9
)

=

-
)

-

=
Q
=
©o
-
N
Pk
-

[y
<
[
b
w
m
w
[
%)

~

-
®
2)
-
=]
2
Q
UQ
<

m
8
:
o
=
o
1
=
®

68-KNEWS

Hawthorne Technology., 1411 S.E. 31lst., Portland, OR 97214
(503) 232-7332

Many things have been happening at Hawthorne Technology
recently. We have moved Hawthorne Technology and are
settled in our new location. We intend to continue putting
out a newsletter as regularly as possible and get K-0S ONE
articles published 1in other places. We now have a better
area for hardware design and testing. We will continue to
announce new products that run K-0S or programs that run
with K-0S.

A group in Virginia is involved in porting HTPL and the K-0OS
ONE system to run on the National 32000 series micro-
processor. While the object code produced will not be
compatible with the 68000 version the HTPL source code and
the manual shguld-_be almost identical. If there is enough
interest we cah cojfivert the K-0S opvrating system to run on
almost any 32/bit processor. This would make it the generic
portable operating system for big micros.

We are happy to announce that we now have a full featured
BASIC interpreter for the K-0S operating system. It has been
written by Custom Computer Products in California. Like the
disk format that draws on the MS-DOS world, the BASIC is
very similar to MS-BASIC so it 1is possible to run most PC
BASIC or CP/M BASIC programs on ahy K-0S system. The main
exceptions are graphics and sound. See the preview article
on it later in this newsletter.

A video display board has been designed to fit on the
expansion bus'wof the HT-68k. It is a very fast programable
character oriented display. It also has a generic parallel
1/0 for scanning special purpose keyboards. This eliminates
the need for a full ASCII terminal and is excellent for many
process control applications. It is being offered by Haas
Rutomation of California and looks like it would work very
well for embeded control usage.

Bill Kibler of California has K-OS running on a Stride micro
system. He wrote two articles for The Computer Journal about
how it was done. There are also several S-100 systems
running K-0S, some of them using 8 inch floppy disks in a
native format. We would like more feed back on what kinds of
systems have K-0S installed. A library of installations
could be built up to make it less effort to get K-0S ONE
running on one of a kind systems.

We don't have a C compiler yet. There are several reasons
for this. First, the existing assembler, HTPL, and FORTH
have proven to be very good and effective for development.
Secondly the ease of using a cross compiler that runs on a
PC has made that route very convenient for larger projects
using the C language. All the people who have started
working on C have found that a C compiler is a much larger
and more difficult project than they thought it would be.
Den't give up hope. If you really want C you are not alone.
It still looks like we will get a C compiler. Possibly soon.
We haven't worked on a C compiler because we didn't want to
duplicate the efforts of those who are working on one.

We have been working on FORTH this winter. We have a new
version of FORTH with full floating point support. This will
make it easier to use for numerical problems. We also have
added a CASE structure to our regular FORTH to make
programming easier. Another addition to both versions of
FORTH are words for defining abstract data structures. Now
you can do things in FORTH as complex as anything in C.

In the next couple of months we plan to have a version of
the command processor that has all the wild card characters
just 1like CP/M and MS-DOS. We have part of this done
already. This will greatly simplify éopying files and
managing disks. We will also have some kind of batch
precessing capability. We haven't done much with batch
processing but the operating systems calls for doing it have
always been a part of the operating system, it was just a
matter of time before we used them.

The big talk in computers this year besides the 80386 has
been RISC processors. These are simplified processors that
are easier to design and build then the more traditional
complex insruction set processors. The language we used for
K-0S ONE, (HTPL), is like the software equivalent of a RISC
machine. The structure was kept simple but it was power ful
enough to do anything that needed to be done.

If you have a piece of code that you have written for your
K-0S ONE system and would like to share it with other K-0S
ONE users, we want to encourage you to write it up and send
it to wus for 68~KNEWS or to The Computer Journal f£for
publication.

We are going to be at SOG again this year. That is the Semi
Official Gathering (of computer people). It is held in Bend,
Oregon and sponsered by Micro Cornucopia magazine. This year
SOG will be held July 14, 15, and 16th. We always have a
great time. It is worth the trip. We look forward to meeting
with K-0S ONE user's and showing our new products.

TinyGiant 68000 SINGLE BOARD COMPUTER

The HT68K is a complete 68000 system on a single board. The
K-OS ONE operating system comes complete and installed. The
68000 runs at 8 Mhz with no walt states. There are two
EPROMs, a dynamic RAM controller, 4 RAM chips, a 68681 dual
serial chip, a printer port, a floppy disk controller and an
unbuffered expansion bus.

The 68681 has two serial ports, and a timer. Each serial
port has in internal baud rate generator for 50 to 38.4k
baud. At start up, the console is set to 9600 baud and the
other port is set to 1200 baud. The timer is used for a time
of day clock. When the PRN device is selected the parallel
printer port 1is used. The 1770 floppy controller can
control up to 4 floppy disk drives, elther 5 1/4 or 3 1/2
inch. It has an internally clocked digital data separater.
All serial and parallel I/0 is done with interrupts.

The board comes with 128k of RAM that can be expanded to
512k by adding more 64kx4 dynamic RAM chips. An expansion
board could be added if more memory is needed. The MBl1422
dynamic RAM controller takes care of all the timing and
refresh. The two EPROMs contain the boot code and a simple
hardware monitor.

There are two expansion connectors that provide all the
needed address, data, and control 1lines. The 64 pin
connector has "~ all the raw signals just as they are on the:

68000. The othcr expansion connector has a priority
interrupt encoder that is connected to autovector
interrupts.

To use the TinyGiant, connect a power supply, a terminal,

and a disk drive. The board requires only 5 volts at 2 amps
and +12 volts for the RS-232. The -12 for the RS-232 |is
generated on board. The power connector is the same as is

used for a floppy disk. The size and shape of the board
(5.75 by 8 inch) allows it to be mounted on the side of a 5
inch disk drive.

The PROMs are set to boot K-0OS ONE from disk when power is
applied if a drive is connected. If no drive 1s connected
then a simple hardware monitor is started.

The purpose of the monitor is to ald in troubleshooting or
debugging the hardware and how it is set up. The monitor can

examine and modify memory. It can alse read individual
sectors on the disk. It can boot the K-0S ONE operating
system or any other program you want. It can also down load

a program in HEX from the Aux serial port. There is also a
printer test program included.

SuperBASIC 68K

Custom Computer Products has produced a full featured BASIC
for use with the K-0S ONE operating system. The basic |is
very similar to the Microsoft BASIC that was used on CPM
systems, GW BASIC or BASICA used on the PC. This combined
with the use of the MS-DOS disk format makes a large number
of commercial and public domain programs avalilable for use
with any 68000 computer that has the K-0S ONE operating
system. If you have a library of BASIC programs on CP/M all
you have to do is translate the disk format, if you have
BASIC programs already on MS-DOS disks you don't even have
to do that. There will probably be small things that need to
be changed but most will run directly on the Custom Computer
Products BASIC. This form of BASIC was chosen because it is
the most compatible with the programs that exist on our disk
format. .

Most people have expected BASIC for the 68000 to be very
large. This one is guite small. Only 32KB of object code.
This leaves you with over 32k of work space on a 128k
standard HT68K. It is small because it was crafted by an
expert in assembly language. You can run fairly large
programs on a standard 128K TinyGiant that hasn't been
-expanded. Even though it is small it has all the features
found in much larger BASICs. There are full string
functions, file 1/0 and floating point math. There is a peek
and a poke command for direct hardware control.

The floating point math pack is the major difference between
the Custom Computer Products BASIC for K-0S ONE and a
Microsoft style BASIC. The 32 bit single precision math uses
the same format as the HTPL math pack and gives 7 digits
with a range of 10E19. The double precision math format is 8
bytes with 14 digits and a range of 10E43900. This is a very
long range but both formats were chosen to give fast results
on a machine that does not have a floating point
coprocessor. All trancendental functions are provided in
double and single precision format.

The programs can be saved or loaded in ASCII or a compressed
format. The ASCII files can be created or edited with the
standard 1line editor or with the screen editor in the tool
kit. The current built in editor is an improved line editor.
If you are converting from an older BASIC an ASCII file must
be used because while the source is compatible the internal
code is quite different.

The sequential disk files that are recorded in ASCII by
Microsoft style BASICs are compatible and can be read or
updated for with SuperBasic. The random disk files will need
to have numeric values converted because the floating point
format 1s different. Integers are also stored 1n the
opposite order from the intel style processors.

SuperBASIC 68K

Supports almost all of the standard MS BASIC syntax

" including FIELD, GET, PUT etc.

LOAD and RUN standard MS BASIC programs without change.

Reads and writes data files in MS BASIC compatible format so
can interchange data with your PC.

Numerical data includes integer, single precision floating
point and 64 bit double precision floating point for both
arithmetic and called functions such as SQR, SIN, EXP, etc.
Automatic type conversion is provided for mixed expressions.

Program variable names can be any length up to 255
characters, all characters are significant.

Strings can be any length up to 255 characters. A full set
of string functions is included.

A modern memory manager is used to allocate string and
variable storage from dynamic memory to eliminate the need
for the garbage collection FRE function to release string

space. This can greatly improve throughput for some
applications.

IF, THEN, ELSE structures supported as well as WHILE and
WEND.

CHAIN function provided to link to supporting programs.

AUTO 1line numbering and RENUM are provided for easy program
entry.

An EDIT function allows WYSIWYG (what you see is what you
get) editing of program lines with natural edit keys - used
throughout.

Easily configurable for most common terminals.

Peek and Poke for direct hardware control.

HT-Debug

When writing or modifying a program, a low level debugging

tool is often needed. To make it easier to correct bugs or
find them during program development we created the HT-DEBUG
program. This can also be used to study or modify programs
or debug hardware. It can also do other low level tasks.

HT-DEBUG allows you to make small changes to a program that
has been assembled or compiled and then run the program in a

controlled manner. Programs can be loaded or saved in three
formats, Motorola S records, Intel style HEX records, or
binary 1image .BIN files. A program can be loaded 1in one

format and then saved in a different format. Because of the
use of the operating system programs can be save on disk or
uploaded to a host computer.

It has commands that fill blocks of memory, move blocks of
memeory, or compare blocks of memory to see what has
changed. Memory examine and replace covers long words, words
and bytes. It is possible to display the contents of memory
in hex or in ASCII. You can also look at and change the
contents of registers.

The disassembler allows you to see what code 1is at a
particular place in memory. With the single line assembler,
vou can patch the code using 68000 mnemonics. Breakpoints
can be set to stop a program and display what was in the the
registers when the breakpoint was encountered. The HT-
DEBUGGER also has a trace mode. Individual registers can be
examined or set. The memory can be displayed as HEX or ASCII
characters.

HTPL Floating Point

The HTPL floating point package is designed to add floating
point arithmetic operations to the standard HTPL language.
The package contains the floating point routines in a
linkable .HEX file that is about 3.5k long. The parameter
stack 1is used to pass all arguments. It does not wuse any
variable space. There are routines to convert to or from
integers or ASCII characters.

The floating point numbers are 32 bits long. The format is
the same as the Motorola Fast 32 flcocating point math. This
gives 7 digits of precision and a range of E+/- 19. Since
the floating point values are 4 bytes and HTPL has 1long
stack items, vyou can use the same load, store, and variable
declarations as long integers.

The HTPL floating point package includes: Sine, Cosine, Arc
tangent, exponential, logarithm, and square root functions.
A4 simple RPN calculator program to evaluate the math

package is included. Also a sample program that demonstrates
the use of the formatted output routine is included.

Screen Editor Toolkit

A very good line editor comes with each copy of K-0S ONE
that will work with any terminal without modification. While
some people 1like 1line editors many people prefer the
convenience of a full screen editor. Many programmers 1ike
to customise an editor for their own special wuse. The
available editors were written in C or some other language
that is not available for K-0S ONE yet. To solve this we
created our editor tool kit using HTPL.

There are three programs in the editor tool kit for X-0S
ONE: a full screen text editor, a line oriented editor, and
a text formatter. A ready to use binary object copy of each
program is included. The HTPL source code for each program
is 1included so you can modify any of the programs to fit
special needs. The manual has a wuser section and
modification section for each of the included programs. The
operation of all procedures is explained. The purpose and
use of each variable is also explained.

The screen editor uses Wordstar(tm) style commands and can
be configured for almost any type of terminal. It is fast
and can handle large files. The output is plain ASCII text.
Ncw features can be easily added or the function of existing
features can be changed. The command codes can be changed to
emulate most editors. Because of the disk format used, it is
easy to move text files to or from from any PC.

The 1line editor is like the editor provided with the K-0S
ONE operating system. A 1line editor doesn't need to be
customised for a particular type of terminal. It is easy to
specify changes that affect groups of 1lines. Also many
different 1lines from different parts of a document can be
compared at the same time.

The text formatter is a nroff style formatter, The text is
prepared with a normal editor and the format commands are
embeded in the text. The formatter prepares a disk file or
sends it directly to a printer. It is useful 1in document
preparation tasks such as for desk top publishing. It is
easy to adapt it to use all the special features of a
printer such as special spacing or character fonts.

These are all compact and efficient programs. The source
code for the screen editor is only 25k, the line editor 19k.
and the text formatter 13k. The small size and modular code
make them very easy to understand. The object code for the
screen editor is 14k, the line editor is 11k, and the text

formatter 8k. This small size gets more done with less
memory or disk storage space.

K-0S ONE, 68000 OPERATING SYSTEM

K-OS ONE is a single user operating system. It has all of
the standard commands that you need to use a 68000 system.
K-0S ONE uses the same disk format as MS-DOS including
subdirectories. This makes it easy to exchange data with any
PC. The commands are patterned after CP/M and MS-DOS/PC-DOS,
so the operation will be familiar to anyone who has worked
with either of those systems.

A simple design was used to allow implementation of the
operating system on most 68000 hardware. System calls use a
parameter block instead of registers. This makes it easy to
use system calls from a high level language. K-0S ONE is set
up so OEM's can use it with their products or applications.
The command processor 1s a separate part and can be changed
to resemble almost any operating system, (even UNIX). The
operating system is very small. It can be edited and
recompiled in a system with 128k of memory.

A complete package is provided. It includes an editor, a
compiler, and an assembler. The source code is provided,
making it possible to modify and maintain the operating
system with the tools that are provided. The operating
system s written in a high level language to keep it
managable. K-0S ONE has a RAM disk. A sample BIOS and a boot
loader is included to make it easy to install on different
systems.

The K-0S ONE operating system package 1s low priced, even in
single piece gquantities. Manuals are available for a small
fee without purchasing the system.

The standard generic K-OS ONE 68000 operating system package
that can be installed on any system includes:

Operating system (HTPL source and patchable binary object)
Command processor (HTPL source and binary object)

HTPL compiler (object only)

HTPLRTL runtime library (ASM source and hex object)

68000 Assembler (object only)

Line Editor (Object only)

Sample BIOS and boot locader (ASM source)

Manual (bound hard copy)

EDITOR

A 1line editor 1s included in the K-0S ONE distribution
package because it can work with any ASCII terminal without
speclal installation. It provides basic text entry and
editing for program development. A find all command acts
like a cross refrence. Find and replace commands can
reference position or context.

ASSEMBLER

The assembler 1is a complete, classic, two pass 68000
assembler that runs with the K-0S ONE system. The assembler
uses all the standard Motorola mnemonics. Listings can be
directed to a printer, or a disk file, or the console. A
sorted symbol table and cross referencing is optional. The
error messages are descriptive and are 1included 1in the
listing. 1If the no list option is selected, error messages
will be displayed on the console device unless output is
directed elsewhere.

HTPL

HTPL, Hawthorne Technology Programming Language, is a
language that was created to write the K-0OS ONE operating
system. It was designed for writing compact readable code
with a small efficient compiler. The runtime library written
in assembler 1is 1less than 2k long. It is two pass and
directly produces a position independent executable binary
program.

HTPL uses control structures like those in MODULA-2. Complex
programs are easily broken down into small easily understood
procedures. Procedures can be forward refrenced. Constructs
include IF-ELSE-ELSIF-END, WHILE-END, DO~UNTIL, WHILE-DO-
END. There 1is also a CASE structure. Modules written in
assembly language can be linked into HTPL programs.

The expression are handled in RPN (Reverse Polish Notation)
which translates into compact, efficlent object code using a
small compiler, less than 21k. Variables are easy to declare
and use, making the source code easy to read. Variables and
arrays can be byte, word, or 1long. Variables can be
initialized or allocated at run time.

Using HTPL, a person can create menu driven user oriented
applications. The same 1language can be used to create
compact systems programs. Almost all the K-0S ONE operating
system, the edit tool kit, the assembler, and the HTPL
compiler was written in HTPL.

80868088 ASSEMBLER

The HAWTHORNE TECHNOLOGY 8086/8088 assembler can be used to
develop 8086 programs on any microcomputer with MS-DOS 2.0.
The assembler was developed to easily create .COM programs
or for embeded systems., It is optimized for small programs.
The two pass assembler creates .HEX files without the need
for a link editor. The source file is read from disk. &n
object file in Intel hex format is written to the disk. The
HEX object file can then be converted by a utility program,
(included with the assembler) to prduce an executable .COM
file.

The assembler is quick and easy to use. It does not require
complicated directives such as "ASSUME CS: CodePlace" or
"CodePlace SEGEMT AT 0100H". It is not strongly typed so a
variable may be referenced as a byte or word with equal
ease. This assembler was designed to be an efficient tool
for the busy programmer.

68000 CROSS ASSEMBLER

We are now releasing our 68000 cross assembler. Because we
are dolng a 1lot of our current programming in assembly
language, we have finished the cross assembler. All of our
early work with the 68000 was done on a PC until we had the
K-0S ONE system going. When we first wrote it we didn't
have any time to spare. We didn't need all of the features
of a full 68000 cross assembler so the time was not devoted
to making it into a completed product. While finishing 1|t
we made sure it was compatible with the resident assembler
on K-0S ONE. We use a PC to assemble and list many of the
programs we develop. The compatible disk format makes this
combination work very well.

The cross assembler is written entirely in 8086 assembly
language so it is small and fast. It is only 15k of code.
All input and output is done with standard MS-DOS calls so
it will run on any MS-DOS system even those that are not
totally PC compatible. The manual describes the assembler
and how to use it. It does not try to explain how the 68000
opcodes work.

All 68000 and 68010 instructions are supported. The cross
assembler has conditional assembly. The symbol table is in

alphabetical order. Cross refrencing is included. There are
include files so it is easy to assemble big programs but
edit them in small pieces. An equate file can be produced

for PROM based programming.

CROSS ASSEMBLERS

A HAWTHORNE TECHNOLOGY cross assembler allows the creation
of assembly language programs for the specified
microprocessor on any microcomputer with MS-DOS 2.0 or later
operating system. Each assembler is a classic two pass
assembler that uses the manufacturers nmemonics. Source
files are read from disk. A machine language object file is
generated and stored on the disk in Intel Hex format. The
resulting file can be burned into PROM or downloaded to
another computer through a serial port.

These directives are present in all versions. Some
processors have additional directives.

DB Define Byte DS Define storage

DW Define Word END End of input file
PAGE Start new listing page LIST Listing on

SYMOFF Turn off symbol table UNL Listing off

TITL New title for each page ORG Origin

INCLUD Include file EQU Equate

Listings may be directed to a printer or the console. The
cross assemblers include the option to print an alphabetical
symbol table. A complete cross reference of all symbols and.
their wuse <can also be requested. Error messages are
descriptive and are included in the listing of the 1line
following the occurance of the error. If UNL (listing off)-
is selected, -any error messages will be displayed on the.
console device unless output is directed elsewhere.

The assemblers generate an Intel style .HEX file as output.
Utilities are included to convert the .HEX files into binary
files or the Motorola style S records.

Each package contains an MS-DOS format, 51/4 diskette and a
complete manual that contains a list of the processors
assembly language commands.

Currently available for the following processors:

6502 6800/6801 6805 9900/9995
8080/8085 280/64180 8051

Floating Point HT-Forth

FLOATING FORTH 1is a speclial version of HT-FORTH that has

single and double precision floating point operation words
added to it. All the words that are in the standard HT-FORTH
are included in the floating point version. The kernel size
is only 18k and is supplied as a ready to run binary. There
is no source code of the assembly language portion provided.
The utilities, full screen editor, and 68000 RPN assembler
are provided 1in source fecrm and are the same as for the
standard HT-FORTH. Like the regular FORTH, programs can be
saved in a modifiable form or in a frozen form. When stored
in a frozen form, a program you write «can safely be
distributed without royalty payments.

There are two floating point formats. First is the single
precision format that takes 4 bytes of storage. This is like
the Motorola fast floating point format. Because HT-~-FORTH is
32 bit all the normal words can be used with single
precision floating point values. The other format is an 8
byte format. This has 48 bits for the fraction and 13 bits
for the exponent. This allows about 14 significant digits
and an exponent range of several thousand. There are some 8
byte operators added to take care of normal operations like
@D !'D DOVER DSWAP DVAR. There are words for many double
precision constants.

There are the standard floating point operation words. There
is also reverse subtract and divide to avoid swapping the
top of the parameter stack. There is a complete set of
functions for both single and double precision numbers. This
includes sin, «cos, arctangent square root, log, exponential
and comparisons. There are words that can convert single to
double and double to single.

A format word makes it very easy to create floating point
output for display or writing to disk files. A table of
format codes is created and the FORMAT word interprets the
result much like FORTRAN uses FORMAT statements with Read
and Write statements. This reduces the size and complexity
of code needed compared to formatting one output value at a
time. Integers and strings can be mixed 1in the format
tables. There are immediate words for convenient wuse of
floating point constants or interactive use.

HT-Forth

HT-FORTH 1is a full featured, 1interactive FORTH that works
with the K-0S ONE operating system. It uses a full 32 bit
stack and 32 bit arithmetic to take full advantage of the
68000 microprocessor. Programs are position independent and
are limited in size only by the memory available. Source
code compiles to inline macros, JSR or BSR so there is no
inner interpreter overhead.

Many major extensions have been added to normal FORTH. There
are words for working with strings just like in BASIC. There
are words to access the file system in K-0OS ONE. There are
words that provide pointers like the C language has. There
is a CASE structure. There are words for declaring complex
data structures. There are about 250 words in the basic
FORTH. This 1is more effective words than it seems because
there are no hidden words for use by the compiler.

Standard ASCII files are used. The HT-FORTH package has a
Wordstar(tm) style full screen editor and a FORTH style
68000 assembler. A lock program can be used to create .BIN
files for distribution without paying royalties. A person
using the program does not need to know anything about the
language used to produce the program. :

Source code is provided. The kernel is 68000 assembler code.
This 1is the normal two pass assembler and not an RPN FORTh
style assembler. Because of the structured method of writing
the kernel routines and the provision of source code it . is
easy to add new words or delete existing words. Most words
can either be inline macros for speed or subroutines for a
more compact size. Many of the utilities like the editor and
assembler are written in FORTH and source is provided for
them also.

Utility words are provided for using all the X-0S ONE
operating system calls. These include make file, open file,
read file, write file, close file, and delete file. This
makes it possible to easily work with normal ASCII or binary
files and share data with programs written in other
languages. Using these words results in programs that are
portable to any hardware using the K-0S ONE operating
system.

FORTH is an excellent choice for a programming language. It
is wvery interactive and easy to debug. It is portable to
other computers and operating systems. It can be modified tc
fit different kinds of programming and programming styles.
It is very good for interactive or control type programs.

HTPL ROUTINES

The following routines are useful for programming in HTPL.
These routines perform functions similar to some of the
'words' provided with HT-FORTH. FEach task 1is accomplished
first in assembly language and then in HTPL. Pointers are a
useful way to load or store a value. You then Iincrement the
pointer. A library of procedures like these can be added to
the run-time 1library code that comes with HTPL to make
programs smaller or faster.

In many programs most of the time will be spent in a very
small part of the code. If these small parts are written in
assembly code the entire task can run fast but still be as
easy to develop as if it were all in HTPL.

In the screen editor, the replacement of a single routine

made the editor appear to run twice as fast. 1In the
assembler, the symbol table routines were written in
assembly code. When we develop programs at Hawthorne

Technology, we do all of the routines in HTPL first because
it 1is a quick way to get the program running. Then, L{£f we
want to improve the speed of the program, we recode the
routines that are accessed frequently, in assembly language.
A routine like one of these can be treated like a component
and used in many different programs.

5 —--—- L@+ LOAD USING A POINTER
MOVEA.L (A4)+,A0 ;GET ADDRESS
MOVEA.L (A0Q),Al ;GET POINTER
MOVE.L (A1)+,-(A4) ;GET VALUE
MOVE.L Al, (AO) ; SAVE POINTER

RTS ; RETURN
;=——— L'+ STORE USING A POINTER
MOVEA.L (A4)+,AO ;GET ADDRESS

MOVEA.L (AQ0),Al ;GET POINTER
MOVE.L (Al)+,-(A4) :GET VALUE
MOVE.L a1, (A0) ; SAVE POINTER

RTS ; RETURN

;-—-—-— NEXTB POINTER ON STACK
MOVEA.L (A4),AO ;COPY ADDRESS
MOVE.B (A0)+,D7 ;GET BYTE
MOVE.L AQ, (A4) : SAVE ADRES
MOVE.L D7,-(A4) ;SAVE BYTE
RTS

These have the same function but are in HTPL. The word TUCK
i{s an HTPL primitive and is equivalent to SWAP OVER.

proc L@+ (adrs —- value)
dup @4 tuck +4 swap !4 @4 end
proc L!+ (value adrs —--)
tuck @4 tuck !4 +4 swap !4 end
proc nextb (pntr —- pntr byte)

dup @1 swap +1 swap end

PRICE LIST

Single piece pricing 5/88

HT68K Single Board Computer with K-0S ONE . 395.00
RAM expansion to 512k (12 64k x 4 chips) . . call

K-0S ONE operating system 50.00
HTPL FLOATING DOINT 25.00
HT-FORTH X :) . . :) 100.00
FLOATING FORTH 100. 00
EDITOR TOOLKIT) 50.00
HT-DEBUGGER 50.00
SUPER BASIC 150'00
LIZARD LAND Adventure Game 10:00
8086/8088 Assembler 50.00
Cross Assemblers 50:00
Any manual 10.00

We accept VISA, MC, C.0.D. or Prepaid orders.
Please call for OEM pricing and terms.
We ship UPS or US MAIL.

Normal hours are 8:30 to 5:00 pacific time.
We are sometimes available during additional hours.

LIZARD LAND Adventure Game

This 1is a simple adventure game provided in source and
gbject form. It 1is a good example of how to do an
interactive program in HTPL. Extensive use of string
manipulation is demonstrated as well as a natural language
command processor. The general format can be adapted to
other games or to command processor driven applications.

