COMPUTER $\mathrm{C}_{\text {alishnais }} \& \mathrm{O}_{\text {Itrodotarit }}$ Running Light Without Overbyte

A REFERENCE JOURNAL FOR USERS OF HOME COMPUTERS

In This Issue...
Copyright Mania 3
1976 Trenton Computer Festival, a photo essay 4
TIDBITS 640 Chars/Line Printer for $\$ 250$Day Recommends Science Articles
Votrax Makes the Offer 7
Bad Bit Getters, memory test program Ray Boaz 9
UNIZAP: a modification of the Shooting Stars game J. Shepard 10
Pall Alto Tiny BASIC Li-Chen Wang 12
user documentation \& complete, annotated source code
A Note to Members of SCCS Concerning Lou Fields the Editor 25
Index to The Computer Hobbyist 26
Texas Tiny BASIC (TBX) Marries TV-Cassette Operating 28 System (TVCOS)
NOTES
What's a BAMUG? 27
JIPDEC Visits PCC 27
Chicago Stores 27
The Alpha-Numeric Music Sytem Malcolm Wright 31
Program Repository \& Tape Duplication Facility 32
Byte Swap want ads 32
BASIC Just Wont Cut It, letter 32
How 'Bout Small PASCAL, editor's reply 32
Subscription \& Information Form 33
PCC Bookstore Offerings 35
10\% off IMSAI Products for Journal Readers 36

DON'T KEEP IT A SECRET!

Let us know what exciting new software and systems you are working on. We'll tell everyone else (if you wish). Maybe someone is also working on the same thing. You can work together and get results twice as fast. Or, may be someone else has already done it; no reason for everyone to reinvent the wheel.

DR DOBB'S JOURNAL OF COMPUTER CALISTHENICS \& ORTHODONTIA

Volume 1, Number 4; April, 1976
Box 310, Menlo Park CA 94025
Copyright © 1976 by People's Computer Company

POSTMASTER: Please send Form 3579 to: Box 310, Menlo Park CA 94025. Return postage guaranteed. Application to mail at second-class postage rates is pending at Menlo Park CA.
Published 10 times per year; monthly, excluding July \& December.

U.S. subscriptions:

(Subscripion blank is on page 33.)
$\$ 1.50$ for a single issue.
$\$ 3$ for the first three issues.
$\$ 10$ per year.
Discounts available for bulk orders.

Disclaimer

We serve as a communication medium for the exchange of information. We do not guarantee the validity of that information.

Reprint privileges

Articles herein that are copyrighted by individual authors or otherwise explicitly marked as having restricted reproduction rights may not bc reprinted or copied without permission from People's Computer Company, or the authors. All other articles may be reprinted for any non-commercial purpose, provided a credit-line is included. The credit-line should indicate that the material was reprinted from Dr. Dobb's Lournal of Computer Calisthenics \& Orthodontia, Box 310. Menlo Park CA 94025.

Foreign subscriptions:
Add $\$ 4$ per year to U.S. rates for surface mailo
Ald \$12 per year to U.S. rates for air mail.

COPYRIGHT MANIA: It's mine; it's mine, and you can't play with it!

During the past year or so, People's Computer Company has received several letters-with-enclosures from one Calvin N. Mooers of Rockford Research, Inc. in Cambridge Mass. We initiated the rather unfortunate contact by asking him for information about an interesting but relatively obscure computer language that he had developed called TRAC. (Note: TRAC is, at the least, a registered trademark, and probably patented, copyrighted, and marked with infra-red dye to boot.) What we have since received from this person, however, appears to primarily be concerned with copyrights, patents, trade-marks, and the like. We don't really know because we didn't take the time to wade through all of it. He has sent us a copyrighted price list for his software and documentation that included an entire paragraph about its copyright protection and registered service mark, a mimeographed policy on copyrights and trade-marks, an article concerning a $\$ 3$ million suit against some companies that purportedly have used Mooers' language, and two copies of a major article that Mooers wrote concerning software copyrighting (we hesitate to give the actual name and source of the article-we might be sued for reprinting the title without the author's permission). Oh yes, he also included some information about his computer language. Incidentally, he explicitly prohibited us from publishing most of his letters ... which saved us at least several microseconds in our reaching the decision not to reprint them. Needless to say, Mooers has shown great interest in (preoccupation with?) the manner in which many hobbyists obtain their software, and has written us concerning this topic . . . but we can't let you know what he said because he prohibited us from printing or paraphrasing it.

If you are interested in the topic of proprietary software, you might look up Mooers' name in some readers' guide to computer science literature.

There is an interesting clincher to this little story: Enclosed with Mooers' most recent paper deluge concerning copyright protection were reproduced copies of two articles from Computerworld newspaper. Yes, Computerworld is copyrighted and includes an explicit prohibition against reproduction of material appearing in it unless written permission is obtained. No, the copies that Mooers included with his letter did not include any indication that he had obtained such permission.
[Editor's Note: We have no quarrel with copyrighting, whether it is applied to publications or to software. You may note that most of the PCC publications are copyrighted, including Dr. Dobb's Journal. We do object, however, to the incredible teapot tempest that has recently been raised concerning proprietary software and the hobbyist community. We also object to the blanket indictment that has been laid on all hobbyists: ". . . most of you steal your software" (the essence of Bill Gate's widely publicized February 3rd, openletter to hobbyists).

1. We feel that it unjustifiably casts a shadow on the entire hobbyist community.
2. We know there are many hobbyists who are not thieves in spite of the fact that copyrighted software is as easy
to copy as are copyrighted newspaper articles.
3. We feel this proprietary preoccupation is a waste and misuse of time and energies of talented software professionals.
4. We feel there are differences between marketing software to hobbyist/consumers for their entertainment, and marketing software to the business and industrial community where it is used directly or indirectly for financial gain. We find it unreasonable and impractical to attempt to sell software to hobbyists when its price is half the cost of their hardware systems. It is unreasonable because it's too expensive. It is impractical because, at best, software is very difficult to protect against reproduction.

Furthermore, it is naive to attempt to market software to hobbyists via a royalty agreement with a hardware manufacturer. The analogy comes to mind of someone developing an excellent and useful reference book, then attempting to market it via a royalty agreement with a manufacturer of copying machines, knowing that the manufacturer is going to place the book next to their copiers with a sign saying, "If you want a copy of this book, you must send us $\$ 350$."

We feel there are only two practical choices in marketing software for the hobbyist community: 1) Charge very little for your software, and depend on volume sales for your profit; 2) Charge a great deal for your software, and sell it to your only controllable marketplace: the hardware manufacturers. They need it to enhance their hardware. They are also the only ones who are making sufficient profit to be able to afford your high price.

We believe that we are exemplifying these viewpoints relevant to the copyrighting of PCC publications. Please note the statement of Reprint Privileges inside the front page of each issue of Dr. Dobb's Journal. You may also note that, since we are marketing to the non-profit-making hobbyists, our subscription rate is $\$ 10 / y e a r$. Compare this to, for instance, the \$28/year that Microcomputer Digest charges for a smaller, monthly publication, or the $\$ 10$ to $\$ 40$ that DataPro charges for a single copy of some of their slender reports. But, these latter publications are being marketed to the highly profitable business and industrial computer communities. We have no particular quarrel with this. We are simply pointing out that one adjusts to the realities of one's chosen marketplace.

Finally, to those software professionals and hardware manufacturers who choose to provide low-cost software to the hobbyist community: We wish to actively encourage your efforts. As you develop such software, if you will forward information about ft , we will be pleased to publicize it, without cost. We believe that you are taking the right track in this new and exciting area.] --Jim C. Warren, Jr.
vonorevororororonovorovorovorovorororor

THE SIX PROJECT STAGES

Wild Enthusiasm
Disillusionment
Total Confusion Search for the Guilty Punishment of the Innocent Promotion of the Nonparticipants

THE 1976 TRENTON COMPUTER FESTIVAL

by Sol Libes
[Editor's Note: The 1976 Trenton Computer Festival was the first manufacturer-independent computer convention of national scope for hobbyists. It was held on May 2nd.]

Back in November 1975 when AI Katz and I conceived of a Computer Festival, if you had said that 1,500 people would attend, I would have said you didn't know what you were talking about. And, if you had said that we would have 45 exhibitors, I would have thought that you belonged in the "cuckoo nest." But, it all happened on May 2nd at Trenton「tate College in New Jersey.

SOL LIBES, ACG-NJ president, spoke at the "Computer Club Congress".

What started out as a small affair for about 300 people (we only had about 100 members at the time), six to nine exhibitors, and a flea market, exploded. Considering that we did not anticipate such a large affair, it is incredible that everything went so well.

FLEA MARKET scene

PAT DEITTMAN and associate prepared for demon-
stration on use of microcomputers by radio amateurs.

The Festival turned into a National Convention-the first of its kind. People came from California, Colorado, Florida, North Carolina, Virginia, Washington DC, Maryland, Ohio, Pennsylvania, Massachusetts, Illinois, Indiana, New York, Connecticut, New Hampshire, Michigan, and, of course, New Jersey-18 states in all!

There were 26 speakers with such well known authorities as Dr. Robert Suding, Hal Chamberlin, and Dave Ahl. They spoke on subjects such as the Z-80 Mpu-including demo, computer music, computer graphics, writing software, 16-bic mpu's, etc.

The exhibitors included DEC, Motorola, RAC, Digital

Group, dealers for MITS, IMS, Sphere, E\&L, HAL Communications, and many others.

Amateurs set up demo's of their systems. There was a free program-copying service for programs in the public domain. There was a huge outdoor flea market.

One exhibitor, who had brought 14 CRT terminals (@\$500 apiece) to the festival, sold 12 within minutes after the doors opened. By noon, all his stock was gone and he closed up his booth!

Of course, I was very busy during the Festival, but I did manage to go to two talks-and they were great. I heard Hal Chamberlin's talk on computer music. Hal is doing some radically new things using his IMP 16-bit mpu and a special Fourier hardware system to create music that is better than that I have heard from systems using other techniques. Hal played a tape of the Bach Toccata \& Fugue in D Minor which was programmed on a 16 -bit machine and processed through his Fourier circuitry to produce a rendition which

HAL CHAMBERLIN (left), Computer Hobbyist editor, demonstrated his new techniques for computer music.

MORE flea market

DR. ROBERT SUDING talked about, and demonstrated his new Z-80 microcomputer system.

DAVE AHL (Creative Computing editor) spoke on computer games.
sounded like the best musician I have ever heard.
The other talk I heard was Dr. Robert Suding's concerning the new Zilog Z-80 Mpu. Bob had received an engineering sample of the Z-80 about 6 weeks ago and quickly and easily reworked a Digital Group CPU board to accept the Z-80 (it is not pin compatible with the 8080). Bob showed his system with a very impressive CRT display of all those Z-80 double registers.

All I can say is, if you were not there, you really missed the event of the year (there must have been about 100 Mpu based systems up and running).

ED GERRI spoke on computer graphics.

100 door prizes-worth about $\$ 2 \mathrm{~K}$-were handed out at the festival.

40 CHARS/LINE PRINTER FOR $\$ 250$

by Southwest Technical Products Corp. staff 219 W. Rhapsody, San Antonio TX 78216 (512) 344-0241

Southwest Technical's PR-40 Alphanumeric Printer Kit is a 5×7 dot matrix impact printer similar in operation to the well-known Centronics printers. It prints the 64 character upper case ASCII set with 40 characters/line at a print rate of 75 lines/minute on standard $3-7 / 8^{\prime \prime}$ wide rolls of adding machine paper. One complete line is printed at a time from an internal forty-character line buffer memory. Printing takes place either on the receipt of a carriage return or automatically whenever the line buffer memory is filled.

The printer is available in kit form only and includes the assembled print mechanism, chassis, circuit boards, components, $120 / 240$ VAC-50/60 Hz power supply, assembly instructions, one ribbon and one roll of paper. It sells for $\$ 250$ postpaid in the U.S., and delivery is 30 days.

DAY RECOMMENDS ...

Dear Jim Warren Jr.
There are two excellent articles in May 7, 1976, Science:
"Microprocessors?-An End User's View", R.E. Dessy, pp 511-518.
"Microprocessor Aplications: A Less Sophisticated Approach," J.T. Arnold, pp 519-523.

Jim Day

Votrax makes the offer

speech synthesis kit for under $\$ 1 \mathrm{~K}$

by John McDaniel
Dear Jim:
April 26, 1976
This letter is to confirm our conversation with regard to the VOTRAX Synthesizer Kit which we had discussed.

As I indicated in our conversation, VOTRAX was not aware of the computer hobbyist market, and therefore had not addressed itself to providing anything for that community.

As a result of preliminary investigation, 1 am pleased to relate to you that we could provide a VOTRAX Synthesizer in a kit form for a price not to exceed $\$ 1000$. However, we require more information as to the specifications of the kit and the size of market potential, before we can commit to this price. Our quotation on a minimum order and delivery would be contingent on receiving this data.

Based on the text of your announcement in Dr. Dobb's Journal [Volume 1, Number 3, page 12], I believe that I have mislead you with regard to the size of the VOTRAX market. Your inference was that the VOTRAX market is not very large at present. This is not correct and, I am afraid, would tend to mislead your readers as to the impact the hobbyist market would have. This is not to say, however, that we're not interested in providing something for those users.

I hope that this information will be of benefit to you. I look forward to meeting with you again at the Home-Brew Computer Club Meeting. If I can be of further service, please don't hesitate to contact me.

Sincerely,

John H. McDaniel
Regional Sales Manager
Vocal Interface Division

4340 Campus Dr., No. 212 Newport Beach CA 92660 (714) 557-9181

BASIC SYNTHESIZER INTERFACE SPECIFICATIONS

 GENERAL DESCRIPTIONThe synthesizer requires 8 parallel data bits on its input pins in order to operate. Of these 8 bits, 6 are used for phoneme slection and 2 are used for inflection level selection.

The synthesizer provides a clock output which must be used to time the input data. Data should only be presented or changed on the positive transition of this clock.

Also provided is a status indicator (zero decode), which signals the presence of input data. This is useful when the synthesizer is operated from a buffer memory interface.

All signals are TTL signal elvels, except audio output.
Pin Description, Conn. 6, (Front Mother Board)

Connector Pin No.	Function	See Signal Function	
4	Data In, Inflection MSB	1 TTL load,	
5		Neg. True	A
5	Data In, Inflection LSB	1 TTL load,	
		Neg. True	A

6
7
8
9

2 Output, Phoneme Clock
Data In, Phoneme MSB
Data In, Phoneme
Data In, Phoneme
Data In, Phoneme
Data In, Phoneme
Data In, Phoneme LSB

Output, Zero Decode
Output, Audio Control
Output, Audio Ground
Output, +5 VDC
Output, +12 VDC
Output, - 12 VDC
Ground

1 TTL load, Neg. True 1 TTL load, Neg. True 1 TTL load, Neg. True
1 TTL load, Neg. True
1 TTL load, Neg. True 1 TTL load, Neg. True A
2 TTL loads, Neg. Pulse B
2 TTL loads, Pos. Ture C Ext. 50K Vol. Con. Wiper Audio Return D Interface Supply E Interface Supply E Interface Supply E Signal Return

A
A
A

SIGNAL FUNCTION DESCRIPTION
A. Data In (Pins 4-11) Six bit phoneme code and 2 bit inflection code inputs. All phoneme inputs high are Null code causing no output condition.
B. Phoneme Clock Output (Pin 2) Provides internal timing of synthesizer and must be used to control data input. Data should only be presented or changed on the positive edge of this signal. When all phoneme data inputs are high, this clock runs with a period of 6 milliseconds. When data input is present, the period lengthens, depending on speech rate and the particular phoneme.
C. Zero Decode Output (Pin 3) This signal indicates the status of data by a high signal in absence of data and a low signal when any phoneme data input is low.
D. Audio Control Output (Pins 13 \& 15) 1-2 volt maximum audio signal from 50 K external volume control. Additional external audio amplifier required to drive speaker.
E. Power Supply Voltages. The basic synthesizer requires the following power:
+5 VDC regulated @ 120 MA
+12 VDC regulated @ 160 MA

- 12 VDC regulated @ 200 MA

Pins A\&N should be used for power supply returns, and Pin 15 for external audio amplifier ground return.

NOTES: 1. Conn. 6 mounted on front mother board.
2. Conn. 5 requires jumpers as shown.
3. Power supplied to push on tabs on mother board.
4. Audio control connected to solder points on mother board.

INPUT /OUTPUT WAVEFORMS

Phoneme Clock
Phoneme Data In
($D^{0}-D^{5}$)

Zero Decode

NOTES:

1. Data in should be changed on positive edge of phoneme clock.
2. Zero decode output may contain spikes when data changes.
3. Data in is negative true (1 TTL load with 4. 7 K pullup resistor).
BAD BIT GETTERS:
Memory Test Programs
by Ray Boaz
(reprinted with permission from Homebrew Computer Club
Newsletter)

Every computer system needs a memory test program or two to ensure a high level of confidence in the memory system hardware. One bad memory bit can send a program off to Never-Never Land. The memory test programs listed here are for use with 6800 systems operating with MIKBUG as a system monitor. MIKBUG is a simple monitor (as it was meant to be) which has many useful subroutines. Several of them are made use of in these memory test programs.

The terms used herein are consistent with the 6800 nomenclature. A and B are the two accumulators, X is the index register, PC is the program counter, SP is the stack pointer, CCR is the condition code register, and M is the memory location of interest.

Of the two programs, the shortest, MT1, is written to be used in the 6810 RAM used by MIKBUG as a scratch-pad. It is 27 bytes long and fits into address space A060 to A07A. This should work well for the SWTP 6800 Computer Systems. The second, MT2, is a more general test program but takes up 58 bytes total. The start and end addresses in MT1 are direct operands and therefore, shown blank in the listing. MT2 uses locations A002-3 for start, and A004-5 for end addresses. So these locations must be loaded before the program is started. Also in MT2 the I/O interrupt pointer locations (A000-1 are used so if applicable it must be set after running MT2. In general, both MT1 and MT2 operate the same until an error is found.

In both programs a store is made to an M start address, then the data is fetched back, compared to good data, and if true, it is incremented to test M again with $\mathrm{A}+1$. This continues for all 256 bit combinations-00 to FF. Then X is incremented, and the next location is tested. This continues until the address is encountered.

In MT1, on finding an error, a branch to MIKBUG software interrupt is made which results in the status registers being printed out as follows: CCR-B-A-X-PC-SP. B is the good data, A is the error data, and X is the address with the error. If testing 1 K bytes, $2000-23 \mathrm{FF}$, and an error was found which resulted in $\mathrm{B}=00, \mathrm{~A}=00$ and $\mathrm{X}=007$, the chip containing data bit 7 (MSB) at $\mathrm{M}=2007$ is bad. $\mathrm{M}+1$ must be loaded as the new start address to continue the test to end address.

MT2 on finding an error goes to a routine to print A-B-X, then continues to the next M until end address is reached. Here again, $A=$ error data, $B=g o o d$ data, and $X=M$ error.

Both of these programs have worked well as memory testers and as chip testers for 2102 type memory chips.

MT1

A060 CE	\ldots	START	
LDX	LOAD X WITH START		
A063 4F			OMT
ADCDR	CLRA	CLEAR A	
AF		CLRB	CLEAR B

A065 06
A066 A7 00
A068 A6 00
A06A 11
A06B 26 OD
A06D 4C
A06E 5C
A06F 26
F5
A071 08 A072 8C

A075 26 EC
A077 7E EOE3
A07A 3F MT2

0000 FE A002
0003 4F
0004 5F
000506
0006 A7 00
0008 A6 00
000A 11
000B 26 OD
000D 4C
000E 5C
000F 26 F5
001108
0012 BC A004
001526 EC
0017 7E EOE3
001A B7 A000
001D F7 A001
0020 FF A002
0023 CE E19D
0026 BD E07E
0029 CE A000
002C BD EOCA
002F BD EOCA
0032 BD EOC8
0035 7C A003
003820 C6

	TAP	CLEAR CCR
NVAL	STAA	STORE A AT X ADDR
	LDAA	LOAD A WTH DATA
	JUST STORED	
	CBA	COMPARE B-A
	BNE	IF NOT SAME BRANCH
	TO ERROR	
INCA	ELSE INCREMENT A	
INCB	INCREMENT B	
BNE	IF B NOT EQUAL TO 00	
	BRANCH TO NVAL	
INX	ELSE INCREMENT X	
CPX	COMPARE X TO END	
	ADDR	
BNE	IF NOT SAME BRANCH	
	TMP	TO OMT
	ELSE JUMP TO MIKBUG	
	CONTROL	

ERROR SWI PRINT ERROR STATUS

START LDX LOAD X WITH START ADDR
OMT CLRA CLEAR A
CLRB CLEAR B
TAP CLEAR CCR
NVAL STAA STORE A AT X ADDR
LDAA LOAD A WITH DATA JUST STORED
CBA COMPARE B-A
BNE IF NOT SAME BRANCH TO ERROR
INCA ELSE INCREMENT A
INCB INCREMENT B
BNE
INX
CPX
BNE
JMP
ERROR STAA
STAB
STX
LDX
OF CR/LF/* STRING
JSR JUMP TO PRINT CR/LF/*
LDX LOAD X WITH ADDR OF ERROR DATA
JSR JUMP TO PRINT ERROR (A)

JSR JUMP TO PRINT DATA (B)

JSR JUMP TO PRINT ERROR ADDR (X)
INC INCREMENT M FOR NEW START ADDR
BRA BRANCH TO START

113031	178	MSkTBL	103	
193E 41				
113 F dS				
114601	179		DB	$32 \mathrm{H}, 02 \mathrm{H}, 07 \mathrm{H}, 00 \mathrm{H}_{0} 33 \mathrm{H}$
114132				
1142 \＄2				
114208				
194400				
914533				
114604	100		DB	$04 \mathrm{H}, 96 \mathrm{H}, \mathrm{D1H}, 34 \mathrm{H}, 6 \mathrm{CH}$
114716				
114801				
114934				
114A W8				
114829	181		08	29 H
114C				
1140 35				
114E				
114F 5A				
115种 ${ }^{\text {d }}$	482		DB	
115136				
1152 94				
115394				
1154 蚛				
115537	103		03	$37 \mathrm{H}, 26 \mathrm{H}, 68 \mathrm{H}, 01 \mathrm{H}, 38 \mathrm{H}$
115624				
115768				
1158				
115935				
115A 4 4	104		DB	A $2 \mathrm{H}, \mathrm{DEDH}, 04 \mathrm{H}, 39 \mathrm{H}, 80 \mathrm{H}$
1158 EQ				
115c dod				
1150 39				
115E．8¢				
115F D	485		08	
1160 01				
1161 ゆ0	486	URSHOT：	DB	CR
1162	187		ASC	＇YOUR Shot＞
1176 FF	188		D3	MESND
1177 10	189	HEqUIT：	DB	CR，CR，CR
1178 ¢0				
1179 Wid				
117A	190		ASC	＇yOU Give up too easily＇
1190 $\downarrow \mathrm{D}$	191		00	CR，MESH：
1191 FF				
1192 00	192	WTNMS9：	DB	$C \cdot R, C R, C R$
91930				
9194 60 ASC．YOM Won 118				
4195	193			
11AD 40	194		00	${ }^{\text {CR Y yij F fred }}$
1191	195		ASC	＇Yuid Fired
1148 FF	196		Di！	
11AC	197	WINMS28	ASC．	＇SRIIUTS \ldots MESEST SCURE IS $81{ }^{\circ}$
917．8 CO	9913		U C	CROMESND
19.9 FF				
11CA DD	199	ALNMES：		
11C8	2011		ASC	＇UOULD YUU LIKE TO TRY RGAIN？
11E7 FF	201		OU	MESND
$11 \mathrm{~EB} \mathrm{ゆO}$	202	LOSTMS：	DO	CR
11E9	203		ASC	＇heyl you lost the ciame＇
11FF 00	204		DB	CR，MESNO
1209 FF				
1201 1 D	205	BADMES：	DB	CR
$12 \% 20$	206		D9	CR
12.13	207		ASC	＇you may only shoot stars，tunkey＇
1223 60	2 de		D8	CR，MESNO
1224 FF				
12250	249	TITLE：	03	CR
1226 do	210		DG CR	R，CR
1227 ¢0				
1228	219		ASC	
123 ED	212		OO	CR， CR
1240	213		ASC	$1 \quad 123^{1}$
1240 00	214		CB	CR
124E	215		ASC	456°
1250 ¢0	216		DE	CR
1250	217		ASC	$1{ }^{\prime} 789^{\prime}$
1268 90	218		03	CR，CR，CR，MESNO
126 C ¢D				
1260 ¢0				
126E FF				
126 F ¢0	219	BADNUM：	DB	CR
1270	220		ASC	＇TYPE 1 THRU $9 \ldots$ ．．．OR＂ $\mathrm{Q}^{\prime \prime}$ TU QUIT＂
1290 00	221		DU	CR，MESTMD
1291 FF				

NO ERRORS FLIINO IN THIS ASSEMBLY

 20544f2\％54554954VOF

SYMBOL	TABLE
NAME	VALUE

GETCH	\＄1218	NXTEYT	1070	
ECHO	W1F	INJALD	12138	
HOLE		NOTVAL	1：196	
STAR	（1）$D 2$	LINTST	1199	
WHY	6059	MORDEC	11抽	
SPACE	（10） 20	TALLY	90.5	
QUE	0051	THREED	1：CDE	
COLON	V03A	MICPRT	1452	
zero	あの30	LSTSIG	9125	
CR	い $6 \downarrow 0$	AGAIN		
MESND	$0 \\| F F$	LOSTST	1146	
START	100to	BADMOV	1112	
UNIOIS	16DE	INPUT	1118	
L＇NLOOP	14，${ }^{\text {ar }}$	OUTPUT	1123	
ULOOP2	1 1 ： 11	MESAGE	1132	
NEDOT	1625	MSKTEL	1130	
PSUDOT	1429	URSHOT	1151	
LOADOT	10131	HEDUIT	1177	
DOIT	1033	WINMS1	1192	
CRLF	193E	WINMiS2	14AC	
TESTS	1，146	AGPMES	11CA	
C：OTSTR	1．44C	LOSTMS	11E8	
NXTGRP	105 ${ }^{\text {d }}$	BADMES	1201	
FOUND	1069	TITLE	1225	
UNI2A	10178	QADNUM	126F	

Note that the assembler doesn＇t calculate the＇ASC＇values in the listing－－but leaves space for them．The hex dump has the ASCII in it．Prog．requires less than 700 bytes．The 11 step solution is $5,2,1,8,5,3,2,7,9,8,5$

Palo Alto Tiny BASIC

by Li-Chen Wang
Within the first five issues of $D r$. Dobb's Journal we have published complete details and listings of four versions of Tiny BASIC:

Jan. \& Feb., 1976: Whipple's \& Arnold's Tiny BASIC Extended (TBX)
March, 1976: Greeb's Denver Tiny BASIC
April, 1976: Mueller's MINOL
May, 1976 (now): Wang's Palo Alto Tiny BASIC
All of these have been for 8080° s. We think this is enough for the 8080, at least for the time being. Therefore, we will publish no more 8080 versions unless they have some very unusual or valuable features, for instance:
floating point package (well documented) comprehensive string \& substring operators well-designed graphics/display interface \& commands
complete interface \& commands for mass storage significant program $\&$ variables editing features extensive package of interest built-in functions full BASIC capabilities in under two kilobytes

We are very interested, however, in publishing complete information on some versions of Tiny BASIC for the many other microprocessors, for example:

8008	PACE	6502
6800	SC/MP	ETC.

Also, as you read through the articles on the first four implementations, you should see better ways to do things. features that can easily be added, improvements that are possible in the documentation, etc. We hope you will implement those, as you note them; write them up, and forward them for publication in the Journal as enhancements to these four Tiny BASIC dialects. --dim Warren, Jr. Editor

Numbers
Variables

Arithmetic and compare operators
 All compare operators result in a i if true and a 0 if not true。
Expressions
 ӨथJ ${ }^{\circ}$
 that and are always done first and then t and on and then compare operators. parentheses can also be used to alter the
order of evaluation. Note that compare operators can be order of evaluation. Note that compare operators can be
used in any expression. For example:

$5) \leftrightarrow(R>56) \leftrightarrow(R>98)$
923 iE $x>$ \& $_{\circ}+0$

and 4 with a prescribed probability distribution of: 3% of
being 0 . $15-12 \%$ of being 1 . $56-15=41 \%$ of being 2 .
$98-56=42 \%$ of being 3 , and $100-98=2 \%$ of being 4 .

Direct Commands

commands except the following three, they can only be used
as direct command and not as part of a statement:
Gill start to execute the program starting at the louest statement number.
will print out all the statmentes in numerical order.
will print out all the statmentes in numerical order
is not equal to or is equal to Bi and set the variable ∇ to
A ither X. Y or 0 depending on whether a is greater than. less
either X or 0 depending on whether a is greater than, less
than or equal to B.
PRINT Command

program to continue printing on the same line with another "PRINT"。

$$
\text { PRINT } \mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{~F}_{0} \mathrm{C}, \mathrm{D}_{0} \mathrm{E}_{0} 10 \text {. } \mathrm{F}, \mathrm{G}
$$

will print the values of A and B in 6 spaces, the values of C. D, and E in 3 spaces, and the values of F and G in 10 spaces.
If there are not enough spaces specified for a given value to If there are not enough spaces specified for a given value to be printed, the value yill be printed with enough spaces

GOSUE A* $10+B$			
will cause the execution to jump to different statements as			
computed from the value of the expression $A * 10+B$.			
RETOFN			
A PETURN command must be the last command in a starement and			
follovel hy a CR. When a RETURN command is encountered, it will cause the execution to jump back to the command following			
the most recent GOSUB command.			
GOSUB can be nested. The depth of nesting is linited only by the stack space.			
FOR and NEXT Commands			
FOP $X=A+1$ TO 3*B STEP C -1			
The variable x is set to the value of the expression $A+1$. The values of the expressions (not the expressions themselves) 3*B			
and $C-1$ are remembered. The name of the variable X_{0} the statement number and the position of this command within the			
statement are also remembered. Execution then continues the			
normal wav until a NEXT command is encountered.			
The STEP can be positive negative or even zero. The word			
STEP and the expression following it can be omitted if the			
desired STEP is +1.			
NEXT X			
The name of the variable (X) is checked with that of the most			
recent FOR command. If they do not agree, that POR is terminated and the next recent For is checkedo etc. When a			
match is found, this variable will he set to its current value			
plus the value of the SIEP expression saved by the FOR			
command. The updated value is then compared with the value of			
the TO expression also saved by the FOR command. If this is			
within the limit execution will jump back to the command			
following the FOR command. If this is outside the limit.			
execution continues following the NEXT command itself.			
FOR can be nested. The depth of nesting is limited only by			
the stack space. If a new FOR command with the same control variable as that of an old FOR command is encountered. tho old			
FOR will be terminated automatically.			
STOP Command			
STOP			
This command stops the execution of the program and returns			
control to direct commands from the input device. It can			
appear many times in a program but must be the last command in			
any given statement. i.e. it cannot be followed by a semicolon and other commands.			
Stopping the Execution The execution of program or Iisting of program can be stopped			

INPOT A, B

This is the same as the command above, except the prompt "A:" replaced by UAND SIZE:". Again, both single and double quotes replaced by "AND SIZE:". Again both single and double quotes
can be used as long as they are matched. INPUT A. "STRING", "ANOTHER STRING", B INPUT A. SIRING * *ANOTHER STRING", B
 INPOT 0hyat is the veightia, "AND SIZE"b
GOSOB command is similar to GOTO command except that: a) the
 it in the same statement.

Dr. Dobb's Journal of Computer Calisthenics \& Orthodontia, Box 310, Menlo Park CA 94025

荌

*** TSTV OR RST 7 ***
TEST VARIABLES
 TEXT?
FIND SIZE OF FREE
AND CHECK THAT
IF SO. SAY SORRY
IF NOT. GET ADORESS

 Gl ${ }^{26 \mathrm{e}} \mathrm{d}$

$\begin{aligned} & \text { \% PRI } \\ & \text { 幺 } E N D \end{aligned}$	NTED OR DED WITH	$\begin{aligned} & \text { IF THE LIST } \\ & \text { A COMMA. NO } \end{aligned}$	$\begin{aligned} & \text { IS A NULL LIS } \\ & \text { ICRLF IS GEA } \end{aligned}$	HOWEVER IF THE LIST ATED.
*				
0264	CDACO5		CALL ENDCHK	IF NO WE GET A O
0267	CD1406		CALL FNDLN	FIND THIS OR NEXT LINE
$026 A$	DADCOD	LS 1	JMP C*START	C:PASSED TXTUNF
.0260	CDAA 66		CALL PRTLN	PRINT THE LINE
0.70	CO3207		CALL CHKIG	STOP IF HIT CONTROL-C
0273	CDICO6		CALL FNDLNP	FIND NEXT LINE
0276	C36A02		JMP LS\$	AND LOOP BACK
0279	CEOG	PR INT	LODI C.6	$C=$ OF SPACES
0278	$C F$		TSTC: 0 :PR2	IF NULL LIST \& 0000
0276	38			
0270	06			
$027 E$	CDOEOO		CAll CRLF	GIVE CR-LF AND
0281	C34902		JMP RUNSML	CONT INUE SAME LINE
0284	CF	PR2	TSTC OCR PRO	IF NULL LIST (CR)
0285	0 O			
028606				
0287	CDOEOO		CALL CRLF	ALSO GIVE CR-LF AND
C28A	C33902		JMP RUNNXL	GO TO NEXT L INE
0280	CF	PRO	TSTC OPRI	ELSE IS IT FORMAT?
O28E	23			
$028 F 05$				
0290	DF		EXPR	YES. EVALUATE EXPR.
0291	$4 D$		LOD CDL	AND SAVE IT IN C
0292	C39802		\triangle JP PR3	LOOK FOR MORE TO PRINT
0295	CD4806	PR 1	CALL OTSTG	OR IS IT A STRING?
0298	C3A802		$\triangle M P$ PRB	IF NOT. MUST BE EXPR.
0298	CF	PR3	TSTC OPR	IF "00 GO FIND NEXT
0296	$2 C$			
029006				
O29E	CD9105		CALL FIN	IN THE LIST.
0241	C38002		$J M P$ PRO	LIST CONTINUES
$02 A 4$	COOEOO	PR6	CALL CRLF	LIST ENDS
O2A7 F7 FINISM				
$02 A 8$	DF	PR 8	EXPR	EVALUATE THE EXPR
02A9	C5		PUSH BC	
O2AA	CD6E06		CALL PRTNUM	PRINT THE VALUE
02 AD	C1		POP BC	
02 AE	C39802		J MP PR3	MORE TO PRINT?

GO EXECUTE NEXT COMMAND. THIS IS DONE IN OFINISHO

© \because © CRLFS IS GENERATED AFTER TME ENJIRE LIST MAS BEEN

AND PURGE 10 WORDS
IN THE STACK
JOB DONE RESTORE DE
AND CONTINUE GET ADDRESS OF VARO
NO VARIABLE OWHATZO
YES SAVE IT WE
SAVE TEXT POINTER GET VAR．IN ${ }^{\circ}$ FOR＇ O SAYS NEVER HAD ONE
SD WE ASK：NWHT ？ OD WE ASK：＇OWHAT B＇O
SL SE WE CHECK THEM

NOURGE CURRENT LOCP AND POP ONE LEVEL
GO CHECK AGAIN
COME HERE WHEN AGR DE＝VALUE OF VAR。

い。
 －REM CAN BE FOLLJWED BY ANYTHING AND IS IGNORED
TBI TREATS IT LIKE AN
IFO W WTH A FALSE CONDITION H a palse cond －IF IS FOLLOWED BY AN EXPR．AS A CONDITIION AND ONE HL－DLIMIT
OLD HL P V

 PUT IT BACK BAURRNT AND TEX
POINTER
dOO7 SIH1 39 And DE
OE
 SNIdOT
WH
$7 H$ 7 H
7

こえか

登
2
2 N
\times
Z

®
$\stackrel{0}{\circ}$
$\stackrel{1}{0}$

$\begin{array}{lllll}12 \infty & 0 & n & \cdots & 0 \varrho M \\ 00 & 0 & 0 & 0 & 000 \\ 60 & 0 & 1 & 0 & 100 \\ <0 & 0 & 4 & 0 & 001\end{array}$
u KNncioun\＆
$\begin{array}{lllllll}\infty & \omega & \infty & m & n & m \infty \infty \infty \\ 0 & 0 & 0 & 0 & 0 & 0000 \\ 0 & A & \infty & 0 & 0 & N 0 \sim u \\ 0 & 0 & 0 & 0 & N & 000\end{array}$
\qquad

Z．AWHAT ZONX3 DE POPA HLVVARNXT NXO EN
 ZOAWHAT Z．NX3 DE POPA HLOVARNXT NXO
 $\frac{I}{2}$

 ー

m a	0	0
20	2	2
0	0	0

A NOTE TO MEMBERS OF THE SOUTHERN CALIFORNIA COMPUTER SOCIETY

by Jim C. Warren, Jr., Editor, Dr. Dobb's Journal

I am writing to object to several of the actions of Louis G. Fields, vice president of SCCS, that have recently come to our attention.

1. On April 12th, we sent Mr. Fields 500 copies of the March-April issue of People's Computer Company newspaper, for distribution at the April 24th SCCS meeting, compliments of PCC.

I happened to attend the meeting and found that, first of all, Mr. Fields had failed to bring most of that supply to the meeting, and secondly, those he had distributed were stamped in oversized red letters, "Compliments of Louis G. Fields."

This may have given the completely false impression that either Mr. Fields was the donor of these complimentary copies, or that PCC was somehow supporting Mir. Fields. Mir.

Fields did NOT donate these copies, and, after having the opportunity to see him in action, we wish to adamantly state that PCC does NOT support Mr. Fields in any way!
2. Along with these 500 free copies of $P C C$, we also forwarded a number of other PCC publications, as per Mr. Fields' telephone order of April 12th. His order totaled $\$ 359.75$ (unrelated to the free $P C C$ copies). We forwarded the telephone-ordered publications to Mr. Fields with the understanding that he was representing SCCS.

In spite of repeated billings, to date he has paid only $\$ 59.75$, received June 10 th. Our contacts with the other SCCS officers have consistently shown them to be responsible, trustworthy, and responsive.
3. As a result of the above-noted incidents, PCC will make no further donations or sales through Mr. Fields to SCCS. We will be delighted, however, to work with any of the many other SCCS officers.

Note: We do not mean this to in any way reflect negatively on the SCCS, nor on the many Society officers who are doing an excellent job of administering a worthwhile organization that provides many useful services to the computer hobbyist community.

INDEX TO THE COMPUTER HOBBYIST
VOLUME 1, ISSUES 1 THROUGH 9
This is an excellent newsletter. We strongly recommend it to every serious computer hobbyist. Not flashy; no side-show just excellent, comprehensive, well-written articles.

- Jim Warren

The Computer Hobbyist is a newsletter/magazine totally dedicated to the use of computers and associated devices as a hobby. Both software and hardware are discussed in feature articles. Circuit diagrams and program listings frequently supplement these articles. In addition to the features, each issue contains an editorial and regular columns on surplus, letters
from subscribers, and want ads free to subscribers. Occasionally, as the material warrants, book and product reviews are printed. Frequency of publication varies from 4 to 12 weeks, so subscriptions are for a particular number of issues rather than a time period. The Computer Hobbyist is offset printed on looseleaf $8 \frac{1}{2} 2^{\prime \prime} \times 11^{\prime \prime}$ paper suitable for ring binding (except for the first three issues which were folded to half size) and is mailed third class to subscribers in the continental United States.

Occasionally, printed circuit boards and other hard to find components are made available to aid our readers in constructing the projects written up.

For further information write to: The Computer Hobbyist, Box 295, Cary NC 27511.

THE COMPUTER HOBBYIST

NUMBER 1

1. A GRAPHICS DISPLAY FOR THE 8008 PART 1 - Fundamental concepts and programming technique for inexpensive vector graphics display.
2. SURPLUS SUMMARY - THE TELETYPE STORY - Survey of teleprinter equipment suitable for computer output.
3. NOTES ON THE 8008 INSTRUCTION SET - Some simple tips for more effective 8008 programming not mentioned in the Intel manuals.

NUMBER 2

1. THE 8080 IS HERE - MITS ALTAIR 8800 product line preview and comments on the future of hobby computers.
2. LOGIC SYMBOL CONVENTIONS or HOW TO READ TCH LOGIC DIAGRAMS - Discussion of MIL-STD-806C logic symbols and logic design using the "dot convention".
3. A GRAPHICS DISPLAY FOR THE 8008 PART 2 - Description and diagram of digital and analog circuitry for vector graphics display generator.
4. INTERFACING A 5-LEVEL TELEPRINTER PART 1 - Description of simple current loop interface with common teleprinters.

NUMBER 3

1. A GRAPHICS DISPLAY FOR THE 8008 PART 3 - Description and diagram for large screen XYZ scope using common magnetic deflection CRT's and photos of display.
2. BOOK REVIEW - Critical review of MICROCOMPUTER DESIGN from Martin Research.
3. CHESS BOARD DISPLAY - Description and listing of chessboard and chesspiece display program, fits in about 500 bytes.
4. INTERFACING A 5-LEVEL TELEPRINTER PART 2 - Description and listing of print software that accepts ASCII input.
5. A CHEAP MARK SENSE CARD READER - Description and diagram of circuit for reading pencilled data from tab cards with surplus Western Union card reader.

NUMBER 4

1. HUMAN INTERFACE YOUR GRAPHICS DISPLAY - Description, diagram, and driver software for a 4 variable proportional control input for interactive graphics.
2. 8008 VS 8080 VS IMP-16 WHICH MICROPROCESSOR FOR YOU?. - Detailed comparison of strengths and weaknesses of microprocessors available to hobbyists.

NUMBER 5

1. TCH AUDIO CASSETTE DATA RECORDING STANDARD PART l-Rationale and description of proposed data recording standard for recording on audio cassettes.
2. RANDOM NUMBER GENERATOR - Description and listing of random number generator, sequence length over 2 billion, program length 40 bytes
3. TCH STANDARD AUDIO CASSETTE INTERFACE - Description and diagram of machine independent audio cassette interface conforming to $T C H$ standard.
4. DRAWING WITH YOUR POT CONTROLS - Description and listing of program for interactive drawing on graphics display.

NUMBER 6

1. TCH AUDIO CASSETTE DATA RECORDING STANDARD PART 2 - Discussion of logical data format, cyclic redundancy error detection technique, and summary of standard.
2. ADD A DATA STACK TO YOUR 8008 - Description, circuit, and timing diagram for a 16 byte push-pop stack enhancement for 8008; machine status save/restore routine.
3. THE TCH CASSETTE INTERFACE PRINTED CIRCUIT BOARD - description, foil patterns.
parts list and assembly diagram for $T C H$ audio cassette interface.
NUMBER 7
4. TCH AUDIO CASSETTE STANDARD ROM - Description and listing of audio cassette software for both 8008 and 8080. Also order form for $1702 / 5203$ programming.
5. BOOK REVIEW - Critical review of MACHINE LANGUAGE PROGRAMMING FOR THE 8008 by Nat Wadsworth of Scelbi Computer ConsuIting Inc.
6. NEW PRODUCTS - Brief review of Micro 400 computer kit and the Cramerkit series of microcomputer kits.
7. COMPUTER PING-PONG - Discussion, description, and listing of pina-pong program using the $T C H$ graphic display and pot controls.

NUMBER 8

1. INTERFACING THE ALTAIR 8800 PART 1 - Detailed discussion of system loading considerations, timing diagrams, and example TCH cassette and ROM interface.
2. NEW PRODUCTS - Brief review of Altair 680, JOLT, and Sphere computer kits. Brief discussion of Mini-Software's FORTRAN system for the 8080 .
3. AN IMP-16 MICROCOMPUTER SYSTEM PART 1-Overall system description of high pertormance 16 hit microcomputer construction project.
4. WHAT THIS COUNTRY NEEDS IS A GOOD $\$ 20$ MICROPROCESSOR - Discussion of features and programming considerations of the MOS Technology 650 X series of microprocessors.

NUMBER 9

1. TCH SUPER SIMPLE FLOPPY DISK INTERFACE PART 1 - General description of floppy disk drives and discussion of controller requirements.
2. INTERFACING THE ALTAIR 8800 PART 2 - Discussion of polled interrupt scheme that doesn't require a vectored interrupt card, diagram for interrupting keyboard.
3. AN IMP-16 MICROCOMPUTER SYSTEM PART 2-Detailed discussion of system bus controller. Also schematic and timing diagrams for bus controller.

JIPDEC VISITS PCC

We didn't know that People's Computer Company fame had spread so far. On May 19th, we were visited by the Microprocessor Application Study Team from the Japan Information Processing Development Center. The team included Professor Hidetoshi from Keio University; Koichiro Ishihara, a Research Fellow with Hitachi Systems Development Lab; Tatsui Miyakawa, Manager of Fujitsu's Computer Science Lab; and Kazuya Watanabe, from NEC (Nippon Electric Company). We were surprised, honored, and delighted by their visit, and pleased with the opportunity to exchange ideas and information.

What may be even more interesting to our readers is that, in the face of all of the massive microprocessor research and manufacturing that is centered in the San Francisco Bay area, this JIPDEC group chose to visit only PCC and IMS Associates, Inc. (IMSAI).

CHICAGO STORES:
 CHICAGO COMPUTER STORE ITTY BITTY MACHINE CO.

There are two new computer stores in the Chicago area:
Chicago Computer Store (handles MITS stuff)
517 Talcott Rd at Hwy 62
Park Ridge IL 60068
Itty Bitty Machine Co. (handles IMSAI, etc.)
1316 W. Chicago Ave.
Evanston Ill.
TedNelson of Computer Lib has a hand in the second one.

WHAT'S A BAMUG?

by Richard Lindberg
BAMUG stands for [San Francisco] Bay Area Microprocessor's Users Group. It is one of the many computer hobby clubs which have sprung up like weeds in the past year. We meet in San Leandro, Cal., on the first Thursday of each month. Meetings are held at the Great Western Savings building at E. 14 th and Davis, at 7 p.m.

BAMUG is a relatively small group. Anyone is welcome to join us, but we are mostly interested in the Intel 8080. We are starting a software library which, though still small, contains some very useful programs.

We try to keep the meetings interesting. We have some demonstration at every meeting, if possible. At the last meeting we had one of our members, Ken Jackman, tell us some of the concepts involved in Nim-like games. He is writing a book on the subject and presents it well with the aid of his vintage Nova.

At the next meeting we will have George Morrow. He will be hauling odds and ends out of his basement to show us. Of particular interest is his inexpensive tape cassette interface. We also hope to get a preview of his 16 K ALTAIR-IMSAI compatible RAM board.

We have voluntary dues of 50 cents per meeting, but you are welcome to attend without paying. If you have a program to contribute to our library, please bring us a copy.
(Reprinted with permission from Homebrew Computer Club Newsletter)

Texas Tiny BASIC (TBX) Marries TV.Cassette Operating System (TVCOS)

by Digital Group Software Systems, Inc. staff
Box 6528, Denver CO 80206; (303) 861-1686
QUESTION: What could almost be better than having your micro programs run correctly?
ANSWER: Having unique micro software to utilize to your heart's content!! Whether to create some fantastic program(s) or to have the facility to entertain yourself and/or friends with programs and games requiring a bit of "think power" . . . especially for those days when your "think power" could stand a bit of bolstering!
All this is possible thanks to the software packages now being provided by Digital Group Software Systems, Inc., (DGSS), which was recently established and is headed by Chuck and Dianne Howerton. Software which is now avallable on cassette tapes, complete (for the most part) with documentation for each offering, is as follows:

1. TINY BASIC EXTENDED (TBS-TVCOS) 10K, VERSION 1
Created by Dick Whipple and John Arnold of Tyler, Texas, based upon design criteria published in Dr. Dobo's Journal Volume 1, Number 1, page 14. Dr. Robert Suding of The Digital Group designed and developed the software interfaces between TXB (TINY BASIC EXTENDED) and the TVCassette Operating System (TVCOS) for the Digital Group 8080 microcomputer. This is a superset of TINY BASIC as originally proposed; a limited and modified subset of the full BASIC language. It has 26 possible simple or dimensioned variables, 4 immediate commands (LST, NEW, RUN, and SZE), and 12 commands (DIM, DTA, END, FOR, GOTO, GOSUB, IF, IN, LET, NXT, PR, and RET) which may be entered either as program statements or immediate execution commands. Also included is a RN or Random Number generator. 14 pages of documentation, which lets you do everything with TINY BASIC EXTENDED that is presently possible, is also included.

PRICE: $\$ 5.00$ @ cassette with documentation.

2. TINY BASIC GAMES, DGSS SET 1

Contains 5 games written in TBX language-3 games are TBX versions of games listed in either 101 Computer Games or What to do After You Hit Return [Both are available through PCC bookstore. Please see inside of back cover.]. Other two games are original products of author Howerton. Games on Set 1 tape are:
a. CHOMP: 2 or more players take turns biting into the poisioned cookie - Each trying to force
one of the others to take the poisioned "byte"!!!
b. CHECKERS: You against the computer in this classic board game - WARNING: The computer is as crafty as a 6-year old playing his first game!!
C. TIC-TAC-TOE: The computer plays a fairly reasonable game with just enough randomness in its selection to make the game in teresting - Can be beaten.
d. DIGIGUESS: Try to guess a 4 digit number "thunk" up by the computer based upon clues it supplies.
8. BRAINTEASER: A strategy game - You against your own worst enemy... YOU! Try to create a pattern working with a set of rules to drive you nuts!!!

PRICE: \$5.00 @ cassette with documentation

NOTE: TINY BASIC GAMES, DGSS Set 1 , and all TINY BASIC GAMES are read in AFTER "bootstrapping" TBX-TVCOS program into micro-computer.... and away (:RUNCr) you gol!

3. TINY BASIC GAMES, DGSS Set 2

All the games in this set were adapted to TBX-TVCOS by Dr. Robert Suding from 101 COMPUTER GAMES, PEOPLE'S COMPUTER COMPANY and WHAT TO DO AFTER YOU HIT RETURN.
a. WAR-3: An artillery duel between 2 or 3 armies - OBJECT: To blast the opponent (s).
b. THERAPY: Have a relaxing "conversation" with DR. THERAPY and investigate your inner problem(s).
c. GOLF: 9 holes of championship play on the "micro-links" - Hooks and slices are rare and l-putts from 40 feet are fairly common.
d. REVERSE: Test your skills at arranging things in sequential order from a random beginning according to a fixed set of rules.
e. BIORYTHM: Predict your "highs" and
"lows" from a computer-produced chart based upon your personal statistics.

PRICE: \$5.00 @ cassette with documentation
4. TINY BASIC GAMES, DGSS Set 3

All the games in this set were adapted to TBX-TVCOS by Ted Holdahl from 101 COMPUTER GAMES .
a. TAXMAN: Test your knowledge of factoring by trying to beat the TAXMAN!! It's tough but he can be beatenl!
b. SNARK: Learn symbolic logic and the use of Ven diagrams while trying to find the SNARK.
C. TRAP: Find the computers ${ }^{\circ}$ number by trapping it between two guesses of your 'own.
d. NUMBER: Learn binary-searching techniques while trying to pinpoint a randomly-generated num ber between 1 and 100 .
e. SQUARE-ROOTS: Computes the square root of any number from -32K to +32K.
f. CLOCK: This bonus program keeps accurate time using looping techniques and displays on the screen to the nearest second.

PRICE: $\$ 5.00$ @ cassette with documentation.
5. TINY BASIC GAMES, DGSS Set 4

All the games in this set were adapted to TBX-TVCOS by Ted Holdahl from. 101 COMPUTER GAMES.
a. HAMURABI: Try governing ancient Sumaria successfully. The author says that the object of the game is to discover the rules.
b. STARS: Guess the computers ${ }^{\circ}$ number based on clues which tell you whether your warm, hot, or cold.
c. 23-MATCHES: Outfox the computer by making it take the last match in the pile - You can beat it if you try hard enough.
d. 20-QUESTIONS: Take-off on an old radio-IV game where the player
guesses the computers' number by asking questions.
e. BLACKJACK: From 1-9 players Play against the house in this Casino game.
f. FACTOR: A bonus program which will compute the factors of any number up to 32,767 or tell you if it is prime.
g. BATUM: A super bonus game which is a varient of 23-MATCHES. Good selections will really make the computer think! !

PRICE: $\$ 5.00$ Cassette with documentation.
6. KINGDOM; LIFE $1 \&$ LIFE 2 (all on one tape)
a. KINGDOM: Lets you be the "KING" of land/bushels/population of YOUR "KINGDOM" - Object of game is to accumulate 1 million acres and/or bushels which can only be accomplished by buying and selling land. Tonten your abilifty to buy and soll thene itemes and outwit tho compli= cations all KINGS havel!
b. LIFE 1: Standard LIFE which will take a pattern and, with simple rules of LIFE, iterate until a stable situation is reached.
C. LIFE 2: Bi-Symetrical pattern generator based upon modified rules of LIFE but a stable situation is NEVER achieved - Will continue to run and never repeat pattern for approximately 10^{31} years!!

PRICE: $\$ 5.00$ @ cassette with documentation (sort of) 11

7. EDUCATOR 8080

Designed to assist the micro-computer user in understanding the effect that the execution of various instructions has on status and operation of micro-processor unit - Provides continuous real-time display of status flags. Accumulator, B and C registers which reflect their contents as changed and/or modified by instructions
issued by user - Complete with EDUCATOR instruction set.

PRICE: $\$ 10.00$ @ cassette with documentation.
8. AMATEUR RADIO HAM CASSETTE FOR 8080

Amateur Radio (CW) Send and Receilve RTTY (Baudot) Send and Receive

CW" Receive is automatically selfadjusting to any CW speed sent
CW Send has 8 100-character memorins that may bo individually callod up
CW Send also features a 256-character software FIFO buffer

RTTY Receive can select 60, 66 and 100 Words per Minute (WPM): upper or lower case output to TV.
RTTY Send program can send at 60 . 66 , or 100 WPM.

All 4 programs are designed to reside simultaneously in a lok Digital Group 8080 system.

PRICE: Documentation and cassette

 HAM-1 $\$ 5.00$9. OPERATING GUIDE - TVT MONITOR 8 FOR 8008 BASED SYSTEMS

The TVT Monitor 8 is a modification and extention of the Monitor 8 published by MIL before their untimely demise. The original Monitor 8 was written to be used with teletype/paper tape input and output. The TVT Monitor 8 is designed to be used with a Digital Group TVT, ASCII keyboard and Digital Group Cassette tape interface as input and output.

Several features were added to the Monitor 8 to increase its usefulness. One of these is software scrolling of the TVT. This causes the TVT to simulate the format of a teletype by displaying the previous seven lines. Two other additions were the "Insert" (INS) and
"Delete" (DEL) routines which allow one to insert or delete octal code at any point in your program. These routines move the following instructions in memory to make room for the new instructions or close up a space. In addition, the addresser of JMP and CAL instructions are modified as appropriate to maintain proper loop registration. A program to zero memory was added (ZRO). And a program to load ASCII directly into memory (helpful for TVT output) was also developed (TXT).

The use of this operating system in program development would typically involve the following steps:

1) ZRO - zero program storage area
2) Symbolic input of rough program draft
3) TXT - input of any ASCII characters needed
4) DPS - symbolic dump to verify program or DPO - octal dump to verify code
5) XQT - execute program as subroutine of monitor
6) SBP - set break point to print out register and flag status at any program step
7) EDT,INS,DEL - these functions can be used to change, insert, or delete, instructions at any location. A particular advantage of this monitor is that on deletion or insertion of instructions the code following is moved up or down in memory and all JMP and CAL instructions are modified to maintain registration.

ONCE THE PROGRAM IS RUNNING TO YOUR SATISFACTION:

8) CPY - moves blocks of data around im memory
9) TRN - changes JMP and CAL arguments to reflect
new page numbers
10) TAS - can be used to store completed program on cassette tape
11) $P R G$ - can be used (if one has the proper hardware) to program EPROM's.

Price: MONITOR-8
$\$ 6.00$

PLEASE NOTE: This package runs only on 8008-based systems - w11 not run on 8080.

All the above described programs and games can be obtained either by ordering through the Digital Group or, if your order is exclusively for software, you may order direct from:

Digital Group Software Systems PO Box 1086
 Arvada, CO 80001

Should you have any immediate questions, Chuck or Dianne may be reached at (303) 422-6197. please try to restrict calls to 9 - 5pm Mon - Saturday.

Watch for the next Digital Group Flyer to find out what's new in the way of available programs and/ or games and other interesting items for your microcomputer.

NOTE: A11 TINY BASIC EXTENDED (TBX-TVCOS) users are encouraged to develog additional programs and games which will run under the system. Users who submit programs and/or games to DGSS with appropriate documentation and who consent to permit DGSS to distribute copies will be paid a small royalty for each copy sold. Submissions must include a cassette tape containing the program or game and typewritten documentation as required. All submissions will be acknowledged but cannot be returned
unless accompanied by a self-addressed stamped mailer. Obviously, if many users send in submissions, duplications will occur. In this event, date of receipt AND quality of work will determine which contributor's submission will be utilized. Royalties will be paid quarterly in cash or may be applied to the purchase of products at a discounted rate.

0000000003000000000000000000

THE ALPHA-NUMERIC MUSIC SYSTEM

by Malcolm Wright
In the January, 1976, issue of PCC Newspaper, an article was published on a music program for the 8080 CPU, called "Alpha-Numeric Music with Amplitude Control." Since January, the PCC bookstore has made this 22-page article available for \$2. The interest at the Home Brew Computer Club, computer stores, and mail orders has been relatively high. There have been many other music routines written for the 8008 and 8080 CPU's, but Alpha-Numeric Music seems to be getting a great deal of interest from music majors, as well as the general hobbyist. Why?

Looking into the Alpha-Numeric Music (ANM) program. one can see many features that don't exist in most of the other routines.

1. An easy-to-follow encoding scheme for writing music. Not just number look-up tables for coding, but letters like C, D\# (D-sharp), A! (A-flat), for the actual notes to be played.
2. A range of 6 octaves can be played, from about 31 Hz up to 2092 Hz .
3. Different voicing (different sounds) can be specified any time in the musical piece by typing CTRL-E and a number 0 thru 9 to pick the sound.
4. Three different volume levels can be called upon for loud and soft passages of music.
5. The duration of the note can be set from a whole note (W) down to a thirty-second note (T), to satisfy most music fans, any time in the musical measure.
6. The tempo of the music can be changed to three different rates including a nominal 100 beats a minute.

If you have a convenient way of loading programs into your 8080 computer, I am sure you will enjoy this program.

This is a NOTEworthy routine that will MEASURE up to any other music program and help you SCALE new heights in micro-computer enjoyment by BEATing the dull and average software.

Editor's Note: Malcolm Wright is the designer of this system, and the author of Alpha-Numeric Music with Amplitude Control. Please see page 35 for ordering information.

The Community Computer Center (CCC) will act as a repository for program tapes; both source tapes and binary tapes. Everyone wishing to contribute programs to the public domain may do so by forwarding appropriate paper tapes to CCC. In particular, if you are hesitant about submitting a program for publication in Dr. Dobb's Journal because you don't want to hassle with its distribution, you are encouraged to forward the tapes to CCC and the documentation to the Journal for publication.

The CCC will thus serve as a desirable alternative and supplement to the User Groups that are controlled and operated by many of the processor manufacturers, some of whom charge up to $\$ 100$ for "membership" and access to the programs that their customers developed and offered to the User Group, without compensation.

There is no membership fee for access to the tapes from the Community Computer Center. Instead, one pays only for the duplication and mailing costs:

Duplication charge: $\$ 1 /$ ounce or fraction thereof, for tapes (weighed after punching on fanfold tape)
(Add 6% tax for orders mailed to a California address)
Postage \& handling: $\$ 0.50$ on orders of $\$ 5$ and less
$\$ 1$ on orders exceeding \$5
Payment must accompany all orders. Orders will be mailed
First Class, within 3 days of receipt.
Lists of available tapes will be published, periodically, in Dr. Dobb's Journal, as well as being available from CCC:

```
Community Computer Center
1 9 1 9 \text { Menalto Avenue}
Menlo Park, CA }9402
(415)326-4444
```

The following source tapes are currently available. They are programs written for the version of BASIC that is implemented for the HP 2000F minicomputers, and are discussed in What To Do After You Hit Retum (available from the PCC Bookstore, \$6.95).

Nunher Cuessing Gimus	$\$ 12$	Boord Games	$\$ 11$
Number	2	Qubics	5
Abase	3	Gumoku	4
Trap	2	Teaser	3
Stars	2	Rover	5
Clocks	3	Welcome to the Caves	\$ 9
Bugels	2	Caves 1	5
Quadgt	3	Wumpus	4
Button	2	Caves?	5
Word Games	510	Business \& Smial Suence	\$22
Lefter	2	Hamrbi	3
Atagel	3	King	5
Hangma	3	Civil2	7
Madlib	6	Markel	5
Word	2	Stock	5
"Nimbike" Cames	\$11	Policy	4
23 Mtch	2	Polut	4
Bathum	3	Science Fiction Games	312
Nim	4	Trader	10
Chomp	3	Stirl	9
Zot	5	Last Chaper	\$10
Hide-n-Seed in 20	\$ 4	Crash	4
f flukle	2	Lunar	3
Muswinp	2	Revers	2
Suark	2	Zeros	3
Patern Games	\$11	Taxman	3
Dangle	2	The following gaves are in	
Sunsgn	3	Dartmomti BAStC	
Biosin	3	Mutic	5
Mandal	3	Rescue	5
Life	3		
Amace	3		
For historical reasms, CCC maintoins a diferent price schodule for posisge and handing on this purticular set of tapes: dupheation charge and tax. as ahowe postage and handhag: $\$ 0.50$ un orders under $\$ 10$ $\$ 1.00$ un order af $\$ 10$ or mare			

We are experimenting with offering a "Want Ad" section. We will continue to do it as long as we can afford it (in terms of staff time and printing costs). Note: the charge for running an ad will undoubtedly increase as our circulation (and printing costs) increases.

Please follow these instructions in submitting ads. Ads received in other than this form cannot be accepted, and will be returned to the sender.

1. Type the ad, with a blank space between each line, in lines no more than 50 character positions in length.
2. Include at least your name and address as part of the ad. "Blind" adis will not be accepted.
3. Compute the charge on the basis of $\$ 1$ per line or partial line, per issue.
4. Forward the typed copy and a check or money order payable
to "PCC," to: DD.J Byte Swap, PCC, Box 310, Menlo Park CA 94025.
Do not send cash. Your cancelled check is your receipt. Payment must accompany the ad.

SELL: MIL MOD-8 with MONITOR, TVT-1 with UART and keyboard, Creed TTY, Altair 8800 new kit, unassembled. Send SASE to R. Schultz, 611 N. Dexter, Lansing MI 48910. -5/14/76

"BASIC JUST WON'T CUT IT. GET STARTED ON A NEW LANGUAGE."

Dear Jim Warren, May 15, 1976
I think you are wasting good space with still another version of BASIC. BASIC just won't cut it.

Suggest you get started on a new language for hobbyists with the best features of many languages. Should come in various sizes, always upward compatible. Also, it should be interpretive for fast programming, and compilable for fast execution.

Bill Roch
24365 Clipstone
Woodland Hills CA 91364

HOW 'BOUT SMALL PASCAL?

Bill,
If fully agree. You're asking for a lot in requesting various sizes + upwards compatibility + interpretable + compilable, but I hope to offer at least part of that in our next HLL (High Level Language) for micros. Unless someone else volunteers to initiate a HLL project through the Journal in the next month or three, I hope to start a build-your-own-compiler project called SMALL PASCAL. My plan is to detail the design of each module of a compiler in a series of articles. The compiler will be for a block-structured PASCAL-like language, trimmed for microcomputer size, and modified as appropriate for a presumed interactive, stand-alone environment (as opposed to a batch system). At this point, expandability and interpretability are low-priority goals for this project, but Ill keep them in mind.

I definitely wish to "push" a "good" HLL, instead of continuing emphasis or reinforcement of BASIC. BASIC is better than nothing (and, currently, nothing else is available for hobbyists). However, I see no reason to continue to eat $19 \$$ hamburgers when classy filet mignons are available at the cost of a little interesting effort. -JCW, Jr.

DR. DOBB'S JOURNAL OF COMPUTER CALISTHENTICS AND ORTHODONTIA is published ten time per year, monthly except in July and December.

U.S. Subscriptions:

For foreign subscriptions:
$\square \$ 1.50$ for a single copy: Vol. \qquad , No. \qquad \square add $\$ 4.00$ per year for surface mail, or $\$ 3.00$ for the first three issues $\$ 10.00$ per year (10 issues/year): Begin with Vol. \qquad add $\$ 12.00$ per year for air mailNo. \qquad
Payment must accompany the subscription. We do not invoice for subscriptions or single orders. Send to: PCC
Necessary Information:
P.O. Box 310

Menlo Park, Ca. 94025
Name (last name first) \qquad
Mailing Address \qquad

City \qquad State \qquad Zip Code \qquad
\square yes \square no: This information may be published in directories and lists of individuals interested in computers in non-commercial environments.
, <ne
Optional Information:
Equipment that you have or are planning on purchasing, immediately:
Make \& model \quad Manufacturer
CPU model ___ CPU Manufacturer___
I/O Devices

Mass storage peripherals \qquad
\qquad
\qquad
\qquad

Primary areas of interest concerning non-commercial and home computers:
\qquad
\qquad
\qquad
\qquad
\qquad

Questions: What would you like to see published in DR. DOBB'S JOURNAL? It will help guide us if you will rate these, 1 to 10 (1 - minimally desire; 10 - super-eager to see) or 0 (would prefer we not waste space publishing it).

Schematics and acticles from all of the computer club newsletters
Short news articles directly related to home computers
Short news articles concerning computers in general, particularly their social implications
Indices to all articles in all other computer hobby publications
Indices to selected articles from other computer, electronic, and trade publications
Letters having technical, critical, or entertaining content
Classified ads (as opposed to display advertising)
Suggestions and "blue skying" about what can be done with home computers in the foreseeable future.

Directories of:

Users of home computers and their equipment Computer clubs
Computer stores and distributers Sources of used equipment
Manufacturers of computer kits
Microprocessor and minicomputer manufacturers
Source code listings and documentation: For which microprocessors? \qquad
Nearly full-sized (much less can be published)
Reduced as in recent issues (more difficult to read, but more info included in each issue)
What kind of software would you like to see developed and placed in the public domain?
Importance Rating Software Description
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
i

	Place
	13-cent
stamp	

DR DOBB'S JOURNAL OF
 COMPUTER CALISTHENICS \& ORTHODONTIA PCC
 BOX 310
 MENLO PARK CA 94025

To use this as a self-mailer: 1. Fold it so this third covers the top third. 2. Place the proper postage, above. 3. If you are subscribing, insert your check so that it crosses a fold. 4. Staple this closed with a single staple, making sure that the staple pierces the check.
(Better still, stick all of this in your own envelope, and mail it to us.)

What else would you like to see us publish? Please use another page or ten, if you need them. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BOOKSTORE

ACTIVE FILTER COOKBOOK
Don Lancaster. 1975. 240 pp。 $\$ 14.95$.
ADVANCED APPLICATIONS FOR POCKET CALCULATORS Jack Gilbert. 1975. 304 pp. $\$ 5.95$.
ALPHA-NUMERIC MUSIC WITH AMPLITUDE CONTROL Malcolm Wright. 1975. 23 pp. \$2. Xeroxed
BIOFEEDBACK: Turning on the Power of your Mind
Marvin Karlins \& Lewis Anderson. 1973. 190 pp. $\$ 1.25$.
BIOFEEDBACK AND THE ARTS
Edited by David Rosenboom. 1976. 163 pp. \$12.95. Hardbound.
BASIC
Albrecht, Finkel, \& Brown. 1973. 325 pp. $\$ 3.95$.
BASIC BASIC
James Coan. 1970. 256 pp. \$3.95.
BASIC PROGRAMMING
Kemeny © Kurtz. 1961, 1971. 150 pp. $\$ 6.95$.
THE BEST OF CREATIVE COMPUTING, Vol 1
David Ahl, editor. 1976. 328 рр. \$8.95.
BODY TIME
Gay Gaer Luce. 1973. 411 pp. $\$ 1.25$.
THE BUGBOOK I \& II with INSTRUCTOR'S WORKBOOK
Rony, Larsen, EO Braden. 1974. $\$ 16.95 .2$ volumes + workbook.

THE BUGBOOK III

Rony, Larsen, © Titus, 1975. \$14.95.
CALCULATOR CALCULUS
George McCarty. 1975. 254 pp. \$8.75.
COMPUTER LIB/DREAM MACHINES
Theodore Nelson. 1974. 186 pp. $\$ 7$.
COMPUTERS \& COMPUTATION
Scientific American。1950-1971. 280 pp. \$6.
ELECTRONIC PROJECTS FOR MUSICIANS
Craig Anderton. 1975. 134 pp. $\$ 6.95$.
FUNDAMENTALS \& APPLICATIONS OF DIGITAL LOGIC CIRCUITS Sol Libes. 1975. 192 pp. $\$ 5.98$.

FUN \& GAMES WITH THE COMPUTER
Edwin Sage. 1975. 360 pp. $\$ 5.95$.
GAMES, TRICKS, © PUZZLES FOR A HAND CALCULATOR
Wallace Judd. 1974. 100 pp. $\$ 2.95$.
GAMES WITH THE POCKET CALCULATOR
Thiagaragan © Stolovitch. 1976. 64 pp. \$2.
GETTING THE MOST OUT OF YOUR ELECTRONIC CALCULATOR William Hunter. 1974. 204 pp. \$4.95.

INTRODUCTION TO MICROCOMPUTERS

Adlam Osborne \& Associates, Inc. 1975. 384 pp. $\$ 7.50$

MATH WRITING \& GAMES IN THE OPEN CLASSROOM Herbert Kohl. 1974. 252 pp. $\$ 2.45$.

MY COMPUTER LIKES ME WHEN I SPEAK IN BASIC Bob Albrecht. 1972. 64 pp. $\$ 2$.

MY COMPUTER LIKES ME WHEN I SPEAK IN BASIC Bob Albrecht. 1972. 64 pp. $\$ 2$.

MICROPROCESSOR/MICROPROGRAMMING HANDBOOK Brice Ward. 1976. 294 pp. $\$ 6.95$.

NEW MIND, NEW BODY; BIO-FEEDBACK: New Directions for the Mind
Barbara Brown, Ph.D. 1974. 523 pp. $\$ 2.50$.
101 BASIC COMPUTER GAMES
David Ahl, editor. 1974. 250 pp. $\$ 7.50$.
PRINCIPLES \& PRACTICE OF ELECTRONIC MUSIC
Gilbert Trythall. 1973. 214 pp. $\$ 6.95$.
PROBLEMS FOR COMPUTER SOLUTION
Gruenberger © Jaffray. 1965. $\$ 7.95$.

PROBABILITY

D.J. Koosis. 1973. 163 pp. 2.95.

PROFESSOR GOOGOL'S MATH PRIMER

Sam Valenza Jr. 1973. 144 pp. $\$ 3.25$.
PROF E. McSQUARED'S (ORIGINAL FANTASTIC \& SATISFYING CALCULUS PRIMER)
Swann \& Johnson. 1975. 111 pp. $\$ 2.95$.

PROGRAMMING PROVERBS

Henry Ledgard. 1975. 134 pp. $\$ 5.95$.
PCC GAMES' PROGRAM LISTINGS
PCC. 1974. $31 \mathrm{pp} . \$ 2$.
STATISTICS
D.J. Koosis. 1972. 282 pp. $\$ 3.95$.

TEACH YOURSELF BASIC, Volumes 1 © 2
Tecnica Education Corp. 1970. 64 pp each. $\$ 1.95$ each
TTL COOKBOOK
Don Lancaster. 1974. 328 pp. $\$ 7.95$.
TV TYPEWRITER COOKBOOK
Don Lancaster. 1976. 256 pp. \$9.95.
II CYBERNETIC FRONTIERS
Stewart Brand. 1974. 96 pp. $\$ 2$.
THE UNIVERSAL TRAVELER
Don Koberg © Jim Bagnall. 1974. 128 pp. \$4.95.

WHOLE EARTH EPILOG

Stewart Brand, editor. 1974. $318 \mathrm{pp} . \$ 4$.
WHAT TO DO AFTER YOU HIT RETURN or PCC'S FIRST BOOK OF COMPUTER GAMES
PCC. 1975. 157 pp. $\$ 6.95$.

[^0]
10% DISCOUNT ON IMSRI PRODUCTS

FOR DR.DOBB'S JOURNAL RERDERS

from KENTUCKY FRIED COMPUTERS

(THROUGH JULY 31ST, 1976)
Applied Computer Technology (ACT) plans to open the "Kentucky Fried Computers" computer store in Berkeley, California, later this year. Until then ACT will sell computer kits on a mail order and telephone order basis. Kits may be picked up in person, by appointment, or shipped at the customer's option.

While we can't offer the kind of one-to-one customer service we would like until we open the store, we can fill an important need for computer hobbyists: we sell from stock--your order goes out the door as soon as you pay for it.

Right now we are stocking IMSAI Computers (I-8080 with 22-slot motherboard), and IMSAI 4K RAMS (RAM4A-4). We will also take orders on any other IMSAI products. These products have the full IMSAI warranty, and IMSAI will provide their excellent customer assistance service.

Clip the coupon for your 10\% discount. California residents add 6\% sales tax. Add 2\% for shipped orders (excess refunded).

Our motto: A computer in every pot.

Applied Computer Technology 1038 Merced St
Berkeley CA 94707
(415) 527-6760

[^0]: List title and quantity for each item you wish to order. (Orders to be shipped within California require a sales tax remittance of 6%.) For orders less than $\$ 10$, add $\$ 1$ for postage and handling; for orders $\$ 10$ and more, add $\$ 2$. Send your order, along with your check or money order, to: PCC, Box 310, Menlo Park CA 94025. Thank you.

