT
CALL EXPR
TS1' Sl4B '1'

CALL EXPR
LIST2
LST
JHP SSA
LISTl
LST
JMP SBA

lL PROGRAM
ADDRES5 11 12 lJ MNEMONIC

.LNECLT

OJ2000 J26 0 5J
OJ2002 J22 J60
0.32004 J20 070
OJ2006 J22 J60

INIT
NLlNE
GETLINE
NL I NE

TAG ADDRESS 11 12 IJ MNEMONIC

XEQ
DIR

Sl

S2

Sl

SlA

,

l)J2010
OJ2012
03201/t
OJ2016
OJ2020
OJ2022
032024
032027
032031
032033
0320J5
Ol20l7
0320/tl
032043
032045
032047
032051
OJ2053
032055
032057
032061
032064
032066
032070
032072
032074
Ol20H
032100
032102
03210/t
032106
OJ2110
OJ2112
OJ2114
032117
032121
Ol212J
032125
032127
032131
0.32133
032135
032137
032141

320 265
0.32 022
320 J60
OJ2 0011
326 131
2l2 041
11'6 105 32"
133 310
132 340
J24 147
322 304
J22 l75
232 071i
107 J17
2J2 057
124 317
ll2 34l
J22 304
32l 224
2l2 275
1.23 125 302
132 3113
J21i 100
326 027
32l 224
2J2 112
111 306
1J2 J43
133 114
132 JllJ
.325 151
032 022
233 J26
106 117 322
323 l24
326 J<iJ
lJ2 JliO
32/t 1117
226 363
1211 317
327 305
132 34J
322 .)04
322 37.5

I LOC 03211&3•032147 IS UNUSED. ,
Sii Ol2150 2.32 226

032152. 120 322
" OJ21511· 2ll 322

OJ2156 21i2
032157 J22 322

5' OJ2161 ·2J2 173
OJ216l 254
OJ2164 l22 3/t2

S78 032166 2l2 l32
032170 215
032171 322 l75

STA 032173 2J2 202
032175 273
OJ2l76 326 Olt4
OJ2200 OJ2 166

S7 Ol2202 322 360
OJ2204 l22 J04
032206 322 J75

SI OJ2210 1J2 .llil
OJ2212 32J 125
0324114 OJ2 161

SIA 032216 J22 304
Ol2220 322 375

I
I LOC 032222-0.32225 IS UNUSED,
I
st

S10

SU

Sl2

SU

032226
OJ22l0
OJ22J2
OJ22lll
Ol22l6
OJ221i0
03221i2
0322113
Ol2245
OJ22117
OJ2251
Ol225J
Ol2256
032260
Ol2262
032264
032266

2J2 251
111 316
ll3 .)10
323 241
J24 llt7
232 21i5
254
OJ2 2J2
l22 l04
J22 J75
232 26/t
122 105 321&
J.26 Ol6
322 304
322 375
2JJ 200
105 116 304

TSTL
JMP DIR
lNSRT
JMP LNECLT
XI NIT
TST Sl 'LET'

CALL AVTEST
CALL E1CPR1
STORE
DONE
NXT
TST SJ 'GO'

TST S2 'TO'

CALL ElCPR
DONE
XFER
TST S14 'SUB'

CALL EXPR
DONElC
SAVE
XFER
TST S3A 'IT'

CALL ElCPR
CALL RELOP
CALL EXPR
CMPR
JMP DIR
TST SllA 'FOR'

TSTV
ERRl<i
CALL EXPR
STORE
TST ERR

FOR
CALL EXPR
DONE
NXT

TST S9 'PR'

TST sac

PRS
TST S7A

SPCZONE

•••

. '
'

TST SSA ''1l'

NXT
TST S7 'J'
SPCONE
Jl1P S7B
NLINE
DONE
NXT
CALL EXPR
PRN
Jl1P S6
DONE
NXT

T'>T Sl2 'IN'

CALL AVTEST
INNUH
STORE
TST SU '•'

JMP SlO
DONE
NXT
TST S13 'RET'

DONE
RSTR
NXT
TST S 14 'END'

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 31

TAG ADDRESS I l 12 IJ MNEMONIC TAG ADDRESS Ii !2 IJ MNEMONIC

OJ2271 J22 J60 NLINE OJJlliO J2' JJ7 LITJ
OJ227J J2J 011 FIN OJJlli2 Jn JOO RTN

Sl!li 032275 2J2 J06 TST Sl5 'LST' R3 OJJl44 J25 JJI Llll
OJ2277 114 l2J J24 OJJ!li6 J22 JOO RTN
0J2J02 OJI J40 L';T -~ OJJ150 2J2 JJO TST SU .,.,
OJ2J04 J22 J75 JMP S8A OJJl52 276

515 OJ2J06 2J2 317 TST 516 'RUN' OJJJ5J 2JJ 162 TST 115 '-::'
OJ2JIO 122 125 J16 OJJ155 275
OJ2J1J J22 J04 DONE OJJ156 J25 34!! LITS
OJ2Jl5 032 020 JMP XEQ OJ3160 J22 JOO RTN

su; OJ2Jl7 2JJ 101 TST Sl7A 'NEW' RS OJJ162 2JJ 171 TST R6 '<'
OJ2J21 116 105 J27 OJJ164 274
OJ2J21' J22 J01' DONE OJJ165 J25 JJ7 LITJ
OJ2J26 OJ2 000 JMP STRT OJJl67 J22 JOO RTN

R6 OJJ 171 J25 J42 LlT4
SH OJ2J.:IO J26 J47 ERR12 OJ.:ll"IJ J22 JOO RTN
SSA OJ2J.32 2J2 154 TST SSA '$' OJJ175 000 000 000 NOP'S

OJ2JJ4• 244 5116 OJJ200 23:.! 27~ TS1' SIS 'DIM'
OJ2JJ5 J2J OJI.I NXH OJJ202 104 111 J15
OJ2JJ7 000 NOP 1' OJJ205 J2J J2q TSTV

EXPR1 OJ2.~'10 2J2 J4J TST ElCPR •+• OJJ207 J26 J52 ERRlJ
OJ2.342 275 OJ.3211 233 077 TST f3 '<'

EJCl'R OJ2J4J 2.32 J54 TST r.pJ ·-· OJJ21J 2:;0
OJ2J45 2S5 OJJ214 1J2 J4J CALL EXPR
OJ2Jlt6 1JJ OOJ CALL TERM OJJ216 2JJ 241 TS1 Zl '•'
OJ2J50 J25 lJJ NEG OJJ220 254
OJ2J52 OJ2 J61 JMP El OJJ221 1.32 J4J CALL EXPR

rjf OJ2J51! 2J2 J57 TST EJ ' ' OJJ22J 233 077 TST f3 . . .) .
OJ23S6 25J 033225 251
OJ2J57 DJ 003 CALL TERM OJ.3226 327 OJ2 OlM2

&i OJ2J6J 2J2 J72 T5T E2 '+' ZJ OJJ2JO 2JJ 235 TST 22 'I~
OJ2J6J 25J 0332.32 254
OJ2J64 13J OOJ CALL TERM OJJ2JJ OJJ 205 JMP Z~
032366 J216 200 ADD ?2 0JJ2J5 J22 J04 DONE
OJ2J70 OJ2 361 JM? El 033237 J22 J7' llXT

[2 032312 2JJ 055 TST E4 '-' 21 0JJ241 233 071 OJ2J74 255 TST f3 .) .
OJ2J75 lJJ OOJ CALL TERM OJJ21!J 251
OJ2J77 324 216 SUB OJ.3244 327 066 DI Ml
OJJOO! 032 361 JMP El OJJ246 033 230 JMP ZJ

T.ERH OJJOOJ IJJ 027 CALL rACT OJJ250 000 000 000 NOP'S
TJI 033005 2JJ 016 T5T Tl '*' OJJ25J 000 NOP

OJJ007 252 ARRAY OJJ254 233 077 TST f3 '(.

03J010 IJJ 027 CALL TACT OJJ2S6 250
OJ3012 J24 240 MULT OJJ257 132 J43 CALL EJCPR
OJJ014 OJJ 005 JM? Tiii OJJ261 2JJ 275 TSl XII ' 1 '

Ti OJJ0l6 2JJ 055 TST T2 .,. 0JJ2GJ 254
OJ.3020 257 OJ.3261! 1J2 J4J CALL EXPR
OJ.3021 lJJ 027 CALL rACT OJJ266 233 017 TSl f.3 ,,; . ,.
OJJ02J J24 362 DIV OJJ270 251
OJJ02S OJJ 005 JMP TJ8 OJJ271 327 166 ARRAY2

TACT OJJ027 JJO OJ2 TSH OJJ27J 322 JOO RTN
OJJOJl OJJ OJ5 JMP T4 Xfl OJJ275 233 077 TST f'.3 .) .
OJJOJJ OJl JOO JM? VN OJJ277 251

f4 03JOJ5 J27 214 !STA OJJ.:JOO J27 146 ARRAYl
OJJOJ7 OJJ 047 JMP FJ;4 OJJJ02 J22 JOO RTN
OJJ041 lJJ :.254 CALL ARRAY LSTS1'RT 03JJ04 000 OJ4
OJJOZiJ J:.211 DJ IND LS TEND O.D.306 OJ6 OJ7
OJJ045 322 JOO RTN AV UST OJJJlO J:.!7 214 TSTA

r~ OJJ047 J2J J24 T'lTV OJJJl2 OJJ J20 JMP Vtl
OJJ051 03J 057 JHP Tl OJJJ14 lJJ :.!!>II CALL ARRAY
03305J J24 lJJ IND OJJJ16 .322 JOO RTN

T2ili:4 033055 J22 JOO RTN Vil OJ3J20 .:l2J J211 TSTV
FA OJJ057 J2J J51 TSTN 0JJJ22 J26 Jqlj ERRU

OJ.:1061 OJJ 065 JMP J'2 OJJJ24 322 JOO RTN
OJJ063 322 JOO RTN SU OJ3J26 2J2 150 TST Slii 'NXT'

r:i! OJJ065 2JJ 077 TST FJ . (. OJJJJO 116 !JO .324

OJJ067 250 OJJJJJ J2J J211 TST\I'
OJJ070 132 34.:I CALL EXPR OJJJJ5 326 352 ERR14
033072 2JJ 077 TST FJ '>' OJ33J7 327 J24 NEXT
OJ.3074 251 OJJJ41 324 14 7 STORE

OJJ075 J22 JOO RTN OJ3J4J 322 J04 DONE
OJJJ45 J22 375 NXT

fJ OJJ077 J26 JS2 ERRIJ OJJJ47 oco NOP
SHA OJ.3101 2J2 JJO TSl 517 •szi:• CURLBL OJJJ50 000 000

OJJlOJ 12J 1J2 305 PRGSTRT OJJJ52 000 OJI!
OJJ106 JJl 000 SIZE PRGEND OJJJ54 OJ6 037
OJ.3110 OJ2 216 JMP SSA COUNT OJJJ56 001
OJJl 12 000 000 NOP'S CASE OJJJ57 040

RrLOP OJ.3114 2JJ 12J TST Rfl '=' :ZONE OJ3J60 004
OJJU6 275 AELVL OJJJ6l 100 OJO
OJ.:1117 J25 326 LITO lNDX OJ3J6J 001
OJJ121 322 JOO RTN SBRLVL OJJJ64 164 024

Rf# OJJ12J 2JJ 150 TST Rli '<' ASTRT OJJJ66 .577 057
OJJ 125 274 A TEMP OJJJ7o 000 000
OJJ!26 2JJ 13!1 TST R1 O':: t

SEEDI OJJJ72 150
03JIJO 27!1
o.1.11.\ I J~!l J.111 I.JU SEED2 OJJJ7J 205
()Jj!Jl J~·:.i JOO 1!1N SE!:DJ OJJJ74 341

IU OJJIJ5 ;.!JJ 1114 T$1' llJ '':?' SEED4 OJJJ75 JJ6
OJJ!J7 276 MEND 03JJ76. JH 0'1

Page 32 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

LL."'IST //VS.,..14/1/'T /'OSTSC/f/l'T ~0 WH'9r F0G.l.o~sJ ~ST a.or TNfi wo~() T/f-111" TH<;)' w//,(.. sec<..
voice SYAJTN6Sl'Z.E/I. ~ FoA $/aoo IF ?"N~Y F€€i. ?"4'6·y C';i(W MAAJ<~r AT LcAST 50/

'j)ETAlt.S PfEJCT l$SO€_. L ;.,.. €111 /-tNOW W/.IAT Tr/€11< /'OTf;.111 Tl/IL /f'1A/l./"-E7" /S ! f !

jim day's
DAZE

{repn"ntedfrom PCC Vol. 4, No. 5]
COMPUTERS THAT TALK

Wouldn't it be nice if your computer could speak to you in English, French, Ger·
man, or Esperanto like the computer on the starohip Enterprisc't Then it could say things
like, "Wake up, sir" or "Ge~ with it, turkey" (depending on wh:1l ki11J 0£ m,ood it was in)
or maybe, ~'The ti~c is s°i"X: .o'clock, tht~ tcmpt:rature is. 46 dcgrt!es, an~ tomorrow is your
wife's birthday." ~·lost pci>plc have probably assumed that some day, perhaps by the year
2000, talking computers will be a reality in~lead of simply •cicnce fi<tiou. Well, hang onto
your progno~lir.alions, pcoplr., because that <lay is ioday! ·

In recent year::> many·pcoplc have been working on voir.e output devices for com
puters. Some of Lhcsc Jevices h:md1ccn electro-mechanical analogs of the human vocal
tract, similar in principle lo the Vodt!r exhibited at the New York World's Fair in' 1939.
Others have used electronic waveform generators to synthesize human speech sounds. Of
these, the Votrax synthesizer can lruly b" said lo represent a significant breakthrough with
res11ect to voice quality, case of programming, and cosl~

Smaller, than a breadbox and priced al about S3500 for the basic unit, Votrax is
produced by the Vot·al Interface Division o(the Federal Screw. Works (500 Stephen"'"'
Highway, Troy ~II 48084; (313) 588-20[10). Any cornpuln capable of outputting a
string of ASCH code' to a forminal can be used t.o control Votrax. As an output device,
Votrax can be u•cd alone or in conjunction lvith' an ordinary TTY, using embedded
ASCH conlrol codes and simple logic to switch voice strings to Votrax, anJ print strings lo
the TTY, TVT; or other conventional terminal.'

Programming Votrax is a snap. Using BASIC, FORTRAN, APL, PL/l, or just about
any other programming language, it's easy lo convert ordinary English (or other natural
language) into voice strings for Votrax. The best quality of vocal output is obtained by
using a dictionary lookup technique to substitute a string of phoneme codes for each
English word. Votrax responds lo ASCII cod"s for 63 different phonemes (basic speech
sounds) and each pho11cmc can have one of four levels of inflection.

If perfect voit•e quality is not essential anti random-access file space is not available
for a large dictionary, an algorithm can be used lo convert En~lish words to phoneme
codes. Such an algorithm, developed by Bell Telephone Laboratories, is said to work
almost as wdl as dictionary lookup. An unpronounceable string such as "l'OP-8" ran be
spdlcd out phonetically as though written "pee dee pee dash ate," and the numhcr I0.6
can he rendered as ~'ten point six" by means of a simple subroutine. Pau~cs can be
inserted automatically in response to punctuation and paragraphing.

Maybe you arc wondering whether anyone has actually used Yotrax and, if so, how
did they like it'! The answer to both questions is yes. People arc using Votrax and they
like it a lot. For exampl1:, d1c Coast Community College District in Costa ~lesa, California,
is using Votrax for computer-aided instruction and also in an on-line student information
system. Votrax was chosen in preference to other audio response units not only because it
is much less expensive but also because it is ideal for a wide range of applications, the
size of its vocabulary is unlimitr.d, and it functions well in a real-time environment. In the
student information sy.stem application, Tonch·Tone telephones arc m;t!d as. "terminals."
Although this limits the user to numeric input, it would he hard lo find a cheaper or more
readily available 1/0 de\ice. Several extensions to the district's present mm of Votrax arc
being developed, such as a voice-output interface for their on-line b1ul¥rl system, allowing
achninislralors lo inquire about specific accounts and receive immediate vocal replies.
David Clements, senior progrummer/analyst for the ui;;trict 's student information system,
reports that he is amazed at the results achieved with Votrax and believes that· synthesiztid
voice ontpnl will hpcomo a widely used medium iu the ncor future.

Another application of Votrax is as an aid to hlind programmers. In the Homer
system, written in FORTRAN for a CDC 6500 at Michigan State eniversity, Votrax is
used to echo each line input from a convenliunal terminal. It is also used lo deliver
FORTRAN diagnostics and as a tool in the editing of •ource program Cilcs.

Operating in conjunclion with an optical page rc-ader, Votrax can he used lo convert
printed mailer, such as hooks, magazines, and newspapers, into audible form. If desired,
the output from Votrax can be tape recorded for distribution to the blind.

These are but a few of the uses lo which voice output r.an be put, and it appear•
likely that voice output will soon become a familiar feature of many computer systems.
Maybe yours will be one of them.

(Also sec "Talking Calculator" in November 1975 PCC [Vol. 4, No. 3, p. 9).)

J""cw_, ·Trt..

COMPUTERS THAT TALK- UPDATE

Jim Day had an article in the most recent issue of PCC discussing
the use of a Votrax machine to allow a computer to synthesize
speech [article is reprinted, herein]. In the article, he indicated
that the machine, essentially a solid-state phoneme generator,
was priced at about $3500 for a basic system ... a bit high for
most hobbyists' budget. [Phonemes are the basic components·
that make up spoken words.]

Well, we just finished talking to the west coast rep for
Votrax for about an hour and a half, and have some exciting
possibilities to report! .

Votrax is currently selling relatively few of their systems.
It would be easy for the computer hobbyist community to
significantly increase their sales (and, presumably, thereby drive
the price per unit significantly downward). And, the rep didn't
even know the hobbyist market existed; he does now.

First of all, the price that Jim quoted was for a turnkey
system; one that includes two 25-pin interconnect boards, an
SQ.byte buffer for the incoming phoneme codes, an amplifier,
and a power supply Such a configuration is usually expected
and demanded by the commerical and industrial users. How
ever, it's a different matter with computer hobbyists. Hobbyists
are accustomed to using breadboarding, can supply their own
buffering via their system's memory, invaria,bly have the ability
to input to a hi fi amp, and usually can find super-cheap power
supplies.

Assuming this, all that one really needs to purchase are
the four phoneme generator boards, and have access to the
interface engineering specifications and schematics. These are
available for under $2K in small quantities; $1800 @in groups
of ten, and $1600 @in groups of fifty.

Would you rather have a $1600 hardcopy device or
the ability to generate English speech, including inflection?
Since the Votrax equipment is based on ph<,meme generation,
the vocabulary is essentially unlimited. Further, since the
generators are entirely electronic, the equipment has much
greater reliability than electro-mechanical equipment. Also, the
Votrax equipment and circuitry has been in the field for about
half a decade, now, and is thoroughly debugged.

If you would like for Votrax equipment to become
available to the hobbyist community:

(l) Write to John McDaniel, Votrax, 4340 Campus Dr.,
No. 212 Newport Beach, Ca. 92660; tell him that you would
like for your computer to be able to talk to you, and indicate
how much you would be willing to pay for that facility. Give
him correspondence to support him when he approaches Votrax
management. Make him and them aware of their untapped
potential market for stripped-down systems in the hobbyist
community.

(2) Tell the owners of your local computer store
about Votrax and encourage them to contact Mr. McDaniel.

February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia

A BIT OF BLUE. SKYING

Bob, February 19, 1976
By all means keep up the Calisthenics &

Orthodontia. But I suspect that as Tiny BASIC
matures it will acquire a full set of canines, bicuspids,
and molars. As the price of main memory continues
to drop, the need for a minimal BASIC will assume
less importance and the emphasis will shift to better
performance and convenience. Still, IL is a good tool
for those who may want to experiment with variants
of BASIC or some other language. As unlikely as it
may seem, I think that by 1980 most hobbyists will
be using a subset of PL/I. I also preduct that the
1980 hobbyist will own a computer system the size
of a breadbox and comprising a 16-bit CPU, 25 6K
bytes of main memory, 8M byte floppy disc, dual
tape cassettes, full ASCII keyboard, CRT display,
modem, and non-impact printer (all in one box). The
whole thing will sell (assembled) for $695 at Sears
and will have the computing power of an IBM 370.
Last but not least, the CPU chip will be designed
expr~ssly for the hobbyist, not for some pedestrian
application such as traffic signal control.

Jim Day 17042 Gunther St
Granada Hills CA 91344

Dear Bob, February 4, 1976
Thank you for your note and interest. Our

system is growing by small leaps and bounds. We
have an Altair 8800 with the Processor Tech. mother
board. We also have the following items:

Qty Description

1 VLCT (octal loader) Altair
1 PIO Altair
1 256 byte static RAM board Altair
2 4K RAM boards Godbout
3 4K RAM boards Proc. Tech.
1 3P+S Proc. Tech.
1 wire wrap prototype board TCH
1 cassette interface TCH
1 VDM Proc. Tech.
1 Real time clock and VI IMS
1 ASR-33 (10 cps) Teletype
1 Silent 700 (30 cps) TI
1 2K ROM board Proc. Tech.

We are building a version of the TCH graphics
interactive display with direct Altair plus in boards
(double-sided).

We are also ordering the Processor Tech. dual
cassette drive, controller and PTCOS.

We have several interactive editors, assemblers,
monitors, and cross assemblers. We are currently
experimenting with minimal editors and assemblers
and have a strong desire to put together a micro
BASIC (Tiny BASIC). The editor package looks like
it will be around 510-512 bytes and the same for a
"mini-assembler." We are also looking for 4K, 8K,
and l 2K BASICs which are public.

We are hoping to eventually acquire a TV
Dazzler and a floppy disc to extend our system.
Future desires also include the IMS shared processor/
memory and an additional CPU board in addition to
12K-16K more low power status RAM memory.
Who knows what else the future has in store?

We are strongly interested in developing soft
ware (for the Altair and other micro-processors)
which can be used for instruction and instructional
support in the school media center.

Our research interests vary considerably here
so we also will be running some basic human learn
ing experiments under processor control. We have
been involved in research in CAI and computer
managed instruction for about 9 years here. We have
PLANIT, COURSEWRITER, PICLS, PLATO
(TUTOR), and BASIC available and a wide range of
instructional programs for these languages.

Franz Frederick
Associate Professor

112 Education Elg
Purdue University
W. Lafayette IN 47907

Franz, We would be very interested in publishing the
source code and documentation (user and implcn1en
tation details) for the "tiny" editors and assemblers
you are implementing. Any chance of your forward ..
ing copies, once they are up and running? Jr

Page 34 February 1976 Dr Dobb's Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025:

TBX MODS FOR A SWTP TVT-2

Dear Dennis and all TB people,
First of all, thanks to Dick Whipple and John

Arnold for a great job they have done on TB, and
for making their program available. Many hobbyists,
including myself, don't have the skill or time to write
anything as complex as an interpreter.

TBX is working and programming is now FUN.
It took about six hours to put TBX on a cassette.
Loading TB from TP (tiny print) is a severe strain
on the eyes.

A listing of the 1/0 routines for my Altair/TVT-2
system is enclosed. Ar1 instruction is encluded in the
Entry Routine to turn on the TVT cursor and initiate
a Home Up/Erase Frame. In the Input routine the
code for ESC should be 033; otherwise a rubout
(backspace in TBX) will give a system restart. The
basic Altair executes a RST 7 if the keyboard is tied
directly to the interrupt bus. I had to change the in
struction at 000070 to 311. No harmful effects so far.

000 000 07 6 004 MVI A
002 323 002 OUT
004 061 377 OOOLXI SP
007 303 254 021JMP

020 076 012
022 357
023 076 015
025 357
026 311

MVIA
RST
MVIA
RST
RET

030 373 EI
031 166 HLT
032 333 001 IN
034 346 177 ANI
036 37 6 033 CPI
040 312 000 OOOJZ
043 357 RST
044 311 RET

Turn on cursor on
TVT & initiate
Home up/Erase fr.

TBX entry point

Output LF

Output CR

Wait for KBD entry
Input KBD charctr
Mask parity bit
"ESC"
System entry
Echo character

050 365 PUSH PSW Save registers & flags
051 323 001 OUT Outputcharacterto'IVI
05 3 333 002 IN Wctlt for "data ac-
055 037 RAR cepted" signal
056 322 053 OOOJNC from 1Vf
061 361 POP PSW Restore register &
062 311 RET flags

070 311 RET Keyboard interrupt

PORT ASSIGNMENTS:
IN 001 ASCII keyboard input
OUT 001 Character output to TVT
IN 002 "Data accepted" from TVT
OUT 002 Cursor control to TVT

TINY BASIC AVAILABLE FOR THE 6800

A version of Tiny BASIC has been developed for the Motorola
and AMI 6800. A tape and instruction manual for it are
available for $5 from:

Tim Pittman
Box 23189
San Jose CA 95153
(408) 578-4944

We understand that the source code will not be made available,
however, we expect that Tom will back his "product" ...
and the price is right.

We would be interested in hearing of the joys and/or
woes incurred by those who purchase Tom's Tiny BASIC.

BYTE SWAP

We are experimenting with offering a ''Want Ad" section. We
will continue to do it as long as we can afford it (in terms of
staff time and printing costs). Note: the charge for running an
ad will undoubtedly increase as our circulation (and printing
costs) increases.

Please follow these instructions in submitting ads. Ads received in
other than this form cannot be accepted, and will be returned to the
sender.
1. Type the ad, with a blank space between each line, in lines no
more than 50 character positions in length.
2. Include at least your name and address as part of the ad.
"Blind" ads will not be accepted. ·
3. Compute the charge on the basis of $1 per line or partial line,
per issue.
4. Forward the typed copy and a check or money order payable
to "PCC," to: DDJ Byte Swap, PCC, Box 310, Menlo Park CA 94025.
Do not send cash. Your cancelled check is your receipt. Payment
must accompany the ad.
oopppoopoopppRRQRQQRRRRRRRQRRqPRRRQRRQRRRRRR
SAVE MY MARRIAGE! Buy my new assembled IMSAI 8080, loaded
22 slot mother board, Bk Ram, reguW.r price, 11835.00. Will sell to
highest bidder above 11700.00. Also, IMSAI 8080 kit, still in box,
W.rge mother board, regular price 1578.00. Will sell to highest bidder
above 1547.00. Send bids to: Eric Stewart, 664 Via AW.mo,· San
Lorenzo CA 94580.

I am looking forward to an annotated source
code listing for TBS; like to do some tinkering.
Floating point and math functions would also be nice
to have. Dr Suding's scientific calculator interface
looks good. However, it's only available through
MiniMicroMart and doing business with them has
been a frustrating experience.

When deciding on the future of the newsletter
keep in mind that hardware is available and getting
cheaper. Software has been a big problem and prob
ably will be for some time to come (unless you can
afford to pay for it). The newsletter is a step in the
right direction to solve this problem. Please don't
stop after three issues.

Adolph Stumpf 5639-A Ute
Glendale AZ 85307

DR. COBB'S JOURNAL OF COMPUTER CALISTHENTICS AND ORTHODONTIA is published ten time per year' monthly except in
July and December.

U.S. Subscriptions:

D $1.50 for a single copy
D $3.00 for the first three issues
D $10.00 per year (10 issues/year)

For foreign subscriptions:

D add $4.00 per year for surface mail, or
D add $12.00 per year for air mail

Payment must accompany the subscription. We do not invoice for subscriptions or single orders.

Necessary Information:

Name (last name first)---------------------------

Mailing Address ___________________________ _

City ___________ State ______ Zip Code ________ _

D yes D no: This information may be published in directories and lists of individuals interested in
computers in non-commercial environments.

Optional Information:

Equipment that you have or are planning on purchasing, immediately:

Make & model ____________ Manufacturer _____________ _

CPU model ____________ CPU Manufacturer __________ _

I/ODevices _____________________________ _

Mass storage peripherals---------------------------

Primary areas of interest concerning non-commercial and home computers:

Questions: What would you like to see published in DR. COBB'S JOURNAL? It will help guide us if you will rate these, 1 to 10
(1 - minimally desire; 10 - super-eager to see) or 0 (would prefer we not waste space publishing it).

__ Schematics and acticles from all of the computer club newsletters
__ Short news articles directly related to home computers
__ Short news articles concerning computers in general, particularly their social implications
__ Indices to all articles in all other computer hobby publications
__ Indices to selected articles from other computer, electronic, and trade publications
__ Letters having technical, critical, or entertaining content
__ Classified ads (as opposed to display advertising)
__ Suggestions and "blue skying" about what can be done with home computers in the foreseeable future.

Directories of:

__ Users of home computers and their equipment
__ Computer stores and distributers
__ Manufacturers of computer kits

__ Computer clubs
__ Sources of used equipment
__ Microprocessor and minicomputer manufacturers

Source code listings and documentation: For which microprocessors? _____ _

__ Nearly full-sized (much less can be published)
__ Reduced as in recent issues (more difficult to read, but more info included in each issue)

What kind of software would you like to see developed and placed in the public domain?

Importance Rating Software Description

What else would you like to see us ublish? Please use another page or ten, if you need them.

,,
CD
C'" ..
c
<

c
0
C'"
C'" .
"' ...
0
c ..
:I ..
0 ...
(")
0
3

"Cl
c ..
CD ..
C') ..
;;;· ..
::r
CD
:I
r;·
"'
r<o

0
::r
0
C2.
0
:I ..
;;;·

ta
0
)(

w
0

s:
CD
:I

0

C')
)>

IQ
0
N
Cl1

"ti ..
"' CD

w
Cl1

DR DOBB'S JOURNAL OF
COMPUTER CALISTHENICS & ORTHODONTIA

PCC
Box 310
Menlo Park CA 94025

Place

1 J..cent

stamp

here

DR DOBB'S JOURNAL OF

COMPUTER CALISTHENICS & ORTHODONTIA

PCC
BOX 310
MENLO PARK CA 94025

To use this as a "self-mailer":
1. Fold it so this third covers the top third.
2. Place the proper postage, above.
3. If you are subscribing, insert your check so that it crosses a fold.
4. Staple this closed with a single staple, making sure that the staple pierces the check.

(Better still, stick all of this in your own envelope and mail it to us.)

