68:-KNEWS

Hawthorne Technology,
(503) 254-2005

GIANT UPDATE
on the TinyGiant 68000 Single Board Computer

We have bhad some people drop by to see the TinyGiant
board. They are always surprised at it's small size. It
does so many things but takes so 1little space. The
board doesn't look crowded because each chip does so
much that the high number of features doesn't translate
into a high component count.

K-05 DOSEN'T MEAN CHAOS to us who are using it.
(Even if we do pronounce it that way.)

Many of the K-0S ONE operating system packages are
going out to people who have either orphan or one of a
kind 68000 systems. Others are going to people who just
didn't 1like the operating system on the machine they
have. Some people just want to see how an operating
system goes together. The source code we provide makes
a great study tool.

A Systems Software special interest group is continuing
to meet at Hawthorne Technology on the third Tuesday of
each month. The May meeting is going to be on Editors,
how they work and how to write them.

If you are looking for books on the 68000, Forth, or
other computer subjects, Magrathea has over 3000 titles
in stock and will special order others. They also ship
books on request, so if you can't stop by, call. (See
advertisement below.)

Bulletin Board Systems with 68000 information:

The Computer Journal magazine: 24 hrs, 1200 baud,
at: (406) 752-1038

Micro Cornucopia magazine: 24 hrs, 300-1200-2400 baud,
at: (503) 382-5060 (Conference #3 is for 68000)

Motorola BBS Freeware: (512) 440-3733

Voice: (512) 440-2714
Pertland’s Only .
<
Computer Bookstore .

S

cVlagrathea
8842 S.E. Stark, Portland
254-2045

Men-Sat 9 ~7

8836 SE Stark,

Portland, Oregon 97216

¥ # # ¥ £

WHAT IS RPN, AND WHY WOULD YOU WANT TO USE IT?

There are three different ways to mix operators and the
things they operate on: prefix, infix, and postfix.
These simply mean that the operator comes before the
operands, between the operands, or after the operands.
Most of the common languages like BASIC, C or PASCAL
are infix languages. LISP is the only common prefix
language. Postfix languages, refered to as RPN (Reverse
Polish Notation), are represent:d by FORTH, PostScript,
and HTPL. The Teco editor used PN. Adding machines all
use RPN and most printing desk calculators use RPN.
Fach notation has its adherents. So why use RPN?

The compiler for an RPN languag: is smaller and simpler
than the compiler for an infix algebraic 1language. A
large portion of most compilers is a syntax analysis
routine  that converts the source language to an
internal RPN format. If the soirce is RPN this step is
eliminated. When a subscripted variable is referenced a
lot of code needs to be generated to calculate the
address to use. In RPN these cialculations are explicit
rather than hidden. For expressions, all an RPN
compiler needs to do is push any operand on the
evaluation stack and call or generate code for any
operator.

In an RPN language, user created operators look the
same as the built in operators., When a subroutine
package 1is used to extend an infix language the sub-
routine calls are very different from the bullt in
operators. If the extensions look the same as the built
in operators they are easier to use and the whole
program has a more natural lock about it. It is easy to
create a special set of words for graphics, statistics,
mathamatics or data base proyrams. By ‘the time 2
conventional language has been extended very far it
starts to look more like LISP :han whatever it started
out as. An RPN language in cont:rast looks the same n»
matter how far it is extended.

An RPN language is much simpler to learn than a2
algebraic language. There are n» rules of assoclativity
or precedence. The operations are done in the order
specified. In the C language there are 14 levels =of
precedence. Some associate lefl to right and some tne
other way. With RPN languages :hings are much simpler.
If it is data it goes on the stack. If it is an action
word, the action happens.

In an RPN language the programm:r has more control ove-

what kind of code is produced. The seguence =f
operations is given by the sour:e code. You don't have
to worry about the compiler rearranging the order r:
get better code. Even when usinj an optimizing compils-
you are assured that the operations will be executec
the sequence given.

RPN languages are more flexible with the way argument:
are passed to subroutines. You can pass parameters |-
value and parameters by refer:nce in a single =zall



The items on the stack become abstract items. They can
be wused as values or addresses. They can be used as
byte pointers, word pointers, long pointers, pointers
to structures, or pointers to strings. Different
numbers of parameters can be used by the called routine
depending on what is found on the stack. A procedure
can return a varying number of results depending on
what happened. Conventional languages don't offer this
kind of flexibility. The 68000 is a very good processor
to use with an RPN language. BAll eight of the address
registers can be used as stack pointers. In the other
contending micros you have only a single stack pointer
and that is used for return addresses. The 68000 also
has a very effective set of opcodes that make for small
efficlent progranms.

HTPL bas very low overhead on procedure calls. In HTPL
there is only a BSR or JSR to get to the procedure and
an RTS to get back from the procedure. Any arguments
used by the procedure are found on the evaluation
stack. This means that there is no need for an explicit
transfer of arguments.

Hany new languages 1like Post Script are wusing RPN
because as a subject gets more abstract the use of a
stack to hold operands becomes more convenient. The
algebraic languages were derived from math equations.
®Bhen computing is less numeric in nature, it is useful
to have a stack for a short term memory to hold what is
being worked on.

There are not many books or articles on theory for RPN
languages. In many cases this is because writers write
about things that are easy to write about. If you look
at any book on compilers you f£ind good coverage of
syntax and very little coverage of code generating. If
you write a compiler you spend lots of time on the code
generating and relatively iittle on the syntax.

TINY GIANT $395.00
68000 Single Board Computer
Big Features / Little Price

* 5,75 x 8.0 Inches
-Software Included:

1770 Floppy Controller * K-0S ONE, the
2 Serial Ports (68681) 68000 Operating System
Parallel Centronics Port (source code included)
128K RAM (expandable to  * 68000 Assembler

512K on board.) * HTPL Compller
* Expansion Bus * Edlitor

-Hardwvare features:
* 8MHZ 68000 CPU

* % * ®

Add a terminal, disk drive and power, and you will
have a powerful 68000 systenm.

* % Kk k% Kk %k Kk vk Kk K k sk kK Kk Kk Kk k Kok ke ok ok ok

Hawthorne Technology
8836 Southeast Stark
Portland, OR 97216

Order Now:
VISA, MC
(503) 254-2005

Curious about K-0S?

If you are interested in finding out a
little more about the K-0S ONE Operating
System Distribution Package but don't
want to buy it just to £ind out, we are
now offering the Distribution Package
MANUAL separately.

Over 150 pages of information about the
K-0S ONE operating systenm, and the
packages that come with it. There are
sections on:

1. K-0S ONE
Installation Guide

2. Command Processor
User Guide

3. K-0S ONE
Programmer's Manual

4. HTPL Compiler
User Guide

5. Line Editor
User Guide

6. 68000 Assembler
Programmer's Manual

K-0S ONE

Operating System

For the 68000

Hamtharme Teehnetes,

MANUAL FOR K-0OS ONE $10.00

Hawthorne Technology
8836 Southeast Stark
Portland, OR 97216

Order Now:
VISA, HC
(503) 254-2005

Because FORTH is the best known of the current REN
languages many of it's quirks are assumed to be in all
RPN languages. While some of these disadvantages may be
true with FORTH, they are not neccessarily true about
all RPN languages.

RPN and threaded code are not the same thing. RPN is a
way for a programmer to describe the problem to tte
computer. Threaded code is a technique for generating
object code. Threaded code has been popular for FORTH
on mnicroprocessors because it allows you to create a
very fast interpreted instruction set. For 32 bit
machines 1like the 68000 there is no real need to wuse
threaded code.

Incremental compiling is also a technique that is often
associated with RPN languages. This was a technique
used to create an interactive environment without tke
slowness of a conventional interpreter. Many RPN
languages are now compiled.

As you can see, RPN languages do not need to be feared.
The weak points of popular RPN languages have given
this method a bad name. One it does not rightly
deserve. It may seem like an unnatural method at first.
This is due to early mathamatics training. Anyone who
has learned to use a 10 key adding machine has learned
to use RPN with postfix operators. Most adding machine
operators wouldn't recognize the terms, but after their
first couple of weeks training, they don't even think
about the order they enter the information into the
machine. Ask someone you know who uses a 10 key by
touch, what order they put the information into the
machine. If they don't have a machine they can try it
on to f£ind out, they will have to think it through
keystroke by keystroke. The actions have become auto-
matic. It isn't so unnatural after all.




STARTING WITH HTPL

Welcome to HTPL programming. If you are familiar with
Pascal, Modula or Forth then HTPL will have many parts
that you already know. From FORTH we borrowed the use
of RPN notation for expressions. From Pascal and Modula
we borrowed a structure. HTPL is good for writing
small, fast programs. It can also be extended to fit
any special needs in other programming areas.

To start learning any new language it helps to see a
complete example in that language. The example can then
be related to the same program in a language you are
more familiar with. This example is a simple but
complete HTPL program that displays "Hello World!" on
the console.

(sample program)

root

program
"Hello World!" sprint
13 putc 10 putc
end

end

The first line is a comment. When anything is placed in
parenthesis in an HTPL program it is treated as a
comment and 1ignored. The word 'root' indicates that
this is not an overlay and tells the compiler to
include the runtime library with the generated object
code. The word program tells where the program will
start executing when it is run. The main part of the
program continues until the first ‘'end'. The second
'end'" indicates the end of the entire file being
compiled. The words in the double quote marks are a
string constant. When a string constant is encountered
the contents of the string are saved in a data area and
the address of the string is placed on the evaluation
stack. The word ‘'sprint' is a call to a run time
library routine to print the null terminated string.
The 13 is the numeric value of a carriage return
character. It is pushed on the stack. The word 'putc'
is another library routine that prints the low 8 bits
of the top of the stack as a single character. The '10
putc' sends out a linefeed character.

This is a complete HTPL program. When it is run it will
display "Hello World!" on the terminal. Most of the

tokens are refered to as words in HTPL just 1like in
FORTH.

HTPL COMPILE AND RUN

To compile and run an HTPL program you first write the
program using any editor. The compiler assumes that all
characters have the high bit a zero. The output of the
compiler is an executable binary file.

To compile a program type HTPL at the command 1line
prompt. After the compliler is loaded it will prompt for
the name of the first input file. Next it will prompt
for the name of the output file. Any extension can be
given for the output file but the command processor
will only try to load and execute files that have the
extension '.BIN'. Next you will be prompted for
options. If you enter an 'N', there will be no listing
of the source code as the program is compiled. If you
put an 'S', there will be no symbol table listing after

the program is compiled. The options can be given in
any order. The complier reads the source program and
any files involved twice. The run time library hex file
"HTPLRTL.HEX" must be on the default drive for the
compiler to find it. An overlay doesn't include the
runtime library so it is not needed. You can include as
many source files as you want at compile time so each
source file can be kept small to be easier to edit.

THE COMPUTER JOURNAL

Practical Programming & Hardware Projects

The Computer Journal is published bimonthly for those intethed
in programming their computers, interfacing to peripherals,
and hardware construction.
Now expanded with in-depth articles covering Turbo Pascal,
“C", Assembly Language, Kaypro, Ampro, Interfacing, plus
CP/M and other operating systems.
6 Issues (1 year) $16in US — VISA & MasterCard accepted
190 Sullivan Crd., Columbia Falls, MT 53912  (406) 257-9119

AN ADVENTURE GAME FOR THE 68000

Here 1is something FUN
to do with your system
now that you have K-0S
ONE rurning on it.

Save the life of the glorious mountain
lizard. Learn the in's and out's of HTPL
while having a lot of fun. This game
comes with source code so you can see
how varlous routines work, and how the
game changes as you change the code.

Runs on the K-0S ONE Operating System.
Shipped on a 5 1/4 inch, MS-DOS format
diskette.

LIZARD LAND $15.00

Order yours from:
MAGRATHEA
8842 SE Stark
Portland, OR 97216

VISA, MC, COD
(503) 254-2045

STACK NOTATION

The commands in the manual have a comment describing
the stack 'before and after the call to the routine.
This is necessary because in a stack oriented
programming environment the programmer has to keep
track of the stack. Errors in the size of the stack is
perhaps the most common kind of error made.

The letters or words before the '--' are the contents
of the stack before the call. The top of the stack is
on the far right bhand side. The words or letters after
the '--' are the contents after returning from the
routine or after the word is executed. If a word
appears before and not after it has been used up. The
number of items before and after the call indicate how
the stack will grow or shrink when the routine is run,
If a routine calls itself then this can be wused to
estimate how many levels of stack will be required to
run the program.

EXAMPLE: ab--c
Shows the stack change: b top
a c
- - battom
stack stack
before after



HT-FORTH on the K-0S ONE Operating System.

We have had a lot of demand for a standard FORTH to run
with K-0S ONE and for use on the TinyGiant. So we
decided to write a standard FORTH. If you already know
FORTH, this will make the system more usable. It also
means that you can transport an existing FORTH
application to your 68000 system with little effort.
BAnother advantage is that there are many books on FORTH
and FORTH user groups. A lot of the books have sample
programs that are very usable. Because K-0S ONE uses
the same disk format as MS/DOS you can easily take
advantage of any FORTH programs for the PC.

K-0S FORTH is a full featured standard FORTH that runs
with the K-0S ONE operating system. A full 32 bit stack
is used that allows access to all of memory. The
generic arithmetic operators are all 32 bit. There are
some special 16 bit arithmetic operators for special
cases. All of the system calls can be done in FORTH.

The source code is compiled to inline macros, JSR, or
BSR. This allows for large programs but remains
position independent and is very fast. Normal system
ASCII files can be 1loaded. The traditional FORTH
screens are not supported and there is no resident
FORTH style 68000 assembler.

A set of utilities to use the K-0S file system |is
included. These Iinclude such things as opening files,
and reading and writing to the disk. All the standard
console I/0 uses the operating system calls so it is
portable to any set of hardware. Also a set of useful
screen utilities 1is included that can be easily
customised for any terminal. String operators and
definers are included so you can use Pascal 1like
strings.

An option is included so you can create standard .BIN
executable files. A file can be saved in a fixed mode
that can't be changed further for turnkey applications
or can be saved in a modifyable live mode for further
development. As long as the end user does not have the
ability to add words or change words the resulting
object can be distributed without royalties.

Full source code for the system is provided. The kernal
is written in 68000 assembler and can be reassembled
with the standard K-0S assembler., Many of the utilities
are written in FORTH. A manual describes the action of
each FORTH word and the theory on how the system |is
written.

68000 Single Board Computer with Software -- $395.00

Hawthorne Technology's HT-68K TinyGiant is the 1lowest
priced board of its kind. The HT68K is a complete 68000
including software. All you need to add is a terminal,
disk drive, and a power supply to complete the system.

Hardware features begin with an 8 Mhz 68000. The HT-86K
TinyGiant comes with 128k of RAM, no wait states. RAM
is expandable to 512k by adding chips. There are two
EPROMs (up to 64k of ROM). The EPROMs contain a Debug-
/Monitor program and a boot loader.

It has a floppy disk controller (WD1770), that can
control and select up to four 5 1/4" or 3 1/2" disk
drives. The operating system reads and writes MS-DOS
format diskettes. The board has a parallel printer port

JNIRODUCIN
HT-Forth

HT-FORTH Features:

Compiles to JSR, BSR
Uses K-0S ONE Files
32 Bit Stack
Unlimited Size
Position Independent
String Utilities
File Utilities
Screen Utilities
Source Code Included

% % X % X X ¥ % %

Use HT-FORTH to create .BIN files
for royalty free distribution.

Complete package: $100.00
Manual alone: $ 10.00
K Kk K K Kk ke ok ok ok Kk sk kK Kk kR sk
HAWTHORNE TECHNOLOGY
8836 SE Stark, Portland, OR 97216
(503) 254-2005

and two RS-232 serial ports. The serial lines are
controlled by a 68681 DUART chip. The baud rates on the
two serial lines are independent and programmable: for
rates from 50 to 38.4k baud. One of the serial ports is
set up as a console device and the other is available
for a modem or other serial device. System control is
provided by vectored interrupt control, a timer, and a
watchdog bus timer. It is possible to attach additional
circuits to an HT-68k system through a full, unbuffered
expansion bus.

The board is only 5.75 x 8.0 inches. This is the same
size and shape as a 5 1/4 inch floppy disk drive. The
board can actually mount to the side of a drive. The
HT-68K requires the same voltage levels (+5VDC and
+12VDC) and uses the same type of power connector as a
standard 5 1/4 inch drive.

A complete software package is included. The board
comes with the K-0S ONE operating system. K-OS ONE is a
single user, single task operating system that reads
and writes MS-DOS format disks (including the sub-
directories). The package also contains a line editor,
an assembler that uses standard Motorola nmeonics, and
a compiler for HTPL. Complete source code is provided
for the operating system, command processor, runtime
library, and the BIOS debug PROMS. This package
provides the tools you would need to modify the systenm
to fit your special requirements. This software was
designed to be easily customized.

Single piece price, $395.00. The operating system soft-
ware is available separatly for $50.00, Qty one.

# # # i #




The K-0S ONE Operating System

K-0S ONE was designed to be easy to implement, east to
use, and low priced. It incorporates all of the
features you would expect from an operating system like
CP/M or MS-DOS, bringing these features to the 68000.

A simple design was used to allow implementation of the
operating system on most 68000 hardware. Source code
makes it possible to modify and maintain the operating
system. With the ‘operating system you can read and
write ASCII files on MS-DOS format diskettes. The
number of devices or open files is not restricted.

Package price: $50.00
The K-0S ONE operating system package includes:

Operating System - Object and HTPL source code
Command Processor - Object and HTPL source code
HTPL Compiler - Object code

68000 Assembler - Object code

Editor - Object code

Manual - Bound hardcopy

System Calls:

I/0 Management Non Disk
Open Channel Get/Set Control-Break
Create File Address/Action
Create Temporary File Get/Set Time & Date
Close Channel Get DOS ID
Delete File Get/Release/Inquire About
Read Memory Size
Write
Position Program Control

Get Last Terminate Code
Get and Execute Program
Time Delay Wait
Terminate Program

Control Device

Make Directory
Get/Change Current Dir
Delete Directory

Start Directory Search
Find Next File
Lock/Unlock Block
Get/Set File Date & Time
Duplicate Channel
Get/Set File Attributes
Rename File

Get Free Space On Disk

Batch Control
Get Next Line From .BAT
Get .BAT Control Line
Start .BAT File Processor

WHY WORK WITH A NEW OPERATING SYSTEM?

The small computer market is caught between two ruts
today. On the small side is the PC and on the large
side is Unix. The other players missed the boat by
having a great (or so they thought) interface with
nothing behind it to do any useful work. To be PC
compatible is a dead end. The system is a kludge.

As developers try to squeeze the last bit of perfor-
mance from the PC there will be problems. It is true
that there are several million PCs in the world today.
This doesn't mean there is a good market. Because the
market is so large, it is hard (and expensive), for a
small’ company to make themselves heard. There are
public domain or low priced programs for every common
application that anyone wants. These are hard to
compete with. The pressure is to continue lovwering
prices while cutting profits. A business person needs
to look at what point he can no longer afford to remain
in this kind of market.

To break out of this rut a new system architecture is
needed. Use the PC and clones where they f£it but start
to forge ahead in new directions. This doesn't mean

trying to run a PC program on another machine. [t is
possible to emulate an 8086 on a 68000 but a full PC
emulation is not worth while. In every case so far the
emulation costs more than a PC clone. The interchaznge
of disks on the other hand is very economical and easy
to do. This protects the investment in data and mzkes
it possible to add new machines without giving up the
old ones.

The first step to a new architecture is to have @ new
operating system. It must be indpendent of a particular
piece of hardware. This doesn't mean an operating
system that can run on any processor. It means not
being tied to a limited set of hardware like MS-DCS 3ot
tied to the PC hardware. The second step is to separate
the application programs from the operating system
itself. To wuse networks or multiple processors there
must be a clear distinction between the 1logical arnd
physical structure of the machine. To do otherwise
would be to set a limit on what can be done with <he
operating system.

Bit map graphics and mice are good in some cases bat to

hobble an entire system with tricks that are not often
needed or used is bad. The original use of mice was to
allow people who knew little about computers to
retreive information from them. They were not ones who
had to put information into the computer or the mcre
experienced users who want low cost and high perfor-
mance. The operating systems like Mac and Atari are
complex to the point where they hinder the development
of new programs rather than helping. The windows that
Microsoft has to sell are no better. Look at any stock
broker, they have mulitple screens for dealing with
different pieces of information at the same time, not
tiny windows on a single screen.

A very promising area to look at for the future is
multiple processor machines. With them, when more users
are added to a system, more processing power is addad
also. This makes it possible to have multiple access
without the slow down problems associated with trying
to share a single CPU among many users. For <zost
sensitive or 1low performance users the muliple user
approach can be used for lowest cost. For applicaticns
where high performance is important multiple processors
can be used. If the operating system is independent of
the hardware then the same program can be used in bcth
cases.

Another area where multiple processors can be used to
advantage is to split the operating system into
component parts. For example the file management system
can be duplicated for each disk in the system. ‘Then
when opening a file on disk A there would be ro
operating system overhead imposed on the system runnirg
disk B. If a disk is not involved then it would take rno
part in the activity. This allows large numbers «cf
users to all access files at high speed if the load is
balanced ambng different disks. A remote disk and file
system can be like a new resource that can be easily
added and integrated into a system. A company system
can start small and grow to almost any size withort
requiring that the existing parts be replaced.

An individual workstation can have graphics and icors
or not as need or tastes dictate. This will allow some
users to access the system with icons but not impose
that structure on other users of the system. It &lso
means that some users could have windows and others
could have more than one screen. Some users could have
a local floppy disk or printer too. This approach to
things opens a wide area of possible designs for
working.



It is time to start planning for the future while the
present generation of computers is still adaquate for
today. If we don't start now we won't have the next
generation when we need it. At Hawthorne Technology we
are working on new ways of doing things. All of our
programs are compatible with K-OS ONE at the system
call level. Our hardware varies a lot. We even use PC
Clones for some things. But any program that uses K-0S
ONE system calls to access the hardware, and doesn't
depend on special terminals, will run on any K-0S ONE
syster. We intend to keep this compatibility in the
future for all systems whether distributeq, multitask
or single task. You can join us in this by using K-0S
ONE or by writing applications to run with it. The
number of people using K-0S ONE is increasing every
day., There 1is a growing market for Languages and
application software. Anyone interested in doing a
package should contact us. We will help out in any way
we can.

Q&A

These are some of the guestions people have had asked
in the last couple of months. I thought they might be
of interest to others who have not had the time to get
in touch with us.

QUESTIONS AND ANSWERS

Q: What kind of disk drive do I use with the TinyGlant?

A: We use 5 1/4", 360k floppy disk drives. This 1s also
refered to as the PC, XT style. It is a standard style
and available from many manufacturers and through
dealers everywhere.

Q: Will the disk controller on the TinyGiant board
control a 3 1/2" drive?

4: The TinyGiant board uses the WD1770 disk controller
chip. The 1772 chip is nsed to control the 3 1/2" disk
drive in the Atari ST. The only difference between the
1770 and the 1772 is the step rate. The 1770 is
standard and the 1772 is faster. This means there
should be no problems using the TinyGiant with a 3 1/2"
drive.  The driver and format routines would need to be
modified.

Q: Where do I get connectors for power, etc. to set up
ny TinyGiant system?

BA: There are many sources for connectors, depending on
your location. If you have an electronics parts store
in your area they will probably have what you need.

POWER: A standard floppy disk power connector will work
for your TinyGiant power connector if you are wiring up
your own supply. If you are looking for a place to buy
this connector mail order, JAMECO Electronics has the
parts (housing 480424, and pins 60619). They are in
California at (415) 592-8097. 1If you are going to a
distributor for the part it is an Amp connector (or
equivilant), housing part # 1-480424-0 and conductor
part # 60617-4 (gty 4 needed).

SERIAL: Because the Transmit, Receive and Ground
signals are all in a row on one side of the connector,
you can get away with a 3 pin single row .1" connector.
You do have to be a little more careful installing it.
(Straight ribbon cable won't work because of the signal
arraingement on the pins of the connector.)

Editor Toolkit for K-O0S ONE

A full screen editor is something that many X-CS \ONS
users have asked for. A simple line editor was included
because 1line editors don't have to be customised to a
particular terminal to be useful. For developing soft-
ware a screen editor is much more productive. We |are
providing the source code for both the line editor| and
a screen editor so that either one can be easily
customized for any terminal. This package supplies the
tools you will need to create YOUR editor. You |can
change the default settings or the commands to be Wha'
you like. You can add commands to do special functions

You get the source code for a full screen editor and
source code for the line editor that you got with gour
K-0S ONE Distribution Package. Both are written in HTPL
and are easy to modify. Binary copies are also
included. A text formatter like nrof is also included
in source and object form. The manual describes how the
editors work and gives helpful information on modifﬁing
them.

COMMAND SET FOR SCREEN EDITOR:

e FOR HELP SCREEN ~J or Line Feed --------- -

~“A - word left
*F - word right

“D - char right
~8 - char left

“E -~ line up | *G - del char
~“X - line down | ~T - del word
“R - page up | “L - repeat last find
~C - page down | ~Y - delete line
|
!

| ~KB - mark start of block
~“QK - to end of block | “KK - mark end of block
“QS - start of line | “XR - read file
~“QD - end of line | “~KW - write file

|

|

|

|

“QB - to start of block

~“QR - top of file ~KD - exit editor

~QC - bottom of file ~KC - copy block

~“QA - find and replace ~KV - move block

~QF - £ind ~KY - delete block

~“QL - restore line ** block markers are
QY - del to end of line always column 1

EDITOR TOOLXIT . . . . . . . . . . §$b0.00

From: Hawthorne Technology (503) 254-2005
8836 SE Stark, Portland, OR 97216

PRINTER: The cable for a printer is a stan@ard

centronics style cable. The board connector should He a
female, .1", dual row header like a ribbon cable
connector. The board has a full 40 pin header. TIf you
use a 34 pin cable, you can cut off the last & pins or
your board, or bend them away so your cable will fit.

v "

/?lll|l1lll]/[4

L

EXPANSION: My recommendation for expansion design wquld
be to use a solder in female header on the expaniion
board so it plugs directly on to the TinyGiant. Samtec
makes an Elevated Socket strip that is good for ‘this.
It comes in a 2x36 pin strip part # ESW-136-23-T-D.




KNOCK YOUR SOCKS OFF

A New 68K System KYSO

TECHNOLOGY

At Editor Bartel's request, here is a brief description
of my 68k system which I call Bolo. I used to call it
the Homebrew Mac, but because of another company's
aggressive tendency to defend its use of fruit names as
product names, as well as the letters M, A, and C, I
changed the name to something innocuous (I hope).

Bolo includes the following:

10 MHz 68000 processor Serial I/0
512k RAM Mouse input
16k ROM Dual Floppy Drives
PC-style keyboard 8 interface slots

1024x480 video, 128K video RAM

Bolo currently resides on a 13x14 inch PC board. It is
built with standard parts ordered from the back of BYTE
magazine and Radio-Electronics. Current software tools
include a ROM monitor and a cross-assembler written in
C for the PC. B C compiler would be a welcome addition
to the tool set. With Hawthorne Tech's help, I expect
to have K-0S running on it soon.

The idea behind Bolo is to have a computer completely
"-able" by a user. By "-able" I mean that the computer
is:

affordable extendable
buildable usable
repairable understandable

Obviously, this 1is not a personal computer "for the
rest of us"; a user must have some technical background
in order to be an "-able" person. Are there are others
in the world who can meet the specs of this machine? I
don't know. That is why I am writing this article - the
survey enclosed might help to make Bolo more "-able" to
its users. If I can find the time and money, I would
like to make Bolo available to others through a kit or
an assembled and tested board.

In this survey, wuse 1 thru 5 as responses to the
questions. One indicates a low amount of enthusiasm,
desirablility, usefulness, etc., while a five indicates
You Gotta Have It! Make copies for your friends. Any-
body who sends me a stamped, self-addressed envelope
can get the results of the survey directly. The results
will also be published here in KNEWS.

Send your responses to Tony Ozrelic, PO Box 5246, Bend,
OR 97708. Thanks in advance for taking the time to fill

I. Hardware
x * * WYhat kind of processor do you like?

___ 8MHz 68000 ___10MHz 68000 __ 10MHz 68020
___10MHz 68030 ___ Other:

x * * Video Displays - Monochrome

__512x480 __1024x480 __ Other:

* * x Video Displays - Color
__ 512 x 480 x 32768 colors/pixel

_ 1024 x 480 x 16 colors/pixel __ Other:

x %X X% I/O
__3-1/2" floppy __5-1/4" floppy ___ 8" floppy
___ 20Mb Hard disk __ Optical Disk __ Other:
__ Mouse Interface __ Serial Interface ___ Parallel
__ Sound (simple) __ Sound (complex) __ MIDI i/f
__LAN i/f __ Other: __ Other:

* * * TInterface Slots

__ 8 bits Only __ 16 bits Only __ Both 8 & 16 bits
__ interrupts on slot ___ DMA capability
__ Memory Expansion __ Simple interface-like Apple Il
__ Complex i/f (NuBus,VME,etc.) __ VHE compatible
__ PC compatible ___ MAC II compatible
__ Other:

II. Software
* * * Tools

__ Assembler __ Editor __ Other:

* * * [Languages
__C compiler __ PASCAL __ FORTH __ BASIC
___LISP __PROLOG  __ HTPL __ Other:

* * x (Operating Systems

__ UNIX-like __ MS-DOS-like __ Macintosh-like

__K-0S ONE  __ Other:

* * * Applications
__ Spreadsheets __ Word Processing __ Desktop Publish
__Cap __ Paint program __ Other:
III. If you had a Bolo, what would you use it for?
__ Software Development ___ Hardware Development
___ Word Processing __ Desktop Publishing
__ Business/Financial ___Real-Time/Industrial
__ Hobby/Hacking __ Educational
__ Other:

IV. The Bottom Line: How much should it cost?
100->199 200-> 300-> 400-> 500-1000

Bare board with

manual, software: | | | |

Assembled & Tested

with software: | | | |

A&T w/o software,

(OEM) gty 100 ea.: I | ! |

Entire system,

out the survey form. case,PS,kbd,display: | | | |
PR o1 ¥ § S e = e o mmm e e e = e -
READER RESPONSE / ORDER FORM
Hawthorne Technology
Please send me the following items: -
8836 S.E. Stark, Portland, Or 97216
Quantity Description Price
(503) 254-2005
|
|
Ship To:
| __ Please keep me on
Name I the mailing 1list for
Street | 68—-KNEWS.
ree : (We want to hear from
City/State/Zip | you. If you bhaven't
| contacted us, and wish
____VISA / MC UPsS C.0.D. Pre Paid | to continue to receive
| 68-KNEWS, let us know.)
Card # |
|

Signature




L B I 2NN SN NS I I L D T O DN I 2 D I I I 1
OB ORROR OEE R ORRE OB OKE OB OBE OB OER R R O RE &
# R R ORR R ORE R OBRR OB OBRE R OER OB ORRE R ORE R R 13

2037pd U9aI0g [I0J --
yjaod —-

seubiuyoayg

dNO SO-X

dNO SO-)

1dLH

*SLHDITHOIH

R R OB ORR OB ORE R ORR OB OER O BRE O ORRE R ORRE R X
B & BE OB OBE OB OER OB OBRE O OBE OB R OB X% % R %
2 OBE R ORR R ORR R OBR X BB O3 1% R OER R X 2 BR ®

Hawthorne
Technology

8836 S.E. Stark
Portland, Or 97216

SMANXY-89

BULK RATE

US POSTAGE
PAID

PORTLAND, OR
PERMIT NO. 1116




