HT-FORTH

Hawthorne Technology

HT-FORTH

for K-0S ONE

Copyright 1987
HAWTHORNE TECHNOLOGY

All rights reserved. Nothing in this manual may be
reproduced 1in any manner, wholly or in part for
any purpose whatscever without written permission
from Hawthorne Technology.

-Hawthorne Technology
8836 S. E. Stark
Portland, OR 97216

(503) 254-2005

L3272 1

4

X * PRODUCT DISCLAIMER k%

This software and manual are sold 'as is' and without
warranties as to performance or merchantablility.
These programs are sold without any express or
implied warranties. No warranty of fitness for a
particular purpose is offered. The user must assume
the entire risk of using the programs and is advised
to test the programs thoroughly before relying on
them.

Any liability of seller or manufacturer will be

limited exclusively to product replacement or refund
of the purchase price.

* * * * * * * * * * * * * * *

ii

HT-FORTH

TABLE OF CONTENTS

INTRODUCTION
OPERATION

WORDS:
CONTROL STRUCTURES . .
TERMINAL INPUT / OUTPUT . .
PROGRAM BEGINNING AND emmsz>eHoz
DICTIONARY ADDRESSES . .
COMPILER AND INTERPRETER somom
VOCABULARIES
DEFINING WORDS
LOGIC . .
STACK szchh»eHoz
COMPARISON . . .
ARITHMETIC .
MEMORY .
STRINGS
NUMERIC Ooz<mmmHoz . . .o
FILES / K-0S .

EXTENSIONS:
POINTER WORDsS . . . e

HT-FORTH EDITOR
HT-FORTH ASSEMBLER . . .
DUMP

KERNAL MODIFICATION . . .

iii

iv

INTRODUCTION

The K-0S ONE operating system is written in HTPL,
a language that has a lot of features 1like the
features of FORTH. Even though we supply the
compiler for HTPL with each system, we have had a
lot of requests for a standard FORTH to run with
K-0S ONE and for use with the TinyGiant. Because
of this demand, we have written a standard FORTH.

This manual assumes that the reader is familiar
with the FORTH language. This is not intended to
be a textbook to teach you how to program in FORTH
or even how to use HT-FORTH to its best advantage.
If you want to learn more about FORTH we recommend
that you purchase one of the standard text books
on FORTH.

If you already program in FORTH, this will make
your K-0S5 ONE system more familiar and usable
without having to learn a new language. It also
means that you can transport an existing
application to a newer machine with little effort.
Another advantage is that there are a lot of books
on FORTH and many user groups. Many of the books
have sample programs that are usable. Because K-0S
ONE wuses the same disk format as MS/DOS you can
easily take advantage of any FORTH programs for
the PC.

K-0S FORTH is a full featured standard FORTH that
runs with the K-0S5 ONE operating system. A full 32
bit stack is used to allow access to all of the

memory. The generic arithmetic operators are all
32 bit. There are some special 16 bit arithmetic
operators for special cases. The source code is

compiled to inline macros or JSR or BSR. This
allows for large programs but remains position
independent and is very fast.

The traditional FORTH screens are not supported.
Most K-0S ONE users indicated a preference for a
-screen editor and standard ASCII files. For this
reason a Wordstar(tm) 1like screen editor is
included. The words that support FORTH blocks can
be easily added. Normal system ASCII files can be
edited with any editor and then loaded. This |is
the format we use for programs written in FORTH.

iv

I W}

EE I

While there are some significant differences 1in
the way HT-FORTH is implemented, the words act the

same as in.other implementations. This manual
explains the 1internal structure of the kernal
used. The manual also explains the words that are

included with the release version of HT-FORTH.
Because we provide the complete source code it is
possible to add any words that are needed but are
not present. Also it is easy to edit the source to
remove any uneeded words to make the kernal
smaller. If there 1is any question on how a
particular word works you should 1look at the
source for that word.

A FORTH style 68000 assembler is included for
small inline tasks. The conventional 68000
assembler that comes with the K-0S ONE operating
system can be used instead of the built in
assembler. The kernal is written for the standard
assembler and not the FORTH assembler.

& set of utilities to use the K-0S ONE file
system 1is included. These utilities include such
things as opening files, reading from and writing
to the disk and other devices. BAll the standard
console I1/0 uses the operating system calls so it
is portable to any set of hardware. With the use
of the TRAP word, all of the system services of K-
0S ONE are available to any program.

Some screen utilities are included. They can be
customised for any terminal. String cperators and
definers are included so you can use Pascal 1llke
strings. A set of pointer manipulating words |is
included for using C style pointers.

An option when saving files is included so you can
create standard .bin executable files. A file can
be saved in a fixed mode that can't be changed for
turnkey applications, or it can be saved 1in a
modifyable, 1live mode for further development. As
long as the end user does not have to ability to
add words or change words, the resulting object

-can be distributed without royalties.

Many of the tricks that published FORTH programs

use to save space or to get special features

either won't work with HT-FORTH or won't save any
space. In particular defining a number as a
constant mearly wastes space and runs slower,
Also, if something wasn't created with CREATE then
DOES> will probably mess everything up.

Full source code for the compiler is provided. The
kernal 1is written in 68000 assembler and can be
reassembled with the standard K-05 ONE assembler.
Existing words can be deleted to save space, or
new words can be added. Many of the utilities that
are supplied with HT-FORTH are written in FORTH.
This manual will describe the action of each FORTH
word included. A separate section will describe
the theory of how the system is written and how it
operates.

vi

OPERATING

HT-FORTH is a FORTH dialect that runs under the K-
0S ONE operating system on 68000 based micro-
computers. HT-FORTH conforms, to a large extent,
to the F83 standard. A major difference is that
HT-FORTH uses the host file system rather than
blocks or screens like other FORTH systems do. The
philosophy 1is that the FORTH should work with the
other parts of the operating system and not try to
replace them.

Any reference to a variable will push a 32 bit
address on the stack. The default size for
arithmetic operators is 32 bits. All strings and
messages are padded to end on an even boundary.
Because of the need for certain operations in the
68000 to use word boundaries, character constants
will always use at least 2 bytes.

The form that a compiled word takes depends on the
word that is being compiled and where it is in the
dictionary 1in relation to where it is being used.
When possible, the compiler will use the shortest
form it can. Many of the most common words are
compiled in line as macros. For some words this
created a problem because of the need to be inter-
active. These words are compiled as subroutines.

Many FORTH programs define compiling words. In
most cases these depend heavily on assumptions
about how the FORTH is implemented. When sub-
routines or macros are used instead of threaded
code, these have to be changed. HT-FORTH 1is
designed to be position independent. If a portable
application 1s wanted then it is important not to
use absolute address references for invoking
words.

REGISTERS USED:

A7 -- RETURN STACK

A6 ——- EVALUATION STACK

A5 -- BASE ADDRESS
D7 -- BYTE TO WORD OR LONG CONVERTER
D6 —-—- WORD TO LONG CONVERTER

RUNNING HT-FORTH

HT-FORTH is supplied as an executable binary file.
To run it from the command processor just type:

FORTH

at the normal system prompt. This 1loads the
program and starts it executing.

After the system starts you should type:
LOAD DUMP.FTH

then:
LOAD EDITOR.FTH

to 1load the editor into the system. The default
extenslon for FORTH programs is FTH.

To enter the editor type:
EDIT

This causes the editor to start and the filename
specified to be read into the edit buffer.

SAVE filename ~ save the current FORTH and dict

LOAD filename - load and compile

BYE - exit FORTH and return to K-0S
1-2

o 1

DO (limit start --)
Start a counted loop. All DO loops are executed at
least once. They may be nested. You can get out of
a DO loop before limit by using LEAVE.

LOOP « --)
End point of a do loop. Increment index and repeat
loop if not at limit.

+LOOP (n ——)

Add top of parameter stack to index and test for
limit. If not at limit go back to DO.

LEAVE (-—)
Exit a DO LOOP or DO +LOOP. This forces
termination of the DO LOOP. Execution continues

with the word after LOOP.

?LEAVE (TF --)

Exit a DO LOOP or DO +LOOP 1if top of evaluation
stack is true. This 1is a conditional form of
LEAVE.

I t -1

Inside a loop get current index value and put it
on stack. Can only be used directly. Can not be
‘used 1in a word that is called from inside a DO-
LOOP.

I (~— 1)

Inside a loop get current limit value and put it
on the parameter stack. Can only be used directly.
Canot be used in a word that is called from inside
a DO LOOP.

J (-——J)
Inside a loop get index of outer loop. Puts the
index of the next outer loop on the stack. Can

only be used directly, not from a word that |is
called from inside a DO-LOOP.

IF (tf —)

Execute if top of parameter stack is true.

ELSE (=)

Alternate code to execute if parameter was false.

ENDIF (-=)

Terminate an IF construct. Functions same as THEN
and can be used interchangeably.

THEN C --)

Terminates an IF construct the same as ENDIF.

BEGIN (-—)

Start a loop that terminates with a condition.

AGAIN (--)

Uncontionally branch to the BEGIN that starts a
loop.

UNTIL (xx ——)

If wvalue on parameter stack is false go to BEGIN.
Marks the end of a BEGIN-flag-UNTIL laop.

WHILE C tf —-)

While the condition is true perform the loop.

REPEAT ~=)
Marks the end of a BEGIN Ce WHILE ... REPEAT
construct.

EXIT « —)

Terminate execution of a colon definition. Don't
use it inside of a DO LOOP because the loop
variables are kept on the return stack. If used in
a DO LOOP the index and limit must be removed
first.

EXECUTE (dd —)
Execute the word whose address is on the
parameter stack. Execute expects a relative
address.

Display signed number with trailing blank.

U. (nn ——)

Display unsigned number with trailing blank.

" otext -

Display text string that is enclosed: ." text"

Immediatly displays the text that is enclosed in
parentheses: . (text) .

CR (-=
Sends a Carriage Return and Line Feed to the
current output device.

EMIT (a --)
Display top o0of parameter stack as an ASCII
character at the current output device.

TYPE (addr nn —--)
Display a string of nn characters starting at
address nothing 1is displayed if 'nn' is zero or
negative.

SPACE (--)

Display one space.

"
"
"=
"
.

SPACES (n --)
Display n spaces. Nothing is displayed if 'n' is
zero or negative.

KEY (-- x)
Wait for and get a keyboard character. High bit

depends on system. K-0S normally sets high bit
low.

EXPECT (&ddr n —-)

Get n characters from the keyboard and store at
address. This uses the line input system call.

SPAN (-— addr)

Returns the 'addr' address of the count of
characters stored by the latest execution of
EXPECT.

QUIT ¢ -

Return control to terminal, parameter stack
unchanged, clear return stack. Prints "K-OS FORTH"

BYE « -

Exit the FORTH 1language and return to the
operating system.

ABORT « -=

zmncn:wowmnsp:mp.OHmmnvmnmsmnmnmnmnx\OHmmn
return stack.

A
u

ABORT" (flag --)

If flag is false, continue else display message
and abort: ABORT" message"

WHAZZAT (-=)

This 1is a general purpose error message that puts
out three ??? and then pauses until a character is
entered. The action taken depends on the character
entered. If a return is entered the remainder of
the 1line being interpreted 1is 1ignored. TIf a
control c¢ is entered FORTH is aborted and control
is returned to the operating system.

HERE (—— addr)

Return current dictionary pointer. This 1is the
address of the next available dictionary location.

DP (-—- addr)

This word returns the address of the dictionary
pointer. DP @ is the same as HERE.

PAD (—— addr)

Get the address of scratch area of 128 bytes.

TIB (—— addr)

Get the address of the text input buffer.

>BODY (addrl -- addr2)

Given the code~field address of a word ‘'addrl’',
>BODY returns the parameter-field address 'addr2'
of the word.

CAUTION: Most published FORTH programs make
assumptions as to how the language is implemented
and how the dictionary is set up.

LOAD filename (-—)

Load the filename given until QUIT. The file is
assumed to be a plain ascii text file 1like 1is
created by a text editor.

SAVE filename (—-)

The FORTH 1language and all the words that have
been defined are save in the designated file. The
file can later be loaded again and more words
added.

LOCK (—=)

This word does several things. 1Its purpose to to
make the FORTH program that has been defined into
a simple executable binary file. It then saves the
file and exits back to the operating system.

SIZE

This is like a constant but it returns the current
size of the FORTH language and all the definitions
that have been added.

.Marks the beginning of a comment: (comment). The
comment continues until a closeing) is found. A
space must follow the opening parenthesis but a
space is not needed before the ending parenthesis
of a comment. Because the content of a comment is
ignored comments do not nest.

2-8

ENNNE

IEEEEE

\ -=)
Cause the compiler to ignore the remainder of the
line. Anything after \ on the line is ignored.

, (n ~-—)
noaﬁwwm a 32 bit constant value from the parameter
stack.

W (n-—)
Compile the low order 16 bits of the top item on
the parameter stack.

ALLOT (w -)
Add 'w' bytes to the current dictionary pointer.
The result must end on an even boundary or an
error will occur.

DOES> (-
Mark the beginning of the run time behavior of a
newly created defining word. This can only be used
with CREATE. If used with constant or other word,
it will result in an error condition.

IMMEDIATE (-=
Causes the last word defined to execute even when
in a colon definition.

(COMPILE] (-—

When doing a colon definition compile the next

-word even if it is immediate.

COMPILE =--
When doing a colon definition, compile the next
word when the definition is executed.
STATE (—— s)
Return the state of the FORTH system. Is it
compiling (non-zero) or is it executing (zero)?
LITERAL ¢ ——)
Compile the top item on the parameter stack as a

literal. This allows the value of a constant to be
calculated at compile time rather than run time.

Exit compile mode. Enter execute mode.

Begin compile mode again.

WORD (delim -- adrs)
Scan the 1input line and get the next group of

characters delimited by the given character. The
group of characters is stored beginning at adrs.

GETCX (-- chr)
Get the next character from the input source. This
can be a line of text from the terminal or the
next character from a text file tha 1is being
loaded.
>IN (-——p)

Return a pointer to the next input character that
will be scanned.

2-10

FENERERINEINNND

#TIB (-—p
Return the address of the Text Input Buffer that
gets command lines from the console.

NUMBER (== nn)

This converts the last word found to a nmber using
the current base if it is possible to do so.

FORTH t -=)
Makes the FORTH vocabulary the only one to be
searched until another vocabulary is established.
DEFINITIONS

Makes the CONTEXT vocabulary current.

' (-— adrs)

k "tv, Find the next word. Return execution

{'] (-- adrs)
Returns and compiles the code-field address of a
word in a colon definition.

FIND

Search the dictionary for the specified word.

FORGET (-=

Remove specified name from the dicticnary and all
words that were added after the one designated,
This affects all vocabularies not just the current
one. FORGET <(name>

KILL « -——)
.Remove the next word found from the dictionary.

All other words defined before and after the one
word are not affected. KILL <name>

ESFEESSEEREREE

CONTEXT (—-- adrs)
Returns the address of the vocabulary that will be
searched first.
CURRENT (—-— adrs)
Returns the address of the vocabulary where new
words will be added.
VOCABULARY (--)
Create a new vacabulary that has for a name the
next word found. Make the new vocabulary current.
VOCAB

This returns the address of a user variable that
points to the last vocabulary link defined.

Begin a colon definition.

N
—~
|
t
-

Terminate a colon definition.

HEADER (-=)
Create a dictionary entry but don't put anything

in it. If a header is executed before something is
put in it it will probably mess up the system.

CREATE C --
Create a dictionary entry that leaves its address
at run time. Extra space is allocated so DOES> can
be used to define a runtime behavior.

VARIABLE « -
Create a dictionary entry for a 4 byte wvariable.
Does not initialize the contents of the variable.

CONSTANT (k --)
Defines a word as a constant using the top of the
parameter stack as the value: k CONSTANT <{name>
This creates a dictionary entry for <(name> and
compiles 'k' into the <(name> parameter field. When
{name> 1s executed, 'k' is put on the stack.

CODE (--)

This sets the numeric base to hex and allows
direct entry of hex codes into a word.

2-14

REL (x -— x)

This converts an absolute address into an address
that is relative to the base of the FORTH program.
Because HT-FORTH is position independent this 1is
important. All variable and memory refrences use
real addresses that are calculated when executed.
The addresses of all routines are base relative.

UNREL (x — x)
This converts a base relative address into an

absolute real address. This is needed if you want
to look at the code for a routine.

NOT (a —— a)
Does bit-by-bit inversion of top of parameter
stack.

AND (a b -—-c¢c)
Does bit-by-bit logical AND of the top two items
of parameter stack.

OR (ab--c¢c)
Does bit-by-bit logical OR of the top two items of
the parameter stack.

XOR (a b -—-c)

Does bit-by-bit eXclusive OR of the top two items
of the paramter stack.

1111

-

DUP (a-—-a a)

Make a copy of the top of the parameter stack.

2DUP (ab-—abab)

Make a copy of the top two items on the parameter
stack. Acts the same as OVER OVER.

DROP (a b --a)

Remove the top item from the parameter stack.

2DROP (a b --)

Remove the top two items from the parameter stack.
The same effect as DROP DROP.

SWAP (a b -—-Dba)

Exchange the places of the top two itmes of the
parameter stack.

OVER (a b -—-aba)

Copy the second number on the stack to to top of
the stack.

ROT {abc--bca)

Rotate the top three items on the stack.

—-ROT (abc--cab)

Rotate the top three items on the parameter stack
in the opposite direction of ROT.

2-17

PICK {n-—-a)

Copy the n'th item of the parameter stack, (not
counting 'n' itself).

0 pick is like DUP

1 pick is like OVER

ROLL (x%xn -

Remove the n'th number on the stack (not counting
'n') and puts 'n' on top of the stack.

?DUP (a-—aa) or (0 --0)
Duplicate the top item of the parameter stack |if
it is not zero.

>R (n-—)

Move the top item of the parameter stack to the
return stack.

R> (-— n)

Move the top 1item of the return stack to the
parameter stack.

R@ (—— n)

Copy the top item of the return stack to the
parameter stack.

DEPTH (-— n)

Return the number of items on the parameter stack.

NIP (ab -—-Db)

Delete the next to the top item of the parameter
stack.

TUCK (ab-—-Dbab)

Put a copy of the top item of the parameter stack
under the next to the top item. Similar to SWAP.

FLIP (abc-—-cba)

Flip the order of the top three items of the
paramter stack.

COMPARISON
< (ab -—-c¢c)
Compares 'a' with 'b'. 'e' flag 1is true (non

zero), if 'a' is less than 'b"'.

Compares 'a' with 'b?'. 'c! flag is true (non
zero), if 'a' is less than or egual to 'b!'.

0= (a -~ tf))

Compares 'a' with 0 (zero). Result is true (non
zero), if 'a' is equal to zero.

0> (a -—— tf)

Compares '‘a' with 0 (zero). Result is true <(non
zero), 1f 'a' is greater than zero.

U< (ab -~ tf)
Unsigned compare of 'a‘' with 'b’. Result is true

zero), if 'a' is less than 'b!',

RANGE (a b ¢ -- tf)

A range comparison is done. The result is true if

the third item on
included in the range

the stack is equal to or
of the other two items.

= (ab-—c¢c)
Compares 'a' with 'b'. 'c' flag is true (non
zero), if 'a' is equal to 'b'.

(@) (ab--c)
Compares fa' with 'b'. 'c!' flag is true (non

zero), if 'a' and 'b' are not equal.

> (ab -—c¢c)
Compares 'a' with 'b'. ‘c' flag 1is true (non
zero), if 'a' is greater than 'b'.

>= (ab --c)
Compares 'a' with 'b'. 'c' flag is true (non
zero), 1f 'a' is greater than or equal to 'b‘'.

0« (a —-— tf)

.nosnmnmm 'a' with 0 (zero). Result is true (non
zero), if 'a' is less than zero.

TRUE (-- t)

A symbolic constant that returns the value -1 that
represents true when invoked.

FALSE (-- £)

A symbolic constant that returns the value 0 that
represents false when invoked.

¢ o> o= \@\%N\

1

<> 2 s

{non

Add the top two items on the parameter stack. 'at
is added to 'b' and the result 'c' is left on the
stack.

1+ (a —Db)

Add 1 to the top item on the parameter stack.

2+ (a -—b)

Add 2 to the top item on the parameter stack.

4+ (a -——Db)

Add 4 to the top item on the parameter stack.

- (ab-~-c)
Subtract the top item on the parameter stack from
the next to the top item. 'b' is subtracted from
'a' and the result 'c' is left on the stack.

1- (a -—Db)
Subtract 1 from the top item on the parameter
stack.

2- (a -——Db)
Subtract two from the top item on the parameter
.stack.

4 - (a -—b)
Subtract 4 from the top item on the parameter

stack.
2-22

* (ab-~-c)
Multiply the top two items on the parameter stack
and return the 32 bit product on the stack. If
there is an overflow, all but the least
significiant of the top 32 bits are discarded.

2% (a -—— b
Multiply the top item on the parameter stack by
two, by doing a shift left of one bit.

4% (a -——b)
Multiply the top item on the parameter stack by
four, by doing a shift left of two bits.

/ (ab-—-c¢c)
Divide the next item on the parameter stack by the
top item on the stack. 'a' is divided by 'b' and
leaves the quotient fc' on the stack. If an under-—
flow results, the result 'c', is 0. If division by
zero is attempted the result ‘c’, will be -1.

2/ (a -——- b))
Divide the top item on the parameter stack by two
by doing a shift right one bit.

4/
Divide the top item on the parameter stack by four

by doing a shift right two bits.

MOD (ab-—c)

Divide the next item on the parameter stack 'a!

by the top item 'b' and return the remainder of
the division ‘'c*'.

/MOD (ab -~-c¢cd)
Divide the next item on the parameter stack 'a',
by the top item ’'b’' and return both the quotient
'd' and the remainder 'c'.

*/ (abc—-—x)
Multiply the third item 'a' by the second item 'b!
on the parameter stack. Divide the 64 bit double
length product by the top item 'c'. Return the 32
bit guotient 'x'.

*/MOD (abec-—-xy)
Multiply the third item 'a' by the second item 'b?
on the parameter stack. Divide the 64 bit double
length product by the top item 'c'. Return the 32
bit quotient *x'and the remainder 'y'.

MAX (a b --c)
Compare the top two items on the parameter stack
and return the larger value.

MIN (a b --c¢)
Compare the top two items on the parameter stack
and return the smaller value.

ABS (a —— a)
Return the absolute value of the top item on the
parameter stack.

NEGATE (a--Db)

Negate the top item of the parameter stack. Zero
minus 'a' gives you 'b'.

2-24

=
-
.
.
:

INCDBL (ab -—ab)

Add one to each the top item and the next item on

the parameter stack.

DECDBL (ab-—-ab)
Subtract one from each the top and the next to
top items on the parameter stack.

INCMEM (p -—-))
Increment long word the value that is pointed

by the item on the top of the parameter stack.

DECMEM (p —)

Decrement 1long word the value that is pointed
by the item on the top of the parameter stack.

2-25

the

to

to

MEMORY
cl (a -— b))
Load long 32 bits. Loads a 32 bit wvalue from
address 'a' onto the stack 'b'. :

eL (a--Db)

Qw (a-—D>b)

Load 16 bits from the address on top of the
parameter stack. Fill the high word of the stack

~

item with O.

@B (a ~-—-b)

Load a single byte from the address on top cf the
parameter stack. Fill the top three bytes of the
stack item with O.

! (ab -

Store long 32 bits. Stores 'a' at address 'b'.

'L (ab -—)

Store long 32 bits. BAn alternate for !.

'W (ab --)

.Store the low two bytes at the address on top of
the param stack.

-
-

[

'B (ab --)
Store the low byte of the second 1item at the
address given by the top item.

CWL (a --Db)

Convert word to long word by doing sign extension.

+1 (ab —-—)

BRdd word at address. Add word 'a' to the value at
address 'b', 1leaving the result at address 'b',
replacing the original value there.

- (ab -—-)
Subtract word at address. Subtract word 'a' from
value at address 'b*' leaving result there

replacing the original value.

CMOVE (abc-—)
Copies 'c' bytes beginning at address 'a', to

address 'b'. The move proceeds toward high memory.
If 'c' is zero, nothing is moved.

CMOVE> (abc -—-)

Copies 'c' bytes beginning at address 'a', to
address 'b'. The move proceeds toward low memory.
If 'c' is zero, nothing is moved. This can be used
to move bytes wupward in memory when the

destination overlaps the source.

FILL (abc-—)
Fills 'b' bytes of memory beginning at address 'a‘'
with the least significant byte of 'c'. 'b' is an
unsigned number of bytes and no action is taken if
'b!' is zero.

Also see BLANK and ERASE.

COUNT (a -—bc)

This returns the number of characters in a string

at address 'a'. 'b' is address 'a' plus one (start
of text). 'c' is the length of the text.

-TRAILING (ab-—-ac)
Adjusts the character count 'b' of the text string
beginning at address 'a' to produce a count et
that excludes trailing blank spaces. The address

'a' remains unchanged.

BL (—— sp)
Return a single space character on the parameter
stack.

BLANK (pnt cnt -~)
Fill an area of memory specified with ascii
spaces. Like BL FILL

ERASE (pnt cnt --)
Fill an area of memory specified with zeros. Like
0 FILL

ASCII (-
Compile the next non space character from the
input stream as a single byte literal.

SCONSTANT
Create a named string constant. The string starts
with the first character after the space that
delimits the name of the string constant.

SVARIABLE
Create a named string variable and set its initial
length to 0. The top item on the parameter stack
will determine how much space is allocated. All

strings are padded with an extra byte if needed to
end on an even boundary.

.$ (str -—)

‘Print a string.

'$ (strl str2 --)
Copy the first string to the second string. No

check 1is made for overrun or even if the second
address is that of a string.

sn (-- str)

Create an un-nammed string literal.

$POS (strl str2 -- str)
Find the position if any where the first string is

contained in the second string. If not found
return 0.

CHMATCH (chr str -- adr)

Search the string for the given character. If not
found return 0.

BASE (—— adr)

The address of BASE.

DECIMAL ¢ =)

Puts decimal 10 in the variable BASE and selects
decimal notation for input and output.

vsdm Hm H:dsm<m«HmUHmw>mmmsa mmHmOdm
hexadecimal notation for input and output.
OCTAL (--)

Puts 8 in the variable BASE and selects octal
notation for input and output.

CONVERT (ab-—-c¢cad)
Converts an uncounted ASCII string of digits to a
number on the stack using the value in BASE. te!
is the result of converting each digit or

character in the string beginning at address 'b'+1
into a number and accumulating each number in t'a‘
after multiplying 'a' by the value contained in
BASE. ('a' 1is normally 0). Conversion continues
until an unconvertable character is found. The
address of that character is left in 'd‘'.

« -

Starts the conversion of an unsigned number to a
formatted (pictured) output string.

(s (-—)

Starts the conversion of a signed number to a
formatted (pictured) output string.

(a -—Db)
The right digit of 'a' is converted to an ASCII
character according to the value of BASE. It \is
then appended to a formatted (pictured) output
string for subsequent output by TYPE. 'b!' is the

number of remaining digits and is retained for
further processing. Used between <# and #).

#S (a -——-bc)

Converts 'a' to a formatted (pictured) output
string. This 1is done digilt by digit according to
the value in BASE. A4 single zero is placed in the
output string if 'a' was initially zero. Used

between <(# and #>.

HOLD (a -
Inserts a character with the ASCII value 'a' into
a pictured numeric output string. Used between <(#
and #>.

HLD (——a)

Return the address of the variable that holds the
pointer used by HOLD.

SIGN (a--)

Appends an ASCII minus sign to the beginning of a
formatted (pictured) numeric output string if 'a'
-is negative. Use between <# and #> is optional.

-
-
=
-
-

#> (a -——bc)
Ends the <conversion of a number to a formatted
(pictured) output string. 'b' is the address of
the output string and 'c! is the number of

characters in it.

SSIGN « -—-)

Save the sign of the number being formatted.

These words are provided to make it easy to use
the files and other services of K-0S ONE with a
FORTH program. The philosophy of HT-FORTH is to
work with the operating system and not try to
replace it as some FORTHs do. These are the basic
routines. More complex words are easy to define
because of the simplicity of K~-OS ONE.

The routines expect strings to be in counted form
like most other FORTH programs. Most of the
routines will append a nul to any string used.
When a parameter block is set up it must start on
an even boundary.

MAKFIL (strng -- stat)
Makes a new file or erases an old file. The
parameter stack contains the address of a counted
string.

OPENFIL (strng -- chan)
Open a file or device for subsequent use by the
program. The channel opened is returned on the
stack.

CLOSEFIL (chan --)

Close a channel to a file or device.

READFIL (abc-—c)
Read the requested number of bytes fc¢', from the
channel specified ‘'a', to the buffer specified
'b', If the channel is from a terminal it will

stop on the first carriage return found.

TTEIERRREN

r |

WRITEFIL (a b c —— c)
Write the specified number of bytes 'c', to the
channel ta', from the buffer 'b'. If the media
becomes full the return count ‘'c' will be

different from the requested count.

SEEKFIL (chan posit --)

Position the read/write pointer for a random
access file. Any subsequent reads or writes will
occur at that point in the file.

TRAP ta-—-)

This 1is a generic hook to all the K-0S ONE
services. The top of the parameter stack ‘'a!
contains the address of a parameter block as
specified 1in the K-0S ONE programming manual.
After the call, the status can be found 1in the

parameter block.

PARBLK (. -——-a)

This returns the address of the parameter block
used for the built in system calls. Check this
after any file operation if more information is
needed about the results of any file operation.

EXTENSIONS

For each of these words the address on the
parameter stack is not the address of the data but
is the address of a pointer to the data. The
pointer is changed by each of these words. These
are similar to the pointer operations available in
the € 1language. In each case the pointer |is
modified by the size of the data loaded or stored.

@B+ (adrs —-- b)

Load byte using pointer then increment pointer.

@W+ (adrs —— w)

Load word using pointer then increment pointer.

@L+ (adrs - L)

Load long using pointer then increment pointer.

@-B (adrs -- b)

Decrement pointer and use it to load a byte.

@G-W (adrs -- w)

Decrement pointer and use it to load a word.

@-L (adrs -- L)

Decrement pointer and use it to load a long.

-
-
-

!B+ { b adrs --)

Use pointer to store a byte then increment

pecinter.

W+ (w adrs ——)

Use pointer to store a word then

pointer.

'+ (L adrs —-—)

increment

Use pointer to store a 1long then increment

pointer.

'-B (b adrs ——)

Decrement pointer and use it to store

'-W (w adrs ——)

Decrement pointer and use it to store

'-I, (L adrs --)

Decrement pointer and use it to store

LNDX (adrs index -- adrs)

Calculate an address into a single
array of long items.

WNDX (adrs index -~ adrs)

Calculate an address into a single

-array of word size items.

BNDX (adrs index -- adrs)

Calculate an address into a single
array of byte sized items.

a byte.

a word.

a long.

dimensioned

dimensioned

dimensioned

HT - FORTH

EDIT MANUAL

Table of Contents

Using the Editor
Edit Commands

Help Command

Move Cursor Commands
Delete and Restore
Find and Replace

File Operations

USING THE HT-FORTH EDITOR

To enter edit mode after loading the HT-FORTH
editor, type EDIT.

0K EDIT (return)

In the editor you will start with a clear screen.
You can start a new file to be named when you save
it or read in an existing file to work with.

To read 1in an existing file you wuse the ~KR
command.

~“KR (prompts 'FILE NAME':)
filename.ext

While using the editor, any time that you get the
message: PRESS # TO CONTINUE, pressing any key
will allow you to resume editing.

EDIT COMMAND SET

11111111 FOR HELP SCREEN ~J or Line Feed ——-————-
“E - line up “R - page up

~“X - line down ~“C - page down

“LL - repeat last £ind “M - new line

“D ~ char right ~“G - del char

~S - char left ~Y - delete line

“QS - start of line | “QL - restore line
“QD - end of line | "QY - delete to
“QR - top of file | end of line
>00|U0wwosommwwm _>xz|nmw&mwwm
_
_

“QA - find and replace “KW - write file
~“QF - find ~“KD - exit editor

_
-
_
-
-

EDIT COMMANDS

The following 1is a description of each edit
command that is supplied with the HT-FORTH editor
in the edit toolkit.

In describing these commands, a ~ is wused to
indicate a control character, where the control
key is held down while the character is pressed.

HELP COMMAND

~J HELP
This command causes a list of the edit commands to
be desplayed on the console terminal. Pressing any

key will restore the screen and allow you to
resume editing.

LINE FEED HELP

This command acts the same as ~J

MOVE CURSOR

These commands are used to position the cursor on
the screen.

~“E - line up

“X - line down

“D -~ char right

~S - char left

~“QS - start of line
QD - end of line
“QR - top of file
~“QC - bottom of file

MOVE CURSOR (continued)

~E Line Up

Moves the cursor to the line just above the line
it was on. The cursor will remain in the same
column regardless of the length of the line.

~X Line Down
Moves the cursor to the line just below the

line it was on. The cursor will remain in the same
column regardless of the length of the line.

~D Character Right
Moves the cursor to the right one <character. The
cursor will move past the last character and when

it hits the right margin it will wrap around to
column one on the same line.

~S Character Left

Moves the cursor to the left one character. When
column one is reached the cursor will wrap around
to the right margin.

~“QS Start of Line

Moves the cursor to the first column of the 1line
it is on.

~QD End of Line

Moves the cursor to the right of the last
character on the line.

~QR Top of File

Moves the cursor to the first character at the top
of the file. The screen will change to show the
first screen of the file.

3-4

EEERRRR1A

MOVE CURSOR (continued)

~QC Bottom of File
Moves the cursor to the last charactor at the

bottom of the file. The screen will change to show
the last screen of the file.

MOVE SCREEN - SCROLL

These commands are used to scroll through the text
by displaying the next screen requested.

~R Scroll Up

Moves the display so the next screen up towards
the beginning of the file is displayed.

~C Scroll Down

Moves the display so the next screen down towards
the end of the file is displayed.

DELETE AND RESTORE

These commands are used to delete items from Yyour
file.

~“G - delete character

~Y - delete line

“QL - restore line

“QY - delete to end of line

~G Delete Character

Deletes the character that the cursor is on.
BACKSPACE or DEL Delete Character Left

The Backspace or DEL (Delete) keys will cause the
charactor to the left of the cursor to be deleted.
If the last character on a line is deleted a blank
line will remain. (”Y will remove a blank line).
~T Delete Word

Deletes the word to the right of the cursor,
starting with the charactor the cursor is on. If
the cursor is on a space between words, the space
that the curscor is on and all of the spaces to the
right will be deleted, up to the next word.

~Y Delete Line

Deletes the entire line that the cursor is on.

~“QL Restore Line

Restores the 1line that the cursor is on to its

prior state. A 1line that has had words or
characters changed is restored to the way it was
before any editing changes were made. (An entire

line that has been deleted can not be restored
because the cursor is no longer on that line.)

3-6

w

11111

DELETE AND RESTORE (continued)

QY Delete to End of Line

Deletes all characters from the cursor position to
the end of the line.

FIND AND REPLACE

These commands are used for searching and search
and replace.

~“QF - Find

“QA ~ Find and Replace

“L - Find / Find & Replace Again
~QF Find

Finds the specified text string and moves the
cursor to that location. 1If requested string is
not found, the cursor will remain at its original
location.

“QA Find and Replace
Finds the specified text string and replaces it

Wwith the requested new text.

~L Find / Find & Replace Again

"Find / replace text again. Repeats the previous

find or find and replace command.

FILE OPERATIONS

The following commands are used for dealing with
files.

“KR - read file
"KW - write file
~“KD - exit editor

~KR Read a File

Read a file into memory. After you give the *KR
command, it prompts for the name of the file to
read.

“Kw

Write a file to disk. This saves the text are
editing to a file name that you specify. After you
give the ~“KW command, it prompts for the file
name.

~KD Exit Editor

Exit editor to operating system. The command will
prompt: ** ARE YOU SURE ** ?. This is to give you
a chance to save the file before exiting the
editor. A 'Y' or 'Yes' response will cause you to
exit the editor.

SRR EEEEEREEEE N

USING THE HT-FORTH ASSEMBLER

The word CODE selects the ASSEMBLER vocabulary and
aliows the wuser to define a word in assembly
language. END-CODE or C; completes the definition
and restores the FORTH vocabulary.

ADDRESSING MODE SYNTAX:

MOTOROLA HT-FORTH
Dn Dn

An An

(An) An)

(An)+ An)+

-(An) An -)

d(An) d An D)
d{An,Xi. W) d Xi An DI)
d(An,¥Xi.L) d Xi An LDL)
a(pc) d DPC)
d(PC,Xi.W) d ¥Xi DIPC)
d(PC,Xi.L) d Xi LDIPC)
Abs.W n #)

Abs.L n Li#)

Imm n #

WHERE. . .
Dn 1is a data register DO..D7
An 1is an address register AO0..A7
Xi 1is a general register DO0..D7, AO..A7
d is a number
n is a number

NOTE:

The mode words D) , DI) , DPC) and DIPC) all
suggest the order of the arguments on the stack.
The Displacement is always the first argument, an
Index register may be the next argument, which may

"be followed by an address register, and the mode

word is the last argument.

INSTRUCTION ARGUMENT ORDER:

immsr
immccr
iq
ieaa
isr

ibit

ibra
idbr
iset
move
moveq
move usp
movem
movep

cmpm
exg
ext
swap
stop
trap
link
unlk
eor
cmp
ibcdd

idea

iead
iea

ieas
icon

WHERE. ..
Rn is
ea is

(see
label is

ARGUMENTS

n #

ea An

Dn Dn

n # Dn

ea

Dn ea

n # ea
label

Dn label
ea

ea ea

n # Dn

An

n # ea

Dn 4 An D)
d An D) Dn
An)+ An)+
Rn Rn

Dn

An -) An -)

ea
(none)

MNEMONICS

ADDI ANDI CMPI EORI ORI
SUBI

ANDI>SR EORI>SR ORI>SR

ANDI>CCR EORI>CCR ORI>CCR

ADDQ SUBQ

ADDA CMPA LEA SUBA

ASL ASR LSL LSR ROL ROR
ROXL ROXR

BCHG BCLR BSET BTST

Bcc

DBcc

Scc

MOVE

MOVEQ

MOVECUSP MOVE>USP
MOVEM< MOVEM>
MOVEP

CMPM
EXG
EXT
SWAP
STOP
TRAP
LINK
UNLK
EOR
CMP
ABCD ADDX SBCD SUBX

ADD AND OR SUB

CHK DIVS DIVU MULS MULU
JMP JSR MOVE(SR MOVE>CCR
MOVE)>SR NBCD PEA TAS
CLR NEG NEGX NOT TST

NOP RESET RTE RTS

a general register
an effective address
addressing modes above)

an address

4-2

BERY

H

.
-
.
»

NOTES:

Instructions which operate on more than one data
size will be coded according to the state of the
SIZE variable.

SIZE is set by the words BYTE WORD and LONG.

It is a good idea to set the size before
instruction for which slize is relevant.

every

Beware, entering a DO loop sets SIZE to LONG.

STRUCTURED CONDITIONALS SYNTAX:

STRUCTURE

if statement

SYNTAX

condition IF +true_code ELSE
false_code ENDIF

BEGIN condition WHILE body REPEAT

BEGIN body condition UNTIL

BEGIN body AGAIN

count Dn DO body LOOP

while loop
until loop
forever loop
for loop

WHERE. ..
condition is the code required to set the

condition flags followed by cne of

these branch instructions:

0= 0<¢> 0< 0>»= < = <= >

is code to be excuted if the

condition is true

ELSE is an optional word

false_code follows ELSE and is executed if the
condition is false

body is the body of the loop

count is the number of times the body will
be executed

Dn is the data register used to holg
the loop count

true_code

EXAMPLES:
BEGIN A6) LONG TST 0<> WHILE
1 # A6) LONG SUBQ
REPEAT

(this loop decrements the top of stack while
it is not zero)

4-3

EXAMPLES (continued) HT-FORTH ASSEMBLER MNEMONICS:

ZEINEE

4 A6 D) D1 LONG MOVE ABCD DBLS ROL
Do DO ADD DBLT ROR
1 # D1 LONG LSL ADDA DBMI ROXL
LOOP ADDI DBNE ROXR
D1 A6) LONG MOVE ADDQ DBPL RTE
ADDX DBRA RTS
(this code multiplies the next item in the AND DBT SBCD
stack by 2 raised to the top-of-stack power ANDI DBVC sSccC
and consumes the top of stack. This can be ANDI>CCR DBVS SCS
done more efficiently without a loop as shown ANDID SR DIvVs SEQ
below:) ASL DIVU SF
£ ASR EOR SGE
A6)+ DO LONG MOVE BCC EORI SGT
A6) D1 LONG MOVE BCHG EORI>CCR SHI
DO D1 LONG LSL _ BCLR EORI> SR SLE
D1 A6) LONG MOVE BCS EXG SLS
BEQ EXT SLT
) BGE JMP SMI
BGT JSR SNE
BHI LEA SPL
IMPORTANT WORDS IN THE ASSEMBLER VOCABULARY: : BLE LINK ST
BLS LsSL STOP
AD D) ELSE BLT LSR SUB
#) Al DO END-CODE 4 BMI MOVE SUBA
) A2 D1 ENDIF BNE MOVE(SR SUBI
)+ A3 D2 IF BPL MOVE<CUSP SUBQ
-) A4 D3 L#) BRA MOVE>CCR SUBX
0< aS5 D4 LDI) — BSET MOVE> SR svc
oo a6 D5 LDIPC) i BSR MOVE>USP SVS
0= A7 De LONG i BTST MOVEM([SWAP
0>= AGAIN D7 LOOP BVC MOVEM)> TAS
< BEGIN DI) REPEAT BVS MOVEP TRAP
(= BYTE DIPC) UNTIL CHK MOVEQ TST
> C; DO WHILE ! CLR MULS UNLK
>= CODE DPC) WORD l CMP MULU
CMPA NBCD
_ CMPI NEG
CMPM NEGX
DBCC NOP
DBCS NOT
] DBEQ OR
DBF ORI
i DBGE ORI>CCR
DBGT ORI> SR
DBHI PEA
DBLE RESET
4-4
4-5

HT-FORTH DUMP AND OTHER UTILITIES

The DUMP wutility is used to display blocks of
memory.

DUMP (ab—-—)

DUMP 'b' bytes of memory starting at address ‘a'.

DU - (adrsl -—- adrs2)

DUMP 64 bytes of memory starting at ‘'adrsl'.
fadrs2' is 'adrsl'+64.

There are other useful utilities in the DUMP file.
Reading the source code for this file will show
you what these utilities are and how they can be
used.

STRUCTURE OF HT-FORTH

On the surface, HT-FORTH is like any other FORTH.
You need to be aware however that wmany FORTH
programs make significant assumptions about how
the language is implemented. In particular, many
assume that FORTH will be a threaded language in a
real address space and make modifications to the
dictionary. HT-FORTH is compiled and it |is
position independent.

The detailed workings of each FORTH word are
described by comments in the assembly listing and
each word is very small. Only the parts that are
not obvious after reading the comments will be
explained in detail here. The main parts that need
to be described will be the data structures.

The kernal of the HT-FORTH is written in’
conventional 68000 assembly code. To change the
system you need to edit the assembly source using
any text editor and then reassemble it using the
standard K-0S 68000 assembler or any compatible
assembler. After you have reassembled the kernal
and converted it to binary (using HEX2BIN), 1load
all of the definitions that were written in FORTH
and save the system using SAVE.

Before adding new words, a backup copy should be
made of the unmodified FORTH system. When adding
words that are written in FORTH, it is possible to
add new words and save the system in a live mode.
This allows the FORTH to be restarted with the old
definitions in place, Because standard .BIN
executable files on K-0S ONE are assumed to be
position 1independent it is important not to use
certain features if you intend to move the result
to different hardware running the K-0S ONE system.

The source code is in four major files. The first
part has the main structure and the storage
definitions. The other parts have the rest of the
standard words that are written 1in assembly

-language. For some applications many of these

words could be deleted. An effort was made to keep
the words 1in a very regular format so that it
would be easy to add additional words in a
convenient manner o¢or to delete unused words.

6-1

If new words are added be sure to -change the

starting word that is part of the FORTH
vocabulary. Currently it is DLX200. This number
sequenhce was chosen to make 1t easy to avoid label
conflicts when adding words.

An important feature of HT-FORTH is that it is
position independent. As new words are added to
the basic system, they stay position independent
also. As a result, it is important to distinguish
between real addresses and relative addresses.
When data is being accessed, a real address |is
usually used. When a routine is being accessed, a
relative address 1s usually used. This results in
a change 1in the way several of the words are
defined. The base address for HT-FORTH is A5. It
is set when FORTH is loaded.

[rl - compiles a relative address
' - return relative address of code field
of next word
COMPILE - compile the next word when executed

{COMPILE] - makes the next word normal,
not immediate
EXECUTE - execute the word whose relative
address is on parameter stack
FIND - find relative code address
REL - make an absolute adrs into a rel adrs
UNREL - make a rel adrs into an absolute adrs
DICTIONARY

The dictionary of HT-FORTH is similar to that of
other FORTHs. The major difference is that it is
compiled to JSR/BSR or macros and is not indirect
threaded. The result of this is that the fields
are not the same. In particular there 1is no
parameter field. And any information is direct
code and not just a refrence to code routines.
Because of the macros and the way words are
compiled the same word may compile to different
code each time it is used,.

LINK

- 4 bytes, relative to A5
NAME - 1 byte size, first 7 characters
TAG - 2 bytes, has info about macro, immediate
CODE - the code to execute

6-2

_
-
-
-
-
-
-

The dictionary 1is a linked 1list. The wvariable
LAST has the real address of the last directory
entry. Each link points to the prior entry except
the last link that is 0 to indicate the end of the
dictionary. The links are 32 bits long so there is
no 1limit on the size of defined item. This could
easily be changed to 16 bits to save space.

The name is encoded like FIG-FORTH with a length
byte and the first seven letters of the word. It
would be easy to change this to use the first 3 or
5 letters.

TAG WORD

After the link and name, there is a tag word. Bit
14 is the macro flag. If this bit is a 1 it means
that when it is compiled, the definition is copied
into the word that is being compiled, not Jjust
referenced with a BSR or JSR. The low byte of the
tag word is a count of how many words to copy when
the word is compiled. This results in faster code
because of the reduction of overhead by not having
a BSR and RTS. In many cases it also results in
slightly ‘larger <code. Do not use BSR or other
relative branches in any macro definitions 1f the
destination is not an integral part of the
definition.

All macros end with an RTS so they will operate
properly in interactive mode. The RTS must not be
copied as part of the macro when it is compiled.
If the RTS is copied it will act like the word
EXTT.

Bit 13 is the immediate flag. If it is a 1 then
the word is immediate. In general this means that
it does something while it is being compiled.

The FORTH kernal gets its input by calling an
internal routine GETCX. This uses a source flag to
determine if input will come from the terminal or
from a disk file. If it is coming from a disk file

it 1is handled slightly differently than if it |is

coming from the terminal. When input comes from

the disk blocks of 512 bytes are read in and then

processed directly, a special text input buffer is
not used. Any linefeed characters that are found
are converted to spaces. If a *Z2 is found then it
is assumed that the end of the file has been
reached and the loading is terminated. Currently
the LOAD from disk echos all characters tc the
console. This can be easily disabled.

When a 1line 1is input from the terminal to be
interpreted a special string of characters 1is
appended to the end of the line. The purpose of
these <characters is to make sure that WORD and (
find something to terminate with even if an error
is made.

When an application i1s locked it is fixed so that
the FORTH 1language used to create it cannot be
reached by the user of the program. This makes it
a simple .BIN executable file like an application
program done in any other language. Unless a hex
dump is made of the resulting program it wiil not
be possible for the user to tell that it was
written 1in FORTH rather than some other language.
If an application is locked then it can be sold
without violating the copyright of Hawthorne
Technology. If it is possible to define any new
words then it cannot be socld without a licience.

EXAMPLE of LOCK:

LOCK VOCX STRTW PPP.BIN

LOCK - the word that locks the application

VOCX ~ the only vocabulary active in the locked
application :

STRTW - the word that will execute when the

locked program is started

PPP.BIN the binary file for the new program

{

When an error is found in the FORTH code being
interpreted or compiled some gquestion marks will
be displayed. (???). When this occurs press a
-key on the console to continue. If you press
return then the rest of that line will be ignored.
If you press control C then FORTH will terminate
and you will be back in the operating system. I1f
you press any other key then the error will be
ignored.
6-4

-
-
.
-
-
.
.
-
-
-
-
m
-

