dr. dobb's journal of ¥1.50

COMPUTER
tisthenics O Orthodontia

Running Light Without Owerbyte

November/December, 1976 Box E, Menlo Park CA 94025 ;Volume 1, Number 10

A REFERENCE JOURNAL FOR USERS OF HOME COMPUTERS

Consumer Action

Product & Software Testing to Become Regular Feature in Dr. Dobb’s Journal
Unresponsiveness from Advanced Micro-Electronics, Stuart Fallgatler & DDJ

SCCS Interface — A Status Report, Southern Calif. Computer Soc. Board of Directors
Thinking of Opening a Computer Store? Budget Estimates & a Map

Jim McCord Reports on the LSI-11, Jim McCord

Tarbell Response, Compliments & Complaints

NEC & IMSAI Incompatible with 8080A, Letters from Glen Tenney, IMSAI & NEC
Product Review: Poly 88 - - AN EXCELLENT SYSTEM, Jef Raskin

Realizable Fantasies

Machine-Readable Programs & Data, Published in Magazine Format, Editor, DDJ
Use an Acoustic Coupler to Read/Write Tape Cassette, Jim Warren

Software

It’s a BASIC, It’s an APL . . . It’s CASUAL! Bob Van Valzah
A Homebrewed Language & Interpreter from Chicago — Complete Documentation & Code
NIBL - - Tiny Basic for National’s SC/MP Kit, Mark Alexander
Complete Documentation & Fully Annotated Code Listings
Upgraded CP/M Floppy Disc Operating System Now Available
Arithmetic Expression Evaluator Mod, Jim Abshire
Dialogue on Design of TINY HI, Martin Buchanan, Greg Townsend
6800 Monitor Relations, Comparisons of MIKBUG and MINIBUG II, Dennis Sutherland, et al.
Floating Point Notes
Assembler Coded Graphics Games on an Alphanumeric Video Monitor, Marvin Winzenread
CHASE: A One or Two Player Video Game
LIFE on an 8080 with a VDM

Program Repository & Tape Duplication Facility, Community Computer Center
New PCC Periodical: The Computer Music Journal

— — and dozens of other tidbits — —

10
11
12
14
16

19
34

51
52
54
56
57
58

SUBMITTING
ITEMS FOR
PUBLICATION

e T <
DON’T KEEP IT A SECRET!

Let us know what exciting new software and systems you are
working on. We’ll tell everyone else (if you wish). Maybe
someone is also working on the same thing. You can work
together and get results twice as fast. Or, may be someone
else has already done it; no reason for everyone to reinvent

the wheel.

R T < T <P R <

DR. DOBB’S JOURNAL OF
COMPUTER CALISTHENICS & ORTHODONTIA

Volume 1, Number 10, November — December, 1976

Box E, Menlo Park, CA 94025
Copyright © 1976 by People’s Computer Company

Publisher
People’s Computer Company
1010 Doyle, Menlo Park, California
(415) 323-3111

Editor
Jim C. Warren, Jr.
Contributing Editors
Marvin Winzenread
Jim Day
Product & Software Evaluation Group
Jef Raskin, Director
Michael Heathman
Dennis McGhie
Watchdogs :
Bob Albrecht
Dennis Allison
Underdog
Rosehips Malloy
Circulation & Subscriptions
R. Jacobsen
Bulk Sales
Dan Rosset

Reprint privileges:

Articles herein that are copyrighted by individual authors or
otherwise explicitly marked as having restricted reproduction rights
may not be reprinted or copied without permission from People’s
Computer Company, or the authors. All other articles may be
reprinted for any non-commercial purpose, provided a credit-line
is included. The credit-line should indicate that the material was
reprinted from Dr. Dobb’s Journal of Computer Calisthenics &
Orthodontia, Box E, Menlo Park, CA 94025.

POSTMASTER: Please send form 3579 to: Box E, Menlo Park, CA
94025. Return postage guaranteed. Second-class postage paid at
Menlo Park, CA. Published 10 times per year, excluding July &
December.

Back Issues to U.S.
0 All of Vol. 1 for $13
Vol. —— No. — for $1.50

Vol. — No. —_ for $1.50
Vol. — No. — for $1.50

U.S. Subscriptions

O $12 for one year

O $22 for two years

O $21 for one year for
first class/airmail to
anywhere in U.S.

Foreign via Surface Mail Foreign Via Air Mail

O $16/year — anywhere outside U.S. O $21/year to Canada
(2nd-Class Regulations require surcharge [$28/year to Europe & Pan America
on mail sent to Canada) O $32/year — other foreign

European Rates:
35 DM/year in West Germany
£ 8.00/year in Britain

European Distributor:

Pan Atlantic Computer Systems, gmbh
Frankfurter Strasse 78

D61 Darmstadt, West Germany

Page 2 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

\\\ W\

N

DATE’M~—Please include your name, address, and date
on all tidbits you send to us.

. TYPE’M-If at all possible, items should be typewritten,
double-spaced, on standard, 8% x 11 inch, white paper. If we
can’t read it, we can’t publish it. Remember that we will be
retyping all natural language (as opposed to computer lan-
guages) communications that we publish.

PROGRAM LISTINGS—We will accept hand-written
programs only as a very last resort. Too often, they tend to
say something that the computer would find indigestible. On
the other hand, if the computer typed it, the computer
would probably accept it—particularly if it is a listing pass
from an assembler or other translator. '

It is significantly helpful for program listings to be on
continuous paper; either white, or very light blue, roll paper,
or fan-folded paper. Since we reduce the copy in size, submit-
ting it on individual pages forces us to do a significant amount
of extra cutting and pasting. For the same reason, we prefer
that you exclude pagination or page headings from any list-
ings.

Please, please, please put a new ribbon on your printer
before you run off a listing for publication.

In any natural language documentation accompanying a
program listing, please refer to portions of code by their
address or line number or label, rather than by page number.

DRAWINGS & SCHEMATICS—Please draw them sig-
nificantly larger than the size you expect them to be when
they are published. Take your time and make them as neat
as possible. We do not have the staff to retouch or re-draw
illustrations. Use a black-ink pen on white paper.

LETTERS FOR PUBLICATION—We are always inter-
ested in hearing your praise, complaints, opinions, daydreams,
etc. In letters of opinion for publication, however, please back
up any opinions that you present with as much factual infor-
mation as possible. . :

We are quite interested in publishing well-founded,
responsible evaluations and critiques of anything concerning
hobbyist hardware or software, home computers, or compu-
ters and people. i

We may withhold your name from a published letter
if you so request. We will not publish correspondence, how-
ever, which is sent to us anonymously.

We reserve the right to edit letters for purpose of
clarity and brevity.

ADVERTISING-As long as we can afford to do so, we
will not accept paid commercial advertising. This “keeps us
honest” when we pursue the role of consumer advocate.

Nov./Dec., 1976

CONSUMER ACTION

PRODUCT & SOFTWARE EVALUATION AND
TESTING TO BECOME REGULAR FEATURE
IN DR. DOBBS JOURNAL

With this issue, we are initiating what we expect to be
a regular feature in Dr. Dobb’s Journal: reports of indepen-
dent product and software tests and evaluations. We pro-
pose that these will be “independent” in that we have no
financial ties or obligations to these manufacturers, the pro-
ducers of these products. We carry no paid advertising.

Ever since the computer hobby began, there have been
regular pleas for such independent testing and evaluation.
Until recently, we have been rather haphazard in our at-
tempts to assist consumers in judging the quality of pro-
ducts being marketed to them. We have pursued this pri-
marily through the publication of complimentary and com-
plaining letters regarding products. With such letters, we
generally have no knowledge of the expertise, fairness,
honesty or bias of the writers (thus, they have been pub-
lished as “letters” rather than as “articles”). Recognition
of this fact prompted us to adopt a policy [see Editorial
in October, 1976, DDJ] regarding the treatment of letters
of complaint. Though we will continue to publish such
letters within the constraints of that policy [see several
examples in this issue], we feel that a formal, orderly
product testing and evaluation program would be more
fair and more useful to our readers. It will also be per-
fectly in keeping with the Charter of our publisher, Peo-
ple’s Computer Company. PCC is a California-licensed,
non-profit educational corporation.

in small computers in highly interactive environments. He is also in
“dissertation mode’’ in a Ph.D. program through Stanford’s Electrical
Engineering Department. He has worked as a computer consultant for
most of a decade, with several years of programming experience pre-
ceeding that. Prior to entering the computer field, he taught mathe-
matics for about ten years, including Chairing the Mathematics Depart-
ment at the College of Notre Dame — Belmont. He holds a B.S. (1959)
and M.A. (1964) in mathematics, and two M.S. degrees; one in Medi-
cal Information Science and the other in Computer Engineering.

HOW WILL THE EVALUATIONS BE DONE?

We will contact producers of products being marketed to the com-
puter hobbyist community, and encourage them to participate in this
testing and evaluation program. If they choose to do so, this is what
will happen:

They will send us a purchase letter — a voucher with which we can
“blind purchase’” an item to be tested. We will then have someone,
not known to be associated with PCC or DDJ, obtain the desired pro-
duct. In the case of products sold only by mail, a unit will be ordered;
when it arrives, it will be “‘paid for’" by returning the voucher with the
invoice. If the desired unit is available through Bay Area retailers,
our “buyer’” will go in; pick out a unit; and, when it comes time to
pay for the item, will use the voucher to ““pay’’ for it. The voucher,
of course, will guarantee to immediately replace the unit or reimburse
the dealer. In this way, we can be reasonably assured of obtaining
units for testing that have not been especially ““tuned”’; they will be
standard consumer products.

The product thus obtained will then be evaluated in whatever
manner is most appropriate (and in whatever ways are possible with
the test gear available at the time). In the case of kits — where such

independent examinations are perhaps most badly needed — a team
member may construct the kit, or we may well have some interested
novice put the kit together under our observation. In either case,
careful notes will be kept concerning all aspects of the unit and its
evaluation.

Subsystems that are advertised as being plug compatible with some
particular interface structure will be tested for such compatability.
Major components will be tested against manufacturer’s advertising
claims and the rated capacities given in the documentation. Other
testing will be conducted, where appropriate.

When the testing is completed, the evaluator(s) will write a report
of their findings — good and bad. Particular attention will be given to
reporting the following aspects: does the unit perform as advertised?
Are there inadequacies that are unmentioned by the manufacturer?
How does the unit compare to its competitors? How does the unit
compare against “perfection’? (When comparing against perfection,
the report will explicitly point out that no one else’s product meets
those standards, either.) Are there any “little hidden gotchas’’? In
all cases, as much of the test data as possible will be provided in the
article, fromwhich the reader will be able to judge the unit for him-
self. Any personal judgements made by the evaluator will be accom-
panied by the hard data he used in reaching that opinion, and/or will
include an explicit statement of the evaluator’s personal bias in the
matter, .

Once completed, the report will be submitted to the manufacturer
of the product for their comments. They will have the opportunity
to offer corrections of fact (the ‘““factual’’ character will be judged by
the evaluators and the Editor). If they wish, they may also provide a
“manufacturer’s response’’ which, if concise and pertinent in the
judgement of the Editor, will be published along with the evaluation.
Though the manufacturers will have the right to suggest corrections
and to provide a response article, they will have no editorial control
over the report. After giving the manufacturer several weeks to a
month — and no more than that — to respond, the report and any ap-
propriate response will be published in Dr. Dobb’s Journal.

The products that are tested will become the property of People’s
Computer Company. Often, the evaluators will be ““paid’’ for their
services by giving them the products they have evaluated. This will
both assure an active interest in the evaluation on the part of the team
members, and will also provide us with the opportunity to observe

WHO WILL DO THE TESTING?

We have organized an evaluation team consisting of three people,
plus the Editor. These are individuals whose qualifications we do
know. Jef Raskin is the Director of the group. Many of you al-
ready know of him through his critique of a number of hobby
systems [DD]J, September, 1976, A Bit of Wheat Amongst the
Chaff.”” This issue carries a second product evaluation by him.

Jef is currently an independent consultant involved in several “’real
world” applications of small computers. Prior to this, his work
included serving as Director of the Third College Computation
Center at the University of California in San Diedo, and serving as

a Professor of Visual Arts there for five years. Before that, he

was an instructor in Computer and Electronic Music at Pennsylvania
State University for several years. He holds a B.S. in Philosophy

(1965) from the University of New York with minors in mathema-
gcs and physics, and a M.S. in Computer Science (1967) from Penn
tate.

The second member. of the evaluation group is Dennis McGhie.
Dennis is currently working for a major biomedical research center in
the San Francisco Bay Area. He has been a programmer since 1968,
working on both maxi’s and mini’s, primarily in the areas of database
systems, training
systems, computer graphics, and real-time systems. Though he has no
formal hardware training, he has a good seat-of-the-pants background
derived from years of working with experimental real-time computer-
ized biomedical data acquisition and process control. He holds a B.S.
(1968) in Chemistry from Stanford University.

The third team member is Michael Heathman, currently a senior
systems programmer for a new time-sharing system being installed in
a major Bay Area research institution. He has systems experience with
maxi’s and midi’s, including PDP-15's and PDP-11's. He has been a
programmer for six years, except for a year’s leave taken to perform
graduate studies in computer science at the University of Washington.
He holds a B.S. (1970) in electrical engineering from Stanford.

Final responsibility for this program will rest with the Editor of
Dr. Dobb’s Journal, Jim Warren. Aside from editing the Journal,
currently, Jim is working as an independent consultant specializing

Nov./Dec., 1976 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 3

the units in operation over some period of time, with supplementary
reports being given as appropriate.

WILL THE MANUFACTURERS COOPERATE?

Both the publlc and the manufacturers have often noted that com-
merical magazines rarely if ever publish articles that are really critical
of products available from companies that are advertising in that maga-
zine. (One publisher, targeting for the computer hobbyist communuty,
is widely reputed to consistently publish excellent “‘evaluations’ of
products from advertisers, and highly critical “‘evaluations’’ of pro-
ducts from manufacturers who refuse to advertise in the publucatlon)

Thus, the public tends to take such evaluations in ad-carrying
periodicals with a well-deserved grain of salt. Alternatively, Dr. Dobb’s
Journal — and PCC before it — has had a consistent reputation for
readily publishing compliments and complaints, including complaints
about our publications. We believe that carefully done, comprehensive
product evaluations, published in DDJ, will be accepted as being un-
biased and accurate.

If we publish a favorable evaluation of a product, it should be of
significant value to that manufacturer. In particular, we herewith
grant explicit permission to any manufacturer to reprint such evalua-
tions from Dr. Dobb’s Journal, either in their entirety or a paragraph
at a time. Such reprinting may be done without further permission
from DDJ, and without any compensation whatsoever being paid to
Dr. Dobb’s (other than possession of the products that were tested).
Publication of less than a paragraph at a time, minimum, will require
explicit permission from DDJ. We explicitly prohibit reprinting out-
of-context portions of such a (copyrighted) evaluation, when it fails
to accurately reflect the results of the evaluation.

We also hope to — in the not too distant future — develop an ob-
jective rating procedure for home computing products. Once devel-
oped, we will invent and trademark a DDJ evaluation logo that in-
cludes the ratings. Manufacturers may then mark their products as
“Grade A — Tested in Dr. Dobb’s Kitchen’’, or some such thing.

We have already spoken with several manufacturers, outlining our
plans. Reception has varied from an active interest in immediately
participating, to a total rejection of the proposal. We will report the
details, whenever it seems fair and appropriate to do so.

AAARAAA A AT AAAAAAAA A A A A A AR A A AT AR AT A A A AR A A AR

*it***ﬁ*******t*************t******‘k*********t*

UNRESPONSIVENESS FROM ADVANCED
MICRO-ELECTRONICS

I received a AY5-8500 6 Game MOS/LSI chip from
Advanced Micro-Electronics, P.O. Box 17329, Irvine, CA
92713. It didn’t operate properly. I wrote them a letter
in August (two months ago) describing what the chip did
and have received no answer.

Thank you for reading my letter.

Stuart R. Fallgatler
7910 Rio Vista Dr.
Goleta, CA 93017

[We wrote them, saying:] 76-11-7

We recently received a complaint concerning your company, a
copy of which is enclosed. Recognizing that there are two sides to
every story, and in keeping with our published policy (copy en-
closed) [See DDJ, Vol. 1, No. 9] concerning handling of consumer
complaints regarding vendors’ products and services, we wish to offer
you the opportunity to present your view of the situation. There-
fore, we will withhold any decision concerning possible publication
of the complaint for at least two weeks from the date of this letter,

pending the possibility that you may wish to offer a timely response.

If you do choose to respond, we will, of course, take your com-
ments into consideration in deciding whether or not to publish the
complaint. If we do decide to publish it, even in light of your com-
ments, we will almost certainly also publish your response — your
side of the story — unless.you explicitly prohibit our publication of
your reply.

Also, if you choose to reply, we would appreciate your for-
warding a copy of that reply to the complainant. Many thanks
forlyour attention to these comments. We look forward to your
reply.

As of Dec. 2, 1977, we have received no reply.—JCW

Page 4

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

BEWARE! THE DOLLAR GOBBLING INFLATION
INFECTION IS ABOUT TO AFFLICT ONE OF YOUR
LOVED ONES - -

Subscription Rates for Dr. Dobb’s Journal
Increase January st

i
]

]

]

]

]

]

]

]

]

i

! Almost all of our subscription rates are going up as
; of the start of 1977. This means that our basic sub-
¢ scription rate will now be as much as Byte’s. And, as
! always, a year s subscription is for 10 issues; we pub
1 lish single issues for June/July and Nov. /Dec

! We had to either do this — and remain responsible
! only to our readers — or begin accepting paid adver-

i tising, along with its strong though perhaps subtle in-
i centive to “keep the advertisers happy.” Considering
! that we have been purusing an active consumer advo-
i cacy role, ever since we started, and considering that

i we are significantly expanding that activity [see edi-

! torial on product and software testing and evaluation
1 plans], we felt that the subscription increase was the
i preferable alternative. We are still awaiting the results
! of the question concerning whether or not we should
1 carry paid advertising (a question posed in the last

i several subscription forms and in the subscription re-

! newal notices).

0

P R T T T T T T T T TR T T T T T T T T T T T T T T

D D T T T T
Prize

DDJ SEEKS SUPER LOGO!

Like all massive organizations intent upon changing the
fabric of society, Dr. Dobb’s Journal has concluded that it
should have a logo — a symbol by which all people may
instantly recognize us. It might be our current title mast-
head . . . but that’s so longwinded. Ideally, it should be a
symbol or figure that in some sense illustrates our activities
(now, now — be nice).

Knowing that computer people are delightfully inventive,
we are coming to you for suggestions. We are looking for a
logo that we can use in fairly large size in our masthead,
letterhead stationery, advertisements, etc. We would also
like for it to be recognizable, even when shrunken down to,
say, 1”’x%”. Thus, it can’t have too much detail in it (or,
the large version can have details, and the smaller versions
must be in some way simplified).

Please forward your suggestions. You can describe them,
or you can provide a rough sketch, or you can submit an
oversized camara-ready master. If we pick your suggestion
as the basis for our logo, then we will thank you by giving
you a five-year subscription to DDJ (extending your current
subscription, if necessary). Of course, all suggestions be-
come the property of People’s Computer Company, the
publisher of Dr. Dobb’s.

NOW WE CAN BLAME IT ON THE COMPUTER

At long last, we have switched from manual processing
of subscription records — so fraught with human error —
to computerized subscription processing — thereby obtain-
ing even more potential for human error. Therefore, please
check your address label, and let us know if it is in any way
incorrect.

Nov./Dec., 1976

It must have been a computer error . . .

CORRECTION TO PHONE NUMBER FOR
KENTUCKY FRIED COMPUTERS

Our September issue carried an announcement of a
10% discount on selected products, available to DDJ
readers for a limited amount of time, offered by Ken-
tucky Fried Computer Store in Berkeley, CA. We in-
cluded the phone number, only to be told later that it
was incorrect. When we checked the original copy sub-
mitted by the store owners — a computer-edited article
— we found that we had correctly copied an incorrect
number. Tsk, tsk . . . must have been the computer.

Their correct phone is (415) 549-0858, and they are
located at 2465 Fourth St.

NEW LOGARITHMIC CONVERTER
by Jim Day

Precision Monolithics, Inc., 1500 Space Park Dr., Santa
Clara, CA 95050, 408/246-9222, recently announced develop-
ment of a D/A converter providing the 72-dB dynamic output
range of a 12-bit converter from an 8-bit input. Three bits
select one of eight chords (i.e., ranged approximating a loga-
rithmic function) and four bits select one of 16 linear steps
within each chord. Resolution near zero is equal to that of a

12-bit converter, dropping to 5-bits (plus sign) at the extremes.

Designated the DAC-76, this 18-pin DIP costs $19 in lots of
100.

For high-quality audio output having negligible quantiza-
tion error at low volume levels, 12-bit D/A converters are cus-
tomarily used. These tend to be expensive and awkward to
drive from an 8-bit MPU. Fortunately, the amplitude response
of the human ear is logarithmic. This means that greater quan-
tization error is tolerable at high volume, amking an 8-bit
logarithmic D/A converter ideal for speech synthesis and com-
puter—generated music when used with an 8-bit MPU.

A SUPER BOOK, FULL OF COMPLETE
SYSTEMS PROGRAMS

Dear Dr., September 27, 1976

A valuable new book is available for the computer
hobbyist. Software Tools by B. W. Kernighan and P. J.
Plauger, Reading, MA: Addison-Wesley, 1976 presents
programs for a test editor, file formatter, macro processor,
librarian and language preprocessor while teaching struc-
tured programming. These are complete programs avail-
able from the publisher in machine-readable form (cost
unknown) for a machine with a Fortran compiler. I've
read the book — it’s great! It starts with a simple echoing
routine and builds and builds very logically.

A Tiny Fortran compler with integer arithmetic, charac-
ter I/O, the IF statement and FUNCTION and SUBROU-
TINE subprograms could implement an impressive artay of
tools. Tiny BASIC could do it if it were compilable and
could pass arguments as parameters to subroutines.

Implementation of these programs would be a big step
toward having home computers help their owners do use-
ful things; and home microcomputers are admirably suited
to the word processing tasks the book presents.

It’s sort of cheap, too: $8.95 in paper.

Bill Pearson Division of Biology 156-29
Calif. Instit. of Technology Pasadena, CA 91125

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Posted 76-10-25

SCCS INTERFACE — STATUS REPORT

Good news! Your regular SCCS Interface will be coming
again to you soon! This is to bring you further up to date
on the Southern California Computer Society publication.

Originally the Society went to an outside service to print
SCCS Interface on behalf of the Society. Certain differences
have arisen with the publishing service and efforts at settle-
ment have apparently failed. During our negotiations, the
outside service printed its own magazine called Interface Age,
the first copy of which appeared in August. You may have
received copies of Interface Age in the mail. The Society
did not mail it to its members. The logotype on Interface
Age and the format of the magazine are very similar to SCCS
Interface and you may not have even noticed the change.
Interface Age is not an authorized publication of the Society.
We have discussed our legal options with our attorneys. Now
that we are free to move ahead, the Society has obtained its
own publishing service. We will resume distribution of SCCS
Interface next month. Only SCCS Interface will be the au-
thorized publication of the Southern California Computer
Society.

We expect SCCS Interface will carry out the spirit and
policy of the Society — to be objective with regard to ven-
dors’ products and services, to report the activities of our
Society, to provide an open forum for our members, to ex-
periment and of course, to provide important articles of
interest.

We are working hard, fast and enthusiastically on this
and appreciate your patience. The memberships of those
who missed any copies will be extended.

Larry Press has been named to fill the editor’s spot.
Please send editorial contributions and suggestions, articles,
announcements, inquiries on ads or distribution, aspirin and
good wishes to Larry at 1702 Ashland Ave., Santa Monica,
CA 90405, (213) 399-2083.

The member authors whose articles appeared in August
and September issues of Age intended to have their material
appear in the official Society publication. We assure them
that in the future no submitted material will appear in
other than SCCS Interface.

Very Truly Yours,

The Board of Directors
SCCS Interface
October 18, 1876

A FIXIT “KIT” FOR MARK-8 DOCUMENTATION

Dear Jim, Sept. 17,1976

| have been reading with great interest the issues of DDJ1 |
have an offering for “BUGS & FIXES.” | have put together a
modifications/corrections kit for the MARK-8 to fix up the over
50 typos in the schematics, errors in design, and errors in instruc-
tions. It includes instructions (11 pgs), complete set of new
schematics, and a parts kit. The cost is set to only recover costs.
MARK-8s have suffered in the software marketplace due to lack of
enthusiasm, which | feel is in part due to the difficulties in getting
them up. This package should help the problem clear up and create
more spirit (since I still want BASIC for my 8008!).
MARK:8 Corrections/Mods Package - Fixes those glitches,
interrupt structure, mem. addr. levels, LED bd., buffered
CPU, clock phases, console controls, etc. Includes new
complete schematics, instructions, and parts (even drill
bit and wire). $10. Ronald Carlson, 14014 Panay Way

Apt. 225, Marina del Rey, CA 90291.
_ Sincerely,
Ronald E. Carlson 14014 Panay Way, Apt. 225

Marina del Rey, CA 90291

Page 5

BYTE OFFERS AN EXCITING PROPOSAL COMPUTER CONTROL OF TAPES HAS MUCH
M achine-R eadvabl e P rograms WIDER USE THAN MERELY FOR MUSIC SYSTEMSk

in Magazine Format = | peaim, S0
* Prai i i E ' I read your excellent article: “Computer Control of Music
Praise by Jim Warren, Editor, DDJ Tapes for Your Home Stereo” in DDJ Number 8. I think it is
OK, folks . . . are you ready to throw away those can- really a realizable fantastic fantasy. However, I have some objec-
tankerous and expensive paper-tape readers? Are you ready tion to the title (and the emphasis) of the article.
to give up those cat-naps you take while waiting for pro- Had you titled it: “Computer Control of Bach’s Music Tape
grams to load from your kid’s audio cassette player (you for Your Home Stereo .on the Second Floor,” I would have ob-
do have a megabyte of memory, don’t you?)? Then look to jected even more. The hardware you described is a computer

Byte* for a better way!))) controlled tape deck that can handle both digital and analog re-
The November issue of Byte magazine carries an article by | cordings.. The software you proposed is also a very general file

Walter Banks and Roger Sanderson of the University of Wa- system. As you have mentioned in your “bells and whistles,”
terloo, and Carl Helmers of Byfe, proposing an idea that this system would be ideal for many types of computer-aided
should cause the hobbyist to gleefully reposition their prayer | instruction. I would also use it to play computer games, and
rugs in the direction of 70 Main Street in Peterborough, many many more.. Wouldn’t it be great to hear Dr. Spock talking
New Hampshire: a super-neat method for publishing machine- | when you play Startrek? I would also use the same system to
readable information. Walter and Carl are proposing that save all the programs and all my secret files. In this case the

the bar-code scanning techniques already in widespread use _analog part may be of no great value, but my stereo on the

in automated grocery checkout systems are equally appli- second floor just might announce: “We are now loading a

cable to publication of machine-readable programs and data. version of TINY PASCAL dated April 1, 1977.” Anyway, my
The basic idea is that programs and data that are of wide- | point is, don’t limit such a great system to “Music Tapes” or
spread intetest can be encoded in a standard bar-code format, to “Home Stereo.”

printed in a book or magazine (presumably with the human Another nitty gritty: On Page 5, you seem to imply that
readable form on nearby pages), and loaded into an indivi- the $199 and the $299 packages from Triple I also include two
dual’s home computer by simply waving an optical scanning tape transports. From what I know, only the $189 package
wand over the machine-readable pages. Programs and data includes two transports. You get only one transport in the

could then be truly “published” — printing them instead of deluxe model packages.
using the far more expensive and less convenient punched Sincerely yours,
or recorded formats. The reading mechanism — the scanning Linchen Wang

yvand — has the advantage Qf no mgcham'cal part’s, d_'epend- I debated phrasing the article in this more general applica-
ing on the human hand for its motive power. It’s simple; tions context, but decided to keep the main article “narrow:
it’s nonmechanical; it should be cheap. Data transfer rates minded” and merely point out the much more general applica-
are obviously limited only by the speed of the hand and the bility of the system I outlined. I did so because I didn’t have
speed of the processor that is 1nterpretmg the input from the time or space to discuss the wider applications in the

the scanner. detail that I felt would be necessary to a more generalized
This is not a future fantasy. The technology is already article. ‘ E

well-developed, both for printing of machine-readable infor- Yer right on how many transports are included in each

mation and for inexpensive optical scanners. Optical scan- package. The $189 package includes two fixed-speed transports,
ning of printed information has been in use for some years but the $199 and $299 packages include only one transport.
in the banking industry. There, total reliability is an abso- What’s worse, the prices have gone up . . . but they’re still a

lute requirement, and the encoding format and scanner de- good deal (see Phi-Deck article elsewhere in this issue).
sign they use is considerably more complex than is necessary

with bar-codes and bar-code scanners. Bar-code techniques :
have proven sufficiently reliable that they are in wide-spread WE HAVE SPEECH SYNTHESIS . . .
use in grocery checkout facilities, where accuracy is a must SOON: SPEECH INPUT

(demanded by the paranoid consumer was well as by the We hear . . . straight from the quadraped’s mouth . . .

This is not an idle proposal or one-shot in the dark by placed on the market early next spring. In kit form, it
Byte. The November article is an explicit, detailed, nuts-and- | ;i1 cost well over $500 and will plug into the S100 bus.
bolts article. The December issue of Byte will include 'sam-

ples of machine-readable code in several experimental for- '
mats, an article on signal processing for optical scanning of PUBLICATION DETAILS DESIGN OF A

bar-codes, and the specifics of the software that is necessary | CONTROL PROCESSOR FOR A MICRO-
for reading bar-coded information. Articles in the immediate | COMPUTER NETWORK

future are sure to include complete details for the construc- . ,
tion of bar-code scanning wands and their interfaces. The Computer Systems Synthesis Group out of UCLA’s

: . ¢ ; . Computer Science Department has recently released a 231
ni Yx‘? (i:ﬁnf{;?:: pr:(;sveest I;’Lsas%lr)cl,g (e)liilcll tr(;?ia}lill%hlz‘wgl thrlzvti(zlceh; page tech report by R. Fenchel entitled, “A System Control
ique, » P » It Wil pro Processor for a Microcomputer Network.” It discusses the

significant breakthrough for the problem of distribution of

design of a control processor for such a network, to be used
as an education tool in a computer science lab. You can
prgbably obtain a copy without cost (while they last) by
data, voting records, mathematical and engineering tables, znj:mgﬁil(lie SCCiSerll)czpaIrJt(r:riezt ﬂ:lfnsflwdcf 5881211: ering
encyclopedias, want ads, library indices, case law citations, PP ’ . gees, .

you name it — all types of reference materials that it would *Are there any of our readers who don’t know about Byte magazine,
be desirable to be able to search and access via machine. 70 Main St., Peterborough, NH 03458, $12/year?

machine-readable software ard data. Note: The import of
this for the forseeable future well may be in its facility for
distribution of datae, rather than programs — e.g., census

Page 6 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Nov./Dec., 1976

Why Hassle With Those Single-Purpose Cassette Interfaces?

USE AN ACOUSTIC COUPLER
TO READ/WRITE TAPE CASSETTES

Jim Warren, Editor

Steve Moore* just phoned in a hot idea. Why not use a
data communications modem or acoustic coupler to read
from and write to audio cassettes?

Here are the advantages: By doing so, suddenly all of the
“recording standards” problems disappear. The standards
for couplers and modems have been accepted and in use for
some years — and are well debugged. Why waste our time
haggling over which homegrown standard to adopt, when we
can “steal” the standards that have been proven in industrial
use for well over a decade?

Couplers and modems are specifically designed to inter-
face to a byte-oriented digital device. Plenty of them are
around that are already built to plug into a 20 mA current
loop or RS-232 standard interface. It should be a simple
matter to modify the master/slave circuitry (see the “gotchas”,
next section) so they can talk to a computer instead of a ter-
minal. (Quick! — all you hardware fanatics: send in the hard-
ware details to guide us naive systems fanatics in making the
necessary changes). -

Modems and couplers have been around for so long that a
number of them are on the used equipment market. Some
months ago, Walt Gruninger at the Minicomputer Exchange
(154 San Lazaro Ave., Sunnyvale, CA 94086, 408/733-4400)
told me that couplers could easily be had for about $100.

It’s a quick way to gain hardcopy facilities when you have
no hardcopy device. Here’s how: have your system dump a
text file into your kid’s $19.95 audio cassette via a coupler
or modem. Take the whole thing over to anybody’s coupler-
equipped time-sharing terminal. Play the tape into the coup-
ler (via a telephone handset that you scrounged from a sur-
plus phone), and watch the pretty hardcopy be printed. The
cassette tape is just acting as a hand-carried “telecommunica-
tions system.”

Once the coupler or modem is interfaced to your coupler,
of course it can easily be used for telecommuning with another
computer or a central program-and data storage facility. Such
central repositories are already being discussed as (1) a good
solution to the problem of home computers having access to
continually updated programs and data, and (2) an appropri-
ate project for any of the larger clubs (if “hams” can get to-
gether in constructing co-op relay stations, why can’t we coop-
erate in building machine-accessable central repositories?)

A quick check with an old analog engineer friend, down in
Silicon Gulch, assured me that using this technique to handle
data-rates up to 300 baud would present no problems, even
when using el-cheapo cassette units and audio tapes. Note
that this is the same (rather slow) data-rate as the “Byte
standard.” It is obviously no problem since, after all, coup-
lers are rated up to 300 baud and are explicitly designed to
function reliably over scuzzy, unconditioned, lowest-band-
width telephone lines. Modems are currently available that
will run up to 9600 baud over conditioned phone lines. My
analog friend hedged somewhat on whether or not such higher
data-rates would present problems on audio tapes. Again, I
call on you hardware types for the necessary details to make
this fantasy a reality.

And now, the hidden gotchas. First of all, the garden vari-
ety acoustic coupler is built with the electronic protocols for
its analog end to slave to a master computer over the telephone
handset, and its digital end to speak in full-duplex or half-
duplex to a terminal. Its protocol circuitry must be modi-

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

fied so that its digital port will be the slave to the computer
and its analog part connect to the “terminal cassette.” Alter-
natively, one might purchase a “‘master modem” that is nor-
mally connected to a time-sharing computer; however, these
are considerably more expensive, probably have unneeded
bells and whistles, and are less available on the used market.
If trouble appears in the analog end of this system, it will
be considerably more difficult for the novice to debug and
fix than is the case with strictly digital circuitry, or with the
Byte or Tarbell cassette standards. If you use an acoustic
coupler, you must homebrew a connection between it and
the record and playback “I/O” of your cassette. This may
require some amplification circuitry.
Now it’s up to you. It is an interesting and valuable project
that is obviously well within the limits of current technology
and a hobbyist’s budget — a realizable fantasy. When you get
it up and running, why not share your implementation with
everyone via an article in DDJ? Incidentally, the quicker a
computer-coupler interface becomes widely available for
home computers, the quicker we will see the creation of the
machine-accessable program and data repositories that I
mentioned earlier — yet another “realizable fantasy.”

*Steve Moore is a consultant with Moore Research, P.O. Box
1562, Sacramento, CA 95814, (916) 441-1890.

PR T TR TR S TR I I P T Ry N N2}

U.5. POSTAL SERVICE
STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION
(Required by 39 U.S.C. 3685)

T.TITLE OF PUBLICATION 2 DATE OF FILING
Dr. Dobb's Journal of Computer Calisthenics § Orthodonti 76Nov8

3. FREQUENCY OF 1550E T NO_OF 15505 PUBLISHED| 5. ANNUAL SUBSCRIPTION

ARNOALLY PRICE
monthly except for July § December 1
4. LOCATION OF KNOWN OFFICE OF PUBLICATION (Street, Clty, County, State and ZIP Code) (Not printers)
1010 Doyle #9, Menlo Park CA 94025

5.LOCATION OF THE HEADQUARTERS OR GENERAL BUSINESS OFFICES OF THE PUBLISHERS (Not printers)
same as No. .

6. NAMES AND COMPLETE ADDRESSES OF PUBLISHER, EDITOR, AND MANAGING EDITOR

PUBLISHER (Name and Address)

People's Computer Co., 1010 Doyle #9, Menlo Park CA 94025

EDITOR (Name and Address)

Jim Warren, "
MANAGING EDITOR (Name and Address)
Jim Warren "

7. OWNER (If owned by a corporation, its name and address mual be stated and also immediately thereunder the names and addresses of stock-
holders owning or holding 1 percent or more of total amount of stock. If not owned by a corporation, the names and addresses of the individual
owners must be glven, If owned by a partnership or other unincorporated firm, ita name and oddress, as well as that of each individual muat

' be given.)
NamE] AooRESS
eople’s Computer Company
8. KNOWN BONDHOLDERS, MORTGAGEES, AND OTHER SECURITY HOLDERS OWNING OR HOLDING 1 PERCENT OR MORE OF
TOTAL AMOUNT OF BONDS, MORTGAGES OR OTHER SECURITIES (I there are none, so state)
NAME ADDRESS
na
9. FOR COMPLETION BY NONPROFIT ORGANIZATIONS AUTHORIZED TO MAIL AT SPECIAL RATES (Section 132.122, PSM)
The purpose, function, and nonprofit status of this organization and the exempt status for Federal income tax purposes (Check one)
HAVE NOT CHANGED DURING HAVE CHANGED DURING (If changed, publisher must submit explanation of change
PRECEDING 12 MONTHS PRECEDING 12 MONTHS with this alatement.}
AVERAGE NO. COPIES EACH ACTUAL NO. COPIES OF SINGLE

10, EXTENT AND NATURE OF CIRCULATION ISSUE DURING PRECEDING ISSUE PUBLISHED NEAREST TO

12 MONTHS FILING DATE

A. TOTAL NO. COPIES PRINTED (Net Press Run) 3125 5000

5. PAID CIRCULATION

1. SALES THROUGH DEALERS AND CARRIERS, STREET 810 1426
VENDORS AND COUNTER SALES
2. MAIL SUBSCRIPTIONS 1332 2670
C. TOTAL PAID CIRCULATION (Sum of 10B1 and 10B2) 2142 4096
D. FREE DISTRIBUTION BY MAIL, CARRIER OR OTHER MEANS 50 60
SAMPLES, COMPLIMENTARY, AND OTHER FREE COPIES
€. TOTAL DISTRIBUTION (Sum of C and D) 2192 4156
. COPIES NOT DISTRIBUTED
1. OFFICE USE, LEFT OVER, UNACCOUNTED, SPOILED 933 844
AFTER PRINTING.
2. RETURNS FROM NEWS AGENTS 0 0
G. TOTAL (Sum of E, F1 and 2—should equal net press run shown
o and = 3125 5000
SIGNATURE AND TITLE OF EDIFER, PUBLISHER\GUSINESS
11, 1 certify that the statements made by me MANAGER, OR OWNER
above are correct and complete. . \ \&! -
v . L \
Page 7

ITALICS IN VIDEO DISPLAYS
One possible enhancement of character generation in

TV typewriters is the incorporation of an italic mode. The
same ROM could be used to produce the basic dot patterns
for both italics and non-italics, only the character timing
would change. Figures 1 and 2 show how text strings
would look in both modes. In the italic mode, successive
lines of each character would be displayed with a different
time delay. Assuming a 7 by 9 dot matrix, the first line
of each character (i.e., the top line) would be displaced by
4 dots to the right. Line 2 would be displaced by 3.5
dots (i.e., three and a half dot-clock cycles), and so on.
Line 9 would have no displacement. A shift register IC
could be used to implement the displacement, and an
embedded control character (such as CTRL I) could be
decoded to turn the mode on or off. The regular and
italic modes could both be used in the same line of text
with appropriate control of transitional timing, although
this would complicate the logic required.

by Jim Da
o0 y y

 J
& oo eee 4
e o %% eee 6 eo
seed ! e s ¢ ¢
® @ e & e 3
@ (L 4 [X e & o ee © L
6o
Figure 1. Regular Mode
oco0e O o S e
@ ® e o ee 6ed
..0 ..o ..0 ..o :o & S e o,
00060 o0 0% & %o %e® cee®
Figure 2. Italic Mode

R
SCROLLING MOD FOR TVT-2’s

Dear Sirs, Oct. 7, 1976

The TVT-2 is the most popular video terminal used by computer
hobbyists today. Until now, the users have had to settle for the ‘page
concept’ with their terminals. Your readers might be interested in the
fact that now they can add scrolling to their TVT-2, A fully assembled
scrolling modification board (model SM-2) is available from Lenwood
Computer Systems, P.O. Box 67, Hiawatha, |A 52233, A complete
set of instructions is supplied. The cost of the SM-2 is $20.00 plus
$1.50 for postage and handling.

Thank you for your time.
Jay G. Francis P.O. Box 67
Lemwood Computer Hiawatha, I1A 52233

Systems

[
64 X 32 VIDEO DISPLAY KIT

Gentlemen:

I thought that.some of the DDJ readers interested in video
displays might want to look into a kit sold locally here in Dal-
las. It isa 2K x 8 bit parallel I/O (32 lines of 64 chars); it may
be optioned for RS232 also.

The main reason for going to this unit was because of the
several control codes that allow blink by code and blank. The
blank/unblank allowed me to not only not use up my own
rather limited core (RAM, actually), but to use the screen for
extra RAM, as the unit will operate at machine speed — I'm
using the INTEL 8080 prototyping kit.

Readers interested can write to the company at this ad-
dress:

IOR

P.O. Box 28823

Dallas, TX 75228

Sincerely,

D. Moore
Dallas, Texas

Page 8

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

64-CHAR MOD FOR TVT-II'S, NOW & SCROLLING,
SOON

Gentlemen:

We would like to thank you and your readers for the interest in the
TVT-11 64 character modification article that you published in your
No. 6 issue. The response has been tremendous. After experiencing
some initial problems with typo errors and delayed shipments we are_
now meeting with your 3 week delivery schedule. On November 1 we
found it necessary to increase the price of our boards to $6.50 for the
64 character board and $13.50 for the 2K memory boards. Printing
costs have also required us to charge $2.00 for the instructions if re-
quested without ordering the boards [a corrected copy of the necessary
instructions is now available] .

We have received many requests for a scrolling modification for the
TVT-ll and we are happy to announce that we will have one ready to
ship out before the end of the year. The board is set up such that only
five jumpers are required to install it. This was accomplished by hav-
ing the board plug into sockets which replace IC's 34 and 41 on the
mainframe. These IC's are relocated on the mod board. The board
gives bottom line scrolling with the new line coming up clean. Nor-
mal or scrolling modes are switch selectable with the scrolling not be-
ginning until the page is full. Line feed is disabled when in the scroll-
ing mode. It appears that the board will retail at $20.00 with sockets
and instructions although this is not yet firm.

Thank you,
David O. Valliere Box 4241
Digital Designs Victoria, TX 77901

T S T
VTT GROUP BUY

Dear Jim, Oct. 27, 1976

In response to our conversation on the phone today, here are all the
details on the VT4000 group buy. There are two different buys avail-
able at this time. One is the VT4000B, a complete crt terminal with a
Motorola 12" monitor, completely assembled, tested and ready to use,
The second is for the do-it-yourself types. It consists of the five PC
boards without parts, the power supply and the cabinet for the VT
4000A. To qualify for the group buy price, we will have to buy at
least 10 of the buy or buys we choose. To try and clarify further, we
cannot combine the two to get a total of 10. If the minimum of 10 is
not reached by 15 January 1977, all money will be returned. To quali-
fy as an order, full payment must be made at time of order.

Prices:

VT4000BA Assembled Terminal regular retail
less 20%

999.95
199.95

800.00 + 6.5%
state tax + 2%

TOTAL 868.00
Bare bones lit separate parts regular retail 240,00
less 10% 24.00

216.00 + 6.5%
state tax + 2%
handling fee

TOTAL 234.36
The above prices include delivery in the Bay Area, outside the Bay
Area will be sent freight collect. If shipped outside Bay Area subtract -
% of the handling charge.
Make checks payable to: Video Terminal Technology. Mark on
lower left of check: Homebrew Computer Club Buy. Send orders to:

Norman Walters
3107 Laneview Dr.
San Jose, CA 95132

NEW COSMAC COMPUTER

At last, someone has come out with a microcomputer based
on the RCA 1802 (COSMAC) and suitable for many hobbyists.
Produced by Infinite, Inc. (Box'906,.151 Center St., Cape Ca-
naveral, FL 32920), this machine has a 4-digit hex readout and
integral hex keyboard. Standard on-board memory comprises
256 bytes of RAM, externally expandable to 64K. Additional
features include DMA as well as serial and parallel I/O. Assem-
bled and tested, the price is $395 with case and power supply,
$249.95 for a complete kit, or $179 for just the MPU board.

Nov./Dec., 1976

FRIDEN DOCUMENTATION FOR $10
MILITIA MAY AID HOBBYISTS

COMPATIBILITY PROBLEMS Dear Editor, Oct. 31,1976

Some months ago I purchased a Burroughs-Friden
Printer-Keyboard and the associated interface electronics on
the surplus market. The model number is 9530-2. The cost
was in the vicinity of $300, and looked like a pretty good
deal for a hard copy unit. The major shortcoming is the
lack of any documentation. For effective use of the unit
with home computers some changes are necessary, but are
virtually impossible to accomplish without adequate docu-
mentation. I spent nearly all of my spare time for the last
half year on the incredible task of deciphering the circuits
on the interface boards. There are over 300 integrated cir-
cuits (obsolete types) on the boards. It was the hardest
puzzle that I ever worked on.

‘Tt is likely that there are other computer freaks who have
bought similar units and are in need of documentation. For
$10, I will send a copy of my documentation to anyone for
his or her personal use. The documentation includes com-
ments on almost all of the inter-board wires and logic diagrams
of the boards and typewriter switches. It does not include
explicit instructions for modification of the boards for home
use, but perhaps I can generate that later.

. Sincerely,
Robert L. Smith 2300 St. Francis St.
Palo Alto, CA 94303
Does anyone have original manufacturer’s documentation for
these units? — Editor

Dear Jim, Sept. 7, 1976

You are probably aware of the WESCON Session Il paper
described in the attached extract from Electronic Design (below).
Looks like the military may be giving us a hand with standard-
ization.

| enjoyed meeting you at Personal Computing ‘76.

Best wishes,
Joe Gilbreth 1229 Vista Lane

Birmingham, AL 35216

Recommendations for use of a common bus system
will be made in Session 11, but in another context—for
the standardization of military microprocessor systems.
That will be proposed in a Session 11 paper, “Compati-
bility Among Famili¢s of Ps”, by Hank Malloy, military
program manager, Intel Corp. Malloy is alsa chairman of
a newly organized task force on military microcomputer
LSI, which is sponsored by the Electronic Industries
Associates and the National Electronic Manufacturers Asso-
ciation.

To achieve any kind of standardization it is essential
that bus structure characteristics be specified, Molloy will
argue. Also, high-order languages will have to be used.

An example of how such languages can contribute
to standardization, Molloy will point to PL/M. Two popu-
lar 8-bit 1 Ps are the Intel 8080 and Motorola’s 6800.
While PL}AM was generated by Intel for the 8080, PL/M
compilers are available to translate the syntax into object
code for the 6800. [And Signetics 2650.]

The EIA/NEMA task force will study drafts of two
new MIL-M-3851 microprocessor detail specs, the /400
for Motorola’s 6800 and the /420 for Intel’s 8080.

MORE COMMENTS ON PROC.TOLOGY SOFT-
WARE, PLUS SOME NOTES ON CASSETTE
TAPE QUALITY

$3000 FOR 2,400 LINE PER MINUTE PRINTER

Houston Instruments has 80-column and 132-column
printers that print up to 2,400 lpm and up to 1,400 lpm.
They say their interfacing is explicity designed for easy
connection to micros.

Houston Instruments is located at 1 Houston Sq.,
Austin, TX 78753.

Dear Jim, . .]
DDJ has become the best newsletter for the computer 2. E;}é?;;s";?r?lii ig I?Of?e%é I;IElXE loop is decremented and
hobbyist. None of the commercial magazines can approach fnized as zero.
the vsiealth of information you provide. I enjoy every issue, Example - 10 FOR_ =2 TO -2 STEP -1
especially the letters. Keep up the good work. [Aww, T .20 IF.I‘O THEN . .. _
geee fellas . . .] he relation on 11ne_ 20 never l?ecomes true. The zero is
Some more comments on Processor Technology software. apparently a “negative zero” since
I think the PT people have done a great job providing rea- .20 IF ABS(I)=0 THEN . . .
sonably priced software. It seems that their programs are will work.
not thoroughly debugged. The source listings for FOCOL If any of the DDJ readers have a solution I'd like to hear
and BASIC do agree with the paper tapes. from them. A letter to PT regarding these problems has not
The problem with the PT BASIC INT function mentioned been answered.
in DDJ No. 8 can be corrected as follows: Realistic Supertape has been recommended in some hobby
AINT LDAX B magazines as suitable for digital data recording. The October
SUI 129 . 76 issue of Consumer Reports contains a test of audio cas-
JP AINT1 settes. Recording music and digital data are not directly
XRA A related. However, it is interesting to note that Supertape
MVI D,5 was rated below average in two important factors - output
AINT2 STAX B uniformity and freedom from dropouts. From personal ex-
DCX B perience I’d have to agree with the test findings.
DCR D The four top rated cassettes were BASF Studio Series,
INZ AINT2 Maxell UD-XLC60, Scotch Master, and TDK Super Avilyn
STAX B SAC60. I'm not sure this can be printed in DDJ since it
RET is copyrighted info.
Thanks for Fred Greeb for this fix. Happy computing.
In addition, I’ve come across two more bugs: Adolph P. Stumpf 5639-A Ute
1. Formatted print will not work with fractional values. Glendale, AZ 85307
Example - %Z2% Variable = 1.097 Output = 1.10 OK [My impression is that one may copyright text, not informa-

Variable = .097 Output = .0010 OOPS! tion. — Jim]

Nov./Dec., 1976 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 9

THINKING OF OPENING A COMPUTER STORE?

Before you do, consider the following financial figures.
These were generated in September, 1976, by an independent
team of professmnal cost analysis consultants They are pro-
jected or “reasonable expectation” figures for two classes of
computer stores; a $20K/month store and a $30K/month
store (gross). They are based on a number of in-person and
in-depth telephone interviews with a large number of existing
computer stores.

Average Earnings For An Average Month

NEW CANADIAN COMPUTER STORE

The Computer Shop (of Calgary) is a brand new store
serving the Canadian Rockies and western plains area. They
carry a number of product lines, and hope to offer some of
their own Canadian-made products in the near future.
Austin L. Hook, The Computer Shop, 3515—18th St., SW
Calgary, Alta., T2T 4T9, Canada, (403) 243-0301.

“PERSONAL” COMPUTERS ARE SHOWING UP
IN SCHOOLS

The San Jose Unified School District is busying 14 Western
Data Handlers, assembled. It already has ten IMSAI’s and a
Polymorphic. It has originally been considering expanding a
PDP-8 into a TSS-8 system, but decided to purchase these 25
computers, instead — for the price of that TSS-8 expansion.

Furthermore, Bob Albrecht noted, “SMRT won’t hurt
San Jose.” (SMRT is the Single Message Rate Tariff that
Pacific Telephone is about to inflict on users of business tele-
phones who make lengthy calls. See August, 1976, DDJ.)

Gross Sales $20,000,00 $30,000.00
Cost of Goods Sold _13,600.00 _20,400,00
_ Gross Profit 6,400,00 9,600,00
Deductions:
Refunds, Bad Check $ 15.00 $ 25.00
Sales Expenses:
Personnel Advertising 10.00 15.00
Salaried Employees (2) 1500.00 1500.00
Bonuses 150.00 250.00
Royalties 1000.00 1500.00
Subtotal /$2675.00/ /$3240.00/
Operating Expenses:
Advertising (2%) 400.00 600.00
Automotive 35.00 50.00
Dues & Subscriptions 7.50 7.50
Entertainment 10.50 25.00
Equip. Rental 30.00 40.00
Insurance 75.00 75.00
Interest 7.50 10.00
Office Supplies 10.00 20.00
Postage 17.50 25.00
Printing 20.00 30.00
Prof. Service (Ace/Lease) 75.00 75.00
Rent 450.00 600.00
Taxes 35.00 50.00
Telephone 100.00 150.00
Travel Expense 50.00 75.00
Utilities 50.00 75.00
Subtotal /1373.00/ /1907.50/
Net Profit (11.7%) 2352.00 (13.8%) 3462.50
Monthly .
Yearly $28,224.00 $41,550.00

STORES, AS OF MID-NOVEMBER (already badly outdated)

Fort Pock

- Mma,,,
~m._Reserveit
——

MONTANA

o A
’
e

Illl”

Reservoir -

../

i
“"l' wmsoﬂ vusmusm \1

.ﬁk
\\5

o

s {Tom t«

 manem
", oot Ranits
. fund Rwits g

‘2"4'\

ARIZONA

Prepared by David Baran
Age 11

Page 10

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

. ladelphu
‘\n [WARE

Nov./Dec., 1976

JIM McCORD REPORTS ON THE LSI-11

Dear Bob and Jim, Oct. 7,1976

To follow up my conversation with Bob of a couple of
weeks ago, this is to tell you about the LSI-11 stuff.

At last count there were about 15 people in the S. Calif.
area who were using the LSI-11. T understand that there are about
an equal number in the Bay Area. Other than those two groups
I'know of no other “large” bodies of hobbyists using the machine,
although there are undoubtably isolated people around the
country who bought them from various distributors. Perhaps an
announcement in PCC or Dr. Dobb’s will help pull us together.

The S. Calif. group bought their machines from a company
called Applied Information Development, a subsidiary of SDC.
AID is apparently building something that incorporates the
LSI-11 and is selling the components partly as a way to get
their own unit costs down. We got a 25% discount of quantity
one price with a $5K order, and some smaller orders have since
been filled at the same discount. Whether they would still do
this for other groups I do not know, but probably they would.
(Amateurs pay cash.) I have also seen other distributors adver-
tising “club discounts” on the LSI-11. By the way, we went this
route after trying for almost a year to put together a group of 50
people to buy directly from DEC and never succeeding.

There is'a common belief that the LSI-11 is too expensive
for hobbyists. I don’t agree. For about $1K, you can get a
processor, 8K bytes of memory and a serial I/O card, and a back-
plane, fully assembled to industrial standards, that works when
you plug it in. It took me 15 minutes to go from box to teletype.
The machine has a very nice monitor, and for an extra $100 or
so you get hardwired fixed and floating point instructions, for
those who are into that. Plus, you get the very elegant and
powerful instruction set of the PDP-11, all of the system software
that has been developed for the 11 (at a price, of course), and
the DECUS library which is full of 11 software and is going to
get a lot fuller. All in all, I think it’s a pretty good deal.

There are some disadvantages, of course. If the machine
breaks you probably have to ship it back to DEC for repair.
(DEC claims a very long MTBF, but who knows?). T don’t know
what a nominal repair charge would be. Until somebody builds a
LSI-11 — to — Altair bus'interface, we won’t be able to use all
the neat hobby peripheral cards. Memory is somewhat more
expensive than for hobby machines, although it too comes fully
assembled and checked out from a variety of vendors. You have
to supply your own power supply and box, although that isn’t
a big deal. Also, some of the most desirable software like the
BASIC interpreter is still pretty expensive. I think DEC should
consider releasing the papertape stuff to DECUS — probably they
have recovered the cost by now! In all, though, I think that the
LSI-11 has a lot to recommend it to the hobbyist, particularly to
those who are more into programming than hardware.

So far no really creative applications for the machine have
emerged from our group, since most of us are still working on
developing auxiliary hardware like terminals and stuff. Periphe-
rals include a few TVT’s and TTY’s, papertape readers and
punches, and cassettes. Three of us have built the InteColor 8001
intelligent color terminal kit and are using it as our main I/O
device (that’s a story for another day). The peripheral that most
of us would like to get is, of course, a floppy disk, but so far we
haven’t found anybody who makes an affordable controller for
the LSI-11. That shouldn’t be too far off, though.

Anyone who has an LSI-11 or is interested in one is welcome

to write to me. So far there is no organized newsletter for the
machine but undoubtedly one will emerge when enough people
are interested. DEC will create a DECUS Special Interest Group
(SIG) for hobby users of the 11 or 8 or both, which would take
care of nuisances like printing and mailing, but we need a few

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

POSTSCRIPT TO ‘COPYRIGHT MANIA’

Dear Jim, Aug. 25, 1976

| am writing this letter as a postscript to the article ‘Copyright
Mania’ in the May issue of Dr. Dobb’. | became rather attracted
to TRAC (trademark of Rockford Research, Inc., and don’t you
forget it) and therefore wrote to Mooers asking for information
regarding the development of a TRAC processor. Two months
later, 1 received a copy of a ‘License Agreement for permission to
use Rockford Research copyrighted writings on TRAC language in
academic experimentation.” What it consisted of was an agreement
that Rockford Research would not sue me if | signed the agreement
and sent them $10. That (the promise that they won't sue me) is
all | get for my $10 (manuals are another $15). Also, once |
finished the TRAC processor | could not: “publish, reproduce,
resell, lease, give, lend, circulate, or license the . . . [TRAC pro-
cessor] or any portion thereof in any manner or on any
medium, which shall include but not be limited to copies, tapes,
films, computer program library deposits . . ."”" (there was about a
paragraph more). Anyway, that rules out sending to Dr. Dobb’s,
which was my idea for the processor from the start. The agree-
ment also wanted me to agree not to challenge the Rockford
copyright.

In short, | have no objection with a person or group copy-
righting a program, but this seems a bit excessive.

Thanks for the time, and keep up the good work.

Yours,
Chris Pettus PO Box 611
Malibu, CA 90265

PRAISE FOR PALO ALTO TINY BASIC & TINY
TREK, AND A QUIBLET ABOUT THE VDM SOFT-
WARE

Dear Jim, Oct. 5, 1976

PALO ALTO TINY BASIC and TINY TREK have to be the best
$4.00 investment | ever made! 1'd like to recommend it to all Dr. Dobb
Dobb’s readers. (For further details, refer to Dr. Dobb’s, May 1976,
with an addition of software for a VDM display in June/July 1976.)

The tapes came back within 4 days from the Community Compu-
ter Centre (which must be a record for ‘Trudeau’s Turtles’), and every-
thing worked immediately. The abbreviating possibilities of P.A.T.B.
really make for conpact programming (P. instead of PRINT, for exam-
ple), in conjunction with multiple statements per line.

One thing | would have liked to have seen would have been simple
strings for inputting and outputting words, names, etc., but one can’t
have everything in less than 2K, | guess. (Any chance of Li Chen Wang
re-considering . . .?)

| haven’t had too much use out of TINY TREK — mainly because
my kids won’t let me have a turn! However, the times that | have
played, | have thoroughly enjoyed it, and it ranks up there with the
other versions | have played (STARTREK, and STARTREK 3D on an
AMDAHL 470). Asa matter of fact, it is extremely difficult to win,
and that increased the enjoyment (with the frustration).

Another problem in using the VDM software given in June/July
1976 Dr. Dobb’s, is that when listing a long program the screen goes
zzzip! and all you catch is the last few instructions that remain on the
screen. A delay, or a hold feature would be nice.

Still, for 6K of memory | have hours of fun — or at least my kids
do. I'm reduced to playing after lights out for them. What the heck
can | do with my other 10K?

Sincerely,

Basil R. Barnes, VEGBB Box 1226

Bonnyville, Alberta
CANADA, TOA OLO

P.S. Can | obtain Mr. Wang's address? [Dr. Lichen Wang, 150

Tennyson Ave., Palo Alto, CA 94301, (415) 321-6983]

more users before that becomes reasonable.

See ya,
Jim McCord 3710 State St.
SysteMetrics, Inc. Santa Barbara, CA 93105

Ps.
Jim, thanks for the stuff on PerSci. They had an ad in Inter-
face this month, offering drive and controller for just over a kilo-
buck. It’s areally fantastic intelligent controller, requiring prac-
tically no support software in the host machine. If I can’t find a

compatible controller for my 11, I may go this route, writing my
own drivers.

Page 11

A GOOD RESPONSE TO COMPLAINTS
ABOUT TARBELL TAPE UNITS

- Dear Jim, Sept. 19,1976

Thank you for giving me the opportunity to reply to the
notes about my cassette interface in your Volume 1, Number
8 issue.

I believe that no product is ever perfect, so I continually
revise both the documentation and the interface itself. Since
I started delivering these units over a year ago, I have gone
through four revisions of the boards, and at least six revisions
of the manual. These changes were largely the result of com-
plaints, suggestions, and returned survey forms, which are at
the end of each manual. The first ten kits especially, were
followed very closely, and the owners were asked to immedi-
ately inform me of any problems they had with either the
manual or the board. In this sense, the kits were “tested on
persons unfamiliar with the device.”

Although I realize that the term is a relative one, I
don’t feel that the implementation of this device has been at
all “sloppy.” Of course, I've had my share of problems, like
any of the other manufacturers, but I’ve made every attempt
to follow up what I consider good design practices, and to
make the system as clean as possible.

Unfortunately, I did have a run of boards that had bad
plated-through holes, and got through my inspection
undetected. I have since discontinued my relationship with
the manufacturer that produced these boards, and selected
another. My first revision D cassette interfaces were
delivered September 3, 1976 (before Dr. Dobb’s Number

~ 8). The boards in these kits, one of which is enclosed, are
far superior to the previous ones, and the plated-through
holes look beautiful. Revision D also includes all the latest
modifications, including several unused inputs connected to
pull-up resistors. The connector pin alignment has also been
corrected slightly.

Several months ago, I contracted with someone to com-
pletely rewrite the manual. The rough draft is now being
reviewed, so it will probably be ready to print in about a
month. This manual provides new information, such as
siagrams for all the integrated circuits, step-by-step instruc-
tions for the beginner, and a more thorough theory of
operation section. Although my present manual is not in a
professional format, I am proud of the fact that it is chock-
full of the kind of information a hobbyist needs to get his
interface up and running and useful. The new manual will
be even better, and some of the pages have already been
added to the present manual.

One page of the manual starts: “If you cannot make
at least ten 8K-byte transfers with no errors, you have a
problem, and the items below may be of some help:”

This is followed by several items to check. The last two
items on this page state: “If you still have problems, -

please return the unit, preferably with your cassette recorder,
and I will get it operating perfectly for you without charge.
If you are completely dissatisfied, you may return the
interface for a refund within 90 days after you accepted
delivery.”

I don’t know if there’s another manufacturer that
stands behind his product like this, but I think it attests to
my confidence in the Tarbell Cassette Interface. I have not
charged one penny for repairs yet, and in all the units I've
shipped, only one has asked for (and received) a refund. I
sincerely believe that most of the people with these units
are completely happy with them.

I completely support your suggestion to write or phone
me directly. Please—if you have problems with your interface,

Page 12

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

and we can’t seem to get it going over the phone or by mail,
send it to me for repair. There have been some units that
have been difficult enough to repair that I've actually supplied
a replacement unit, at no cost. I don’t really see how you can
lose when you buy one of my interfaces.

Sincerely,
Donald E. Tarbell Tarbell Electronics
(213) 832-0182 144 Miraleste Dr., No. 106
Miraleste, CA 90732

e B S S
CONFERENCE ON COMPUTERS IN HUMANITIES

Papers and participation are being sought for the Third International
Conference on Computers in the Humanities to be held Aug. 2-5, 1977,
at the University of Waterloo, Waterloo, Ontario. Send papers or ab-
stracts to Prof. Paul Bratley, Dept. D’Informatique, Universite de Mon-
treal, Montreal, Quebec H3T 1J4 by January 15, 1977.

T
TARBELL PRAISE, A FANCY DISASSEMBLER,
& AN APL CHARACTER QUERY

Pear DDJ, Sept. 26, 1976

Just a quick note on the Tarbell interface about
which you say you have been receiving a lot of com-
laints: mine worked the first time I tried it, and refused
ro drop so much as 1 bit when fed by a tape recorder
with a variable speed control. I could go 20% slow, and
about 10% fast, with no trouble. Only by intentionally
ttying, could I get it to drop a bit to see if my checksum
toutine was working. In daily use for about 2 montbhs,
it has dropped a bit only once. It is a fantastic peripheral.
I use it to back up floppy disks as it is the only device
that is 1) fast enough; 2) cheap enough; 3) reliable
enough. I had no ‘non-plated-thru hole’ problems. A
friend says Tarbell left some TTL inputs floating, which
1csmses noise susceptibility, but I have not had this prob-
em.

- Keep up the fantastic work on supplying the
lobbyist community with public domain software, and
P.S. are you interested in a disassembler which I wrote
and commented? It is 8080 based, uses sense switches to
determine when to generate instructions, when to gener-
ate DB’s with ASCII, or DB’s with hex. It can be used
as a one-pass process to just see object, or can be used
as 3 passes: 15 every address reference (JMP, LXI, CCLL,
étc.) is placed in a symbol table compatible with Processor
Tech Package No. 1; 2) a pass to edit the symbol table
and change default labels (Lxxxx) into meaningful ones if
you have some knowledge of the source code—this pass
is entirely optional; 3) do the actual disassembly, with
most labels put in, and all LXI’s, JMP’s etc. referencing
labels. The output is a source listing, and optionally,
using a sense switch, writes the source in a format com-
patible with Processor Technology Package No. 1.

I would appreciate you publishing a note asking if
anyone knows a source for APL character generators which
could be retro-fitted to a VDM.

Sincerely,

Ward Christensen 688 E. 154th St.

Dolton, IL 60419
Yes, Yes, Yes! Send us your super disassembler—including,
of course, user documentation, at least nominal internal
documentation, and annotated source code.

What sort of disc system are you using and how do
you like it? (And, may we publish your reply?)

What sort of printer and printer software are you
using? [The original of this letter had an unusual type
face, and was left & right just}fied.]

—Jim

Nov./Dec., 1976

TARBELL TOUTED

About the Tarbell interface: | have two of them (since | have two
machines) and they both work great. | recommend them.

However, neither of them worked right off. One was an early type
and needed fixes; the other had a bad board and needed fixing. But
Tarbell gets them right back (a couple of weeks) and they’re great!

In fact, most of this stuff doesn’t work immediately. None of my
stuff has worked right off. That's why you should buy from someone
who will back his merchandise. |’ve bought some used equipment and
have regretted it. When you buy, buy quality and mentally add 25%
for repairs unless you know at lot about this stuff that | don’t know.

Say, what's your experience with molex pins for IC chips? I've
not used them but | hear they work okay. Sure sounds better than
buying sockets at 50 cents each.

Jim Leek 2801 F
Bakersfield, CA 93301

R i
TARBELL TRICKY

Dear Jim, Oct. 8, 1976

A few weeks back you asked for user comments on the Tarbell
Cassette Interface. Here are mine, based on a not-yet-up-and-running
board.

When | first put the thing together, | had trouble getting the
sync light to come on at all. So | sent the board back to Don Tarbell,
asking for help. He corrected a few errors, made some modifications to
the circuit, and sent it back to me — no charge. | still had some trouble
getting the unit to read in data, even after setting it up with the aid of
the sync light, and set it aside until | could get hold of a scope. The
scope showed that adjustment was even more critical than the instruc-
tions would indicate. | was getting a good sync light reading over a
wide range of settings, but the waveform was stable for only a very
small range. That problem corrected, | could read in data, but still
had substantial numbers of errors. 1've pretty well stopped at that point,
since business is taking me out of town too much to concentrate on a
solution.

My observations:

— The interface is sensitive and error-prone. | assume this is the
price one pays for the high speed.

— A scope is nearly essential to correct problems. This is true for
all computer applications, actually, but this was the first of six boards
I've assembled that required more than a little initial prodding.

— Don #s good to his customers. | have no qualms about calling
him if | can’t get the error problem corrected, but want to put in my
own best efforts before bothering him further.

— An article in DDJ mentioned that the user has to figure out
that a start byte is essential. True. This can be a real problem if you
don’t use Don’s programs, because that’s the only place mention is made
of it.

In short, | have mixed emotions. | appreciate the potential speed
of the interface and Don'’s integrity in backing his product. But | would
have been much farther along in getting a system running with a slower,
but more fool-proof (literally) unit. Right now, I’m still using console
switches, since | can’t use the keyboard effectively without reloadable
‘software.

Sincerely,

Jim Wilson San Diego, CA

R e e O |
Dear Jim, Oct. 14, 1976

A P.S. to a letter | wrote a few days ago about my experiences with
the Tarbell cassette interface unit:

It is now.up and running, apparently reliably. My solution finally
was to hook it up to my-hi-fi tape deck through an old Lafayette stereo
amplifier that was going-unused. | then used an oscilloscope to remove
as much of the distortion as possible by adjusting the bass and treble
eontrols,

This is obviously a pretty unwieldy solution. So when | finish some
more important things, | plan to buy a cheap audio amplifier with tone
controls (something less than 10 bucks), and use it for a more perman-
ent installation.

Sincerely,
Jim Wilson
‘San Diego
L) -0:.,.,'.:}..'.

designer of the monster CRAY-I, zs sazd to often refer to hzs
machine as a “back-end processor.’

Nov./Dec., 1976

Seymour Cray, designer of giant machmes for CDC, and }

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

A CLUB SURVEY: TOO SMALL FOR STATIS-
TICAL SIGNIFICANCE, BUT WE LIKED IT

Dear Mr. Warren, October 3, 1976

Thought you might be interested in the enclosed results
of our first membership survey.

Sincerely,
Robert R. Wier
Survey Chairman

Texas A&M University Micro-
computer Club, Box M-9
Aggieland Station, TX 77844

These are the results of the first periodical Texas A&M Micro-
computer Club Consumer Survey and Opinion Poll taken in Sept.,
1976.

HOW TO READ IT: Companies are listed in each division in de-
scending order of rating. Entries are of the form NAME (rating/
no. of respondees). The ratings are determined from a number of
ratings based on response speed, quality of product, pricing, com-
plaint satisfaction, and overall quality. Companies which received
less than 2 ratings are not listed. Note that it could be “safer’” to
deal with a company which has a rating slightly lower than some
others if a large number of persons found it favorable.

In all categories, most favorable rating was 5, least favorable was 1.

COMPONENTS:
DIGI-KEY (4.58/4)
TRI-TEK (4.5/2)
JAMES (4.42/10)

S. D. SALES (4.42/6)
NEWARK (4.36/3)
ALTAJ (4.04/5)

. FORMULA INT’L (4.00/2)
GODBOUT (3.9/4)
MESHNA (3.82/6)

DELTA (3.54/4)

BABYLON (3.36/3)

SOLID STATE SALES (2.89/5)
POLYPAKS (2.62/8)

OLSON (2.35/5)

B-A (2.28/5)

RADIO SHACK (1.92/11)

PUBLICATIONS:
Dr. Dobb’s (4.38/4)
Byte (4.23/10)
73 (4.18/3)
Ham Radio (4.16/4)
People’s Computer Company (4.10/4)
Computer Hobbyist (3.75/2)
Popular Electronics (3.65/10)
Interface (3.08/3)
Radio Electronics (2.92/9)
Creative Computing (2.88/3)

KITS AND MAJOR COMPONENTS:
SWTPCO (4.16/8)
HEATHKIT (4.16/9)
PROCESSOR TECH (3.90/2)
1BM (3.75/2)
MOS TECHNOLOGY (3.74/3)
IMS (3.73/4)
MITS (2.82/5)

“Should software be included in the price of the hardware?’’
YES: 82% NO: 18%

Computer Stores: ““Good, but expensive’’ was the general response.

Selected comments from ‘“What do you think is the biggest problem’
facing personal computing now?"":
“Information spreading”, ‘“‘mercenaries”, “need free software”,
“long mailing waits”, “number of software compilers, price”, “ oft-
ware for the 6800,

Page 13

IMSAI “INCOMPATIBILITY”

Dear Jim, Oct. 14,1976

I have just entered a real-life description of “compati-
bility”. While trying to figure out why a simple three instruc-
tion program would not work as documented in the Intel
8080A manual being executed on my IMSAI 8080, I dis-
covered that the flag bits (as stored in memory via PUSH PSW)
were not as Intel describes. '

For openers, bit-5 and bit-3 are supposed to be ‘0. On my
IMSAI 8080 bit-3 was always ‘1°, and bit-5 fluctuated with,
as yet, no pattern sometimes being ‘0’ and other times being
‘1°. At this time I played around a bit and found that the
XRA A instruction did not work as documented. At this
point, I contacted IMSAL

Very quickly, I was put in contact with Mr. Bruce Hollo-
way of IMSAI. After Bruce confirmed that strange things
were happening with his IMSAT 8080, he researched the
problem and reported the following: (my interpretation
follows)

These IMSAI 8080’s use a NEC 8080A chip instead of an
Intel chip. NEC reported in a confidential letter to IMSAI
some “minor” differences between their chip and Intel’s.

At all times, the chips were stated as being software compat-
ible. The software differences are: (1) Flag bit-3 is always
‘1%; (2) Flag bit-5 is set ‘1’ on subtract-type operations, and

is reset ‘0’ on add-type operations; (3) The CY (carry) and
AC (auxiliary carry) flags are now properly set for both adds
and subtract operations; (4) The DAA (decimal adjust) opera-
tion now works properly following either an add or a subtract
(using flag bit-5); (5) THE AC FLAG IS NO LONGER
CLEARED BY LOGICAL OPERATIONS. Additionally,
Bruce mentioned that there are also some “minor” hardware
differences, having to do with data on the same bus not being
present at the same states as with the Intel chip (I wonder
what problems this might cause?).

When I heard all of this, I informed Bruce that the fact that
the AC flag is not cleared means that software written for an
Intel chip would not work on the NEC chip. For example:

MVI A9
ADD A this forces the AC to be set
XRA A this is supposed to clear AC and CY

DAA this should result in ‘00’ but produced ‘06
with the NEC chip!!

At this point Bruce agreed with me since he has written
similar code that would not function properly with the NEC
chip. Bruce has informed me that this incompatibility was
not known previously.

Well, in.the span of the last three days, I have uncovered.an
8080A “compatible” chip that is, for all purposes, as incom-
patible to the Intel 8080A as is the Z-80: programs can be
written that will run properly on the Intel 8080A, but will
run properly on the NEC 8080A, and vice-versa.

I am now waiting for the Intel 8080A IMSAI will be ship-
ping shortly. What really disturbs me is not the imcompatibil-
ity itself, but not being informed. I don’t believe that NEC
should claim their chip to be “compatible”, but I abhor the
fact that their letter describing these differences was labeled
CONFIDENTIAL and not released to the end user of their
chips.

I hope that this letter may save some people untold hours
debugging a program that doesn’t work because of the NEC
chip. Hopefully, IMSAI will refrain-from using such incom-
patible chips on MPU boards, and will exchange customers’

Page 14

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

NEC chips for truly compatible chips, or at least distribute the
NEC ‘confidential’ documentation.

Sincerely,
Glenn S. Tenney Compro
Sr. Designer 2111 Ensenada Way
(415) 574-3420 San Mateo, CA. 94403

IMSAI RESPONDS

Dear Mr. Warren, Oct. 18, 1976
Following is the letter promised per our telephone conversation of
October 15, 1976. We will be sending this information to all past and
futt;_{:-':I c'.]:stic])mfers who (;nay have the NEC chip. :
of the features described in the following synopsis we i
by NEC to improve the 8080A chip. 8 synopsis were designed
Thank you for your cooperation.
Very truly yours,
IMS ASSOCIATES, INC.
Marvin Walker
General Manager

14860 Wicks Blvd.
San Leandro, CA 94577
(415) 483-2093

SUMMARY OF DIFFERENCES BETWEEN I80804 AND uPD8080A

1. During an interrupt, an RST or CALL instruction is accepted by both
both processors. With the uPD8080A during M2 and M3 of a CALL
instruction, the INTA status signal remains active. The 18080A re-
quires the use of an 8228 to generate INTA by decoding 02H (all
status inactive). Both |8080A and uPD8080A work correctly with
Intel and NEC 8228/38.

2. Interrupt during HALT state, with the uPD8080A INTE is reset at
T2.02 of the next clock period following the sampling of INT, as
opposed to the I8080A where INTE is reset at M1.T1.02 of the
interrupt instruction fetch.

3. Instruction Execution Times: All instruction execution times are
the same except the following, which require the listed number of
T (clock) states assuming no wait cycles.

18080A uPD8080A
MOV rr 5 4
RET 10 11
DAD 10 11
XTHL 18 17
SPHL 5 4

4. Data on Address Bus during M1, T4 and T5 with uPD8080A is the
same as during T1-T3. With the I8080A, the Address Bus is unde-
fined during T4 and T5.

5. Subtraction is performed as a direct binary operation in the
uPDB8080A and the carry, Auxiliary Carry and subtract flags are
properly set to indicate the subtract operation and borrows from
each four bit nibble for use with the DAA instruction.

6. DAA instruction works correctly, directly following both addition
and subtraction operations with uPD8080A, while I8080A BCD
subtraction must be performed by a sequence of additions and
subtractions.

With uPD8080A, three flags, Carry, Auxilliary Carry and SUB,
are used for DAA operation, both for addition and subtraction
(see Section 8). Carry and Auxiliary Carry are properly set to
indicate borrows/carries from each four bit nibble for use with
the DAA instruction. SUB flag is used to determine whether
required DAA is for addition or subtraction. BCD arithmetic
programs written to run on 18080A will also run on uPD8080A
unless the operations ORA, XRA, ORI, XRI, INR, DCR or DAA
are depended on to affect the AC flag. Also see Section 7.*

7. Flag Registers for IBO80A and uPD8080A are as follows:

Dg Dj Dp D3 Dg Dg Dg Dy

18080A c 1 P O AC O 2z S

uPD8080A C 1 P 1 AC SUB 2 S

Note that if the flag byte is pushed on the stack to be used as a byte
in any operation such as a compare, that the value will be different
for the I8080A and the uPD8080A.

8. ‘All flags are set the same for 18080A and uPD8080A except as
noted.
A. Number of Flags:

18080A: Five flags
Zero, Carry, Sign, Parity and Auxiliary Carry
uPD8080A: Six flags

SUB is sixth flag (subtract)

*We suggest the use of a SUB A to clear the AC and Flags, since the
common XRA A does not clear the AC flag on the uPD8080A.

Nov./Dec., 1976

SUB flag is:
set by ... DCR, SUB, SBB, CMP, SUI, SBI
and CPI
reset by . INR, ADD, ADC, ADI, ACI and
DAD
affected by POP PSW
B. Affect on Flags:
Except as noted, the affect on the five common flags (Z, C, S,
P and AC) are all the same for IS080A and uPD8080A.
18080A: AC is affected by INR, DCR and DAA
AC is reset after logical operations ORA, XRA,
ANI, ORI and XRI
AC is not always set correctly to indicate bor-
row from bit 4 after subtraction. (Subtract
is performed by two’s complement and”
only Carry is complemented to indicate
correct borrow.)
uPD8080A: AC is not affected by INR, DCR and DAA
AC is not affected by logical operations
AC is always set correctly to indicate borrow
from bit 4 after subtraction.

9. Status information for IS8080A and uPDS080A is the same except
as follows: During HALT Acknowledge, D7 (MEMR) 18080A = 1,
uPD8080A = 0; during Interrupt Acknowledge while HALT, D3
(HLTA) I8080A = 1, uPA8080A = 0: and during CALL instruction
following interrupt, DO (INTA) during M2 and M+ for 18080A =
0 and for uPD8S80S80A = 1.

10.Pull-Up Resistors on the Data Bus: The uPD8080A does not
utilize active pull-up resistors on the Data Bus. To make inter-

facing easier on the DATA BUS V| mIN = 3.0 volts for the
uPD8080A vs. 3.3 volts for the IS8080A. With uPDS80S0OA, DATA
BUS input leakage current is the same as any other input.

11.The temperature range for the I8080A is 0—70 degrees C. and for
the uPD8080A is -10 to +70 degrees C.
12.DC characteristics are the same except as noted:

" 18080A uPD808OA
ViH 3.3 Min. 3.0 Min.
VoH ~ 3.5 Min. @ Igy=-1.0 ma
DD (AV) Typ =40 Typ = 55
IpD (AV) Max =70 Max = 75
Icc (AV) Typ =60 Typ =50
lcc (AV) Max = 80 Max = 70
IpL -2.0 ma Max. +10 ua Max.
IFL -100 ua Max. -10 ua Max. @ V| =
Vgg + 0.45V
13.AC characteristics are the same except as noted. See data sheet for
details:
18080A uPD8080A
tDO1 output delay from
01 low (SYNC,DBIN) — 160ns Max.
tps2 data setup time to
02 during DBIN 150 ns Min. -
tRSO1 ready setup time
to 01 high — 240ns Min,
4ys INT set up time During 02 for During 02 for
all modes ex- all modes
cept HALT
mode
During 01 in
HALT mode

14.All instructions are executed in the same sequence except XTHL.
The uPD808O0A first reads the top of the stack then writes the
contents of the L register into the top of the stack, next it reads
the data at the stack pointer +1, and then writes the contents of
the H register into the stack pointer +1. The I8080A reads the
stack twice then writes the stack twice.
15. Data on Data Bus During T4 and T5:
I8080A: The contents of the internal bus during T4 and T5
are available at the data bus.
uPD8080A: Data Bus is in the high impedence state during T4
and T5
16.HOLD Operation while DAD:
18080A: Same timing as HOLD in Write mode, i.e., HLDA
appears from 01 of the state following T3, and
Address/Data Bus goes into floating state from 02

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia. Box E, Menlo Park, CA 94025

of the state following T3.)
uPD8080A: Same timing as HOLD in Read mode, i.e., HLDA
appears from T3-01 and Address/Data Bus goes
into floating state frgm T3-02.

NEC RESPONDS

Dear Mr. Warren: Nov. 2, 1976

We recently received a copy of a letter sent to you by a Mr.
Tenney, and feel that it is appropriate for us to respond. We
hope that this will eliminate any concerns your readers may
have about the use of the NEC 11 PD808OA.

All the differences between the Intel IS080A and the NEC
UPD8080A are clearly stated in our uPD8080A Family data
sheet and 11 COM-8 Software Manual. These documents are
available through any of our distributors, representatives or
NEC Microcomputers, Inc. These documents clearly enumer-
ate the additional features which lead to the improved per-
formance of the 11 PD8080A, both in simplified code and
faster execution.

However, a user need not utilize these features in his pro-
gram. If the application program is written for the Intel
80804, it will run on the NEC part except for a few very
limited situations. For an example, all NEC PDA-80 and
Intel MDS-800 programs operate properly using either part, as
do all system programs in the IMSAI 8080 and the Altair 8800
to the best of our knowledge. It is obvious from the differ-
ences that one can create sequences of code that do operate
differently in several of the 8080A’s on the market today,
but most of these do not represent useful sequences of appli-
cation programs.

As far as the CLAIMS we make as referred to in Mr. Ten-
ney’s letter, we do claim as explained above that the yPD-
8080A is “compatible”, Upward Compatible! This is an im-
proved part and we do not believe that our or IMSAI’s cus-
tomers should be limited to the functionability of the 8080A
when an improve part is available. We are concerned that
some people do not understand the advantages of the uPD-
8080A. Therefore, we encourage you to print this letter for
your readers.

If there is anything else we can do to help you in this
matter, please contact me.

Very truly yours,
David F. Millet NEC Microcomputers, Inc.
Technical Staff 5 Militia Dr.

Microprocessors Lexington, MA 02173

TSK, TSK ... OUR HEADLINE WAS ONLY
OFF BY A FACTOR OF 1000

Dear Jim, Oct. 12, 1976
. Many thanks for your nice article about our super duper, low

priced magnetic tape storage products on Page 6 of your September
issue, On]y one thing wrong with it: You're guilty of overbyte in
the headline. Our maximum capacity is 60 Kilobytes, not Mega-
byéeds.] The text had it right. [Must have been “’a computer error.”

Two problems, come to think of it. Your second paragraph says
that we manufacture only the drive and cartridges. Not true. In
addition to the drive and cartridges, we also make what we call a
qlgl'tal OEM system. Unfortunately,the OEM system sells for $390
in single quantity, which is a byte much for the non-manufacturer
to chew.

Yours very truly,
Irma R. Johnson

Micro Communications Corp.
Vice President P

80 Bacon St.
Waltham, MA 02154

Page 15

Product Review: POLY-88 --
AN EXCELLENT SYSTEM

—— CATCH 16 yex

PLUS NOTES ON SOME S—100 “GOTCHAS"

by Jef Raskin

Box 511, Brisbane CA 94005
(415) 467-4674

In our last “Gotcha” a few manufacturers were taken to
task, and fewer still were praised for the quality of their
products and documentation. This time we take a brief look
at the familiar Altair and IMSAI chassis, and a long look at
the very interesting Poly 88.

I refuse to revive the old Altair vs. IMSAI debate. As
everybody now knows, the old Altair power supply was
feeble. My Altair worked fine after I had replaced its supply
with a custom 40 amp at 8 volt wonder. [In an external box
that should never land on your foot.] I actually liked the
Altair case better than IMSAT’s, and am glad to see MITS
has carried the design over to its new machine. Just two
screws and the top slides off. If the screws are omitted, the
case is just as strong to top loading. On the IMSAI there

are four load bearing screws which I could never get at

because something was always sitting alongside the computer.

If the screws are omitted, the top sits rather low. Not good.
Since I get letters asking: Yes, the heavy duty supply on

the IMSALI is excellent. I haven’t tested the new MITS supply,

but it looks good. Idon’t think they’ll make the same mistake

twice. After all, if they’re smart enough to make a computer

I find a serious flaw in the IMSAI front panel. Those big
paddle switches that make the IMSAI look sort of like a PDP-
11 have a small space between their tips. IMS should take
note, as it prevents errors, and still makes it easy to hit two
at once on purpose.

The Poly 88’s almost S-100 bus (hobbyist bus, Altair bus,
I could care less) has the best switches of all: there aren’t any.
Polymorphic Systems, in Goleta (thymes with “Lolita”)
California makes this very unassuming little box that does a
lot of things right, which the bigger names (with bigger boxes
and price tags) are doing wrong. Not that Poly is perfect. My
corrections to their manuals were extensive and numerous.
But they listen harder. For example, when I called up IMS
with a long list of carefully annotated errors in their manuals,
they put me off, promised to call back, never did, put me off
when I called again, etc. In the end, my careful documenta-
tion of their manuals did them no good at all, and frustrated
me. Polymorphic Systems listened, sent me extra manuals so
that I could send them mine with corrections and the like.
They’re not dumb; they’ve got a proof reader working for
free. It is my opinion that manufacturers should hire a proof
reader before sending manuals out, but the way that is now
used is cheaper and only has the drawbacks of having a few
hundred frustrated customers out there. And, they get hun-
dreds of phone calls of the form, “Where does R21 go?”
(Maybe the phone company is behind the bad manuals.)

The Poly-88 system — which has replaced my Altair 8800 and
my IMSAI 8080 — has but two controls on the box. An on-
off switch with a power-on indicator light, and a reset button
with a halt light. That’s all you get; that’s all you need. It
surely doesn’t look impressive. Sort of like a toaster in size
and shape. The Poly is by far the easiest of the S-100 bus
computers to build. The backplane and power supply are all
on one well-designed motherboard. The only wires leading to
it are from the transformer and the front panel button via
two Molex connectors. It is all very neat with almost no
point-to-point wiring. Somieone was thinking when they
designed this one. To take the backplane/motherboard out,
just pull the two connectors and undo six easy screws (which
go into captive nuts on the board, nothing to get lost inside).
Have you ever tried to take out an IMSAI backplane? More
Page 16

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

screws than an X-rated movie, and then there are wires screwed
onto the board. Dumb.

For some reason Poly’s tiny little case requires eight screws!
Abother. The kind of thinking that went into the electronic
design was absent when the case was created. It is on such
small shoals that great ships are wrecked. There are more
bolts than slots. There are 5 slots. Is that enough? Let’s see,
one for the CPU, one for the video board (it’s a dandy), one
for a ROM board to hold something comfy, like BASIC, and,
say, a 16K RAM board. With a Pixie Verter and a keyboard
you’re ready to go into any American household with a TV,
plug in and program away. And you’ve a lot left over —
another 16K? Voila! (or *Cello! for that matter) we have a
32K computer with serial port, cassette interface, video
interface, and software aplenty, power supply and on/off
switch tucked away in our viola case. I must mention that
a two-port serial interface is built into the CPU, and the RS-
232 and cassette interface cards are snug against the connec-
tors in the back of the case. That is a lot of computer in an
itty-bitty base.

That isn’t enough? You say you have a pile of old 4K
boards? Ido. Poly has the Idea of the Year (at the rate
we get new ideas in this business, maybe the idea of the
month): At one side of the chassis the backplane terminates
in a male S-100 bus connector. On the other side of the
chassis is a female connector. Aha. You can buy another
chassis, put it alongside the one you already have, sort of
nudge them together and guess what. Nope, you don’t get a
litter of 4040’s. You push them together and you get . . .

a ten-slot chassis. Actually, eleven slots ’cause you can put

a card into the end and let it stick out instead of yet another
chassis. This is useful and saves need for an extender board.
The power supplies are separate and not bussed together. Like
the IMSAI this machine has a substantial power supply. They
rate it 6 amps at 5 volts. Iloaded it down with 9 amps worth
of boards and a length of nichrome wire and it was still putting
out 8.2 volts. The point is, as you expand the chassis, you
expand the power supply as well. Each expansion chassis
costs $155. Takes two or three hours to build. Polymorphic
Systems forgot (so typical of manuals) to tell you that R6
should be omitted on slave chassis. So I tell you.

Before I find some drawbacks (I am not in the employ of
Poly) there was an advantage to the multiple chassis that I
hadn’t suspected when I ordered the miniature monsters.
When working on a board, sometimes it’s handy to have a
program sitting around, but it disappears when you turn off
the power to make a change on the board. But with the
separate chassis idea, you put the CPU and memory in one
box, the board under test in another. Just turn off the one
chassis to remove the board, make the changes, replace and
turn on the chassis. Program still there, testing continues.

Not all is peaches and cream . .. The diodes supplied
with three of the four I've built—you know, the little ones
for the plus and minus 16 volt supplies—were small signal
diodes instead of power rectifiers. The smoke test lived up
to its name. A quick trip to Radio Shack (it was Sunday)
got me a handful of diodes of the right rating. 20 for $1.98
or something like that. The first one I tested was bad. But
there were 21 in the bag! The other 20 were good, so no
complaint there. But, dear reader, always test.

The assembly instructions were terrible. There were as many
many errors as the other brands had [see DDJ, Vol. 1, No. 8].

Nov./Dec., 1976

Lots. They say they’re coming out with a new manual. If
it’s any good, I'll probably write it up. Volume II of the
instructions, however, is on the side of the Angels. This is the
clearest manual on the 8080 instruction set I have ever seen.

I leave it on the living room floor for people to pick up and
read. It’s that good. Someday I may even get a coffee table
for it. So if you want to learn the 8080, get that manual.
Maybe some magazine will serialize it (in good serial style:
“Last month our hero got saved from the evil Dr. Halt when.
an interrupt arrived in the nick of time . . .”).

What is life like without a front panel? Sheer joy, my
friends, sheer joy. You can deposit, examine, single step,
everything. You can do it in style, from a keyboard. When
you single step you see not only the address and the con-
tents (and in hex, not in binary [less than joyful to those
who prefer octal]) but you also see: the accumulator, the
flags, the B-C register, the D-E register, H and L, the program
counter and the stack pointer.

And you also see the first eight bytes of the stack, the
location the PC points to, the next seven bytes thereafter,
and the eight bytes pointed to by each of the B, D and H
registers. It certainly beats lights; it also beats the hex displays
found on a few other machines.

I hate to say this, but the Polymorphic advertisements
understate the advantages of their machine. Too bad for
them. It should be clear that the conventional front panel
is a holdover from an earlier era. It’s too bad that those
lights and mysterious switches appeal to so many of our
computer cult. Like those famous tailfins on cars, it im-
presses the neighbors, but doesn’t make the machine run
better. Of course this goes for all the ROM replacements
for front panels. Having both a front panel and a ROM
monitor is fine; you just have to pay for it.

For just under $600 you get, with the Poly system,
the bos, power supply, video board, the monitor in ROM,
512 words of RAM, room for 3K more of ROM, and all the
sockets you need for the ICs. Of the S-100 bus machines, it
is the only one where the minimal system has to do real
programming. (O’ course, you have to add a keyboard and
a TV monitor — but nobody includes them for the price.)
Enough free advertising for Poly. I am not so much interested
in selling computers for them as I am in seeing my computer
cousins not wasting their time flipping switches and misread-
ing lights. Any system (as I said) with HEX display is better
for a human being than the same system with a BINARY
display, and of the S-100 systems available this week, the
Poly will get more done per your hour than any of the others —
that’s building hour, programming hour, and even earning
hour. Other manufacturers, if you’ve got a better system,
tell me about it. Don’t bother, unless you use the S-100 bus
(so we can go to others than just you for add-ons). But, do
gell me if you’ve got something really different like 8K for

50.

A disadvantage of not having the conventional front
panel (after all this, I do know one disadvantage) is that
the CROMEMCO Bytemover program won’t work. It
needs switches. You can get a parallel port and eight switches
and wire it up for port address FF, but that’s a bother. Sol
called up CROMEMCO (if their documentation had been
better this would not have been necessary) to find out how
to write a 2707 EPROM without their program. The method,
they told me, consists of writing each PROM in its entirety,
from beginning to end, a number of times. Say a hundred to
three hundred times. “How many times does the Bytemover
write each PROM?” I asked. “Thirty-two,” I was told. Sol
wrote a little program that wrote the stuff into all the PROMS
255 times (you can guess why). It worked. I sold my PROM
containing the Bytemover program. [Another disadvantage
of no switch register is that it means the user has no sense

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

switches, often useful in man-machine interacting programs.
— Editor]

There are a few devilish “gotchas™ in the Poly system. The
first problem showed up in trying to run MITS BASIC (duly
purchased from MITS). Since the monitor likes to reside in
low memory, and so does BASIC, there was a conflict. The
solution: Poly provides a jumper to cut, and one to add to
allow you, under program control, to switch back and forth
between the processor-board memory (3K ROM, %K RAM)
and other memory having the same address. In my case the
program that copied BASIC from PROM resided at location
F400, so I used the following program to get BASIC up:
3E 20 D3 04 C3 00 E4
The seven bytes say: put 20 (hex) into the accumulator, then
send it to port 4. Sending the 20 to port 4 turns the onboard
stuff off. The next three bytes of the program jump to E400
to get the program started. Now, of course, that little program
is on the PROM.

The next problem was with the old MITS serial board.

I’ve always wondered why some serial boards have a crystal-
stabilized clock of their own since they could just count down
from the CPU’s clock signal which is on the bus. That’s what
the old serial board did — it counted down. PROBLEM! The
clock rate on the Poly system is a few percent slower than
the MITS and IMSAI clock. So the old MITS serial I/O
counts down to the wrong baud rate. You have to (as I did)
rewire all the counter presets. You will have to calculate the
proper values. Since my computer wasn’t up ’til this was
fixed, I was glad to have my Model-T vintage HP-35 to do

the necessary calculations. The newer MITS 88-2SI0 (a

fine board in my book) does it right and has its own crystal
(and works like a charm in my Poly, without modification).

And another, almost unforgivable error on the Poly: it
is not quite an S-100 system. Sure, everything I tried with
it worked except for that one board. But when a manufac-
turer came by my place with a prototype of their new 16K
board and plopped it into the Poly it didn’t work. A few
“unimportant” outputs and inputs to the CPU were left off
the bus. More importantly the WAIT signal is not on the
bus. This let the memory know that the computer was in the
HALT state, which the memory needs to know. This is not
the place to go into that (gotta leave something for other
articles). This particular device did not need the other signals
but some new board might. The point is this: you are either
on a standard or not on a standard. There is no in-between.
Polymorphic Systems’ Poly 88 is not really an S-100 compu-
ter. You have to ask first: does the board you wish to use
with it require separate disables (address, status, data out)?
Does it need HLDA, INTE, WAIT? If it does, then the Poly
won’t do. The disables are on the bus, in non-standard loca-
tions, but they can only be disabled as a group (as required
by DMA’s). One of the output signals such as WAIT can be
fed through a spare buffer on the board to the bus. (For your
information it’s IC 8, an 8T97. Because this is DDJ I'm sure
the editor will permit the gory details.) Bus lines 22, 18, 23,
26, 19, 28 and 27 are not on the bus. To put WAIT on the
bus, jumper pin 24 on the 8080 to pin 2 of IC 8, and pin 3 of
IC 8 to bus line 27. I don’t know if I’ve missed something else
that should have been on the bus. I called Polymorphic Sys-
tems; they tell me that are putting out a list of differences, and
plan to connect the WAIT as I suggest. It’s the least they can
do.

Another problem with the Poly is that when a number of
chassis are plugged into one another, the cooling, adequate
with a single system, becomes inadequate. Not only does the
system look like a toaster, . . . My friend, Kent Strother, made
a-cardboard enclosure with a super quiet ROTRON fan (as per
the IMSAI). Now even the regulators run cool. The secret:
put the fan on top, sucking up, thus forced air aids natural

Page 17

convection. There are slots around the periphery at the bottom
of the case, and all other openings are sealed, forcing the air to
pass the boards and transformer. Not enouth attention has
been given to air flow in the IMSAI or the ALTAIR 8800 which
both have a lot of stagnant air spots even with the fan going.
Kent also designed a cardboard case for the keyboard that used
to lie around naked. Call .us the Cardboard Computer Com-
pany. It’s cheap, in keeping with our homebrew budget, and

if done carefully looks surprisingly good.

Second, a word for the Poly video board, but first, a word
for the Processor Technology video board. The PT VDM is a
top-notch piece of equipment. Their check-out procedure as
you put in the chips is a classic of good manual writing. The
VDM board I built worked perfectly. The Poly video board
suffers from drawing current at the hairy edge of what the
regulator can handle. What I like about it is the relatively
fine graphics it allows: a 128 by 48 bit resolution. The
graphics can be mixed with alphanumerics in any arbitrary
way. It isa good use of that eighth bit that the ASCII code
doesn’t require. Use of the Motorola MCM6571 AL character
generator gives me upper and lower case Roman characters
as well as the Greek alphabet and a gaggle of other special
characters, including the entire official ASCII set, the square

root symbol, etc.

I don’t know enough to write articles like this without
some help from my friends so: thanks to Doug Wyatt, my
constant colleague on microcomputers, Kent Strother for
the cardboard craftsmanship, Steve Calebotta for finding
the problem with the missing WAIT, and out editor Jim
Warren for the phrase “Hidden Gotchas™ that graces these
articles [who plagerized it from Dave Wyland at Ratheon |.
If you find any hidden, or just plain hanging out gotchas,
send them to me. I’ll check them out and include them in
a future article. You’ll get credit in the mag, and as much
moola as I get. Zilch. [Ahhh. .. but such glory and fame
you get!]

PRAISE FOR RASKIN & SUGGESTIONS
FOR DDJ

Dear Jim, Sept. 25, 1976

| just read the very informative articles by Jef Raskin
[“A Bit of Wheat Amongst the Chaff’’—a critique of problems
found in a number of kits] in the September issue and think it
is the greatest aid to the hobbyist planning on purchasing his com-
puter system. | certainly feel that both Dr. Dobb’s and Jef Ras-
kin have done a great service for the hobbyist. Please publish more
articles like this one. If Jef has inputs on software by all means
let’'s hear them. Jef’s appraisal was, | believe, very objective.

In order to make more room for articles of value | would
like to see you eliminate as much as possible the references to
new clubs and new stores which | feel are more than adequately
covered elsewhere, i.e., Byte, Interface, On Line, etc. |f you must
how about a one-liner like On Line. [These items are used only as
“filler” items.] '

You might consider using smaller type for all articles in
order to make room for your backlog of articles to be published.
[We're willin’. Are there any objections to dropping from 10-point
type to 8-point type?]

It might also be appropriate to eliminate items such as the
article on Energy Publications which does not seem to be per-
tinent to the subject matter of Dr. Dobb’. [This also happened
to be a filler article of the right size. However, we do admit to a
soft spot in our hearts for the topic of energy problems and
people-oriented alternative energy sources. Our only excuse for
its inclusion is that it is a technology-related subject closely
associated with consumer advocacy.]

Also, did you really need two pages for the PCC ad?

[PCC newspaper was Dr. Dobb’s mama. Would you have us
ignore our ma? Anyway, it's a “product’” we think is well worth
the attention of hobbyists, and as such, we published details
about it.]

All in all, | think Dr. Dobb’s is great, but it can be better.
[We agree.]

Very truly yours,
R. | Demrow

Page 18

11 Linda Rd.
Andover, MA 01810

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

SWTPC KEYBOARD IMPROVEMENTS

Dear Jim,

Here’s a plug for the latest in keyboards from SWTPC.
For those of us whose only experience with SWTPC key-
boards is with the original ones, the bad memories may make-
one a bit leery about giving them another chance. The new
KBD-5 has much better contacts than before, and it uses the
2376 keyboard encoder which makes it a cinch to redefine
keys. At $50, plus another 10 for a UART+ to make it
standard serial RS-232, this is the best possible buy I can
imagine.
Bob Powell 22 Bunker Hill Run
E. Brunswick, NJ 09916

A [WELL DESERVED] RAVE REVIEW FOR
THE APPLE COMPUTER SYSTEM & FACTORY
RESPONSIVENESS

Editor, Journal of Dentistry
Dear Jim,

Last July | found out about the miracles the silicon engineers were
performing. | was immediately hooked on home computing. But
since | had very little experience with computers, | was worried about
all the delays that everyone seemed to complain about when they
returned equipment for serving or clearing up the inevitable bugs.

After spending the summer carefully examining the systems avail-
able, | went to the PerCom convention in Atlantic City at the end
of August. There | saw an Apple computer working. Well, it was
love at first sight. | bought one from Itty Bitty in Evanston and
took it home with me to New York. Well, it took them three weeks
to send me two cables and two transformers and a.keyboard that

Oct. 11, 1976

‘were needed to run it! When they finally arrived (after a prompting

phone call), my Apple developed a glitch almost immediately (the
only Apple that the Computer Mart of NY has ever seen with a
problem!). Fearfully anticipating a two-month delay, | sent it to .
Steve Jobs at Apple Computer Co. He got it back into my hands in
two weeks working perfectly!! He even explained an elementary
error in a simple program | had tried! Since it took me over a

month to even get literature from Sphere (and | wrote them a
personal latter) or the Digital Group, this must be a record for a
personal computer company.

My Apple is terrific. Last night | loaded your 6502 floating
point routine and can now multiply, etc. Unfortunately all the
answers are complemented. |'ve got an 8K system with a cassette
storage unit, keyboard, (used) TV monitor, and a. 4K BASIC (that's
not quite finished yet but does run) for less than $1K. Moreover
Apple promises (and I'm now a believer) to replace my current
memory chips with the new 4K dynamic chips sometime next spring
for about $500. The Apple was designed to be pin compatible with
the new chips and so |ll have 32K on board. -

Any company that can produce equipment like this and then match
it with their service is really great. Companies like them and magazines
like yours make home computing an accessible field for everyone.

Yours,

Raymond T. Hoobler 789 West End Ave.
New York, NY 10025

[Apple Computing is at 770 Welch Rd., Palo Alto, CA 94304, (415)
326-4248]

PRAISE FOR SUNSHINE COMPUTER CO.

Dear Editor, Nov. 24, 1976

A commendation is in order for Sunshine Computer Company of
Carson, California. | bought a Sanyo cassette recorder from them
on Saturday, Nov. 20. They forgot to pack in the AC cord. When |
discovered the omission Saturday night, | made a note to call them
Monday about it. Sunday night they called and apologized, and

“said they’d mail it Monday. Received it Tuesday, postmarked Mon-

day, as promised. Total time to resolve my query: minus one day.
Sincerely,
Jim Raehl 943 Begonia

Escondido, CA 92027

Nov./Dec., 1976

It’s a BASIC,
It’s an APL

Dear Jim, Sept. 12,13, 15, & Oct. 2, 1976
Here is my entry in the hobby software field. It s a tiny
language called CASUAL. That’s the Chicago Area Small Users
Algorthmic Language. Here are the design goals used:
© Must run on any 8080 system with a terminal and 2K
of RAM starting at 000 000.

© Complete machine control is possible — inputting from
and outputing I/O ports, memory READ and
WRITE (PEEK and POKE), machine language
CALL.

© 16 bit everything — line numbers, expression values.

® Arrays

e String I/O

@ One tape works on any system — POKE’s itself for

most popular I/O boards (like MITS BASIC).

© Deletion of unwanted features at initialization time.
Note: The source tape alone is 2% inches think (fan fold),
somewhat greater than 75000 characters at this time.

I am currently at version .164. Version .09 was .
distributed to local hobbyists three weeks ago. That version
was 200 bytes longer and had some small bugs.

While I don’t have the time or the means for ‘mass
distribution of CASUAL, binary paper tapes and documenta-
tion are available from:

1. CACHE Software Library, Lloyd Smith, 530 Pierce Ave.,

Dyer, IN 46311
2. Chicago Computer Store, Lou Van Eperen, 517 Talcott

Rd., Park Ridge, IL 60068
3. Itty Bitty Machine Company, 1316 Chicago Ave., Evan-

ston IL 60201
4. American Microprocessor, Ed Cooper, at the Chicago

Land Airpert, 20 N. Milwaukee Ave., Prairie View,

IL 60069.

Convertmg CASUAL to other CPU’s:

If you’re using a machine without a hardware stack, I'd
say start from ground zero. CASUAL makes extensive use of
the stack and almost no use of memory direct instructions.
By putting CASUAL’s stack on my VDM, I was able to count
48 bytes on the stack while LIFE was running. Perhaps an
8008 with hardware stack mod wouldn’t be too bad, but it
would take a lot more than 2K.

Memory Info: If all features are retained at initializa-
tion, 403 bytes are left in a 2K system. If all features are
deleted, 610 bytes are left (slightly over %K). The code for
the interpreter, I/O drivers and all buffers except the
CASUAL Program buffer takes 1.61K. If all functions are
deleted, it takes 1.40K. The first 1K can be ROM or protected-
after initialization.

The mnemonics for the assembler have been significantly
modified from the “Intel Standard” mnemonics.

Loading Time: It takes about 5 minutes to load and
initialize itself at 10 CPS. Using a Tarbell Cassette Interface
at maximum baud rate, it should take about 4 seconds.

Dr. Dobb’s is superb' It Keep up the fine worlk!

Bob Van Valzah (312) 852-0472 (Home)
1140 Hickory Trl. (312) 971-2010 Ext. 231 (Work)
Downers Grove, IL 60519

P.S. I’'m 18 years old and entering my second year working
for an EE degree.

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Bob Van Valzah
1140 Hickory Trail
Downer’s Grove, IL 60519

It's CASUAL!

NOTES ON MY ASSEMBLER

MY OPCODE INTEL STANDARD

ILBH MOV BH

SP <> HL XTHL

DE <> HL XCHG

SP <HL SPHL

LXI HL LABL LX1 H,LABL

JFZ INZ

JES JP

JTS M

ITZ JZ

LCI 010 MVI C,10

ND E ANA E

OR A ORA A

STHL SHLD

ILDHL LHLD

LAI G MVI A’G

CAL CALL

XR A XRA A

SU E SUB E

SBD SUC D

DSD DW

DSS DB

177 177Q

0100 100

LBUL~=072 LBUL EQU 72

NDI 300 ANI 300Q

CP M CMP M

* 200 ORG 200Q

INA INR A
NUMBERS

All numbers without leading zeros are taken as octgl, all
with leading zeroes are taken as decimal. “#" preceding a
number causes it to be taken as hex.

REGISTER SYMBOLS

Eight bit registers are referenced with the letters A, B, C,
D, H, and L. Register pairs are designated by PSW, BC, DE,
HL, and SP.

OPERATORS
Subtraction or unary minus
+ Addition or unary plus

! Swaps the first and second bytes of a 16 bit quantity

" Evaluates to the ASCII equivalent of the character fol-
lowing it, with the eighth bit low
Evaluates to the address of the first byte of the instruc-
tion about to be assembled

Page 19

CASUAL

GDOD AND BAD FOINTS

16 BIT LIME HUMBERS, 1 - 653324
LIHE-HUMEERED “"BASIC-LIKE" TEXT EDITOR
COMTROL C <+C> ABORTS EXECUTION AND LISTIHG
2 BYTE LIME OYERHEARD
IMMEDIATE EXECUTION MODE
MULTIFLE STATEMEHWTS FER LIHME WITH COLOH (".">
FRIHTS LITERAL STRIMGS. EXFRESSIOHS, 0OR CHRE FUHCTIOH
CRLF SUPFRESSIOH AYAILAELE
OHE LEYEL OF SUEROUTIHE HESTIMG BUILT IH, EARSILY EXFPANDED
FEEK ~ POKE FUHCTIOHWS FOR READIHG OR HMODIFYING MEMORY
INP ~ GUT FUNCTIOHS FOR I-0 FORT COMTROL
SIHGLE AND DOUELE EYTE ARRAYS - SINGLE DIMEHSIOHAL
SELECTRELE ARRAY BASE ADDRESSES FOR MULTIPLE ARRAYS
SIMFLE VARIAELES A — Z, 26 OF THEM
USER DEFIHAELE FUMCTIOH, LIKE DEF FHA(XKX
RUB-OUT TAKES EBACK LAST CHARACTER TYPED
CONTROL U (+UX ABORTS LIME EEING TYPED
72-CHARACTER LIHE IHWFUT BUFFER
FOUR ¢4 RELATIOHAL OFERATORES, <, =, . # (NOT EQUAL>
HO OVERFLOW CHECKING QH MATH FUNCTIONS
15-BIT SIGHED ADD. SUBTRACT. MULTIPLY, AND DIVIDE
STAHDARD EXFRESSION HIERARCHY. RELOPS THEN #, s THEN +.-
FAREMTHESIS TO ALTER HIERARCHY, WO LIMIT OH HUMBER
SPACES MAY BE IMSERTED FREELY TO IMPROYE CLARITY
OFERATOR TO FROVIDE REMAINDER AFTER LAST DIVISIOH
OFERATOR TO PROVIDE RESULT OF LAST EXFRESSIOHN
MACHINE-LAHNGUAGE CALL FUNCTION
SINGLE~-CHARACTER KEYEOARD INFUT FUNCTIOH
RUH, AND RUM LIME NUMEER COMMANDS
LIST. AMD LIST LINE NUMEER COMMANDS
NEW COMMAND CLEARS PROGRAM STORAGE AREA
NOTHING CLEARS %ARIAELE VALUES, NOTHING !1
JUMF TO OPERARTING SYSTEM FROVIDED
IMITIALIZATION DIALOGUE A LA MITS
COMFLETE WITH EQQTSTRAF AHD BIWARY LOADERS (AUTO TRANSFERD
u00D ERROR MESSAGES
RUHS IN 2K COMPFLETE. > 4@8 BYTES LEFT IN A 2K SYSTEM
CASUAL IS sLaw

CASUAL DOCUMEHTATION

CASUAL IS AN INTERFRETER WRITTEM IN 80868 ASSEMBLER.
CASUAL IS ALSN THE MAME OF THE SYHTAX WHICH IS ACCEFTED BY
THE IMTERFRETER.

OMCE CARSUAL HAS EEEN LOADED AND THE IHNITIALIZATION
DIARLOGUE COMPLETED. IT WILL TY¥FE QUT "CASUAL ¥ . RX".,
WHERE XX IS THE YERSIOH HMUMBER. THEN CASUAL WILL ENTER THE
COMMAND IHFUT MODE. THIS IS INDICATED BY THE PRINTING OF A
FERIOD <¢". "> AS A FROMFT CHARACTER. CASUAL IS HOW
RERDY TO ACCEFT A LIHE OF IMFUT FROM THE USER. THE USER MAY
EACKSPACE OYER TYFING ERRORS WITH THE RUB-0UT KEY.
HE MAY ELECT TO START THE LINE QYER BY STRIKING THE CONTROL
U (U3 KEY. WHEM THE USER IS DOHE WITH A LINE. HE STRIKES
THE CARRIAGE RETURH KEY, TELLING CASUAL TO PROCESS THE LIMNE
JUST TYFED. DURIMG LIME INRUT. ALL OTHER CONTROL
CHARACTERS WILL BE IGHORED., EXKCEFT COHTROL G (+G) C(BELL>.

CASUAL HAS THE ABILITY TO EXECUTE COMMAMDS IMMEDIATELY
AFTER THEY ARE TYFED. OR TO STORE THEM AWAY FOR LATER
EXECUTION AS A FROGRAM. CASUAL WILL SCAN THE IHMPUT LINE
FOR THE FIRST HON-ELAMK CHARACTER. IF THIS CHARACTER IS A
HUMBER. CASUAL WILL SAYE THIS LIKE IN THE CASUAL PROGRAM BUFFER
IF IT IS HOM-HMUMERIC. CASUAL WILL ACCEFT THE LINE AS AN
IMAEDIATE-MODE COMMAWD. AMD ATTEMPT TO EXECUTE IT.

EDITIHNG

IF LIHMES ARE INFUT TO CASUAL STARTIHG WITH HUMBERS.
THEY WILL BEE EDITED INTO THE CURREHT FROGRAM IH THE
FROGEAM BUFFER. LIHES ARE ALWAYS STORED BY LINE NUMBER
1H ASCEMDING ORDER. THE IMFUT:

.=

N
D

e
D DD

CORRECTIONS CANM BE MADE AFTER A LINE HAS BEEN
EHTERED BY RETYFING THE CORRECTED LINE WITH THE SAME
NUMBER AS THE BAD OHE. THE HEW LINE WILL REFLACE THE
OLD OME OF THE SAME HUMBER. HEW LIHES MAY BE IMSERTED
EETWEEH OTHER LIHES, AT THE BEGINMING, OR END OF THE FROGRARM
BEUFFER. THE USER SIMFLY GIVES THE HEW LIME A NUMBER
BETWEEN THE NUMBERS OF THE LIMES ABOVE AND BELOW IT.

LINE NUMBERS MAY BE IN THE RANGE 1 TO 65534 INCLUSIVE.

THE USER MAY LOOK AT ALL OR PART OF THE PROGRAM
CURRENTLY STORED IN THE CASUAL FROGRAM BUFFER BY USIHG THE
LIST COMMAMD. WHILE IHM THE COMMAMD WMODE. TYPING "L" (CR>
WILL START LISTIHG WITH THE LOWEST-HUMBERED LINE, AND
STOF AT THE EMD OF THE BUFFER OR WHEW CONTROL C (+C)>
I3 TYFED. TYFIHG "L¥HXHX" WILL START LISTING AT LIHE

HEERYE.

Page 20 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

CASUAL STRTEMEHTS

THE FOLLOWIHG SECTIOM WILL COYER ALL THE STATEMENTS
WHICH ARE LEGAL IM CASUAL. AS EACH STATEMEWT IS FRESEHTED.
EXAMFLES “ILL BE GIVEH OF ITS USE. IF POSSIBLE, I RECOMMEHND
TRYING THESE EXAMPLES AS THEY ARE EHCOUHTERED.

CASUAL HAS BASICALLY OHLY THREE (3 TYPES OF STATE-
MEHTS: FRINT. ASSIGHMENT, AHD STRIHG IHPUT. THIS IS OHE OF
THE REASOHMS FOR ITS IMHERENT SIMPLICITY. VARIATIONS OF THESE
THREE STATEMEHWT TWFES PROVIDE A WIDE RANGE OF FUNCTIOHS.

THE PRIHT STARTEMENT

THE FUNCTIOM OF THE FRINT STATEMENWT IS TO SEND DATA
TO THE USER’S TERMINWAL. SIHCE THE WORD “PRIHT" IS MORE
DIFFICULT TO RECOGHIZE THAN A SIMGLE CHARACTER, A
QUESTION MARK ("7"> IS USED TO SPECIFY THE FRINT FUHCTION.
TRY THIS:

?16-4 (CR2

CASUAL WILL IMMEDIATELY PRIHT:

AS ¥0U CAN SEE, CASUAL RECOGHIZED THE "7" AS BEING
A PRINT STATEMENT, EWALUATED THE FORMULA FOLLOWING
IT. AND TYFED OUT ITS YALUE C(IM THIS CASE &).

OF COURSE, CASUAL CAN DO MORE THAW SUBTRACT.
TRY THIS:

719+4;108%4;10-4 C"#" MEAWS MULTIPLY. "~" MEANS DIVIDED
CASUAL WILL TYPE:

14 48 2

NOTE THAT A SEMICOLON (";"> IS USED TO
SEPARATE THE FORMULAS.

NOTE TOO. THAT IM THE EXAMPLES, A SPACE IS FRINTED
BEFORE AND AFTER EACH HUMBER. IF IT HAD BEEHN A NEGATIVE
HUMBER. THE LEADING SPACE WOULD EE A MINUS SIGH ("-").

LITERAL STRINGS MAY BE FRINTED BY ENCLOSIHG THEM
IM SLASHEZ. TRY THIS

?7THIS IS A CASUAL LITERAL STRING~
CASUAL WILL TYPE:

THIS IS A CASUAL LITERAL STRING

A COMMA (", ") IN A PRINT STATEMENT CAUSES A SINGLE
EYTE TRB CHARACTER TO BE SENT (811 OCTAL>. A COMMA OR
SEMICOLON ON THE END OF A STATEMEMT WILL SUFFRESS THE CRLF
AT THE END OF STATEMENT. SEE AFFENDIX G FOR MORE INFORMATION.
THE ASSIGHMENT STATEMENT

NOTE: THIS SECTION IS DIVIDED INTO TWO PARTS: THE
MEANING OF CHARACTERS WHEN THEY AFFEAR ON THE LEFT OF
AN ASSIGHMENT, AND THE MEANING ON THE RIGHT. THEY DON'T
ALWAYS MEAN THE SAME THING.

LEFT SIDE

CHR. MEAMIHNG
THE NUMBER OF THE HEXT LINME TO BE EXECUTED. .=358
CAUSES CASUAL TO EXECUTE LINE 358 AWMD CONTINUE FROM
THERE. . =0 CAUSES CASUAL TO EXECUTE THE LINE
AFTER THE CURRENT LINE. .=-1 CAUSES CASUARL

TO STOF EXECUTION AMD RETURH TO THE COMMAND MODE.
CONDITIONAL ERAHMCHING IS DOME LIKE THIS:

=946+ (K{18>

THE EXPRESSIOH ON THE RIGHT EVALUATES TO S48 IF THE
COMDITION IS TRUE (X IS LESS THAN TEN). IF IT IS
FALSE (X IS GREATER THAW OR EQUAL TO TEN>, IT
EVALUATES TO ZERQ. AND THE NEXT LINE IS EXECUTED.

HAS THE SAME EFFECT AS “." (PERIOD>. IM ADDITION.
SBEFORE COMTROL IS TRAMSFERRED, THE HUMBER OF THE LINE
FOLLOWIHG THE CURREMT LINE IS SAYED BY CASUAL. THE
MOST RECEMTLY SAVED YALUE IS RECALLED WHEM "&"
IZ FOUNWD ON THE RIGHT SIDE OF AM ASSIGNMENT

THIS IS USED TO ERAMCH TO SUBROUTINES.
THIS CODE:

4@ K=35.7X¥;.$=1080
S8 7. 7E+2; . $=100
68 7- FLUS TWwo~

7a .=-1
186 715 YOUR HUMBER/:
116 . =%

WILL FRINT:

S IS YOUR HUMBER

Nov./Dec., 1976

‘LRI

“LR1I

CHR.

Nov./Dec., 1976

7 IS YOUR MUMBER PLUS TWO

IN LINE 48, ¥ IS ASSIGHED THE VALUE 5. THEHW
THE VALUE OF X IS PRIMTED. "$=188" CAUSES CASUAL TO
ERANCH TO LINE 1@8® AND SAYE THE NEXT LINE NUMBER
TO BE EXECUTED (S8>. WHEN THE SUBROUTIME IS
FINISHED, IT RETURNS BY ".=8$". IN THIS CASE "$" HAS
A VALUE OF 58 SO LINE 5@ IS EXECUTED. HERE, ANOTHER
VALUE IS PRINTED, AND "$=180" CAUSES CASUAL TO
SAVE THE NUMBER OF THE NEXT LINE (78>. THIS TIME
WHEN LIME 119 IS EXECUTED, "#" WILL BE EQUAL
TO 78 AMD CASUAL WILL COMTIMUE EXECUTIOM AT LINE
78. HNOTE THAT A ROUTINE CALLED IN THIS MANNER ALUAYS
RETURNS TO THE LINE FOLLOWING THE LIME CONTAIMING
THE CALL. TO IT.
SETS THE MEMORY ADDRESS WHERE "PEEKING" AND “POKING"
1S TO BE DOME. THE ADDRESS WILL REMAIN SET UNTIL
ANOTHER "!" IS FOUND OM THE LEFT SIDE OF AN
ASSIGNMENT STATEMEMT. WHEN LOADED. CASUAL
SETS "!=8", THEREFORE YOU MUST SET THIS ADDRESS
BEFORE FOKING, OR YOU MAY POKE CASUAL TO DEATH
SEE "&" AND "“!" BELOUW.

IS USED TO STORE THE VALUE ON THE RIGHT OF

THE ASSIGHNMENT STATEMENT IN THE LAST MEMORY ADDRESS
GIVEN WITH "!". THE VALUE WILL BE TRUNCATED 7O 8
BITS BEFORE IT IS STORED. THIS FUWCTION IS
SOMETIMES CALLED "POKING"

1S USED TO SET THE BASE ADDRESS FOR THE SIHNGLE
BYTE ARRAY. THE BASE ADDRESS WILL BE SET TO THE
VALUE OH THE RIGHT OF THE ASSIGHMENT STATEMENT.
NO VYALUE SHOULD EE ASSIGNED WHICH IS LESS THAN
THE NUMBER TYFED IN RESFONSE TO "MEM SIZ?"

PERFORMS THE SAME FUNCTION AS "'", EXCEPFT THAT
IT SETS THE DOUELE-BEYTE ARRAY BASE ADDRESS.

DEFINES THE USER-DEFINAELE FUNCTION. IT IS EXECUTRBLE.
THEREFORE, MORE THAN ONE FUNCTION CAN BE USED

IN THE SAME FROGRAM. BUT NOT AT THE SAME TIME.

THE YALUE ON THE RIGHT BECOMES THE MEW USER-DEFINAELE
FUNCTION. AT THE TIME IT IS DEFINED. IT IS

EYALUATED.

SENDS THE VALUE OM THE RIGHT SIDE OF THE ASSIGHMENT
STATEMENT TO THE QUTFUT PORT GIVEM BY THE LAST
"@=" ASSIGHNMENWT. SEE "@" BELOW

SETS A HEW OUTFUT FORT NUMBER. THE YALUE ON THE
RIGHT IS SAVED FOR USE WITH “&" AND "&"

SETS THE VARIABLE A THRU Z TO THE VALUE ON THE
RIGHT SIDE OF THE ASSIGNMENT STATEMENT.
THE OLD VARIABLE VALUE IS LOST.

SETS THE X’TH ELEMENT OF THE SIHGLE-EYTE ARRAY TO
THE YALUE OM THE RIGHT OF THE ASSIGNMENT STATEMENT.

SETS THE %°TH ELEMENT OF THE DQUBLE-BYTE ARRAY TO
THE YALUE ON THE RIGHT OF THE ASSIGNMENT STATEMENT.
THE RIGHT SIDE

HOLDS THE YALUE OF THE LINE CURRENTLY BEING
EXECUTED. IF IT AFPEARS IN LIMWE 138, IT HAS THE
VALUE 1306. IF IT AFPEARS IN A DIRECT STATEMENT.
IT HAS THE VALUE -1.

CAUSES FROGRAM EXECUTION TO STOF FOR WUSER IMPUT.
A QUESTION MARK AMD SFACE ARE FRINTED OM THE
TERMIMAL AS A PROMFT. THE USER IHPUTS A LIHE
WITH A SINGLE EXFRESSION ON IT. THE YALUE

OF THIS EXFRESSIOM IS GIVEM TO THE LEFT SIDE OF
THE ASSIGNMENT. "¥=?" CAUSES CASUAL TO STOP

AND ACCEFT INPUT, WHICH IS THEW ASSIGHED TO THE
VARIABLE ®X. DO NOT TYFE A QUESTIOW MARK IH RESFONSE
TO THE INFUT FROMPT!! IF THE USER TYFES A RETURN
INSTEAD OF AN EXFRESSIONW, CASUAL RETURHE TO
COMMAND LEVEL.

SEE DISCUSSION FOR LEFT SIDE.

REMAIMDER AFTER LAST DIVISION. IF 2@8-¢6
DIYISION FERFORMED, ¥ WOULD BE EQUAL TO -

= THE LAST

PEEK FUMCTION. TAKES OM THE YALUE OF THE CONTENTS

OF THE-MEMORY LOCATION ADDRESSED BY THE LAST ASSIGHMMENT

TO "t". SEE "!" FOR LEFT SIDE
8 TO 255.

RETURHE A VALUE

INP FUNCTION. TAKES ON THE VALUE OF THE DATA AT THE
INPUT PORT WHOSE MUMEER WAS LAST SET WITH "e=". SEE
“@" FOR LEFT SIDE. RETURNE A VALUE B8 TO 253.

RETURNS THE YALUE OF THE %’TH ELEMENT OF THE SIHGLE
EYTE ARRAY. X MAY BE AM EXPRESSION. THE ERACKETS

ARE OPTIOHAL IF AMD OMLY IF THEY ARE NOT HEEDED TO

SEFARATE THE SUBSCRIFT FROM THE REST OF THE

EXPRESSION. BRACKETS ARE MANDATORY ON THE LEFT SIDE.

"LX1I SAME AS °*LX1 EXCEPT THIS IS THE DOUBLE BYTE ARRAY

€ TAKES ON THE YALUE OF THE LAST EXPRESSION EVALUATED.
THIS INCLUDES EXPRESSIONS IN SUBSCRIPTS AND IN PAREN-
THESIS. (2+3)>#%¢ IS EQUAL TO 25.

@ THE USER FUNCTION. TAKES ON THE VALUE PASSED TO IT
BY THE MACHINE-LAMGUAGE SUEROUTINE IN DE REGISTER
INITIALLY, IT IS SET UF TO RETURN THE NUMERIC YALUE
OF THE CHARACTER FOLLOWING THE "@".

SEE AFPENDIX F.

N SINGLE CHARACTER INPUT FROM THE KEYBOARD.
WILL STOP UNTIL A CHARACTER IS INPUT.
PRINTED. RETURNS A YALUE 8 TO 127

EXECUTION
NO PROMPT IS
PARITY MASKED

TAKES ON THE VALUE OF THE VYARIABLE A THRU Z.

DIGITS OF NUMBERS INTERFRETED TO BE DECIMAL.
EXPRESSIONS

EXPRESSIONS ARE MATHEMATICAL FORMUALS WHICH EVALUATE
TO 15-BIT SIGNED INTEGERS. THEY ARE USUALY FOUND ON THE
RIGHT SIDE OF AM ASSIGHMENT STATEMENT, AND SEYERAL OTHER
PLACES. EXFRESSIONS CONSIST OF OFERANDS WHICH GET
OFERATED UPON. AND OF OFERATORS WHICH SPECIFY THE
OFERATION TO BE DONE. ALL THE LEGAL OPERANDS HAVE JUST
BEEN GIYEM IN THE SECTION COVERING THE RIGHT SIDE OF AN
ASSIGHMENT STATEMENT

EXPRESSIONS ARE EVALUATED USING THE STANDARD
MATHEMATICAL HIERARCHY. THE ORDER OF EYALUATION MAY BE ALTERED
BY USING FARENTHESIS. THIS IS A LISTING OF LEGAL
OFERATORS AND THE HIERARCHY

EV¥ALUATED FIRST (D]
s 20 = 8
*, £
EYALUATED LAST 4, -

THE FQUR RELATIONAL OFERATORS EYALUATE TO
EITHER A ONE (1) IF THE CONDITION IS TRUE, OR A ZERO <@ IF
THE CONDITION IS FALSE. NOTE:. “#" IS NOT EQUAL TO.

THE "#" AND "/" OPERATORS EVLUATE TO THE PRODUCT
AND QUOTIENT OF THEIR OFERANDS RESPECTIWLY.

THE "+" AND "-" OPERATORS EVALUATE TO THE SUM "AND
DIFFERENMCE OF THEIR OFERANDS RESFECTIVLY.
THE "+" AND "-" OPERATORS ARE ALSO USED TO

INDICATE UNARY FLUS AND MINUS RESPECTIVLY.
IS DETERMINED BY CONTEKT.

WHEN EXFRESSIONS AFPFPEAR IN FRINT STATEMENTS. CARE
MUST BE TAKEN TO ENSURE THE MEANING OF THE ">" AND "-"
OFPERATORS ARE MOT MISINTERPRETED. BOTH OF THESE CHARACTERS
DO A DOUBLE DUTY AND ARE EAISLY MISUNDERSTOOD BY CASUAL
FOR INSTANCE, "7 A /MILES PER GALLON/" WILL PRODUCE
ALL SORTS OF GARBAGE BECAUSE THE SLASH (/) IS TAKEN TO MEAN
DIYISION AND NOT THE START OF A LITERAL STRING LIKE THE USER
WANTED. HERE IS THE FIX: "? A;~/MILES PER GALLON<" HERE
IT IS CLEAR THAT THE VALUE OF A IS TO BE PRINTED.
FOLLOWED BY A LITERAL STRING

ARRAY REFEREMCES ARE NOT LEGAL ELEMENTS OF AN
EXPRESSION WHICH IS8 ITSELF THE SUBSCRIFT OF AM ARRAY.

AFPENDIX A

THE FUNCTION

LOADING PROCEDURE

THE PURFOSE OF A BOOTSTRAP LOADER IS TO READ
A LARGER BIMARY LOADER INTO MEMORY WHICH IN TURH LOADE
CASUAL. THE BOOTSTRAP PROGRAM MAY
BE LOADED FROM THE FRONT FAMEL SWITCHES OR BY USING THE
SYSTEM MONITOR ROM. IT 1S 21 BYTES LONG AND GOES
IN VERY QUICKLY. THE BOOTSTRAF LOADER IS SO NAMED
BECAUSE IT IS FREQUENTLY USED TO BRING THE SYSTEM
UP AFTER A FOWER-OFF COWDITION. THUS. IT IS PULLING THE
SYSTEM UP BY ITS EOOTSTRAF.

THE EOOTSTRAF PRESENTED HERE IS IN A NO-CHECKSUM
FORMAT. BUT IT DOES ALLOW LEADER. IT SHOULD WORK EQUALLY
WELL FOR FAFER TAFE OR CASETTE INPUT. THIS BOOTSTRAF
WILL LOAD A BIMARY LOADER AND THEN TRANSFER CONTROL TO
THE BINARY LOADER AUTOMATICALLY. THE EBIMARY LOADER LOADS
A CHECKSUMMED-FORMAT TAFE AND ALSOD TRANSFERS AUTOMATICALLY
WHEN DOME LOADING. THERE ARE TWO POSSIBLE ERRORS
WITH THE BINARY LOADER: CHECKSUM ERROR AND MEMORY
ERROR. THE FIRST OCCURS WHEN THE CHECKSUM READ FROM THE
TAPE DUES NOT MATCH THAT CALCULATED DURING LOADING
BECRUSE A BYTE WAS READ FROM TAPE IMCORRECTLY.
A MEMORY ERROR OCCURS WHEM DATA READ FROM TAPE IS
LOADED IMTO MEMORY AMD CAM*T BE READ BACK. THIS CAM
BE CAUSED BY BAD MEMORY, PROTECTED MEMORY OR NOM-EXISTENT
MEMORY. WHEN EITHER ERROR OCCURS., THE LOADER STOFS
READING TAFE AND ENTERS AN INFINITE LOOP. AN ASCII
CHARACTER IS PUT OUT ON FORTS 1, 16, 21, AND 23 (OCTAL>
AM "M" FOR MEMORY ERROR, A "C" FOR CHECKSUM ERROR
THIS CHARACTER 1€ ALSO STORED IM THE HIGHEST LOCATION
OF THE FAGE WHERE THE BINARY LOADER RESIDES (BOF 3I77)
AFTER A MEMORY ERROR. THE HL REGISTER WILL CONTAIN THE
ADDRESS OF THE BAD MEMORY LOCATION.

TO READ IM A TAFE:

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Page 21

Page 22

-

LOAD THE BOOTSTRAFP FOR YOUR I~-0 CONFIGURATION
CHECK THE TAELE TO FIND WHICH ONE TO USE.
VERIFY THAT THE EOOTSTRAF IS IM MEMORY CORRECTLY.
EXAMINE 086 068 AND THE SET THE SENSE SWITCHES
FOR THE TYPE OF I~0 BOARD ¥OU ARE USING. LOAD THE
CUSTOM 1.0 TAELE AT THIS TIME IF NECESSARY.
4. FLACE THE TAFE IN THE READER. IF YOU ARE USING
PAFPER TAFE, MAKE SURE THE BOOTSTRAF LEARADER IS IN
THE READER. THIS IS THE FIRST SECTIOM OF TAFPE
WITH THREE OF THE EIGHT DATA HOLES PUHCHED
IF YOU ARE USING CASETTE., LOAD AND REWIND THE
THPE AND START IT FLAYIMG. WAIT 15 SECONDS
AMD FROCEED TO STEP S.
5. START THE BOOTSTRAP AT LOCATION 888 868 (SPLIT

[SEST

OCTAL>. NOTE: LOADERS G AND H START AT ADDRESSES
OTHER THANW ZERO, CHECK THE TRELE
S. WHEN THE BINARY LOADER HAS BEEN REARD IN, THE

ADDRESS LIGHTS WILL CHANGE AND THE TRAPE
SHOULD KEEP REARDING.

ONCE THE BINARY LOADER HAS BEEN READ IN, THE ADDRESS
LIGHTS WILL DISFLRY 887 277 WHILE NORMAL LOADING IS GOING
oM. IF AM ERROR OCCURES, BOF 237 WILL BE DISPLAYED. IF THE
TRAMSFER ADDRESS WAS HOT READ PROFERLY, 007 257 WILL BE

DISFALYED. IF EITHER OF THE LAST TWO CONDITIONS OCCUR.
GD BACK TO STEF 1 AND RELORD.
Loc.] B c D E F G H
BaR 241 641 041 641 B41 0641 @41 041
8aA1 3@z 3Z@M2 3Iv2 3VZ2 302 2@z 382 I8z
vAZ AB¥ BA7 @8y Be7 QeF¥ 06?7 69V 067
BRZ Ael B©61 @61 Bl B61 Bel 0661 661
BA4 @23 @23 B23 BZI P23 623 823 823
vasS aen 00 BBE 0RAE @00 006
BAg 333 33FF 333 333 333 233
Ay agt 6aE BBSs 608 020 828
@18 348 346 346 246 346 346
@11 Qg1 648 BO1 640 0601 1606
g1z 314 218 3es 2168 318 31@
81z 3323 33z 333 3IFF 3E2
B14 Qe @@l /ey @81 621 B2l
B1S 273 275 &F7S 2¥s 278 av
g1e 318 5 218 Z1e 21@ 218 318
B1? ASIT @35 @SS @SS A5S @55 @55 eSS
B2B 1e7 167 17 17 1&7 167 7167
821 36Q 3208 368 Ie0 386 200 3680
g2z 351 351 351 351 351 301 351
22 Q@83 BRI 6862 603 QB3 6082 Be3
24 Q@R BRE ©EBA BGOD 0EO0 OB6 eea
257
NOTE: LOARDERS A - F STAR 323
AT QB8 BeEe. LOADERS G & [beds]
STRRT AT @BE @zS. veg
323
va1
B7e
ve4
323
[5hed
387

1-0 FORMAT

A COWMTROL LOGIC LOW SFEED RERDER

[CONTROL LOGIC HIGH SFEED RERDER

C. MITS SI0A, B, C BUT NOT REV. B

D. MITS REY. ® WITH UPDATE, USE C WITHOUT UFDATE
E MITS ACR CAUDIO CASSETTED

F MITS €8-PIO WER. 2.2 AND LATER

G MITS 2510 VER. 3.2 RAND LATER

H MITS 4FIO0

NOTE: THE BINARY LOADER POKES ITSELF TO USE THE SAME
DEYICE AS THE BOOTSTRAP: THEREFORE, YOU MUST USE A BOOT-
STRAP OF THIS FORM, OR REWRITE THE BINARY LOADER

TO MAKE YOUR OWHW BOOTSTRAF: FUT YOUR STATUS PORT
NUMBER IMTO LOC. @@ FUT A MASK WHICH WILL LEAYE THE READER
READY EBIT IMTO LOC., @11, IF READY IS ACTIVE HI. PUT 318 INTO
Loc. @1z, IF READY IS ACTIYWE LO. PUT 3@8 IWTO LOC. @12
FUT THE INFUT DATA FORT NUMBER INWTO LOC. 814. LEAYE ALL OTHER
LOCATIONS THE SRME AS LOADER A

AFFEHDIX B

IMITIALIZATION DIALOGUE

AFTER CRSUAL HAS BEEN LOADED (PER INSTRUCTIOQNS IN
AFPEHDIX AY AMD AMY I~-0 FATCHES HAVE BEEW MADE. IT WILL ASK

MEM SIZ7T

IF YOl TYFE A CARRIAGE RETURM, CASUAL WILL USE ALL THE
NTIGUOUZ MEMORY UFWARDZ FROM ZERQ THAT IT CAHM FIND
URL WMILL STOF SEARCHIMG WHEHM IT FIWDS OWE EYTE OF ROM OR
NOM-EXISTEWT MEMORY, I.E. MEMORY WHICH WILL WOT ACCEFT AMD SUC-
CESSFULLY RERD BACK A TEST EYTE. THIS IS & NOM-DESTRUCTIVE

TEST 50 I-0 FATCHES AHMD SUCH WOW’'T BE DESTROYED

IF w00 WISH TO ALLOCATE OWLY FART QF YOIUR COMPUTER'S
MEMORY TO Cr L, TYFE THE DECIMAL ADDEESS QF THE FIRST
EYTE WHICH C AL IS HOT TO USE. THIZ MIGHT BE DONE.

FOR EXAMFLE, IF YOU WERE USIHG FART OF MEMORY FOR MACHIMNE

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

LANGUAGE SUBROUTINES OR TO SET ASIDE MEMORY FOR CASUAL ARRAY
STORAGE.

THERE ARE 4836 BYTES IN A 4K SYSTEM,
2848 IN A 2K SYSTEM.

8192 IN AN 8K
SYSTEM,

THE ADDRESS GIVEN IN RESPONSE TO "MEM SIZ?"
MUST BE RAM, OR ELSE CASUAL WILL REPEART THE QUESTION. THERE 1S
ALSO A CERTAIN MINIMUM AMOUNT OF MEMORY CASUAL MUST HAVE TO
OPERATE. IF THE RESPONSE IS LESS THAN THIS MINIMUM
CASUAL WILL REFEAT THE MEMORY SIZE QUESTION. IN VERSION .16,
THIS MINIMUM IS ABOUT 1700.

CASUAL WILL NOW ENTER A DIALOG WHICH ALLOWS
YOU TQ DELETE SOME COMMANDS AND FEARTURES. IF FEARTURES
ARE DELETED, THIS WILL LEAVE MORE FOR YOUR FROGRAM.
HOWEVER, ATTEMPTING TO ACCES THESE FEATURES WILL GIVE
AN ERROR, USUALLY THE SYNTAX ERROR. THE ONLY TO RESTORE
A FEATURE WHICH HAS BEEN DELETED IS TO RELOARD CASUAL.

THIS IS THE DIALOG WHICH WILL OCCUR:

WANT SAVE/TAPE? ANSWER "Y" TO RETAIN SAVE AND
TAPE COMMANDS. IF YOU ANSUWER
“N", ASKS NEXT QUESTION.

WANT STR 1407 ANSWER "Y" TO RETAIN STRING
INPUT AND OUTPUT. IF YOU
ANSWER "N", ASKS NEXT QUESTION.

WANT ARRAYS? ANSWER "Y" TO RETAIN SINGLE

AND DOUBLE BYTE ARRAYS
ANSWER “"N", BOTH ARRAYS
ARE DELETED.

IF YOU

ONCE THIS DIALOGUE IS COMFLETE. CASUAL TYPES OUT.
XKXKXXX IS THE NUMBER OF BYTES
AVAILABLE FOR PROGRAM
STORAGE AND STACK SPACE.

YY IS THE CURRENT VERSION
NUMBER.

XXXXX BYTES FREE
CASUAL V. YY

DELETING SAVE AND TAPE COMMANDS WILL FREE UP AN
ADDITIONAL 1086 BYTES, STRING I-/0 ANOTHER 34, AND
DELETEING ARRAYS GIVES ANOTHER 62 BYTES.

AFPENDIX C

ERROR MESSAGES

WHEN AN ERROR OCCURS, CASUAL RETURNS TO COMMAND LEVEL
AND TYPES THE FROMPT FERIOD ".". VARIABLE VALUES AND .
THE CASUAL FROGRAM REMAIN IMTACT. AFTER THE ERROR HAS BEEN
CORRECTED, EXECUTION MAY BE CONTINUED WITH NO LOSS OF CONTEXT.

WHEN AN ERROR OCCURS IN A DIRECT STATEMENT.
NUMBER IS FPRINTED.

NO LINE

FORMAT OF ERROR MESSAGES:

DIRECT STARTEMENT ERROR XXX LL?LL

INDIRECT STATEMENT ERROR XXX IN YYYYY LL?ZLL
IN BOTH CASES, "XXX" IS THE ERROR NUMBER. “LL?7LL" IS

THE STATEMENT IN WHICH THE ERROR OCCURRED. A QUESTION

MARK IS INSERTED AT THE FOINT OF THE ERROR SOMETIMES. THE

"YYYYY" WILL BE THE LINE MUMBER WHERE THE ERROR OCCURRED

FOR THE INDIRECT STATEMENT

THE FOLLOWING ARE THE KNOWN ERROR NUMBERS AND THEIR
MEANIMNGS:

83 SYNTAX ERROR. MISSING PARENTHESIS, ILLEGAL
CHARACTER IN A STATEMENT, OR UNRECOGNIZRBLE
STATEMENT TYFE.

231 ILLEGAL CHARACTER TERMINATING A STATEMENT. FOR
EXAMPLE: X=3) GIVES ERROR 291.

2486 MISSING CLOSING SLASH IN A LITERAL STRING.

419 UNDEFINED STATEMENT. AN ATTEMPFT WAS MADE TO BRANCH
TO A LINE NUMBER WHICH DOES NOT EXIST. THIS .
ERROR MAY OCCUR IN THE RUN XXKKX COMMAND, WHERE XXXXX
DNES NOT ERIST.

S1é OUT OF MEMORY. FROGRAM TOO LARGE OR TOO
COMPLICATED AN EXFRESSION OR R COMBINATION OF BOTH
SEE AFPENDIX D.

7el DIVISION BY ZERO

84l MISSING EXFRESSION. A STATEMENT TERMINATOR WAS

FOUND WHERE AWM EXFRESSION WAS EXFECTED.

AFFENDIX D

SPACE HINTS

IN ORDER TO MRKE YOUR PROGRAM SMALL AND SAYE SFACE
THE FOLLOWING HINTS MAY BE HELFFUL

Nov./Dec., 1976

1 USE MULTIPLE STATEMENTS PER LINE. THERE IS
A SMALL AMOUNT OF OVERHEAD (3 BYTES) ASSOCIATED WITH
EACH LINE IN THE CASUAL PROGRAM. TWO OF THE BYTES CONTRIN
THE LINE NUMBER IN BINARY. THIS MEANS THAT NO MATTER
HOW MANY DIGITS YOU HAVE IN YOUR LINE NUMBER, IT TAKES THE
SAME AMOUNT OF SPACE. PUTTING AS MANY STATEMENTS AS FOS-
SIBLE ON A LINE WILL REDUCE THE NUMBER OF BYTES USED BY
YOUR FROGRAM.

23 DELETE ALL UNNECESSARY SPACES FROM YOUR
PROGRAM. SPACES ARE ALLOWED ONM THE RIGHT SIDE OF A CASUAL
STATEMENT FOR CLARITY, BUT THEY ARE IGNORED. NOTE:

ALL SPACES BETWEEN THE LINE NUMBER AND THE FIRST
NON-BLANK CHARACTER ARE IGNORED

3 DELETE ALL REMARKS FROM THE PROGRAM
4> USE VARIABLES INSTEAD OF CONSTANTS
5 THE LAST STATEMENT OF A FROGRAM NEED NOT

BE AN END STATEMENT. CASUAL WILL RETURN TO COMMAND
MODE AUTOMATICALLY IF IT RUNS OUT OF FROGRAM TO

EXECUTE. .

6> USE SUBROUTINES TO EXECUTE SECTIONS OF CODE
WHICH APPEAR IN A PROGRAM MORE THAN ONCE.

7 USE RELATIONAL OFPERATORS INSETAD OF GOTOS.
FOR INSTANCE: IF YOU WANT X = 18 IF ¥ = 18, AND X=8 IF
¥ # 18 : DO IT LIKE THIS: X=Y#10.

M USE THE "¢" OPERARTOR INSTEARD OF

REPEATING AN EXFRESSION

STORAGE ALLOCATION INFORMATION

THE USER-DEFINED FUNCTION USES NO MEMORY
TO STORE THE DEFINITION

WHILE A PROGRAM IS BEING EXECUTED, SPACE IS ALLOCATED
ON THE STACK. EACH LEYEL OF FARENTHESIS ENCOUNTERED IN
AN EXPRESSION TAKES 8 BYTES OF STACK SPACE

APPENDIX E

BASIC TO CASUAL STATEMENT CROSS REFERENCE

BASIC CASUAL

RUN R

LIST L

NEW N

350 DEF FNACX)=X#X+YY 356 =RakK+YRY

999 END. 939 . =-1

S8 GOTO 180 Se .=188

1@ GOsSUB 918 10 $=518

16 IF X+18 > Y/2 THEN 214 16 .=214 * (X+10 > Y/2)

20 IF X>3 AND X<18 THEN 250 20 =250 * (X > 3> * (¥ < 18>
148 INPUT X . 148 X=7

145 INPUT Y. 2Z,A 145 Y¥=7. Z=7:. A=7?

147 LET A =B = 0 147 A=0. B=0

187 LET W = (2+3)%4 187 W=(2+33%4

1e@ ON I GOTO 10,20, 30, 49 100 . =I#10#%(I > BI)*(I < S
185 OM SGN (X)+2 GOTO 4@,58,68 185 .=58+10%((X > 8)=C(X < 8))
118 ON I GOSUB 50,60 : 119 $=40+I1*10%(1 > @)*%(I < 3)
355 OUT I, J 355 @=I. ¢=J

357 POKE I,J 357 1=1. &=J

368 PRINT X, Y2 360 ?X, Y2

370 PRINT 378 7

3890 PRINT X, Y; 380 7K, Y

398 PRINT "I THINK IT’S";@a 398 ?/1 THINK IT’S/;A

4088 PRINT A, B, 408 7R, B,

4108 PRINT CHR$(Z-INT(Z/64)%64); 410 ?2>2-2/64*%64

580 REM SMALL IS GREAT !! S868 .=518 SMALL IS GREAT !!
5@ RETURN 58 .=%

9800 STOP 9888 . =-1

AFPENDIX F

BRSIC TO CASUAL FUNCTION CROSS REFERENCE

THE FOLLOWING TAELE CAN BE USED. TO MAKE CASUAL’S
USER-DEFINABLE FUNCTIOH EQUIVALEWT TO THE CORRESPONDIHG
INTRINSIC FUNCTION OF BASIC.

BARSIC CASUAL

ABS (XD A=K (CKIB-(KLBI)
SGN C#) +=(R>B)- (X<

USR (X) +=0@

PEEK (X)) 1=K +=1

INP (4 @=x: +=&

MOD (¥ A=KV EBHR

MAX (K, YD) =AY IRKECR=1KY I %Y
MIN (X, YD) A=Y IRKF (Y= 1CRI*RY

OTHER USEFUL FUNCTIOHS

OCTAL TO DECIMAL: THIS FUNCTIOHM ACCEPTS A THREE
DIGIT OCTAL NUMBER IN DECIMAL PRINT FORMAT IN THE VARIABLE C.

Nov./Dec., 1976

SUBROUTINES, AND RECEIVE DATA FROM THEM.

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

10 +=C/100%644(C-C/186+100>/10%8+C-C/18%18
20 C= 377. 7?4 PRINTS 255

DECIMAL TO OCTAL. THIS FUNCTION ACCEPTS A DECIMAL NUMBER
(@ - 255> IN THE VARIABLE D, AND RETURHS AN OCTAL REFRES-
ENTATION OF IT AS A DECIMAL NUMEER B - 377.

36 +=D/€64%100+(D-D/64%E4)/8+10+D-D/8%5

48 D=255: ?+ GIVES 377 ’

AFPENDIX G

CASUAL/MACHINE LAMGUAGE INTERFACE

CASUAL HAS THE ABILITY TO LIMK TO MACHINE-LANGUAGE
FIRST, ¥OU MUST
SET ASIDE ENOUGH MEMORY TO HOLD THE MACHIME-LAMGUAGE ROUTIHE.
WHEN CASUAL RSKS “MEM SI1Z?", DON’T TYPE A RETURH, BECAUSE
CASUAL WOULD USE ALL THE MEMORY IT COULD FINWD, AMD HOME WILL
BE LEFT FOR YOUR MACHINE-LANGUAGE ROUTINE

YOU SHOULD NOT ATTEMPT TO USE ANY MEMORY BETWEEM
LOCATION ZERO AND THE LAST ADDRESS ALLOCATED FOR CASUAL, RS
IT IS CONSTANTLY BEING MODIFIED EY CASUAL.

SINCE CASUAL MUST USE COMTIGUOUS BLOCKS OF HMEMORY
STARTING AT ZERO, IT IS BEST TO RESERVE HIGH LOCATIONS IN
MEMORY FOR YOUR SUBROUTINES

FOR EXAMPLE, IF YOU HAYE A 3K SYSTEM, THERE ARE
3872 BYTES IN YOUR MACHINE <1824 # 3). THEY ARE NUMEERED
® - 3871. IF YOU WANTED TO USE A 56 BYTE SUBROUTINE.

YOU WOULD TYPE 3822 IN RESPONSE TO "MEM SIZ?" THIS WILL
ALLOCATE LOCATIONS @ - 3821 FOR CASUAL, AMWD 36822 - 36871
FOR YDUR SUBROUTINE.

THE STARTING ADDRESS OF YOUR ROUTINE MUST BE STORED
IN A LOCATION KHOWN AS "USRL". THE ADDRESS OF USRL IS FOUND
AT ADDRESS @60 003 , SPLIT OCTAL.

WHEN LORDED, USRL COHTAINS THE ADDRESS OF
A ROUTINE TO RETURM THE NUMERIC YALUE OF THE ASCII CHARWCTER
FOLLOWING THE "@". USRL
CONTAINS THE TWO BYTE ABSOLUTE ADDRESS CASUAL CALLS WHEHN
IT ENCOUNTERS AN AT SIGH ("@") IN AH EAFRESSION.

WHEN YOUR ROUTIME 1% CALLED, THE STACK POINTER IS SET
UF AND YOU ARE ALLOWED TO USE UF TO 11 LEYELS OF STRCK SPACE
<22 BYTES)>. TO USE MORE, YOU'LL HAYE TO SAVE CRSUAL’'S
STACK POINTER AND SET YOUR OWN. YOU MAY USE ALL OF THE CFU
REGISTERS EXCEPT HL. HL COMTAINS THE ADDRESS OF THE CHARACTER
FOLLOWING THE "@".

THE RESULT OF THE @ FUNCTION IS PASSED BACK TO
CASUAL IN THE DE REGISTER AS A 15 BIT SIGHED HUMEBER.
SIGNIFICANT BITS ARE IM THE D REGISTER.

YO0U MAY RECIEYE ARGUMEHWTS PASSED TO YOUR
ROUTIME BY CALLING A ROUTIME CALLED SUBS. THE ADDRESS OF
THIS ROUTINE IS HELD IN LOCATIOHS S AHD €. THE ARGUMENT
SHOULD BE ENCLOSED IM BRACKETS C("[" AWD "1%).

THE USERS ROUTINE MAY EWAELE IWTERRUPTS, AS LONG AS
THE USER USES ONLY RST 7 IMTERRUFTS. IHTERRUFTIHG TO OTHER
LOCATIONS WILL CAUSE TROUBLE. THREE BYTES HAYE BEEM LEFT
AT LOCATIOW S6 DECIMAL, 78 OCTAL., 38 HEX. THEZE LOCATIONS
ARE LEFT S0 THE USER CAN INSERT A JUMF TO AW IMTERRUFT SERYICE
ROUTIHNE.

CARE MUST BE TAKEN IH IMTERRUFT SERVICE ROUTIHEZ TO
SAVE ALL OF THE CFU‘S REGISTERS.

DON’T FORGET TO EHWABLE INTERRUFTS BEFORE RETURMIMG.
OR YOUR MACHIME WILL NEVER SEE ANOTHER INTERRUPT.

SUPFOSE YOU HAVE A 2K COMFUTER, AHD HMEED A ROUTINE
TO READ THE MUMBER OM THE FROMT PAMEL SWITCHES
NOTE: THIS FUNCTIOWM CAW BE DONE DIRECTLY IN CARSUAL
YOU HAYE 2848 BYTES OF MEMORY MIHUS & BYTES FOR THE
ROUTINE LEAVES 2042 FOR CASUAL. THIS IS THE HWUMEER

THE MOST

YDOU WOULD TYPE IN RESPONSE TO "MEMORY SIZE?". LOAD
THIS INTO MEMORY:

Loc. DATA OFCODE

ee7 272 3332 IN 377

ey 373 377

ea7 374 137 MoV E. A

697 375 6z2e MV I D. g8

88?7 376 006
897 377 311 RET
AFPENDIX H

CHR # CHR. # CHR # CHR
32 (SPACE> 3z ! 34 " 35 4
1 4 37 % I & Iz
40 (¢ 41) 42 * 43+
449 43 - 46 . 47 7
43 @ 43 1 Sa 2 S1 Z2
Sz 4 53 S 5S4 6 55 7
S & 57 8 se S5
€a < €1 = €z €3 7
€4 @ €5 A €6 B €7 C
€3 D €9 E ya F 710G
72 H 731 74 J 79K
e L 7von T2 OH 73 0
€a P 21 @ 22 R g2 =
g4 T 85 U gg ¥ ar
g8 X 32 Y o8 2 21 C
32~ 8z 1 94 25 &

HOTE: SOME TERMIMALS FRINT CODE 35 AS A BACK ARROW, AHD
SOME FRINT AN UMDERLIME.

Page 23

CONTROL FUNCTIONS

LINE FEED = 18 TRE = 11 FORM FEED = 12
CARRIAGE RETURHW = 12 BELL = 7

THESE CODES ARE USED WITH THE "»" FUNCTION OF THE "7
STATEMEHT. wsv FOLLOWED BY AM EXPRESSION RETURME A OHE
CHARACTER STRING WHICH COMTAINS THE ASCII EQUIYALENT
OF THE EXFERE H.

AFFEND .

THARMES TO:

THE FOLLOWIHG FEOFLE FOR DEBUGGING EARLY VERSIOMS.
BILL SRINDOM. AL EBAKER. MR. ZIEGLER, AND SEMERAL OTHER
CACHE MEMBERSZ.

THE FOLLOWIMNG FEOFLE FOR PROOFREADIMG:
BILL FRECHT, MARK DAVISON AND MY FAMILY.

GARRY SHAMNOM FOR PROFOSING THE SYNTAX.
EYTE MAGAZIME FOR THE DECIMAL FRINT ROUTINE.

LOU vAaM EFREM OF THE CHICAGO COMPUTER STORE FOR THE USE OF
HIZ EQUIFMEMT.

PROGRAM NAME: CASUAL
PATCH SHEET

An optional patch to replace the RUN command with a
CLEAR command. This command allows the user to
allocate more or less memory for CASUAL after initializa-
tion. The argument is‘an expression'which is the first
location that CASUAL is not to use. This location must
be RAM, and must be >= 1703,4. Returns to command
mode when done. To run programs, you'll have to type
.= <EXPR >, where <EXPR> is the first line number to
be executed.

LOCATION DATA OPCODE
HI LOW oLD NEW oLD NEW
004 037 317 317 TST“R TST“C
004 040 122 103
004 041 173 173 IFNOT IFNOT
004 042 005 005 0s? 0s?
004 043 312 337
004 044 024 353 JTZ EXPR
004 045 004 042 RSSP DE<>HL
004 046 337 377 STHL
004 047 303 004 EXPR STRS
004 050 207 307 JMP

GOTA

RAW ROCKWELL RUMORS
REVEAL ZILOG COMPETITOR

Rockwell International had been considered by Zilog as
a potential second source for the Z80 parts. Since Rock-
well was not chosen, they went ahead with the develop-
ment of their own Z80-type CPU chip (R80). It will be
ready sometime in 1977.

The words is that the chip will be pin compatible and
software compatible. The device is mask microprogram-
mable, similar to Western Digital’s 16-bit CPU chip set.
Some of the instructions execute much faster than Zilog’s
Z80, e.g., block move Z80 in 21 cycles/byte, vs. R80 in
5 cycles/byte. Finally, there will be some instruction
enhancements over the Z80 which include a hardware
multiply and divide.

9/21/76

MOSTEK AND FAIRCHILD TO SECOND
SOURCE EACH OTHER:

Mostek is already the second source for Fairchild’s
F-8 microprocessor chips. Now, Fairchild will become
the second source for Mostek’s 4K-bit fast RAM, the
16-pin MK4027 that runs at less than 200 ns.

Page 24 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Dear Jim, Oct. 16, 1976

| am still attempting to locate more information on a Chicago
computer-fest.

Scott Meaden (a local CASUAL user) has just written a neat
game in CASUAL. It's called ““Zapp the Moonman”. It runs with
a VDM by “poking” the screen, a moving target (a moonman) moves
back and forth across the top of the screen. You shoot lightning
bolts at him from your gun at the bottom. | am now twisting his
arm to finalize it and send you a copy.

Sincerely,
Bob Van Valzah
(312) 852-0472
(312) 971-2010 x231

ZAPP THE MOON MAN

1140 Hickory Trl
Downers Grove, IL 60515

Dear Dr. Dobbs, Oct. 21, 1976

I’ve been using a nifty little language called “CASUAL”
on my IMSAI (which is ‘only 4K smart at the moment)
with a VDM and came up with a program you might con-
sider for publication. I call it “Zapp the Moon Man”.

It starts a moonman (VDM character 7) moving from left
to right and then back again across the top of the screen.
Your job is to try to zap him with a lightning bolt (VDM
character 4) that moves from the bottom of the screen to
the top. The bolts are fired by the sense switches on the
front panel of my IMSAI. The program also keeps track of
how many bolts you have left and how many moonmen
you’ve zapped.

The start of the VDM screen must be set in line 3. My
VDM is set up for CC(hex) 314(octal) which, in CASUAL
decimal notation, is equal to —13312. You can use CASUAL
to help you figure out what number to set Z to. For ex-
ample, if your screen starts on page 364 .(octal), type in
7256%(3*64+6*8+4), hit return and CASUAL will print
—3072. This is Z for that system. Also, if you want to use
a different trigger source (say, passing your hand over an
OP-80 papertape reader) you’ll have to change lines 11 and
110 for port numbers and Ready bit. But remember, once
that bit is ready you’ll have to give the data port an & to
clear it.

The game is set up so when a bolt gets to the top of the
screen it checks 2 places to see if it hit (line 210). To make
him harder to hit, type in:

210.2240%(((X-2=P)*(B=0))+((X+2=P)*(B=1)))

Happy zapping!

Scott Meadow 116 Surrey Dr.

Glen Ellyn, IL 60137

.L

3 2=-13312

4 M2

S ?7-HOW MANY BOLTS DO YOU WANT-§:S=7:,.=Se(S<1)

6 =50 (S>ID i

10 U=Z+754:L=2+864:M=L:P=2+32: N=2-32: J=2+722

11 =255

15 ?>125:0=228=32:H=02 =02 !=L+128:&=160:L=L+128

20 “=2+592:7[11=90: [21=653 [31=80t ’ [41=83

30 7 [321=66%"[331=79:"[34])=761" [35]=84:"[36]=83

40,7 [971=762[981=698 7 [99]1=70s " [1001=841S=S+1:$=400
S0 B=0:X=Z:Y=Z2+64

100 $=3000

110 .=1000¢0=8)

120 $=400

130 !=L+64:8=328=L:&=4:L=L-64:$=3000

150 .=130e (L#N>

200 !=P:&=32

210 .=2400 ((((X=1=P>+(X-2=P)>)> ¢ (B=0)) + (((X+1=P) + (X+2=P>)> ¢ (B=1)))
220 =5 (S<D

230 .=110

240 H=H+1:I=H/1022=J+1:8=%+48:0=0:8=1448: I=H

242 /=2+32:7[11=90:"[21=65:[31=80:[41=80:" [S5)1=33
244 X=Z:!1=X:W=0

245 &=32:1X=X+1:0=X:l=W+1:, =2450 (W:50)

250 .=50

400 S=S-1:L=M:Y=S-10:0=U+1:8=%+48:1=U:8=Y+48:Y=S:,=$
2000 .=3900¢(B=1)

3100 !=X-1:8=32:1=X:&=7:X=X+12.=8e (XaY)

3200 X=X-1:B=1:.
3900 !=X+1:8=32:0=X:&=7eX=X-1:,.=80 (X:2)
4000 X=X+1:B=0:.=$

Nov./Dec., 1976

209
200
0@9

088
[2:12]
Relelo)
@na
290

203
:I75]
208
' ego

oae
end
eas

:5Y:)
@11
@1z
@13
@14

aze
vzl
ezz
az4

303
@97
2vz

317
327
GIl)
367
33T
347
357

@19
178

242

@43
03

924
@43
176
3T
2z0

Nov./Dec.,

154
ens
085

eng

ase

[]a])

1976

/ABBREVIATIONS USED IN COMMENTS:
’

=3 INTO

/ABSC) ABSOLUTE YALUE OF ¢

/ADR ADDRESS

/ARG ARGUMENT

#BUF BUFFER

/BOTY BEGINMING OF TEXT

/CR CARRIAGE RETURN

ZCRLF CARRIAGE RETURN, LINE FEED

/CHR CHARACTER

ZCMRR COMPARE

#DECR DECREMENT

ZEOF EMD OF PROGRAN

ZEXPR EXPRESSION

FEOS END OF STATEMENT. OR END OF STRING

ZEOTX ENI OF TEXT

/EOB END OF BUFFER

~EOL END OF LINE

/FC FALSE CARRY

/FUN FUNCTION

sFZ FALSE ZERO

ZINIT INITIALIZE

ZINFO INFORMATION

ZINCR INCREMEMT

ZINST INSTRUCTION

ZINP INPUT

/LANG LANGUAGE

SLF LINE FEED

ZILINE # LINE NUMBER

sLL LINE LENGTH

/NEOTR NEW END OF TEXT

/DEOTX OLD END OF TEXT

0P OFERATOR

/08 OPERATING SYSTEM

/PS PARTIAL suM

/PGH PROGRAM

/QUD QUOTIENT

/RETADR RETURM ADDRESS

/RELOP RELATIONAL OPPERATOR ¢ <. > = #)

/REG REGISTER

/ROT ROUTINE

/STK STACK

/3THT STATEMENT

/SONL START OF NEXT LINE

/5051 START OF GREATER THAN LINE

/E0<L START OF LESS THAM LIME

/301 START OF LINE

/5UB SUBTRACT

/308 START OF STATEMENT

/SR SUBROUTINE

/SIG DIG SIGMIFICAMT DIGIT

STHA TEXT ADDRESS POINTER

/TST TEST

Tz TRUE ZERO

VAL YALUE

VAR VARIABLE

ZVARNAM VARIAELE NAME

P

s EP 1

e

’ casuaAL

/ s

CHICAGO AREA SMALL USERS ALGORITHMIC LANGUAGE

7

/ WRITTEN BY: ROBERT A. VAN YALZAH

’ 1148 HICKORY TRAIL

I DOWNERS GROVE, IL.

’ 60515

7

s H (312) 852-8472

I U ¢312> 971-zB18 ¥ 227

s
JMPINIT #WILL BE POKED TO JMP ENTR
DSD USRL /ADR OF ADR OF ADR OF USERS ML ROT
18D SUBS

/ADR OF ROT USED TU GET USR FUN ARG
’ ‘.
/RESTART SUBROUTINES.
“1 - 6 ARE USED.

@ IS SYSTEM RE-EMTRY. 7 IS5 OFEN.

P
#THE EQUIVALENCES BELOW SUBVERT MY ASSEMBLER INTO ASSEMBLING
#SINGLE BYTE CALL INSTRUCTIONS (RESTARTS) WHENEYER THEY
/BFFEAR ON A LINE.
7z
T3T=@3172
FETCH=RST @200

z

@coa
T @308
@4na
@sea

#RESTART 1 IS THE TST FUNCTION. IN SQOURCE CODE IT MUST

<BE FOLLOWED BY AN IFNOT FSEUDD - OF. IT AFFEARRS LIKE THIS:
-

ke TST "+

s IFNOT TRY- SCHR AT HL IS NOT “+", JUMFP TO TRY-
e /FALLS THROUGH TO HERE IF CHF AT HL IS "+

e

#THE CHR FOLLOWING THE RESTART INSTRUCTION IS FETCHED AND
#COMPARED TO THE CHR FOINTED TO BY HL. IF THE

<TEST IS TRUE. THE IFNOT ADDRESS IS IGNORED AHD TST RETURHS.
#ALS0 HL IS BUMPED AND IT FALLS THROUGH TO NXTC TO SET FLAGS
<IF THE TEST IS FALSE, THE RETURH RDDRESS OH THE STACK

<18 IGNORED AMD THE IFNOT ADDRESS IS RETURHED TO,

#WITHOUT EBUMPING HL.

#BTACK USAGE: 2 BYTES. MUNCHES @ & FLAGS.

’

*18

LA M #FETCH TEST CHR

SFIHL #T¥A OMN STK, REFERENCE WDR -> HL
CP M #COMPARE WITH REFEREHCE

INX HL /MOVE RETADR

JMP TST1 #COHTINUES AT TST1

s

#RESTART Z IS THE FETCH THE MEXT CHR ROUTIME. HL IS BUMPED
<BEFORE THE FETCH. SPARCES ARE IGNORED. OW RETURH:. FC
<MEANS MOM-NUMERIC (NOT 8 - 93, .TZ IF A STATEMENT TERMINATOR

#¢COLON OR END OF LINE NULLY. STACK USAGE. 2 BYTES.
e

#20
NATC, INX HL /BUMP THXA TO NEXT CHR

LA M SFETCH IT

CFI1 "9+1 /18 IT @ - 3

RFC />3 CARRY FALSE

Dr. Dobb’s Journal of Computer Calisthenics & Orth

-1:]2]
:]-12]
000

[:]:]<)
080
2@
000

esa
:10)
880
[]:12)
(][]
[:dadc)

290

ezs

039
B33
934

249
841
943
845

ase
851
85z
@53
854
853

856

B30
2135
3532

2a3

849

365

Z4€
303

858
243
17e
247
842
267
zaz

ang
‘apo
[21<]o]
800
[alal:)

290

8ap
[5ha1s)
e8e

290
aep
280
=1:1:]
[k:[o)
298
299
288
800
[s]o1)
29
osB
eno
[Gla]:}
2L:l]
[als]q}
eae
[5ls]:)

ene
oag
[s]als)

age
000
000
200
000
000
CEL)
000
000
280
00
200
200
200
sep
[z1:15)
ene
a9e
CEL]
L)
[c]41)
CEL)
asa

fee
ee0
2lal2)
eea
[:1:3c]
208
eng
aeo
J<d:]
[]<ia)

2133
[2fx]
964

ege

era

ar3
are
ke

180

1z2@

121

132
135
176

137

17z

315
357
815
812
195
122
122
117
zz2
3432
215
313
05z
853
221
367

357
27V
327
31z
247
2932

180

2
187

873

o4

ene

Bae

@48
eza
fFl

851

142

064
85z
o111

200

o8z

eeg

8as

one

608

z1a]c)

280

004
004
005

[]=]2]

890

ees
694

377
e84
enz2

[5]<3:)

JMP MATD “CONTINUED AT NXTD
s

/RESTART 3 IS THE EXPRESSION EWALUATOR.
<RETURNED IH THE DE REG.
e

THE VALUE IS
SEE CONTINUATION FOR MORE INFO.

*#38

CAL EXPA /GET THE YALUE OF EWFR -> DE
DE<>HL /RESULT -> HL, TXR -> DE
JMP EXP1 /CONTINUED AT EXP1

v’
/RESTART 4 1S THE DEVYO (DEVICE OUTPUT) ROUTINE. THE CHR

#IN THE A REG IS SENT TO THE OUTPUT DEVICE. DOESN'T
<MUNCH AMNY REGS OR FLAGS. STACK USAGE: 4 BYTES.
s
*#40
PSHX FSU) /SAYE A AND FLAGS
DEVE, INF 1 /GET READY STATUS - A
TORM, NDI 2 #MASK TO THE BIT WE WANT
JMF DEYP #CONTINUED AT DEYP

e

<RESTART 5 IS THE MESSAGE PRINTER. IT SENDS CHR3

#FROM MEMORY IMMEDIATLY FOLLOWING THE CALL TO IT UNTIL ONE
#WITH BIT 7 HI COMES ALONG. THE RETURN ADDRESS IS

#MODIFIED. STACK USARGE: & BYTES.
B
*50
MSG, SP<XHL #PRINT ADR -3 HL
MSG1, Lan #FETCH A CHR
DEVO #SEND IT
INX HL /BUMP T¥A AND RETURN ADDRESE
OR A <BIT 7 HI YET 7
JHP MSGZ2 CONTINUED AT MSG2

s

#RESTART 6 IS A 16 BIT UNSIGNED COMPARE (CMFPRJ.
#SET LIKE HL - DE. STACK USAGE: 2 BYTES.

.

FLAGS RRE

*EQ

LR H

suU D
RFZ

LA L
SUE

RET

DSD SPRS /RDR OF ADR OF ADR OF STACK RESET
s

<RESTART 7 IS OPEN FOR INTERRUPT USE.

/A RETURN IS PUT THERE S0 INTERRUFTS WILL BE IGNORED TILL
#I1T IS FATCHED QUT. THREE BYTES ARE LEFT FOR A JUMP

#TO AN IMTERRUPT SERVICE ROUTINE.

I

*70
RET
®73
s
EXP1, STHL LRES /SAYE RESULT
DE<>HL /RESTORE TXA
RET
’
NXTD, cPI " #IGNORE BLRANKS
JTZ NXTC
CFI "B 7£8?
cMc
INA /SET FLAG WTIHOUT AFFECTING CARRY
ncA
RET
TSTL, JFZ NGOT /NO MATCH
THX HL /MATCH - IGONRE IFNOT ADR
IM® HL
SP<HL. /RESTORE TXA
JHMP NXTC /FOUND IT, INCR TXA AND SET FLAGS
HGOT. LA M <LOW ORDER IFNOT ADR -> A
INA HL
LH M «<IFNOT ADR ON STK, RESTORE TXA
LL A
SP<XHL
RET
e
MBG2, JF8 MSGL /BIT 7 WAS LOW, PRINT MORE
SF<>HL /WAS HIGH, TIME TO RETURN
RET

EP 2

s
#ERRO 18 THE ERROR MESSAGE PRINTER. IT MUST ALLWAYS BE

#CALLED, THE RETURN ADDRESS IS USED AS THE ERROR NUMBER.
’

SNER, CAL ERRO #SYNTAX ERROR TO BE JUMFED TO
ERRO. MSGP /FRINT “ERROR"

Dss 15,12, "E, "R, "R, "0, "R+2088

SP<IHL /PRINT ERROR ADDRESS
CAL HLPT)
CAL INPT /PRINT LINE HUMBER OF ERROR
LDHL SSTM /START OF LAST STATEMENT -> HL
DCX HL
POPX DE VERROR THA -> DE

ERRP, CHPR /AT BAD SPOT YET?
JFZ ERRQ #NOPE - PRINT A CHR
MSGR /YUP - INSERT A "2"
1SS "7+209

ERRG, FETCH JEND OF STHMT? i
JTZ ENTR /YUP - BACK TO COMMAND MODE
DEVO /NOPE - PRINT ONE CHR AHD
JMF ERRP /KEEP TRYING

z

/MAIN INTERFRETER ENTRY AND RE-ENTRY POINT.
#AND ENTERS LINE INPUT MODE. NOCR DOES SAME.,
+NUMBERED LINES ARE EDITED INTO TEAXT BUFFER.
/UN-NUMBERED LINES ARE PASSED TO STMT FOR EXECUTION.
.

ENTR SENDS CRLF
WITHOUT CRLF.

EMTR, CAL CRLF

HOCR, CAL RSSF /RESET 8888 STACK
MEGF /PRINT PROMFT FERIOD “."
Dse . +28@
LKI HL ’377 377 #SET IMMEDIATE MODE FLAG
STHL CURL
CAL GETL /FETCH AN INPUT LINE
FETCH /BLANK LINE?
JTZ HBCR /YUF - IGNORE
JFC STHMU /NOT NUMERIC - EXECUTE IT

Menlo Park, CA 94025

Page 25

#3TMT IS THE STATEMENT EXECUTOR. EHTER IT WITH THE THA
#0OF THE STRING TO BE EXECUTED -1 IN HL. KEE SOING TILL:
<IT FINDS LINE # @, CONTROL C (+C) AEORT. 0OR GOTO

#=1 (MINUS OHE) IT PUSHES THE ADDRESS OF RTRHM

-,
#START OF LIME TEXT EDITOR
s

/TEXT BUFFER FORMAT:
s

/BEFORE LEAVING, S0 WHEN THE STMT HANDLER RETURNS, IT SHOUS
4 000 #UP AT RTRN. AT RTRN, THA SHOULD FOINT TO COLOM (.) OR
/BOTX, LINE 1 #END OF LIME MULL.
4 LIHE 2 s
’ LINE 2 001 @2€ 315 160 095 RTRN, CAL ABRT /TEST FOR COMTROL C <40
s 000 . 001 831 176 LA m /MORE OM THIS LINE?
/EOTX, 000 601 @32 375 Bvz COLM. CFI ",
’ 001 634 31z 054 BA1 JTZ STMT ZYUP - EXECUTE IT
/LINE STORAGE FORMAT: 801 @37 267 OR A ZEND OF LINE?
‘ 001 040 294 142 0RO CFZ ERRO #NOFE - ILLEGAL TERMINATION CHR
’ LINE NUMBER LOW 8 BITS 001 947 043 INY HL SMOYE TO SONL
’ LINE NUMBER HIGH 8 BITS o1 044 215 180 082 CAL FELN #LINE # -> DE, RE~ENTER IF ECE
4 CHRS WHICH APPEAR ON LINE 001 047 3532 DE<SHL /MAKE 1T CURRENT LINE
, 000 801 050 P4z 262 oA4 STHL CURL
4 91 952 353 DE< >HL
o080 234 315 205 004 CAL DEINT /GET LINE & -> DE 801 @S54 327 STMT, FETCH
800 237 345 PSHX HL /FIRST CHR ADR SAVE 801 @55 @42 @11 085 STMU, STHL SSTM /SAVE THE START OF THIS STATEMENT
800 249 325 PSHX DE 7SAVE LINE & 801 ©EO D21 026 ©91 LXI DE RTRN /FUSH DESIRED RETURN ADR
000 241 365 PSHX PSU /ZERO TRUE IF BLANK LINE 201 063 335 PSHN DE
000 242 021 002 0OV LXI BC 2 /LINE LENGTH 3 BYTE OVERHEAD 201 oed 210 Rrz
800 245 176 EDT. LA M /COUNT UP LINE LENGTH -3 BC 001 BES 317 877 TsT "2 /8 FRINT STHT?
000 246 267 OR A 801 BE7 53 0AS SIPK, IFHOT NFRT sMIGHT BE POKED TO HPRU
000 247 8432 INS HL @01 154 085 PRT1, JTZ CRLF
820 250 003 INX BC (131 CR?, RTZ #RETURMN WITH MO CR IF TERMINATOR
800 251 202 245 080 JFZ EDT /KEEP COUNTING @01 073 TeT v
000 254 361 POPX PSW /RESTORE FLAGS @n1 601 IFNOT PCOM
80e 255 285 PSHX BC /SAYE LINE LENTH 001 074 801 JMP CR? /1GHORE SEMICOLOMS - NO CR IF EOS
0P8 256 355 PSHX PSW /SAVE FLAGS @01 054 pCOM. TST Ya Comma 3
800 257 215 370 @pe CAL LFND Z/INSERT ADR -> BC, SONL -> HL 201 0a1 IFNAT auoT
900 262 205 PSHX BC /SAVE INSERT ADR 001 211 LAl 1t SYUP - SEND A TRE
800 262 322 310 808 JFC EDT2 /COULDH’T FIND, S0 INSERT OWLY @01 BEVO ,
@00 266 353 DE< >HL 78ONL => DE 001 874 001 JNP CR? /MO CR IF EOS
000 267 052 26@ 824 LDHL EOTX o691 QUOT. LA M #LERDING SLASH FOR LITERAL 7
800 272 D32 EDT1, LDAX DE /DELETE OLD LINE @01 as57 CP1 v
000 273 0092 STAX BC 201 144 @O1 JFZ PHCL /NOPE - TRY CHR%
808 274 002 INX BC 801 INX HL #{UP - MOVE OVER SLASH
eoe 275 023 INX DE 001 QuUOS, LA M /FETCH A CHR
800 276 257 CcHPR /DONE YET? 201 oR A JEND OF LINE 2
800 277 322 272 080 JFC EDTL /NOFE 158 142 808 CTZ ERRO /¥UP - NO CLOSING SLASH ERROR
200 282 140 LH B /8AVE NEW EOTS 201 IHY% HL
208 303 151 LL ¢ @a1 os7 CPI "~ FINAL SLASH?
200 304 053 DCX HL [:]:31 165 001 JTz FEXQ SYUR
000 385 P42 260 64 STHL EOT% 201 DEVO JHOFE - SEND IT
000 310 221 EDTZ, POPX DE ZINSERT ADR -> DE @Bl 141 282 125 0p1 JNP auos D0 MORE
epe 211 351 POFX PSU /ANYTHING TO INSERT? 081 144 317 67 PRCL, TST *> 70 CHR$ FUNCTION »
000 212 312 207 ABO JTZ NDCR /NOPE ~ EXIT EBITOR @01 146 240 005 PXPK. IFHOT PRIy /TRY STRING PRINT, MIGHT BE FOKED
®00 215 052 260 BA4 LDHL EOTX @01 1%p 237 EvPR)
000 320 243 SF<OHL 7EOT® -> BC, LL -> HL 081 151 172 LA E /TRUNCATED EXPR -> #
eoe 221 381 POPX BC erl 152 247 DEYD /SEND IT
000 322 011 DADX BC /NEW EOTX ~> HL 001 152 302 165 ool JHP PEXQ
008 223 345 PEHY HL /SAYE IT ee1 15¢ 237 PEXF, EHFR /MUST BE AN EXFRESSION
200 324 215 267 801 CAL EOM? /ROOM FOR THIS LINE? 801 157 245 FEHY HL /2AYE HL DURING PRINT
000 227 345 PSHX BC @01 169 353 DE<YHL /NUMBER TO PRINT -3> HL
000 338 343 SP{OHL #OEOTX -> HL, WEOTX -> BC 001 161 215 170 094 CAL SHLP /PRINT THE SIGHED WUMBER
00 231 241 POFX BC 801 164 3241 POPY HL #RESTORE TXA
800 332 67 ED21, CMPR /MOVE UP FOR NEW LINE o0l 165 853 PEXG. DCX HL YSET 7 FLAG IF EOS
200 I3 176 La M /FROM OEOTX -> MWEOTH® P01 166 327 FETCH
000 334 082 STAX BC 001 167 202 671 081 JMP PRT1
008 335 613 ey BC 001 NPRU, FSHX HL SSAVE S0L THA OM 5TK
200 236 053 DCX HL 001 TH HL
200 I37 202 332 0R6 JFZ ED21 /NOT DOHE YET @01 07s TaT v= /SECOND CHR "=" 2
000 342 341 POPX HL - /RESTORE NEOTX en1 paz IFNOT CMD? /MOFE - MUST BE A COMMAND OR ARRA&Y
080 343 842 260 094 STHL EOTX a0t EXFR /%UP = EWALUATE RIGHT SIDE
800 I46 353 DE<>HL ZINSERT ADR -3 HL o091 SPeSHL YEAL -3 ML, EOL ON STE
200 347 321 POPX DE CLINE # ~> DE 201 ose TST o Y6 cOTO STHT -
200 350 163 LM E /PUT IN MEW LINE # 001 2 an1 IFHOT LEF$
080 351 843 INX HL 0a1 60T, FOPY HL SEOS -3 HL
000 352 162 LM o 11 GOTA, LA D /GOTO LINE ZERO?
900 353 843 IN® HL 001 OR E
000 254 321 POPX DE SADR OF TEXT ON LINE 201 Pl JYUF - FALL THRU TO NEXT STHT
008 355 832 EDT3, LDAX DE /PUT IT IN BUFFER 201 LA D JGOTO LINE 65535 2 (o1s
800 I56 167 LM A @01 HDo E
000 357 043 INK HL an1 THA
000 260 023 INx DE @a1 204 980 JTZ ENTR SYUP - THIZ 15 A STOP
000 251 267 OR A 601 37H 0A0 GOTE, CAL LFHND /FIND HIS LINE
800 I5z 302 355 00O JFZ EDTZ /NOT DCNE INSERTING 201 [H & THEW LINE THA -5 HL
800 265 283 207 20O © JMP NOCR #GET ANOTHER LINE 201 L e
4 801 DCR HL /MOVE TO PRECEDING LINES HULL
091 RTC /FOUHD THE LIME - EXECUTE IT
4 891 142 @erfo CAL ERRO <HO FIND ERROR
/LFND 13 THE LINE FINDER.
/TRIES TO FIND THE LINE # IN DE IN THE BUFFER.
#IT WILL EITHER FIND IT, OR HIT THE EOB FIRST, OR GO 091 232 317 Bast LEFS, TST "% S8 GOSUB 2
/ONE LINE PAST BUT NOT HIT EOB. RETURN CONDITIONS FOLLOW. o) 534 »s2 gat IFNOT MEMA
4 ° 801 236 215 255 BP1 CAL FEHL /FIND START OF NEXT LINE
- IF @n1 241 176 LA M /SAVE ITS LINE NUMBER
/ ot @01 242 043 INM HL
. EOB GOT IT NEXT > op1 247 145 LH 1
s -t TTeeTT T BA1 244 157 LL A
’ HL EOE SONL sasL 001 245 P42 002 0AS STHL DLAD
. BC EOB soL S0<L @91 250 292 z@As oAl JMP GOT /D0 A GOTO
. CARRY FALSE TRUE FALER 801 253 317 @41 MEMA, TST "I #SET A MEMORY ADDRESS 7
4 ZERD TRUE TRUE FALSE 801 55 265 BA1 IFNOT POK?
7/ 257 252 5 P23 2y RESS
/USES ALL REGS AND FLAGS EXCEPT DE. STACK USAGE: & BYTES. ggi 260 94z 016 BBS gi:iliHIITIQDR TORE NEW MEMORY ADDRESS
4 263 2 v. 05 THA
800 I70 ©52 256 884 LFND, LDHL BOTX /START AT BEGINNING OF TEXT gg; gii E?i Eg? HL RESTORE EOS Tx4
800 373 184 LFNE, LB H /SAVE START OF LINE - BC 001 265 317 846 POK?, TeT "& 48 POKE 2
800 374 115 Le L 001 267 277 891 IFHOT QUT?
8ve 275 17€ LA <ECB¥ 801 271 BSZ 616 00 LDHL MADR #GET THE SET MEMORY ADDRESS
200 376 0843 INX HL 021 z74 163 LM E POKE IT WITH LOU ORDER EXFR
280 377 26€ OR W 001 275 341 POPX HL /RESTORE EDS THA
801 PO B33 DCX HL @01 276 311 RET
901 001 210 RTZ /YUP - ZERD TRUE, CARRY FALSE 001 277 317 137 oUT? TST "e JaN OUT INST o
201 982 176 Lan /RELOAD LOW ORDER -7 A 081 291 215 o1 ’ IFHOT PAD? FNOPE ’
081 BaZ 843 INX HL 801 303 BYE 223 LAl 323 /0UT INST BINARY —-» MEMORY CRAM)
201 BR4 245 PSHX HL SSAVE SOL TRA+L 001 385 pEe 012 0BS STA RANIO
001 0as 145 LH /LINE # -> HL 001 316 173 LA E /DATA TO OUTFUT -3 A
@01 @vs 157 L 001 311 341 POP HL /RESTORE EOS THA
@01 ea7 367 CHPR ALINE & UE WANT 2 901 312 303 €12 0AS JMF RAMIO /D0 THE OUT, AMD RETURN
001 218 241 POPX HL FSOLYL Se HE 801 315 217 188 PAD?, - TST "@ /SET PORT WUMBER 2
@01 P11 363 PSHX PSU /SAVE RESULT OF COMFARE 001 217 327 oAl IFHOT DEF?
001 812 943 IN® HL /START OF NEXT LINE -> HL 091 721 173 LA E /TRUNCATED EMPRESSION - A
®91 812 315 355 881 CAL FSNL 3 e s . '
901 016 351 POPX PSW /RESTORE RESULT OF COMPARE gg: 3§§ 351 e14 0835 ﬁ;gxka[ﬂu*‘ /EE;TgEé ;ggTng"BER INTO Rén
801 017 877 cHe <FOUND IT? 201 306 211 RET
@01 020 318 RTZ /YUP - CARRY, ZERO TRUE @91 327 317 136 DEF?, TST “+ /DEFINE A FUMCTION 2
@01 021 877 cne /PAST 172 801 331 318 8RS DFFK, IFNOT BSES /MIGHT BE FOKED TO LETS
001 822 320 RFC /YUP - CRARRY, ZERO FALSE 801 333 843 IHY HL /MOVE THA TO EXFRESSION
@01 023 283 373 006 JHP LFNE /HOPE - KEEF LDOKING @p1 734 D4z BBS BOS STHL DEFF JSAVE FUNCTIONS Top
e =3 - W a 5 o X
#THIS IS THE INTERPRETER CONTROL SECTION. gg: g;g ;'?: :g?" HL RESTORE EDS THA

/

Page 26 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Nov./Dec., 1976

aul
EEL
@Ay
ga1
601

2131
var
Ga1
aml
[a1
Bal
a8l
an1
[alak-4
enz

eaz
Baz
a9z
692
89z
09z
eaz
aez
eaz
aaz
anz
anz
aaz
anz
6az
Baz
[:]sk3
enz
Baz
anz2
892
aaz
By2
anz
89z
a8z
o0z
eoz
o0z
aez

292
002
282
882
29z
o9z
06z
282
002
88z
o9z
o9z
enz
eaz
ez

Nov./Dec.,

o904
a5
eag
eay

187

112

114
116
121
12z
123
124
128
130

133

134
135
136
137

ST

[SEEEN
- T

(TR REE X SRR AR N X)

307

315
217
124
215
2z

137
211
217
137
215
230
31e
137
211

217

i]=dc)

© /ENTIRE LINE BEING.TYFED AHD STARTS QUER.

LETS, CAL LOKU ZGET THE INDES OF THE VAR
LM E <STORE THE WAL IK MEMORY
JFZ LETT SLOH'T WRITE HI BYTE IF SIHGLE ARRAY
IH¥ HL
Ln o
LETT, FOF:E HL #IGHORE THA FROM LOKU
POPH HL <RESTORE E0S TRA
RET

<FSHL FIMDS THE START OF THE HMEXT LINE IN MEMORY.
<HL 1S BUMPED TO FOINT TO THE LO ORDER LINE HUMBER OF THAT

<LINE. A & PSW GET MUNCHED. STACK USAGE: 2 BYTES.
FSHL, LA M

IH: HL

OR A #ENDING HULL YET?

JFZ FSHL

RET
s

<EOM AND EOM? CHECK TO MAKE SURE THAT THERE IS AT LEAST 24
<BYTES OF STK SPACE LEFT FOR MORMAL OFERATIONS. EON? LODOKS
<FOR 24 BETWEEH HL ANMD CURRENT SF. EOM LOOKS FOR 24 BETWEEN
<CURRENT EOTX¥ AND SP. BOTH MUMCH FSW & A.

EQm,

LDHL EOTH #CURRENT EOTX
EQn?, PSH¥ DE ZSAYE DE
DE< ¥HL SSAVE HIS HL
LAI HL -824 SLOOKING FOR 24 BYTES
DRDA =SP SADD IH CURREMT SP
CHPR /3UBTRACT PASSED HL
DE<>HL #RESTORE HIS HL
FOPX DE /RESOTRE DE
RFC /FLENTY OF ROOM LEFT - RETURN
CAL ERRO <0UT OF MEMORY ERROR

e

-
#THIS ROUTIME INPUTS A LINE OF TEXT AND PLACES IT

AT LINE WHEN ENTERED AT GETL. RUBOUT

#DELETES THE PREVIOUS CHR. COWTROL U .(+U) DELETES THE
A HARIMUM
#0F LBUL CHRS WILL BE ACCEPTED AFTER WHICH' THE -~ ~
#BELL WILL RING INSTEAD OF ECHOING CHRS AS HORMAL.

"/CONTROL CHRS OTHER THAW CONMTROL U, CONTROL G (BELLY,

022 882
ens

264 60%

en2

177
eaq

111
oa7

874 802

822

vaz

296 082
or4
o9z

162 802

e7e
eaz
163

1976

<AHD CARRIAGE RETURM WILL NOT BE ECHOUED BUT IGHORED.
<ROUTIHNE RETURHS ONM ENTRY OF A CARRIAGE RETURN BY

<ECHOING A CRLF AND PLACING 3 NULLS AT THE EMD OF BUFFER.
<ON EXIT, HL POINT LIHE-1. STRCK USAGE: 18 BYTES.
b4
GETJ. DCX HL #DECR CHR FOINTER

MSGF #SEND A BACK SLASH

0SS "~N+200

oce #DECR CHR COUNTER

JFZ GETM #/DELETED TOO MANWY? - HNOFPE
GETK., CAL CRLF !
GETL. KI HL LINE #CHRS WILL GO HERE

LBI 1 <INITIALIZE CHR COUNT
GETM. CaL TTYI #GET CHR -» @&

CFI 7 /A BELL?

JTZ GETH ZYUP - PUT IN BUFFER

CFI 15 <A CR?

JTZ CRLE <YUF - EXIT THRU CRLF

CPI 25 #CONTROL U?

JTZ GETK /YUP - START OVER

CPI " /< SPACE, CONTROL CHR 7?7

JTC GETM #fUP - IGHORE

CPI 177 ZRUBOUT?

JTZ GETJ SYUF - IGHOR LAST CHR
GETH. LC a <SAYE CHR

LA B /GET LIME LENGTH -> A

CFI LBUL+1 #COMFARE WITH MAXIMUM

LAl 7 #GET READY TO RIMG BELL IF TOO LONG

JFC GETD SRING IT

LA C RESTORE CHR

M C #PUT IT IM BUFFER

IHZ HL #IHCRE BUFFER FOINTER

INE /INCR CHR COUNTER
GETO, nEVOD #ECHO CHR

JUP GETM +D0 SOME MORE

7z

<THIS ROUTIME FETCHES A
<IF IT IS LINE 8 (ZEROJ,
<IF NOT @, JUuST RETURN.
<HL POINTS TO LOW ORDER

LIHME NUMBER FROM MEMORY -> DE.

THIS MEAMS EOB AND IT GOES TO EHMTR.
MUHCHES DE & A & FLAGS, BUMPS HL.
OH EMTRY, HI ORDER OH EXIT.

<STACK USAGE: 2 BYTES.
s
FELM, LE 1 #L0 ORDER - E
IHX HL
LD n #HI ORDER -> D
LA D 1S DE = @8 7
OR E
RFZ <NOPE - RETURM
RST /fUP - BACK TO COMMAND MODE

.

.
<EXFRESSION EVALUATOR. USES ALL REGISTERS. RESULT IS LEFT
<IN THE DE REGISTER. WILL PROBABLY RECURSE AT LEAST OHCE.
-

4 HIERARCHY

.

ZEVALUATED FIRST <

e *, 7

ks + -
<E¥ALUATED LAST oo v o= 8
s

<0OPERATORS OM THE SAME LEVEL ARE EVALUATED LEFT TO RIGHT.
s

e <EXFR> ::= {SUM> I <SUMMKLSUM> T <SUM>»<{sUM>
4 <SUM>=<SUM> T <3UM>H<SUND>
’
<BTACK USAGE: >= 10 BYTES. CALLS EOM BEFORE RECURSING.
s
EXPA, CAL sun /GET LEFT 3SUM
EXPS, TST "< /FOLLOWED BY "<" ?
IFHOT TRY>
CAL RSUM #/GET RIGHT 3UM AND COMPARE
RFC /FALSE - DE = @
LE A /TRUE - MAKE DE = 1
RET
TRY >, TST "> /GREATER THAN 7
IFHOT TRYE
CAL RSUM /GET RIGHT Sum
RTC /FALSE
RTZ /EQUAL IS FALSE
LE A /TRUE
RET
TRYE, TST "= /EQUAL TO 7

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menio Park, CA 94025

141

146

151

o9z
anz
eaz
08z
ez
anz
aaz
@aaz
aaz
082
enz
8oz

082

eaz

092
292
eaz
vaz
60z
aaz
o9z
eez
0az
eaz
09z
8oz
00z
eaz
vaz

15@
151
153
135
150
151
162

eaz 3

eaz
89z
eez
eaz
anz
eaz
enz
892
282
892z
89z
ee2
292
08z
892
882
eez
092
B@2
eaz
0082
092
89z
092
eaz
oAz

a9z 3

802
89z
Ba2
eaz
08z
eaz
2a2
@az
09z

aez 2

enz
082
892
802
8oz
8az
a3
8az
983
003
882
@9z
anz
eaz
2az
0a3

3I7S
376
377
@29
an1
9az
en3
@ag
any
aia
0132
o114
915

oA R)
R RSN N AR

[R S]

w
[y

@
-4
@

311

315
217
238
225
215
243
831

252

29z
317

325
215
213

203

215

217

2235
215
342
245
041
133
en1
172
837
127

ezv

282
321

Zh

114

115
252
178
261
214
ez1
175

21
137
174
23g
147
0232
22z
833
811
a4z
291
179
267

IFNOT TRYN
CAL RsUM /GET RIGHT ¢
RFZ sHOT EQUAL IS FALSE
LE A

RETI, RET

TRYHN, TST "# sNOT EQUAL TO 72
IFHNOT RETI /N0 RELOPS - RETURH
CAL RsUM #GET RIGHT sum
RTZ
LE A
RET

/
<R8UM GETS THE RIGHT SUM AFTER A RELOP HAS BEEN FOUND.
“ENTER WITH LEFT SUM IN DE. AFTER FETCHING THE RIGHT sum,

. #RIGHT AND LEFT ARE COMPARED WITH A 16 BIT SIGNED COMFPARE.

286 082

882

:1c1)
@al

246
0532
enz

246

211
8355
eaz

246
246
2z1

092
o004
o9z

[5]J2]

142
[s]s]2]

290
[2[:12)

292

eas

002,

7ON EXIT: FLAGS ARE SET LIKE LEFT - RIGHT,
/DE = 8 A = 1, TXA POINTS TO END OF EXPRESSION.
.
RSUM, PSHX DE LEFT ON STK
caL sum /GET RIGHT SUM -> DE
SP<OHL /LEFT =» HL, TXA ON STK
La H /COMPARE SIGN OF LEFT AMD RIGHT
%R D
JFS sans /SAME SIGM - DON’T SWAP
DE<HL
SAMS, CHMPR /D0 THE COMFARE
POPX HL /RESTORE TXA
L¥I DE © /SETUP RESULT OF RELOP
LAT 1 /D0 A LE A IF TRUE
RET

s

/3UM EVALUATOR.
sLSUM> o=

/s

<THE VALUE OF THE SUM IS LEFT IN DE ON EXIT.
-

<TERM> I <SUM> + <TERM> I <SUM> - <TERM>

sum, CAL TERM /GET LEFT TERM
suMA, TST “+ /FOLLOWED BY A "+" 7
IFNOT SUN
PSHX DE /SAVE LEFT HALF
cAL TERM /GET RIGHT HALF
SUML, . SP<OHL /LEFT => HL, TXA ON STACK
: DADY DE /RIGHT + LEFT -> HL
DE<>HL #RESULT -> DE
POPX HL /RESTORE TXA
JUP SUMA #CHECK FOR MORE SUMS
SUM, TST - /FOLLOWED BY "-" ?
IFHOT RETI /MOFE - DOME WITH ALL SUMS
PSHX DE /SAYE LEFT TERM
CAL TERM /GET RIGHT HALF
CAL COMD /DE = -RIGHT
JMP SUM1 /RESULT = -LEFT + RIGHT
s
7’ EP 11
/TERN EVALUATOR.
SCTERMD .= <FACT> I <TERM> # <FACT> I <TERM> ~ <FACT>
e
TERM, CAL FACT /GET LEFT FACT
TERA, TST "# /FOLLOWED BY AN "#" ?
IFNOT TERN #HOPE - TRY DIVISION
PSHX DE /SAVE LEFT FACT
CAL FACT /GET RIGNT FACT
SP<OHL LEFT -> HL, TXA ON STACK
PSHY HL
L¥I HL RAMIO /NUMBER OF BITS
LMI #11
L%I BC © /CLEAR PARTIAL PRODUCT
LOOP, LA D 16 BIT DE ROTATE RIGHT
RAR
LD A
LA E
RAR
LE A
neh /OME BIT DONE
JTZ MULS /ALL BITS DONE
SP<OHL
JFC SKIP +#BIT NOT ONE - SKIP ADD
PSHX HL
DADX BC
LB H
LC L
POPY HL
SKIP, OR A /CLEAR CARRY
LA L /16 BIT HL ROTATE LEFT
RAL
LL A
LA H
RAL
LH A
SPCOHL
JMP LOOP
MULS. POPX DE /CLEAM JUNK OFF STACK
LD B /RESULT -> DE
LE C
POPX HL /RESTORE TXA
JMP TERA /LOOK FOR ADDITIONAL OPERATORS
TERM, TST "/ /FOLLOVED BY "/" 2
IFHOT RETI /NOPE - DOME WITH ALL FACTORS
PSHX DE /SAVE LEFT FACT
CAL FACT /GET RIGHT FACT
CAL CHSG /CHANGE SIGH IF NEEDED
SP<OHL /T#A ON STK, LEFT -> HL
DE<HL /LEFT -> DE, ABSCRIGHTY -> HL
CAL CHS? /ABSCLEFTY -> DE
PSHX BC /SAYE SIGH OF RESULT
LB H
LC L /ABS(RIGHTY -> BC
DE< >HL /ABSCLEFTY -» HL
D02, LA B /DIYISION BY ZERO?
OR C
CTZ ERRO /YUP - ERROR
LXI DE @ /CLEAR QUOTIENT
DIVL, LA L /LEFT = LEFT -RIGHT
suC
LL A
LA H
SB B
LH A
INX DE /QUD=QUO0 + 1
JFC DIV sSTILL POSITIVE - SUB AGAIN
DCY DE /TO0 FAR - QUO = QUO -1
DADY BC /GET REMAINDER -> HL)
STHL RMDR /SAYE IT N
FOPY BC #GET THE SIGM OF RESULT
LA B
OR A

Page 27

@83 016 374 246 804 CTS coMp #COMPLIMENT RESULT MAYBE <

883 821 241 POPX HL #RESTORE TX
@83 822 283 251 @6z JMP TERA /LO0K FOR ADDITOWAL OFERATORS e
Ve <COMMAND FROCESSOR.
s
e 883 313 217 133 CMD?, TST L Z/ARRAY LET STMT 27
#FACTOR EVALUATOR. 883 315 234 883 IFNOT CMD /NOPE - IT’S A COMMAND
7<FACT> ::= <CONSTANT> I <YARIRBLE> I -<FACT> 883 317 176 LOF, LA m /MOVE TO RIGHT E®PR
7 +<FACT> I ¢(KEXPR>> I . I ? I %1 % 883 220 843 IM® HL
4 'T&I1@I+ 1N 883 321 376 135 CPI 1
i @B3 323 Zp2 317 B8B83 JFZ LOP
/¥ALUE OF FACTOR LEFT IN DE ON EXIT. 883 326 B42 INX HL “MOYE OVER “="
I 8932 327 337 EXPR #EXFR VARLUE -> DE
883 825 317 B33 FACT., TST "+ ZUNARY PLUS 2 B8B83 338 342 SP{OHL ZE0S T#A DH STK, 302 THAR -> HL
8083 827 031 803 IFNOT FACA /IGNORE IT 8B3 331 393 241 891 JMP LETS <D0 THE ASSIGHMENT
@83 831 853 FRCA., DCX HL /1S THIS A CONSTANT? 883 334 241 CHD, POPX HL /RESTORE SO0L TRA
883 832 327 FETCH /SET FLAGS, TC IS 8 - 9, TZ IS TERMN 082 335 317 114 TST "L ZLIST COMMAHD 7
283 833 332 285 604 JTC DEINT /YUP - GET YAL -> DE AND EXIT @83 337 884 BA4 IFNOT NEW?
883 036 314 142 08O CTZ ERRO /MISSING EXPRESSION ERROR 8B3 241 315 285 084 CAL DEINT s/GET ARG -> DE, B8 IF MO ARG
883 @841 317 055 TST "= 7UNRRY MINUS ? 8B3 344 315 370 608 CAL LFND #FIND THAT LINE
883 243 053 083 IFNOT TRY. 083 347 148 LH B #3TART ADURESS -> HL
883 845 315 025 883 CAL FACT /GET FACTOR TO NEGATE BB3 3538 151 LL C
883 858 383 246 884 JMP COMD #COMPLIMENT IT, RETURHM FROM COMD e|3 351 eve DS3 76 #BETUF BOGUS LAI
883 B53 317 856 TRY. TST ". #CURRENT LINE ? 883 352 843 LISC, INX HL #SKIPPED FIRST TIME THRU, FROM LAI
883 855 865 083 IFNOT TRYS @83 352 215 168 885 LISA, CAL ABRT #COMTROL C ¢+C)> CHECK
8083 857 353 DE<>HL /SAYE TXA IN DE @83 355 215 154 885 CAL CRLF
6@3 068 052 262 004 LDHL CURL #GET CURRENT LINE # -> DE 883 351 315 196 882 CAL FELN ZFETCH LINE # -> DE. EXIT IF ZERO
883 B63 353 DE<>HL /RESTORE TXA BB3 364 345 PSHX HL #SAYE BURING PRINT
283 864 311 RET 8B3 355 352 DE<>HL LINE # -> HL
803 865 317 044 TRYS, TST "$ /RETURN ADDRESS ? 682 366 3215 @56 864 CAL NOSP ZPRINT IT
083 867 Q77 883 IFNOT TRYZ 883 371 3241 POPX HL /FIRST CHR OF LIHE
883 871 353 DE<>HL /SAVE TXA BB3 37z 842 LISB, INX HL #GET A CHR
883 872 052 083 885 LDHL DLAD #GET RETURH ADDRESS -> HL ea3 373 17 La m
883 875 353 DE<>HL /RESTORE TXA 883 374 ZA7 OR A ZEQL?
883 876 3211 RET 883 375 212 252 8B3 JTZ LISC ZLAST ON LIME ~ DO HEAT LIHE
@83 877 317 845 TRY%, TST "% /DBIVISION REMAINDER 7?7 684 080 347 DE%O #NOT LAST - PRIHWT IT
883 101 111 883 IFNOT TRY! 884 BA1 303 372 883 JHP LISB <D0 REST OF LIHE
283 103 353 DE<>HL /SAYE TXA e
003 184 832 @28 @85S LDHL RMDR /GET REMRINDER -> HL 884 824 217 116 HEW?, TST "N #NEW COMMAND 7
883 187 353 DE<>HL /RESTORE TXAR 284 @BE 837 VAl IFNOT RUN?
883 119 311 R RET @84 8l v52 235 094 LDHL BOTX /PUT EOB MARK IN BUFFER
883 111 317 841 TRY !, TST "1 /PEEK ? 884 813 257 HEWI1, ®R A /A=8
883 113 126 @83 IFNOT TRY& 664 614 167 LM A
BB3 115 352 DE<>HL /SAVE TXA e84 815 6432 IMR HL
883 116 852 016 085 LDHL MADR #GET LAST MEMORY ADDRESS -> HL B84 BlE 167 LM A
883 121 176 LA M /PEEK -> A B84 617 643 INX HL
883 122 353 DE<>HL /RESTORE TXA @84 BZB 167 LM R
883 123 383 142 063 JMP ARET /RETURN YALUE IN A REG 884 821 ©42 260 084 STHL EOTX
883 126 317 846 TRY&, TST "& /PORT INPUT ? 084 @824 381 RSSF, POPX BC #/RETURN ADDRESS -> BC
@83 130 146 683 IFNOT TRY+ 884 825 @52 377 8684 LDHL SPRS ~HOLDS STACK RESET ADDRESS
8e3 132 876 333 LRI 333 e84 830 371 SP<HL
8B3 134 962 813 8BS STA RAMIO /SETUP INP INST IN RAM 8B4 931 285 FSHX BC #RESTORE RETURH ADDESS
@83 137 315 613 08S CAL RAMIO /EXECUTE IT 894 @32 @52 25¢ B804 LDHL BOTR <INCASE THIS IS SUICIDAL
883 142 137 RRET, LE A /SETUP TWO BYTE VALUE -> DE 684 BIS 653 DCR HL #BOTR - 1 —-> HL
883 143 626 0@8 LDI @ 884 836 211 RET
883 145 311 RET Vs
8@83 146 317 136 TRY#, TST "¢ /USER DEFINED FUNCTION REFERENCE ™ 084 @37 217 122 RUN?Z, TST "R <RUN COMMAHD =
883 158 164 083 IFNOT TRY¢ 8494 @41 173 88S IFNOT 037
883 1352 345 PSHX HL /SAVE TXA 8B4 843 212 B34 BBY JTZ RSSP #NO ARG - RESET STACK AND GO
883 153 315 364 001 CAL EOM #YERIFY ROOM FOR RECURSION 884 B4E 337 EXPR #GET THE ARRGUMEHT
8@3 136 852 B85 085S LDHL DEFF /TXAR OF DEFINITION 604 047 3IQ3 207 681 JMP GOTA DO A GOTO
883 161 337 EXPR Z/EVALUATE THE FUNCTION
883 162 341 POPX HL /RESTORE TXA s
B8B83 163 311 RET #THESE ROUTINES RRE USED TO PRINT THE 16 BITS IN THE
@83 164 317 137 TRY€, TST "¢ /RESULT OF LAST EXPRESSION ? <HL REGISTER AS DECIMAL ASCII OM THE TERMINAL. INPT FRINTS
BB3 166 176 BB3 IFNOT USR? #THE NUMBER IM CURL IF IT IS HOT 65535 <(HOT IMMEDIATE MCLDED.
@B3 178 353 DE<>HL /SAVE TXA #THE WORD "IN" PRECEDES THE NUMBER IF IT IS PRIMTED. SHLF
893 171 852 681 0887 LDHL LRES sGET LAST EXPR RESULT -> HL /PRINTS A 15 BIT SIGNED NUMBER IH HL (-32763 TO 327&7).
8B3 174 353 DE<O>HL #HLFT PRINTS THE 16 BIT UNSIGNED NUMBER IH HL <@ TO €55352.
083 175 211 RET #NOSP FRINTS 1€ BIT UNSIGNED NUMBERS IH HL WITHOUT THE
883 176 317 180 USR?, TST "@ sMACHINE LANGUAGE CALL 7 _ #LEADING SPACE NORMALLY PRINTED. RALL HUMBERS ARE FOLLOWED
803 zpe 226 883 IFNOT TRYN #BY ONE TRAILING SPACE. SHLP PRINTS A MIHUS SIGH ("-")
883 2082 345 PSHX HL /SAVE TXA <IN PLARCE OF THE LEADING SPACE IF HL IS HEGATIYE.
@83 2083 315 364 001 CAL EOM #ENUF STACK SPACE ? <3TACK USAGE: 8 BYTES. MUMCHES ALL REGEZ.
803 206 B52 087 885 LDHL USRL #HIS ROT ADR ON STK, T¥A -> HL e
283 211 343 SP<OHL 884 B3z 952 262 B84 INPT, LDHL CURL #CURRENT LIME HUMBER -> HL
883 212 311 RET #GOTD TO HIS ROT 884 855 174 LA H <18 IT 377 377
7 884 856 245 ND L
#SAMPLE USR ROT TO RETURN THE ASCII VALUE OF THE CHR BB4 B57 674 INA
#FOLLOWING THE @. e84 @58 210 RTZ /%UP - RETURN PRINT HNOTHIHG
7 8B4 @51 357 MEGP #NOFE - PRINT "IH"
293 213 136 USR. LE M /SETUP TWO BYTE VALUE -> DE B84 662 111 DE35 "I, "H+280
883 214 826 0VO LDI 6684 862 216
083 216 0843 INX HL /MOVE TXA OVER CHR 237 HLFT., MSGP #PRINT R SPACE
‘803 217 311 RET z48 D33 " +208
e 821 156 B804 NOSF. L¥I DE TEHMS #FPOINT TO FOWERS OF TEN TABLE
883 220 317 134 TRYN, TST N #SINGLE CHR INPUT ? 325 PZHX DE <PUT TABLE ADR ON STACK
883 222 232 @83 IFNOT TRYC 2 818 891 LCI 1 #CLEAR SIGHIFICAHNT DIGIT FLAG
883 224 315 117 085 CAL TTYI /GET THE INPUT -> A 243 POSI, SPL{OHL #HUMBER OM STK, TABLE -> HL
883 227 383 142 863 JMP ARET 176 LE M <POMER OF TEH -> DE
883 232 317 858 TRYC TST "¢ /EXPRESSION IN PARENTHESIS ? 643 IH¥ HL
803 234 266 003 IFNOT TRY? LD 1
883 236 345 PSHX HL sMAKE SURE THERE IS ROOM BEFORE IMR HL
883 237 315 364 @61 CAL EOM /RECURSING SPLOHL sTAELE ON STK, HUMBER -> HL
803 242 341 POPX HL LBI @& <THIS DIGIT = @
883 243 337 EXPR /RECURSIVE DIVD. LA L <16 BIT SUBTRACT HL = HL - LE
883 244 317 @51 TST "> #GOT TO HAVE A RIGHT TO MATCH SUE
883 246 137 000 IFNOT SNER sNOPE ~ ERROR LL A
683 258 311 RET LA H
883 251 315 282 885 TRYV. CAL LOKU /GET THE VARIABLES INDES -> HL SE D
683 254 136 LE ® /¥YAR ¥AL -> DE LH A
883 255 226 080 LDI @ #CLEAR HIGH BITS IF SINGLE ARRAY IHME #INCREMENT THIS DIGIT
883 257 382 264 803 JFZ TRYW #SINGLE BYTE ARRAY, DOW’T LOAD HI JFC DIVD /NOT HMEGATIYE YET - KEEP SUBTRACING
883 262 043 INX HL nce /GONE OME TDO FAR, DIGIT = DIGIT -1
803 263 126 LD n DADX DE #GONE TOD FAR, MDD BACK TEN FOUWER
883 264 341 TRYUY. POPX HL sRESTORE TXA, PUSHED BY LOKU %R A 7A=08
883 265 311 RET OR B 1% THIS DIGIT ZERO 7
< 282 131 884 JFZ PRNT #NOFE - PRIMT IT
/TRY? WILL HANDLE THE INPUT OPERATOR IF PRESENT. EXECUTION zel OR C ZAHY SIGHIFICAHT DIGITS YET ?
sYILL STOP AND A "?" WILL BE PRINTED ON THE OUTPUT DEVICE. eug 126 202 136 984 JFZ BYPA /HOPE - DOH’T PRIHMT THIS ZERO
/THE USER RESPOND3 WITH ANY VALID EXFRESSIOH, RAHD HITS eaq4 121 396 0RD PRNT. ADI "0 ZADD IH ASCII EBIRS
s/RETURN. IT IS NOT A GOOD IDEA TO TYPE QUESTION MARKS 084 132 G166 606 LCI B #SET SIGIMIFICANT DIGIT FLAG
~#IN RESPONSE TO AN INPUT STMT. !!i! MUNCHES LIHB. 8a4 135 3247 DEYQ Z/3EHD THIS DIGIT
< 804 136 173 BYPA, LA E <0H THE LAST DIGIT ?
883 266 317 877 TRY?, TST "2 #THE LINE INPUT OFPERATOR ? 8a4 137 675 ncA
883 27@ 251 083 IFNOT TRYV 604 146 202 BY4 884 JFZ POSI Z#HOPE - DO HEXT OHE
803 272 357 MSGF /SEND THE QUESTION MARK 684 143 221 FOPX DE SYUP - CLEAH UP STACK
883 273 677 DSs "2, " +288 604 144 171 LA C ZSIGHIFICAHT DIGIT FLAG - A
883 274 240 084 145 267 OR A “H WE SENMT mHY SIG DIGS YET ?
883 275 345 PSHX HL /3AYE THE TRXA G604 148 21z 1532 B84 JTZ SFOU S7UR - OUTPUT THE TRAILIHG SFACE
883 276 215 364 801 CAL EOM /YERIFY ROOM FOR RECURSIOH @94 1531 257 MZGF OFE - WE’RE FRIHTIHG A ZERO
883 301 315 B16 862 CAL GETL #GET HIS INPUT 884 152 ZEB D35S "B+208 SZSEHMD A “"8"
883 384 327 FETCH #GET FIRST CHR, RETURH 7 e84 153 357 SPOU, MSGP #PRINT A SPACE
883 385 312 284 666 JTZ ENTR sYUP - CLEAR STK AHD RE-ENTER BYd 154 248 DZS * +268
883 318 337 EXPR /EVALUATE HIS INPUT RECURSIVE 884 155 311 RET
863 311 341 POPX HL /RESTORE THA 684 1356 626 947 TENS: DZD 616668, 01666, 06188, 816, 81
8e3 312 311 RET 683 1686 350 082

Page 28 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Nov./Dec., 1976

294
oa4
aga
ead
eaq
bag
[-1:E3
oaq
6a4
(1Y

284
[agq
894
894
enq
1B

162
164

o= T B @
W WG

D@D e
R R

1)1 Dy v vm e e

e84 2

04
094
004
804
ao4
ea4q
004
894
294
a04
CEEY

o094
o84

o4 z

eaq
894
oeq

884 2

6aq

enq =

a04

Bag &

|y
e84
084
884

094
004
e94

094
oas
ans
ans
2as
slelag
Bas
/a5
0as
@035
eas

ees
e85
8e5

eas

685

0935
895
085
eas

285
ens

eas

Bas
=153
28s
8as
e85
/a5
Bas

265
253
285

25€
260
262

z64

377
eal
enz
aas

8ay z

211
813
e1s
a1e
azao
azz

186
111
i1z
114
115

117
122
125
127
121
132

154
135
156

AR R ENRARTRN)

853

327

1332

Bas
233

241
2az

SRR

i e e (= B e
[Z BRI RARCRT)

REARYEN

-
1) 0l
N

1354

77

ene
[all5]

2232
BAG
el<d]
=1c]x)
1898

312
261
323
311
880

315
212
3232
348
3211
698

332
326

[=1:1=]

@
b}
n =)

211

038

289

ese

37

894
818
5]<]2]
[21<d°]
ea1
enz
=30y
o1e

lal:]
al<]c)

0as

841
6196

099

134
117
[21:]5)
177

[5]:02]

@91

898

262

oa4

884

ee4

ese

884

oee

885
e9s5

684

Nov./Dec., 1976

SHLF, DE<>HL /NUMBER -> DE
CAL CHSG ~ABSC(HUMBER> -> DE
DE<>HL /ABS(NUMBER) -> HL
JFS HLPT /WAS POSITIVE, PRINT SPACE
MSGP ZPRINT THE MINUS SIGN ("-")
DSS "-+2088
JMP NOSP #PRINT THE NUMBER
s
s
<DEINT TAKES ASCII FROM MEMORY INTO BINARY IN DE.
#MOVES TXA UNTIL CHR IS NOT © - 9.
/3STACK USAGE: 4 BYTES. MUNCHES ALL REGS EXCEPT BC.
’
DEINT, DCX HL /DECR FOR FETCH
LXI DE @ /CLEAR PARTIAL SUM
DEIN, FETCH #FETCH CHR e - 97
RFC s/NOFE - DONE
PSHX HL /SAVE CHR ADR
LH D /PARTIAL SUM -> HL
LL E
DADX DE /Al = DE * 1@
DADX HL /PFS = PS * 10
DADX DE
DADX HL
sul "e /REMOYE ASCII BIRS
LE A /SETUP 16 BIT DIGIT -> DE
LDI ©
DADX DE /ADD IN NEW DIGIT
DE<>HL /PARTIAL SUM -> DE
POPX HL /RESOTRE TXA
JMP DEIM
s
<CHS? CHECKS THE SIGN OF DE REG. IF POSITIVE, RETURN A
/MUNCHED, SIGN BIT FALSE. IF NEGATIVE, COMPLIMENT DE,
<8 MUNCHED, SIGN BIT SAME AS THAT OF B REG. CHSG
#CLEARS THE SIGM BIT OF B REG FIRST. COMD UNCONDITIONALLY

/COMPLIMENTS DE REG.
e

CHSG,
CHS?,

STACK USAGE: 2 BYTES.
LEI ©
LR D
OR A
RFS

/CLEAR RESULT SIGN
715 DE FOSITIVE ?

/YUP - RETURN
LA B /NOPE - FLIP SIGN OF B
XRI 200

LE A
LA D
cma

LD A
LA E
cHA

LE A
INX DE
RET

/AND FALL THRU TO COMFLIMENT DE
conp,

7’

s
+RAM DEFINITIONS
z

BOTX, DSD EOP /ADR OF FIRST CHR IN BUFFER
EOTX, DSD EOP+2 /ADR OF LAST CHR IN BUFFER
CURL., DSD ‘377 377 /CURRENT LINE NUMBER
LBUL=872 #INPUT LINE BUFFER LENGTH
0s5="374 /ADDRESS OF OPERATING SYSTEM
LINB, Dss @ /LEAVE SPACE FOR INPUT LINE BUF
*. +LBUL+2
SFRS, DSD ’1@ /ADDRESS OF STACK POINTER RESET
LRES, DSD 8 /HOLDS RESULT OF LAST EXPR EVAL
DLAD, DSD @ #HOLDS RETURN LINE NUMBER FOR "$"
DEFF., DSD COLN+1 ZINITIALIZE TXA OF USER DEFINED FUM
USRL, DSD USR /ADR OF USERS MACHIME LAHG CALL
SETH, DED EOP /IMNITIALIZE START OF LAST STHT
RAMIO. OUT 18 /RAM AREA FOR INP AND OUT
RET
MADR, DSD @ /SAVE AREA FOR PEEK ~ POKE ADDRESSES
RMDR, DSD @ /SAYE AREA FOR DIVISION REMAINDER
YART, DS @ /LEAYE ROOM FOR PROGRAM VARIABLES
*.+051

s

s
#DEVO STARTS AT RESTART 4.

<DEV0, PSHX PSY

z INP 1

s NDI 2

DEVF, JTZ DEvVQ #NOT READY
POPX PSU

TODF, OouT 18
RET
DSD @ /PATCH ROOM

s
<TTYI GETS A CHR FROM THE INPUT DEYICE. CAN MUNCH A AND

/FLAGS. STACK USAGE: 4 BYTES.
TTYI, CAL TRDY #1S8 INPUT READY ?
TIA, JTZ TTYIL /NOPE ~ KEEP TRYING
TIDF, INF B
NDI 177
RET
DSD @ /LEAVE ROOM FOR PATCHES

Ve

7TEST TERMINAL INPUT READY BIT STATUS.
#STACK USAGE: 2 BYTES.

7

MUNCHES R & FLAGS.

TRDY, INP 1 /GET IHPUT STRTUS

TIRM, MDI 1 /MASK TO INFUT READY BIT
RET sFZ MEANS READY, TZ MEANS NOT READY
DSD © /ROOM FOR PATCHES

’

CRLE, ¥R A /A CONTINUATION OF GETL
LM A /PUTS EOB/EOL MARK IN LINB
INX HL
Le A
IHX HL
LM A

LXI HL LINBE-1

7z

“CRLF SEND A CARRIAGE RETURN AND LINE FEED TO TERMINAL.
/MUHCHES A & FLAGS. STACK USAGE: 2 BYTES.

e

CRLF, MSGP

DsS3 15, 212

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

095
::5]
[-1:53
-1
88sS
[l

L1
005
805

295
885
005
005
205

205
aes
[:]:5]
(-1
08s
205
[L:5]
29s
2835
283

0es
8a5
883
8es
083
[:1:5]
085

[:1:5]
005
ees
[:1:5]

ees
8es
2es
ees
[:1:5)
285

2035
005
ees
[:1:]
L:1:1]
0es
285
8es
[l
205

285
(1]
[1:E]
ees
[:1:5]
8es
-]
ees
ees
ees
085
ees

[-1:5]
:1:5)

:1: 5]
805
[:1:5]
285
0es

80S
e8s
095
205
205

ees
865
095
8es
295
eas
295
113
006

157

160
163
164
167
171
172

173
17S
177

202
203
205
210
212

215
216
217
228
2232
224
225
2z7
230
231

232
234
236
241
242
243
24€

259
251
252
254
256
261
262
263
266
267
271

272
273
2735
277
300
301
382
303
385
307

310
312
314
3135
320
321
2z
324
3z¢e
227
332
332

334
336

340
342

347
350
351
352
353
356
357
360

363
365
267
vz
372
274
375
86
891

215
310
315
376
208
387

317
282
3983

176
326
332
376
322

043
342
345
241
en?
117
-1.13
o211
2as7
311

232

317
252
315
343
343
052
e11
811
257
311
317
137
315
343
343
052
811
366
31

325
317
277
337
182
113
321

387
311

317
322
353
042
341
311
317
341
353
842
341
311

010
218

340

317
156
215
353

832
267
212
247
ez3
303

317
172
215
357
855
240
215
241
311

892

134

17
o83

117
086
200

161
232
033
232

083

842
285
272

847
008
272

081

133
083

135
085

047
en3

842
091

370
370

eas
8s1

801
2356

351

B8S1
ee1
256

ez1

51153

205

805

374

083

[:1:5]

[:1:5)

(15

205

2es

2835

003

[1:5)

285

882

RET
7
#ABRT CHECKS THE CONSOLE DEVICE FOR A CHR AND IF THERE,
<CHECK IF IT’S A CONTROL C. IF NOT, RETURN WITH A MUNCHED.
#1F YES, FALL THROUGH TO STOP ROUTINE.

/STACK USAGE: 6 BYTES.

s

RBRT., CAL TRDY #1S DATA READY FLAG UP ?

TIB, RTZ /NOPE - RETURN
CAL TTYI /YUP - FETCH THE CHR
CPI 3 /A CONTROL C (+C> ?
RFZ #NOPE — RETURN
RST /BACK TO ENTRY POINT

e

7z

0s?, TST "0 s/JuP 10 0S ?

0OSPK, IFNOT sav? /MIGHT BE POKED TO SNER
JHP 0S*

s

<sLOKU GETS THE INDES OF THE VARIBLE POINTED TO BY HL AND
#RETUNS THEM IN HL. THE TXA IS BUMPED OVER THE VARNAM,
/AND PUSHED BEFORE RETURNING. YOU MUST POP AFTER CALLING
/LOKU. USES ALL REGS EXCEPT DE. STACK USAGE: 4 BYTES IF
/VAR IS A - Z, >= 16 IF SUBSCRIPTED. ZERO FLAG IS TRUE
/1IF IT IS DOUBLE BYTE VAR (SIFMPLE OR DOUBLE ARRAY). ZERO
71S FALSE IF SINGLE BYTE VARIABLE (SINGLE BYTE ARRAY).

7

LOKU, LA N /YARNAM -> A
SUI "A 218 IT A -2 2
LKP1, JTC DARY /NOPE
CPI @27 /26 LETTERS + 1
LKP2, JFC DARY /NOPE - TRY ARRAYS IF NOT POKED
/SAVE NEW TXA ON STACK BEFORE RETURNING
INX HL /MOYE TXA OVER VARNAM
SP<OHL /PUT TXA ON STK
PSHX HL /PUT RETURN ADDRESS BACK
LXI HL VART /BASE ADDRESS -> HL
RLC /MULTIPLY INDEX BY 2
LC a /TWO BYTE INDEX -> BC
LBI @
‘DADX BC <+ADD IN INDEX TO BASE
XR A& #SET ZERO FLAG, THIS IS DOUBLE BYTE
RET
s
EOP1=. /THIS WILL BE BOTX-1 IF ARRAYS,
sSTRING, AND TAPE s SAVE ARE DELETED
z
DARY, TST =" /DOUBLE BYTE ARRAY ?
IFNOT SARY
CAL SUBS /GET THE SUBSCRIPT -> BC
SP<OHL /INDES -> HL, TXA ON STK
PSHX HL
LDHL DBSE
DADX BC
DADX BC
AR A sSET ZERO FLAG, THIS IS DOUBLE BYTE
RET
SARY., TST = /SINGLE BYTE ARRAY ?
IFNOT SNER
SSUB, CAL SUBS /SUBSCRIPT -> BC
SP<OHL /TXA ON STK, INDES -> HL
PSHX HL
LDHL SBSE
DADX BC
ORI 1 /RESET ZERO FLAG, TO SAY SINGLE BYTE
RET
s
+SUBS GETS THE SUBSCRIPT FOR R STRING OR ARRAY -> BC.
/MUNCHES ALL REGS EXCEPT DE. STACK USAGE: >= 14 BYTES.
s
SUBS, PSHX DE /SAVE DE
TST =L /IGNORE "L"
IFNOT suBe
sSuB@, EXPR /GET THE SUBSCRIPT -> DE
LB D /SUBSCRIPT -> BC
LC E
POPX DE /RESTORE DE
TST =1 /IGNORE *1"
IFNOT SUB1
sus1., RET
7’
BSES, TST = /SET SINGLE BYTE RRRRY BASE ?
IFNOT BSED
DE<>HL /NEB BRSE -> HL
STHL SBSE /SAVE NEW BASE
POPX HL /RESTORE EOS TXA
RET
BSED, TST »* /SET DOUBLE BYTE ARRAY BRSE ?
IFNOT LETS /MUST BE A LET
DE<OHL /NEW BASE -> HL
STHL DBSE /SAVE NEW BASE
POPX HL /RESTORE EOS TXR
RET
s
SBSE, DSD *378 18 /ADR OF SINGLE BYTE ARRAY BASE ADR
DBSE., DSD ‘370 10 /ADR OF DOUBLE BYTE ARRAY BASE ADR
s
EOP2=. #THIS WILL BE BOTX-1 IF STRINGS AND
/TAPE ~ SAYE ARE DELETED.
7’
PRID, TST => /PRINT STRING ARRAY ?
IFNOT PEXP
CAL SSUB /GET STRING TXA -> HL, TXR ON STK
DE<>HL /STRING TXA -> DE
POPX HL /TXA BACK -> HL
STRA, LDAX DE /GET A STRING CHR
OR A /E0S YET ?
JTZ PEX@ /YUP - DO MORE OF ? STWMT
DEVO /NOPE - PRINT IT
INX DE /BUMP STRING TXA
JHP STRA /PRINT SOME MORE
’
NPRT, TST "> /STRING INPUT 2?2
IFNOT NPRU
CAL SSuUB /GET STRING DESTINATION TXA -> HL
MSGP /PRINT PROMPT ®*- "
DSS "-, " +200
CAL GETL+3 /USE GETL TO INPUT STRING
POPX HL /GET TXA BACK, (PUSHED BY SSUB>
RET
s
EOP3=. /THIS WILL BOTX-1 IF SAVE / TAPE

/1S DELETED
e

Page 29

286
006
o6
006
006
006
006
006
886
006
896
206
006
006
eo6

006
0es
006
oes
006
206
[
806
e06
006
806
006
006
006
086
006
006
206
806
006
ees
206
006
086
8os6
006
006
006

ees
006
006
086
ees
006
006

286
006
ees
606
2086

086
006
113
006
006
0es
006
886
006
006
206
006
006
206
006
1133
206
0es
2113
ees
006
206
006
ees
086

802
ov4
006
e10
213
o14
217
022
223
826
ez7
832
233
034
e37

040
042
044
847
051
034
es7
860
863
064
065
866
067
er2
873
e7e
100
183
104
107
110
111
112
113
116
121
122
125

126
127
131
133
136
137
141

142
144
146
151
153

134
157
160
161
162
163
164
165
166
167
178
171
172
1?73
176
201
204
283
286
207
210
211
212
218
216

317
040
076
3135
176
318
852
353
852
176
315
367
843

307

317
137
318
376
302
313
276
312
107
176
267
17e
302
347
852
216
313
167
315
176
043
267
302
815
302
853
042
307

363
333
34€
312
361
323
311

333
346
312
333
311

200
154

061
357
215
012
118
123
113
040
123
111
132
277
313
327
302
241
176
8S?
167
276
8S?
167
302
243
303

Page 30

123
006
252
126

126
260

124
[2]:1]
142
252
044
142

872

256
083
142

oS
2802
127

203
eo1
142
004

21k
006

’
000 818 INIT,

ei6

221
247

006

006
204

o4

206

206

6es

ees
11

006

ees

eo4

oos

eo1

006
806

004

o0z

006
ees

006

213

/SAY? PUNCHES TAPES OF THE CONTENTS OF THE TEXT

#/BUFFER. RETURNS TO COMMAND MODE WHEN DONE.
~COMMAND IS FOLLOWED BY A SINGLE CHR PROGRAM HAME SO
#MORE THAN ONE PGM CAN BE PUT ON A TAPE. IF CR IS
/GIVYEN FOR NAME, PUNCH NAME AS A HULL.
’
/TAPE FORMAT:
4
/s 252 START CHR
7z XXX NAME OF PROGRAM, 800 IF NULL NAME
7 NNN DATA BYTES BETWEEN BOTX AND EOTX
7/ 000
’ 000
’ 090 EOT 1S MARKED BY THREE NULLS
/
SAV?, TST “S /SAVE COMMAND ?
IFNOT TAP?
LAI 252 /START OF TAPE CHR
CAL PNOU /SEND IT
LA M /PROGRAM NAME CHR -> A
CAL PNOU /SEND IT
LDHL EOTX /STOP ADDRESS -> DE
DE<>HL
LDHL BOTX /START OF TEXT ADR -> HL
SAVA, LA M /CHR OF PROGRAM -> A
CAL PNOU /SEND IT
CMPR /DONE YET ?
INX HL /BUMP TXA
JFZ SAVA /NOFE - KEEP SAVING
RST /ALL DONE, RE-ENTER

’

/TAP? READS A TAPE FROM THE READER INTO THE TEXT
/BUFFER. RETURNS TO COMMAND MODE WHEN DONE. COMMAND IS
/FOLLOWED BY A SINGLE CHR PROGRAM NAME, LIKE SAVE.

#IT WILL SEARCH THE TAPE FOR A START CHR FOLLOWED BY THE
/NAME GIVEN. IF CR IS GIVEN FOR A NAME, TAKE FIRST ONE
#FOUND. IF THE NAMED PROGRAM CAN’T BE FOUND, THE TEXT
+BUFFER IS LEFT ALONE. WHEN READING STARTS. THE NAME
/BYTE FROM TAPE IS ECHOED SO YOU‘LL KNOW IT IS LOADING.
z

TAP?, TST "T /READ A TAPE COMMAND ?
IFNOT SNER
TAPA, CAL CHIN /GET A CHR
CP1 252 /START CHR ?
JFZ TAPA /NOFPE - KEEP LOOKING
CAL CHIN /YUP - GET NAME CHR
CP M #/THE ONE WE WANT ?
JTZ TAPF /YUP - START READING
LB A /SAVE NAME IN B
LA M #DID HE GIVE DON’T CARE NAME ?
OR A
LA B /NAME FROM TAPE -> A
JFZ TAPA #/NOPE - DON’T REARD THIS ONE IN
TAPF, DEVO +SEND NAME OF PGM BEING READ
LDHL BOTX /WHERE IT WILL GO
TAPB, LcI 3 #INITIALIZE EOT NULL COUNTER
TAPC, CAL CHIN /GET A CHR
LM A /PUT IN RAM
caL EOM? /PGM TOO BIG ?
LA M /GET CHR BACK
INX HL /BUMP
OR A /A NULL ?
JFZ TAPB /NOPE - KEEP READING
nce /DECR EOT NULL COUNT
JFZ TAPC #NOT THIRD ONE - KEEP READING
DCX HL /STORE NEW EOTX
STHL EOTX
RST #/BACK TO COMMAND MODE

7z

~,PNOU. IS THE PUNCH DRIVER USED BY SAVE. ENTER WITH CHR TO

/SEND IN A REG. STACK USAGE: 2 BYTES.
/
PNOU, PSHX PSW /SAVE CHR TO SEND
PNOVY, INP S /GET PUNCH STATUS
CORM, NDI 2 /READY YET ?
COR, JTZ PNOY
POPX PSW #1T’S READY, SEND THE CHR
CODP, 0ouT 16
RET

7
/CHIN IS THE READER INPUT ROUTINE CALLED BY THE SAVE

#COMMAND. IT MUNCHES A & FLAGS. ‘STACK USAGE: 2 BYTES.
’
CHIN, INP S #GET READER STATUS
CIRM, NDI 1 /READY YET ?
CIR, JTZ CHIN #/NOPE - WAIT FOR IT
CIDP, INP 4 /GOT A READY, GET THE INPUT
RET
7
PGE="7 /PAGE FOR BINARY LOADER
EOP=. #THIS IS BOTX-1 IF TAPE ~/ SAVE ARE KEPT
’

’

/INIT IS THE INITIALIZATION ROUTINE. IT IS LOCATED IN THE
#MIDDLE OF THE CASUAL PROGRAM STORAGE AREA. IT IS ENTERED
/WHEN CASUAL IS EXECUTED AFTER LOADING. IT POKES OUT

/THE JUMP TO IT. RESPOND TO "MEM SIZ 2" WITH THE

#DECIMAL NUMBER OF THE HIGHEST ADDRESS TO BE USED BY CASUAL
/0R HIT CARRIAGE RETURN TO USE ALL RAM AYAILABLE.

LX1 SP PGE +’1 /SETUP TEMPORARY STACK FOINTER
MSGP <SEND "MEM SIZ? " MESSAGE
DSS 15,12, "M, "E, "M, " ,"S, "1, "Z, "7+208

CAL GETL /GET HIS RESPONSE
FETCH /FETCH FIRST CHR, A RETURN ?
JFZ NUM /NOPE - GET A NUMBER
LXI HL MMEM /START OF RAM SEARCH
INIS, Lan /GET A CHR FROM MEMORY
cMa
LM A /WRITE IT BACK COMPLIMENTED
CP 1 #DID IT GO ?
cMA /RESTORE MEMORY
LM A
JFZ INIU #/NOPE - THIS IS END OF RAM
INX HL /YUP - KEEP TRYING
JMP INIS

206
006
006
206
006
006
1153
pes
006
006
206
006
006
211

006

oav

kg

ea?

l:Ig

007
eo7

897

e97
en?
o7
o7
oa7
[l rd

221

223

237

244

215

0z1

B42

315

277

2 218

000

o9z
21513
811
214
81S
ele
017
ez2
ez3

0ze
sorg
83z
835
840
0641
84z
043
044
045
B46E
047
859
8351

0354
as7
060
BE2
BES
<1352
667
o770
a7l
avz
8732
674
B7s
eve

101
104
187
112
113
115

041

215

122

315

122
181
131
12

277
315
041
042
042
393

090
203

841
042
041
257
167
0432
042
167
042
167
0432
167
842
841
842

015
912
193
101
123
125
101
314
303

215

276
212
211
357
915
212
127
191
118
124
240

2832

191

e72
062
852
174
206
147

WO~~~ O
QRO B

004

206

eee

006

77 004

OO ~~a
0D~ il O
LSRR

HONNGOO R

054
137
206
212
693

260
204
001

302

131
814

850

ee7
271
811

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box

4 Ba
& ve

@

[o]:)rg
[2l:1)
8es
Be6
207

oar
8al
891
891
ee1
ees
007

007
0ee
005
0as
eer

:]c g
2a1

801
[sl:}5)

004

on4
1<)
800

eov

08s

on7

090

020
007
000

E, Menlo Park, CA 94025

NUM, CAL DEINT #GET HUMERIC ARGUMENT
DE<>HL /REQUESTED ADDRESS - HL
LX1 DE MMEM #MIHIMUM FOSSIBLE ARDR - DE
CMPR /REQUEST < MINIMUM 7
JTC IMIT /YUP - GIYE THE CHUMP AMOTHER CHAMNCE
DCKX HL /FIRST LOC FOR STACK
LA M /GET CONTENTS
cMa
LM A ZWRITE IT BACK COMFLIMENTED
CP M /DID IT GO ?
cmA
LM A /RESTORE COMTENTS
IMX HL
JFZ INIT /NOFE - NO RAM WHERE HE SAYS
P
MMEM=. SLOWEST LOC FOR STRCK RESET
-
INIU, STHL SPRS ZHUR = MAKE IT THE STACK RESET ADR
LXI HL EOP ZBOTH IF HE SAYS "YES
CAL WANT SRASK "WANT ZAYE ~ THPE?D"
DES "S5, "R, "V, "E, "/ T, "AL P, ME, "TH200
CAL Y3NO #GET HIS AMSWER
L¥I HL SNER /HE SAID HD - FOKE QUT TEST
STHL O0SFPK /FOR SAVE ~ TAFE
LXI HL EOF3 /BOTK IF HE SAYS YEZ -> HL
CAL WANT ZASK "WANT STRING I/0"
DSS "S, "T, "R, " ,"I,"s, "0, "2+200
CAL Y¥SNO #GET HIS ANSWER
X1 HL FEXP <HE SAID MO, POKE OUT STRING FRINT
STHL FRFK
LXI HL NPRU #POKE OUT STRING INPUT TEST
STHL SIPK
LXI HL EOF2 /BOTX IF HE SAY3 YES -> HL
CAL WANT /ASK "WANT ARRAYS? "
DSS "A, "R, "R, "A, "Y. "S, "7+200
CAL YSNO #GET HIS ANSUWER
LXI HL SNER /HE SAID NO, FOKE OUT ARRAY LOOKUF
STHL LKP1+1 /MAKE IT A SYNTAX ERROR '
STHL LKP2+1
JMF ICON #CONTNUED AT ICON
’
* PGE /PUT IN JUMF TO BINL FOR BOOT
JMP BINL
7z
ICON, LXI HL LETS /MAKE ARRAY ASSIGNMENT ILLEGAL
STHL DFFK
LXI HL EOF1 #THIS IS BOTX -> HL
INIV, XR A #DO0 A "NEW" COMMAND
LM A #BOTX WILL BE IN HL
INX HL /NOW
STHL BOTX /SAVE IT
Lh A /D0 A NEW
INX HL
LM A
INX HL
LM A
STHL EOTX
LXI HL ENTR #POKE OUT JMP TQ INIT
STHL 1 /MAKE IT A JUMF TO ENTR
MSGP /FRINT SIGN ON MESSAGE

DSS 15,12, "C, "R, "S, "U, "A, "L+206

JMP ICN2 #CONTINUED AT ICN2

s

#ROUTINE TO GET "Y" OR "N"
#TZ MEANS "Y', FZ MEANS
’

ANSWER FROM TERMINAL.
uye

YSNO,

CAL TTYI /GET HIS CHR
DEVO /ECHO IT
CPI "Y SNES ?
JTZ INIV
RET
WANT, MSGP /SR TO PRINT "WANT"

DSS 15,12, "W, "A, "N, "T, " +z080

JMP MSG

* PGE 101 #START ADR OF BINARY LOADER
z

#THIS SECTION POKES THE BINARY LOADER TO THE SAME I-0
#CONFIGURATION USED BY THE BOOTSTRAP LOADER AT ZERO.
#THIS IS EXECUTED ONLY ONCE, UPON ENTRY FROM THE
#BOOTSTRAP. AFTER THE FIRST TIME EXECUTED, THE JUMP
/AT WORD @ OF THE BINARY LOADER PAGE IS FOKED TO JUMP
/AROUND THE I-0 POKE.

7

BINL, LDA 7 /INPUT STATUS FORT # -> A
STAR RDIN+1 /POKE INPUT ROUTINE
LDHL 11 /STATUS MASK ->L, RFZ OR RTZ -> HL
LA H #CHANGE RTZ OR RFZ INTO JFZ OR JTZ
ADI 2
LH A

Nov./Dec., 197

807 116 842 273 067 STHL POK1+1 /POKE THE INPUT ROUTINE s

087 121 B72 014 000 LDA 14 «INPUT DATA PORT # -> A /A1S MITS ACR FOR SAVE/TAPE COMMANDS
297 124 962 300 007 STA POK2+1 /POKE THE INPUT ROUTINE ZR14 MITS SIOA, B, C REV @ FOR TERMINAL
@87 127 941 135 007 LXI HL REARC +POKE QUT THE JUMP TO BINL 7A13 MITS 88-PI0O FOR TERMINAL
807 132 942 001 067 STHL PGE 1 /MAKE IT A JUMP TO READ-3 /A12 RESERVED FOR MITS 4PI0 (NOT FUNCTIONAL NOU)>
807 135 961 08B0 810 REAC, LXI SP PGE+0256 /A1l RESERVED FOR MITS 2SI0 (NOT FUNCTIOMAL NOW)>
007 140 ©16 000 READ, LCI @ /CLEAR CHECKSUM /A10 RESERVED FOR MITS 2SI10 <(NOT FUNCTIONAL NOW>
007 142 315 270 007 CAL RDIN /GET. A CHR FROM TAPE /A9 CONTROL LOGIC STANDARD 1,0 °
007 145 376 277 CP1 277 /1S IT AN EQOT CHR ? ZA8 USE CUSTOM I/0 FROM LOCATION 5@
P87 147 312 254 087 JT7Z GOTO /YUP - LOOK FOR START ADDRESS /NONE MITS SIOA, B, C NOT REV @ FOR TERMINAL
887 152 376 377 CPI 377 /NOPE - IS IT A START OF BLOCK ? s
007 154 382 140 007 JFZ READ /HOPE - MUST BE LEADER, KEEP LOOKING #THIS LOADS AT LOCATION 189, AND WHEN IT IS DONE POKING
807 157 315 242 a7 CAL ADIN /GET THE LOAD ADDRESS -> HL #IT GOES BACK TO THE BINARY LOADER WHICH WILL THEN READ
007 162 315 270 007 CAL 'RDIN #BLOCK LENGTH -> A #CASUAL IN ON TOP OF THIS.
8o7 165 267 OR A /BLOCK LENGTH = 8 7 a .
887 166 312 211 087 JTZ CKsM ZYUP - NO DATA, YERIFY CHECKSUM 190 9RO *180
907 171 137) LE A #MOVE BLOCK LENGTH -> E 000 100 041 090 ©D7 I1OPA, LXI HL PGE /PUSH . ADR OF BINARY LOADER
807 172 315 270 007 DATA, CAL RDIN /GET A DATA BYTE FROM TAPE 000 103 345 PSHX HL
887 175 167 M A /PUT IT INTO MEMORY 800 184 333 377 INP 377
807 176 276 CP M /DID IT WRITE PROPERLY 7 00D 186 346 002 NDI 2 /TEST A9
007 177 302 223 007 JFZ MERR /NOPE - GIYE A CAN’T WRITE ERROR 600 110 280 RFZ /HE WANTS CONTROL LOGIC - ALL DONE
007 202 2B1 AD C #URPDATE CHECKSUM -> A 800 111 333 377 INP 377
8e7 283 117 LC A. /UPDATED CHECKSUM -> C 080 113 267 OR A /TEST A1S
8087 2084 043 INX HL /BUMP THE LOAD ADDRESS 808 114 352 160 009 JFS I0PB /DOESN’T HAVE AN ACR
807 205 @35 . DCE /DONE WITH THIS BLOCK YET ? 800 117 876 @896 LAI €
807 20€ 392 172 097 JFZ DATA /NOPE - GET MORE DATA BYTES 000 121 662 143 086 STA CHIN+1
887 211 215 270 807 CKSM, CAL RDIN /DONE WITH BLOCK, GET CHECKSUM -> A 800 124 062 130 006 STA PNOV+1
087 214 271 CP C /DOES IT MATCH CALCULATED VALUE ? 908 127 074 INA .
807 215 312 140 087 JTZ READ #YUP - LOOK FOR ANOTHER BLODCK 800 130 962 152 006 STA CIDP+1
087 228 87E 183 LRI "C /NOPE - GIVE CHECKSUM ERROR 090 133 962 146 ©O6 STA CODP+1
007 222 801 Dss 1 /SETUP A BOGUS LXI BC INSTRUCTION 008 13€ 076 3082 LAI 3202
8a7 223 876 115 MERR, LAI "M 000 140 ©62 146 BOG STR CIA
8O7 225 323 001 ERR. ouT 1 800 142 962 132 006 STA COA
887 227 2232 010 ouT 19 800 14€ B7E 091 LAI 1
887 231 323 821 ouT 21 000 156 B62 145 006 STA CIRM+1
807 233 323 023 ouT 23 088 153 676 200 LAl 200
887 235 @62 377 807 STA PGE 377 800 155 862 132 006 STA CORM+1
807 240 303 225 667 JMP ERR sLOOP FOREVER 080 160 333 377 10PB, INP 377
e 808 162 24€ 100 NDI 100 /TEST Al4
#THIS SUBROUTINE GETS TWO BYTES FROM TAPE INTO HL. 008 164 212 235 000 JTZ 10PC /DOESN’T HAVE SIOA, B, OR C
7 . 000 167 257 XR A
887 243 315 270 887 ADIN, CAL RDIN /GET FIRST BYTE @00 170 962 135 005 STA TRDY+1
Ba7 246 157 LL A& /MOVE IT INTO -> L 008 173 062 842 009 STA DEVA+1
897 247 315 279 007 CAL RDIN /GET SECOND BYTE 680 176 874 . INA
807 252 147 LH A /MOVE IT INTO -> H 898 177 862 126 005 STA TIDP+1
ee7 253 211 RET 600 282 076 040 LAI 40
7z 600 204 862 137 89S STA TIRM+1
/COMES HERE WHEN EOT CHR IS FOUND. IF A 160 BYTE FOLLOWS 888 287 962 1132 085 STA TODP+1
/THE EOT, THE NEXT TWO BYTES ARE TAKEN TO BE A START. ADDRESS @@® 212 876 0092 LAI 2
#CONTROL IS TRANSFERRED TO THIS ADDRESS. IF NO 186 BYTE IS 000 214 ©62 044 08B0 STA TORM+1
/FOUND, WE ENTER AN INFINITE LOOP. 008 217 076 312 LAI 312
’ 980 221 862 122 085 STA TIA
887 254 315 27v9 807 GOTO, CAL RDIN /GET A CHR FROM TAPE 800 224 962 186 005 STA DEVP
88?7 257 376 109 CF1 108 /1S IT A 188 (OCTAL> 980 227 ©67E 310 LAl 310
007 261 292 261 087 FORE, JFZ FORE #NOPE - JUMP HERE FOREVER 090 231 862 163 08S STA TIB
807 264 215 243 007 CAL ADIN /START ADDRESS -> HL 000 234 311 RET
8e7 267 351 PC<HL /INDIRECT JUMP TO START ADDRESS 800 235 333 377 10PC, INP 377
s 808 237 246 040 NDI 49 /TEST A13
#THIS SUBROUTINE FETCHES A CHR FROM THE INPUT DEVICE. 800 241 212 3207 000 JTZ I10PD /DOESN’T HAVE AN 88-PI0
/THE CHR IS RETURNED IN THE A REG. MUNCHES A & PSU. 800 244 257 %R A
14 808 245 B62 135 89S STA TRDY+1
897 270 333 8’s RDIN, INP S /INPUT READY STATUS -> A 900 258 062 042 000 STA DEVR+1
867 272 346 0801 POK1, NDI 1 /MASK OFF UNNECESSARY BITS 000 253 874 INA
887 274 212 270 087 JTZ RDIN #JUMP IF NOT READY, KEEP TRYING 080 254 062 126 89S STR TIDP+1
ee7 277 333 p9d POKZ, INP 4 /1T’S RERDY - GET THE DATA -> A 800 257 B62 044 00O STR TORM+1
eav 391 311 RET 800 262 862 113 985 sTa TODP+1
202 ea7 LLoC=. /SAVE ADDRESS OF LAST BYTE USED P80 265 874 INA
s 800 266 ©62 137 005 STA TIRM+1
897 392 357 ICNZ, MSGP /CONTINUE SIGN ON MESSAGE 880 271 076 312 LAI 312
87 393 940 DSS " L, 'V, LM, "6, 15,212 808 273 962 122 085 STA TIA
087 304 126 800 27€ 862 106 005 STA DEVP
287 32835 840 000 3091 076 310 LRI 310
897 3086 056 800 3083 862 163 805 STR TIB
007 207 961 080 306 311 RET
807 319 066 . ene 387 333 377 I0PD, INP 377
807 311 915 608 311 246 177 NDI 177 /ALL LOW ? <A1S DON’T CARE)
ee7 312 212 . 800 313 202 362 000 JFZ 10PE #DOESN’T HAVE SIOA, B, OR C-NOT REVO
097 312 652 377 004 LDHL SPRS 0o 316 257 XR A
807 Z1€ 353 DE<>HL /LAST LOC -> DE 899 317 862 135 OS5 STA TRDY+1
007 217 952 256 0084 LDHL BOTX /FIRST -> HL 800 322 962 042 000 STA DEV@+1
807 322 173 La E /DIFFERENCE -> HL 888 225 874 INA
807 323 225 su L : 000 32€ @62 137 0BS5S STA TIRM+1
ea7 324 157 LL A 08B 231 862 126 005 STA TIDP+1
887 3235 172 LA D 008 334 062 112 0BS5S STA TODP+1
Ba7? 326 234 SB H 880 II7 B7E 208 LAI 200
887 IZ7 147 LH A 808 341 862 044 00O STR TORM+1
887 330 315 0KE 004 CAL NOSP /PRINT DIFFERENCE 088 344 O7€ 390 LAI 300
887 333 357 MSGP /PRINT "BYTES FREE" 000 346 B62 163 09OS STA TIB
8a7 334 182 Dss "B, "Y,“T,“"E,"S," ,"F, "R, “E, "E+208 808 351 @76 202 LAI 3082
897 335 131 808 353 @62 122 985 STA TIA
BO7 336 124 880 356 062 196 POS STA DEVYP
887 337 185 808 361 311 RET
807 340 123 800 262 333 377 IOPE, INP 377
297 3241 040 080 364 246 001 NDI 1 /TEST RS
807 342 106 808 366 210 RTZ #DOESN’T WANT CUSTOM
087 343 122 600 267 841 950 000 LXI HL CusT /START OF CUSTOM SAVE AREA
887 344 10S 888 372 176 LA M
097 345 305 080 373 862 135 005 STA TRDY+1
007 346 307 RST /RESET STACK AND ENTER 008 3I7€ 043 INX HL
7 800 377 176 LA M
/THIS IS THE ROUTINE USED TO PUNCH MEMORY IN BOOTSTRAP FMT. 981 98B0 062 137 005 STA TIRM+1
4 . 001 003 043 INK HL
000 011 *PGE+0512) op1 BE4 176 LA M
011 000 061 098 812 MAKR, LXI SP .+08256 601 805 862 122 005 STA TIA
@11 903 9RE 377 LBI 277 /SEND 255 LEADER CHRS 881 210 975 DCA
811 @95 076 382 MAKS., LAI LLOC /LEADER CHR -> A ep1 811 BYS DCA
811 807 315 126 986 CAL PNOU /SEND A CHR OF LEADER 601 812 B62 162 805 STA TIB
911 812 8ns oce /DONE WITH LEADER YET ? 881 015 843 INX HL
811 @12 282 085 011 JFZ MAKS /NOPE - SEND SOME MORE 801 @16 176 LA M
911 816 841 391 0B7 LXI HL LLOC-1 /HIGHEST ADR TO SENT -> HL P01 017 962 126 00S STA TIDP+1
811 821 176 MAKT, Lamn /GET A CHR TO PUNCH -> A 801 822 843 INX HL
011 822 315 1Z€ 086 CAL PNOU /PUNCH IT 881 023 178 Lam
211 825 055 oCcL #PUNCHED IT ALL YET ? 881 924 862 B42 009 STA DEVA+1
911 82€ 3202 021 B11 JFZ MAKT /NOPE - KEEP SENDING 801 027 843 INX HL
811 831 17¢ LA N /SEND LAST CHR 891 838 176 Lam
611 932 215 126 006 CAL PNOU 801 831 B62 044 9OG STA TORM+1
811 @35 293 0B I74 JMP 7374 #ALL DONE . BACK TO MONITOR . 091 834 043 INX HL
3 8P1 635 176 LA M
881 836 B2 106 0BS STA DEVP
B@OERRORS 001 841 043 INX HL
7 X 881 842 176 Lan
/THIS SECTION OF CODE IS THE 1/0 POKE SECTION. 801 943 662 113 005 STA TODP+1
/1T 1S READ IN BY THE BINARY LOADER AFTER THE 1.0 881 B4€ 043 INX HL
/SECTION OF CASUAL. THIS ROUTINE READS THE FRONT PANEL 881 847 176 LA M
/SENSE SWITHCES AND POKES THE I/0 FOR SOME MITS I1/0 001 050 852 143 006 STA CHIN+1
#BOARDS. THE SWITCHES MEAN THIS WHEN THEY ARE UP. 001 B53 043 INX HL

Nov./Dec., 1976 'Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 31

801 ‘@54 17€ LA M
821 @55 062 145 BORE STA CIRM+1
801 860 043 INX HL ACTIVE LOW by Mark Space
801 @61 176 LA M
281 @62 P62 14€ 0OE STA CIA
201 865 843 IH&E HL
901 @66 176 LA M
901 pe7 062 152 006 A Some signals on a microcomputer’s bus are normally low and
%ol 073 I7E o so L go high when they are meaningful. These are called “active high”.
81 077 043 I W Some lines are just the opposite and they are called “active low”.
so1 101 0sz 132 00 ST CoRne1 The commonly accepted notation for an active low line is to
o01 165 198 gt put a bar “=" over the line’s name, for example: STB. Now
0Pl 196 ©52 132 BOE STA CODA [P 13 ”» : 13 22
go1 106 ooz oo when this is read you say “not strobe” or sometimes ““bar strobe.’
o1 113 bes 140 006 S7a conre1 | With this in mind then we thought that the following active
891 116 052 070 000 LDHL 0SLO iti i
%1 116 us2 870 080 LDHL osto ow signals might be useful additions to a microcomputer’s bus
001 124 311 RET structure.
LFUN- conTROL sion Ston sa-pro 4p1o 2sto mweu- AWK This signal is present during the hours of 2:00 and
,CTION LOGIC REVE wonte 9:00 a.m.
e . . . o o P;é.;';:i HOM i’l;]hii:]:;r'wl?ggggsséc;mi\;vyhic)(/ou leave the house—useful
TIRM 1 1 48 2 100 1 JEUES stems.
qTie. 312 302 312 312 1z a1z TIR EOW Present when interrupts are disabled.
/TIDP B 1 1 1 21 21 tior+1f IN This line goes low when the system is out for lunch.
DEVQ+1 H H H
/IoRP s gaz 312 glz g‘fz g‘fz teve INOT :I"hls f’orm of n'1’te|_’rupt is acknowledged by the
sTODP 10 1 1 1 23 21 TonPifl "Who's There?"’ line.
:gis; s f g;‘;,’::i HOL This s!gnal is present when a ram board goes out in
sCla 312 202 cin the middle of your memory map.
/CIDP 4 7 coe+ I R Signifies that your jump went the wrong way.
JCORP S 13 Phov i fre ' vrong way
TcoRn 2 . corn+1ff INE In a polled interrupt system all devices not request-
scon 312 202 con B ing service must pull this line low.
JgooP 16 7 M b This line goes low when certain combinations of
ZFUNCTION KEY: ASCII data appear, usually in groups of four. Also
CFIRST LETTER. used in some systems in response to certain types of
- TERNINAL — graphic images. -
/c= = NCE Interchanged in some systems with T
: .
/SECOND LETTER. KDNG Data is valid now.
L= ol INITE This signal is issued when the system has a headache.
, ENF This line goes low if the second byte of the op code
/LAST TWO LETTERS A L > \ P
g REAY BoRT is missing or in some systems this may signify that
SRM= READY MASK — all available memory has been used.
#A= ACITYE, HIGH OR LOU BZI Issued to DMA devices to let them know they can
JPP= DATA FORT have the bus.
J1F YOU ARE USING AN 1,0 BOARD NOT SUPFORTED BY CASUAL. 2RYN._ This signal is only present during NOP's. o
71T IS BEST TO USE THE CUSTOM 1.0 FROCEDURE. FTER Loaning f| 2B or 2B Eherf is much debate over whether or not this line
#THE BOOTSTRAP, LOAD THE CUSTOM 10 TQEE.E (SEE BELDW). should be 2B or 2B, but that is the question.
¢GET SWITCH A8 UP. THE REST DOUN. AND EXECUTE THE BOOT ATWD Issued in response to an illegal op code or in some
;meu” coNTENTS systems it is ALOUD meaning “‘turn the TTY off;
JLoc cont video display only”.
Je51 TIRNM TRSTD Issued by Selectrics usually in conjunction with the
A J
/852 Tia — YTYPE signal.
e Torr ON The switch is off
/854 TORF &N w | .
/gg: $E§” HEAD Processor’s response to the programmer who jumps
gl Tone to the second byte of the op code.
soee Eig; LIT Signal goés low when all the LED’s on the front pan
ez I — panel are out.
/863 cIDP ME In a multi-processing environment the control pro-
Josd CoRe gessor polls the slave processors asking who put that
/RE6 con ata into the common memory and all processors
Jaet D JDRESS LW _— that didn’t will issue this signal.
/071 0S ADDRESS HIGH UP This line goes low when the system is crashed.
200 207 Leeers HERE In Z-80 systems this line goes low during each cycle
250 000 CuUsT=50 of a block search when the data is not found. (In
é;g ggg ggt;;g 175 some systems this is the FND line).
134 005 TRDY='5 134 M_T Invalid or spurious data.
132 33; szfsslé;s BAD During each cycle of a ram‘test_ this line will ,nor-
162 095 TI1B='5 163 —_— mally be low unless a location is faulty.
é.z‘f gg ;éezzig ﬁs GLTY Response to the ‘“How do you plead” line. Also
243 52D TORM='® 43 low on computers owned by hobbyists who dis-
106 B@S DEVP='S 186 agree with Bill Gates.
e Ieriea THERE Signifies that the TTY connector has come undone.
144 00€ CIRM="6 144 BIT This signal is present when a hobbyist doesn’t have
14€ @86 CIA='6 146 .
151 BRE CIDP='6 151 —_— his own computer yet.
127 008 PNOY='6 127 FNI Issued in response to most of the foregoing lines.
131 eag CORM='6 131
132 ere CDA=’6 133
137 easg CODP='6 137 . .
p These are but a few of the lines that you might find use-
i ful in your own computer system and we’re sure you can
BOERRORS imagine a lot more that we didn’t cover here.
Oh, yes. One more. There always are empty lines on
4 .
everyone’s bus, and these of course are then designated:
A thought, compliments of David G.: If we put an auto- USED.
matic disc ejector on a disc drive, then perhaps we could put
those old Wurlitzer boxes to some interesting use.

Page 32 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E;, Menlo Park, CA 94025 Nov./Dec., 1976

A REPLY: STRUCTURED PROGRAMMING

Dear Sir, Oct. 23,1976
Several months ago, | wrote a letter to DD]J, parts of which appeared
in Vol. 1, No. 6, page 40. In Vol. 1, No. 9, page 37, Tim Bonham takes
issue with several of the comments in my letter. | wish to have the op-
portunity to in turn take issue with several of Mr, Bonham's comments.
First, Mr. Bonham states that | seem to equate structured program-
ming with lots of control structures. As a matter of fact, | don’t make
such as equation since | am aware that SP (structured programming) in-
volves concepts other than control structures such as top down program-
ming and so forth. However, SP in my mind does involve lots of control
structures, and | will explain why later. For the purposes of this letter,
I will assume that SP is concerned only with controlled structures.
Second, Mr. Bonham states that one of the important events in the
history of structured programming was the publication of a proof that
all programs could be written using only three control structures, name-
ly, sequence, if-then-else, and loops. | assume that Mr. Bonham is refer-
ring to a proof which appeared in a paper written by Boehm and Jaco-
pini [1]. Knuth [2] says the following about this result:
Recent interest in structured programming has caused many
authors to cite Jacopini’s result as a significant breakthrough
and as a cornerstone of modern programming technique. Un-
fortunately, these authors are unaware of comments made by
Cooper . . . and later by Bruno and Steiglitz . . ., namely, that
from a practical standpoint the theorem is meaningless.

Knuth goes on to show how Jacopini’s result may be used to put any

program into a virtually structureless form.

Third, Mr. Bonham states that one of the basics of SP is the use of
only a very few control structures. If this is indeed the case, then we
can do much better than SIL (sequencing, if-then-else, and looping),
because, as Presser [3] has shown, if-then-else is superfluous. However,
not even Presser advocates the complete elimination of if-then-else.
Thus, | believe that it can be said that the minimum feasible set of con-
trol structures is not the same as the minimum practical set of control
structures; although, there does seem to be a general consensus that a
minimum practical.set must include SIL. Where one draws the line
beyond SIL seems to be strictly a case of chacun a son gout. Zahn [4]
for example, seems to feel that even adding the FOR statement and
recursive subprograms is not enough. Vaughan [5] argues for includ-
ing both the labelled and indexed CASE statement. A casual examina-
tion of the literature will reveal various proposals for control struc-
tures to supplement SIL. In the absence of any precisg generally ac-
cepted definition of SP, | am inclined to believe that a minimum prac-
tical set of control structures will include substantially more than SIL.

Fourth, Mr. Bonham states that | seem to consider PL/| to be a
simple SP language, and that he does not consider PL/| to be an SP
language. | do not wish to refute Mr. Bonham’s claim that PL/I is not
an SP language, since | am in sympathy with his view on this issue.
However, there are any number of textbooks with titles like ‘‘Struc-
tured Programming in PL/I"" which suggests that PL/I is being treated
as an SP language whether in fact it is or not. This together with the
fact tnat PL/l is a commonly used complex language is the réason why
| cited it in my letter.

Yours,

Fred J. Dickey 3420 Granville Rd
Westerville OH 4308!

[1] Boehm, C. and Jacopini, G. “Flow-diagrams, Turing Machines,
and Languages with only two formation rules,”” CACM,
Vol. 9, No. 5, 1966, pp. 366-71.

[2] Knuth, D. “Structured Programming with GOTO Statements,”
Computing Surveys, Vol. 6, No. 4, 1974, pp. 261-301.

[3] Presser, L. “Structured Languages,” Sigplan Notices, Vol. 10,
No. 7, 1975, pp. 22-24.

[4] Zahn, C., Jr. “Structured Control in the Programming
Languages,” Sigplan Notices, Vol. 10, No. 7, 1975, pp. 13-15.

[5] Vaughan,W. C..M.. “Another Look at the CASE Statement,”

Sigplan Notices, Vol. 9, No. 11, 1974, pp. 32-36.
e T T T R
COMPUTER-BASED INSTRUCTIONAL SYSTEMS
MEETING

The 1977 Winter Meeting of the Association for the Development
of Computer-Based Instructional Systems (ADCIS) will be held in
Newark, DE, February 22-24, 1977. For further information, con-
tact the conference host, Fred Hofstetter, Dept. of Music, Univ, of
Delaware, Newark, DE 19711, (302) 738-2497.

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

SOME SOFTWARE NEEDS & HOW TO FILL ’EM

1) It seems to me that what the microcomputer market needs
most right now are good software development tools. High
priority includes:

a) a good monitor/operating system: one such as described
in DDJ (April 1976) is on the right track. Sphere’s new
DOS also seems very promising. DOS not only allows
user-cataloged 32-character file names, but also has a
number of very useful monitor requests built in, which
take care of all the I/O interfaces for the user.

b) a macro-assembler that can run resident on a micro-
system. The need for this should be self-explanatory.

c) a simple procedure-oriented language that can be com-
piled by a resident compiler & can interface with assem-
bly language subroutines. TINY HI looks good in this
respect. The idea here is that system development is
just too slow if done in assembly language. Further-
more, assembler listings are very difficult to decipher as
to control structures and such. A good procedure-
oriented language will provide the 3 or 4 basic control
structures plus as little else as can be gotten by with.
“Efficiency” can well be sacrificed for gains in readability,
understandability and maintainability.

2) I would like to encourage you to encourage manufacturers
to seek out a few top-notch software types and turn them
loose for a few weeks. Promise them a bonus for early
completion and institute a penalty clause for late delivery
— but get a high-level language compiler out and get it out
Jast. Once a tool like TINY HI is in the hands of a large
number of people, then you’ll see some progress. Assembly
languag_e is indispensable for certain tasks, but for the bulk
of application-programming, it continues to be a millstone
around our necks!

Larry E. Walker
CAL INTERPRETER PROPOSED

Dear Jim,

I just got Niklaus Wirth’s book Systematic Programming:
An Introduction (Prentice-Hall, 1973), which is about PASCAL
(but not mentioned in the title). I sure had a time finding
anything on PASCAL, even in N.Y.C.

I notice that it is ALGOL like in many ways, but it does
pick up some of the JOSS and CAL flavor.

This leads me to wonder why Dr. Dobb’s is not looking
into trying to get CAL interpreters or compilers started.
Joseph F. Gaffney 321 Lyndhurst Ave.

Lyndhurst, NJ 07071
[Great idea! How ’bout sending us a CAL interpreter for some
micro, in the next month or two?—Editor]

R T
HORRORS!—WE LEFT SOME ADDRESSES OUT
OF ARTICLES IN PREVIOUS ISSUES
Here they are:
Itty Bitty Computers & Tom Pittman
Box 23189
San Jose, CA 95153
(408) 578-4944
[October issue. 6800 and 6502 Tiny BASIC
for $5]

Per Sci
4087 Glenoe Ave.
Marina del Rey, CA 90291
(213) 822-7545
[August issue. Dual-drive floppy disc drive for
$1K with fast voice-coil head positioner]

Page 33

NIBL -- Tiny Basic
for National’s SC/MP Kit

by Mark Alexander, National Semiconductor Corp.
Nov. 29, 1976

Introduction

NIBL (National Industrial Basic Language) is a machine-
oriented programming language for the SC/MP. It is a lan-
guage similar to Tiny BASIC, but it also has some unique
features. Many of these features, such as a genuinely useful
control structure (the PASCAL-influenced DO/UNTIL) and
the indirect operator (“@”) have been added to the language
to allow NIBL to be nearly as flexible as machine language
in such applications as medium-speed process control.

By using NIBL, one trades the high execution speed and
low memory consumption of machine language for some very
tangible advantages: Program readability, modifiability, and
reliability, which are truly difficult to achieve in machine lan-
guage programs.

NIBL programs are interpreted by a large (4K byte) SC/MP
program that resides in ROM. The interpreter is broken into
two blocks: a program written in an Intermediate (or Interpre-
tive) Language — I. L. for short — which does the actual inter-
pretation; and a collection of SC/MP machine language sub--
routines invoked by the I. L. program. The L.L. approach is
well-documented in Vol. 1, No. 1 of Dr. Dobb’s Journal of
Computer Calisthenics & Orthodontia, and readers should
refer to that issue for a more detailed description of the inter-
pretation process.

In Table 1, the formal grammar for NIBL is given. This is
the ultimate authority (other than the interpreter itself) on
how legal NIBL statements are formed. The following descrip-
tions of the NIBL statements will refer to portions of the gram-
mar. Table 2 contains a list of the error message produced by
the NIBL system. Finally, a listing of the interpreter is given
in the Appendix.

History of NIBL

NIBL came into this world as an interpreter for Tiny BASIC,
as originally described in the first issue of Dr. Dobb’s Journal.
That program was written by Steve Leininger, who subsequent-
ly left before the program was ever assembled or executed.
The current version of NIBL is an almost complete re-write of
the original interpreter, with changes and additions being made
to improve the modularity of the program, to greatly increase
execution speed, and to extend the capabilities of the language
itself.

The program was developed on the PACE Disk Operating
System, and was assembled by a PACE-resident cross-assembler
for the SC/MP.

System Requirements

The NIBL interpreter is intended to be a ROM-resident program in
the first 4K of the SC/MP address space (although it will run just as
well in RAM). The interpreter requires at least 2K bytes of RAM
starting at address 1000 (base 16), of which the interpreter uses nearly
300 bytes for stacks, variables, etc., leaving the rest for the user’s pro-

Page 34

complete documentation & annotated source code

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

gram. Another 2K bytes of memory may be added to fill up this 4K
page, forming what is hereafter referred to as ‘’Page 1"’.

The SC/MP architecture forces memory to be split into pages of 4K
bytes each; therefore, NIBL. allows seven such pages to be used for
storing programs. NIBL programs in the seven pages are edited sepa-
rately, but may be linked together during program execution by special
NIBL statements described below. The first page, mentioned above,
must be RAM since the interpreter uses part of it as temporary storage;
the part used to store programs starts at location 111E (base 16).

The other six pages, each of which starts at location n00O0 (base 16),
where n is the page number, may be either RAM or ROM. Page 2isa
special page: it can contain a NIBL program to be executed immediate-
ly upon powering up the NIBL system.

The memory organization of NIBL is shown in Figure 1.

Throughout this article, the assumption is made that the user has a
teletype with paper tape reader and punch, as with the SC/MP Low
Cost Development System. In fact, NIBL was designed to use the
LCDS teletype interface, but to be completely independent of the LCDS
LCDS firmware. If NIBL is to be run on its own, the system should
have the same configuration for the teletype, with the reader relay
being operated directly by the SC/MP. At present, paper tape is the
only medium for saving NIBL programs, but as soon as the hardware
and software for a SC/MP cassette interface become availalbe, NIBL
will be able to link to routines for saving and loading programs with
ease.

Since the teletype interface is not based on a UART, the terminal
baud rate can only be changed by modifying the timed delays in NIBL's
I/O routines. NIBL has been run successfully at 1200 baud with a
CRT terminal; the listing of the program in the Appendix is fora 110
baud system.

Communicating with NIBL

When the NIBL system is ready to accept input, it prompts at the
teletype with a ““>"" sign. (NIBL is now in “edit mode’’.) The user
then enters a line terminated by a carriage return. There are several
special characters that are used to edit lines as they are typed:

Shift/0 (back arrow) cuases the last character typed to be deleted.

Control/U (echoes as ** U") causes the entire line to be deleted;
NIBL reprompts for a new line.

Entering a line to NIBL without a leading line number causes the
line to be executed directly by NIBL. Most NIBL statements, as well
as the four program control commands, may be executed in this
manner.

A line with a leading number (in the range O through 32767) is
entered into the NIBL program in the current page. (Make sure that
the value of the pseudo-variable PAGE is valid, so that the line isn't lost
into non-existent memory.) The NIBL editor sorts the program lines
as they are entered into ascending order by line number.

Typing a line number followed by a carriage return deletes that line
from the program. Typing a line with the same number as an existing
line's causes the new line to replace the old one in the program.

Each of the seven memory pages may contain a different program,
separate from the rest. Editing the program in one page will not
affect the other pages. To switch editing from one page to another,
simply type PAGE = n, where n is the number of the new page.

Variables

There are twenty-six variable names in NIBL: the letters A
through Z. They are all 16-bit binary variables, so they can be used
to hold addresses as well as signed numeric data. The variables are
already pre-declared for the user, and space is allocated for them
in RAM when NIBL powers up.

Constants
NIBL allows either decimal or hexadecimal (base 16) constants to
appear in expressions. Decimal constants must lie in the range 0

Nov./Dec., 1976

through 32767; the unary minus (‘—"') is used to obtain negative
values. The value —32768 is a valid NIBL integer, but it is not legal as
it stands. To represent it, use —32767—1 or #8000 instead.

Hexadecimal constants are denoted by a pound sign (*'#'’) followed
by a string of hexadecimal digits (0-9, A-F). NIBL does not check for
overrun in hex constants; consequently, only the 4 least significant
digits of the nex digit string are kept.

Functions

NIBL provides three built-in functions that may appear in any ex-
pression. These are described as follows:

RND (X, Y) returns a pseudo-random integer in the range X through
T, inclusive, where X and Y are arbitrary expressions.
T, inclusive, where X and Y are arbitrary expressions. In order for the
function to work properly, the value of Y — X should be positive and
no greater than 32767.

MOD (X, Y) returns the absolute value of the remainder from X
divided by Y (where X and Y are expressions).

TOP (with no arguments) returns the address of the first free
byte in the memory page currently being edited or executed. In other
words, it is the address of the top of the NIBL program in the current
page, plus one.

Pseudo-variables

NIBL has two pseudo-variables in addition to the standard varia-
bles. These are STAT and PAGE. Both of these varialbes may appear
on either side of an assignment statement.

STAT represents the SC/MP status register. The current value-of
the status register can be referred to by using STAT in‘an expression;
or an assignment may be made to the status register by exécuting a. . .
statement such as STAT = 4 or STAT = STAT OR #20. When NIBL
malkes an assignment to the status register in this manner, it clears the
interrupt-enable bit of the value before it is actually assigned. Note
also that only the lower byte of the value is assigned; the high byte
is ignored.

The carry and overflow bits in STAT are meaningless since the
NIBL system is continually modifying them. The utility of STAT
lies in the fact that 5 of its bits are connected to 1/0 sense lines on
the SC/MP chip.

The pseudo-variable PAGE contains the number of the memory
page currently being executed or edited. As indicated in Figure 1,
there are seven pages in which NIBL programs may be stored; therefore,
PAGE may lie only in the range 1 through 7. If an assignment of a
value outside this range is made to PAGE, only the 3 least significant
bits of the value are used — and zero is automatically changed to one.

If PAGE is modified while NIBL is in edit mode, all subsequent
editing will take place in the new page.

If PAGE is modified by a NIBL program during execution, con-
trol will be passed to.the first line of the NIBL program in the new
page. This transfer would be effected by a statement such as PAGE =
6 or PAGE = PAGE + 1. Thus, several NIBL programs residing in
different 4K pages may be linked together as one large program, if
need be. This would allow one to write a 28K STAR TREK program
in NIBL, a Herculean and indeed foolish task.

Control may also be transferred from one page to another by
three other statements: RETURN, NEXT, and UNTIL. Thus, the
first part of a subroutine or loop may be in one page, and the second
part may be in another (with control being transferred between the
two parts by an assignment to PAGE). In these three special cases,
NIBL automatically updates the value of PAGE as the statements are
executed.

Relational Operators
NIBL provides the standard BASIC relational operators, for com-
paring the values of integer expressions. The operators are as follows:

= .equal to

<= less than or equal to
>= greater than or equal to
> not equal to

< less than

> greater than

All of these operators produce 1 as a result if the relation is true, and
0 if the relation is false. Note that the relational operators may appear
anywhere that an expression is called for in the NIBL grammar, not
only in |F statements.
Arithmetic Operators

NIBL provides the four standard arithmetic functions: addition (+),
subtraction or unary minus (—), multiplication (*), and division (/).
Since only integers are allowed in NIBL, all quotients are truncated (the
MOD function can be used to obtain remainders from division). Any
overflow or underflow (other than division by zero) is ignored by NIBL;
the reasoning behind this is that it may often be necessary to treat
NIBL expressions as unsigned values, such as when performing calcula-
tions using memory addresses as the operands. Thus the value of
32767 + 1 is —32768 (or in hexadecimal, #7FFF + 1 = #8000, which

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

makes more sense).

Logical Operators

In NIBL, there are three logical operations that may be performed
on values: AND, OR, and NOT. The first two are binary operators, and
the latter is unary. All three perform bitwise logical operations on
16-bit arguments, producing 16-bit results. AND, OR, and NOT are
sufficient to simulate any other logical operation, through various
combinations of the operators.

The Indirect Operator

The indirect operator ‘@’ realizes the functions of PEEK and POKE
operations in other BASICs, but with somewhat more elegance. The
“@" sign followed by an address (whcih can be a constant, variable, or
expression in parentheses) denotes the contents of that address in
memory. Thus, if memory location 245 (decimal) contains 60, the
statement X = @245 would result in the value 60 being assigned to X.
The indirect operator may also appear on the left side of an assignment
statement. For example, @X=@(Y+10) would result in the memory
location pointed to by X being assigned the value of the memory loca-
tion pointed to by the value Y+10.

Despite this, it is still safest to use plenty of parentheses in expres-
sions to make the intent clear.

Use of the indirect operator is not limited to reading from or
writing to memory: it also provides a simple way to communicate
with peripheral devices that are interfaced to the SC/MP through

~ memory addresses. Note that the “@"’ operator can only access

memory one byte at a time, and that when an assignment is made
to a memory location, only the low.order byte of the value is
moved to the location; the high order byte is‘ignored.

The indirect operator can also be used to simulate arrays in
NIBL. For example, if we wish to define an M x N matrix of one-
byte positive integers, we can access the (I,J)th element of the
matrix (assuming that (0,0) is a legal element in the matrix) with
the expression @(A+1*N+J). An assignment could be made to that
same element by placing the expression on the left side of an assign-
ment statement.

Expressions

Expressions in NIBL are made up of the components described
above: variables, constants, function references, pseudo-variables,
and operators binding them all together. NIBL expressions are all
16-bit integers. Evaluation of expressions takes place left-to-right,
and the order in which operations take place is determined by
operator precedence and the presence of parentheses. The order of
evaluation can be deduced from the grammar in Table 1; here is a
table of operator precedence:

Lowest precedence (applied last): <, >, <=, >=,=, <>
+,—, OR
*, 1/, AND

Highest precedence (applied first): @, NOT

Program Control Commands

LIST causes the entire program in the current page to be listed.
Listing can be halted by hitting any key on the teletype: the BREAK
key works best.

LIST <number > causes listing tc begin at the given line number (or
the nearest one greater than the number), rather than at the first line.

LISTing a program is the method used to save it on paper tape. To
accomplish this, type LIST with the punch off, then turn on the punch
and hit carriage return. After the program is dumped, type a Shift/0
with teletype on LOCAL so that the last character (a ** >"') will be de-
leted when the tape is entered to NIBL at a later time. NIBL will ac-
cept a tape made in this fashion at any time during edit mode. The
tape reader is enabled at all times by NIBL, and it does not distinguish
between the reader and the keyboard when accepting input. Super-
fluous line-feed and null characters on the tape are echoed but ignored.

RUN causes three actions: first, all variables are zeroed; secondly,
all stakes (the FOR, DO, and GOSUB stacks) are cleared; and finally
the program in the current page is executed, starting with the first
line in sequence.

RUN is not the only way to start program execution: GOTO and
GOSUB can slo be used to jump into a program from edit mode. For
example, if there is a subroutine at line 1000 that is being tested,
typing GOSUB 1000 will cause that routine to be executed, with
NIBL returning to edit mode upon encournteringa RETURN state-
ment. When GOTO and GOSUB are used to run a program, the varia-
bles and stacks are not cleared.

Hitting any key while a program is being run will cause NIBL to
break execution, printing a message and the line number where the
break was detected. The BREAK key on the teletype works best for
this.

CLEAR causes all variables to be zeroed and the three stacks men-
tioned above to be cleared. This latter feature of the CLEAR command

Page 35

is quite useful after a stack nesting error has occurred (for example, if
GOSUBS are nested more than eight levels deep}.

NEW clears the programs in Page 1, and changes the value of PAGE
to 1. This is the form of the command most likely to be used by NIBL
novices who do not wish to be confused by the page selection features
of NIBL. NEW should be the first thing one types in 1o NIBL when
first powering up.

NEW <number >sets the value of PAGE to the <number>, and
clears the program in that page.

Assignment Statements

Already, two different types of assignment staternents have been
mentioned: assignments to the pseudo-variables STAT and FAGE, and
assignments to memory locations with the indirect operator. Another
form of the assignment statement is the conventional assignment to 2
variable (A — Z),e.g. A=A+ 1 or A =32 <({4 *). There arz also
statements which look like string assignments, but there are not
standard BASIC, and are described later in the section on siring han-
dling. The word “LET" is optional in front of any assignment state-
ment (leaving it out increases execution speed, unlike most Tiny
BASIC systems).

If/then Statement

The IF statements allows conditional execution of one or more
statements (as many as can fit on one line). The syntax for the | F
statement is:

‘I F" Rel-exp 'THEN'? Statement
which indicates that the word THEN is optional, and that any
statement (including another | F statement) may foliow the
conditional expression. If the |F condition is true (i.e. is non-
zero), the statement following it (and any others on the line) witl
be executed; otherwise, control immediately transfers to the next
program lme The condition does not need to contain relational
operators: a statement such as I|F MQD (A,5) THEN.... is per-
fectly legal. In this example, the statement xohowmg ‘the THEN
would be executed if A were not divisible by 5.

GOTO, GOSUB, AND RETURN STATEMENTS

The syntax for the GOTO statement is ‘GOTC" followed by an
expression. The effect of the GOTO statement is to transfer control to
the line whose number is indicated by the expression. An error occurs
if the specified line does not exist in the current page. Unlike siandard

BASICs, any arbitrary expression can be used to specify the line number,

~as well as the usual decimal constant. This allows computed branches to
be performed with the same effect as the ON . . . GOTO statement in
standard BASIC.

The GOSUB statement is identical to the GOTO statement in form.
It too causes a branch to a new line, but it alsc saves the address of the
following statement on a stack. When a RETURN
the saved address is popped from the stack, and control returns to that
point in the program. Since an actual address, not a line number, is
saved on the GOSUB stack, GOSUB statements may appear anywhere
on a multiple-statement line.

GOSUBs may be nested up to eight levels deep; an error will occur
if an attempt is made to exceed this limit. The error conditicn does not
destroy the previous contents of the stack, so 2 RETURN statement
can be executed (even in edit mode) without an error oceurring. How-
ever, any modification of the NIBL program will clear the GOSUB
stack, so that a subsequent RETURN without a GOSUR will cause an
error.

DO AND UNTIL STATEMENTS

The DO and UNT! L statements are useful in writing program loops
efficiently, without using misleading GOTQ statements. Enclosing 2
group of zero or more statements between a DO statement and an
UNTIL <condition> statement (where <condition> is an arbitrary
expression) will cause the statement group o be repeated one or more
times until the < condition> becomes true {i.e., non-zerc). As an
example of the use of the DO and UNTIL statements, we present a
program that prints the prime numbers:

1O PRINT 1: PRINT 2

20 (=3
30 DO
40 J=1/2: N=2
50 DO
60 N=N+2
70 UNTIL (MOD(I,N=0) OF (N> J}
80 IFN>JPRINTH
20 I=1+2
100 UNTIL O

DO loops may be nested up to eight levels deep, and NIBL acts in
the same manner if an overflow cccurs as it does with 2 GOSUE over-
flow. NIBL also reports an error if an UNTIL statements occurs without
a previous DO. A single DO loop may have more th:ﬁﬂ one UNTIL
statement as a terminator. For example, if one hed to exit abnor-

ment is executed,

relly out of 2 DO loop and transfer to some appropriate line, it could
be done in the following manner:
T C’}TD X
e number
Q nor the UI ITIL statement may be executed in edit

OR AN STATEMENTS

‘*‘he MNIBL FOR statement is virtuatly identieal to that in standard
BASICs; consequently, it is not explained in great detail here.

As in most BASICs, both pasm\re and negative STEPs are allowed in
the FOR statemant, and a S TEP of +1 is assumed if the STEP portion of
ihe statement is v;vminrd % FOR loop is terminated by a NEXT <vari-
able> statement, and the <\,ar;2ble > must be the same as that referred
0 in the FOR statemem at the beginning of the loop.

FOR loops may be nested four levels deep; NIBL reparts an error if
this limit is exceeded, or if a NEXT statement occurs without a previous
FOR statement. As ws:h the DO and UNTIL statements, FOR and NEXT
may not be executed in edit mode.

Perhaps the only differences between the NIBL FOR statement and
that of more elaborate BASICs {such as DEC's BASIC-PLUS for the
PDP-11} are thata FOR toop is always executed at least once, and that
when a statermnent is executed, the STEP value is added io the
variable before th e te tis made to uetermme if the loop should be
repeated (rather than after the test).

INPUT &
There a types of INPUT statements in NIBL: numeric input
and string in Lu# The form of the first type is ‘INPUT’ followed by a
list of one or more variables. When this statement is executed, NIBL
pmmpts c,t the teletype with a question mark (**?""). The user responds
with a list o sions separated by commas, and terminated by a
carriage returt example, a legal response to the statement INPUT
A,B,C would be #3FA,26,4%27, These three expressions would then be
ned to the izbles A, B, and C, respectively. An illegal response
1ts or improper expressions) will result in a syntax
¥ extra arguments in the response are ignored.
The sef*o,xd pe of INPUT statement allows strings to be input.
The form of the statement is “INPUT’ ‘$" <address>, where
<address > is a Factor, syntactically {usually a varlable constant, or
expression in pawnrheses) When this statement is eyecuted, NIBL
prompis the user as befere, at which point the user enters a line termin-
ated by the usual carriage retum NIBL then stores the line in memory
in conteuutwe locations, beginning at the address specified. Thus,
INPUTS #6000 would cause the input line to be stored starting at
1oc.at.on 6000 (basz 16}; the carriage return would also be stored at
the end of the line.
Strings input in this manner can be tesied and manipulated by
using the @ operator or the string handling statements described
below. They can also be displayed by a PRINT statement.
Neither of the two i"lPUT statements may be executed in edit
rmode.

PRINT STATEMENT
The x”om* of the PRINT statement is ‘PRINT or ‘PR’ followed by a
list of print items separated by commas, and optionally terminated by
r . which suppresses an otherwise automatic carriage return
15 in the list are printed.

] string, which is printed exactly as it appears (with the
quotes terﬁmrer‘%

2. An expression, which is evaluated and printed in decimal format,
wﬁ'h EE'H'!GE a ?9auma space or a minus sign (“-'}, and one

. rence 10 a siring in memory, denoted by ‘$” <address>,
JthV"-‘ address> isa Factor as usual. Successive memory loca-
tions, t the specified address, are printed as ASClI char-
acters, until a carriage return {which is not printed) is encountered.

acing in the PRINT statement, nor does NIBL
carriage return/line feed after printing 72 char-
tput-oriented language; fancy formatting has
useful control structures and data manipula-
itine to pz 1m a “umber and skip to the next print
Nt kes about two lines of code, with

i<
¥l

5‘

ninirnal and low-level. The string
FP NT statements have already
more statements for manipulating

SIS A STRING"” would
memory starting at the specified
ith a carriage return being appended

Mov./Dec., 1976

Another statement allows the programmer tc move strings around in
memory once they have been created. The form of this statement is
‘$" <destination> ‘=" ‘§" <source> , where both <destination> and
<source> are Factors, and are the addresses of strings in memory. This
statement causes all the characters in the string pointed to by <source>
to be copied one-by-cne to the memory pointed to by <destination>,
until a carriage return {also copied) is encountered. Overlapping the
source and destination addresses can producs disastrous results, such as
wiping out the entire contents of the current page. Consequently, a
string move can be aborted by hitting the BREAK key on the teletyps
{but it must be done quickly!).

Mote that all strings referred to in these statements, and in the IN-
PUT and PRINT statements, are assumed to lie within a 4K page, and
wraparound is a possibility which must be anticipated by the program-
mer. (Long-time SC/MiP programmers will be familiar with this minor
problem.)

Using these statements, it should be very easy to develop a set of
NI_BL subroutines for performing concatenation, comparison, and sub-
string operations on strings.

END STATEMENT

The END statement may appear anywhere in a NiBL program and
not necessarily at the end. It causes a message and the current line
number to be printed, with NIBL returning to edit mode. The END
statement is useful when debugging programs, since it acts as a break-
point in the program that can be removed easily.

LINK STATEMENT

The LINK statement allows NIBL programs to call SC/MP machine
language routines at any address. A statement of the form ‘LINK’
<address>, where <address> is an arbitrary expression, will cause
the NIBL system to call the routine at that address by executing an
appropriate XPPC P3 instruction. The user’s routine should make sure
that it returns by executing another XPPC P3, and that the value of P3
upon entry to the routine is restored before returning. The routine may
make use of the fact that P2 is set by NIBL to point to the beginning of
the RAM block used to store the variables A through Z, with each
variable being stored low byte first, high byte second. Thus, parameters
may be passed between NIBL programs and machine language routines
through the variables. Both P1 and P2 may be modified by the user’s
routines; they are automatically restored by the NIBL system upon
return. The user should be careful not te modify RAM locations with
negative displacements relative to P2, or the locations with displace-
ments greater than 51 relative to P2, These locations are used by the
interpreter.

REMARK STATEMENT

A comment can be inserted into a NIBL program by preceding it
with the word REM. REM causes the rest of the line to be ignored by
NIBL during execution. Remarks are useful in debugging programs or
helping other people to understand them, but of course, they take up
valuable memory. (Then again, memory is getting cheaper all the time.)

MULTIPLE STATEMENTS ON ONE LINE

A program line may contain more than one statement, if the state-
ments are separated by colons (“:”}. Using multiple statements on a
single line improves the readability of the program by separating it into
small blocks, and uses less memroy for storing the program.

It is important to note that an IF statement will cause any state-
ments appearing after it on the line to be ignored if the IF condition
turns out to be false. This is the feature that allows a group of state-
ments to be executed conditionally.

A multiple-statement line may be entered without a line number
but NIBL will only execute the first statement on the line, ignoring
the rest.

POWERING UP

NIBL is capable of executing a program in ROM in Page 2 immedi-
ately upon powering up, without the need for the user to give the RUN
command at the teletype. When NIBL initializes, it examines Page 2
and makes an educated guess about the possible existence of a legal
NIBL program in that page. {f NIBL thinks there really is a program
there, it starts executing it immediately; thus, if the program halts for
some reason, the value of PAGE will be 2, But if NIBL fails to find a
legal program in Page 2 initially, it sets the value of PAGE to 1 (the
normal case) and prompts at the teletype.

When executing programs, N{BL periodically checks for keyboard
interrupt, returning to edit mode if it detects it. Therefore, if a NIBL
program is to be executed with the teletype disconnected, the Sense B
line of the SC/MP should be set high so that NIBL will not sense an
interrupt while running. This would aliow a MIBL system to act as a
process controller which starts executing immediately upon powering
up.

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

BIOGRAPHICAL NOTE

Mark Alexander, a graduate of the University of California, Santa
Cruz, is getting bored with assembly language programming, and wishes
someone would save him by making a microprocessor copy of the
Burroughs B5500 computer.

TABLE 1: NIBL Grammar

On reading the grammar:

All items in single quotes are actual symbols in NIBL; all other
identities are symbols in the grammar. The equals sign ="', means
“is defined as"’; parentheses are used to group several items together
as one item; the exclamation point, *“1”’. means an exclusive-or choice
between the items on either side of it; the asterisk, '****, means zero
or more occurrences of the item to its left; the plus sign, “‘+", means
one or more repetitions; the question mark, “?"’, means zero or one
occurrences; and the semicolon, ;. marks the end of a definition.

NIBL~Line Immediate-Statement

! Program-Line
Immediate~Statement = (Command | Statement) Carriage-Return;
Program-Line = (Decimal-Number Statement-List Carriage-Return) 3

Command = °‘'NEW'

1 'CLEAR"
! ‘LIST' Decimal-Number ?
! ‘RUN®
H
Statement-List = Statement (':' STATEMENT) g
Statement = ‘LET' ? Left-part '=* Rel-Exp
! 'LET' 2 '$' Factor '=' (String | °$° Pactor)
{ 'GO' ('To* I ‘'sus‘) Rel-Exp
! 'RETURN®
I ("PR' ! 'PRINT') Print-List
! 'IF' Rel-Expr 'THEN' ? Statement
! 'DO*

'UNTIL' Rel-Exp

'FOR' Variable ‘=’ Rel-Exp 'TO' Rel-Exp ('STEP' Rel-Exp) ?
'NEXT' Variable

"INPUT' (Variable + | '$' Factor)

*LINK® Rel-Exp

:gsg: Any-Character-Except-Carriage-Return +

Left-Part = (Variable | @' Factor | °STAT® ! "PAGE") ;

Rel-Exp = Expression Relop Expression
| Bxpression
K

Relop = "<' I Q' ' | ¢ 30 | 0yt p 030 im0 | 9g0 4

Expression = Expression Adding-Operator term
1 ("% } '=°) ? Term

Adding-Operator = °+° | "= | 'QR' ;

Term = Term Multiplying-Operator Factor
I Factor
H

Multiplying-Operator = °"%' | %/% | "AND' 3

Pactor = Variable

Decimal-Number

*(° Rel-Exp ")°'

'@" Factor

*§° Hex-Number

'NOT* Factor

'HOD' °(°® Rel=Exp °*,°® Rel-Exp ')°
*RND® °(° Rel=Exp ',® Rel-Exp °)°
*STAT®

1 70p*

"PAGE®

Q0 b tmn b b Ome 0o G Gm e b

Variable = "A° | °*B® § °'C' | ... ! '¥®' | '3° ;
Decimal-Number = Decimal-Digit + 3
Decimal-Digit = °@' | *1° | °2° | ... 1 '9° ;
Hex-Number = (Decimal-Digit | Hex-Digit) + ;
Hex-Digit = °AY | 'B® | °C' | °D' | °E' | 'F° ,
Print-list = Print-Item + ;

Print-Item = (String ! Rel-exp I °‘$° Factor) ;
String = '°° Almost-Any-Character °°° ;

NOTE: Spaces are not usually significant in NIBL programs, with
the following exceptions: spaces cannot appear within key words
(such as “THEN’ or ‘UNTIL’) or within constants. Also, a variable
(such as A or Z) must be followed immediately by a non-alphabetic
character to distinguish it from a key word.

Page 37

TABLE 1: NIBL Grammar

TABLE 2: NIBL error messages
Error messages are of the form:
EEEE ERROR AT LN

where EEEE is one of the error codes below, and LN is the number of
of the line in which the error was encountered.

AREA No more room left for program in current page
CHAR Character after logical end of statement

DIVO Division by zero

END" No ending quote on string

FOR FOR without NEXT

NEST Nesting limit exceeded in expression, FOR's, GOSUBs, etc.
NEXT NEXT without FOR
NOGO No line number corresponding to GOTO or GOSUB
RTRN RETURN without previous GOSUB
SNTX Syntax error
STMT Statement type used improperly
UNTL UNTL without DO
VALU Constant format or value error
| . _PAGE 1
0000 1000 Variables,
8L ol Bukters
N1 no
IME PRlOG RAM
Interpreler| {5
(Requ'lred)
OFFF IFFR
ROM\ RAM
PAGE 2 PAGE 7
2000 pRoeRAM | FOO0 PROCRAM
\L// wL/L
AFFF PFFF

KON\/ RAM ROM\ / RAM

CODE FOLLOWS

Required

Optiona|

KILOBAUD — A PRENATEL NAME CHANGE

John Craig, the Editor of Wayne Green’s new computer
hobby mag, just phoned and told us that Wayne has changed
the publication’s name — before the first issues comes out —
from the initially advertised “Kilobyte” to Kilobaud, Oh,
well . . . we’re still waiting for someone to start yet another

rag and call it “Megabyte” (but with luck, that won’t happen).

Page 38

COMPUTER HOBBYIST CONVENTIONS & TRADE SHOWS

CONVENTIONS ALREADY HELD:
May 2, 1976 Trenton Festival
Trenton, NJ
Amateur Comp. Group of NJ

June 11-13, 1976 Midwest Reg. Comp. Conf.

Cleveland, OH

Midwest Affiliation of Comp. Clubs

Aug 28-29, 1976 Personal Computing *76
Atlantic City, NJ
S. Counties Amateur Radio Assn.

of NJ
CONVENTIONS BELIEVED TO BE IN THE WORKS:

Mar 5, 1977 Microprocessor Hobbyists Demo
(Saturday) United Good Neighbor Bldg.
10 AM - 3 PM Renton, WA
(Not a convention, but interest-
ing)

Mar 19-20, 1977 Western Personal Computing Show
Hyatt House, International Airpt.

Los Angeles

Apr 15-17,1977 The First West Coast Computer
Faire, Civic Auditorium
San Francisco, CA
San Francisco, CA) o
[Expecting 7,000-10,000 people,
50 sessions, 200 exhibitors]

Trenton Computerfest
Trenton, NJ

Apr 31-May 1, 1977

May 7-8, 1977 Eastern Personal Computing
Show, Mariott Hotel

Philadelphia, PA

Jun 13-16, 1977 Personal Computing Section

1500 people
45 exhibitors

1500-2500
people

4500-5000
people;
103 exhibitors

Mike & Key Amateur
Radio Club

Bill Balzarini KTMWC

1518 S. Pearl St.

Seattle, WA 98108

(206) 762-7738

Austin Cragg Conference
& Exposition Manage-
ment Co., Box 844

Greenwich, CT 06830

(203) 661-6101

[co-sponsored by a
number of Bay Area
hobbyist, professional

.and educational organi- :
zations].: - R Lo

Alan Katz

Dept. of Engr., Trenton
State Coll., Trenton, NJ
08625

(609) 771-2487

Austin Cragg [listed prev.]

AFIPS

National Computer Conference 77 210 Summit Ave.

Dallas, TX

Jun 18-19,1977 New England Personal Comp.
Show, J.B. Hynes Aud.

Boston, MA

Atlanta Computerfest
Atlanta, GA

[in conjunction with
Hamfest]

Jun 18-19,1977

Jun, 1977 Midwest Reg. Comp. Conf.

Cleveland; OH

Jul 29-31, 1977 Northwestern Amateur Radio
Convention

Seattle Ctr. & Washington Plaza
Hotel, Seattle, WA

[will include significant micro-

computer activities]

Personal Computing *77

Consumer Trade Fair
Atlantic City, NJ [?]

Aug 27-28, 1977

QOct 25-28,1977 (Name unknown at press time)
Anaheim Conv. Ctr.

Anaheim, CA

Fall, 1977 (Name unknown at press time)
Los Angeles Area

[Proposal to hold such a con-
vention has been placed before

SCCS Bd. of Directors]

777 Technihobby-USA
[3 of the 4 listed previously
were postponed. Last word
was they were considering
also postponing the 4th.]

Montvale, NJ 07645
(201) 391-9810

Austin Cragg [listed prev.]

?°73 Magazine

73 Pine St.

Peterborough, NH
03458

(603) 924-3873

Midwest Affiliation of

Comp. Clubs, PO Box 83
Brecksville, OH 44141
(216) 732-8458

ARRL-QCWA-WWDX Club
ARRL Conven. Comm.
10352 Sand Point Way NE
Seattle, WA 98125

John Dilks, PC’77

503 W. New Jersey Ave.
Somers Pt., NJ 08244
(609) 927-6950

Interface Age

Box 1234
Cerritos, CA 90701
(213) 469-7789

Southern California
Computer Society

P.O. Box 3123

Los Angeles, CA 90051

Marketing Ventures, Inc.
5012 Herzel PL.
Beltsville, MD 20705
(301) 937-7177

Note: This list excludes a number of conventions directed towards computer
professionals that are expected to have at least nominal activity in the area of
personal and hobby computing. Although the *77 NCC is primarily for compu-
ter professionals, its Personal Computing Séction will be a major activity with

a number of significant sessions and events planned for personal computer en-

thusiasts.

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Nov./Dec.. 1976

. TITLE NIBL, “NOV. 277 00SS 01 XAE
1sT 1

0001 L 0056 C400 CLEAR1: LDI 0 i SET ALL VARIABLES
0058 CASO ST EREG(P2) i TO ZERO
; 005A AREA LD TEMP(P2)
i e e 00SC 01 XAE
i WE ARE TIED DOWN TO A LANGUAGE WHICH » 00SD C434 LDI
iw MAKES UP IN OBSCURITY WHAT IT LACKS ® 0OSF 60 XRE
i IN STYLE. ® 0060 $CF4 JINZ CLEAR1
i ~- TOM STOPPARD » 0062 €450 LDI L{AESTK) i INITIALIZE SOME STACKS:
e » 0064 CAFD ST LSTK(P2) i ARITHMETIC STACK,
; 0066 C47A LDI L(DOSTAK)
0068 CAFF ST DOPTR(P2) J DO/UNTIL STACK,
0020 TSTBIT = 020 i1 L. INSTRUCTION FLAGS 006A CA6A LpI L(SBRSTK)
0040 JMPBIT = 040 006C CAFC ST SBRPTR(P2) i GOSUB STACK,
0080 CALBIT = 080 O06E CAAL LDI1 L(PCSTAK)
0001 = 1 i SC/MP POINTER ASSIGNMENTS 0070 CAF9 ST PCSTK(P2) i 1L CALL STACK,
0002 P2 = 2 0072 C48A LDI L (FORSTK)
0003 P3 = 3 0074 CAFE ST FORPTR(P2) i FOR/NEXT STACK
FF80 EREG = -128 ; THE EXTENSION REGISTER

; DISPLACEMENTS FOR RAM VARIABLES USED BY INTERPRETER

i® INTERMEDIATE LANGUAGE EXECUTOR +#

FFFF DOPTR -1 ; DO-STACK POINTER i
FFFE FORPTR -2 ; FOR-STACK POINTER
FFFD LSTK -3 s ARITHMETIC STACK POINTER 0076 C2FB EXECIL: LD PCLOW(P2) i SET P3 TO CURRENT
FFFC SBRPTR -4 ; GOSUB STACK POINTER 0078 33 XPAL P3 i IL PC.
FFFB PCLOW -5 i I. L. PROGRAM COUNTER 0079 C2FA LD PCHIGH(P2)
FFFA PCHIGH -6 007B 37 XPAH P3
FFF9 PCSTK -7 31 L. CALL STACK POINTER 007C C701 CHEAT: LD e1(P3)
FFF8 LOLINE -8 ; CURRENT LINE NUMBER 007E 01 XAE i GET NEW IL INSTRUCTION
FFF7 HILINE -9 007F €701 LD @1(P3) i INTO P3 THROUGH
FFF6 PAGE -10 ; VALUE OF CURRENT PAGE 0081 33 XPAL P3 ; OBSCURE METHODS
FFFS LISTNG -11 i LISTING FLAG 0082 CAFB ST PCLOW(P2) i SIMULTANEOUSLY, INCREMENT
FFF4 RUNMOD -12 i RUN/EDIT FLAG 0084 40 LDE ; THE IL PC BY 2
FFF3 LABLLO -13 0085 37 XPAH P3
FFF2 LABLHI -14 0086 CAFA ST PCHIGH(P2)
FFF1 P1LOW -15 s SPACE TO SAVE CURSOR 0088 40 LDE
FFFO P1HIGH -16 0089 D4FO ANI OF0 i CHECK IF IL INSTRUCTION
FFEF LO -17 008B E420 XRI TSTBIT i IS A “TEST”
FFEE HI -18 008D 9836 Jz TST
FFED FAILLO -19 008F E4AO XRI CALBIT!TSTBIT ;CHECK FOR IL CALL
FFEC FAILHI -20 0091 980D Jz ILCALL
FFEB NUM ~21 0093 E4CO XRI JMPBIT!CALBIT i CHECK FOR IL JUMP
FFEA TEWP -22 0095 9C0& JNZ NOJUMP
FFE® TEMP2 -23 0097 37 XPAH P3 jana 1L JUMP wss
FFE8 TEMP3 = -24 ' 0098 D4OF ANT OF ;ALL IT TAKES IS SCRUBBING
FFE7 CHRNUM = -25 009A 37 XPAH P3 i THE JUMP FLAG OFF OF P3
FFE6 RNDF = -26 009B 9ODF CHEAT1: JMP CHEAT
FFES ~ RNDX = -27 i SEEDS FOR RANDOM NUMBER 009D 3F NOJUMP: XPPC P3 }MUST BE AN ML SUBROUTINE
FFE4 RNDY = -28 O00%E 90Dé& JMP EXECIL i IF NONE OF THE ABOVE
; ALLOCATION OF RAM FOR NIBL VARIABLES, STACKS,
i AND LINE BUFFER ;
0000 . =01000+28 i INTERMEDIATE LANGUAGE CALL #
101C VARS: +52 i NIBL VARIABLES A-Z ;
1050 AESTK: *26 i ARITHMETIC STACK ,
106A SBRSTK: . = +16 ; GOSUB STACK 00AO0 C2F9 ILCALL: LD PCSTK(P2)
107A DOSTAK: . = +16 s DO/UNTIL STACK 00A2 E4D6 XRI L(LBUF) i CHECK FOR STACK OVERFLOW
108A FORSTK: +28 i FOR/NEXT STACK 00A4 9CO04 JNZ c1
10A6 PCSTAK: +48 i I.L. CALL STACK 00A4 C40A LDI 10
10D6 LBUF: +74 i LINE BUFFER 00AB 9063 JMP EOA
1120 PGHM: i USER”S PROGRAM O0AA E4D6 ILCIL: XRI L(LBUF) i RESTORE ACCUMULATOR
00AC 33 XPAL. P3 i SAVE LOW BYTE OF NEW
- MACRO LDPI, P, VAL 00AD CAEA ST TEMP(P2) i I.L. PC IN TEMP
MLOC TEMP OOAF C410 LDI H(PCSTAK) iPOINT P3 AT I. L.
- SET TEMP, VAL 00B1 37 XPAH P3 i SUBROUTINE STACK
LDI “H(TENMP) 00B2 C2FB LD PCLOW(P2) iSAVE OLD I.L. PC ON STACK
XPAH P 00B4 CFO1 ST e1(P3)
LDI L(TEMP) 00B6 C2FA LD PCHIGH(P2)
XPAL P 0OB8 CFO1 ST @1(P3)
. ENDM OOBA C2EA LD TEMP(P2) s GET LOW BYTE OF NEW
0OBC 33 XPAL P3 i 1.L. PC INTO P3 LOW
OOBD CAF9 ST PCSTK(P2) JUPDATE I.L. STACK POINTER
i OOBF 40 LDE s GET HIGH BYTE OF NEW P3
i INITIALIZATION OF NIBL * 00CO D4OF ANI OF 5 L.L. PC INTO P3 HIGH
i 00C2 37 XPAH P3
00C3 $0B7 JMP CHEAT
0000 08 NOP
0001 LDPI P2, VARS ;POINT P2 AT VARIABLES ;
0007 LDPI P1, PGM i POINT P1 AT PAGE ONE PROGRAM xS I.L. “TEST” INSTRUCTION *
000D CA4FF LDI -1 iSTORE -1 AT START OF PROGRAM ; ”
00OF €00 ST o(P1)
0011 C901 ST 1(P1) . LOCAL
0013 C40D LDI oD ;ALSO STORE A DUMMY END-OF-LI oocs CAE7 TST: ST CHRNUM(P2) i CLERR NUMBER OF CHARS SCANNE
0015 C9FF ST —1(P1) 00C7 C501 $SCAN: LD e1(P1) i SLEW OFF SPACES
0017 C402 LDI 2 iPOINT P2 AT PAGE 2, 00C® E420 XRI g
0019 CAF& ST PAGE(P2) i INITIALLY SET PAGE TO 2 00CB 98FA N3 $SCAN
001B 31 XPAL P1 00CD CSFF LD e-1(P1) i REPOSITION CURSOR
001icC c420 LDI 020 OOCF C2FA LD PCHIGH(P2) i POINT P3 AT IL TABLE
O01E 35 XPAH P1 ooD1 37 XPAH P3
001F BPO2 DLD 2(P1) i CHECK IF THERE IS REALLY 00D2 D4OF ANI OF ;FAIL ADDRESS <- OLD P3
0021 01 XAE i A PROGRAM IN PAGE 2: 00D4 CAEC ST FAILHI(P2)
0022 C180 LD EREG(P1) i IF FIRST LINE LENGTH 00D6 C2FB LD PCLOW(P2)
0024 E40D XRI oD ;5 POINTS TO CARR. RETURN 00D8 33 XPAL P3
0026 9802 Jz $0 i AT END OF LINE 00D CAED ST EAILLO(P2)
0028 BAF6 DLD PAGE (P2) i IF NOT, PAGE = 1 00DB. C701 $LOOP: LD @1(P3)
002A C420 $0: LDI 020 ©00oDD 01 XAE i SAVE CHAR FROM TABLE
002¢ 35 $LOOP: XPAH P1 O0ODE BAE7 DLD CHRNUM(P2) i DECREMENT CHAR COUNT
002D C4FF LD1 -1 s STORE -1 IN 2 CONSECUTIVE O0ED 40 LDE S GET CHAR BACK
002F C900 ST (P1) i LOCATIONS AT START OF PAGE (OOE1 D47F ANT O7F i SCRUB OFF FLAG (IF ANY)
0031 €901 ST 1(P1) OO0E3 ES01 XOR e1(P1) i 1S CHAR EQUAL TO TEXT CHAR?
0033 C40D LDI oD i ALSO PUT A DUMMY END-OF-LINE @oES 9007 UNZ SNEQ INO - END TEST
0035 C9FF ST -1(P1) i JUST BEFORE TEXT O0E7 40 LDE JYES - BUT IS IT LAST CHAR?
0037 35 XPAH P1 i UPDATE P1 TO POINT TO O0EB 94F1 JP sLooP i IF NOT, CONTINUE TO COMPARE
0038 02 CCL . i NEXT PAGE (UNTIL PAGE=8) O0EA 9090 JMP CHEAT i IF SO, OET NEXT I.L.
0039 F410 ADI 010 i REPEAT INITIALIZATION OOEC 9088 XO: JMP EXECIL 5 INSTRUCTION .
003B E480 XRI 080 i FOR PAGES 2-7 OOEE C2E7 $NEQ: LD CHRNUM(P2) ; RESTORE P1 TO
003D 9804 Jz 81 O0FO0 01 XAE i ORIGINAL VALUE
003F E480 XRI 080 00F1 €580 LD @EREG(P1)
0041 9OE9 JMP $LOOP OOF3 C2ED LD FAILLO(P2) i LOAD TEST-FAIL ADDRESS
0043 C400 $1: [:} SRR i CLEAR SOME FLAGS OOFS 33 XPAL P3 i INTO P3
0045 CAF4 ST RUNMOD(P2) OOF6 C2EC LD FAILHI(P2)
0047 CAFS ST LISTNG(P2) OOF8 37 XPAH P3
0049 C454 LDI L(BEGIN) i INITIALIZE IL PC SO THAT 00F9 90A0 JMP CHEAT1 JGET NEXT IL INSTRUCTION
004B CAFB ST PCLOW(P2) ; NIBL PROGRAM
004D C40C LDI H{BEGIN) i 1S EXECUTED IMMEDIATELY
004F CAFA ST PCHIGH(P2) i
0051 C400 CLEAR: LDI o i # 1.L. SUBROUTINE RETURN *
0053 CAEA ST TEMP(P2) i

Nov./Dec., 1976 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 ‘ Page 39

OOFE 410 RTN: LDI H(PCSTAK) iPOINT P3 AT I.L. PC STACK i THIS ROUTINE IS BASED ON DENNIS ALLISON”S BINARY TO DECIMAL

OOFD 37 XPAH P3 ; CONVERSION ROUTINE IN VOL. 1, #1 OF "DR. DOBB“S JOURNAL",
OOFE C2F9 LD PCSTK(P2) i BUT IS MUCH MORE OBSCURE BECAUSE OF THE STACK MANIPULATION.
0100 33 XPAL P3
0101 C7FF LD e-1(P3) ; GET HIGH PART OF OLD PC . LOCAL
0103 01 XAE 0197 C410 PRN: LDI H(ARESTK) i POINT P3 AT A. E. STACK
0104 C7FF LD e-1(pP3) s GET LOW PART OF OLD PC 0199 37 XPAH P3
0106 33 XPAL F3 019A AAFD ILD LSTK(P2)
0107 CAF9 ST PCSTK(F2) ;UPDATE IL STACK POINTER 019C AAFD ILD LSTK(P2)
0109 40 LDE O19E 33 XPAL P3
010A 27 XPAH P2 i P3 NOW HAS OLD IL PC 019F C40A LDI 10 ;PUT 10 ON STACK (WE’LL BE
010B 908E JMP CHEAT1 01A1 CBFE ST -2(P3) i DIVIDING BY IT LATER)
010D 9041 EOA: JMP EO 01A3 C400 LDI o
O01A5 CBFF ST -1(P3)
01A7 C405 LDI 5 . s SET CHRNUM TO POINT TO PLACE
i 01A% CAE7 ST CHRNUM(P2) i IN STACK WHERE WE STORE
AR SAVE GOSUB RETURN ADDRESS * 01AB CAFF LDI -1 i THE CHARACTERS TO PRINT
i 01AD CBOS ST 5(P3) iFIRST CHAR IS A FLAG (-1)
01AF C3FD LD -3(P3) i CHECK IF NUMBER IS NEGATIVE
O10F C2FC SAV: LD SBRPTR(P2) 01B1 9413 JP $1
0111 E47A XRI L(DOSTAK) s CHECK FOR MORE 01B3 C42D LDI - iPUT 7=/ ON STACK, AND NEGATE
0113 ¢81C JZ SAVZ i THAN 8 SAVES 01BS CBO4 ST 4(P3) ;i THE NUMBER
0115 AAFC ILD SBRPTR(PZ) 01B7 C400 LDI 0
0117 AAFC ILD SBRPTR(P2) 01B9 03 sCL
0119 33 XPAL P3 iSET P3 TO 01BA FBFC CAD -4(P3)
O11A C410 LDI H(SBRSTK) ; SUBROUTINE STACK TOP. 01BC CBFC ST -4(P3)
o11c 37 XPAH P3 O1BE C400 LDI o
011D C2F4 LD RUNMOD (P2) ; IF IMMEDIATE MODE, 01CO FBFD CAD -3(P3)
011F 980A Jz SAVL i SAVE NEGATIVE ADDRESS. 01C2 CBFD sT -3(P3)
0121 35 XPAH P1 i SAVE HIGH PORTION 01C4 90SF JMP X1 ;G0 DO DIVISION BY 10
0122 CBFF ST -1(P3) ; OF CURSOR 01C6 C420 $1: LDI . i IF POSITIVE, PUT < “ ON
0124 35 XPAH P1 01C8 CBO4 ST 4(P3) ; STACK BEFORE DIVISION
0125 31 XPAL P1 i SAVE LOW PORTION O1CA 9099 X4: JMP X1
0126 CBFE ST -2(P3) i OF CURSOR 01CC 9057 E2: JMP ERR1
0128 31 XPAL P1
0129 90C1 N X0 i RETURN ; THE DIVISION IS PERFORMED, THEN CONTROL 1S TRANSFERRED
012B C4FF SAVi: LDI -1 ; IMMEDIATE MODE i TO PRN1, WHICH FOLLOWS.
012D CBFF ST -1(P3) i RETURN ADDRESS IS
012F 90BB JMP X0 i NEGATIVE. O1CE AAFD PRN1: ILD LSTK(P2) i POINT P1 AT A.E. STACK
0131 C40A SAVZ: LDI 10 s ERROR: MORE THAN 01DO AAFD ILD LSTK(P2)
0133 901B IMP EO ; 8 GOSUBS 01D2 31 XPAL P1
01D3 C410 LDI H(RESTK)
01D5 35 XPAH P1
; 01D6 AAE7 LD CHRNUM(P2) i INCREMENT CHARACTER STACK
i* CHECK STATEMENT FINISHED * 01p8 01 XAE i POINTER, PUT IN EX. REG.
; 01D C101 LD 1(P1) i GET REMAINDER FROM DIVIDE,
01DB DC30 ORI 70/
0135 €501 DONE: LD e1(P1) s SKIP SPACES 01DD C980 ST EREG(P1) i PUT IT ON THE STACK
0137 E420 XRI c 01DF CI1FD LD -3(P1) i IS THE QUOTIENT ZERO YET?
0139 98FA Jz DONE 01E1 DSFC OR -4(P1)
013B E42D XRI s 4t oD i IS IT CARRIAGE RETURN? O1E3 9$80A Jz $PRNT i YES - GO PRINT THE NUMBER
013D 9804 Jz DONE 1 i YES — RETURN O1ES5 C40F LDI H(PRNUM1) iNO - CHANGE THE I.L. PC
O13F E437 XRI 037 ;IS CHAR A 717 2 O1E7 CAFA ST PCHIGH(P2) i SO THAT DIVIDE IS
0141 $CO1 JINZ DONEZ2 iNO - ERROR 01E9 CA42F LDI L (PRNUM1) i PERFORMED AGAIN
0143 3F DONE1: XPPC P3 i YES — RETURN O1EB CAFB ST PCLOW(P2)
0144 C404 DONE2: LDI 4 01ED $0DB JMP X4 ;GO DO DIVISION BY 10 AGAIN
0146 9008 JMP EO 01EF $PRNT: LDPI P3, PUTC-1 s POINT P3 AT PUTC ROUTINE
O1F5 C2F5 LD LISTNG(P2) i IF LISTING, SKIP PRINTING
O1F7 9C0& INZ $2 i LEADING SPACE
; 01F§ C104 LD 4(P1) s PRINT EITHER “-*
i RETURN FROM GOSUB #* O1FB 3F XPPC P3 i OR LEADING SPACE
i O1FC C2E7 LD CHRNUM(P2) iGET EX. REG. VALUE BACK
O1FE 01 XAE
0148 C2FC RSTR: LD SBRPTR(P2) O1FF C580 $2: LD @EREG(P1) i POINT P3 AT FIRST CHAR
014A E46A XRI L (SBRSTK) ; CHECK FOR RETURN 0201 C100 LD (P1) ; TO BE PRINTED
014C 9CO4 JINZ RSTR1 5 W/0 GOSUB. 0203 3F $LOOP: XPPC P3 i PRINT THE CHARACTER
O14E C409 LDI 9 0204 CSFF LD e-1(P1) i GET NEXT CHARACTER
0150 9043 EO: JMP E1 i GOTO ERROR. 0206 94FB JP $LOOP i REPEAT UNTIL = -1
0152 BAFC RSTR1: DLD SBRPTR(PZ) 0208 C4S0 LDI L(AESTK)
0154 BAFC DLD SBRPTR(PZ) i POP GOSUB STACK, 020A CAFD ST LSTK(P2) i CLEAR THE A. E. STACK
0156 33 XPAL P3 i PUT PTR INTO P3. 020C C2FS LD LISTNG(P2) i PRINT A TRAILING SPACE
0157 C410 LDI H(SBRSTK) 020E 9CBA JINZ X4 i IF NOT LISTING PROGRAM
0159 37 XPAH P3 0210 C420 LDI .o
015A €301 LD 1(P3) i IF ADDRESS NEGATIVE, 0212 3F XPPC P3
015C 9409 JP RSTR2 ; SUBROUTINE WAS CALLED 0213 90BS JMP X4
015E C402 s P3,FIN i IN IMMEDIATE MODE,
0145 9085 Xi: JMP X0 ; SO FINISH UP EXECUTING
0167 35 RSTRZ: XPAH P1 i RESTORE CURSOR HIGH i
0168 €300 LD 0(P3) i CARRIAGE RETURN/LINE FEED *
016A 31 XPAL P1 i RESTORE CURSOR LOW i
016B C401 LDI 1 i SET RUN MODE .
016D CAF4 sT RUNMOD(P2) 0215 NLINE: LDPI P3, PUTC—1 s POINT P3 AT PUTC ROUTINE
016F SOF4 IMP X1 021B C40D LDI oD i CARRIAGE RETURN
021D SF XPPC P3
021E C40A LDI 7Y i LINE FEED
; 0220 3F XPPC P3
i TRANSFER TO NEW STATEMENT * 0221 P0A7 XS: JMP x4
i
0171 C2F2 XFER: ; —EXT i
o171 c2ar2 ER bg li;\g;:mpz) s CHECK FOR NON-EXISTENT LINE - ERROR. ROUTINE M
0175 C408 LDI E . i
0177 01C JMP El
0179 C401 XFER1: LDI 1 : S SET RUN MODE TO 1 - LOCAL
017B CAF4 ST RUNMOD(P2) 0223 C405 ERR: LDI 5 i SYNTAX ERROR
017D 3F XPPE P2 0225 CAEB ERR1: ST NUM(P2) i SAVE ERROR #
0227 CZEE ERRZ: LD NUM(P2)
0229 CAEA ST TEMP (P2)
; 022E LDPI P3, PUTC—1 i POINT P3 AT PUTC
i # PRINT STRING IN TEXT * 0231 C40D LDI oD i PRINT CR/LF
i 0233 3F XPPC P2
0234 C40A LDI 0A
O17E PRS: LDPI P3, PUTC-1 i POINT P3 AT PUTC ROUTINE 0236 3F XPPC - P3
0184 C©S501 LD e1(P1) ;LOAD NEXT CHAR . 0237 LDPI P1, MESGS iP1 -> ERROR MESSAGES
0186 E42Z XRI s JIF ", END OF 023D BAER $1: DLD NUM(P2) i IS THIS THE RIGHT MESSAGE?
0188 Y3DR Jz X1 ; STRING 02Z3F 2806 Iz $MSG i YES — GO PRINT IT
018A E42F XRI 02F ;IF CR, ERROR 0241 £S01 $LOOP: LD e1(P1) iNO - SCAN THROUGH TO
0180 9805 Jz PRS1 0243 94FC JP $LOOP i NEXT MESSAGE
O18E E40D XR1 oD s RESTORE CHAR 0245 90F& JMP 51
0190 3F XFPC P2 i FRINT CHAR 0247 £S01 $MSG: LD @1(P1) i GET MESSAGE CHAR
0191 YOEB JMP PRS i GET NEXT CHAR 0249 3F XPFC P3 i PRINT IT
0193 C407 PRS1: LDI 7 i SYNTAX ERROR 0Z4A CIFF LD -1(P1) ;i 1S MESSAGE DONE?
0195 9035 E1: JMP E2 0ZAC P4FF P $MSG iNO — GET NEXT CHAR
0Z4E C2EA LD TEMP (P2) i WAS THIS A BREAK MESSAGE?
0250 E40E XRI 14
; 0252 980D Jz $3 i YES — SKIP PRINTING “ERROR’
i w PRINT NUMBER ON STACK % 0254 LDPI P1, MESGS iND - PRINT “ERROR’
i 025A C501 $Z: LD e1(P1) i GET CHARACTER
0z5C 3F XPPC P3 s PRINT IT
0250 CIFF LD —-1(P1) i DONE?

Page 40 Dr. I50bb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Nov./Dec., 1976

P $2 iNO - REPEAT LOOP 0329 3F XPPC P3

$3: LD RUNMOD(P2) ;DON‘T PRINT LINE # 032A 02 oL
A7 FIN ; IF IMMEDIATE MQODE 032E 447 LDI LALISTS)
LDI [032D CAFE ST FCLOW(P2)
XFPC F3 i SPACE 032F £40C LDI H(LISTS)
LDI “A” i AT 0331 CAFA ST PCHIGH(P2)
XFFC F3 0333 POAC JMP LST $ GET NEXT LINE
LDI T
XPPC F3
LDI HCAESTE) ;POINT P3 AT A E. STACK ;
XPAH P3 . i ADD AND SUBTRACT *
{0} LSTK(PZ) i
LD LSTK(P2)
XPAL P3 0335 C410 ADD: LDI H(AESTK) i SET P3 TO CURRENT-
Lo HILINE(FPZ) JGET HIGH BYTE OF LINE # 0337 37 XPAH P3 ; STACK LOCATION
ST —1(F3) i PUT ON STACK 0338 BAFD DLD LSTK(P2)
LD LOLINE(F2) JGET LOW BYTE OF LINE # 033A BAFD DLD LSTK(P2)
3T —2(F3) ;PUT ON STACK 033C 32 XPAL P3
LDI L (ERRNUM) ;GO TO PRN 033D 02 ccL
ST PCLOW(P2) 033E C3FE LD -2(P3) s REPLACE TWO TOP ITEMS
LDI H(ERRNUM) 0340 F300 ADD 0(P3) i ON STACK BY THEIR SUM
ST PCHIGH(P2) 0342 CBFE ST -2(P3)
XSA: JMF XS 0344 C3FF LD -1(P3)
0346 F301 ADD 1(P3)
0348 CBFF ST -1(P3)
i 034A 90BE X7: JMP X6A
i BREAK, NXT, FIN, & STRT *
i 034C C410 SUB: LDI H(AESTK) iSET P3 TO CURRENT
034E 37 XPAH P3 ; STACK LOCATION
0z88 C40E EREAK: LDI 14 034F BAFD DLD LSTK(P2)
028A POPY E3A: JMP ERR1 0351 BAFD DLD LSTK(P2)
it NEXT STATEMENT s 0353 33 XPAL P3
028C C2F4 NXT: LD RUNMOD (PZ) i IF IN IMMED. MODE, 0354 03 scL
028E 9822 Jz FIN i STOP EXECUTION 0355 C3FE LD -2(P3) i REPLACE TWO TOP ITEMS
0290 ©100 LD (P1) s IF WE HIT END OF FILE, 0357 FBOO CAD 0(P3) i ON STACK BY THEIR DIFFERENC
0292 D480 ANI 080 ; FINISH UP THINGS 0359 CBFE ST Z2(P3)
0294 9CIC JINZ FIN 035B C3FF LD -1(P3)
0296 06 CSA s BREAK IF SOMEONE IS 035D FBO1 CAD 1(P3)
0297 D420 ANI 020 i TYPING ON THE CONSOLE 035F CBFF ST Z1(P3)
0299 YED Jz BREAK 0361 $OA7 JMP X6A
029B CIFF LD -1(P1) i GET LAST CHARACTER SCANNED
029D E40D XRI on JWAS IT CARRIAGE RETURN?
029F PCO8 JINZ NXT1 i YES — SKIP FOLLOWING UPDATES 5
02A1 CS01 LD e1(P1) i GET HIGH BYTE OF NEXT LINE # P NEGATE *
02A3 CAF7 ST HILINE(P2) iSAVE IT ;
02A5 CS0Z LD @2(F1) JGET LOW BYTE OF LINE #, SKIP
0O2ZA7 CAFE ST LOLINE(P2) i LINE LENGTH BYTE 0363 C410 NEG: LDI H(AESTK) iSET P3 TO CURRENT
02A9 C40C NXT1: LDI H(STMT) ;G0 TO “STMT” IN IL TABLE 0365 37 XPAH P3 ; STACK LOCATION
02AB CAFA ST PCHIGH(P2) 0364 C2FD LD LSTK(P2)
02AD C482 LDI L(STMT) 0368 233 XPAL P3
02AF CAFB ST PCLOW(PZ) 0369 03 sCL
02B1 3F XPPC P3 036A C400 DI °
036C FBFE CAD -2(P3 NEG T K
02B2 ©T400 FIN: LDI o j### FINISH EXECUTION s# 036E CBFE o —%::3: i NEGATE TOP ITEM ON STACI
02B4 CAF4 ST RUNMOD(P2) s CLEAR RUN MODE 0370 G400 LDI °
02B6 C450 LDI L(AESTK) ; CLEAR ARITHMETIC STACK 0372 FBFF CAD —1(P3)
02B8 CAFD ST LSTK(P2) 0374 CBFF T -
02BA C418 LDI L(START) ;SET IL PC TO GETTING LINES 0372 90;2 X8: 3,1p x;(ra)
02BC CAFB sT PCLOW(P2) 0378 9092 Eé: JMP ES
02BE C40C LDI H(STAR)
02C0 CAFA ST PCHIGH(F2)
02C2 C4AL LDI L(PCSTAK) . i
02C4 CAFY ST PCSTK(P2) i # MULTIPLY #*
02C& YOBE JMP XSA i
i ##% START EXECUTION ###
0208 AAF4 STRT: ILD RUNMOD (P2) iRUN MODE = 1 . LOCAL
02CA CZEY LD TEMP2(P2) s POINT CURSOR TO 027A C410 MUL: LDI H(AESTK) +SET P3 TO CURRENT
02CC 35 XPAH P1 i START OF NIBL PROGRAM 037C 37 XPAH P3 i STACK LOCATION
02CD C2ES LD TEMP3(P2) 037D C2FD LD LSTK(P2)
02CF 31 XPAL P1 037F 23 XPAL P3 i DETERMINE SIGN OF PRODUCT,
02D0 C44A LDI L(SBRSTK) i EMPTY SOME STACKS: 0380 C3FF LD -1(P3) i SAVE IN TEMP(P2)
02D2 CAFC ST SBRPTR(P2) i GOSUB STACK, 0382 E3FD XOR -3(P3)
02D4 C48A LDI L(FORSTK) 0384 CAEA ST TEMP(P2)
02Dé6 CAFE sT FORPTR(PZ) i FOR STACK 03846 C3FF LD -1(P3) i CHECK FOR NEGATIVE
02D8 C47A LDI L(DOSTAK) 0388 940D JP $1 ; MULTIPLIER
02DA CAFF ST DOPTR(P2) i & DO/UNTIL STACK 038A 03 SCL
02DC 3F XPPC P3 i RETURN 038B C400 LDI o i IF NEGATIVE,
02DD $0A7 Xé: JMP X5A 038D FBFE CAD -2(P3) i NEGATE
02DF 90AY E4: JMP E3A 038F CBFE ST -2(P3)
0391 C400 LDI o
0393 FBFF CAD -1(P3)
i 0395 CBFF ST -1(P3)
i LIST NIBL PROGRAM * 0397 C3FD $1: LD -3(P3) i CHECK FOR NEGATIVE
i 0399 940D JP $2 i MULTIPLICAND
039B 03 SCL
02E1 €100 LST: LD (P1) i CHECK FOR END OF FILE 039C C400 LDI o i IF NEGATIVE,
02E3 E480 XRI 080 039E FBFC CAD -4(P3) i NEGATE
02ES 9418 JP LsT2 03A0 CBFC ST —-4(P3)
02E7 €410 LDI H(AESTK) iGET LINE NUMBER ONTO STACK 03A2 C400 LDI o
02E9 37 XPAH P3 03A4 FBFD CAD -3(P3)
02EA AAFD ILD LSTK(PZ) 03A6 CBFD ST ~3(P3)
02EC AAFD ILD LSTK(P2) 03A8 C400 $2: LDI 0 i CLEAR WORKSPACE
02EE 33 XPAL P3 O3AA CBOO ST 0(P3)
0ZEF C501 LD @1(P1) O3AC CBO1 ST 1(P3)
02F1 CBFF ST -1(P3) OBAE CBOZ ST 2(P3)
02F3 £501 LD e1(P1) 03BO CBO3 ST 3(P3)
02F5 CBFE sT —2(P3) 03B2 C410 LDI 16 i SET COUNTER TO 16
02F7 C501 LD e1(P1) i SKIP DVER LINE LENGTH 03B4 CAEB ST NUM(P2)
02F% C401 LDI 1 03B4 C3FF $LOOP: LD -1(P3) i ROTATE MULTIPLIER
02FB CAFS ST LISTNG(P2) i SET LISTING FLAG 03B8 1F RRL. i RIGHT ONE BIT
02FD 9ODE JMP X6 56O PRINT LINE NUMBER 03B9 CBFF ST -1(P3)
O2FF C400 LSTZ: LDI 0 03BB C3FE LD —-2(P3)
0301 CAFS ST LISTNG(PZ) iCLEAR LISTING FLAG 03BD 1F RRL
0303 C402 Js P3, NXT ;G0 TO NXT O3BE CEBFE ST ~2(P3)
030A 90D1 X6A: JMP X6 03CO 04 csA ; CHECK FOR CARRY BIT
030C 90D1 ES: JMP E4 03C1 9411 JP $3 i IF NOT SET, DON‘T DO ADD
030E L5T3: LOPI P3, PUTC-1 i POINT P3 AT PUTC 0303 02 ccL
0314 06 LST4: CSA 03C4 C302 LD 2(P3) i ADD MULTIPLICAND
0315 D420 ANI 020 03C6 F3FC ADD ~-4(P3) i INTO WORKSPACE
0317 98E6 Jz LST2 i IF TYPING, STOP 03C3 CBO2 ST 2(P3)
0319 €501 LD @1(F1) JGET NEXT CHAR 03CA C303 LD 3(P3)
031B E40D XRI oD i TEST FOR CR 03CC F3FD ADD —-3(P3)
031D 9805 Jz LSTS O3CE CBO3 ST 3(P3)
031F E40D ART oD i GET CHARACTER 0300 9002 Jrp $3
0321 3F © XPPC P3 i PRINT CHARACTER 0302 90A4 E6A: Jne E6
0322 SOFO JMP LsST4 03D4 02 3 ceL
0324 C40D LSTS: LDI oD ; CARRIAGE RETURN 03D5 C203 LD 3(P3) i SHIFT WORKSPACE RIGHT BY 1
0327 C40, i 2
A LDI oA i LINE FEED ooDA Ca0n e SiPo

Nov./Dec., 1976 Dr. Dobb’s Journal of Computer Calisthenics & Orthddontia, Box E, Menlo Park, CA 94025 ~ Page 41

03DC
- 03DD
O3DF
O3E1
03E2
03E4
O3E6
O3E7
OZE®
O3EB
O3ED
O3EF
O3F1
O3F3
O3FS
O3F&
O3Fe
O3FA
O3FC
O3FE
0400
0402
0404
0406
0408
040A
o40C
0D40E

0410
0412
0413
0415
0416
0418
041A
041C
041E
0420
0422
0424
0426
0428
042A
042C
042D
042F
0431
0433
0435
0437
0439
043B
043D
043F
0441
0443
0445
0447
0449
044A
044¢
044E
0450
0452
0454
0456
0458
045A
045C
045E
0460
0461
0463
0465
0467
0469
0468
046D
046E
0470
0472
0474
0476
0478
047A
047C
047E
0480
0482
0484
0486
0487
0489
0488
048D
048F
0491
0493
0495
0496
0498
049A
049C
049E
04A0
04A2
04A4
04A6
04A8
04AA
04AC
04AE
04B0

Page 42

1F
CBO2
Cc301

CBO1
€300

CBOO
BAEE
PCCY
9002
9085
CZEA
940D
03

400
FBOO
CBOO
C400
FBO1
CBO1
£300
CBFC
C301
CBFD
BAFD
BAFD
90DF

C410
37
C2FD
33

C3FF
DBFE
9C04
C40D
20B2

EGFF
CAEA
C3FD
9411
€400
03

FBFC
CBO3
€400
FBFD
CBO2
9004
90B4
C3FD
CBO2
C3FC
CBO3
C3FF
940D
€400
03

FBFE
CBFE
€400
FBFF
CBFF
£400
CBO1
CBOO
CAEB
CBFD
CBFC
02

C3FC
F3FC
CBFC
C3FD
F3FD
CBFD
02

c303
F303
CBO3
€302
F302
CBO2
€301
F301
CBO1
€300
F300
CBOO
03

€201
FBFE
CBO1
€300
FBFF
CBOO
9411
0z

€301
F3FE
CBO1
C300
F3FF
CBOO
9008
9093
C3FC
DCO1
CBFC
AAEB
E410
9CAE

3 DECREMENT COUNTER
iLOOP IF NOT ZERO

i CHECK SIGN WORD
i IF BIT7 = 1, NEGATE PRODUCT

i PUT PRODUCT ON TOP
i OF STACK

i SUBTRACT 2 FROM

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

i CHECK FOR DIVISION BY ©

i SAVE SIGN OF QUOTIENT
i 1S DIVIDEND POSITIVE?
i YES - JUMP

iNO - NEGATE DIVIDEND,
i STORE IN RIGHT HALF
i OF 32-BIT ACCUMULATOR

i STORE NON-NEGATED DIVIDEND
i IN 82-BIT ACCUMULATOR

i CHECK FOR NEGATIVE DIVISOR
i NEGATE DIVISOR

iPUT ZERO IN:
i LEFT HALF OF 32-BIT ACC,

i THE COUNTER, AND

i IN THE DIVIDEND, NOW USED
i STORE THE QUOTIENT -

i BEGIN MAIN DIVIDE LOOP:

i SHIFT QUOTIENT LEFT,

+ SHIFT 32-BIT ACC LEFT,

i SUBTRACT DIVISOR INTO
i LEFT HALF OF ACC,

s IF RESULT IS NEGATIVE
i RESTORE ORIGINAL CONTENTS
i OF ACC BY ADDING DIVISOR

ELSE IF RESULE POSITIVE,
RECORD A 1 IN QUOTIENT
W/0 RESTORING THE ACC
INCREMENT THE COUNTER

ARE WE DONE?

LOOP IF NOT DONE

sT 2(P3)
LD 1(P3)
RRL
ST 1(P3)
LD 0(P3)
RRL
sT 0(P3)
oLb NUM(P2)
JNZ $LOOP
JMP %4
X9: JMP X
$4: LD TEMP(P2)
JP SEXIT
SCL
LDI o
CAD 0(P3)
ST O(P3)
LDI o
CAD 1(P3)
- ST 1(P3)
SEXIT: LD 0(P2)
sT -4(P3)
LD 1(P3)
ST =3(P3)
DLD LSTK(P2)
DLD LSTK(P2) i LSTK
JMP X9
i% DIVIDE #*
i
. LOCAL
« DIV: LDI H(AESTK)
: XPAH P3
LD LSTK(P2)
XPAL P3
LD -1(P3)
OR =2(P3)
JNZ $0
LDI 13
JMP E&A
$0: LD =3(P3)
XOR -1{P3)
ST TEMP(P2)
LD -3(P3)
JP $POS
LDI o
SCL
CAD -4(P3)
ST 3(P3)
LDI o
CAD =3(P3)
ST 2(P3)
JMP $1
X9A: JMP X9
$POS: LD -3(P3)
ST 2(P3)
LD -4(P3)
ST 3(P3)
$1: LD -1(P3)
JP $2
LDI o
SCL
CAD -2(P3)
ST =2(P3)
LDI o)
CAD -1(P3)
ST -1(P3)
$2: LDI o]
ST 1(P3)
ST 0(P3)
ST NUM(P2)
ST =3(P3)
ST —4(P3)
$LOOP: CCL
LD -4(P3)
ADD -4(P3)
ST -4(P3)
LD -3(P3)
ADD =3(P3)
ST =3(P3)
ccL
LD 3(P3)
ADD 3(P3)
ST 3(P3)
LD 2(P3)
ADD 2(P3)
ST 2(P3)
LD 1(P3)
ADD 1(P3)
ST 1(P3)
LD (P3)
ADD (P3)
ST (P3)
SCL
LD 1(P3)
CAD -2(P3)
ST 1(P3)
LD (P3)
CAD -1{P3)
ST (P3)
JP SENT1
cCL
LD 1(P3)
ADD -2(P3)
ST 1(P3)
LD (P3)
ADD =1(P3)
ST (P3)
JMP 3
X9B: JMP X9A
$ENT1: LD =4(P3) i
ORI 1 i
ST -4(P3) i
$3: ILD NUM(P2) i
XRI 16 i
JINZ $LOOP i

04B2
04B4
04B6
04B8
04B9
04BB
04BD
O4BF
04C1
04C2
04CS
04C7

04C9

04CB

o4cc
04CE
O4CF
04D1
04D2
04D4
04Dé
04D7
04D8
04DA
04DB
04DD
O4DF
O4EO0
O4E2

04E9
04EB
04ED
04EF
04F1
04F2
04F4
04F6
04F7
04F9
04FB
04FD
O4FF
0500
0502
0503
0505
0507
0509
0508
050D
0SOE
0510
0511
0513
0515
0516
0518
051A
0s1C
051D
0S1F
0520
0521
0522
0523
0525
0527
0528
052A
052¢C
052E
0530
0532

0534
0536
0537
0539
053A
053C
053D
OS3F
0541
0542
0543
0545
0546
0548
054A

054C
O0S4E
0550
0552
0554
0556
0558
055A

C2EA
940D
C400
03

FBFC
CBFC
€400
FBFD
CBFD
BAFD
BAFD
90DB

CS01
E420
98FA
CiFF
03

FC5B
9405
03

FCEé
9412
CSFF
C2FB

C2FA
37

C300
CAFA
C301
CAFB
90D5

C100

FCSB
9405
03
FCE&
P4E1
Cc410
37
AAFD
33

40

70

CBFF
C402
02

F2FB
CAFB
C400
F2FA
CAFA
POAE

c410

7
AAFD
33
C3FE

€280
CBFE

40
F401

c280
CBFF
9096

C401
9012
C402
P00E
C402
P00A
C404
006

LD TEMP(P2) i CHECK THE QUOTIENT’S SIGN
JP SEND i NEGATING IF NECESSARY
LDI o
SCL
CAD -4(P3)
ST -4(P3)
LDI [
CAD =3(P3)
ST =3(P3) .
SEND: DLD LSTK(P2) i DECREMENT THE STACK POINTER
DLD LSTK(P2)
JHMP X9B i AND EXIT
i
i ¥ STORE VARIABLE *
i
STORE: LDI H(AESTK) i SET P3 TO STACK
XPAH P3
LD LSTK(P2)
XPAL P3
LD @-3(P3) i GET VARIABLE INDEX
XAE iPUT IN E REG
LD 1(P3)
ST EREG(P2) STORE LOWER 8 BITS
cCL i INTO VARIABLE
LDE 3 INCREMENT INDEX
ADI 1
XAE
LD 2(P3)
ST EREG(P2) i STORE UPPER 8 BITS
XPAL P3 + INTO VARIABLE
ST LSTK(P2) i UPDATE STACK POINTER
X10: Js P3, EXECIL
i
IR TEST FOR VARIABLE IN TEXT *
i
TSTVAR: LD e1(P1)
XRI i i SLEW OFF SPACES
Jz TSTVAR
LD -1(P1) i GET CHARACTER IN QUESTION
sCL
CAI 7T+ i SUBTRACT “Z7+1
JP SFAIL iNOT YARIABLE IF POSITIVE
SCL
CAI TAT=7Z7=1 i SUBTRACT “A“
JP- SMAYBE i IF POS, MAY BE VARIABLE
$FAIL: LD e-1(P1) i BACKSPACE CURSOR
LD PCLOW(P2) i BET TEST-FAIL ADDRESS
XPAL P3 i FROM I.L. TABLE, PUT IT
LD PCHIGH(P2) i INTO I.L. PROGRAM COUNTER
XPAH P3
LD P3)
ST PCHIGH(P2)
LD 1(P3)
ST PCLOW(P2)
JMP Xi0
$MAYBE: XAE i SAVE VALUE (0-25)
LD (P1) 3 CHECK FOLLOWING CHAR
SCL 3 MUST NOT BE A LETTER
CAl ‘7741 i OTHERWISE WE’D BE LOOKING
JP $0K i AT A KEYWORD, NOT VARIABLE
SCL
CAl TAT=Z7-1
JP $FAIL
SOK: LDI H{RESTK) 1 SET P3 TO CURRENT
XPAH P3 i STACK LOCATION
ILD LSTK(P2) 3 INCR STACK POINTER
XPAL P3
CCL i DOUBLE VARIABLE INDEX
LDE
ADE
ST -1(P3) i PUT INDEX ON STACK
LDI 2 1 INCRENMENT I.L. PC, SKIPPING
ccL i OVER TEST-FAIL ADDRESS
ADD PCLOW(P2)
ST PCLOW(P2)
LDI o
ADD PCHIGH(P2)
ST PCHIGH(P2)
JMP X10
i
P IND -- EVALUATE A VARIABLE #
i
IND: LDI H(ARESTK) }SET P3 TO STACK
XPAH P3
ILD LSTK(P2)
XPAL P3
LD =2(P3) i GET INDEX OFF TOP
XAE i PUT INDEX IN E REG
LD EREG(P2) i GET LOWER 8 BITS
ST -2(P3) i SAVE ON STACK
ccL
LDE i INCREMENT E REG
ADI 1
XAE
LD EREG(P2) i GET UPPER 8 BITS
ST -1(P3) i SAVE ON STACK
X11: JMP X10
i
i RELATIONAL OPERATORS #*
i
EQ: LDI 1 1 EACH RELATIONAL OPERATOR
JMP CHP i LOADS A NUMBER USED LATER
NEQ: LDI 2 i AS A CASE SELECTOR, AFTER
JMP CMP i THE TWO OPERANDS ARE COM-
Lss: LDI 3 i PARED. BASED ON THE CO¥H-
JMP CMP i PARISON, FLAGS ARE SET THAT
LEQ: LDI 4 i ARE EQUIVALENT TO THOSE SET
JMP CcMP i BY THE “CMP” INSTRUCTION IN

Nov./Dec., 1976

0S5C €405 GTR: Lb1 s ; THE PDP-11. THESE PSEUDO- 0620 E4FF XRI oFF
0SSE 9002 JMP cvp ; FLAGS ARE USED TO DETERMINE 062C CBFF ST heyres REPLACE TOP ITEM ON STACK
0560 C406 GEQ: LDI 6 i WHETHER THE PARTICULAR 062E €701 LD e1(F3) . BY ITS ONE’S COMPLEMENT
i RELATION IS SATISFIED OR NO 0630 E4FF XRI OFF
0562 CAEB CMP: ST NUM(P2) 0632 CBFF ST -1(P3)
0564 C410 LDI H(AESTK) i SET P3 => ARITH STACK 0634 33 XPaL P3
0566 37 XPAH P3 0635 CAFD ST LSTK(;
0567 BAFD bLD LeTi(P2) 0635 COFD am S LSTK(P2) STACK POINTER FIXUP
0569 BAFD DLD LSTK(P2)
056B 33 XPAL P3
056C 03 scL ;
056D C3FE LD | -2(P3) ; SUBTRACT THE TWO OPERANDS, i EXCHANGE CURSOR WITH RAM *
0S6F FEOO cAD (P3) i STORING RESULT IN LO & HI i
0571 CREF ST LO(P2)
0573 CaFF LD Z1P3) [0639 C2F1 XCHGP1: LD P1LOW(P2) ; THIS ROUTINE IS HANDY WHEN
0575 FBO1 CAD 1(P3) 063B 31 XPAL P1 i EXECUTING AN “INPUT’ STMT
0577 CAEE ST HI(P2) 063C CAF1 ST P1LOW(PZ) ; IT EXCHANGES THE CURRENT
0579 ESFF XOR -1(P3) ; OVERFLOW OCCURS IF SIGNS OF O63E C2FO LD P1HIGH(P2) i TEXT CURSOR WITH ONE SAVED
057B 01 XAE ; RESULT AND 1ST OPERAND 0640 35 XPAH 1 ;i IN RAM
057C CaFF LD -1(P3) ; DIFFER, AND SIONS OF THE 0641 CAFO ST P1HIGH(P2)
0S7E E301 XOR 1(P3) ; TWO OPERANDS DIFFER 0643 3F XPPC P3
0580 S0 ANE iBIT 7 EQUIVALENT TO V FLAG
0581 E2EE XOR HI(P2) ;BIT 7 EQUIVALENT TO N XOR V
0583 CAEA ST TEMP (P2) i STORE IN TEMP ;
0585 C2EE LD HI(PZ) i DETERMINE IF RESULT WAS ZERO i CHECK RUN MODE M
0587 DAEF OR Lo(P2) ;
0589 9802 Jz SETZ i IF RESULT=0, SET Z FLAG .
058B C480 LDI 080 i ELSE CLEAR Z FLAG 0644 C2F4 CKMODE: LD RUNMOD (P2) ; THIS ROUTINE CAUSES AN ERROR
058D E480 SETZ: XRI 080 0646 9801 Jz cK1 ; IF CURRENTLY IN EDIT MODE
058F 01 XAE JBIT 7 OF EX = Z FLAG 0648 3F XPPC P3
0649 €403 CK1: LDI 3
0590 BAEB DLD NUM(P2) ; TEST FOR = 064B CAEB E8: ST NUM(P2) ;ERROR IF RUN MODE = O
0592 9C05 INZ NEQ1 064D C402 Js P3, ERRZ i MINOR KLUGE
0594 40 LDE ; EQUAL IF Z = 1
0595 902B JMP cMP1
0597 90B1 X1z JMP X11 ;
0599 BAEB NERi: DLD NUM(P2) 5 TEST FOR <> e GET HEXADECIMAL NUMBER *
0S9B 9COS INZ Lss1 ;
059D 40 LDE 5 NOT EQUAL IF Z = ©
059E E480 XRI 080 . LOCAL
05A0 9020 JMP CMP1 0654 AAFD HEX: ILD LSTK(P2) i POINT P3 AT ARITH STACK
05A2 BAEB LSS1: DLD NUM(P2) i TEST FOR < 0656 AAFD ILD LSTK(P2)
05A4 9CO4 JNZ LER1 0658 33 XPAL P3
05A6 C2EA LD TEMP (P2) ; LESS THAN IF (N XOR V)=1 0659 C410 LDI H(AESTK)
05A8 9018 JMP cMP1 065B 37 XPAH P32
0SAA BAEB LEG1: DLD NUM(P2) i TEST FOR <= 065C C400 LDI (o] s NUMBER INITIALLY ZERO
0SAC 9COS INZ GTR1 04SE CBFF sT ~1(P3) SPUT IT ON STACK
OSAE 40 LDE i LESS THAN OR EQUAL 0660 CBFE ST -2(P3)
0SAF DAEA OR TEMP(P2) i IF (Z OR (N XOR V))=1 0662 CAEB ST NUM(PZ) i ZERO NUMBER OF DIGITS
05B1 $O0F JMP CMP1 0664 CSO1 $SKIP: LD e1(P1) i SKIP ANY SPACES
05B3 BAEE GTR1: DLD NUM(PZ) i TEST FOR > 0666 E4Z0 XRI .
05B5 9C07 . JINZ GEQ1 0668 98FA Jz SSKIF
0SB7 40 LDE i GREATER THAN 066A CSFF LD e-1(F1)
0SB8 DAEA OR TEMP (P2) i IF (Z OR (N XOR V))=0 066C C100 $LOOP: LD (P1) SGET A CHARACTER
05BA E480 XRI 080 066E 03 scL
05BC 9004 JMP CMP1 066F FC3A cal c9eay ;CHECK FOR A NUMERIC CHAR
OSBE C2EA GEG1: LD TEMP (P2) i GREATER THAN OR EQUAL 0671 9409 JP SLETR
05CO E480 XRI 080 i IF (N XOR V)=0 0673 03 scL
05C2 9404 CMP1: JP FALSE ;IS RELATION SATISFIED? 0674 FCF6& cAI 207 =971 ; IF NUMERIC, SHIFT NUMBER
05c4 C401 LpI 1 iYES - PUSH 1 ON STACK 0676 9413 JP SENTER ; AND ADD NEW HEX DIGIT
05C6 9002 JMP cMP2 0678 9032 JMP SEND
05C8 C400 FALSE: LDI o iNO - PUSH O ON STACK 067A 90BB X12C: JMP X128
0SCA CBFE CMP2: ST -2(P3) 067C 03 SLETR: SCL i CHECK FOR HEX LETTER
0SCC €400 LD1 0 047D FCOD cAl 1Gr=r9-1
OSCE CBFF ST ~1(P3) 067F 942B JP SEND
0SD0 €400 Js P3, RTN ;DO AN L L. RETURN 0681 03 scL
0D . 0682 FCFA AT ‘ac -6
o7 P0BE P X1z 0684 9402 P $0K
0686 9024 JMP SEND
s 0688 02 $OK: oL ;ADD 10 TO GET TRUE VALUE
: 0689 F40A ADI 10 i OF LETTER
S err o EMENT TEST FOR ZERO * 0688 01 SENTER: XAE iNEW DIGIT IN EX RES
048C C404 Lbr 4 i SET SHIFT COUNTER
0SD® C2EF CMPR:) 068E CAEA ST TEMP (P2)
SR oen b laem eniovimome om0 O SO s con s owzero
05DD 9802 0 FALL Teee R 0692 C3FE $SHIFT: LD -2(P3) i SHIFT NUMBER LEFT BY 4
OSDF 90B& JMP X12 iNO - IT ISN‘T SO CONTINUE 0694 02 ceL
0SE1 €501 FAIL: LD e1(P1) ;SKIP TO NEXT LINE IN PROGRAM 0022 F3FE ADD T2(P2)
0SE3 E40D XRI op - ; (LE TIL NEXT CR) 0697 CBFE ST “2(P3)
e
OSE7 402 Js i 1P
o7 a0z e B P2, NXT CALL NXT AND RETURN oton ok e Tl
069F BAEA DLD TEMP (F2)
06A1 SCEF JNZ SSHIFT
; 06A3 CIFE LD ~2(P3) ADD NEW DIGIT
. 06AS 58 ORE i INTO NUMBER
; AND, OR, & NOT » 06A6 CBFE ST -2(P3)
06A8 501 LD e1(P1) ; ADVANCE THE CLIRSOR
LocAL 06AR 9000 JMP SLOOP 1GET NEXT CHAR
.) 06AC C2EE $END: LD NUM(P2) i CHECK IF TH
OorD Cao1 ANDOP: s ;1 JEA QRERATION WA 1TS O6AE 9CB7 JNZ X12E i MORE THAN O CHARACTERS
0SF4 C402 OROP: LDI pe - 06BO C405 LDI 5 JERROR IF THERE WERE NONE
0SF6 9002 NP 51 06B2 9097 ESB: JMP Ee
OSFE8 C403 NOTOP: LDI 3
OSFA CAEB $1: ST NUM(P2)
OSFC C410 ; _ i
o5FE c4 Lot H(AESTK) JSET P3 => ARITH. STACK o e T Yoy M
OSFF BAFD DLD LSTK(P2) ;
0601 BAFD
0603 33 waL paF® ; THIS ROUTINE TESTS FOR A NUMBER IN THE TEXT. IF NO
0604 BAEB DLD NUM(FZ) TEST FOR “AND” i NUMBER IS FOUND, I.L. CONTROL PASSES TO THE ADDRESS
0606 SCOE INZ SO0R ; INDICATED IN THE ~TSTN’ INSTRUCTION. OTHERWISE, THE
0608 €301 LD 1(P3 ; ; NUMBER IS SCANNED AND PUT ON THE ARITHMETIC STACK,
060A DIFF AND _,Tpé) ;Rgi';gﬁg;“?ﬁz oS ON i WITH I L. CONTROL PASSING TO THE NEXT INSTRUCTION.
060C CBFF ST -1(P3)
060E C300 LD 0(P3) . LOCAL
0610 D3FE AND Z2¢P3) 06B4 €501 TSTNUM: LD @1(P1)
0612 CEFE sT -2(P3) 06B6 E420 XRI . i SKIP OVER ANY SPACES
0614 90D8 JmP X126 04BE 98FA Jz TSTNUM
0616 BAEB $OR: DLD NUM(P2) i TEST FOR “OR” 06BA CSFF Lp e-1(P1) 5 GET FIRST CHAR
0618 9COE INZ SNOT 06BC 03 scL i TEST FOR DIGIT
061A C301 LD 1(P3) FREPLACE TWO TOP ITEMS ON O4BD FC3A CAI (9741
061C DBFF oRr -1(P3) i STACK BY THEIR “OR” 06BF 9405 <P $ABORT
0&61E CBFF sT —1(P3) 06C1 03 SCL
0620 C300 e otP3) 06C2 FCF6 cAI c0r=r9-1
0622 DEFE oR ROV 0604 9421 JP s1
0624 CBFE or ipay 06C6 C2FE $ABORT: . LD PCLOW(P2) ;GET TEST-FAIL ADDRESS
0626 50Cs JMP X128 oecs oora G - A ; FROM L L TRBLE
0628 C701 $NOT: LD @1(P3) i “NOT* OPERATION 0LCE 37 XPAH P3

Nov./Dec., 1976 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 43

Page 44

06CC

O&CE

06DO

06D2

0&D4
06D6&
06D8
06D9
046DB
06DD
O6DF

O6E1

OLE3
06ES
O6E7

O&LES

O6EA
O&EB
O6ED
O&EF
06FO
06F2
06F4
O6F5
O&6F7
O&F9
O6FB
0&FC
O4FE
0700
0701

0703
0705
0707
0708
070A
070C
070E
0710
0712
0714
0715
0717
0719
071B
071D
071F
0721

0723
0725
0726
0728
072A
072C
072E
0730
0732
0733
0735
0737
0739
073B
073D
O73F
0740
0741

0743
0745
0747
0749
074B
074D
074F
0751

0753
0759
075B
075D
0763
0765
0767
0769
076R
076C
076D
O76F
0771
0772
0779
077B
077C
077D
O77F
0781
0783
0784
0786
0788
0789
078B
078D
O78E
0790
079z
0793
0795
0797
0798
079R
079C
079E
O79F
07A1

£200
CAFA
€201
CAFB
90A4
c402
02
F2FB
CAFB
£400
F2FA
CAFA
9095
90CB
o1
c410
a7
AAFD
AAFD
33
€400
CBFF
40
CBFE
c501
€100
03
FC3A
94D6
03
FCF6
9402
90CF
o1
C3FF
CBO1
C3FE
CB0O
c402
CAEA
02
C3FE
F3FE
CBFE
C3FF
F3FF
CBFF
BAEA
SCEF
02
CaFE
F300
CBFE
C3FF
F201
CBFF
02
C3FE
F3FE
CBFE
CaFF
FaFF
CBFF
02
40
FaFE
CBFE
€400
F3FF
CBFF
9448
€406
9094
9090

C400
CARE7

C2F4
9808
C43F

Cc420
3F
9003
C43E
3F
C40F
C4BD
33

9BF3
E40A
P8EF
40

E40D
9850
40

E4SF
9841
40

E408
9836
40

E415
9BOF
40

E403
9C1A
C4SE

ca43
3F

LD (P3)
sT PCHIGH(P2)
LD 1(P3)
ST PCLOW(PZ)
JMP Xizc
$RET: LDI 2
cCcL
ADD PCLOW(P2)
ST PCLOW(P2)
LDI o
ADD PCHIGH(PZ)
ST PCHIGH(PZ)
X13: JMP Xxi2c
E8A: JMP ESB
$1: XAE
LDI H(AESTK)
XPAH P3
ILD LSTK(P2)
ILD LSTK(PZ)
XPAL P3
LDI o]
ST -1(P3)
LDE
ST -2(P3)
$LOOP: LD e1(rP1)
LD (P1)
SCL
CAI 797+l
JP SRET
sCL
CAL 707="97-1
JP $2
JMP SRET
$2: XAE
LD —-1(P3)
ST 1(P3)
LD =2(P3)
ST (P3)
LDI 2
ST TERP(P2)
$SHIFT: CCL
LD -2{P3)
ADD -2(P3)
ST -2(P3)
LD =1(P3)
ADD -1(P3)
ST -1(P3)
DLD TENMP(P2)
JNZ SSHIFT
ccL
LD -2(P3)
ADD (P3)
ST -2(P3)
LD -1(P3)
ADD 1(P3)
ST -1(P3)
ccL
LD -2(P3)
ADD -2(P3)
ST -2(P3)
LD -1(P3)
ADD —-1(P3)
ST -1(P3)
CcCL
LDE
ADD -2(P3)
ST -2(P3)
LDI o
ADD -1(P3)
ST -1(P3)
JP $LO0P
LDI &
E9: JMP EBA
Xi4: JHP Xi3

i PUT TEST-FAIL ADDRESS
i INTO I.L. PC

i SKIP OVER ONE IL INSTRUCTION
;5 IF NUMBER IS DONE

i SAVE DIGIT IN EX REG
i POINT P3 AT AE STACK

3 GET NEXT CHAR
;s TEST IF IT IS DIGIT

JRETURN IF IT ISN‘T

i SAVE DIGIT
i PUT RESULT IN SCRATCH SPACE

s MULTIPLY RESULT BY 10
s FIRST MULTIPLY BY &

i THEN ADD OLD RESULT,
i S0 WE HAVE RESULT # S

i THEN MULTIPLY BY TUWO

; THEN ADD IN NEW DIGIT

3 REPEAT IF NO OVERFLOYW

; ELSE REPORT ERROR

GET LINE FROM TELETYPE

. LOCAL
GETL: LDPI P1,LBUF
LDI o
ST CHRNUM(P2)
LDPI P3, PUTC-1
LD RUNMOD(P2)
Jz $0
LDI 20
XPPC P3
LDI ok
XPPC P3
JIMP s1
$0: LDI >
XPPC P3
$1: Js P3, GECO
LDI L(PUTC)—1
XPAL P3
LDE
Jz s1
XRI oA
Jz 1
LDE
XRI oD
Jz $CR
LDE
XRI /07+010
Jz SRUB
LDE
XRI s
Jz SXH
LDE
XRI 015
Jz sXU
LDE
XRI 3
JNZ SENTER
he's; P
XPPC P3
LDI ‘c”
XPFC P3

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

3SET P1 TO LBUF
i CLEAR NO. OF CHAR

i POINT P3 AT PUTC ROUTINE

i PRINT 7? 7 IF RUNNING
i (I.E. DURING INPUT”)

i OTHERWISE PRINT “>7

i GET CHARACTER
i POINT P3 AT PUTC AGAIN

i GET TYPED CHAR
; IGNORE NULLS
i IGNORE LINE FEED

i CHECK FOR CR

i CHECK FOR SHIFT/0

i CHECK FOR CTRL/H

; CHECK FOR CTRL/U

5 CHECK FOR CTRL/C

7 ECHO CONTROL/C &8 ~C

07A2
07484
0786
07A8
07A9
07aB
O7AC
O07RE
O7RF
07B1
07B2
07B4
07B&
07B7
07B%
07BB
07BD
O7BF
07C1
07¢2
07C3
07c4
07C6
07C8
O7CA
07CB
07CD
07CE
0780
07D2
07D4
0706
07D8
07D%
07DB
070D
O7DE
07E0
O7E1
O7E3
O7E4

O7E&
07E8
07E9
O7EB
O7EC
O7EE
O7EF
07F0
O7F2
O7F3
O7FS
O7F7
O7F9
O7FB
O7FD
O7FF
0800
0801
0802

0804
0806
0807
0809
080A
080C
080D
080F
0811
0813
0814
0816
0818
0819
081Aa
o0s8ic
OBiE

0820
0822
0823
0825
0826
0828
082A

c410
37
C2FD
33
C7FE
C7FF
AEA
C7FF
33
CAFD
C2EA
37
40
CBOO
20Cs
90A/L

Cc410
37

C2ZFD
33

C301
CAF7
C300

LbpI ig ;i CAUSE A BREAK
JHP E?
HXU: LDI i ; ECHO CONTROL/U £S5 *U
XPPC P3
LDi U
XPPC P3
LDI oD 3 PRINT CRALF
XPPC P3
LDI oA
XFPC P3
$2: JHP GETL ;GO GET ANOTHER LIKE
X15: JHP Xi4
SENTER: LDE
ST ei(Piy 5 PUT CHAR IN LBUF
ILD CHRNUM{P2) i INCREMENT CHRNUH
XRI 72 5 IF=72, LIKE FULL
JNZ $1
LDI oD
XRE i SAVE CARRIASE RET
LDE
XPPC P3 PPRINT IT
JFiP SCR 3 STORE IT IN LBUF
El0: JMP E9
SHH: LDI 7 i BLANKK QUT THE CHARACTER
XPPC P3
LDI =3 s PRINT ANOTHER BACKSPACE
- XPPC P3
$RUB: LD CHRMUM(PZ)
JZ 31
DLD CHRNUM{PZ) i ONE LESS CHAR
LD e-1(P1} i BACKSPACE CURSTR
JHP $1
SCR: LDE
ST e1{P1) 3 STORE CR IN LBUF
LDI oA 3 PRINT LINE FEED
XPPC P3
LDI H{LBUF) i SET P1 70 BEGIN-
XPAH P1 i NING OF LBUF
LDI L{LBUF)
XPaL P1
Xi6: JHP X13

I

EVAL —-— GET HEHMORY CONTENTS *

H

; THIS ROUTIMNE IMPLEMENTS THE ‘@7 OPERATOR IN EXPRESSIONS

EVAL: LDI H{RESTK)
XPAH P3
LD LSTK(PZ)
XPAL P3 iP3 -> ARITH STACK
LD -1{P3) 3 GET ADDR OFF STACK,
XPAH Pi 3 AND INTO P21,
XAE i SAVING CLD P1 IN EX & LO
LD ~2{P3?
XPAL Pl
ST LG(PZ)
LD O(P1) 5 GET HENORY CONTENTS,
ST -2(P3) 5 SHOVE ONTO STACK
LDI 0
ST -1{FP3) 1 MIGH ORDER 8 BITS ZEROED
LD LO(P2)
XPAL P1 3 RESTORE ORIGIRAL P1
LDE
XPAH P1
JHP Xi3
3 MOVE —— STORE INTO HEMORY *

5 THIS ROUTINE IMPLEMENTS THE STATEHENT

H ‘@’ FACTOR ‘= REL-EXP
FOVE: LDI H{RESTK)
XPAH P3
LD LSTK(P2)
XPAL P3 1P3 -> ARITH STACK
LB @-2{F3) JGET BYTE TO BE MOVED
XRE
LD 2-1{F2) 3 ND¥ GET ACDRESS INTO P3
ST TEMP(P2)
LD e-1(P3)
XPAL P2
ST LSTR{PZ? i 8TACK PTR UPDATED WO¥
LD TEMP(PZ)
XPAH P3
LDE
ST o(P3) JAOVE THE BYTE INTO FMERORY
X17: JHP Xis
Eil: JHP E10
i TEXT EDITOR *

i INPUTS TO THIS ROUTINE: POINTER TO LINE EUFFER IN PILON &
5 PIHIGH. Pl POINTS TO THE INSERTION POINT IN THE TEXT.

i THE A E. STACK HAS THE LINE NUMBER ON IT {(STACK POINTER
;i IS ALREADY POPPED).

JEACH LINE IN THE MIBL TEXT IS STORED IN THE FOLLOWING

i FORMAT: TWO BYTES COMTAINING THE LINE NUKBER (IN BINARY,
HIGH ORDER BYTE FIRST), THEN ONE BVTE CONTAINING THE
LENGTH OF THE LINE, AND FINALLY THE LINE ITSELF FOLLONED
BY A CARRIAGE RETURN. THE LAST LINE IN THE TEXT IS
FOLLOWED BY TWO COMSECUTIVE BYTES OF X’FF.

. LOCAL

INSRT: LDI H{RESTK) i POINT P3 AT AE STACK,
XPAH P3 i WHICH HAS THE LINE &
LD LSTK{PZ) 5o IT
XPAL 3
LD 1HP3) i SAVE NEW LINE’S NUMBER
ST HILIRE(PZ)
LD C{P2)

MNov./Dec., 1976

082% CaFl ZTURN

0830 33

0831 C2FC

0833 37

0834 C404

0835 CASY

0833 C701

0834 E40D

083C 9804

O83E AAS7 ;THIS ROUTINE POP THE A E
0840 SOF6 5 STACK, AND PUTS THE RESULT
084z C2E7 %2 P3 5 IMTO LO(P2) AND HI(P2)
0842 E204 HBESTIO

0846 9COZ P3

0848 CAE7 ST LD (P3)

084n C2E7 $3 LD ST LO(P2)

084C 01 XAE LD 1(P3)

084D C2F2 LD 0920 ST HI(P2)

084F 9406 P 0922 S %20

0851 D47F AN

0853 CAF2 ST

0855 9018 JHP :

0857 €303 54: LD UNTIL

0859 40 LDE S 3

085a 02 ocL

085B FA4FC ADI

085D 01 XEE UNTIL: DOPTR(FZ) s CHECK FOR DO-STACK UNDERFLOYW
085E C501 35: LD

0860 E20D XRI

0862 980B Jz LADOSTAK)

0864 30 LDE 31

865 02 CCL 15

0866 F4FF ADY -1 13

0868 01 XRE LO(P2) 5 CHECK FOR EXPRESSION = O
0869 90F3 JHP 33 HI(P2)

086B POAF Xig: P X17 $REDD ; IF ZERO, REPEAT DO-LOOP
086D POAF EiZ2: P Eii DOPTRIP2) JELSE POP SAVE STACK
0B&F 40 SHOVE: LDE BOPTR{P2)

0870 DAE7 R S0CD %20 ;CONTINUE TO NEXT STWT
0872 $8F7 Jz a0 s POINT P3 AT DO-STACK
0874 €474 DI L{DOSTAK) 2 3

0876 CAFF ST DOPTRIPZ) c4i0 HDOSTAI)

0878 Ca&A LDI L(SBRSTX) 27 73

087A CAFC ST SBRPTR(P2} C3FF —1(P3} ;LOAD P1 FROM DO STACK
087C C48A LDI L{FORSTK) 23 21

087E CAFE ST FORPTR(P2) —2(P3)

0880 40 LDE _ 31 P1 5 CURSOR NOW POINTS TO FIRST
0881 9850 JZ $ADD 5 DONT 0C0 %20 ; STATEMENT OF DO-LOOP
0883 9410 JP SUP

0885 C100 5DOWN: LD 0(P1)

0887 €80 ST EREG(P1)

0889 C501 LD

088B 94F8 JP

088D C100 LD FUNTIL H(P1IKG &

0B8F 94F4 P SDOUN R THIS ROUTINE IMPLE THE STATEMENT:

0891 C980 ST EREG{(P1) SHIPESDISP) = M(P1); ; CSTAT. =< REL-I

0893 904E P $ADD

0895 CIFE sUP: LD “2URL) SR: LD LO(P2) ;LOKW BYTE GOES TO STATUS
0897 CAEA ST TEHP (P22 M1 OF7 ; BUT WITH IEN BIT CLEARED
0899 CAFF LDI -1 cAS

089B C9FE sT —2(P1) JrP %20

089D T450 LDI 80 P E13

08SF CSFF ST —1{P1) .

08A1 €501 $UPL: LD 214P1) TEXT

08A3 94FC JP SUPL

08AS C100 LD OPL)

08A7 94FB JP SUPL

0BAY 35 UPAH Pi I L0, HI

08AA CAEE ST HI{F2)

0BAC 35 XPAH P1 s POINT P23 AT AE STACK
08AD 31 XPaL P LSTK(PZ)

OBAE CAEF ST LO(P2) LSTK(PZ}

08B0 31 XPAL 5 Pz

08B1 C2EF LD LOIPZ)

08B3 02 ccL ~2(P3) i STATUS REG 1S LOW BYTE
08B4 70 ADE 095D C400 o

08B5 C400 LDI o ; ; 5 O9SF CBFF —1{P2) i ZERD IS HIGH BYTE

08B7 FZEE ADD HI(P2) 0961 POEE x21

08B9 E2EE XOR HI(P2)

OSBE D4FO0 ANT OF0

08BD 9803 Jz BUPZ

0BBF C400 LDI

08C1 01 %AE

08C2 C4FF $UP2: 1DI

08C4 C980 SUP3: ST STATEMENT

08C6 CSFF Lo

08C8 94FA JP HI(PZ) ;GET HIGH BYTE OF ADDRESS
08CA C101 LD P3

0BCC E450 XRI LO(PZ) JGET LOW BYTE

0SCE 9804 Jz P3 5P3 ~> USER’S ROUTINE
08D0 C100 LD e-1(P2) i CORRECT P3

08D2 $OFO SR P3 s CALL ROUTINE (PRAY IT RORKS)
08D4 C2EA SUP4: LD TENF{FZ) P2, VARS ; RESTORE RAH POIMTER
08D6 C900 ST O(P1) %21 5 RETURN

08De C40D LDI oD

08DA CP01 ST 1P

0epc 40 LDE *

08DD 9CO4 JNzZ SADD #

08DF C40Z 1.DI 2 .

0SE1 908 Ei1ZA: JHP Eiz

OBE3 C2E7 $ADD: LD CHRNUM (P2} S THE ‘DO’ STATEMENT.

OBES 9884 XivA: JI X19

0BE7 C2F1 LD PILOW(PZ) N)

08E9 31 XPAL Pl 0974 CIFF DOPTR(F2) s CHECK FOR STACK OVERFLOW
OSEA C2FO LD PLIHIGH(PZ) 0976 E4EA L (FORSTIO)

O8EC 35 XPAH Pl 0978 $CO4

OSED C2F3 LD LABLLO(PZ) SPOINT P3 AT INSERTION FLACE 0974 C40A 10

OSEF 33 XPAL P2 0970 FOD2 Ei4

08FO C2F2 LD LABLRI(PZ) OF7E AAFF DOPTR(PZ}

08F2 37 XPAH P3 0980 AAFF DOPTR(F2)

OSF3 C2F7 LD HILINE(PZ) sPUT LINE MUMBER IMTO TEXT 0982 33 P3

08FS CFO1 ST 21(P2) 0933 C410 H(DOSTAK)

OBF7 C2F& LD LOLINE(PZ) 0985 37] ;P3 -> TOP OF DO STACK
O8F9 CFO1 ST 21(P2) 0986 35 s SAVE CURSOR ON THE STACK
O8FB C2E7 LD CHRNUM(PZ) P ST g 4 TEX 0987 CBFF

OSFD CFO1 ST 21(F2) D989 35

O0SFF CS01 $ADDi: LD @1(P1) ; 1BRS 0984 31

0901 CFO1 sT e1(F3) ; INTO TEXT 098B CBFE

0903 E40D %R1I oD 0980 31

CA 94025 Page 45

PR

Nov./Dec., 1978

093E YOBE XZZ: IMF X21

i
i® PUSH 1 ON ARITHMETIC STACK #

i TOF OF RAM FUNCTION #® 0A30 AAFD LIT1: ILD LSTK(P2)
i 0A32 AAFD ILD LSTK(P2)
0A34 33 XPAL P3
. LOCAL 0A35 C410 LDI H(AESTK)
0990 CZE® TOF: LD TEMPZ(P2) i SET P3 TO POINT TO 0A37 37 XPAH P3
0992 37 XPAH P3 ; START OF NIBL TEXT OA3E C400 LDI o
0993 C2ES LD TEMP3(F2) OA3A CBFF ST -1(P3)
0995 33 XPAL P3 OA3C C401 LDI 1
0996 TIOO $0: Lo (P3) ;HAVE WE HIT END OF TEXT? OASE CBFE ST Z2(p3)
0995 402 JP $1 ;NO - SKIP TO NEXT LINE 0840 90EA aMP x24
099A 9007 JMP $2 JYES — PUT CURSOR ON STACK
099C C302 $1: LD 2(F3) 5 BET LENGTH OF LINE
O9YE 01 XAE ;
0F9F 780 LD @EREG(P3) i SKIP TO NEXT LINE P FOR-LOOP INITIALIZATION =
09A1 YOF3 JIMP $0 ;60 CHECK FOR EOF ;
09A3 ©702 $2: LD @2(P3) iP3 1= P3 + 2
09AS AAFD ILD LSTK(P2) i SET P3 TO STACK, SAVING . LOCAL
09A7 AAFD ILD LSTK(P2) ; OLD P3 (WHICH CONTAINS TOP) 0p42z C2FE SAVFOR: LD FORPTR(P2) i CHECK FOR FOR STACK
09A% 33 XPAL P3 ; ON IT SOMEHOW OA44 E4AL XRI L(PCSTAK) i OVERFLOW
09AA 01 XAE 0R46 9CO4 JINZ $1
O9YAB C410 LDI H(AESTK) 0A48 C40A LDI 10
09AD 37 XPAH P3 OA4A 90E2 EI7: JMP E16A
O9AE CEBFF ST -1(P3) OA4C E4A6 $1: XRI L(PCSTAK)
O9BO 40 LDE OA4E 31 XPAL P1 i POINT P1 AT FOR STACK
09E1 CBFE ST -2(P3) OA4F CAF1 ST P1LOW(P2) i SAVING OLD P1
O9E3 $OD9 JMP X22 0OAS1 C410 LDI H(FORSTK)
OAS3 35 XPAH P1
OAS4 CAFO ST P1HIGH(P2)
i 0AS6 C2FD LD LSTK(P2) i POINT P3 AT AE STACK
i SKIP TO NEXT NIBL LINE * 0ASS 33 XPAL P3
i OAS5% C410 LDI H(AESTK)
OASB 37 XPAH P3
09BS CSO1 IGNORE: LD e1(P1) i SCAN TIL WE’RE PAST 0ASC C3F9 LD —7(P3) S GET VARIABLE INDEX
09E7 E40D XRI i) ; CARRIAGE RETURN OASE CDO1 ST @1(P1) ; SAVE ON FOR-STACK
09B9 9CFA JINZ IGNORE 0ALO C3IFC LD -4(P3) 5 GET L(LINIT)
09BB 3F XPPC P3 i YES — RETURN 0A62 CDO1 ST e1(P1) i SAVE
OAb4 C3FD LD -3(P3) SGET H(LIMIT)®
0ALL CDO1 ST e1(P1) i SAVE
i OR&E C3FE LD -2(P3) i GET L(STEP)
i MODULO FUNCTION * 0AGA CDO1 ST e1(P1) 5 SA
i ORGC C3FF LD —-1(P3) i GET H(STEP)
OAGE CDO1 ST @1(P1) ;
09BC C2FD MODULO: LD LSTK(P2) ; THIS ROUTINE MUST BE 0270 Ezm 'p P1LOW(P2) ;ﬁ‘ﬁ(pn
O9BE 33 XPAL P3 i IMMEDIATELY AFTER A oA72 CDO1 ST @1(P1) 3 SAVE
O9BF C410 LDI H(AESTK) ; DIVIDE TO WORK CORRECTLY 0a74 C2F0 LD PLHIGH(P2) T BET HPL)
09C1 37 XPAH P3 0A76 CDO1 ST e1(P1) i SAVE
09C2 C303 LD 3(P3) iGET LOW BYTE OF REMAINDER OA78 35 XPAH P1 # RESTORE OLD P1
09C4 CBFE sT -2(P3) i PUT ON STACK OA79 C2F1 LD P1LOW(P2)
09C6 €302 LD 2(P3) i GET HIGH BYTE OF REMAINDER OA7B 31 XPAL P1
09C8 CBFF ST —1(P3) i PUT ON STACK OA7C CAFE ST FORPTR(P2) i UPDATE FOR STACK PTR
09CA 20C2 X23: JMP X22 OA7E C7FC LD e-4(P3)
09CC P0AE El16: JMP E15 0ABO 33 XPAL P3
0AB1 CAFD ST LSTK(P2) i UPDATE AE STACK PTR
OAB3 90A7 X25: JHP X24
i RANDOM FUNCTION *
i i
i FIRST PART OF ‘NEXT VAR‘ «
. LOCAL ;
O9CE C©408 RANDOM: LDI 8 ;LOOP COUNTER FOR MULTIPLY
09D0 CAEB ST NUM(P2) . LOCAL
09D2 C2ES LD RNDX (P2) 0ABS C2FE NEXTV: LD FORPTR(P2) i POINT P1 AT FOR STACK,
09D4 01 XAE 0AB7 E48A XRI L(FORSTK) i CHECKING FOR UNDERFLOW
09DS C2E4 LD RNDY (P2) OABY 9CO4 JINZ 81
09D7 CAEY ST TEMP2(P2) OASB C40B LDI 11 i REPORT ERROR
09D CZES $LOOP:. LD RNDX (P2) iMULTIPLY THE SEEDS BY 9 0ASD 90BB JHP E17
09DB 02 ccL OASF E48A $1: XRI L(FORSTK)
09DC 70 ADE 0A91 31 XPAL P1
09DD 01 XAE O0A92 CAF1 ST P1LOW(P2) i SAVE OLD P1
O9DE C2E4 LD RNDY (P2) 0A94 C410 LDI H(FORSTK)
09EO 02 ccL 0A96 35 XPAH P1
O9E1 F2E9 ADD TEMP2(P2) 0A97 CAFO ST P1HIGH(P2)
O9E3 CAE4 ST RNDY (P2) OA99 C2FD LD LSTK(P2) i POINT P3 AT AE STACK
09ES BAEB bLD NUM(P2) OASB 33 XPAL P3
09E7 9CFO JINZ $LOOP 0A9C C410 LDI H(AESTK)
O9E9 40 LDE iADD 7 TO SEEDS OAYE 37 XPAH P3
09EA 02 ccL OA9F C7FF LD e-1(P3) i GET VARIABLE INDEX
O9EB F407 ADI 7 OAA1 E1F9 XOR -7(P1) i COMPARE WITH INDEX
O9ED 01 XAE OAA3 9804 Jz $10 i ON FOR STACK: ERROR
O9EE C2E4 LD RNDY (P2) OARS C40C LDI 12 i IF NOT EQUAL
09F0 02 ccL OAA7 90A1 E18: JMP E17
09F1 F407 ADI 7 0ARY EIF? $10: XOR -7(P1) i RESTORE INDEX
O09F3 1E RR OAAB 01 XAE i SAVE IN EREG
09F4 CAE4 ST RNDY (P2) OAAC €280 LD EREG(P2) i GET L(VARIABLE)
09F6 AAEL ILD RNDF (P2) i HAVE WE GONE THROUGH ORAE 02 ccL
09F8 9803 Jz $1 i 256 GENERATIONS? OARF F1FC ADD -4(P1) i ADD L (STEP)
O9FA 40 LDE i IF S0, SKIP GENERATING OAB1 CABO 3T EREG(P2) i STORE IN VARIABLE
O9FB CAES ST RNDX (P2) i THE NEW RNDX 0AB3 CBOO s (P3) i AND ON STACK
O9FD C2FD $1: LD LSTK(P2) s START MESSING WITH THE STACK OABS C601 LD e1(P2) ; INCREMENT RAM PTR
OSFF 33 XPAL P3 OAB7 €280 LD EREG(P2) i GET H(VARIABLE)
OADO C410 LDI H(AESTK) OABY F1FD ADD -3(P1) i ADD H(STEP)
0A02 37 XPAH P3 0OABB CAS0 ST EREG(P2) i STORE IN VARIABLE
0AD3 C401 LDI 1 iFIRST PUT 1 ON STACK OABD CBO1 ST 1(P3) i AND ON STACK
OAOS CBOO ST (P3) OABF C6FF LD e-1(P2) s RESTORE RAM POINTER
OAD7 C400 LDI [OAC1 CIFA LD -6(P1) iGET L(LIMIT)
0ADY CBO1 ST 1(P3) OAC3 CBO2 ST 2(P3) iPUT ON STACK
OAOB C3FE LD -2(P3) i PUT EXPR2 ON STACK OACS CIFB LD -S(P1) i GET H(LIMIT)
OAOD CBO2 ST 2(P3) OAC7 CBO3 ST 3(P3) i PUT ON STACK
OAOF C3FF LD -1(P3) 0AC® C1FD LD -3(P1) i GET H(STEP)
OA11_CBO3 ST 3(P3) OACB 9410 JP $2 i IF_NEGATIVE, INVERT
0A13 C3FC LD —-4(P3) i PUT EXPR1 ON STACK OACD C404 LDI 4 i ITEMS ON A E. STACK
0A1S CBO4 ST 4(P3) OACF CAEB ST NUM(P2) iNUM = LOOP COUNTER
0Al7 C3FD LD —3(P3) OAD1 C701 $LOOP: LD e1(P3) i GET BYTE FROM STACK
OA1S CEOS ST 5(P3) OAD3 E4FF XRI OFF i INVERT IT
OA1B C2E4 LD RNDY(P2) i PUT RANDOM # ON STACK OADS CBFF ST -1(P3) i PUT BACK ON STACK
OALD CBFE ST ~2(P3) OAD7 BAEB DLD NUM(P2) ;DO UNTIL NUM = O
OAIF C2ES LD RNDX (P2) OADS 9CFé& JNZ sLooP
0A21 E4FF XRI OFF OADB 9002 JHP 3
0A23 D47F ANT O7F OADD C704 $2: LD e4(P3) i UPDATE AE STACK POINTER
0A25 CBFF ST ~1(P3) OADF 33 $3: XPAL P3
0A27 C706 LD @6(P3) iADD & TO STACK POINTER OAEO CAFD ST LSTK(P2)
0A29 33 XPAL P3 OAE2 C2F1 LD P1LOW(P2) i RESTORE OLD P1
0A2A CAFD sT LSTK(P2) OAE4 31 XPAL P1
OAZC 909C X24: JMP X23 OAES C2FO LD P1HIGH(P2)
OA2E $O9C E16A: JMP E16 OAE7 35 XPAH P1
OAES 9099 X26: JMP X25

Page 46 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Nov./Dec., 1976

OAREA
OAEC
OREE
OAFO
OAF1
OAF3
OAFS
OAF&
OAF8
OAF9
OAFB
OAFC
OAFE
OAFF
0OBO1
0BO2
0BO4

0B0&
0OBO8
0BO?
OBOB
OBOC
OB12
OB14
OB16
OB18
OB1A
OB1B
OB1iC
OB1E
OB20

0B22
oB24
OB2S
0B27
oB2g
OB2A
0B2C
OB2E
0B30

OB32
0B34
OB3S
oB37
0B38
OB3A
OB3C
OB3E
0OB40
OR42
oB44
0B46
0oB48
OB4A
OB4C
OB4E
OB50

OBSZ

0BS54 :

OBSS
OBS7
OB58
OBS5A
OBSE
OBSD
OBSE
0B&O
OB61
OB63
OB64
OB&&
0OB&67
OBé&8
OB&6A
OB&C
OB&E

OB70 O

OB71
0OB73

CZEE

C2EF
31

CSo01
E40D
?8D0O
E40D
3F

06

D420
9CF2
90Cs

CZEE
37

C2EF
33

C501
CFO1
E40D
9CF8
0B

C2EF

CZEE
37

€501
E422
P80E
E42F
9C04
c407
$OBE
E40D
CFO1
YOEC
caop
CBOO
$ODE

SCF3

Nov./Dec., 1976

P SECOND PART OF

“NEXT VAR *
i
NEXTV1: LD LO(P2) i IS FOR-LOOP OVER WITH?
Jz SREDO iNO - REPEAT LOOP
LD FORPTR(P2) i YES - POP FOR-STACK
ccL
ADI -7
sT FORPTR(P2)
XPPC P3 JRETURN TO I.L. INTERPRETER
$REDD: LD FORPTR(P2) i POINT P3 AT FOR STACK
XPAL P3
LDI H(FORSTK)
XPAH P3
LD -1(P3) iGET OLD P1 OFF STACK
XPAH P1
LD -2(P3)
XPAL P1
JMP X26
E19: JMP _E18
i
R PRINT MEMORY AS STRING *

i THIS ROUTINE IMPLEMENTS THE STATEMENT

i ‘PRINT” -8 FACTOR
. LocaL
PSTRNG: LD. HI(P2) iPOINT P1 AT STRING TO PRINT
XPAH P1
LD LO(P2)
XPAL P1 -
LDPI P3, PUTC-1 iPOINT P3 AT PUTC ROUTINE
$1: LD e1(P1) i GET A CHARACTER
XRI oD ;IS IT A CARRIAGE RETURN?
Jz X26 i YES — WE’RE DONE
XRI oD iNO — PRINT THE CHARACTER
XPPC P3
CSA i MAKE SURE NO ONE IS
ANI 020 i TYPING ON THE TTY
JNZ 31 ; BEFORE REPEATING LOOP
JHMP X246
i
P % INPUT A STRING *

; THIS ROUTINE IMPLEMENTS THE STATEMENT:

i “INPUT” “$7 FACTOR

ISTRNG: LD HI(P2) i GET ADDRESS TO STORE THE
XPAH P3 i STRING, PUT IT INTO P3
LD LO(P2)
XPAL P3

$2: LD e1(P1) JGET A BYTE FROM LINE BUFFER
ST e1(P3) iPUT IT IN SPECIFIED LOCATION
XRI oD i DO UNTIL CHAR = CARR. RETURN
JNZ $2

X27: JHP X26

i

P STRING CONSTANT ASSIGNMENT *

i

i THIS ROUTXNE IMPLEMENTS THE STATEMENT:
i “%$7 FACTOR ‘= STRING

. LOCAL

PUTSTR: LD LO(P2) ;GET ADDRESS TO STORE STRING,
XPAL P3 ; PUT IT INTO P3
LD HI(P2)
XPAH P3

SLOOP: LD e1(P1) iGET A BYTE FROM STRING
XRI s ;s CHECK FOR END OF STRING
Jz $END
XRI “us71 op i MAKE SURE THERE’S NO CR
INZ st
LDI 7
JMP E19 JERROR IF CARRIAGE RETURN

$1: XRI oD s RESTORE CHARACTER
ST e1(P3) s PUT IN SPECIFIED LOCATION
Jup $LOOP 5 GET NEXT CHARACTER

$END: LDI oD ; APPEND CARRIAGE RETURN
ST (P3) ; TO STRING
JHP x27

i

i MOVE STRING *

i THIS ROUTINE IMPLEMENTS THE STATEMENT

i ‘%7 FACTOR “=- ‘87 FACT
. LocAL
MOVSTR: LD LSTK(P2) iPOINT P3 AT A.E. STACK
XPAL P23
LDI H(AESTK)
XPAH P3
Lo e-1(P3) i GET ADDRESS OF SOURCE STRING
XPAH P1 i INTO P1
Lo e-1(P3)
XPAL P1
LD e-1(P3) i GET ADDRESS OF DESTINATION
XAE i STRING INTO P3-
LD e-1(pP3)
XPAL P3
ST LSTK(P2) i UPDATE STACK POINTER
LDE
XPAH P3
$LOOP: LD e1(rP1) i GET A SOURCE CHARACTER
ST e1(P3) iSEND IT TO DESTINATION
XRI oD i REPEAT UNTIL CARRIAGE RET.
JZ Xx27
csA i OR KEYBOARD INTERRUPT
ANI 020
JNZ $LOOP

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park. CA 94025

OB75 90B9

OB77
OB79
OB7B
OB7C
OB7E
OB7F
0OBS1
0B83
0B85
0oB87

AAFD
AARFD
33

C410

C2ZF6
CBFE
C400
CBFF
PO0A7

0B89
0B8B
0BSD
OBSF
OB91
0B93

C2EF
D407
9C02
C401
CAF6&
3F

OB?4
OB%6
OB%8
OB%A
0B9C
OB%E
0BAO
OBAZ 3F
OBA3
OBAS 01
OBASL
OBAB
OBAA 40
OBAB
OBAC' 70
OBAD 01
OBAE
OBBO
OBB2 40
OBB3
OBBS
OBB7
OBBS 3F

OBBA C2E9
OBBC 35
OBBD C2E8
OBBF 31
OBCO 3F

OBC1 35
OBC2 01
OBC3
OBC4 35
OBCS 40
OBCé 1iC
OBC7 1C
OBC8 1C
OBCY 1C
OBCA
OBCC 3F

OBCD
OBCF
OBDO C2EZ
OBD2 21

OBD3 C40D
OBDS C9FF
OBD7 CA4FF
OBD9 C900
OBDEB C901
OBDD 3F

C2E?

OBDE C2E®
OBEO 35

MR x27
i PUT PAGE NUMBER ON STACK &
PUTPGE: ILD LSTK(P2)
ILD LSTK(P2)
XPAL P3
LDI H{AESTK)
XPAH P3
LD PAGE(P2)
ST =2(P3)
LDI o]
sT -1(P3)
JMP x27
i
i ASSIGN NEW PAGE ®
. LocaL
NUPAGE: LD LO(P2) iGET PAGE & FROM STACK,
ANI 7 i GET THE LOW 3 BITS
JNZ 80 i PAGE O BECOMES PAGE 1
LDI 1
$0: ST PAGE(P2)
XPPC P3 i RETURN
i® FIND START OF PAGE *
i
i THIS ROUTINE COMPUTES THE START OF THE CURRENT TEXT PAGE,
i STORING THE ADDRESS IN TEMP2(P2) [THE HIGH BYTEJ, AND
3 TEMP3(P2) C[THE LOW BYTEI.
FNDPGE: LD PAGE(P2)
XRI 1 s SPECIAL CASE IS PARGE 1, BUT
JINZ $1 i OTHERS ARE CONVENTIONAL
LDI H(PGHM) yPAGE 1 STARTS AT ‘PGH/
ST TEMP2(P2)
LDI L(PGM)
ST TEMP3(P2)
XPPC P3 3 RETURN
$1: XRI 1 i RESTORE PAGE @
XRE iSAVE IT
LDI 4 i LOOP COUNTER = 4
ST NUM(P2)
$LOOP: . LDE iMULTIPLY PAGE# BY 146
cCL
ADE
XAE
DLD NUM(P2)
JNZ $LO0P
LDE
ST TEMP2(P2) i TEMPZ HAS HICGH BYTE
‘LDI 2 ;i OF ADDRESS NOW
ST TEMP3(P2) 1LOKW BYTE IS ALWAYS 2
XPPC P3
i N
i% MOVE CURSOR TO NEW PAGE *
CHPAGE: LD TEMP2(P2) i PUT START OF PAGE
XPAH P1 i INTO Pi. THIS ROUTINE
LD TEMP3(P2) + MUST BE CALLED RIGHT
XPAL P1 i AFTER ‘FNDPGE‘
XPPC P3 1 RETURN
P ¥ DETERMINE CURRENT PAGE *
DETPGE: XPAH P1 i CURRENT PAGE IS HIGH
XAE i PART OF CURSOR DIVIDED
LDE i BY 16
XPAH P1
LDE
SR
SR
SR
SR
ST PAGE(P2)
XPPC P3 i RETURN
i CLEAR CURRENT PAGE *
NEWPGM: LD TEMP2(P2) i POINT P1 AT CURRENT PAGE
XPAH P
LD TEMP3(P2)
XPAL 1
LDI oD 3 PUT DUMMY END-OF-LINE
ST =1(P1) i JUST BEFORE TEXT
LDI -1 iPUT -1 AT START OF TEXT
ST (P1)
ST 1(P1)
XPPC P3 i RETURN
P FIND LINE NUMBER IN TEXT *
i INPUTS: THE START OF THE CURRENT PAGE IN TEMP2 AND TEWMP3.
i THE LINE NUMBER TO LOOK FOR IN LO AND HI.
i1 OUPUTS: THE ADDRESS OF THE FIRST LINE IN THE NIBL TEXT
i WHOSE LINE NUMBER IS GREATER THAN OR EQUAL TO THE
i NUMBER IN HI AND LO, RETURNED IN ADRLO AND ADRHI.
. LacaL
FNDLBL: LD TEMP2(P2) i POINT P1 AT START OF TEXT
XPAH P1

Page 47

OBE1 C2E8 LD TEMP3(PZ2) oc72 JUMP NEW1

OBE3 31 XPAL P1 0c74 DFAULT: DO LIT1
OBE4 C100 $1: LD (F1) i HAVE WE HIT END OF TEXT? oC76 NEW1: DO DONE, POPAE, NUPAGE, FNDPGE, NEWPGM, NXT
OBE& E4FF XRI OFF
OBE® 9412 JF $2 i YES - STOP LOOKING ocsz STHMT: TST LET, “LE*, T~
OBEA 03 scL iNO - COMPARE LINE NUMBERS oce7 LET: TSTV AT
OBEE C101 LD 1(F1) ; BY SUBTRACTING oceR TST SYNTAX, =~
OBED FAEF CAD LO(P2) OC8E CALL RELEXP
OBEF 100 LD 0(P1) 0C%0 DO STORE, DONE, NXT
OBF1 FAEE CAD HI(P2Z) ;IS TEXT LINE # >= LINE #? 0Cos AT: TST IF, ‘@’
OBF3 9407 JP $2 i YES - STOP LOOKING 0Ce9 CALL FACTOR
OBFS 102 LD 2(P1) iNO — TRY NEXT LINE IN TEXT OCPE TST SYNTAX, *=7
OBF7 01 XAE OC9E CALL RELEXP
OBF3 CS80 LD @EREG(P1) i SKIP LENGTH OF LINE OCAD Do MOVE, DONE, NXT
OBFA YUES JMP $1
OBFLC 31 $2: XPAL P1 i SAVE ADDRESS OF FOUND LINE 0CA& IF: TST UNT, “ 14, “F*
OBFD CAF3 sT LABLLO(P2) i IN LABLHI AND LABLLO OCAA CALL RELEXP
OBFF 31 XPAL P1 OCAC TST IF1, “THE*, “N*
0Co0 35 XPAH 3 OCB2 IF1: DO POPAE, CMPR
0CO1 CAF2 ST LABLHI(P2) 0CB6 JUMP STMT
0co3 35 XPAH P1 0CB8 UNT: TST DO, “UNTIZ, ‘L’
0CO4 C2EF LD LO(PZ) iWAS THERE AN EXACT MATCH? OCBF Do CKMODE
OC06 E101 XOR 1(P1) occ1 CALL RELEXP
0Coe 9C07 INZ $3 occs Do DONE, POPAE, UNTIL, DETPGE, NXT
OCOA C2EE LD HI(P2Z)
0COC E100 XOR 0(P1) 0CcCD Do: TST GOTO, “D”, “0*
OCOE 9CO01 JNZ $3 iNO - FLAG THE ADDRESS 0cD1 Do CKMODE. DONE, SAVEDO, NXT
oC10 3F XPPC P3 i YES — RETURN NORMALLY
oC11 C2FZ $3: LD LABLHI(P2) s SET SIGN BIT OF HIGH PART ocopy GOTO: TST RETURN, “G”, "0
0C13 DC8O ORI 080 i OF ADDRESS TO INDICATE ocoD TST GOSUB, “T7, 70
OC1S CAFZ sT LABLHI(P2) i INEXACT MATCH OF LINE #°S OCE1 CALL RELEXP
0C17 3F XPPC P3 OCE3 Do DONE
PAGE “ I. L. MACROS‘ OCES JUMP GO1
OCE7 GOSUB: TST SYNTAX, “SU”, “B*
5 OCEC CALL RELEXP
i 1. L. MACROS * OCEE DO DONE, SAV
i OCF2 601: Do FNDPGE, POPAE, FNDLBL, XFER, NXT
. LOCAL 5 OCFC RETURN: TST NEXT, “RETUR”, *N”
0Do4 Do DONE, RSTR, DETPGE, NXT
2000 $TSTBIT = TSTBIT#256
8000 $CALBIT = CALBIT#256 opoc NEXT: TST FOR, “NEX”, “T*
4000 $JMPBIT = JMPBIT#256 oD12 DO CKMODE
oD14 TSTV SYNTAX
. MACRO TST,FAIL,A,B ob1g DO DONE, NEXTV
.DBYTE S$TSTBIT!FAIL ob1c cALL GTROP
CIF =2 OD1E Do POPAE, NEXTV1, DETPGE, NXT
.BYTE “A”!080
. ELSE o0D26 FOR: TST STAT, “FO”, R’
.ASCII ‘A’ 0D2B Do CKMODE
.BYTE “B”!080 . oD2D TSTV SYNTAX
. ENDIF 0D31 TST SYNTAX, *=7
. ENDM 0D34 CALL RELEXP
0D36 TST SYNTAX, “T*, “0°
.MACRO TSTCR, FAIL oDn3a CALL RELEXP
.DBYTE $TSTBIT!FAIL ob3c TST FOR1, “STE”, ‘P~
.BYTE 0D!080 oD4a2 CALL RELEXP
. ENDM 0D44 JUMP FOR2
0D46 FOR1: DO LIT1
. MACRO TSTV, FAIL oD4s FOR2: DO DONE, SAVFOR, STORE, NXT
.ADDR TSTVAR
.DBYTE FAIL 0D50 STAT: TST PGE, “STAZ, “T*
. ENDM 0DS6 TST SYNTAX, =7
oDs9 CALL RELEXP
. MACRO TSTN, FAIL oDSB Do POPAE, MOVESR
.ADDR TSTNUM ODSF DO DONE, NXT
.DBYTE FAIL .
. ENDM 0D63 PGE: TST DOLLAR; “PAG”, “E*
0D69 ST SYNTAX, =+
. MACRO JUMP, ADR oDsC cALL RELEXP
.DBYTE $JMPBIT!ADR OD&E DO DONE, POPAE: NUPAGE, FNDPGE, CHPAGE, NXT
. ENDM
oD7A DOLLAR: TST PRINT, “$*
. MACRO CALL, ADR 0D7D CALL FACTOR
.DBYTE $CALBIT'ADR OD7F TST SYNTAX, “=*
. ENDM ops2 TST DOLR1, “ "~
oDss Do POPAE, PUTSTR
. MACRO DO oD8? JUHP DOLR2
.MLOC 1 oDsB DOLR1: TST SYNTAX, “8*
. SET 1, ODSE CALL FACTOR
. Do # 0D0 DO XCHGP1, MOVSTR, XCHGP1
_ADDR #I oD%6 DOLR2: DO DONE, NXT
. SET I, I+1
. ENDDO OD9A PRINT: TST INPUT, “P, ‘R*
. ENDM ODSE TST PR1, “INZ, 7 T*
ODA3 PR1: TST PR2, 7"
.PAGE - I. L. TABLE~ ODA6 Do PRS
0DAS JUMP COMMA
; ODAA PR2: TST PR3, “$*
3 I. L. TABLE * ODAD cALL FACTOR
i ODAF Do XCHGP1, POPAE, PSTRNG., XCHGP1
0DB7 JUMP COMMA
oC1& START: DO NL INE ODB9 PR3: CALL RELEXP
octA PROMPT: DO GETL ODBB CALL PRNUM
ocic TSTCR PRMPT1 ODBD COMMA: TST PR4, 7, *
OC1F JUMP PROMPT 0DCo JUMP PR1
ocz1 PRMPT1: TSTN LIST opcz PR4: TST PRS, *; *
oc2s DO FNDPGE, XCHGP1, POPAE, FNDLBL, INSRT 0DCS JUMP PR&
OC2F JUMP PROMPT onc7 PRS: Do NLINE
once PR&: DO DONE, NXT
oc3t LIST: TST RUN, LIS, T~
oc37 DO FNDPGE opco INPUT: TST END, “INPU”, T
0C39 TSTN LIST1 obD4 Do CKMODE
oc3D Do POPAE, FNDLBL 0DDé& TSTV IN2
0c41 JUMP LIST2 ODDA Do XCHGP1, GETL
0C43 LIST1: DO CHPAGE) ODDE IND: CALL RELEXP
0C4s LISTZ: DO LST ODEO Do STORE, XCHGP1
0Cc47 LIST3: CALL PRNUM ODE4 ST IN3, 7, ¢
0cay DO LST3 ODE7 TSTV SYNTAX
OC4E JUMP START ODEB Do XCHGP1
ODED TST SYNTAX, *, *
oc4n RUN: TST CLR, “RU*, *N* ODFO JUMP
0C52 DO DONE ODF2 IN2: TST SYNTAX, “$~
ocs4 BEGIN: DO FNDPGE, CHPAGE, STRT, NXT ODFS CALL FACTOR
ODF7 Do XCHGP1, GETL, POPAE, ISTRNG, XCHGP1
oCsc CLR: TST NEW, “CLEA, “R* OEO1 IN3: DO DONE, NXT
0Ced Do DONE, CLEAR, NXT
OEOS END: TST ML, “EN?, “D*
ocey NEW: TST STMT, “NE*, "W’ OEOA Do DONE, BREAK
OC&E TSTN DFAULT

Page 48 Dr. Dobb’s Journal of Computér Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Nov./Dec., 1976

OEOE
OE14
OE16

OE22
OE27
OE2B
OE2D
OE2F

OF18

OF1C
OF 1F
OF21
OF 24
OF26
OF29

OF2B
OF2F

OF37
OF3D
OF41
OF 45

Nov./Dec., 1976

ML TST REM, "LIN’; 7K”
CALL RELEXP
Do DONE, XCHGP1, POPAE, CALLML, XCHGP1, NXT
REM: TST SYNTAX, “RE“» M’
Do IGNORE, NXT
SYNTAX: DO ERR
ERRNUM: CALL PRNUM
Do FIN
; NOTE: EACH RELATIONAL OPERATOR (EQ, LEQ. ETC.) DOES AN
i AUTOMATIC “RTN‘ (THIS SAVES VALUABE BYTES!)
RELEXP: CALL EXPR
TST REL1, 7=7
CALL EXPR
Do EQ
REL1: TST REL4, “<7
TST REL2, 7=~
CALL EXPR
Do LEQ
REL2: TST RELS3, “>7
CALL EXPR
Do NEQ@
REL3: CALL EXPR
Do Lss
REL4: TST RETEXP, 7>7
TST RELS, *=~
CALL EXPR
Do GEQ
RELS: CALL EXPR
GTROP: DO GTR
EXPR: TST EX1, 7=7
CALL TERM
Do NEG
JUMP EX3
EX1: TST EX2, 7+7
EX2: cALL TERM
EX3: TST EX4, "+7
CALL TERM
Do ADD
JUMP EX3
EX4: TST EXS, =7
CALL TERM
Do SUB
JUMP EX3
EXS: TST RETEXP, 07, "R’
CALL TERM
Do OROP
JUMP EX3
RETEXP: DO RTN
TERM: CALL FACTOR
T1: TST T2, ‘w7
CALL FACTOR
Do MUL
JUMP T
T2: TST T3, 777
CALL FACTOR
Do DIV
JUMP T1
T3: TST RETEXP, “AN“, ‘D~
CALL FACTOR
Do ANDOP
JUMP T1
FACTOR: TSTV F1
DO IND, RTN
F1: TSTN F2
DO RTN
F2: TST F3i 7%
Do HEX, RTN
F3: TST Fa, 7 (7
CALL RELEXP
TST SYNTAX,) *
DO RTN
F4: TST FS, ‘@’
CALL FACTOR
Do EVAL, RTN
FS: TST Fé&, “NO7, “T7
CALL FACTOR
Do NOTOP, RTN
Fé&: TST F7, “STAZ, “T*
DO STATUS, RTN
F7: TST F8, 770", ‘P
Do FNDPGE, TOP, RTN
F8: TST F9, “MO7, “D”
CALL DOUBLE
Do DIV, MODULO, RTN
F9: TST F10, “RN”, “D”
CALL DOUBLE
DO RANDOM, SUB, ADD, DIV, MODULD; ADD: RTN
F10: TST SYNTAX, “PAG”, “E*
Do PUTPGE, RTN
DOUBLE: TST SYNTAX, “ (¢
CALL RELEXP
TST SYNTAX, 7, 7
CALL RELEXP
TST SYNTAX,)7
Do RTN
PRNUM: DO XCHGP1, PRN
PRNUM1: DO DIV, PRN1, XCHGP1, RTN
rAGE “ERROR MESSAGES”
K ERROR MESSAGES *
. MACRO MESSAGE,A, B
. ASCII “A“
BYTE “B” 1080
ENDM
MESGS: MESSAGE “ ERRO’, ‘R

MESSAGE “ARE”, “A”
MESSAGE “STM”, “T~
MESSAGE “CHA", "R~

PN

OF 49
OF4D
OFS51
OFS5S
OFS9
OFSD
OF61
OF 65
OF68

OF&F

OF73
OF75
OF77
OF78
OF7A
OF7B
OF7C
OF7E
OF80

OF82 B8F04
OF84 06

OF85
.OF87

OF89 06

OF8A
OF8C
OF8E
OF8F
OF91
OF93
OF 94
OF9&
OF98
OF9A
OF9C
OF9E

OFA0 CAEA

OFA2

OFA3 01

OFA4

‘OFAS 01

OFA& 06
OFA7 DCO1
OFA? EZEA
OFAB 07
OFAC BREB
OFRE 9CDF

OFBO
OFB1

OFB3 07
OFB4 8FO08
OFB6 40
OFB7 DA47F

OFB? 01

OFBA 40
OFBB 3F
OFBC 90BS

S

MESSAGE “SNT”, “X*]
MESSAGE “VAL”, ‘U’ i 6
MESSAGE “END’, “"“ i'7
MESSAGE “NOG’., “0”]
MESSAGE “RTR’, *N‘ P9
MESSAGE. “NES”, “T* i 10
MESSAGE “NEX*, *T* P11
MESSAGE ‘FO’, ‘R’ ;12
MESSAGE “DIV”, “0” i 13
-MESSAGE “BR’, “K* 1 14
MESSAGE “UNT”, L’ i 1S
PAGE * TELETYPE ROUTINES
] BET CHARACTER AND ECHO IT &
i
i .
. LOCAL
GECO: LDI 8 iSET COUNT = 8
ST NUM(P2)
csA i SET READER RELAY
ORI 2
CAS
81 csA JWAIT FOR START BIT
ANI 020
JINZ $1 1 NOT FOUND
LDI 87 JDELAY 1/2 BIT TIME
pLY 4
csA i IS START BIT STILL THERE?
ANI 020
JNZ 81 i NO
CSA i SEND START BIT
ANI %2 s RESET READER RELAY
ORI 1
cAS
$2: LDI 133 iDELAY 1 BIT TIWE
pLY 8
CsA iGET BIT (SENSEB)
ANI 020
Jz $3
LDI 1
JHP 4
83 LDI [
JINZ $4
84: ST TEMP(P2) i SAVE BIT VALUE (O OR 1)
RRL JROTATE INTO LINK
XAE
SRL i SHIFT INTO CHARACTER
XAE i RETURN CHAR TO E
csA JECHO BIT TO OUTPUT
ORI 1
XQR TEMP(P2)
CAS
DLD NUM(P2) i DECREMENT BIT COUNT
INZ $2 1 LOOP UNTIL O
CsA i SET STOP BIT
ANI OFE
CAS
DLY 8 i DELAY APPROX. 2 BIT TIMES
LDE iAC HAS INPUT CHARACTER
ANI o7F
XAE
LDE
XPPC P3 * RETURN
JMP GECO
¥
i PRINT CHARACTER AT TTY *
PUTC: XAE
LDI 255
LY 23
csA s SET OUTPUT BIT TO LOGIC O
ORI 1 i FOR START BIT. (NOTE INVER!
CAS
LDI 9 5 INITIALIZE BIT COUNT
ST TEMP3(P2)
PUTC1: LDI 138 JDELAY 1 BIT TIME
pLY 8
DLD TEMP3(P2) s DECREMENT BIT COUNT.
Jz PUTCZ
LDE i PREPARE NEXT BIT
ANI 1
ST TEMP2(P2)
XAE i SHIFT DATA RIGHT 1 BIT
SR
XAE
csA 4 SET UP OUTPUT BIT
ORI 1
XOR TEMP2(P2)
cAS iPUT BIT TO TTY
- JMP PUTC1
PUTC2: CSA i SET STOP BIT
AN OFE
cAS
XPPC P3 1 RETURN
JMP PUTC
.END _ ©
AESTK 1050 ANDOP OSFO AT 0cos
BREAK 0288 CALBIT 0080 ° CALLML 0963
CHEAT1 009B CHPAGE OBBA CHRNUM FFE7
CKMODE 0644 CLEAR 0051 CLEAR1 0056
cMP 0562 CMP1 0SC2 CMPZ OSCA
COMMA ODBD DETPGE OBC1 DFAULT 0C74
DO occp DOLLAR OD7A DOLR1 ODSB
DONE 0135 DONE1 0143 DONE2 0144
DOSTAK 107A DOUBLE OF1C EO 0150
E1 0195 E10 07C6 El1 0B1E
E12A O0BEl E13 0910 E14 0950
E16 09cC E16A OA2E E17 OA4A
E19 0BO4 E2 oicc E3A 028A
ES 030C E6 0378 E6A 03D2
ESA OLES ESB 06B2 E9 074F
EQ 054C EREG FFS0 ERR 0223
ERR2 0227 ERRNUM OE2D EVAL O7E6
EX2 OE69. EX3 OE&B EX4 OE74
EXECIL 0076 EXPR OESD F1 OEBO
F2 OEB6: F3 OEBD F4 OEC7
Fé& OEDB F7 OEES F8 OEFO
FACTOR OEAS FAIL OSE1 FAILHI FFEC

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Page 49

FAILLO FFED FALSE 05C8 FIN 02B2 FNDLBL OBDE
FNDPGE OB94 FOR oD26 FOR1 oD46 FOR2 oD4g
FORPTR FFFE FORSTK 108A GECO OF73 GEQ 0560
GEQ1 OSBE GETL 0753 GO1 OCF2 GOSUB OCE7
GOTO ocDg GTR 0355C GTR1 OSB3 GTROP OESB
HEX 0654 HI FFEE HILINE FFF7 IF OCAs
IF1 0CB2 IGNORE O9BS ILC1 00AA ILCALL 00RO
IN1 ODDE IN2Z ODFZ IN3 OEO1 IND 0534
INPUT ODCD INSRT 0820 ISTRNG 0B22 JMPBIT 0040
LABLHI FFFZ LABLLO FFF3 LBUF 10Dé LEQ 0558
LEQ1 0SAA LET ocs7 LIST 0Cc31 LIST1 0C43
LISTZ O0C45 LIST3 0C47 . LISTNG FFFS LIT1 OA30
Lo FFEF LOLINE FFF8 Lss 0554 Lssi 05A2
LST O2E1 LsST2 O2FF LST3 030E LST4 0314
LSTS 0324 LSTK FFFD MESGS OF37 ML OEOE
MODULO 0O9BC MOVE 0804 MOVESR 0949 MOVSTR 0BS52
MUL 037A NEG 0363 NEQ 0550 NEQ1 0599
NEW 0C69 NEW1 0C76 NEWPGM OBCD NEXT oDoc
NEXTV 0ABS NEXTV1 OAEA NLINE 0215 NOJUMP 009D
NOTOP OSF8 NUM FFEB NUPAGE OB89% NXT 028C
NXT1 02A% OROP OSF4 P1 D001 P1HIGH FFFO
P1LOW FFF1 P2 0002 P3 0003 PAGE FFFé
PCHIGH FFFA PCLOW FFFB PCSTAK 10A& PCSTK FFF9
PGE 0D63 PGM 1120 POPAE 0912 PR1 ODA3
PR2 ODAA PR3 ODBY PR4 oDncz PRS opc7
PR& oDCcy PRINT OD9A PRMPT1 0CZ1 PRN 0197
PRN1 O1CE PRNUM OF2B PRNUM1 OF2F PROMPT OC1A
PRS O17E PRS1 0193 PSTRNG OBO& PUTC OFBE
PUTC1 OFCB PUTC2 OFE3 PUTPGE OB77 PUTSTR OB32
RANDOM O9CE REL1 OE3A RELZ OE44 REL3 OE4B
REL4 OE4F RELS OES9 RELEXP OE31 REM OE22
RETEXP OE87 RETURN OCFC RNDF FFE& RNDX FFES
RNDY FFE4 RSTR 0148 RSTR1 0152 RSTRZ 0167
RTN OOFB RUN 0C4D RUNMOD FFF4 SAV O10F
SAVL 01ZB SAVZ 0131 SAVEDO 0974 SAVFOR OA42
SBRPTR FFFC SBRSTK 104A - SETZ 058D START 0C18
STAT 0DS0 STATUS 0952 STMT ocs2 STORE 04C9%
STRT 02ce SuB 034C SYNTAX OE2B T1 OESB
T2 OE?4 T2 OE?D TEMP FFEA TEMPZ FFE?®
TEMP3 FFE8 TERM OE8% TOP 0990 TST 00CS
TSTBIT, 0020 TSTNUM 04B4 TSTVAR O4ES UNT OCB8
UNTIL 0924 VARS 101C X0 OOEC X1 0165
X10 0O4EZ X11 0354A xi2 0597 X12A OSEE
X12ZB 0637 X12c 067A X13 O6E3 Xi4 0751
X15 O7B4 X1é O7E4 X17 0s1cC X19 086B
X19A O3ES . X20 0909 x21 O94E X2z 098E
X23 OYCA xz4 DAZC X25 OAS3 Xz6 OAES
x27 OB30 X4 D1CA X5 0221 X5A 0286
X6 020D X&A 030A X7 0344 Xg 0376
X9 O3EF XA 0439 X9B 04A4 XCHGP1 0639
XFER 0171 XFER1 0179 220001 101C 220002 1120
270003 OFBD 170004 OFBD ZZ0005 OFBD 270006 OFBD
170007 OF37 270008 OF37 7720009 OFBD ZZ000A '10D&
ZZ000B OFBD 27000C 101C ZZ000D OFBD ZZOOOE 0002
ZZO00DF 0002 220010 0006 270011 0002 270012 0003
270013 0002 270014 0002 2720015 0002 220016 0002
270017 0005 220018 0004 220019 0002 ZZ001A 0007
ZZ001B 0004 27001C 0004 210010 0003 ZZ001E 000Z
ZZOOLF 0006 270020 0005 120021 000Z 17002z 0003
270023 0006 270024 0005 220025 000Z 170026 0003
270027 0005 2720028 000z 120029 0002 ZZ00ZA 0005
2Z002B 0003 2Z002C 0003 22002D 0007 ZZ00ZE 0003
ZZ00ZF 0004 ZZ0030 0003 220031 0002 270032 0005
270033 0002 270034 0003 ZZ00335 0002 270036 0003
270037 0003 220038 0002 2720039 0006 ZZ003A 0003
2Z003B 0003 Z7003C 0007 ZZ2003D 0003 ZZOO3E 0002
ZZO0O3F 000Z 270040 0002 270041 0002 170042 0002
170043 0002 270044 0002 2710045 0002 170046 0002
170047 0OO0Z 220048 0002 120049 0002 ZZ004A 0002
2Z004B 000Z Z7004C 0002 ZZ004D 0002 2Z004E 0003
ZZO04F 0002 270050 0LOO3 1Z0051 0002 270052 0003
270053 0003 270054 0003 220055 0004 270056 0004
220057 0008 2720058 0003 270059 0002 2Z005A 0003
2Z005B 0005 $0 002A %0 0420 $0 O74F
0 0996 $0 0B71 $1 0043 s1 o1csé
$1 023D $1 0327 $1 0443 1 OSFA
$1 0LE7 $1 0772 1 0838 $1 0930
$1 097E $1 099C $1 O9FD $1 DA4C
$1 OABF $1 OB12 $1 0B46 $1 OBA3
1 OBE4 $1 OF7B $10 OAAT $2 O1FF
$2 025A $2 03A8 $2 0454 $2 0707
$2 07BZ # $2 0842 $2 O%A3 $2 OADD
$2 oBz8 $2 OBFC $2 OF8F $3 0261
$3 03D4 $3 04AC $3 084A $3 OADF
$3 oCit $3 OF9C $4 03F1 $4 0857
$4 OFAO $5 085SE $ABOR 06C& $ADD OBE3
$ADD1 O8FF $CALB 8000 $CR 0708 $DOWN 0885
SEND 04C3 $END O6AC SEND OB4C SENT1 04A6
SENTE 04EB SENTE O7Bé SEXIT 0402 $FAIL O04FB
$JMPB 4000 SLETR 047C $LOOP 002C $LOOP 0ODB
$LOOP 0203 $LOOP 0241 $LOOP 03B6&6 SLOOP 0440
$LOOP 046C $LOOP 0O&F7 $LOOP 09D9 $LOOP OAD1
$LOOP OB38 $LOOP OBé8 $LOOP OBAA $MAYB 050D
SMOVE ~ 084F $MSG 0247 SNEQ OOEE SNOT 0628
$0K O51A $0K 0688 $OR 0616 $POS 043B
$PRNT O1EF $REDO 093C $REDO OAF& SRET 06D&
$RUB O7CE $SCAN 00C7 $SHIF 0692 $SHIF 0714
$SKIP 0644 $TSTB 2000 suP 0895 SUP1L 08A1
$UP2 08C2 $UP3 08C4 $UP4 08D4 $XH o7c8

BXU 07aé

NO ERROR LINES
SOURCE CHECKSUM = 33FE
INPUT FILE 1:NIBL2. SRC

6502 STRING OUTPUT, REVISITED

Dear Mr. Warren, Oct. 6, 1976

In DDJ, Vol. 1, No. 8 (p. 33), Mr. Espinosa proposed the
exchange of “handy” subroutines to save bytes in space-
limited systems. He also presented an example, an ASCII
string output subroutine for the 6502 microprocessor. I
would like to submit a revised version of Mr. Espinosa’s sub-
routine. I have done extensive work on 6502’s with OSI’s
Model 400 microcomputer. During this time I have learned
several byte saving programming “tricks” which I would like
to pass on by illustration. Through a few simple changes I
was able to reduce the length from 40 to 2B (hex) bytes.
The result is a subroutine which works the same and saves
a few more bytes. The program demonstrates a few simple
“tricks”:

— Preservation of the Y index register on the stack (3
bytes saved)

— Replace JMP instruction (with ranges less than 128 bt
bytes) with forced relative branches. This permits
easier relocation of a generalized subroutine so it
may be used -elsewhere in memory.

— Make use of TYA instruction rather than saving the Y
index in a memory location and then adding it in later
(5 bytes saved).

— Test the carry flag condition and increment the high
order byte if set rather than adding 00 (2 bytes saved).

— Try to avoid dead space inside programs, and non-sero
page data storage (i.e. locations 0433 to 043F) (12
bytes saved).

Sincereiy,
Marcel Meier 8850 S. Spring Valley Dr.
Chagrin Falls, OH 44022
i STRINGOLE . REVISFD VERS1 0N
i DIRTRTINAL RY F?PINQRA
i REV INE RY M. METFR

10757

MR $400
AEFEF RO $47A
LT Fiill $FFFF

10 Frll $FE
HI Finl $FF
ez
HT TE7
;
A 04 REGIN S1A AKFFF SAVE Ar
GET RETURN AFDIK
FE o
FF HT
PUT Y TINTIFX [N ETACK
040E o1 SET LP INFIEX FOTNTFR
aaomn FE NFXT GET NFX1 CHARALTFR
040F 07 NONE TF NUL L. CHARACTFR
0411
0412 FF BF OUTRLUT THARACTER
FORCFI | O0F WITH
FS A REI ATIVE RRANCH
FXIT GET ATRING | FNGTH
FE AR 10 AN RETURN. AMTIRF 53 T0
FF =TA 10 OFFSFT
o7 T IF CARRY, INDREMENT HT
FF
NCAR LA REFIORE Y FROM STACK
TAY
: A 04 | 1A AKFEF RESTORE Al
Qa7 FE 00 JME (1) RETLRN 01 INSTRUCTION AFTFR NULL

IN-GROUP HUMOR FOR DINOSAUR USERS

We recently heard of some new instructions proposed for
some of the maxi computers of industry and business:

BRANCH & BOMB

BRANCH & HANG

PUNCH OPERATOR
BACKSPACE & EJECT DISC
BACKSPACE & PUNCH DISC

Oh well; we said it was in-group humor.

Page 50

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

TSC LIVES! THEY DO HAVE A PHONE
NUMBER

Technical Systems Consultants, Box 2574, West Lafayette,
IN 47906, peddles some interesting, low-cost micro software.
Several people have asked us if TSC is OK to dcs! with, stat-
ing that they were unable to locate a phone number or street
address. We wish to emphatically state that they are real;
theglgare reputable; and they do have a phone: (317) 742-
7509.

Nov./Dec., 1976

UPGRADED CP/M FLOPPY DISC OPERATING
SYSTEM NOW AVAILABLE

CP/M is a disk operating system designed for diskette-based
computer systems which use the Intel 8080 microcomputer.
The CP/M software package is now being offered to the small
computer user community. . .

Previously available only to OEM’s, CP/M has been in exist-
ence for over two years in various manufacturers’ products,
and thus has had extensive field testing. CP/M functions in-
clude file management, with console interaction, batch pro-
cessing, and program loading facilities. The overall operation
of CP/M closely resembles the standard features of the DEC
System-10. In particular, CP/M components include:

BDOS — the CP/M Basic Disk Operating System supports a named
file system, with up to 64 distinct files on each diskette. Files storage
is dynamically allocated and released as necessary, with algorithms for
optimal read/write head movement. Any file can contain as few as
zero bytes, and up to 250K bytes, depending upon the requirements of
the user program. Sequential and random access are supported.

CCP — the Console Command Processor interacts with the program-
mer’s console, providing the basic commands:

DIR selectively search the disk directory for files

TYPE type the contents of a file at the console

REN rename a specific file to a different name

ERA erase a given file or set of files from the disk

SAVE save memory on the disk for later reload or test
The CCP also supports automatic program load and execution of CP/M
system programs as well as user programs.

PIP — the CP/M Peripheral Interchange Program allows transfer of
files between various devices and disk files, as well as concatenation of
files on the diskettes.

SUBMIT — the batch processing features of CP/M allow the operator
to prepare command files with parametric substitution, which can be
subsequently automatically executed if typed by the operator.

ED — the CP/M editor allows preparation of programs and text
using powerful context editing and display commands.

ASM — the CP/M assembler is compatible with both the standard
Intel assembler and Processor Technology assembly language.

DDT — the CP/M Debugging Tool is a monitor which allows
symbolic program tracing, debugging, and testing.

LOAD — the loader prepared a ‘‘“memory image’ file from an
Intel format “’hex’’ file, ready for direct execution under CP/M.

DUMP — the dump utility prints the contents of a CP/M file
in hexadecimal at the user’s console.

SYSGEN — the system generation utility prints the contents of a
CP/M system diskettes from existing diskettes for back-up purposes.

The CP/M operating system is distributed for an Intel MDS
microcomputer development system, but can be easily altered
to operate with a wide variety of customized hardware envi-
ronments. Basic requirements are:

a) Intel 8080 — based microcomputer mainframe

b) At least 16K of read/write main memory

¢) One or two IBM-compatible disk drives and controller

Given these facilities, the CP/M disk system is “patched” by
the user to communicate with the specialized hardware. The
exact steps to follow in programming and patching the CP/M
system are given in the manual CP/M System Alteration Guide.
In fact, several popular mainframe and controller manufactur-
ers currently support their own CP/M patch.

The CP/M system is distributed on an IBM-compatible dis-
kette in machine-code form only (source programs are avail-
able for internal use, or distribution with custom hardware at
additional cost), along with complete documentation required
for operating CP/M and programming in the CP/M environ-
ment. The software is licensed for use by the individual who
purchases CP/M, and is registered and serialized to prevent
unauthorized copying and distribution. In particular, the
licensing agreement specifically disallows copying CP/M for
use by any individual other than the registered owner. The
registered owner of a CP/M system receives notices of updates
and becomes a member of the CP/M User’s Library. System
documentation includes:

. CP/M Features and Facilities — this manual presents the organiza-
tion of the CP/M system, along with the forms for file name references,

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

built-in commands and transient commands, including operation of
the editor, assembler, debugger, peripheral interchange program, and
batch processor.

CP/M Editor, CP/M Assembler and CP/M Debugger Manuals —
these three manuals provide the operating details for CP/M'’s principal
subsystems for program composition (ED), assembly (ASM), and test-
ing (DDT). Manuals can be purchased separately.

CP/M Interface Guide — this manual gives the exact details for pro-
gramming in the CP/M environment. In particular, all system calls are
specified, along with details of CP/M file organization which is necessary
for programs which operate upon CP/M files,

CP/M System Alteration Guide — the alteration guide gives the step-
by-step process which you must follow in order to alter the CP/M sys-
tem to run with non-standard hardware. 1/0 drivers for commonly
available hardware systems are given,

Individual manuals are $5. A package consisting of all six
manuals is $25. An initialized, “loaded” floppy disc is $50.
A disc and all documentation — “the works” — is $70. And,
of course, Californians get to add 6% tax.

Digital Research, Box 579, Pacific Grove, CA 93950, (408)
373-3403. ’
e D,
PRAISE FOR DIGITAL SYSTEMS’ FLOPPY
UNITS & DIGITAL RESEARCH’S CP/M

Dear Dr. Dobb, Nov. 1, 1976

.I have seen the articles on the CP/M floppy disc operating system
available from Digital Systems. | am writing because | am a satisfied
customer. | have had a system from Digital Systems running for
nea_zrly a year now and have had no trouble with it. The hardware is
reliable and well designed. | do not know of anything presently on
the ‘market that compares favorably to it. The software is also fan-
tastic and reliable. It is easy to interface with the DOS to read and
write files, and do 1/0. The software developed by Digital Research
is well designed and is implemented much like the Monitor on the
DEC System 10. The assembler, editor and debugger supported by
the system are excellent. In addition to that the documentation that
comes with the system is first class. | am enthusiastically pleased
with the performance of the system.

I have dealt with Digital Systems and can unqualifiedly say that
they are honest, decent and responsive. Dr. Torode was exceptionally
helpful in getting the system up and supporting me afterwards. | have
not encountered a more honest and responsive vendor.

The software written by Digital Research is excellent in design and
documentation and to me it would be worth five times the price.

Altogether the combination of hardware and software which is
provided turns an 8080 system into a true software development

system which is flexible, easy to use, easy to learn, and reliable.
Sincerely,

Robert Swartz 195 lvy Lane

Highland Park, IL 60035

A SUPER, TURNKEY DUAL FLOPPY SYSTEM

Dear Jim, Sept. 17,1976

You guys are usually way ahead on new products and
things but have you seem the DTC Micro File?

It’s a WOW!
©8080A Super System
© Has an extremely high quality, compact, dual floppy
e Has superb system software including fantastic text editor
© Uses MITS BASIC (they bought it) plus numerous improve-

ments

® Speeds to 9600 baud through two RS323 ports

It might appear as a commercial system to you folks
(it is!)—you should check it against IMSAD’s dual disk system.
It runs rings around them on price and is far superior. Price -
$4295.

If you haven’t seen it you should take a look.

Keep up the excellent work with DDJ.

Sincerely,
A. C. Delmas ADVANCE SYSTEMS
P. 0. Box 531
Saratoga, CA 95070

[We heard identical remarks from another friend whose
judgment has been impeccable. DTC is located at 1190 Dell
Ave., Bldg. L, Campbell, CA 95008, (408) 378-1112.—Editor]

Page 51

SAVMMY R ATEVL

ARITHMETIC EXPRESSION EVALUATOR MOD

NMNLAN

Q=08 ANT=(08) L

08=83\08= Uh

NMOLAMN OTLT NAHL

MIVLS JAZITWILINI 0L M/8 oﬁmﬂ
008
LTHH
GLTT
0FTT
0LTT
Qv TT
OLTT
0&TT
OTTT
00TT
Ga0T
0801
0LOT
G207
QR0T
GEOT
Ot0T
O£0T
0T
ST0T
STOT
QOTOT
G001
00T
_x_G L8 082
SN LXEAN ObZ
N OLXAN 082
N A1 08¢

s ZAXMANLE MO AONWTING THEO AFTDAY , =60
A% S DEVES T

T LXEAN
0w (17
M0

f& 0L T=I

SONTMLE B FOUMOLS *MYA LINI

PETATipap Tt
POTETépapiTey

EATETATATATAg
GATHTATATATL
C 7k - 4

YLYT HTEVL NOTLUTSENYML
T LXENNP
Y
L 0L T=M MOANG 0L T=
SNEML dr L3S WY
(LE9)T4COBYHCCOB)Y LA (PEYD WIN
M/S

AT L

PENUML LINI 0L

Ot-& NAHL (-

/ —;
Q w20l 0 . O
= = = '
&5 SEE8E2EE
g2, SEE8§3%5:
255 9898 , 8
g 3% CEo w2233 g o
g0 EYS w 28,9 —
- >0+ P B ang*v 0
REcE BRgeEESs R
o dohmtfss -
oL ~E¥0Eo0SS YA
o~ .m o 3 R o 2 o oS
mu o m e m.m V¥ O g m ~+
oo & 4 udm.l S o5 P <
o E8L0 w..omaasbmcw .
Ce2s= SJERTEEFRE w0 3
Pt =2 Sy 23853 > o
(HuE<< g 2l2o02d .M
BBE8EM L,S98=Egfy .V
A 958y EE* o 2= 8 m
FSiE S24EETEE
sy
© 537 w oS oo
o oS g 2 2 S80S Q
R 25 o SE wg E
EFoew EBE2EQCS2
=8 S~ W.utoGﬁSe
ﬁeM& S G ove B B
= - — t.d 0.“ o wm
=] & 2 L &ex o v O
54 £E5EEEZ =88
30 m = "238EE39 8¢9
o2 8. B ¢g o5
L=l =i - AR =R R o] m +
PO g8 R0 ~dga R "y
22BE=288a0¥ s~ L,
L EEEZEERBgSeS 4,
SeECBEBE<EESa 452
EfEc-®E3dE EEcREE2
2 — O < O w m O.IADI”U <«
h Al Vwam R7] m.Kuu = 8 < Q
§ §59s gmamSiScgs E
$ 8288 EZREREEEE =

005 INS09
Q&g 0L 09N 0008 aNs09N OTE NAHL 0=7 41
CTACMENAGY YOG A $H5) BO="]
G4 0L T=M

NOTISEIMAXT FLYNTYAE
& 0L 08
HNE0H

TLYLE CNDTSEY
O¢T NAHL
OnLE do

£ hjizﬂ/ qugﬁ
A007 LNINT A0 ch&m WAM
QOLT HNS0H

MAVLES LINI }

Q00T 0L T=&N MO

SNOTLINMLENT ONILHMAMALNT HONOMHL 4007 Wi

WM

QOO0T aN&s0n

THNUML R SAVMMY LINI WM

W

il € var AT TATATION Wi

NOSAWOHL "I A9 ST-TT *od 2L&6T ATINCAANND WiAM
THLIMO % CHLSTIVD *uW0D &0 *MN0r S, 9300 M 2WOMA Wi
HOKK MOLYTIENSEL NOTSSAIMAXET DT LAWHLIME DTSV dokkok + LNT M
ok oKk Kok ok oRRRCORNOROKK SNBMLE sekaoksoksiolokok ook ok ok WM

SO-9T0n 2189y

YR

AT

QLS INIT LY

013

TE060°8 =
ald (2 %XV\A BB
EEIVA S ONEYL cvvs._mx_
Tl £t = x*;*ﬁ~k¢,
ORI (2N A
THYT KZAY i
KZAGE MK

EEE T PRSI 3

Yl Ak

Kkokk MOLYTISNUYML NOISSIMAXET JTLHWH.

SO-HTON JIHHY SN LT

M

0T
08T
0871
04T
09T
05T
[

0eT.

ST
0&T
aTT
orT

Q0T

o1

=£T SNYMLY

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Page 52

- IN3

WYMIOMd H0 IN3 WA

W3

NMNL3IN

$V LNIMA

NMNLIMN 0€55 NIHL T:8N dI

ONIMLS LNANT LNIMA 0L M/8 WaM
WA

NMNLIN

T=8N\, MOTANIINN NIVLS F, LNIMdN OV0S NIHL 08=:83 AT
. T+84=83
NMALANMN 005 NIHL T=8N Al

A OMIVLS Hd0d 0L M/8 WA

WaM

NMNLAM

T=ENN, MOTAMAIND NIVLS L,

NMOLLAMN 085y NAHL

LNIVLS 04 0L W/S

NMNLLAM
000% dNs0H

(8)A/ (T8I A= (THBZH A

*HAAQ AT WA
WM

GLEy 0L 08

(B AK(CTHBH) = (T+8H) A
*LINW WA
WA

04L&y 0L 09

(8 A~ (T4+8H) = (T4+8H) A

A0 CMLENS]

WM

0LEy 0L 09

(83 34 CTHBH) A= (T+ F

N ERl] ER
i

08EY 0L 0ONT=8NN\,MOMME MOLYMINZD *MAA0, LNI
0055 NS0

0460 NAHL £=61 AT

OF Tt NAHL b=4L AIN 06TH NIHL S=61 AT

OvEY NAHL P=461 4L\ 090y NAHL =61 AT

(8L) L=41L

NMOLAMN 0S80y NAHL T8N AT

NOTLEMAAD NG ALOMANID 0L M/8 WM
WiaM

NMLEY

T=8N\,MOTAMIAND MIVLS L, LNIMA

09&% 0L 0ONT=(BL)LN 085% NAHL 8L 4T

T-81=8L

NMOLAMN 0&GE NAHL T8N AT

NIVLS L 0L TTOHWAS 1Y 0L M/8 WM
Wi

NMNLEN
C=@NNO=(8H) 3
0005 INs0s

SRR BB EMLER, =, BEYR,
A TMLBNT

AIv3y -

0E09?
0109
0009
0£5S
[oFat=in
SI8%
0185
00545
ovon
0£0%
0805
GT0%
0105
0005
(2453
3421 4
ochy
LISy
0TGY
00G¢
08EY
0LEY
09&w
(01208 4
ovey
0ZCy
0TEw
00y
D6TY
0LTY
0?1TY
QLTY
OV T¥
0Ty
OTT#
00T¥
0460%
QL0
0?0%
050y
[4024
0£0%
el
LTO0%
0ToVv
000%
095%
0L5%
0ELE
2=
STGRE
0T5g
QOLE
ovve
QEvE
oTve
oTee
00bL
04€L

WA

orbE 0L 09\T=8N

,) ONISSIN, LNIMd

0055 ANS09

9 *MIGNI WM
WM

otte 0L DONT=8N

s ¢ ONISSIW, LINIMA

005% ANS09

S *MLISNI WA
WA

otve 0L 09

0008 ANS09

005¢ NS00

000% INS09

¥ *MLISNI WM
WA

otve 0L 09

005y INS09

£ *MLISNI WAM
WA

ovve 0L 09

0058 4NS09

000t INS09

< *MLSNI WM
WA

ovve 0L 09

00LE ANS0H

T *MLSNI WM
Wi

O£ TE NAHL 4T

08TE NIAHL 4l

0Les NAHL AT

088 NAHL AT

0£eg NAHL AT

08ge NAHL L=10 AT

6 C8L) L) IT=11

NMALIMN 0Z0E£ NIHL T8N AT
SNOTLINMLENT ALNDEAXA 0L M/8 WA
WA

NMNLAM

T=8N\, T0ANAS OITWANI, LNIMJN 0055 ANS0Y
ONITMINGH MOMMA WA
W3

OT9E 0L 0ONT=8NN.MOTTAMAND NIVLS 3, LNIMd

019¢ 01 09

(WY D=(8HAN 0RLE NAHL <83 dI

T-83=83

OLGE NAHL O=W dI

CTACNAN SV $DIG4$D) G0A=H

NMALANN GTEE NaHL T:=8N 41

A0L MIVLS 3 OND AN LNd 0L M/8 WA
WA

NMMLAM

$of LNIMA

SRR SR CCWIDISMLSE, = LB IHANAEDI$ODHGR, FdE, =6
CCOTANATHNA$Y) $D35) YNA= (W) D

[6, m, AP B0d=N
(TACTATA) $9AG44D)80d=W

NMALANMN 0&0& NAHL T=8N 4T
INAWHLVLS ANIWNOTISEY MO4 4/8 WM
. WA

08e¢
0LEE
09¢8
0GES
OvEE
0£ES
0zEs
01gg
00£E
06ZE
08zE
0438
0928
0GIE
orTE
0gEg
0zTE
0TTE
0088
0618
0818
0418
09 TE
0ETE
rass
0ETE
0TIE
OTTE
00TE
0608
080%
0LO%
0908
0508
0¥ 0%
0£0¢
zog
G108
0108
0008
019
065T
088E
045E
055e
ovse
0£8E
5EsT
ozse
5IST
018e
ROGT
005E
0L0E
0908
050%
0v oz
080T
0z0E
LT0T
010
000T

Page 53

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Nov./Dec., 1976

COMPONENTS FOR SPECIFYING PROGRAM-
MING LANGUAGES AND MODS TO THE TINY
HI LANGUAGE DESIGN

Dear DDJ, Nov. 17, 1976

Enclosed are about a dozen changes in TINY HI, an
updated language summary, and a brief description of HI.
None of the changes significantly effect the scope of TINY,
but I believe they make it an even nicer language. I am
shelving TINY LISP, TINY SNOBOL, and the extensible
language I mentioned; my system is up and I want to imple-
ment TINY. I renege on the promise to describe FORTH
as Interface has had a good article on it.

I will act as a clearinghouse to standardize TINY HI
implementations. A complete language standard (as detailed
below) should be out by 15 January. Implementors please
send $3 to cover copying costs and first class postage. This
will be the last revision in DDJ, but I believe I've finalized
what the user sees. DDJ will get a free copy of those
standards for existing; otherwise I would have to invent it
and couldn’t do nearly as well. I hope to be HI in 77.

Laissez faire,
Martin Buchanan
(703) 893-7978

2040 Lord Fairfax Rd.
Vienna, VA 22180

ELEMENTS OF PROGRAMMING LANGUAGE
STANDARDS

1. A complete semantic and syntactic description (mostly
accomplished). This includes little things like the sig-
nificance of blanks, levels of nesting, algorithms used
for real or mixed arithmetic (in languages with real
numbers), and identification of lexical tokens;

2. Storage formats for source programs, object programs, and
data, both in main memory or on mass storage units;

3. Conventions for the naming and semantics of global func-
tions or variables which handle hardware differences (.DE-
VICE, .MAINSIZE, etc.);

4. Standard names and algorithms for common library func-

tions;

. All error messages, when they are invoked, and their

meaning;

. Text-editing functions during data entry;

. Interfacing with machine language programs;

Linking loader design;

. Dynamic storage allocation and file retrieval design.

(%]

N-R- R YCN

CHANGES TO TINY HI

Comments: a semicolon (“;”) in column one reserves only
the line on which it appears for comments. A semicolon in
any other column reserves that column and all to the right
of it for comments until “;” is again encountered in the com-
ment field. This replaces the “/*” and “*/* delimiters pre-
viously specified. The change makes commenting easier to
learn and use, and increases flexibility.

Vectors: Vectors may have lengths up to 232—1. Other-
wise it would be almost impossible to handle data structures
with more than 256 elements. This also allows any positive
integer as a subscript.

Logical operators:AND, OR, NOT ; NOT is evaluated
first. AND and OR have equal precedence. All three must
be set off by blanks or)(as in:

NOT A=B or (A> MIN)AND(A<MAX)

Being able to express complex predicates is important in
Page 54

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

making structure as clear as possible, else many unnecessary
IFs and DOs would make programs more confusing.

Continuation lines: a plus sign (““+”) as the first nonblank
character indicates a continuation line. A line may be con-
tinued indefinitely and even when comments intervene or
there is a comment field. Continuation lines can be used to
make output lists or complex predicates clearer by arranging
them on several lines to show structure, and they also reduce
the use of temporary variables.

Control structures: The “UNTIL” structure is now:

DO
code
END IF p

The “WHILE” structure is now:

DO IF p
code
END

The compound structure is also allowed:

DO IF p
code
END IF q

Noise may no longer be added to END statements.

Professor Howard Tompkins of Indiana University of
Pennsylvania caused my reexamination of my control struc-
tures, for which I am grateful, though we still disagree as to
the best iterative structure. He pointed out that “UNTIL”
should be “WHILE NOT” from the English meanings of
the words, and also that UNTIL in COBOL has a meaning
different from the one used by I and IBM. The new con-
struct locates each predicate where it is actually examined,
allows a new structure, reduces my vocabulary, eliminates
a source of possible confusion, and allows for future inte-
gration with an iterative form:

DO 1=J TO K BY L IF A(I) <A(I+1)

Input: ? alone will get a literal from the keyboard with
the prompt “?¢”. ? followed by a variable will generate a
prompt of the form: “<variable> «”

Subvectors: In a sequence of numbers or characters, one
often wants to indicate a subvector that is a continuous
sequence, often a very long one. Other programming lan-
guages use pseudovariables (PL/I’s SUBSTR function), “in-
dex generation” (APL), or novel subscripting forms (A[5;8]
in HP BASIC 3000). My subscripting form for indicating
subvectors should be familiar to any user of English. I call
it “ellipsis”. It is formed by three consecutive periods be-
tween the initial and final subscript, but separated by blanks
from them (to avoid ambiguities when I introduce real num-
bers in HI):

A[4 ... 11] isthe same as A[4567 89 1011],

but both in conception and the generation of object code,
the first is preferable.

Global indication: the “.” prefix can be omitted from
calls of external functions unless the function name is dup-
licated by a local fucntion. My theory is that data is usual-
ly local and functions are usually global.

Subscripting: is an operation and may apply to expres-
sions:

(A+B)[2 3 5] — MORE —

Nov./Dec., 1976

TINY HI, cont.

Arithmetic: append **, exponentiation. HI hasit,and I
want the differences between the two levels to be few and rma-
jor. Exponentiation is also easy to implement in integer arith-
metic. I prefer ** to the up arrow. Exponentiation derives
from multiplication just as multiplication from addition, so
the symbol is logical in some sense, and also common. I
want to reserve the up arrow for a (presently undefined)
sorting or ordering operation.

REVISED TINY LANGUAGE SUMMARY

Vocabulary: BEGIN END IF ELSE DO
Comments: ;

Continuation: +

Infix arithmetic: + — * [**
Prefix arithmetic: —

Concatenation: blank

Length operator: # “number”

Relational ops: < <= > >= <>
Logical ops: AND OR NOT
Assignment: <«

Input: ?

Global: .

Nesting: ()
Subscripting: []
Substring: “ellipsis”

Data types: INTEGER STRING
Data structure: the vector

WHAT HI ADDS TO TINY HI

1. Data types REAL and LOGICAL, and the corresponding
literals;
. Multidimensional arrays;
. Data declarations;
. For program correctness, the attributes INITIAL, RANGE,
and TYPE, and the ability to test an expression’s type;
. For output: the attribute FORMAT;
functions SKIP, X, T;
globals .COL, .LINES, .SPACE;
6. The iterative DO TO { BY }

w HwNo

POSTSCRIPT: Nov. 23, 1976

1. Negation of —215 will produce an overflow.

2. Concatenation has a lower priority than # or negation,
but still greater than the infix arithmetic operators.
The example given for “number” should be “#(5 73 -1)”.

3. Functions may have no argument, as in “CPTIME()”.

4. After “END WHILE” in GCF there should be the line
“GCF « Y”.

I want to thank those who wrote about TINY HI, especi-
ally Gregg Townsend.

NEEEEEEEEERERDEBHERE
RCA 1802 PLEA

To: Jim Warren Nov. 2, 1976

I’ve not seen anything yet on the 1802. Is it too new for
the hobbyist, or what? Could you publish a short request for
responses from any 1802 users? [Yup!]

Sincerely,
Harley Shanko 15025 Vanowen St., No. 209

Van Nuys, CA 91405

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

TINY HI SUGGESTIONS

Dear Mr. Buchanan:

| would like to offer some suggestions regarding your TINY HI
language as defined in the October, 1976, Dr. Dobb’s Journal

First of all, let me say that | LIKE IT! It seems to be quite
powerful in its simplicity.

I like the one-statement-per line format; PL/I addicts look down
their noses at FORTRAN for this but readable programs require it.
I like being able to easily put comments on the same lines as state-
ments; this is what often makes the comments of assembly-language
programs better than those of so-called higher level languages. “‘?"’
for input is great, and | admire the simplicity of the vector scheme.

Now for the comments: (this is more or less random order)

1. Negation of —215 will probably produce overflow; so perhaps
there is a case where negation can produce an error.
2. Rather than bracketing loops with WHILE . END, how about

using LOOP and REPEAT? UNTIL

a. WHILE and UNTIL do not imply iteration except to a program-
mer who's seen them before.

b. WHILE cond terminates when cond goes false, and UNTIL
cond terminates when it goes true; but it’s very hard to see
why one of these implies a test at the front of the loop and
the other at the back.

This isn’t original — see Knuth in Computing Surveys Vol. 4

No. 6 (Dec. 1974), pp. 278-280.

LOOP IF cond LOOP
CO(.je co;:le
REPEAT REPEAT IF cond

(test at top) (test at bottom)

3. How about providing a means for the n + %loop problem? Again
stealing from Knuth:
LOOP
“ENTER A" ?A
WHILE A >47 for
“TOO BIG"”
REPEAT

LOOP

“ENTER A" ?A

IF A >47 EXITLOOP
“TOO BIG”

REPEAT

4. | finally figured out why the example “No. 5 73-1"" looks strange
to me: because | can’t get used to a unary operator with a higher
precedence than a binary operator ($). All unary operators
(#7?-) shoutd be higher than the binary operators. Under the cur-
rent rules, (-6 7 9) = (-5) (-7) (-9)!

5. What determines whether input is taken as string or integer? How
can 123 be input as a string?

6. What sets the value of a function? Should the example have an
additional line .GCF +Y?

7. The current syntax disallows null arguments such as .CPTIME().
Is this intentional?

8. Deletion of the /* or */ line has the potential for causing a lot of
trouble when editing a program. | would favor a scheme such as
it is used by some assemblers where ; means that everything else
on the line is a comment.

9. Since a string is really a vector of characters, and you allow vectors
of strings, will you allow vectors of vectors (of vectors ...)?

10.1 agree with +for assignment but please choose the character to
be used with ASCii keyboards before every implementor picks a
different one.
| guess that’s all that comes to mind now. I’'m sending a copy of

this to DDJ. Keep up the good work!

Yours,
Gregg Townsend

450 N. Mathilda, No. J20
Sunnyvale, CA 94086
Nov. 15, 1976

NEW COMPUTER MART

The Computer Mart of New Hampshire is currently located

on Daniel Webster Hwy N, Merrimack, NH 03054, (603)
424-2981. On January 1st, it will move to 170 Main St.,
Nashua, NH 03060. [information from Ron Cordova, 76-12-4]

Page 55

6800 MONITOR RELATIONS

Dear Editor, Nov. 10, 1976

Motorola makes several monitor roms (Mikbug*, Minibug*, Minibug
11* and Exbug*) for their M6800 systems. Most systems in hobbyist
hands are currently using Mikbug*. Minibug I1* now seems to be avail-
able from Mini Micro-Mart and it has several additional and enhanced
features over Mikbug*. These features are serial 1/O to an ACIA for
the control interface, binary load, binary dump, S9 on last record of
punch, user control of ““SWI"* vector, upward and downward move-
ment during address changes and memory test commands. Documenta-
tion on the commands is supplied, but no listing or hardward imple-
mentation guides. We are using Minibug I1* in a SWTP 6800 and are
pleased with its operation. The following notes are supplied for those
who might wish to try this rom.

Dennis Sutherland David Kyllingstad

2835 - 25th Ave. 840 Hillview Dr.

Marion, IA Marion, A
*Trademark of Motorola

MINIBUG Il SOFTWARE EQUIVALENCE

Ron Tonneson
Fairfax, A

Minibug 11 is not to be confused with Minibug which is
located in the upper half of Mikbug and is probably not
worth finding at this point in time. The following entry
points have been tested and appear to work in programs
that reference them.

MIKBUG MINIBUG Il
ROUTINE ADDRESS ADDRESS
OUTCH E1D1 E108
INCH ET1AC E11F
OUTHL EQ0G7 EOFA
OUTHR E0GB EOFE
OUTS EOCC E180
PDATA1 EOQ7E E130
CONTRL EOE3 E040
INHEX EOAA EQ070
BADDR E047 EOD9
OUT4HS EOC8 E17C
OUT2HS EOCA E17E

MINIBUG Il HARDWARE CHANGES REQUIRED

General

Since Minibug Il is a IK rom, A_ must be made active instead of
being grounded. CS, and CS aredactive low instead of active high
as was Mikbug. Thisrequires inverting the logic pins 10 and 11.
SWTPc

Isolate IC2 pin 15 (A) from the large ground buss by making a
cut around the plated thigough that now connects pin 15 to ground.
Do not drill out the through. Use a miniature circular saw, a minia-
ture fly cutter or an Exacto knife. Now connect the isolated pad
(1C2-15) to the pad immediately to the right which comes from 1C-13.

If a semi permanent change is anticipated, cut the lines coming from
1C2-10 and 11 just past the first bend. Connect a jumper from IC16-8
to 1C2-10 (CS,). Connect a jumper from IC13-4 to 1C2-11 (CS,).

If plug-in igterchangeability is desired, don’t make the last two cuts
but add two inverters.

The inverters may be made and installed between a 24 pin IC plug
and a 24 pin socket (available from James Electronics). See schematic
below.

Mount the socket piggyback on the plug and solder all other pins one
to one, (Pins 1-9 and 12-24 are straight through, pins 10 and 11 are
now inverted).

*Any plastic NPN switching transistor (2N5210, MPS36486, etc.)
1.6%

o]
(ﬂ.uc.) 4.7k % “

Qi s6cET)

GLITCH: TINY BASIC & MEK SYSTEMS

Dear DDJ, Oct. 26, 1976

I was referred a copy of what appears to be a column in
the CHG-NT newsletter, which briefly mentions a failure of
Tiny BASIC 6800 in Mot Eval kits.

It is true that I have had a number of calls from owners
of MEK systems in which Tiny BASIC failed to run. It
seems that the Motorola kit comes with no memory (except
for the Mikbug private RAM), and very little else. When
the user adds a 4K memory board care should be taken
that all of the address and data lines are properly buffered
in the expanded system, since buffers are not provided in
the basic kit.

What happens is that Mikbug is able to load and display
the memory with no problem, but the program will not run.
This is due to the excessive capacitance in the address lines
(the 6800 is spec’ed at 130pf, which is good for about 8-10
MOS devices; a 4K static RAM board alone has 32 MOS de-
vices on some of the address lines). This causes the access
lines to be slowed considerably. Mikbug does all its memory
access using the Indexed addressing mode, which leaves the
address stable for two full memory cycles (2 ps min) before
attempting a read or write, thus permitting an actual access
time of over 2.5 u's; program permitting an actual access
time of over 2.5 1s; program execution on the other hand is
not so forgiving, and the memory must respond in 575ns.
The unbuffered system can’t hack the speed. That this is
indeed the problem may be verified by stretching 02 to 2
or 3 is.

I have no record of Mr. Mikel’s having attempted to com-
municate his problem to me, and I do know of over 100
properly buffered MEK systems on which Tiny runs fine.

Tom Pittman PO Box 23189

Itty Bitty Computers San Jose, CA 95123
cc: Roger Mikel

Computer Hobbyist Group-NT

A SPECIAL PURPOSE EDITOR FOR MANUSCRIPT
PREPARATION?

Dear Jim, Nov. 6, 1976

About reinventing the wheel . .. am | going to have to write my own
program for word processing — in the sense of manuscript preparation?
Text editors are fine for programmers but they aren’t of much help for
authors. What is available for an 8080 or Z-80 in the public domain?
F.J. Greeb's “’Classy 8080 Text Editor,” DDJ No. 6, looks like a good
step in the right direction. Everything is done on the video screen ex-
cept the final hardcopy output. Buta manuscript processor needs to
be sentence and paragraph oriented, not line oriented, and needs to
h_ave the capability of juggling stuff among tape units or floppy disk
files. (I always seem to be moving paragraphs from the end of the
text to the beginning or some other spot several pages away.) Then
there are nice things like automatic page numbering, single or double
spacing from the same source file, and the ability to not mess up
spgcial formats such as tables or lists while at the same time properly
adjusting lines and paragraphs as words or sentences are added or

deleted. | would be pleased to hear from anyone with interests along

these lines.
Yours truly,

Dr. Charles F. Douds 381 Poplar St.

Winnetka, |L 60093

18K

i
(PLuG) 4.7

Page 56

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Nov./Dec., 1976

A 16-BIT FLOATING POINT PROPOSAL

In past weeks, I have talked to several members of the
CACHE about “tiny languages.” I keep hearing, “I’d use it
if it only had floating point.” Having written three languages
myself, I can understand this. Nobody seems to realize that
32 bits are a lot more than twice as hard to work with as 16.

As a compromise I propose 16 bit floating point. The
format I have worked out gives 3 significant digits with an
exponent of -15 to +15 (decimal). Proposed format:

\S | g
ImﬂEsLllllllulIIIlIvIJ’

| A 3

MS = MANTISSIA SIGN
ES= EXPONENT SIGN

I don’t have the time .or ambition to write this now,
but I would be happy to swap ideas with anyone interested.

Bob Van Valzah (312) 852-0472 (Home)
1140 Hickory Trl. (312) 971-2010 Ext. 231
Downers Grove, IL 60519 (Work)

6800 MOTOROLA FOR SIMULTANEOUS
NUMBER CRUNCHING AND ANTENNA
POINTING

Dear Sir, 17 Nov. 1976

Two of us here in the Northern Virginia area are interested
in using a micro for some number crunching (with a peri-
pheral calculator chip) and antenna pointing for satellite
work (simultaneously). The 6800 Motorola line of chips
looks like it will fill the bill due to the superior I/O con-
figuration possible. The 8080 kinda misses the boat. So I
am interested in all kinds of homebrew hardware for 6800
line compatible with SWTP line.

Sincerely,
Ellis Marshall, W4JK Rt. 1, Box 158
Front Royal, VA 22630

R e e e e,
FREDDIFE’S FOLLY
by Jim Day

Frugal Freddie bought a video board kit from a local com-
puter store a couple of months ago. He saved a few bucks by not
busying sockets for the ICs. “Who needs ’em?”” he said. “T’ll just

solder everything.” The board worked fine for a few weeks,

ERRATA FOR RANKIN’S 6502
FLOATING POINT ROUTINES

Dear Jim, Sept. 22, 1976
Subsequent to the publication of “Floating Point Rou-

tines for the 6502 (Vol. 1, No. 7) an error which I made in
the LOG routine came to light which causes improper results
if the argument is less than 1. The following changes will
correct the error.
1. After: CONT JSR SWAP (1DO07)

Add: A2 00 LDX=0 LOAD X FOR HIGH BYTE OF

EXPONENT

2. After: STA M1+1 (1D12)

Delete: LDA=0

STA M1
Add: 10 01 BPL *+3 IS EXPONENT NEGATIVE
CA DEX YES, SET X TO $FF
86 09 STX M1 SET UPPER BYTE OF
EXPONENT
3. Changes 1 and 2 shift the code by 3 bytes so add 3 to the
addresses of the constants LN10 through MHLF wherever
they are referenced. For example the address of LN10 changes
from 1DCD to 1DDO0. Note also that the entry point for
LOGI10 becomes 1DBF. The routine stays within the page
and hence the following routines (EXP etc.) are not affected.
Yours truly,

Roy Rankin Dept. of Mech. Eng.
Stanford University

COMPLETE 8080A FLOATING POINT PKG FOR
$7.50 AND NEW CASSETTE DATA FORMAT
STANDARD TO BE PROPOSED

Dear Editor: Sept. 21, 1976

In response to Paul Holbrook’s letter in the September
issue, regarding the need for a cassette data format stan-
dard, I would like to inform you that a standard with
software has been developed; the Mohler standard will be
published in an upcoming issue of Interface.

The standard allows for various types of data formats
and is expandable, so new ones can be added. It is also
universal enough for the format to be independent of
cassette interface hardware and processor type. We hope
to make the Mohler cassette format a standard in the
computer hobbyist industry. ,

I would also like to inform readers that I have devel -
oped a single-precision floating point software package for
the 8080A (6-7 digits of precision). The package includes
add, subtract, multiply, divide, and utility programs to
convert from ASCII BCD to binary and binary to packed

then developed a hardware glitch that Freddie hasn’t been able to] BCD. It takes up about 1200 bytes and is relatively

track down. He took it back to the computer store and asked
them what it would cost to fix.

fast, e.g., 2.5 msec worst case time for multiply.
Also nearing completion is a scientific function package

which includes square root, sine, cosine, exponential,

“Well now,” said the repairman, “If this thing had sockets, .
natural logarithm, log base ten, arc tangent, hyperbolic

I’d probably find the trouble in a few minutes by random sub- ;] ! 2 :
stitution. But with everything soldered down to the board, sine, and hyperbolic cosine. This package is to be used
there’s no telling how long it might take. Why, it could end up | with the floating point package and takes up less than
costing you more than the price of the kit!” IK bytes. It also has six digits of accuracy.
One can avoid duplicating Freddie’s folly by socketing The floating point package is now available for $7.50.
everything. W g Included are manual, paper tape, and complete annotated
. P Socket it to 'em Freddy! frroo’ source listing. The scientific package will also be §7.50.
. ; AT Both packages may be ordered for a reduced price of
= $10.00. To obtain one or both, send your name, address,
and the appropriate amount to:
Burt Hashizume
P.0. 172
Placentia, CA 92670

ot we ¢ T
-

HAMATIC NOTE IN BYTE

According to a letter in the (excellent) November issue of Byte,
hams who are also interested in computer phreaquery should tune to
3.865 MHz (LSB) on Thursdays at 2300 GMT “‘for a good time."”

Nov./Dec., 1976 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 57

¥

—{
A One or Two Player Video Game

CHASE

Start it running & just try to pry your kids away

‘UMOP $2Y23uMS 2SUIS [ID
ysng woi504d 14p3s94 O 1403524

134
€°g 1AW
YCH NOW
an $ H80 THO
¥ Hedo Inv
H°Y AOW
g ava
HOOJ40°8 IXT dn
13y
HES ‘H INW
ZNY
Y1 % HL8 IdD
H‘YV AOW
H X2a 41
134
H88H 1M
w3y ZNY
HO8 14D
H‘Y AOW
H XNI 1Y
9y dup
oV ZNp

40f g0m puv 8, &vydsip 3ySnvo Jf 0 IdD

from your computer

—Marvin R. Winzenread

Try to catch the bouncing dot or convert the program
to a two person chase game. It requires 256 bytes of mem-

ory and a Processor Technology VDM or similar video dis-

play.

HJ440 NI 9oV
VW ITAW LTH
13y

g
B
& °
a,
..m gy
[3) Mm. =1
L g M .Mv
g ~ R
<] 5
80 .m:m.
(0] ()
g S%¢ S
< Mr@M
© Syl &
g 833 g
2 35 §
o .y
2]
Q, - 8
S g
2 ..m
~ Q0o =
« -V
Ne) [eR~
m%mmm Z 2
L= 2
Wllnr .m
nmwnr o
38, .
O
%mDEEWO%
7]
LNt un\O
588888
V8338383

06 £8
SS€8
0ses
oveg
o€es
ozes
ores
0ogs
06¢e8
owes
og€es
Oces
otres
0028
0618
owvig
og1g
oecig
o118
0018
oviL
og€1L
oecrL
ortL
001L
oc19

MOV AE

5

change 0051 to 7B

EE

00
00

€0
80
g4
09
€3

L8

88

o8

69

S€00
€900
2800
0€00
3avoo
avoo
ov00
6Y00
8VY00
9v00
SY00
€v00
2v00
1900
ovoo
3600
asoo
€6 00
Y6 00
6600
9600
€600
1600
4800
asoo
0800

41 ZND
8 INVY

s val

1Y ZND

7 INV

s vai

LOSL4TD Nh@g NQ ZN9D
2 INV

s vai

dn ZN9

1 INV

S V1S

HOZ2‘W TAR NKW

7N dRp

BH 2X

VW AOW

1+04 val

1IH 2r

W dWod

od val

AW TTYD

aNd 11V

€+HS YlS

1Y AOW

s DH OX
VW NAOW
04 val
ITH zp

—SANILA0YINS—

sa00w 423nGUL0I—]XIN

$2Yo3ums 2suas 4nof

1y3u 2y3 Susn sanow 42Kvjd—isang W dWD

Port Address

*If your VDM is not addressed as 8C
and 8800 — 8BFF as memory, you need to change these

statements.

1+04d val
AR T1TIY0
\ HJ40 NI
(€N ZNP
0V 1dD
€Y NAOW
€ X04 ¢N
HJ4d40°€ IXT SN
LIVM EN. dur
H4d41°8 IX1
SN Zr
€ INV
g°Y AOW ©N
YW NAOR
1+04 val
LINI T11Y0
9H OX
VW NOW
04 val
LINI 119D
HIO0’W IAK
H XNI
LW IAKW
04dH IXT
1S ZNP
HO8 IdD
H’Y AORW
H XNI
s oW INAW 1S
HOO088“H IX1 9V
J HO8 1NnO
0°Y INA
9+dsS 9 IX1

UIILIS UO SLOSINI 29D]d

si0sin2 10f sjuof 24035

u22495 yuvlg

ozci9
o119

ottt
ootl1
oLot
0901
0s01
ovol
0€01
0201
o101
0001
0060

00

00
00

co
00

00
00

00
00
00
00
00
00

00
00

00
00

o]0}
00

00

00
00

00
00

00
00

83

00

ad
as

ad
vo
jctel

ad
as

ad

44
6€
Lo

J4
6¢€
44

€0

34
10

Q4
10
a0

Lo
ad
vo
28

Oec
o8

00
6d

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Page 58

WHIPPLE & ARNOLD DEVELOP A
SUPER DUPER BASIC INTERPRETER ($25)

Binary Systems Corp. has intrduced a new interpreter for
8080-based microcomputers. Called BASIC ETC, the new
interpreter was co-developed by John Arnold and Dick
Whipple of Tyler, TX, authors of the first implementation
of Tiny BASIC. It includes floating point (6 to 72 digits)
and variable-length integers.

“Our goal was to develop a variant of BASIC designed
specificically for the hobbyist and small business user, keeping
in mind that the most important priorities — from the user’s
standpoint — were ease of program development and straight-
forward, one-step program execution.”

“We feel we’ve accomplished that goal, and with a memory
efficient program, t00.” said Arnold.

BASIC ETC uses the lower 8K of memory plus at least 1K
of RAM for scratchpad. Since BASIC ETC is for games and
business applications, the less frequently used scientific
functions of Dartmough BASIC are not available.

According to Arnold, BASIC ETC is readily software
adapted to the individual’s system, and “the best answer today
for the 8080-based microcomputer owner shopping for an
easy to use high level language.”

The BASIC ETC kit, which includes the program — on
either audio cassette tape or paper tape — and a 32-page,
detailed user’s manual, sells for $25.00. The manual sells
for $6.00 separately.

Kits may be ordered from the Micro Store, 634 S. Central
Expressway, Richardson TX 75080. The Micro Store is the
retail affiliate of Richardson-based Binary Systems, Inc.
Orders should include a check or money order for the price

. of the item. For cassette tape, the purchaser must indicate

his choice of either the Kansas City or Suding/Digital Group
recording technique.
f‘eatures of BASIC ETC are listed below:

Immediate delivery

Readily software adapted to user’s system

Resides in only 8K of memory

Supplied on either cassette tape (Kansas City or Suding/Digital
Group format), or on paper tape. *

Thorough explanatory manual.

Full string capability — up to 255 characters string variable
N-dimensional arrays

Variable precision arithmetic

Easily handles assembly language routines

Direct memory and 1/O addressing

27 error codes

Both character and line erasure editing

Subroutine nesting permitted

31 commands and statements

8 functions plus user defined functions

Null control: 0 to 25 seconds

Formatted output statements

I

* % k% ok %k ok %k ok ok Kk Kk ¥k

\ For random initialization of cursors

k Random number generator from PCC

2
3
)
Q
Y DY
" e
= 2
] * ® sk =
8 x -~ a x o,
m XTmELe ALELC2C JTwnOE=Q Z €« =2 @« == &« = & ©o
afy, 8 a8 MO sa@ s N a8 & LY 5 aQ a - - a 8 [O I A
;md:o::m owm:l:_l..l ODXmMmdae = i . S I EAdc E2da =< Zmn X u‘)u‘)m—‘
o
OSSN D D =me=>poudEdIrEgedDd> > D D> > SHoENALEQAOQAQW
GOZODM"ZII:OGOMQXEOQ—J.J§¢¢UUUQGO§OGQ§O¢O§OQZODZON [=]
ZAESCEER 24020202 Zemn reoQAQAEEE~EgE~EgE Izl a O
a — ' '3 (R NPT}
[eYoNoNoNol i NoNcRel JeNeRoNc e RoNoNeNe RuN . No No R Ne BN Fo ol Ne e Ne N NaNoNeo Ne No o No o No e No o No o No No)
o—-Nn<l‘:l'O\o—-—qumo—-mmq‘q#mggsbSgggo—mnqmo:wggsgggggggg
I n O 0 [S S P
%cog§§333w333‘3333£8£gwwmwwwwwwwwwwwwuouomuomuououocououowaxo«m
o o o o o
o o o (=} o
o m 5] 1m0 3 (SN n
< [£9) o © 0 W (3] = O =]
= 0DV VOANVYEFEARLOM =R~ WUENAAAQAErORNCFOEHEOENESDN = O
COrHVOVDUMEBEVOYVODEHNOEOOOL~=AANAUS =AU~ A~=AS=00RO
VOEMAWO =FOVOVOLDANELANIVOEVOIECMOANBLO~=AMIVOROICNOAEN—~AOOA K
e e e E R R S F RS
8888888888888888833888883358585883333385883888888888

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Page 59

LIFE’S LIKE THAT

LIFE ON AN 8080 WITH A VDM

The game of life seems to be a natural for the VDM. So
much has been written about it.

Here is a short version that requires toggling only 116
bytes. An earlier version (PCC, Vol. 4 No. 2) required 218
bytes. This program does however RAM equal to the VDM
memory to store the next generation. If you are really
strapped for memory, use half of the VDM for each genemn-
tion.

1) Before loading the program, first initialize the screen.
On Processor Technology’s VDM this is done by sending a
zero out to the VDM output port.

2) Load the program and run it. This should clear the
screen of random characters within 10 seconds.

3) Use the front panel to load your original population
directly into memory (*=2A in hex).

4) Run the program. Every 2% seconds a new genera-
tion will appear.

— Marvin R. Winzenread

KIM-1 OWNERS: PLEASE, THINK SMALL

Now that you have your KIM-1 attached to the power
supply and have successfully added 2 + 3 and gotten 5,
would you like something else to do? Would you like to
use the KIM-1 as:

— a TIMER accurate to a millisecond

— a CLOCK displaying hours, minutes and seconds

— an ADDING MACHINE with six digit add/subtract for
the old checkbook ,

— a DECIMAL-HEX/HEX-DECIMAL Converter

— a DRUNK TEST

— a simple GUESS-THE-NUMBER game for the kiddies

— the MASTERMIND game for you

— the SHOOTING STARS puzzle

— a series of REACTION TIME tests

— a MOVING MESSAGES DISPLAY with Alphabetic
Characters

— plus other demos, tests and games??

Would you appreciate having all of these capabilities in an
integrated software package that includes a “high level lan-
guage” which will let you create your own programs???

MicroCosmos announces PLEASE, a package which con-
tains all of the above features and runs on the basic KIM-1
— no additional memory, TTY, or peripherals required.

n
g PLEASE is distributed as a CASSETTE TAPE, plus com-
a plete SOURCE LISTINGS, full OPERATING INSTRUC-
> 5 TIONS, and instructions for writing your own programs in
6 u PLEASE. The total cost: $10.00. MicroCosmos, 210
vz Daniel Webster Highway, S., S. Nashua, NH 03060, (617)
® v 256-3649.
2> Z -
14 = Raf E‘ -"
z2 3 z o} P < :
=} -~ 0 H
i 0 ¢ E U R 3 uow o N
s 3] 11 o o) > - [o] - 1]
o ® E 0 EZ o> = 0O m s I
Z 9 Z g O 20 < 2 uw o
Fa g o Wz¥ z= FE €z T 0 & W
S = s 22K 9% E< ER Bz g £ ZE3
WSOM:— oot a 0:2 oo Z*t; O CEE R 1-38
e b | oS = o LI wE D
REZ - >) o1 7] 0w, o 00
z0E > e T QO wk Z O Ez 0O
o358 50 %9 fr8 cezu? £2 00,
25:2unz- EEEe bk, £k Z is E< Y, §§E;‘_ z 80 , 5,
¥pPsuS 5 5% 5 £ zz p uiju EZ zZ 24T Fuyuw vl zZ4o0
$2P53 8038833 8 B¥E pE pE EoF HeE<i ©OELE
I—E < v U 00 & papg LE @mok WEROp x Z [
nabyuyly & zZ L ou b JEsE D gu
I—I-EI;!:? <« ? ? N ‘l‘?l:LZ’ o vn aﬁg I:.‘ELE: :3 823
uwgﬁz..ﬂ...._._ > > e U= = T =Wk T =
0w ®n & . } A ey iy P i = M,——A——\g | .;. —_— | —— z
l‘g 8 8 g (=] o
0:5 [= [og (2] Q 4 } z oo
L a8 ™ -] [a Q Py & a a o®
253:9. 5632 6 6.6 . 6_6_6 %_ 8 QF TIO X T € _%a ®aa fa &% 2se
e=z23823a® °2°8 6a%=x°:x 800"z0efo~dxixndooadN0Ex - q > >e 2
€ 9 .| IS = B) & D AE -3 2% s:z e =Xx 35 a % Oé [=) o 2 g
505 55353 e335 03038 8dxNasacsozn R0 52T E RwR NSRS E=Ez04
5-—.‘lotSo.iguxu—uaﬁégogoguzasmu-—otet")a...: ON':'EU%ﬂQO'ﬁ"NM:—’Em:HIﬂIFUIZx 5:.
b 2 2 g°© = (3] 8}:0 E = x -3 o = §>u
2222222828 9382 582889300320 228R898200323822382R89923282228288328,8%28
NS CCCmm=mQemem=OAANNAININANANANANNIONOOANMOO0O0RO=00000000000===u=0D00MO 0O ==
OQ#QOQQQQQ:QQ#QS;QQQQQQg###QQQQQ‘Qmm%gtﬂnmmwmhhhhbbbbhhhhbhbcmmgmgﬂﬁ
L4 L 4 &
823 gt 8 8838 8888 & 3 332 88 88 8
288 8 683 ¢ ¢ 53 6 5 5 5 8 & 8388 833 3383 35§ 8
o HNENE Q- RORANA~RRARCQARARAN A =RAOMEOVE~mmgtooROGRcARdIcRINacRIe OO
D2 N0V =N =D DNV AVD N~ QOB OAN e EtNtRLOOFEORMN =D ROUO=OFxOERLLODOD
OQ‘O«Qacﬂ"‘@&Qhﬂﬂoh(mlﬂﬁ-ﬂﬁohmﬂonmoﬂﬂmgﬂUQﬂOQOFOU&—Nﬂlﬂmgmuﬂlﬂhomﬂilﬂlﬂn
[~E-3-F-E-1-1- T R i R R R R T E N N e o K B A Ex X B s A - IITIHNOLODHIDVDNOOOOY VOVVYEEER
0000000000000 0000000000000O00000000000CO000000000000000O00000O0O000O0000
OQOQQOOOOOOOOOOOOOOOOOOOC‘QOOOOOOQQOOOOOOOOC?OOOOOOOOOOOOOQOQOOOOOOG

{
3

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Nov./Dec., 1976

4K AND 8K BASIC FROM SWTPC FOR UNDER
$5—8$10

Southwest Technical Products Corporation has just released its 4K
and 8K BASIC software. Both feature fixed and floating point math with
a full 1.0E-99 to 9.9999999999E+99 number range. In addition to the
line number mode a direct (no line number) mode of execution is pro-
vided on most statements to create a calculator like mode of entry for
short programs. Provisions have been made in both packages for saving
and loading BASIC programs to and from either cassette or paper tape.

A USER function is even provided for jumping to machine language sub-
routines.

Both packages have been written for the SWTPC 6800 Computer
System. The 4K BASIC © requires a minimum of 6K of memory with
8K recommended, while the 8K BASIC © requires a minimun of 8K
of memory with 12K recommended. The 4K BASIC © tape and
manual sell for $4.95 on 'Kansas City” cassette tape and $10.00 on
paper tape. The 8K © tape and manual sell for $9.95 on *’Kansas City"’
cassette tape and $20.00 for paper tape. All prices are postpaid in the
U.S. SWTPC, 219 W. Rhapsody, San Antonio, TX 78216, (512) 344-9778
SWTPC Has copyrighted 4K and 8K BASIC. Version 1.0 program
material and manual may be copied for personal use only. No dupli-
cation or modification for commercial use of any kind is authorized.

COMMANDS STATEMENTS
LIST REM END
RUN- DIM GOTO* STOP
NEW DATA ON...GOTO*® GOSuUB*
SAVE READ ON...GOSUB* PATCH*
LOAD RESTORE |IF...THEN* RETURN
PATCH LET* INPUT tDES .
FOR PRINT* 1PEEK
FUNCTIONS NEXT TPOKE
ABS tVAL 1SIN
INT TEXTS 1COS
RND TLENS 1TAN *Direct Mode statements
SGN TLEFTS TEXP 1 8K Version only
CHR tMIDS tLOG
USER TRIGHTS 1SQR
TAB
MATH OPERATORS RELATIONAL OPERATORS
- {unary) Negate = Equal
* Multiplication <> Not Equal
/ Division < Less Than
+ Addition > Greater Than
— Subtraction <= Less Than or Equal
t4 Exponent >= Greater Than or Equal

GOOD POINTERS ON 6800 SYSTEMS SOFTWARE

Dear Dr. Dobb’s, Sept. 22, 1976

Your readers who are interested in the article by Tom
Pittman on the 6800 Resident Assembler and Editor might
like to know that true annotated assembly listings of the
I/0 routines are available in the 6800 users group library.

Program No. 10 is a listing of the I/O routines used
with EXBUG. While this listing does not describe the
routines in EXBUG itself, the comments do provide an
insight into the operation of the flags.

Of more interest is Program No. 11 which is the
MIKBUG version of the I/O routines. When this is com-
bined with the listing of MIKBUG in Engineering Note 100
on the MCM 6830L7 ROM one will have a listing of a
complete I/O system. This can be used as a model to
develop suitable I/O routines to interface the Assembler and
Editor with any system.

The price Motorola charges for the Assembler and
Editor is a little high for home use though.

Sincerely, .
John P. Byrns 1953 Governors La.
Hoffman Estates, IL 60195

Nov./Dec., 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

1st Prize:

©ENE o

MUMPS IS SPREADING

Tiny BASIC Game Contest

OPPORTUNITY TO WIN A MICROCOMPUTER
ASSOCIATES VIDEO TERMINAL, ETC.

VT-200 terminal with resident TINY BASIC and
JOLT assembler

2nd Prize: VT-100 terminal
3rd Prize: JOLT 4K system kit
4th - 10th Prizes:

JOLT CPU kits

CONTEST RULES:

1.
2.

All entries must be postmarked by April 1, 1977.

All entries must be submitted as follows:

a. JOLT TINY BASIC source program as paper tape with CR, LF
and four (4) rubout characters terminating each source state-
ment.

b. Running instructions, game description and at least one exam:
ple of game play-all in typewritten form on 8% x 11’ white
bond suitable for printing.

. All entries must run on an MAI VT-200 equipped with 4,096

bytes of RAM storage, OR on a JOLT 4K system equipped with
TINY BASIC.

. All entries must run correctly and be sufficiently well documented

to enable a non-technical person to enter, run and play the game
as directed by the running instructions. Entries which for any
reason do not run or are not sufficiently well documented to
enable easy entry and play will be DISQUALIFIED.

. All decisions by MAI with respect to acceptance, disqualification,

and. winners will be final.
MAI employees and their families are not eligible to enter.

. This contest void where prohibited by law.

All entries become the property of MAI and will not be returned.

. Contest winners will be notified by registered mail-no later than

60 days from contest closing date of April 1, 1977. Contest Win-
ners will also be published in the Microcomputer Digest and the
JOLT Users Newsletter. Contest Winners may also be obtained
directly by sending a stamped self addressed envelope to MAI no
earlier than May 1, 1977 and no later than July 1, 1977.

10. The JOLT TINY BASIC language summary is available at partici-

pating computer stores. The language summary may also be ob-
tained by sending $1.00 cash, check, or money order for postage
and handling to MAI TINY BASIC CONTEST, P.O. Box 1167,
Cupertino, CA 95014, A paper tape form of JOLT TINY BASIC
complete with documentation is available by sending $5.00 cash,
check or money order to ITTY BITTY Computers, P.O. Box
23189, San Jose, CA 95123.

A $5 WUMPUS

Hi —

I have written a machine language version of “Wumpus”

by Greg Yob. It’s a great game. The 8080 program is under
3K and is self-contained. It requires no user PROM sub-
routines, etc. Anyway, if anyone wants a listing, just send
your name, address and $5.00 to:

1957 Huasna Dr.
San Luis Obispo, CA 94301

Ron Santore

Oct. 18,1976
The MUMPS computer language is used for medical and business

applications. The number of institutions that use MUMPS is growing
by about 80% per year. A concise pocket guide to MUMPS has been
written to facilitate use of this text-handling and data management
language. The guide includes descriptions of all the commands, opera-
tors, functions, and all other capabilities of Standard MUMPS, and
gives many examples of their use. The Standard was developed from a
dozen MUMPS dialects, under the sponsorship of the National Bureau
of Standards and the Department of Health, Education and Welfare.
Single copies of the guide are available at no charge from Dr. Joan
Zimmerman, MUMPS Users’ Group, 700 S. Euclid Ave., St. Louis,
MO 63110.

. Page 61

PROGRAM REPOSITORY &

TAPE DUPLICATION FACILITY

A PUBLIC DOMAIN ALTERNATIVE TO MANUFACTURERS' USER GROUPS

ERRATA FOR PREVIOUS CCC INFORMATION:

The CCC Program Repository currently furnishes programs
on roll paper tape; not on fan-fold, as was previously
announced.

The Community Computer Center (CCC) will act as a reposi-
tory for program tapes; both source tapes and binary tapes. Every-
one wishing to contribute programs to the public domain may do
so by forwarding appropriate paper tapes to CCC. In particular,
if you are hesitant about submitting a program for publication in
Dr. Dobb’s Journal because you don't want to hassle with its dis-
tribution, you are encouraged to forward the tapes to CCC and
the documentation to the Journal for publication.

The CCC will thus serve as a desirable alternative and supple-
ment to the User Groups that are controlled and operated by many
of the processor manufacturers, some of whom charge up to $100
for “membership’’ and access to the programs that their customers
developed and offered to the User Group, without compensation.

There is no membership fee for access to the tapes from the
Community Computer Center. Instead, one pays only for the
duplication and mailing costs:

Duplication charge: $1/ounce or fraction thereof, for tapes

(weighed after punching on roll paper tape)

(Add 6% tax for orders mailed to a California address)

Postage and handling: $0.50 on orders of $5 and less

$1 on orders exceeding $5

Payment must accompany all orders.

First Class, within 3 days of receipt.

Lists of available tapes will be published, periodically, in Dr.
Dobb’s Journal, as well as being available from CCC:

Community Computer Center

1919 Menalto Avenue

Menlo Park, CA 94025

(415) 326-4444

The following source tapes are currently available. They are
programs written for the version of BASIC that is implemented
for the HP 2000F minicomputers, and are discussed in What To
gggA;’ter You Hit Return (available from the PCC Bookstore,

.95).

Orders will be mailed

Tiny BASIC for Altairs & IMSAIs:

Palo Alto Tiny BASIC 2
Star Trek in Palo Alto Tiny BASIC 2
Palo Alto Tiny BASIC for HP2100 XASYM 2
Numbers Guessing Games $12
Number
Abase
Trap
Stars
Clocks
Bagels
Quadgt
Button

NWNWNNWN

Word Games
Letter
Abagel
Hangmn
Madlib
Word
“Nimlike” Games
23Mtch
Batnum
Nim
Chomp
Zot
Hide-n-Seek in 2D
Hurkle
Mugwmp
Snark
Pattern Games
Dangle
Sunsgn
Biosin
Mandal
Life
Amaze
Board Games
Qubich
Gomoku
Teaser
Rover
Welcome to the Caves
Caves1
Wumpus
Caves2
Business & Social Science
Hamrbi
King
Civil2
Market
Stock
Policy
Polut
Science Fiction Games
Trader
Sttr1
Last Chapter
Crash
Lunar
Revers
Zeros
Taxman
The following games are in Dartmouth BASIC
Motie 5
Rescue 5
Pounce1

Rid
=

©» ©»
=
OCOIWAU S WWWWWN=NNNPOIWAWN=NOIWWN

©“
=

©“

R4
N
AhOIOINCOIWNOGOIHO

©»
-
OWON

Rd
=
o

WWNWH

Dodgem 3
Sinners 2

Kingdom for TSS/8 BASIC:
English Version $ 2.
Spanish Version 2

SAN FRANCISCO’S SETH IS BECOMING THE
BOOTSTRAP COMPUTER STORE

A computer mob known as SETH, 4001 - 24th
St., San Francisco, CA 94114, is working on opening a
storefront computer operation that will include walk-in,
play-a-computer-game facilities. They have miscellaneous
peripheral gear and would like to trade some of it for
other goodies. They will also sell gear on a consignment
basis. They can be contacted at the above address or
at 3981 - 24th St. By phone, call (415) 282-8000 or
282-3550 (11 a.m. - 7 p.m.), and ask for Bob, George or
Don.

Page 62

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

BUSINESS SOFTWARE . .. FOR $3,000

Aircom, Inc. (Rt. 16B, Union, NH 03887, 603/473-2323) has three
software or business packages for business users. All are assembler
coded for a Computer Automation Alpha LSI-2 and are teletype-ori-
ented, both for |/O and for “record storage’’ (i.e., on paper tape!).

Their general ledger accounting program system is $3,000 for the
software, alone, ot $9,950 for the software and a computer with 16K
words. Their payroll package — with 38 character variables — requires
6K and is available for $3K for the software, or $8250 including an
8K machine. They also have a line-oriented forms package for $7,950
with an 8K machine or $2,700 for the software, alone.

They have no documentation that they could provide for our exami-
nation, and plan on customer training at their site in New Hampshire.

Nov./Dec., 1976

Computer Music
Journal

The Computer Music Journal will be devoted to the development of computer systems which are capable of
producing high quality music. The following topics will be covered:

* production of natural sounding timbre or quality of tone by Fourier like synthesis (w1th up to 128
ultra low distortion sine waves from one digital oscillator) , FM synthesis, and new methods

* design of real time playing instruments

* real time controllers such as organ like keyboards, joysticks, pressure sensitive pads, and new designs

* circuit design of microprocessor or minicomputer controlled digital oscillators (any waveshape)

* high speed multiplication (16 bit X 16 bit » 16 bit product in less than 200 ns)

* review of hardware components

* composition of music using a computer

* music theory which would be more easily realized with a computer than with traditional instruments

- * homebrew digital music instruments

* choral effects

* digital filtering
. » envelope generation of any shape

* digital reverberation and movement of spacial location with Doppler shifting

* high resolution, high speed digital to analog converters

* analysis of acoustic instruments

* psychoacoustics

* reviews of books about computer music, acoustics of musical instruments, psychoacoustics, music theory,
computer design, and electronics.
The first issue of the journal will be about 50 pages in length. If enough people subscribe to pay for printing a
larger journal, the journal will increase in size. A one year subscription will cost $14 and be published by PCC
non profit. The journal will be published every other month. The first issue will be mailed out during January,
1977.

If interested please mail to: PCC, Box E, Menlo Park, Ca. 94025

O Enclosed is $14 for a one year subscription to the Computer Music Journal
Name
Address
City __State Zip
Your interests ?

Nov./Dec., 1976 . Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 63

DR DOBB'S JOURNAL OF SECOND CLASS MAIL
COMPUTER CALISTHENICS & ORTHODONTIA MAGAZINE

PCC

Box E

Menlo Park CA 94025

TIME VALUE: PLEASE
DO NOT DELAY

TS

PEOPLES
COMPUTER CO.

CATEGORICAL % T
CATAI.OGUE wm T ggj«g W; WITH

WW«%&W

(NOV. - DEC.76)

N

(415) 323-3111

