Editor Toolkit

Hawthorne Technology

EDITOR TOOLKIT
for K-0S ONE

DISTRIBUTION PACKAGE

Copyright 1987
HAWTHORNE TECHNOLOGY

All rights reserved. Nothing in this manual may be
reproduced in any manner, wholly or in part for
any purpose whatsoever without written permission
from Hawthorne Technology.

Hawthorne Technology

8836 S. E. Stark
Portland, OR 97216

(503) 254-2005

I FFFFFFFFFEERNE]

* x PRODUCT DISCLAIMER ook X

This software and manual are sold 'as is' and without
warranties as to performance or merchantablility.
These programs are sold without any express or
implied warranties. No warranty of fitness £for a
particular purpose is offered. The user must assume
the entire risk of using the programs and is advised
to test the programs thoroughly before relying on
them.

Any 1liability of seller or manufacturer will be

limited exclusively to product replacement or refund
of the purchase price.

* *x * *x *x * * * *x * * * * * *

ii

' F F FFFFFFEEEEEN]

EDITOR TOOLKIT

TABLE OF CONTENTS

INTRODUCTION e e e e e
LINE EDITOR USER MANUAL .

LINE EDITOR MODIFICATION MANUAL .
SCREEN EDITOR USER MANUAL . . .
SCREEN EDITOR HODIFICATION MANUAL
TEXT FORMATTER USER MANUAL . . .

TEXT FORMATTER MODIFICATION MANUAL

its

P F FFFEREEEEEEEE]

EDITOR TOOLKIT

INTRODUCTION

This toolkit provides you with two working editors
that you can use as they are provided, or use as a
base to build on. You can add a feature or two at
a time and have a functional editor to test the
features out on.

The 1line editor is a generic line editor. It |is
like the editors that are common on multiuser mini
and mainframe computers. The main advantage with a
line editor 1is that it doesn't have to be
customized for any particular terminal but can be
used by almost anyone just as it comes. It is also
far easier to prodice a good smooth line editor on
a multiuser system than it is to provide a screen
editor for multiuser applications.

The command set for the screen editor is similar
to the commands of Word Star or Turbo Pascal. This
is because we were using both of these editors on
an MS/DOS machine while developing the editors for
the K-0S ONE system. Because the editor command
set is determined by a case statement, it is easy
to change it to look like almost any full screen
editor. The editors as provided with this package
are setup for the Wyse-30 terminal. They can be
changed for other terminals by changing the 1low
level words that do the cursor control and screen
control.

The text formatter 1is also a generic type
formatter for general text use. 1In most cases, it
follows the text format routine given in the book
Software Tools. The text formatter is easy to
customize to your own particular needs.

EDITOR STRUCTURE

For any text editor, either line or screen, there
are certaln basic sections. There is a text buffer
that must be managed and manipulated. There is the
screen that has to be manipulated. Finally there
1s the command decoder that determines what will
get done next.

A large portion of each of these editors was
written in HTPL. The readability of HTPL makes the
code easy to modify. A few of the 1low 1level
routines are in 68000 assembly code to make these
editors run faster than they would if they had
been coded totally in HTPL. 1In general a mix of
HTPL and assembly 1language yields a good
compromise between cost of development, and speed
of operation. The parts that are used the most are

.~optimised for speed and portions that are used
less often are optimised for size..

Both of the editors in this package are 1line
oriented. The 1line editor uses 1lines directly
while the screen editor uses them indirectly. One
advantage of being line oriented is the ability to
restore a line to its prior condition if editing
errors are made. It also cuts the amount of text
movement that 1is needed when characters are
inserted and deleted.

Most of the routines have a stack diagram with
them on the line where they are defined. This |is
done because an RPN language like HTPL uses the
stack to pass arguments to a procedure and to
return results to the calling routine. The items
to the left of the dashes tell what the routine
expects on the stack when it is entered. The items
to the right of the dashes is what the routine
will return to the caller. Many routines do not
receive anything on the stack and many routines do
not return anything on the stack.

:
:
:

.

HAWTHORNE TECHNOLOGY

LINE EDITOR USER'S MANUAL

Table Of Contents

Operating Procedures

Command Mode Operations

Description Of Each Command
Data Entry Commands
Moving Current Line Pointer
Printing (Display)
Find Data
Editing Commands
Changing Strings

Administrative Commands

A table of the Edit Commands

OPERATING PROCEDURES

This editor has two major modes of operation,
ENTER mode and COMMAND mode. Each line of data or
command entered 1is activated by pressing the
RETURN key. The backspace key can be used in edit
mode to back up and re-work part of or all of a
line. This is only good for the current line, so
it must be used prior to pressing the return key.
Changes on other lines must be made from command
mode .

All data is entered from enter mode. The commands
EN enter, 1IN insert, and AP append get you into
enter mode. From enter mode, all data is added to
the file until a line where the only charactor on
the line is a '.' (period) 1s encountered.

On leaving enter mode, you will be in command
mode. Using edit commands while in enter mode will
result In the commands being entered as part of
the file.

Command mode is designated by a prompt: '*!, on
the left margin. In command mode the edit commands
are used to view or modify the file.

You can enter the editor with a file specified, or
1f you wish to name the file later, you can enter
the editor with no file name. :

EDITL
This will 1locad the line editor and prompt for a
command. At this point you can open an existing
file or enter data for a new file.

EDITL filename.ext

This will 1load the line editor and open’ the
requested file.

-
-
-
-

COMMAND MODE OPERATION

IMPORTANT NOTES:

1. In Command Mode, all two letter commands must
be terminated with a Carriage Return (CR).

2. Commands are not case sensitive. They may be
entered either upper or lower case letters.

3. Commands that require a parameter must have one
space between the command and the parameter. I1f
no parameter is entered, a default value that is
equal to the previous condition or a value of 1 is
used.

4. Commands that work with strings of.-charactors
use delimiters to define the limits of the string.
A delimiter can be any non—-alpha/numeric charactor
that 1is not contained in the text of the string
itself.

5. Many of the commands function relative to the
line that is considered current. The 'Current Line
Pointer® 1is always pointing to the current line.
If the CLP is at line 1, and you PRINT (display)
25 lines, the CLP is not affected. It still points
to 1line 1. Only commands that are specified for
moving the CLP will affect its position.

DESCRIPTION OF EACH COMMAND

DATA ENTRY COMMANDS

Append Command = AP

AP (return) - The append command gets you into
ENTER mode. The data you enter is added at the end
of the file. You remain in ENTER mode until a line
with nothing but a . (period) is entered.

Enter Data Command = EN

EN (return) - The enter command gets you into
ENTER mcde. Each line you type while in ENTER mode
is put after the last existing line. A 1line is
completed when you press the return key. You
remain in ENTER mode until a line with nothing but

a . (period) is entered.

Insert Command = IN

IN (return) - The insert command gets you into
ENTER mode. The 1lines you enter are inserted
directly following the 'current'’ line in the file.
The insertion 1is terminated by entering .a 1line
wiht nothing but a . (period) on it. ’

MOVING CURRENT LINE POINTER (CLP)

Top Command = TO

T0 (return) - Positions the CLP at top of the file
and displays the first line.

Bottom Command = BO

BO (return) - Positions the CLP at last 1line 1in
the file, and displays it.

Here Command = HE

HE (return) - Display the current line.

Down Command = DO

DO n - Moves the pointer down "n" 1lines and
displays the line. (Default is one line.)

Up Command = UP

UP n - Moves the pointer up "n" lines and displays
the line. (Default is one line.)

Find Line Command = LN

LN n - Moves pointer to line number “n".

PRINTING (DISPLAY)

Print Command = PR

PR — Prints the entire contents of file.

PR n — Displays "n" lines, starting with the next
line after the current line.

FIND DATA
Find Data Command = FI
FI /string/ — Find the group of characters

specified by vstring" starting from CLP +W. awm
string specified in the command line acmﬁH M Msm
off using delimiters. The 1line on whic i
vstring" is found is displayed. The CLP is no

the found line.

Find Next- Command = FN

i of the
FN (return) - Find the :mxm occurrence
nstring" that was specified in the prior Find Umﬁw
(FI) command. This nfind” mﬂwnnm.mﬁ CLP + 1 &mﬁ
displays the line on which the string was found.

Find All Occurrences Command = FA

FA /strings — Find all occurrences of the =mnn”MM“
in the entire file and display each line OM=M -
the string was found. This can be :mM o
creating a cross reference of particular 1items
your mwmm.

1-6

AsEEEEEERERREER

EDITING COMMANDS

Copy Command = CO

CO begin,end - Copies the lines "begin" through
"end"” on to the spot just before the current line,
where begin is the number of the first line to be
copied and end is the last line to be copied.

Delete Lines Command = DE

DE n — Deletes "n" lines (default 1) starting with
the current line.

Move : Command = MO

MO begin,end - Moves the lines "begin®" through
“end* to Jjust before the current line, where begin
is the number of the first line to be moved and
end is the number of the last line to be moved.

New Text Command = NE
NE (return) — Deletes all old text and restarts

the editor. Clears the buffer for new text to be
entered.

wmvwwom Current Line Command = RE

RE (return) - Replaces the current line with the
next line you enter.

Truncate Last Lines Command = TR

TR (return) - Deletes all lines after the current
line.

1-7

CHANGING STRINGS

Change String(s)
Command = CH

CH /old/new/n - The characters in the new string
replace those in the old string. If no value for
“n" is given, the change takes place only on the
currenlL line. If a value is given for "n", the
change will be made for every occurrence of the
old string, within "n" lines. To delete a string
of characters, 1instead of specifying a "new"”
string, use two consecutive delimiters i.e. ®"//v,
Any valid delimiter, (a non alpha-numeric
character), can be used in place of *"/", All
changed lines will be displayed.

Caution: The charactor used as a delimiter
¢an not be used in old or new text string,

NOTE: If the substitution applies to all
occurrences in an entire file, start at the top of
the file and use a number for "n" that is 1larger
than the last line number in the file.

Change By VOmwnwoa Command = CC

CC c/new/n - The "c" indicates the column number
in the line at which point "new" data will start
overlapping the original data. Change starts on
the current line and changes "n" lines. All of the
lines that are changed will be displayed.

ADMINISTRATIVE COMMANDS

Open File Command = OP

OP - Opens a disk file, reads it into memory, and
then closes it. This command is used when you want
to edit a file that already exists on your disk.

Save File Command = SA

SA filename - Saves the file on disk. A copy of
your file is saved on disk. If the file is already

on the disk, the copy you have been working on
will replace the o0ld copy on the disk.

Save Same Command = SS

SS - Saves the file back to the disk using the
same file name that you opened earlier. The copy

you have been working on will replace the old
on the disk. P ° cory

Exit Editor Command = XX

XX — Exits the line editor and returns command to
the operating system.

A TABLE OF EDITOR COMMANDS

DATA ENTRY

AP ~ Append

EN - Enter Data
IN ~ Insert

. — Exit Enter Mode

MOVE CURRENT LINE POINTER DE

BO ~ Bottom

DO ~ Down

HE -~ Here

LN - Goto Line

TO ~ Top

Up -~ UP

PRINTING (DISPLAY)
PR ~ Print

FIND STRING

FA ~ Find All Occurrences PR

FI - Find Data
FN -~ Find Next

EDITING COMMANDS

CO - Copy

DE - Delete Lines
MO - Move

NE - New Text

RE -

TR
CHANGING STRINGS

ALPHABETICALLY:

AP - Append

BO Bottom

CcC Change by Position
CH Change String(s)
co Copy

Delete Lines

DO Down

EN Enter Data

FA Find All Occur.
FI Find Data

FN Find Next

HE Here

IN Insert

LN Goto Line

MO Mave

NE New Text

OP Open File

Print

RE Replace Line

SA Save File on Disk
SS Save Same

TO Top

TR Truncate File Here
up up

Replace Current Line
Truncate File Here

CC - Change by Position

CH - Change String

ADMINISTRATIVE COMMANDS

OP - Open File
SA - Save File
S5 — Save Same
XX - Exit Editor

Exit Enter Mode

HAWTHORNE TECHNOLOGY

LINE EDITOR MODIFICATION MANUAL

Table Of Contents

Overview

Routines

Variables

Command Summary
Procedures

Second Level Subroutines

Main I/0 Routines

LINE EDITOR OVERVIEW

There are several major sections of code in the
line editor. At the highest level is the main
control routine that gets the next 1line and
decodes the command. The next level is composed of
the routines that execute each command. After that
is a level that is composed of routines used by
the first level. At the very bottom are the run-
time library routines and a few very simple
utilities.

Most of the editor is written in HTPL. There are a
few routines that are written in assembler and are
in the runtime library HTPLRTL.HEX. By putting
these few routines in assembler the overall speed
of the editor has been increased significantly.

Because this is a line editor there is no need to
customize it for any given terminal. This is the
main reason that a line editor is supplied with
the K-OS ONE operating system. This version of the
editor has a few new commands in addition to the
commands in the editor that comes with the system.
It is complete and ready to use.

The f£first thing that the editor does is to setup
space for the local variables. All local variables
are allocated from the heap of memory left over
after the program is loaded. Then the initialize
routine sets reasonable initial values for most of
the variables to indicate an empty buffer, but one
that can have text added to it.

The decode routine gets a line from the console.
It then gets the first two characters and changes
them to upper case. A large case statement is used
to decode the command. If aliases are wanted for
commands two different routines can call the same
action routine. If£ no routine matches in the case
statement then an error is given. After a routine
is executed, control returns to the top of the
loop and the process starts all over again. There
is a reset command inside the main loop to catch
any errors that may result from unbalanced stack
operations. In most cases this won't have any
effect, but if there is an error, it will keep the
editor from blowing up.

2-2

-

\.J

An editor on a PC was used to write the £first

editor for K-0S ONE, a screen editor on a PC was
also used until we had a working screen editor to
use native on K-0S ONE. We wrote all the routines
first in HTPL and then recoded some of them into
assembler to make the editor faster. The editor
was not written all at one time. We devised a
general structure and defined the data structures
we would be working with. Each command was added
and tested as a separate piece of code. The
generic structure of the commands is similar to
many simple 1line editors that were written for
minicomputers in the 1last 20 years but 1is not
identical to any of them.

LINE EDITOR ROUTINES

The f£irst group of routines move the current line

pointer and change the current line number. these
are:

here -~ where am I

topper —- go to first line

bottom -- go to last line

uperlin -- up one line

downer -—- down one line

linner -- go to line

The first three of these check for an empty buffer
and call a lower level routine. The last three of
these all get a number parameter, check it or set
a default, and then use a common line movement
routine to get to the target line. Up and down are
special cases of the random ‘line movement. The
common routine checks for an empty buffer and for
running off the end of the buffer or trying to go
before the first line.

The delete routine removes lines from the edit
buffer. It has to check for special cases. If the
buffer becomes empty it notifies the operator. If
all lines after the current line get deleted then
it tells the operator that the buffer has been
truncated.

The two change routines both come in two parts.
The first part 1is the outer loop that gets a
parameter or description of the change. Each then
calls a simpler routine that changes Jjust one
line. Both of these then call a cleanup routine to
delete trailing blanks and return the line to the
edit buffer.

The £find commands are in effect three front ends
to a common £ind routine. FI epects to be given a
string to look for. FN assumes that a prior FI was
done and uses the same string. FA expects to be
given a string to look for and then calls the find
routine wuntil it reaches the end of the text
buffer.

.

The text is stored as a set of lines. The first
group of subroutines manipulates these lines and
the pointers. The lines are refered to by 1line
number and the line numbers can be displayed with
each line. The line numbers are not stored. When
going up or down a line there are two variables
that are modified, the current line number curnum,
and the pointer to the current line curlin. The
first and 1last lines in the buffer have special
pointers for them.

in.line -~ insert line in buffer

ap.line —- append line to text buffer

re.line -- replace line

de.line —— delete line

up.line -- move up one line

do.line —— move down one line

sizline -- determine size of line in inbuf

The primary commands call on these rouitines Lo
move around the text buffer.

There are two routines that interact with the
console. One of these is getlin. Its purpose is to
get the next line from the console. A simple
multiple character system call cannot be used for
this because of the need to expand tabs as they
are entered. The line is left in inbuf where it is
manipulated by primary commands.

The other major console routine is pline. 1Its
purpose 1is to display the current line on the
console. The major complication in this routine is
the need to expand tabs to spaces as the line is
displayed. This routine also displays the current
line number.

IDEAS FOR CHANGES

The routine that displays the current line always

displays the 1line number with it. A pair of
routines that turn line numbering on and off |is
nice sometimes. I have used this on prior editors
of this sort and found that it is best to default
to number turned on.

A command to echo all lines displayed to the
printer or a file would almost turn this simple
line editor into a useful filer or data handing
program. The £find all command acts like a select
function in a data base. A special character can
be used to encode special fields in each line.

A help routine could easily be added. Look at the
help routine in the screen editor. After entering
the routine it is just a large bunch of writeln
calls to display text. The help command in the
command processor for K-0S ONE is the same way.

If the editor 1is used a lot then some of the
general purpose routines from the K-0S ONE command
processor could be added. If part of the editor is
deleted it could even be combined with the command
processor. On a Tiny Giant HT68k board the boot
load routine in prom will load anything called
command.bin as the command processor. This would
almost make it a dedicated editing machine.

Two commands that would be useful are SP, to split
a line into two separate lines and JN, to join two
separate into a single line. With the present
editor you have to copy a line and delete part of
it to split it. There is no easy way to join lines
with the current editor.

If the command processor syntax is changed then
the editor can be made to look more like TECO or
like other line editors. To emulate another editor
the command part that the user sees can be changed
but the underlying routines that do all the work
can be left the same.

On most word processors if you are typing in text
the editor will generate an automatic return at
the end of a line. To do this you count the spaces
that are used up on a line and after the max 1line
length is reached a return is generated and a new
line is started. 1If this is done a command to set
the right margin would be very helpful.

NOTE:

When making a new version of the editor it is
important to make a backup copy of the source and
object of the current editor. This way if a
disaster happens you can always go back to the
last version that worked. Changes should be made
one at a time if possible and kept as isolated as
possible from existing commands to-minimize the
amount of debugging that needs to be done.

VARIABLES USED IN THE LINE EDITOR

These

than

are message strings that are used in more
one place in the editor. They are placed here

to save space so they won't have to be duplicated.

byte
byte
byte
byte
byte
byte
byte

long
long
long
long
long
long
long
byte

byte
byte
byte
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long

eobmes = "END OF BUFFER"

tobmes = "TOP OF BUFFER"

mtbmes = "EMPTY BUFFER"

delmes = "LINE(S) DELETED"
nofiln = *NO FILE NAME SPECIFIED"
cantop = "CANNT OPEN FILE"

nfndms = "STRING NOT FOUND"®

texbuf — pointer to start of text

nextline - end of text pointer

finish -

block -

lines - number of lines in buffer

curlin - pointer to current line

curnum - current line number

filnam - temporary f£ile name,
uses space from rplstr

rplstr [13C } - string to replace with
scrstr [130 }J] - string to search for
workfil [40 | -~ file being worked on
scpn — scan pointer for argument fetch

fndflg - string found flag
count - a general counter
start -

nsave - save place for curnum
psave - save place for curlin
position -

strpnt -

cursiz -

dest -

mvent -

startpn -

finishpn -

chngflg -

repcount - repeat count
tabpn - tab table pointer
1lnpnt - line pointer

bfpnt - buffer pointer
rplpnt - replace pointer
max -

1xpn - print out pointer
tbcnt - tab expand counter
thsfile -

2-8

ERRRRERER

h

i

long
long
lcng
long
long
long
word

byte
byte
byte
byte

infile - input channel

outfile - output channel

chrcent - character counter

active ~ disk line active

dskbfpn - pointer to disk buffer
frstime - restart flag

paramblk (10 } - parameter block

for system calls

inbuf [150 } - line input buffer
delim - string delimiter
chx - current char

tabtab [20]

table of tab values

used

COMMAND SUMMARY

This 1s a summary of the commands in the line
editor and the first level routines that perform
each of the commands. In the editor program this
is found in the form of a large case statement.

Command Routine Comment

$0D00 IGNORE

L IGNORE

*AP' append APPEND

'BO! bottonm BOTTOM OF FILE
'CC' changc’ CHANGE BY POSITION
'CH*' changs CHANGE BY CONTEXT
'CO' copper copy

02 2clctir nrreec

'DO' downer DOWN

'EN' append ENTER

'FA' findal FIND ALL

‘FI* finder FIND LINE

'FN' findex FIND NEXT

'HE' here HERE

'IN* linnrt INSERT

‘ILN' linner GOTO LINE

'MO' moveln MOVE

'NE* abort NEW TEXT

'OP' openfil OPEN FILE FOR EDIT
‘PR printr PRINT

'RE' replar REPLACE

'SA' savit SAVE FILE

'SS' savsam SAVE TO SAME FILE
TO topper TOP OF FILE

'TR' truncate TRUNCATE FILE HERE
‘UP' uperlin up

XX quit EXIT EDITOR

PROCEDURES

This 1is

a summary of the procedures used by the
line editor:

PERET $2EOD - actually a constant
setup - setup to start editor
cmdlin - process the command line

AARRRRNRARRRAR :sz F-N‘mr WOCHHzmm ARERARRRAARNRARNRRN

quit
here
topper
bottom
aperlin
downer
linner
1€ind

Jr PR R e
A G LA

truncate
replar
printr

moveln
copper
copmov

changs
changlin

‘chcomper

changc
chcllrep
colchng

chfix
chop

getrepcnt -

linnrt
append

XX —- EXIT EDITOR

HE —--HERE ~-- WHERE AM I ?2??
TO —— ‘TOP OF FILE

BO —— BOTTOM OF FILE

UP —— MOVE POINTER UP

DO -- MOVE POINTER DOWN

LN —— GOTO LIKE

general move to line routine
TR -—- TRUNCATE FILE

RE —- REPLACE LINES

PR -- PRINT

MO —— MOVE LINE OR BLOCK
CO —-- COPY LINE OR BLOCK
common-code for move and copy

CH -- CHANGE LINE —--- BY CONTEXT
repeating part of ch
compare possible match - update bfpnt

CC —— CHANGE LINE ——-- BY POSITION
repeating part of cc
used by chclilrep

common ending for change routines
chop trailing blanks
get repatition count

IN — INSERT LINES BEFORE CURRENT
AP -- APPEND LINES

SECOND LEVEL SUBROUTINES
PROCEDURES (continued)

These are second level general subroutines used by

savit — SA —— SAVE FILE I many of the first level primary routines.
savsam © - 8S -- SAVE TO SAME FILENAME
wrfilnam - write buffer to file in FILNAM in.line - lnsert line In texbuf
openfil - OP —— OPEN FILE FOR EDITING m P line - nwwwmom line in buffer
rdopened - read opened file into buffer Qo”~n=o — delete line in buffer
!) up.line -~ go up one line in buffer
Mwumww B MM - Mwuw M“Muﬂmzmm VITH STRING ! do.line - go down one line in buffer
findex — FN ~-- FIND NMEXT OCCURANCE OF STRING sizline - determine size of inline and nul: it
bufemt - check for empty buffer and abort getprm - get numeric parameter
X1o0 - multiply by 10
nxtch - get next char from buffer
skipbl ~ skip leading blanks
blanklin - £ill a buffer with spaces
getstr - get search string
getrpl - get replace string
gstring - get a string
getnam - get file name and put in buffer
gcmdstr - get command line
openit - open file if possible
opfilnam ~ open file in filnam
rewritef - revrite file in filnam
closeit ~ close file — unit on stack
fndexx — £ind string in buffer

true found, false end of buffer

MAIN I/0 ROUTINES

These are the main I/0 routines used to get text
‘into and out of the text buffer. For more infor-
mation on how the calls for KOS services work
‘consult the K-0S ONE programmers manual.

getlin
keepit
backup
backchr
readln
fgetc
savlin:
fputc
putblk
pline
putcx
vwriteln
crlf
continue
upcase
scopy

get next line from console
keep:a char from an input
backspace in field

back space console

-get linef from disk file-
‘get: character from disk file

send current line to disk buffer
send -one char to disk
write current block or part to disk

-print current line with line number

put char- using ixpn

write string to console w/crlf
send cr and 1f to comnsole

® -PRESS ANY KEY TO -CONTINUE >> *
convert lower to upper case

‘string -copy, does not copy final.nul

HAWTHORNE TECHNOLOGY
SCREEN EDITOR USER MANUAL

Table of Contents

Introduction

Using the Screen Editor
Edit Commands

Help Command

Move Cursor Oo{Bw:Qm
Delete and Restore
Find and Replace

Flle and Block Operations

SCREEN EDITOR

Introduction

A full screen editor is something that many K-0S
ONE users have asked for. We are providing the
source code for the screen editor so it can be
easily customized for any terminal. This package
supplies the tools you will need to create YOUR
editor. You can change the default settings or the
commands to be what you like. You can add commands
to do special functions.

CAMMAMN QPT.PNAD OCDEFPM PNTOND -

|||||||| - FOR HELP SCREEN ~J or Line Feed --———----~
“E - 1line up | ~G - del char

“X - 1line down “T - del word

“R — page up ~“L - repeat last find-
“C - page down ~“Y - delete line

“D - char right “A - word left

~8 - char left ~“F - word right

“QB ~ to start of block
“QK - to end of block
“QS - start of line

“QD — end of 1line

“QR - top of file

“QC — bottom of file
“QA - £ind and replace ~“KV - move block

“QF - £ind ~KY - delete block

~“QL, - restore line ** block markers are
“QY - del to end of 1line always column 1

“KB - mark start of blk
~“KK - mark end of block
“KR - read file

~KW — write file

~“KD - exit editor

~KC - copy block

o

USING THE SCREEN EDITOR

To start a new file using the screen editor, you

invoke the editor giving no file names. With the
EDITS.BIN program in the default drive, type:

EDITS (return)

The editor will be loaded and you will start with
a clear screen.

To edit an existing file you can specify the file
name on the command line:

EDITS filename.ext

U ~an alea raad tha Fila tnbka bha adl hacEfae

after entering the editor:

EDITS
“KR (prompts °*‘FILE NAME':)
filename.ext

While using the editer, any time that you get the
message: PRESS # TO CONTINUE, pressing any key
will allow you to resume editing.

EDIT COMMANDS

The £following is a description of each edit
command that is supplied with the screen editor in
the edit toolkit.

In describing these commands, a * is used to
indicate a control character, where the control
key is held down while the character is pressed.

HELP COMHAND

~J HELP

This command causes a list of the edit
commands to be desplayed on the console terminal.
Pressing any key will restore the screen and allow
you to resume editing.

LINE FEED HELP

This command acts the same as *J

MOVE CURSOR-

These commands are used to position the cursor on
the screen.

“E ~ line up

“X - line down

“D ~ char right

~S - char left

“A - word left

“F - sord right
~QS - start of line
~“QD - end of line
“QR ~ top of file
“QC - bottom of file
“QB - to start of block
“QK -~ to end of block

~E Line Up

Moves the cursor to the line just above the line
it was on. The cursor will remain in the same
column regardless of the length of the line.

~X Line Down

Moves the cursor to the line just below the

line it was on. The cursor will remain in the same
column regardless of the length of the line.

3-14

MOVE CURSOR (continued)

~S Character Left

Moves the cursor to the left one character.

“D Character Right

Moves the cursor to the right one character.

~A Word Left

Moves the cursor to the left one word. The cursor
is moved to the left most character of the group
6f characters to the 1left of it's original

position.
“F Word Right

Moves the cursor to the right one word. The cursor
is moved right, to the first charactor following a
space.

~Q5 Start of Line

Moves the cursor to the first column of the line
it is on.

~Qp End of Line.

Moves the cursor to the end of line it is on. This
puts. ‘the cursor just past the last character of
the line.

~QR Top of File

Moves the cursor to the first character at the top

of the file. The screen will change to show the
first screen of the file.

MOVE CURSOR (continued)

~QcC Bottom of File

Hoves the cursor to the last charactor at the
bottom of the file. The screen will change to show
the last screen of the file. .

~“QB To Start of Block

Hoves the cursor to the start of the marked block.

~0K To End of Block

‘Moves the cursor to the end of the marked block.

MOVE SCREEN - SCROLL

These commands are used to scroll through the text
by displaying the next screen requested.

“R Scroll Up

Moves the display so the next screen up towards
the beginning of the file is displayed.

~C Seroll Down

Moves the display so the next screen ma:: towards
the end of the file is displayed.

FRBTIRRENERDR

DELETE AND RESTORE

These commands are used to delete items from - your
file.

~G - delete character

T delete word

~Y - delete line

~QY — delete to end of line

~QL - restore line

t

~G Delete Character

Deletes the character that the cursor is on.
BACKSPACE or -DEL Delete Character Left

The Backspace or DEL (Delete) keys will cause the
charactor to the left of the cursor to be deleted.
~T Delete Word

Deletes the word to the right of the cursor,
starting with the charactor the cursor is on. 1f
the cursor is on a space between words, the space
that the cursor is on and all of the spaces to the
right will be deleted, up to the next word.

~Y Delete Line

Deletes the entire line that the cursor is on.

~QY Delete to End of Line

Deletes from the cursor to the end of the 1line
that the cursor is on.

“QL Restore Line

Restores. the 1line that the cursor is on to its
prior state. A 1line that has had words or
characters changed is restored to the way it was
before - any editing changes were made. (An entire
line that has been deleted can not be restored:
because the cursor is no longer on that line.)

3-7

FIND AND REPLACE

These commands are used for searching and search
and replace.

“QF — Find
“QA - Find and Replace
“L - Find / Find & Replace Again

~QF Find

Finds the specified text string- and moves the
cursor - to that location. 1f requested string |is
not found, the cursor will rewain at its original
location.

~QA Find and Replace

Finds the specified text string and replaces it
with the reguested new text.

“L Find / Find & Replace Again

Find / replace text again. Repeats the previous
find or find and replace command.

FILE AND BLOCK OPERATIONS

The £following commands are used for dealing with
files or blocks of text.

“KB - mark start of block
~“KK — mark end of block
“KR — read file

~“KW¥W — write file

~“KD - exit editor

~KC - copy block

~KV - move block

~KY - delete block

ERRR R R

FILE AND BLOCK OPERATIONS (continued)

“KR Read a Flle

Read a file into memory. After you give the ~KR
command, it prompts for the name of the file to
read.

Write a file to disk. This saves the text are
editing to a file name that you specify. After you
give the "KW command, it prompts for the flle
name.

** Block markers are always at -column one. This
means that all of the lines within a block are
full lines, with no partial lines. No matter where
you -are on the line when you give a block mark
command, the mark will be put on column one.

“KB Mark Block - Beginning

Mark beginning of block. This should be put on the
first character ‘you wish to have within the block.

~KK Mark Block -~ End

Hark end of block. This should be put on the line
following the last line you wish to have within
the block.

~Kb Exit Editor

Exit editor to operating system. The command will
prompt: ** ARE YOU SURE ** ?. This is to give you
a chance to save the file before exiting the
editor. A 'Y’ or 'Yes' response will cause you to
exit the editor.

FILE -AND BLOCK OPERATIONS (continued)

~KC Block Copy
Make & copy of the marked block at the

cursor location. Block markers -are all
after a copy of the block is made.

KV Block MHove

current
cleared

Move the marked block to the line just before the
-current cursor location. All block markers are

cleared after the block 'is moved.

“KY Delete the marked block.

~KS Save the file back to the original file with

the same name.

- "HAWTHORNE TECHNOLOGY
SCREEN EDITOR MODIFICATION MANUAL

Table of Contents

Structure 4-2

Variables 4-6

Primary Routines 4-8
4-1

STRUCTURE

There are several major sections of code in the
screen editor. The first level is a routine that
gets a character from the console. It uses a case
statement to see if this is a control character
that needs to have a routine executed. If it is
not a control character then it is checked to see
if it is a printing character. If it is a printing
character, it is inserted into the current line of
text. Because of the large number of commands -and
the 1limited number of control characters a two
level decodeing system is used. If a control Q or
a control K is entered then a new menu is entered
and the next character is decoded. The next level
is composed of the routines that execute each
command. The next level i3 composed of routines
used by the first level. At the very bottom are
the runtime library routines and a few very simple
utilities.

The f£irst thing that the editor does is to setup
space for the local variables. All local variables
are allocated from the heap of memory left over
after the program is loaded. Then the initialize
routine sets reasonable initial values for most of
the wvariables to indicate an empty buffer but one
that can have text added to it.

The routines that move the cursor on the screen
are hardware dependent. The routines as supplied
are setup for a Wyse-30 teminal. We have tried to
minimize the number of screen commands used to
make the editor more portable. To use the editor
with a new terminal, these routines need to be
changed. The routines that call these routines do

not do any screen access. In sowme cases the

control characters used many have to be changed to
match a new terminal. The current control codes
are patterned after Wordstar (tm) or Turbo Pascal
(tm). In general the more frequently used routines
are single control codes while the less frequently
used routines or the more complex ones require a
tvo code sequence.

The main 1loop gets a character and then uses a

case statement to decode the command. If aliases
are wvanted for commands two different routine can
call the same action routine: If no reutine -
matches 1in the case statement then the character
is inserted into the current 1line of text. After a
routine is executed, control returns to the top of
the 1loop and the process starts all over again.
There 13 a reset command in the loop to reset the
stack pointers in case there 1s any problem. This
will prevent the editor from blowing up 1f an
error is made.

The help screen is a simple routine that exits the
current line, clears the screen, and then displays
many lines of text on the screen. At the end of
display it uses the continue routine to wait for a
response from the operator before it continues. It
then - uses the new screen routine to create-a new
copy of the work area on the screen and reposition
the cursor +to where it vas before the help was
requested. If any routines are changed or- added to
the editor then the -help screen should be changed
also.

If more explanation 1is needed for some of the
routines then a separate help screen could be
added. In general though, I have found that a
plece of paper with all the commands on it is a
better guide than help menus and doesn’t take up
as much space in the computer.

The text is stored in lines in the edit buffer. A
major advantage of this is that a 1line can be
restored if it gets messed up. Also, since only
one 1line {is worked on at a time, not as mwany
characters have to be moved when inserting or
deleting. When the cursor is moved to a new line a
routine 1is executed to enter the line. When the
cursor 1is wmoved off a line a flag is checked to
see if the line has been modified. 1If it has been
modified then it is put back into the edit buffer.

The routine to enter a line 1is enterlin:. This
copies the line from the text buffer to the line
edit buffer. When this is done the line 1s padded
to a full 80 characters with extra blanks. This is
so the cursor can be moved past the end of the

4-3

existing text as is possible with the Turbo Pascal
editor. A table of the spaces used for tabs is
calculated. The are two important: pointers for
position in a line. The first one, colpos, keeps
track of the column on the screen. The other,
bufpos, keeps track of the position in the buffer.
When any command makes a change to a line, a flag
Is set. By having an old copy of the line that is
being edited it is possible to restore the 1ine if

w” is desired to undo the edit changes on that
ne.

The roatine to leave a line 1is leavin. If no
changes have been made the routine does nothing.

If the 1ine has been changed -then the trailing

blanks are deleted and the line is replaced back
in the text buffer. If the size of the line has
been changed then the hole it came from must be
increased or decreased to fit. To accomplish this
the entire buffer that follows the current line is
moved. In theory this may not seem like a fast way
to do it but in practice it works fast enough even
with large files.

When a change is made in the line, or the cursor
is moved, the line is redisplayed using a routine
called dispinbuf. fThis makes it seem slow on slow
displays but at 4800 baud or higher it looks ok.
We did not use cursor positioning commands because
of the spaces associated with tabs. With a low
baud rate it is possible to overrun the cursor
when using a repeat key on many terminals.

The major concern with a screen editor is to keep
the screen that the user sees syncronized with the
edit buffer that the program sees. If any change
is wmade to any cursor movement command then this
syncronization must be checked.

For most commands there are two parts. One part
takes care of the effect that the command has on
the screen. The other part takes care of the
effect the command has on the text in the buffer.
Both of these have to check for boundary
conditions 1like beginning of line, end of 1line,
top of screen, and bottom of screen.

S =T ERE S BN S

The general purpose routline re.line replaces a

1ine in the text buffer. This will either expand

or contract the buffer as needed. If a 1line |is
deleted it is not replaced but the prior 1line |is
entered and the nul that deliniates a line in the
buffer is changed to a cr. If a line is inserted,
it is saved with an extra cr that is changed to a
nul delimiter after the line is put back into the
buffer.

The move block command in the screen. editor is
very different from the wmove command in the 1ine
editor. In the line editor a copy is made of the
text being moved and then the old text is deleted.
In the screen editor the buffer that has the - olad
text and the position for the new text is treated
as a single large buffer. .The routine does a
rotate in place and each character is only moved
one time. This is why movement of text with most
word processors doesn‘t result in a memory full
message. The copy and delete block routines work
basicly the same way in the screen editor as they
do in the screen editor. The main difference is in
how the first and last l1ines to be copied or
deleted are determined.

The f£ile read and write commands are similar. When
reading from a file it is opened and 1lines are
read one at a time and placed 1into the edit
buffer. Since many editors use a cr and 1f to mark
the end of line, care must be taken not to create
phantom 1lines in the buffer. When a £file \is
written it is created. This will create a new file
if one did not exist or empty a file if it diad
exist. Lines are blocked into bigger blocks to be
written out but this is not strictly needed. 1It-
does spead up reading and writing Lf sector size
blocks can be read or written.

Before making any changes to the editor you should
make a copy of the source and a copy of a working
binary version. This way 1f an error occurs you
can back up to a know working copy. If possible
you should only make one small change at a time
and try to isolate it from the other commands.
This will decrease the amount of debugging that
must be done.

VARIABLES

This is a summary of all the variables used in the
screen editor and what they are used for. In some
cases a variable may be used for more than one
purpose in which case only the most common use of
the variable is given. Some of the variables
contain permanent information and some are used in
a transient manner.

These are character strings that are used in more
than one place in the editor.

byte nofiln = “NO FILE NAME SPECIFIED" ;

byte cantop = “CANNT OPEN FILE" ;

byte nfndms = "STRING NOT FOUND* ;-

byte hedtxt “LINE: - -COLUMN:

COPYWRITE HAWTHORNE TECHNOLOGY 1987%;

These are all local variables and need to have
space allocated to them by the initjalize routine.
long scrntop - top line displayed

long kblin - line where “KB is

long kbcol - column where ~KB is

long kklin - line where ~KK is

long kkcol - column where “KK is

long curlin - pointer to current line

long curnum - current 1ine number

long lines - number of line in buffer

long fndnum - line number to look for

long fndlin -

long newnum -

long bufpos - position if buffer

long linpos - screen line

long colpos - screen column

long curpn -

long nsflg -

long 111 - search string size

long 112 - replace string size

long reptyp - type of repeat for “L

byte inbuf-[128 } -~ input and edit buffer
byte newbuf [128]} - overflow

byte optbuf [40] - option buffer

long texbuf — point to start of text buffer
long nextline - point to end of text buffer
long block - pointer to I/0 block

byte rplstr [130) - replacement string

byte scrstr [130 } - search string
byte workfil [40 } - working file name

4-6

4 i CTRE L

.m.
n
n

VARIABLES {(continued)

long

long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
byte
byte
byte
byte
byte
long
long
long
long
long
long
long
long
long
long
word

fndaflg - found flag

px — move pointer
ofx — move offset
count

start

nsave

psave

cursiz

mvcnt

size

kk

cyclpn
startpn
‘€inishpn
movsiz
chngflg
repcount
‘tabpn

chx

£llnam { 40 }
pbuf [130)
tabtab { 40 }
even

thsfile
infile
outfile

tbcnt

1xpn

-chrent

active

dskbfpn

bufend

xitflg
paramblk [10 }

PRIMARY ROUTINES

These are the primary routines for doing the setup
of the buffer and the main menu decoding.

setup — get buffer ready for editing
cmdlin - process the command line
program — main program

screened ~ maln screen edit procedure

code routine action

[$12 } pageup “R page up

{ 5 1 lineup “E line up

{ $18) linedn “X line dn-

(3] pagedn ~C page dn

[4) charrht “D right ch

{ 813 | charlft ~S left ch

{ 1) wordlft “A word left

{ 6 | wordrht “F word rht

{ 8] dellft “H del left ch, BS
{ $11 } quickmenu “Q menu

{ $0A) helper ~J help screen
($0B]} specialk ~K menu

[80D) newline new line

($80C]} repeatcmd “L repeat

[7 1 deletech ~G del chr

[$7F | dellft delete left

($14] delword ~T del word

{ 819] delline ~Y del line

[9 1 charok tab char -

helper - special help screen ~J

ISR SR EERBER

H

1R

quickmenu - menu for ~Q items

All of these codes must be prefixed with a control
Q. If this is made into a remote system editor
than the next most common control for this purpose
is control O.

code routine action

{ 'A') Eindrpl “QA search and replace

{ 'B') tostartb “QB move to start of block
{ 'C') endofile “QC move to end of file

{ 'D*] toeol “QD move to end of line

('F*') findx ~“QF f£ind string:

['K'] toendk “QK move to end of block
{ *'L*) restorlin “QL restore line

['R*)} topofile “QR move to top of file

{ 'S') tostrtl: “QS move to start of line
{ 'Y*] delendln ~“QY delete to end of line

specialKk — menu -for “K items

code routine action
['B* } markstrt ~“KB mark start of block
(*'C*) copyblock ~“KC copy marked bloaok
('D* } quiter “KD stop edit
[*K') markend “KR mark end of block
('R’] readfil . “KR read file into buffer
['V') movblock ~KV move marked block
[W') writefil ~“KW write buffer to file
(’Y*) delblock ~KY delete marked block
['S' } savefil ~KS save flle

4-9

|||||| specialk routines for “K items -——————-
These are the primary routines called by the

decoding cases when a character is input. These markstrt — ~KB mark start of block
routines call the secondary routines. copyblock — ~KC copy marked block
-markend - “KK mark end of block

. . readfil — ~KR read file into buffer
quiter - >xU quit editing rdopened - read opened file into buffer
pageup - >n page up movblock - ~KV move marked block
lineup - >m line up writefil ~ ~KW write buffer to file
linedn - >x line dn savefil — ~KS save buffer to file in FILNAM
pagedn - ~C page dn wrfilnam — write buffer to file in FILNAM-
charrht - *D right ch delblock - ~“KY delete marked block
charlft - ~8 left ch
wordl £t - “A word left
leftchk - check if begin of lipe T e generic routines -

leftwhite - move left until white

leftnotwh — move right until not white enterlin - start changes on this line
iswhite - mnco Lf tab or space leavln — leave this line, clean it uwp
wordrht — “F word right chop - chop trailing blanks
rhtchk — check (f 1:& of line dspinbuf - display inbuf and £ix cursor
rhtwhite - wmove right until white newscreen - do a new screen display
rhtnotwh - move right until not white newhead - redo heading on screen
newline - new line newcol txt - :
print new col and line number

repeatcnd - “L repeat last ~“QF or ~QA 1 - ;
D o | — G deiote this char cursorp move cursor to colpos, linpos
dell ft - delete to left
Mownonn - >ﬂ an "Mna |||||| cur sor movement --- put in RTL later —----—-
elline e ne & m———— these are for Wyse-30 —————-—
charok ~ simple character

clrscr - clear screen

eraseln — erase to end of line

|||||| quickmenu routines for ~Q items -—---——- delcrtlin — delete 1ine

inscrtlin - insert line

findrpl - “QA search and replace colcrtlin - goto column and line
tostar™h >ow e o unMnanmnwponx scrolup ~ scroll up, new line at bottom
endofile - ~“QC move to end o e scroldn - scroll -down, new line at top
toeol - “QD move to end of line cursof - turn off cursor
fndend — used by toeol _ |
fndcolpl - f£ind colpos given bufpos curson turn cursor on block, blink
findx - “QF find string ———- —_— -
restorlin - ~QL restore line 4 T
toendk - “Q0K move to end of block finder £ind strin

: - g
topofile - ~QR move to top of file _
tostrtl - ~QS move to start of line changer change string found
delendln - ~QY delete to end of line

4-11

xxxxkakkkkxx SUBROUTINES AARARRRARRRRARRRAN ARk kR

re.line - replace line in buffer

up.line - go up one line in buffer
do.line - go down one line in buffer
tomarklin — validate line with marker
gotolin -~ goto a'1ine - linnum

fnd.line — £ind line curnum

lookup - £ind line,assume curnum good
sizline — determine size of line in inbuf
inclines - increment lines and ‘fix pointers
declines — decrement lines and fix pointers
resetmarks - turn off both block markers
blocknok - returns if block not ok or inside
insideblock - returns if cursor in block

ARRAKAAAAARAAAARAAARARRRRARR AN R R R Rk kA Ak Ak kk ok ko

getstr - get search string

getrpl - get replacement string
getoption - get options

getnam - get file name

gcmdstr - get command line from K-OS
gstring — display prompt and get string
openit - open file

opfilnam - open file ‘in filnam
rewritef - rewrite file in-filnam
closeit — close file — unit on stack
prnterr - print error message

ARRRRRRAARARAAR AR Hz ch ocﬂ- ”ocﬂaszm ok ok ok ok ok ok R Kk

readln - read next line from disk

fgetc — get character from disk file

savlin - send current line to disk buffer

fputc - send one char to disk

putblk ~ write current block or part to disk

pline - print current line w/o crlf

putcx - put char in output line

writeln - write string to console w/crlf

crlf ~- send cr and 1f to console

continue - * PRESS * TO CONTINUE->>#

upcase - convert lower case to upper case
4-12

mi H _
By .

EEERENNNNN

T

—o 0

!h - ‘.' !

HAWTHORNE TECHNOLOGY
TEXT FORMATTER USER MANUAL

Table of Contents

Structure

Text Formatter Commands
Operators Guide
Formatter Command Table

Command Descriptions

STRUCTURE

This text formatter is patterned after the format-

ters that were used on the early UNIX systens,
{(roff and nrof). Before woerd processing became
popular, text was entered and modified using an
editor. It was then formatted using a formatter as
it was printed out or transfered to another file.
Today many word processing programs combine these
‘functions to produce what 1s known as - a WYSIWYG
editor. The name comes from the initials of: What
You See- Is What You Get. A WYSIWYG editor is more
complex than one devoted strictly to editing, such
as the kind you use in program development.

A major reason for using a text formatter in
addition: to an editor is that the text formatter
can. be specialized for different print Jjobs. In
the field of desktop publishing there is -a program
called TEX and a language called Postscript that
are used to prepare documernts for printing. A text
formatter can be set up to handle many of the
tasks that are found in desk top publishing.

The main parts of a text formatter are the command
processor and ‘the text handler. As each line |is
read it is checked to see Lf the first character
is a period. This is something that seldom happens
in regular text. When a period is found in the
‘first column, the next two letters are decoded to
determine what command has been requested. No text
is recognized on command lines. If the line is not
a command the format program formats it according
to the current settings and prints it out.

TEXT FORMATTER COMMANDS

Format commands are given using a period, a two-
letter nane, and in some cases, optional
information. The command must be the only thing on
the line and begin in column 1.

1£ specific formatting commands are not given, the
formatter will use default values when formatting
the text.

As the formatter takes in the input 1lines, it
builds output 1lines. The output lines will be
nearly equal in length no matter how un-equal the
input lines.

The formatter has two modes: Ro-Fill, or Fill. The
No-Fill mode, one input line equals one - output
line. There i3 no rigth margin Jjustification.
Margins, page spacing, 1line spacing etc. all
function the same. 1In No-Fill mode, each line is
treated seperately. In the Fill mode the outpuat
lines are made as near to egqual in length as word
sizes allows. Spaces are then added to justify the
right margin.

These commands can be assembled to create packages
similar to Mail Merge or even build up to a simple
version of Postscript.

OPERATORS GUIDE

Text formatting commands are inserted in your text

file as it is created. The text file 1is then
processed with the formatter program.

To 1involke the text formatter program you give it
the command ROFF and file name(s) on the same
line. If no destination file name is given, the
results of formatting will be desplayed on the
console.
EXAMPLE:

ROFF sourcefile.ext destination.ext

FORMATTER COMMAND TABLE:

CMD BREAK? DEFAULT COMMAND
.BP n Y n=+1 begin page number n
.BR Y cause break
.CE n Y n=1 center next n lines
.FI Y start filling
.FO N empty footer title
.HE N empty header title
.IN n N n=0 indent n spaces
.LS n N n=l line spacing
.NF Y stop filling lines
PL n N n=66 set page length to n
RHM n N n=60 set right margin to n
.SP n Y n=1 space n lines
.TI n Y n=0 temporary indent of n
UL n N n=1 underline words from

next n lines

Unknown commands are always ignored by the text
formatter.

COMHAND DESCRIPTIONS

.BP n Begin Page

This command is used to start a new page. 'n' is
the page - number that will be used on the next
output page. 1f .BP is the last thing on the page,
it will not cause a blank page. If no 'n' value is
specified, the default value will be n+l or the
next - number after the prior page number. The .BP
causes a break.

.BR Break

This command is used to force a partial line. Text
following the .BR will be put on the next line.
This would be used in places like starting a new
paragraph.

.CE n Center Text

This command is used to center text. The default
value 1if 'n’ is not specified is one 1line. The
line(s) to be centered follows the command.

.CE 2

This line will be CENTERED.
This will also be CENTERED.
This 1ine WILL NOT BE CENTERED:

The center command causes a break.

.FI Fill

This command turns on the £ill feature. When it is
on, -output text is justified (right margins made
even). The default of this formatter is with Fill
on, so this command only needs to be used when you
have requested no—£ill mode and now wish to return
to £il1 mode. This command causes a break.

.FO Footer Title
.HE Header Title

h
commands cause a title to be printed on eac
oo The Footer Title goes on the bottom of the

page.
. The Header Title goes on the top of the
WMMM. These commands default as blank, so nothing

: . The title
is printed unless titles are specified
is vuvoOmeom following the command on the sane

line.
.HE Page Title

I1f you wish to incorporate the current line ::swom
in your title, this can be done by using the '#
character in the title where you wish the page
number to be placed.

_HE Title on Page Number #

In this case the title will reflect the current
line number on each page without the operator
having to reset the header title on each page.

JIN n Indent n Spaces

This causes all of the lines put out after this
command to be indented by ‘n' spaces. The default
value of n is zero. To stop the lines from being
indented, you set the indent value back to- zero.

.LS n Line Spacing

The 1line spacing defaults to one for single
spacing. For - double spaced output, Yyou set the
value of 'n' to 2.

LS 2

All of the lines output after this command will be
double spaced until a new value is give. .

[e—

.NF No Fill

This causes the fill mode to be turned off. Each
line of input becomes one line of output and will
not add spaces to justify the right margin. This
command causes a break.

.PL n Page Length
This command is used to set the number of lines

per page on your printer. The default value is 66.
This 1s the proper value for eleven inch paper on
a standard six line per inch printer.-

.RM n Right Margin
The right margin defaults to column 60. The .RM
command is used when some other value is desired.

-SP n Space n Lines

This causes 'n’ blank lines to be produced by the
formatter. The default value of °n' is one. This
command causes a break. The .SP does not cross a
page boundry. If the end of a page is incountered,
the formatter will go on to the next line of the
input.

.SP

This command would cause a break in the text and
one blank line to be inserted.

. I n Temporary Indent of n

This command causes a break and indents the 1line
following the command by 'n* characters. 1t \is
refered to as a temporary indent because it only
affects one line.

.RH 50

.CE 2

TEXT FORMATTER
SAMPLE TEXT

ULn Underline Words On HNext n Lines

This command is used to underline complete lines
of text. It is useful for underlining headings or

large blocks of text.

This is sample text to be used to see how

the text formatter works.

The text formatter should even out

the length of these lines so they will all be
approximately the

same length. If the £1ill mode is on, the right
margin will end up even. If the f£ill

mode is off, the

lines will be nearly the same length.

.CE 3

.UL 2

SUPER PRODUCTION
WEEKLY PROGRESS REPORT
By Robert Brown

Phese three lines will be centered on ‘the page and _BR
the first two of them will be underlined. “sp
The right margin for this document will be column
fifty.

The two lines of

heading on this text will be centered.

A second paragraph will be started after the .BR
and .SP commands which cause a line break and
then a blank line.

.HE TEXT FORMATTER (Continued)

All of the

pages after this will have the header:

TEXT FORMATTER (Continued)

at the top of them.

IR S

The lines that start after this command will
be indented by 5 characters each.

This should continue until

the indent)

is set to some other value. The default value
on indent i3 zero so you don't have

any indent unless you ask for one.

.IN O

The next lines should again start on the left
margin with no indentation.

this will give a reference point for

the next feature to be tested which is the
temporary indent.

.BR

.SP

LTI 3

This will do an indent of 3 characters at the
beginning of this new paragraph.

The rest of the paragraph will be flush

on the left margin. This is handy and you don't
have to remember to

put it back when you don't want

it to indent any more.

.L8 2 :

Now we should Mon some double spaced text as a
result of setting the line spacing

to two.

When we get done seeing how double spacing works

we can try some text in the fill-off mode.

Well., I think we can all see double

(spaced that is) so first I'll set the
spacing back to single space

LS 1

.and now I*'11 turn off the £ill mode.

.NF

These lines should now come out with

nearly the same length, but without any blank
spaces added to justify the right

margin.

You can see, that

this makes the output more readable .

than the input without any extra

spaces.

.BR

.SP

By now we should have reached the second page, so
lets try changing the page length.

.PL

By setting the page length to 45, I can get
an output that will fit sideways in the
copier without any reductions.

You may never need to do this, but I never know
when I will want to do something different.

1

TEXT FORMATTER
SAMPLE TEXT

This is sample text to be used to see how the text
formatter works. The text formatter should even
out the length of these lines so they will all be
approximately the same length. If the £ill mode is
on, the right margin will end up even. If the fill
mode is off, the 1lines will be nearly the same
length.

The right margin for this document will be column

"fifty. The two lines of heading on this text will

be centered. A second paragraph will be started
after the .BR and .SP commands which cause a line
break and then a blank 1line. All of the pages
after this will have the header: TEXT FORMATTER
(Continued) at the top of them. The 1ltines
that start after this command will be
indented by 5 characters each. This should
continue until the indent is set to some
other value. The default value on indent \is
zero 8o you don't have any indent unless you
ask for one. The next lines should again start on
the left margin with no indentation. this will
give a reference point for the next feature to be
tested which is the temporary indent.

This will do an indent of 3 characters at the
beginning of this new paragraph. The rest of the
paragraph will be flush on the left margin. This
is handy and you don‘’t have to remember to put it
back when you don‘*t want it to indent any more.
Now we should get some double spaced text as a
result of setting the line spacing to two. When we
get done seeing how double spacing works we can
try some text in the fill-off mode. Well, I think

we can all see double (spaced that is) so first

I'11 set the spacing back to single space and now

I'1l turn off the £1ill mode.

These lines should now come out with

nearly the same length, but without any blank
spaces added to justify the right

margin.

You can see, that

this makes the output more readable

than the input without any extra

spaces.

By now we should have reached the second page, so
lets try changing the page length.

By setting the page length to 45, I can get

an output that will fit sideways in the

copler without any reductions.

You may never need to do this, but I never know
when I will want to do something different.

HAWTHORNE TECHNOLOGY

TEXT FORMATTER MODIFICATION MANUAL

Table of Contents

Structure

Change Suggestions

Variables

Action Routines

STRUCTURE

The text formatter 1is in the general style
associated with roff and nroff that wvere f£irst
written for UNIX in the early 1970's. A dominant
‘feature ‘is the use of a period in the first column
of a 1ine to mark a command. The specific version
that this program wost closely follows 1is the

version given in the book: Software Tools by"

‘Kernighan & Plauger.

The basic job of the text formatter is to combine
short lines to make longer lines or break long
lines to make shorter lines. Page breaks must also
be handled.

The main loop reads lines from the input file. As
each line is read it checks the first character to

_ s £ 1A dm = ommealdae
ove AEf it iz o porica. If it iz, the line ir

treated as a command or as a comment if the
command -can't be decoded. If the line is not a
command line it is scanned and the words are - sent
one at a time to the output: buffer. When the
output buffer is full it is expanded by adding
spaces and sent to the output.

The input to the text formatter always comes from
a disk file. The output can be directed to the
printer or to a disk file. It could also be
directed to a modem or other device. If no output
is specified then then formatted text is sent to
the console.

Some of the commands like BR (break) cause an
immediate action to occur. Others set a string
variable like TI (title). Some are switches 1like
£i11 and are either on or off. A few 1like page
size have a numeric value. The ones with a numeric
value are set by a routine that looks at the min

value, max value, default value, and new value.:

This insures that the variables are set to some
reasonable value even if the command is not good.

The file I/0 1is done by a group of generic
routines. These are similar to the routines in the
command processor that is part of the operating
system and are also similar to routine with the
same functions in the editors.

6-2

CHANGE SUGGESTIONS

Because of the modular nature of the text
formatter 1is is easy to add new commands to do
special functions. These additions could be
published or put in user 1libraries. While the
formatter as a whole is copyright protected, any
changes and instructions on how to add them would
be new material.

As with any flexible program it is sometimes bharad
to decide what to put in and what to leave out. If
you want a small, fast, convenient program that
doesn't take up wmuch space so you can have it
around then you have to leave out many features
that may not be used very often. If you do heavy
work with a text formatter 1like publishing a
newsletter or magazine then you will: want to leave
all of the commands in and probably add some.

A command to turn the justify on and off would be
useful. These could be JU - to start justify and
NJ - to stop justify. This would make it possible
to have parts of the source file copied with the
lines being eguized in length but with no £il1l
characters added to justify the right margin.

In its present form there is no way to set the
siza of the heading and footing margins on- the
page. These could be done with HS - headspace and
FS - foot space. This would make it a 1little
easier for certain print jobs.

For advertizing copy it is sometimes desired to
have text right Jjustified with a ragged left
margin. Another use for right Jjustify is for
headings in wmanuals. A new command RJ - for right
Justify could be used for this. To impliment it
all that would be needed is to have a routine that
is similar to fluf that simply moves the text to
the right end of the print buffer.

To make this formatter into a full mail/merge type
of program all that is needed is the ability to
read ' from an alternate file and have some method
of looping to repeat the body of the text. For

form letters it would be nice to have a canned

heading in a file that could be called up. A

document could even be assembled by inserting
stock paragraphs from a text data base.

Host people who have a dot matrix printer know
that it 1is possible to select different type
styles and sizes under program control. A group of
simple commands can -be added to select these
different type styles. Because this would be
different for each brand / model of printer, a
short library of control codes could be published.
For the printers that have the ability to load a
whole new type font, a command could read the new
font from a file and send it to the printer as
part of the text formatting process. Could you
imagine a program 1isting, possibly in COBOL
printed out in 0ld English script. A

The K—-0S ONE operating system maintains a date and
time of day clock. A useful command would be to
read the system date and automatically put todays
date and possibly time on the heading of a letter
or report.

Sometimes you don't want to split a paragraph
between two pages or you don't want the title of a
section on one page and the start of the text on
the next page. In that case it would be useful to
have a command NE 22. This is a conditional new
page command. If you need (NE) a certain number
(22) of lines for the block of text you want to
keep together, and they aren‘t available on the
remainder of this page, then a new page 1is
started. If the lines needed are available on this
page then the command has no effect.

VARIABLES

These are all of the variables used in the text
formatter. Most of them are used for a single
purpose but some of them serve several transient
uses. Most of the variables are declared as long
aven 1f they are a small value. This is done
because the amount of storage taken by the
variable is more than offset by the shorter code
that 1is generated for long operations rather than
for word or byte operations. HMost of these are
local variables and need to have space allocated
to them and need to be initailized.

byte inbuf { 384] - command line holder
byte tbuf [384) - underline buffer
byte outbuf (128] - output buffer

byte pline [128) - print-line

long fillon - £ill on flag

lana 1sval - l1ine snace

long inval - indent count

long rmval - right margin

long tival - temporary indent amount

long ceval - center line count

long ulval - underline char count

long curpag — current page number

long newpag - new page flag

long 1ineno - current line number

long plval - page length

long mlval - before heading line count

long m2val - after heading line count

long m3val - before foot line count

long mdval - after foot 1line count

long bottom — bottom of page flag

byte header { 128) - heading text

byte footer [128] - foot text .

byte filename [64] - current file name

byte lasteol (2] - last eol char

long outp - ouput pointer

long outw - ouput words

long outwds - words in outbuf

long spval - blank line count

word paramblk (20 | - parameter block used for
system calls

long val - argement value

long argtyp - argument type

long wrdwid - word size
long wrdlen - word length

6-5

long
long

iong
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long

outpn - outbuf pointer

wrdpn - pointer to word

prnpn - printer pointer

block - disk input block pointer
dskbfpn - disk buffer input pointer

eof — end of file flag

infile - input channel

outfile - output channel

chrcnt - char count in disk block
scpn — argument scan pointer

inpn - input pointer

allholes - number of spaces in line

wideholes -~ number of wide holes
thinholes — number of thin holes
nholes - number of holes

nextra - extra spaces needed
direction - direction to £ill
srcpn - source pointer

dstpn - destination pointer
ipn — underline pointer

tpn - underline pointer

M

{—-- action routines

-~)

proc — command (format command)

code action

BP ... begin page

BR ... break

CE ... center lines

F1 ... start filling text

FO ... footer

HE ... heading

IN ... indent

LS ... line spaceing

NF ... no fill, stop £illing

PL ... page length

RM ... right margin

SP ... insert blank lines

m ... temporary indent

... under line

text - process text lines

getval ~ get a function value
getfil - get a file name

getstr - get a text string
ctoi - convert characters to integer
iswhite - check if char is blank

iseol - check if char is end of line
skipbl -

skipwrd -

set - fix new value
getwrd - get next word in text line
get - get a whole line
center - center line in outbuf

underl - underline words in inbuf
nextch - get next char
putwrd - add word to line 1f it fits
put - put out line
with proper spacing and indenting
space ~ put linefeeds in page
phead - print top margins and header
.. .__pfoot - print bottom margins and footer
puttl - put title in print buffer
w/optional page number

putdec ~ put page num in buffer
skip ~ add linefeeds to buffer
leadbl — delete leading blanks, set tival

6-7

break send line
fluf add spaces to £ill line
copybl copy backwards for £luf,
true if blank copiled
putbl put blank in backwards for fluf
(—————-— generic i/o0 routines -—-————)
openfil open file for in and out
createfil create file for output
readfil read file
writefil write to channel
closefil close channel
gcmdstr get command line
filerror “*% ERROR CANT OPEN FILE **~
getlin get a line from source file
getcx raw char input :
swrite write string to output file
writeln write string and crlf to con:
crixt senad cr and 1f to consoie
continue * PRESS * TO CONTINUE >>*
upcase convert lower to upper case
hexlong write long in hex to con:
hexword write word in hex to con:
hexbyte write byte in hex to con:
hexnyb write 4 bits in hex to con:

m

