2 R R EE B EBEEEEERBEEREBI]

K-0S ONE
Operating System

For the 68000

Hawthorne Technology

THE K-OS ONE OPERATING SYSTEM

Distribution Package

Copyright 1986
HAWTHORNE TECHNOLOGY

All rights reserved. Nothing in this manual may be
reproduced 1in any manner, wholly or in part for
any purpose whatsoever without written permission
from Hawthorne Technology.

Hawthorne Technology
8836 S.E. Stark
Portland, Or 97216

(503) 254-2005

7 . iiii) |Ilr !IIE ‘II[!llll ‘III !III

x x* PRODUCT DISCLAIMER * x

This software and manual are sold 'as is' and without
warranties as to performance or merchantablility.
This program is sold without any express or implied
warranties. No warranty of fitness for a particular
purpose is offered. The user must assume the entire
risk of using the program and is advised to test the
program thoroughly before relying on it.

Any 1liablility of seller or manufacturer will be
limited exclusively to product replacement or refund
of the purchase price.

x *x * * x ® * *x x * x * * *

Section

Section

Section

Section

Section

Section

K-0S ONE OPERATING SYSTEM PACKAGE

MANUAL LAYOUT

X-0S ONE OPERATING SYSTEM
INSTALLATION GUIDE

COMMAND PROCESSOR
USER GUIDE

K-OS ONE OPERATING SYSTEM
PROGRAMMER'S MANUAL

HTPL COMPILER
USER GUIDE

LINE EDITOR
USER GUIDE

68000 ASSEMBLER
PROGRAMMER'S MANUAL

K-0S ONE OPERATING SYSTEM

INSTALLATION

(C) 1986 Hawthorne Technology

All rights reserved. Nothing in this manual may be
reproduced in any manner, wholly or in part for
any purpose whatsoever with out written permission
from Hawthorne Technology.

Hawthorne Technology
8836 S. E. Stark
Portland, Or 97216

(503) 254-2005

INSTALLATION OF K-OS ONE

These instructions tell how to go about installing
the K-O0S ONE operating system. This can be done on
a system that is already running an HTPL compiler,
or on a system that has some sort of monitor ROM.

In bringing up the K-0S ONE operating system,
there are two different scenarios possible. The
first 1s bringing it up on a completely clean
machine that has no operating system, and where
you do not have access to an operating version of
the K-0S ONE operating system. The second case 1is
where the initlial version has been installed and
is operational, or where there is access to an
operating version of K-OS ONE.

SYSTEM REQUIREMENTS

The hardware requirements of the K-0S ONE system
are minimal. There are three things that are
needed.

A 5 1/4 inch double sided, double density, floppy
disk drive 1is necessary to read the operating
system and to read the system file. The operating
system that 1is supplied assumes that the drive
will be an IBM compatible, 360K, DSDD.

The second thing that is needed is a console
device that can read and write characters to the
command console.

The third thing is having access to the trap one
interrupt.

To bring up the operating system originally from
binary, the binary copy is loaded into memory and
the necessary routines are patched intoc the hard-
ware, or applied into PROM. After the binary copy
Is loaded, vectors to these services are placed in
fixed locations that are relative to the beginning
of where the operating system 1is 1loaded. The
operating system is position independent, and
assumes that wvectors to these services will be
located immediatly before its location.

After the binary copy of the operating system 1s
loaded, and the necessary vectors are patched in,
you can begin execution of the operating system by
branching to the location at which it was loaded.

At this point, the user has a system with a single
floppy disk, that has a minimal RAM disk, and a
conscle device.

Now it 1is possible to edit and modify the HTPL
source code of the operating system, and the
assembly language operating system run time
support, so that other drivers and other disks can
be patched in. At this point the user can begin to
build a customized system for their particular
hardware. Other devices and disks can be added.

Bringing up the binary operating system involves
studying the reguirements of a driver for the
generalized system. Sample drivers are provided in
assembly language or in HTPL to provide examples
for writing routines that provide these functions.

On the operating system itself, there are three
areas where linkages to the wunderlying hardware
have to be made and in the production version of
the operating system, these are found in a small
include file that is labeled OSRTL.HEX. This is a
program that was written in assembly language in
the format prescribed for linkable object in the
HTPL section of the manual. It was assembled using
the assembler and then 1linked in when the
operating system was re-compiled.

These three areas are:
1. The trap one linkage to the underlying hard-
ware.

a. Initialization of a set of register
locations so that when a trap one is executed by a
user program or by the command processor, the
linkage can be achieved back to the HTPL program.
This is necessary because when the HTPL program is
executing, certain registers have to be pointing
to certain areas.

b. The trap one processor itself. You must

save the user's registers so that a return from a
utility user program, the registers used by the
HTPL operating system are loaded and a branch |is
made to the entry point in the operating system
itself. After the branch is made to the entry
point of the operating system, the HTPL program
will take care of servicing what ever request is
made from the operating system. It will exit
through an assembly language routine which then
restores the user registers as they were when the
operating system was 1invoked. Because the
operating system uses a parameter block in memory.
the registers of the user program don't have to be
set up. The only register that is passed from the
user program to the operating system is register
A0. A copy of A0 is made and is pushed on the
evaluation stack which is register A4.

2. Character device drivers for user devices
such as printers or CRTs which normally
communicate a character at a time. These are some-
times refered to as stream devices. There are 5
entry points for each stream device. For many
devices, some of the entry points are not needed
and can be dummy values. They are used to maintain
status and don't perform any function.

3. Block addressable devices, commonly disk or
something where a portion of the device can be
addressed and where data transfer occurs in
blocks. The standard block size is 512 bytes. .pa
There are 5 entry points on each device.

. Get a character or byte from the device.
Put a character or byte to the device.
Initialize the device.

Get the status of the device.

. Send a control action to the device.

VbW -

The operating system assumes that these will be
simple status loop type devices where after it |is
called, it will wait until a character is ready,
get the character, and return to the operating
system or to the function that called it.

The purpose of the status call is primarily to
find out if the character is available before the
character input routine is called. This way, if no
character 1is available, the system will not get
tied up in some kind of a loop.

On a printer, the reason for the status is to
determine if the device would be capable of
accepting a character so that a time out can be
created in the event that a write to printer |is
attempted when the printer is not ready.

The different entry points for bringing up the
binary copy of the operating system are:

1. Recelving a character or byte.
2. Sending a character or byte.
3. Initialize a driver.

The status is not required for the simple command

processor. It only requires the first three entry
points.

There is a routine to read a character from a
printer. In most cases this will be a dummy that
won't return anything, but it simplifies the
coding by making all of the stream devices alike.

The actual device driver can be implemented by a
status and wait loop for systems that don't
require high performance, or it can be done
through an interrupt driven device where
characters are placed in a queue and are returned
as needed. 1In the case of a character queue, the
status call reports whether or not a character |is
in the queue waiting to be delivered.

In most cases, when a character is received, the
parity 1is striped and 7 bit ASCII is used. When
characters are sent to a device, 8 bits are sent

so graphlcs type devices or graphics characters
can be used.

For a disk device there are 5§ entry points.

. Read a record.

. Write a record.

Get disk status.
Control the disk.

. Flush disk buffers.

0 oW

The routines that work with the disk type devices

or block devices, assume a record transfer size of
512 bytes. This is the physical block size for the
standard MS-DOS 360K disk. If the physical block
size on the device is other than 512 bytes, the
disk . driving routine has to translate the actual
physical block to a 512 byte block.

The disk routines assume contiguous disk with
records starting at zero and going to the maximum
number on the disk. As a result of this, it is the
responsability of the low level disk drive routine
to determine the number of sectors per track, the
number of sides, and‘ - to make the appropriate
translation of a logical block to a track and
sector number that can be read or written.

The disk status is primarily used to determine
whether or not the media has been changed since
the last call. On a floppy disk, this will usually
be reported as not available. On a hard disk, it
will generally be reported that the media has not
been changed. The purpose of this on a floppy disk
is that when a directory read or write |is
required, such as when opening or closing a file,
or allocating space, it can be checked to see if
the disk is always the same. This will cause the
FAT (£ile allocation table), and the directory to
be reloaded from the disk each time.

For a higher through-put, (though slightly less
secure), the floppy disk can report that the media
has not changed. This would mean that the FAT and
the directory would not have to be read each time,
but in the case that the diskette had actually
been changed, the data would be fouled up.

The disk control on the present version of the
operating system is not being used.

Flushing the buffers 1is not being used in the
current version of the operating system. The
reason for flushing the buffers is to inform the
disk driving routine that the buffers should no
longer be considered available. This would be used
when the physical size is not 512 bytes.

The 4initialization routine is normally called on
power up or when specifically requested by a user
program. The purpose of this is to define the
characteristics (number of start bits, stop bits)
of the device as is necessary on most micro-
processor UARTs.

Because the allocation of data on an MS-DOS disk
is complex, it may be convenient to prepare a less
complex disk. 1If a disk is formatted without a
volume name and no system files, the first file
will start at sector 12. If there is only one file
on the disk, and the disk was empty when the file
was placed there, the sectors for the file will be
contiguous and in order. This may make it easier
to write a boot loader.

On a standard PC compatible disk, the tracks are
numbered from 0 to 39. The sectors are numbered
from 1 to 9. Side 0 is allocated first, then side
1. All sectors are 512 bytes. The K-0S ONE system
treats the disk as contiguous sectors from 0 to
719.

The boot ROM can be 1located anyplace, but is
generally located at memory location zero because
that is where the vectors are for the 68000. The
K-OS ONE operating system is located some place in
low memory, with the command processor located
next to it. It is optional whether the command
processor is reloaded each time a user program |{is
executed or whether the command processor stays
resident in memory. If it stays resident in
memory, extra memory will be used up, but it would
be much faster to switch from one command to the
next.

The command processor is an HTPL program that can
be easily modified. The version supplied has no
batch processing in 1it, but the hooks are
avallable so batch processing can be easily added.
The command processor would normally be located
higher in memory than the operating system, but it
can be 1located anyplace.

The wuser program will usually 1load in to a
location after the command processor, but it can
be located anyplace.

1

!
|

A general memory map of the system will 1look
something like this diagram:

PROM PATCH OPERATE BUFFERS COMMAND USER

For a Non-Resident command processor, the memory
map will look like this:

PATCH OPERATE BUFFERS USER/COMMAND

! 100HI |
| <~-Entry polnt |[<-Set by OSINIT

1. ROM Bios can be anyplace.
2. If command processaor ls resident, it can be

located anyplace.

GETCON
PUTCON
DISK READ
DISK WRITE

N
N

OPERATE
OPERATING

SYSTEM

SYSTEM BLOCK DIAGHAM

TRAP #1
USER

OSINIT

EEFRRERERER

USER
PROGRAM
OR
COMMAND
PROCESSOR

SAMPLE ROUTINES

These are sample routines for OSINIT, TRAP1 and
USER. They will probably have to be changed for
your hardware.

o INITIALIZE TRAP REGISTER SAVE

OSINIT MOVE.L (A4)+.DO sSYSTEM HEAP POINTER
MOVE.L (A4)+,SYSPC ;INIT REG. SAVE AREA
MOVE.W #2000H,SYSSR
MOVEM.L #OFFFFH, SYSREG
MOVE.L #220000H,D1 ;RESIDNT CMD PROCESS
MOVE.L #240000H,D0 sUSER PROGRAM SPACE
MOVE.L D1,-(A4) ;CMDSTRT (0=NON RES)
MOVE.L DO,-(A4) ;USTART ()=SYS HEAP)
RTS

jm———— = ENTER TRAP PRQOCESSOR

TRAP1 MOVE.W (SP)+.,USRSR ;SAVE USER STATE
MOVE.L. (SP)+,USRPC
MOVEM.L #O0FFFFH,USRREG
MOVEM.L SYSREG. #0FFFFH :LOAD SYSTEM STATE
MOVE.L SYSPC,-(SP)

MOVE.L. USRAO0,-(A4) ;LOAD PARAM POINTER
CLR.L D7 ;BYTE CONVERSION REG
RTS ;GOTO TRAP PROCESSOR

||||||||||| ENTER USER PROGRAM

USER MOVEM.L USRREG, #0FFFFH ;LOAD USER STATE
MOVE.L USRPC,-(SP)

MOVE.W USRSR,-(SP)

RTE ;GO TO USER PROGRAM

PATCH ROUTINES FOR K-0OS ONE

These are routines that you must (some routines
are optional) provide to run K-OS ONE on your
hardware.

OSINIT (#trap #heap ——- cmdstrt ustart)

This routine sets up an {initialize area that
allows the trapl vector to reload the registers
needed for htpl. It also returns the starting
address for the command processor and the wuser

program area. If the command processor i{s not
resident, a 0 should be returned.

USER (--)

This reloads the user registers and returns to the
user program.

CLOCKSET (#systime #sysdate --)

This sets a pointer for the realtime clock, |{f
there is one.

EXSET (#adrs —-)

This sets up an exception vector for the ROM to
branch to if any exceptlion occurs.

CONSOLE DRIVER LINKS

GETCON (-— char)

This gets a character from the console, and
returns it on the stack.

PUTCON (char ——)

This takes the character from the top of the stack
and sends it out to the console.

INITCON (——)

This initializes the console.

STATCON (—— status)

This gets the status of the console.

CNTRLCON (#adrs size -- status)

This sends a control string to the console and
returns the status,

VECTORS FOR PRINTER

GETPRN (—— char)
This gets a character from the printer, and

returns it on the stack. In most cases it will
return a null.

PUTPRN (char --)

This takes the character from the top of the stack
and sends it out to the printer.

INITPRN « -

This inltializes the printer.

STATPRN (~— status)

This gets the status of the printer,

CNTRLPRN (#adrs slize —- status)

This sends a control string to the printer and
returns the status.

DISK 1

DSKREAD1 { rec #buf —-

status)

Read a record from disk 1.

DSKWRITE1 (rec #buf —-

Write a record to disk 1.

DSKSTAT1 {

status)

Get the status of disk 1.

DSKCNTRL1 (#adrs size

status)

status)

Send a control string to disk 1.

DSKFLSH1 (

Flush disk 1.

status)

STATUS WORD DEFINITIONS
PATCH ROUTINE OFFSET VALUES

PATCH EQU 0 - 100H FCB STATUS DCB STATUS
BIT MEANING BIT MEANING
ROUTINE OFFSET oo T .
||||||||||||| 0 0 FAT CLEAN
OSINIT +0 1 FILE MODIFIED 1 FAT MODIFIED
USER +6 2 2
CLOCKSET +12 3 3
EXSET +18 4 4
WAIT +24 5 5
6 6
GETCON +30 2 7
PUTCON +36 8 8
INITCON +42 9 9
STATCON +48 A A
CNTRLCON +54 B B
c c
GETPRN +60 D D
PUTPRN +66 E E
INITPRN +72 F TEMP F
STATPRN +78
CNTRLPRN +84
DSKREAD. 1 +90
DSKWRITE. 1 +96 BUF STATUS CHANNEL STATUS
DSKSTAT. 1 +102 _
DSKCNTRL. 1 +108 BIT MEANING BIT MEANING
DSKFLSH. 1 +114 T .C [
0 BUFFER CLEAN o
1 BUFFER MODIFIED 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A A
B B
c C FILE
D D DEVICE
E E READ
F F WRITE

K-0S ONE OPERATING SYSTEM

CHANNEL
FCB FILE CONTROL BLOCK
Offset Parameter

DC.W +0 Flag

Offset Parameter

DC.L +2 DCBpn DC.B +0 8 Character Filename
DC.L +6 FCBpn DC.B +8 3 Character Ext
DC.L +10 RWP DC.B +11 1 Byte Attribute
DC.L +14 CAB DC.W +22 Time
DC.W +24 Date
DC.W +26 Start
DC.L +28 Size
DCB DEVICE CONTROL BLOCK - TERMINAL DC.W +32 Status
DC.W +34 Users
Offset Parameter : DC.W +36 Bufcount
Smmm mmmmmm e DC.L +38 BCBpn
DC.L +0 Get Routine . DC.W +42 Unit
DC.L +4 Put Routine DC.W +44 Dirrec
DC.L +8 Initialize Routine DC.W +46 Dirndx

DC.L +12 Status Routine
DC.L +16 Control Routine

BCB BUFFER CONTROL BLOCK
DCB DEVICE CONTROL BLOCK - DISK
Offset Parameter
DC.W +0 Bufstat
DC. W +2 Record
DC.L +4 Buffer

Offset Parameter
DC.L +0 Read Routine
DC.L +4 Write Routine
DC.L +8 Status Routine
DC.L +12 Control Routine
DC.L +16 Flush Routine
DC.W +20 Status
DC.w +22 BSF

(Repeat once for each FCB Bufcount.)

DC.W +24 Fatsize
DC.B +26 Unit
DC.B +27 Type

DC.L +28 Fatpointer
DC.W +32 Dirstart
DC.W +34 Datastart
DC.W +36 Fatstart

K-0S ONE
COMMAND PROCESSOR

USER'S MANUAL

(C) 1986 Hawthorne Technology

All Rights Reserved

Hawthorne Technology
8836 S.E. Stark
Portland, Oregon 97216

(503) 254-2005

IJ
i
'
)

K-0S ONE

COMMAND PROCESSOR

SUPPLIED COMMANDS

BIN2HEX
CHDIR
coprPY
DATE
DEL
DIR
DUMP
FORMAT
HEX2BIN
MKDIR
PRINT
RENAME
RMDIR
TYPE

Convert Binary to Hex
Change Directories

Copy File

Display / Set Date and Time
Delete File

List Directory

Dump a File

Format a Disk

Convert Hex to Binary

Make a Directory

Print

Rename a File

Remove Directory

Display Contents of a File

These are the commands that are executed by the
standard K-0S ONE command processor. If you use a
custom command processor then the commands will be
different. The main purpose of the command
processor is to give direct access to services and
functions provided by the operating system.
Application programs can access these services
directly and in some cases these services will be
available to the user through the application.

If other commands are required, they are easy to
add using the existing commands as examples.

The command processor is written in HTPL like any
user program. The source code i3 provided to make
it easy to change.

No batch processing is included with this release.
There are system commands that would make it easy
to add batch or automatic files.

Command Format

K-0S ONE Command Processor commands are discribed
in this section. The syntax of the commands will
be discribed as follows:

The parts of the examples shown in UPPER CASE must
be used in the format shown.

The parts of the examples shown in lower case
represent information to be supplied by you when
you use the command.

When using the commands, it does not matter 1f
upper case or lower case letters are used.

Parentheses () indicate optional information that
you could supply.

Punctuation in a command must be used as shown in
the examples.

When a file name is to be used by a command, the
selected disk drive will be assumed as a default
unless you specify a drive along with the flle
name.

L R]

]

‘ ! l

BIN2HEX CONVERT BINARY TO HEX

BIN2HEX will convert the content of a binary file
(source) to hex, and put the result in the dest-
ination file. The source file 1s not affected.

BIN2HEX source destination

CHDIR CHANGE DIRECTORY

This command {s used to change which directory
will be considered the default directory. The
default directory 1s the one that is searched when
no directory or disk is specified.

CHDIR newdirectory

The command given without a directory name will
respond by displaying the name of the current
directory.

coprY COPY

This command 1is used to copy from one file or
device to another. ’

COPY source nnunpsmn»ws

If the file identification does not specify the
drive, the selected drive is used as a default.

DATE DATE / TIME CHANGE / DISPLAY

This command 1s used to display or change the
system date or time. To leave the date and time
unchanged, press return.

DATE

To change the date or time, you enter the new
values.

DATE newdate newvwtime

DEL DELETE

This command is used to delete or erase files from
the system. When a file has been deleted the space
that it used will be made available for reuse by
the rest of the system.

DEL £filename

DIR DIRECTORY
This command is used to display the contents of
the currently selected directory or for a
directory or disk .that is specified. For each file
the size and date are also shown.

DIR
Displays the current directory.

DIR B:

Displays the directory on drive B, no matter which
drive is selected.

DIR \TRUNK
Displays the contents of the directory *'TRUNK'.

DUMP DUMP FILE

The dump command can be used to look at a blnary
file. The file is displayed, one screen at a time.
The hex value is displayed on the left, and the
ASCII translation of it is displayed to the right.

DUMP f£ilename

FORMAT FORMAT DISK

This command is used to format a new disk or to
re-format a used one. To format a disk, it |{is
always safer to specify which disk you want the
format to take place on.

A> FORMAT B:

This prevents formating your system disk on the
default drive.

When you format a disk, a pattern is written on

the disk, totally distroying anything that may
have been on the disk.

HEX2BIN CONVERT HEX TO BINARY

HEX2BIN will convert the contents of a hex file to
binary and put the result in the destination file.

HEX2BIN source destination

MKDIR MAKE DIRECTORY
This command is used to create a new directory or
sub-directory for a disk. If no existing directory
name is specified, the sub-directory you make will
be under your root directory.

MKDIR \TRUNK
will make a sub directory *TRUNK'.
After the directory named TRUNK exists,

MKDIR \TRUNK\BRANCH
will make a directory BRANCH that is under TRUNK.

Using this method, you can create a structure of
directories.

PRINT PRINT

This command is used to send a text file ¢to the
system printer. It will expand tabs and assume a
tab stop every 8 positions. A top of form will be
executed after every 55 lines of print.

PRINT filename

REN RENAME
This command is used to change the name of a file.

REN oldname newname

RMDIR REMOVE DIRECTORY

This command is used to remove a directory from
the system. The directory to be removed must be
empty, (have no files in it}.

RMDIR directory name

TYPE DISPLAY CONTENTS OF A FILE
This command is used to display the ASCII contents
of a file on the conscole. Tabs will be expanded,
with a tab stop every 8 charactors.

TYPE filename

THE 68000 OPERATING SYSTEH
K-05 ONE

PROGRAMMER'S MANUAL

(C) 1986 Hawthorne Technology

All Rights Reserved. Nothing in this manual may be
reproduced .in any manner, wholly or in part for
any purpose whatsoever with out written permission
from Hawthorne Technology.

Hawthorne Technology
8836 S. E. Stark
Portland, Or 97216

(503) 254-2005

 §

68000 OPERATING SYSTEM
| K-0S ONE PROGRAMMER'S MANUAL

INDEX

SYSTEM CALLS

I1/0 MANAGEMENT

TEST 1/0

READ

WRITE

POSITION

OPEN CHANNEL

CREATE FILE

CREATE TEMPORARY FILE

CLOSE CHANNEL

DELETE FILE

CONTROL. DEVICE

11 MAKE DIRECTORY

12 GET / CHANGE CURRENT DIRECTORY
13 DELETE DIRECTORY

14 START DIRECTORY SEARCH

15 FIND NEXT FILE

16 LOCK / UNLOCK BLOCK

17 GET / SET - FILE DATE & TIME
18 DUPLICATE CHANNEL

19 GET 7/ SET - FILE ATTRIBUTES
20 RENAME FILE

21 GET FREE SPACE ON DISK

22 RAW READ DISK

23 RAW WRITE DISK

WO WD

[
o

NON DISK
41 SET - CONTROL-BREAX ADDRESS/ACTION
42 GET / SET - TIME & DATE
43 GET DOS ID
44 GET / RELEASE / INQUIRE ABOUT MEMORY SIZE

PROGRAM CONTROL
51 GET LAST TERMINATE CODE
52 GET AND EXECUTE PROGRAM
53 TIME DELAY WAIT
54 TERMINATE PROGRAM
55 GET COMMAND LINE

BATCH CONTROL
61 GET NEXT LINE FROM .BAT FILE
62 GET .BAT CONTROL LINE
63 START .BAT FILE PROCESSOR

SYSTEM CALLS

DESCRIPTION

The 68000 operates in one of two different states,
user or supervisor. When 1in the user state,
certain commands are not available. Also, when in
user state, the memory is mapped from a 1logical
address to a physical address that 1s' different.
None of the I/0 devices can be accessed from a
user state directly. The code for the operating
system or any other user cannot be accessed.

System Calls are used to perform operating system
level functions in a straight forward manner. The
appropriate parameters are 1loaded 1into the
parameter block, the call is 1ssued with AO
pointing to the parameters, the result is found in
the pre-specifled locatlion. In most cases error
codes will describe the resulting success or mode
of failure.

The system calls are the only way for a user
program to comunicate with the world or with mass
storage. The command processor forms the user
interface and runs like any other user progranm.
Calls are included to ease the task of writing a
customized command processor. Also included are
services that most users will need and could be
difficult or take up lots of memory.

This operating system uses a parameter block to
describe the operation requested instead of
registers or the stack. When registers or the
stack are used it 1s more difficult to have more
than one supervisor operation active at the same
time. With more than one operation active the
overall through-put of the system can be increased
and 1t will be more responsive to user requests.
This 1s more important with comercial operations
that are I/0 intensive than with operations that
are computation intensive.

This command is used to test the status of an 1/0
channel. The status bits indicate the following:

Status Bit Indication

15
14
13
12
11
10

Command processed
Error —— ignore other bits

-
[}

H TEST I/0 Command = 1

Device needs reset or setup

Navira e hnew .

RI —- Ring (phone call) / optional
DSR ~ They are ready / optional
CTS - I can send /optional

EOF

“C or Break
Transmit Ready
Charactor Avalilable

OHMDWABOOAN DV

Offset Parameter

DC.W +0 Command
DC.W +2 Status
i DC.w +4 Channel

e
l i
ﬁ

Return Status

READ Command = 2

Read from a device or a disk file. This call

reads from a disk flle or device that has been
previously opened. (For random access, the
POSITION command can be used in conjunction with
the READ command for reading from speclific
locations.)

The requested number of bytes of data are read
from the specified disk file into the buffer. 1If
more than one byte is read from a device then the
input stream will be -edited and echoed and at most
one line of input will be transfered. The actual
number of bytes read will be returned.

Offset Parameter

Command - Optilons

DC.W +0

DC.W +2 Status

DC.W +4 Channel number

DC.W +6 Number of bytes to read

DC.W +8 Number of bytes actually read
DC.L +10 Pointer to data buffer
Options

—— — —

ECHO - if device
EDIT - if device

-
-
-
-

WRITE Command = 3

Write to a disk file or device. This call writes
to a disk file or device that has been previously
opened. (For random acces, the POSITION command
can be used in conjunction with the WRITE command
for writing to specific locations.)

The requested number of bytes of data are written
from the buffer to the specified disk £file or
device. If the area being written to is locked by
another task, the write request 1s rejected. If a
write request is rejected because of a file 1lock
it should be tried again later.

Offset Parameter

DC.W +0 Command
DC.W +2 Status

DC.W +4 Channel number

DC. +6 Number of bytes to write
DC.W +8 Number of bytes written
DC.L +10 Pointer to data buffer

POSITION Command = 4

The position command 1is used to move the file
pointer. The move is specified as an offset from

the beginning of the file, from the current
location, or back from the end of the file.

Offset Parameter

+0 Command -
+2 Status
Channel number

+6 Location pointer offset

Options

0 From start
1 From current
2 From end

111

g

OPEN CHANNEL

Open
device
used

0 is specified.

a disk file or device.
or an existing file for use.
to access the file or device is specified by
the user or created by the system if a channel
A file or device can be open for

more than one channel at a time.

Offset Parameter
DC.W +0 Command - Options
pC.W +2 Status
ne o +4 Channal nnmhar
DC.L +6 Pointer to file name
Options

Shared read
Exclusive read
Shared write
Exclusive write

This call

CREATE FILE Command = 6

Create a disk file. This call creates a file but
dosen’'t open it for use. If the file already
exists, it's length is changed to 0.

Offset Parameter

DC.w +0 Command
DC.w +2 Status
DC.L +4 Pointer to file name

 SERRRRERE

CREATE TEMPORARY FILE Command = 7

This command is used to create and open a
temporary file on the designated disk. The name is
used only by the system and will be unique for
each call. This call creates the file and opens a
file channel to it. When the file channel |is
closed the file will be automatically deleted.

Offset Parameter

pDC.W +0 Command

pDC.W +2 Status

DC.W +4 Channel number

DC.L +6 Pointer to disk name

CLOSE CHANNEL Command = 8

Close a device or disk file. This call closes a
previously opened file. Any partial buffer is sent
to the device or disk file. When a task ends, any
channels that were left open are closed. When a
task closes a file channel any locked records are
unlocked. If a shared file is closed the close
command affects only the task making the call. If
a temporary file is closed, it is automatically
deleted. Because of the shared nature of the disk
system a close call should not be used to insure
that buffers are flushed to the disk.

-~ | » JEPUR a_ .
- FQL QT LTI

pC.¥ +0 Command
DC.W +2 Status
DC. +4 Channel number

DELETE FILE Command = 9

Delete a disk file. This call deletes a file from
the directory, releasing the space previously
occupied by that file.

Offset Parameter

DC.W +0 Command
DC.W +2 Status
DC.L +4 Pointer to file name

CONTROL DEVICE Command = 10

The control command sends control information to
the device. The information is not transmitted but

is used to control or change the characteristics
of the device or its buffer.

Offset Parameter

DC.W +0 Command

DC.W +2 Status

DC.L +4 Channel number

DC.W +8 Number of bytes to send
DC.L +10 Pointer to control string

NOTE: This can format or initialize a disk

'\‘

MAKE DIRECTORY Command = 11

The make directory command is used to start a new
directory. A new directory starts with only two
entries in it. Itself and the parent directory.

Offset Parameter

DC.w +0 Command
DC.W +2 Status
DC.L +4 Pointer to new directory name

GET / CHANGE CURRENT DIRECTORY Command = 12

This command 1is used to designate a new default
directory. When an incomplete file reference |is
made the default directory will be the one that is
searched for the requested file. 1If the directory
name pointer points to a null, the path of the
current directory is copied. If the pointer polints
to a name, it becomes the new current directory.

Offset Parameter

DC.W +0 Command
DC.W +2 Status

a ke .. ,
oC.L e Fointel ww uew direcivry name

: |

o,
-_. _—

DELETE DIRECTORY Command = 13

The delete directory command is used to remove a
directory from the system. The root directory on a
disk cannot be deleted. 1In order for a directory
to be deleted it must not contain any files or
subdirectories.

Offset Parameter

pC.W +0 Command
DC.W +2 Status
DC.L +4 Pointer to directory name

START DIRECTORY SEARCH Command = 14

The START DIRECTORY SEARCH command is used to
implement the user directory function. A path name
for a directory is specified. When the directory
is found, information about the first £file |is
returned. All files and sub-directories are
reported. Finding a speciflc file or directory is
left to the calling program. The directory Iis
opened and positioned so FIND NEXT can can
retrieve subsequent files.

A pointer to NULL STRING and NIL POINTER specify
the default directory.

Offset Parameter

DC. W +0 Command
DC.W +2 Status
DC.L +4 Pointer to directory name to search

-
-

FIND NEXT FILE Command = 15

The find next command is used to continue the

printing or searching of a directory. Any command
that uses any directory (such as open or close),
will set the pointer to not valid.

Offset Parameter
DC.W +0 Command
DC.W +2 Status
DC.L - +4 Pointer to file information

Note: File Information:

Name 12 BYTES
Attributes L

Time .
Date .
Size .

cocr

LOCK / UNLOCK BLOCK Command = 16

The lock/unlock command is used to lock a

specified portion of a file for exclusive writing
by a single user. Other users can read the locked
area but only the owner can write to it. This |is
needed to prevent collisions when multiple users
are updating a shared file. A number of bytes
specified as size starting at the current pointer
is locked or unlocked. To prevent collisions in a
multiuser file update the following sequence
should be used: lock,read,update,write,unlock. By
convention if the first byte in a file is locked
then more records are being added to the file.

Offset Parameter

DC.W +0 Command

DC.W +2 Status

DC.W +4 Channel number

DC.W +6 Number of bytes to lock/unlock

i FE SRR R R R

GET / SET - FILE DATE & TIME Command = 17

This command is used to set the time and date that
a file was read or written. Normally this is set
when the file is last written to and is closed. If
the new date is zero, the file's current date is
returned and not altered. If the new time is zero,
the file!'s time is returned and not altered.

Offset Parameter

DC.W +0 Command

LoV iR 2 . A [W R SR S . T
[L] = A varwTa LW AdAT uGNG

DC.L +8 New time
DC.L +12 New date

DUPLICATE CHANNEL Command = 18

This is used to create a duplicate of a flle
channel. A new channel is created by the operating

system to refer to the same file or device as an
existing channel.

Offset Parameter

DC.W +0 Command
DC.W +2 Status
DC.W +4 01d channel number
DC.L +6 New channel number

5
o
_~ _—

This
file

DC.W
DC.W
DC.L
DC.L

GET / SET - FILE ATTRIBUTES Command = 19

command

is used to get the attributes of

or to set the attributes.

Offset
+0
+2
+4
+8

Parameter

Command .
Status)
Pointer to file name

File attribute bits

RENAME FILE Command = 20

GET FREE SPACE ON DISK Command = 21

The rename command is used to change the name of a
file that already exists.

This command returns the number of £free blocks
that are on the disk that can be allocated by the
directory. Caution should be used in interpreting
the results because another task could use some or

all of the space before the program making the
request can.

Offset Parameter

DC.W +0 Command
DC.W +2 Status
DC.L +4 Pointer to old file name
DC.L +8 Pointer to new file name

A pointer to NULL STRING and NIL POINTER specify
the default directory.

Offset Parameter

bC.w +0 Command

DC.W +2 Status

DC.L +4 Number of bytes available
bC.L +8 Pointer to directory name

RAW READ DISK Command = 22 RAW WRITE DISK Command = 23

This command reads a 512 byte block from UNIT, at
RECORD NUMBER, into BUFFER. Unit 0 (zero) is RAM

Disk, Record 0 (zero) is the first sector on the
disk.

This command writes a 512 byte block from UNIT, at
RECORD NUMBER, into BUFFER. Unit 0 (zero) is RAM
Disk, Record 0 (zero) is the first sector on the
disk.

Offset Parameter
DC.W +0 Command
DC.W +2 Status
DC.B +4 UNIT Number
DC.B +5 Reserved
DC.W +6 RECORD Number
vC. L +8 PULINTER to BUFFER

Offset Parameter

DC.W +0 Command

DC.W +2 Status

DC.B +4 UNIT Number

DC. +5 Reserved

DC.W +6 RECORD Number
DC.L +8 POINTER to BUFFER

TEREINI

EEEEREESSES SR EER]

NON DISK

SET - CONTROL-BREAK ADDRESS / ACTION

Command = 41

This command is used to specify the action to take
when an exception is detected. An address can be
specified to branch to or the operating system can
abort the program that is running. I£ the address
is 0, the program is terminated. Otherwise control
is transfered to the specified address.

vrtset Parameter

DC.W +0 Command

DC. W +2 Status

DC.W +4 Vector number

DC.L +6 Address of routine
DC. +10 Address of info

GET / SET - TIME & DATE

Command = 42

This command is used to get the system time or to

set the

system time.

In general a user program

should only get the time and not set it. A startup

routine
date is
altered.
returned
is set,
boot and

Of
DC.W
DC.W
DC.L
DC.L

Time --
Date --

Options:

can
0,
If
and
the
not

fset
+0
+2
+4
+8

Long
Long

Commandl[8]) =1

be used to set the system time. If
the current date is returned and not

time is 0, the current time \is
not altered. If bit 8 of the command
time is returned in milliseconds from
altered.

Parameter
Command
Status
Time

Date

HH MM SS 00
YY MM DD 00

Word, Byte Format:
Word, Byte Format:

Return time since boot
in Milliseconds.

8

SERERESEC S

GET DOS 1D Command = 43

This command returns a unique 64 bit value that is
the serial number for the operaing system. This
number 1is hard to change and can be used to lock
valuable software to only one system. A program
that 1is protected in that manner can be freely
copied but can only be used with a single systenm.
Because the operating system separates the user
from the hardware the exact hardware that is being
used is wunknown to any program. Because all
interface with the system is defined in terms of
system calls, the operating system itself may have
many significant differences but work in the same

-
i cseaa ¢

Offset Parameter

DC.W +0 Command

DC.W +2 Status

DC.L +4 High 32 bits of ID
DC.L +8 Low 32 bits of ID

GET / RELEASE / INQUIRE ABOUT MEMORY SIZE
Command = 44

This command is used to do some related things.
First it can be used to find out how much memory
is available to the requesting program. The second
use 1is to change the amount of memory that |is
available. More memory can be requested or some
existing memory given up. The system will try to
comply by allocating or releasing pages of memory.
If the number of bytes requested =0, the current
size 1is returned. The size of a memory page and
the number of pages avallable may vary from one
system to another.

Offset Parameter

DC.W +0 Command
DC.W +2 Status
DC.L +4 Number of bytes for new

size requested
DC.L +8 Number of bytes allocated for task

4
g \

i
I

_......r..

PROGRAHY CONTROL

GET LAST TERMINATE CODE Command = 51

This command is used to get the termination code
of the last program to execute for this user. This
is used to signal to the batch processor any
errors or special conditions that may have occured

so the batch processor can take any required
action.

Offset Parameter

DC.W +0 Command
DC.W +2 Status
DC.L +4 Terminate code

GET AND EXECUTE PROGRAM Command = 52

This command is used to get and execute a new

program in this address space. The current program
is overlayed.

Any open file channels will be passed to the new
program. This includes temporary files as well as
permanent ones.

Either this task space can be used to hold the new
program or a new task space can be requested if
there is space available.

UILset Parameter
DC.W +0 Command
DC.W +2 Status
DC.L +4 Hemory size requested for new task
DC.L +8 Pointer to file name that
has program
DC.L +12 Pointer to command line for
new program

TIME DELAY WAIT Command = 53

This command is used to delay a task for a period
of time. If zero delay is specified the effect is
to forfeit the remaining part of the current time
slice for use by other tasks. This is used instead
of a delay 1loop because it does not waste
processor time and the delay is more predictable.
The delay 1is specified in milliseconds but the
exact delay is determined by the length of a time
slice and how many other tasks are using the
system.

Offset Parameter
DC.W +0 Command
DC.W +2 Status
DC.L +4 Time delay in milliseconds

TERMINATE PROGRAM Command = 54

This command is used to terminate the currently
running program and return control to the command
processor that was specified. A value can be
returned to make the command processor aware of
any unusual conditions or the reason for
termination. As an option the file channels can be
left open. This allows a temporary file to be
passed back to the starting progranm.

Offset Parameter

DC.w +0 Command
DC.¥ +2 Status
DC.L +4 Termination code for this task

__ | -

GET COMMAND LINE Command = 55

This command is used to get a .CMD control 1line.

The command line will contain any actual
parameters used.

Offset Parameter

DC.W +0 Command

DC.W +2 Status

DC.Ww +4 Number of bytes read

DC.L +6 Pointer to command line buffer

‘

I\

BATCH CONTROL
GET NEXT LINE FROM .BAT FILE Command = 61

This command gets the next line of the batch file
for this task and places it in a buffer. If no
batch file is active for this user, an error |is
noted. This command 1is used to construct batch
file processing programs.

Offset Parameter

nc w +0 Cammand
DC.w +2 Status
DC.W +4 Number of bytes read

PC.L +6 Pointer to buffer

GET .BAT CONTROL LINE Command = 62

This command is used by batch file processors to
get the command line that was used to start the
batch file. The command line will contain any
actual parameters used.

Offset Parameter

DC.W +0 Command

DC.W +2 Status

DC.W +4 Number of bytes read

DC.L +6 Pointer to command line buffer

START .BAT FILE PROCESSOR Command = 63

This command is used to start a batch file process
for this user. A word is used to point to the name
of the batch file to be processed. Another word is
used to point to a buffer with at most 256
characters that will be used as the command 1line
for the batch file processor.

Offset Parameter
DC.W +0 Command
DC.W +2 Status
oC. va ruinter to rlie name
DC.L +8 Pointer to command line

A TABLE OF ERROR CODES

CODE MEANING

00 Normal Exit

01 Invalid Channel Number

02 Channel Not Open for Read

03 Channel Not Open for Write

04 No Channel Available

05 No File Control Block Available
06 Invalid Unit Number

07 File Not Found

08 Disk Full

no ™Y om . T_va
- - MArTw LWL Y FULL

0A Attempt to Read Beyond End of File
0B Attempt to Postition Beyond End of File
ocC Invalid Device

0D File in Use

0E Device in Use

oF System Error

10 Read Error

11 Write Error

12 File Exists

13 Directory Not Found

14 Directory Not Empty

15 File is Read Only

le6 Attribute Conflict

17 Request Denied

* * HTPL * »

HAWTHORNE TECHNOLOGY
PROGRAMMING LANGUAGE

USER MANUAL

Copyright 1986
Hawthorne Technology
8836 SE Stark
Portland, Or 9721s

(503) 254-2005

HTPL USER MANUAL

INTRODUCTION
RUN MANUAL
LANGUAGE MANUAL
ASH MODULES

T YODADU
e s

—

£

INTRODUCTION

HTPL is a language created in 1986 at Hawthorne

Technology to be used with the 68000 micro-
processor. The maln design goal was to have a
language that would be economical to Iimplement,
would produce efficient code, and make it easy to
write menu driven, overlayed programs. A second
goal was to create a language that could be used
to implement part of the operating system or at
least the user utilities.

HTPL was influenced by several existing languages.
The most important was FORTH because it is small
and generates very good object code for the size

~of the compiler required. The other major

influence was PASCAL which was used to implement

the first wversion of the complilsr Gnder HS-DUS.
Pleces of other languages are also present.

The expressions in HTPL are reversed polish 1like
FORTH. This allows the programmer to optimize the
code produced and allows the compiler to have an
extremely simple code generator section. While
FORTH is good for expressions the control
structures are very awkward and limited. Most
FORTH systems are oriented to being interactive
and handicap compiled implementations. While many
systems can be written without local variables or
goto statements almost every major programming
project needs one or both of these. Instead of
being dogmatic, the practical approach was taken
and labels were allowed.

Pascal, Modula, C and other similar languages
offer good control structures that can be
generated efficiently. These were the models used
for control. These languages suffer from excessive
overhead for procedure calls and it is difficult
to generate good object code from a small
compiler.

The HTPL language is not intended to be good for
every purpose. It can be used to implement part of
the wutilities for the HT-21 and for many simple
user applications. For 1large programs or for
complicated programs a standard language might be
better.

LANGUAGE DESCRIPTION

The HTPL language 1is composed of different
elements. There are some reserved symbols with
special meaning and a few reserved words. In
general all items can be described as numbers,
words, comments, and string constants. Some are
defined by the user and some are pre-defined.

HTPLL is an RPN language. This means that all
objects that are operated on must be pushed on an
evaluation stack and then the operation
named. There are no rules of associativity or
precedence in HTPL. All values are placed on the
stack when encountered. All procedures are called
when referenced. The compller will not change the
sequence in which actions are performed.

A user defined word is any group of up to 12
printable characters that start with something
that is not defined as a special prefix or a
digit. Because HTPL is not case sensitive, all
letters used are converted to upper case in the
internal symbol table. User defined words are of
three types:

variables
labels
procedures

A wvariable is the label of a data item in either
common or local storage. Variables are 1, 2 or 4
bytes long and are defined with byte, word or long
statements.

Labels are declared with a label statement and are
given a defined value when they appear in the
program following a colon (:). Labels are used as
the targets for goto statements.

Procedures are defined with a procedure statement.
A procedure is a collection of instructions that
produces a result. It begins with:

proc name
(and continues until a matching)
end (is encountered)

Arguments are passed to procedures on the stack or

through variables. Procedures can be referenced
before they are defined. Any undefined word on
pass one i{s assumed to be a forward reference to a
procedure. Procedures don't have types.

A variable 1is always used with one of three
prefixes:
e !

When # appears with a variable the 32 bit address
of the varaible i{s pushed on the evaluation stack.
The # prefix may also be used with procedure names
or labels.

#VAR - Address of VAR is pushed on stack
#PRO - Address of PRO is pushed on stack

When @ appears with a variable, the value stored
in the variable 1is expanded to 32 bits, |{f
necessary, and pushed on the evaluation stack.
Words are sign extended but bytes are not. The
high order bits of a byte variable are set to 0.

@VAR -~ Value stored in VAR is pushed on stack.
When ! appears with a variable, the top 32 bit
value on the evaluation stack 1is truncated, if

necessary, and stored in the variable.

I{VAR - Top value from stack is stored in VAR.

PRE-DEFINED WORDS
There are two n<umm,0m predefined words:

structure and macro
A structure word is used to define words or to
control the sequence of operation.
A macro word is like an operator and generates
inline code. Other than the size of code generated

there 1is no difference between a macro and a
procedure call.

A comment is enclosed in parentheses () .

(This is a comment.)

No code is generated from a comment. A comment can
occur anywhere a space can occur. Comments do not
nest so care must be taken when commenting out
large sections of programs.

A plain number is always pushed on to the stack.
There are decimal numbers that contain only
digits, and hex numbers that contain digits and
the letters A to F. A hex number starts with a
digit and ends with the letter H, or starts with a
$. Because of the syntax of the language there are
no negative numbers. If a negativa numbar i3
needed then use the positive value and the negate
procedure.

A character constant is enclosed in single quotes
and can be from one to four characters long. The
charcters are right justified in a long word and
any high order bits are set to 0. A string starts
with double quote marks ("). When a string appears
in an expression, space is allocated for the
string in the common storage area and the address
is pushed on the stack.

l_

1

i

STRUCTURE WORDS
ROOT

This tells the compiler that we are compiling the
root section of a set of a system. When the root
is compiled the runtime library is included in the
code and initialize code |is generated for
variables in common.

OVERLAY

This tells the compliler that we are compiling an
overlay for a system. When an overlay is compiled
no runtime library is generated and no
initialization code 1s output for variables 1in
common. The common definitions are fqr reference
only and should be the same as the common
definitions of the root or an error may result.

MODULE

This marks the start of 1local wvariables and
procedures. Code is generated for a module whether
or not it is root or overlay. Local variables are
not initialized. Storage for local variables is on
the heap. If the heap is to be used then space for
local variables must be explicitly allocated.

PROGRAM

This marks the start of the program for either the
root or an overlay. This is where execution will
start after the object code has been loaded 1into

memory. A program ends when a matching END
statement is found.

LINK

This 1links in a hex code module that has been

. generated by the assembler. Procedures can be

defined when linked, but variables can not. More
than one procedure can be in a module. A module
can have its own internal structure.

PROC

This marks the start of a user defined procedure. WHILE DO END
A procedure continues until a matching END |is
found. A procedure is called by simply using its
name. Arguments are passed to a procedure on the
stack and results can be returned the same way.

This sequence is used to execute a block of code
while a specified condition is true. WHILE marks
the start of the loop where control will return
after the loop is executed. DO uses the top value
of the stack to decide whether or not to execute
the block. One item is removed by the DO. When the
END 1is encountered control branches back to the
WHILE. As long as the expression between the WHILE
and the DO is true the code between the DO and the
END will be executed.

BYTE / CHARACTER

This is used to define user variables. If a module
statement hasn't been encountered then the
variables will be in common. After a module
statement is encountered the variables will be
local. A byte occupies one byte of memory. All the
variables defined in a single byte statement will
be placed in contiguous bytes. The first byte will
be on a word boundary. At the end of the byte
statement a null byte will be added if needed o
that the next code will be on a word boundary.

INTEGER / WORD

REPEAT UNTIL.

This sequence is used to execute a block of code-
until a specified condition is true. REPEAT marks
the place where control will return to at the end
of the loop. UNTIL uses the top item of the stack
to determine whether control will pass back to the
REPEAT or whether the program will continue.

This is used to define user variables. If a module
statement hasn't been encountered then the
variables will be in common. After a module
statement 1is encountered the variables will be
local. A word occupies two bytes of memory. All
the variables defined in a single word statement
will be placed in contiguous bytes on word

IF THEN END
IF THEN ELSE END
IF THEN ELSIF THEN END

These words are used to select which one of
several blocks of code will be executed. IF is

IS RERRERE

b

oundarles. a polite word, 1t doesn't do anything but it makes
the code easier to read. IF should be used to mark

LONG the start of the expression that will be tested.

THEN uses the top item on the stack to determine
1f the code following THEN will be executed. 1If
the top value of the stack iIs true the code
following THEN will be executed, if not the code
following the ELSE will be. END marks the end of
the selection.

This is used to define user variables. If a module
statement hasn't been encountered then the
variables will be in common. After a module
statement is encountered the variables will be
local. A long occupies four bytes of memory. All
the variables defined in a single statement will
be placed in contiguous bytes on word boundaries.

LABEL

This 1is used to define labels for use with the
GOTO statement or COMPGO words. The LABEL words
tell the compiler that these will be labels but
the 1labels don't have values until they are
encountered in the body of the code.

|

ELSIF THEN

These words are used to try a new condition in a
IF THEN END sequence. When ELSIF is encountered
the expression between ELSIF and THEN is
evaluated. If true, the code after the THEN is
executed; {if not, then the code after the next
ELSE or ELSIF is executed. Only one of the THEN,
ELSIF-THEN, ELSE blocks will be executed.

CASE (1 () ELSE END

This is used to select one of several
alternatives. When CASE is found, the top value on
the evaluation stack becomes the test value. When
the END is encountered the value is removed from
the stack. When a [is found the selection value
is compared to the value in () and if equal the
code following the (1] will be executed. If not
equal then the next [] will be tested. If no (] is
found equal when ELSE is encountered then that
block will be executed.

RETURN

The return statement is used to return from a
procedure at some place other than at the end.
When leaving a procedure care must be taken. to be
sure the evaluation stack 1s left in a predictable
state. The return stack in HTPL is used only for
returns and not for any other control. The only
control structure that uses the evaluation stack
is the case statement which uses one level.

GOTO

The goto statement is wused to transfer the
execution of the program to some point other than
in a direct line. The goto statement is always
followed by a label. Control is transfered to the
statement at that label and execution procedes
from that point.

ERERNREEREENNED

ASSEMBLY LANGUAGE MODULES

It is possible to create assembly language modules
and link them into HTPL programs. This provides
the programmer with a great deal of flexibility.

To create a procedure module to link to your HTPL
program you vwrite the module in the requiread
format and assemble it into an Intel format HEX
file. The procedure 1is then 1linked into the
program using the following command:

link ‘'filename.hex’
The filename should be the name you have assigned
to the hex file of your assembly language module.
The .hex extension must always be given. It is not
assumed by the compller.

A simple RTS should be used to exit an assembly
language procedure in a module.

* » * x FORMAT FOR LINK.HEX MODULES * * * =

ORG 0
DC.W SIZE
DC.W ENTCNT
DC.B 'FIRSTNAME '
DC.W FIRST
DC.B *SECONDNAME '
DC.W SECOND
ORG 0
(actual code)
SIZE: EQU $
END

Always ORG the code at 0.
The SI2E of the module must be even.’

ENTCNT is the entry count. The number of entries
in the module.

*FIRSTNAME ' is the name of the first entry 1in
the module. It is padded with spaces to a full 12
charactors. Only uppercase letters should be used
for the names of procedures. HTPL i{s not case
sensitive and converts all letters to uppercase
while it is compiling a program.

FIRST 1is the address of the FIRST routine in the
module,

The runtime library HTPLRTL.HEX is almost the same
43 any other .HEX file. The first 16 bytes will be
filled in by the compiler to provide sizes for
setting registers. The initialization code that
comes before the first routine should not be
changed or the program will not setup properly.

There are some registers that are used by HTDL ana
must be preserved when creating assembly language
modules to 1link into HTPL programs or when

modifying the runtime library file HTPLRTL.HEX.

REGISTER RESTRICTED USE

D7 With the exception of the 1low
byte, D7 must remain 0 (zero).

A3 Points to beginning of runtime
library, must be preserved.

A4 Evaluation stack pointer.

AS Points to local variables and
must be preserved.

A6 Points to common variables and
must be preserved.

A7 Return stack, must preserve.

!

STANDARD LIBRARY WORDS

These words are included in the runtime 1library
that is used by the compiler when a root is being
compiled. Some of these are in the runtime library
and some are macros. A macro generates in 1line
code to perform 1its function while a 1library
routine generates a call to the routine. 1In
general library words and user defined procedures
act the same.

For each library word the word is given, the stack
configuration before and after, and a short
description. All stack items are 32 bits long. For
higher performance several procedures can be
written in assembly code and linked in using the

Many of these routines are used in the operating
system or the command processor supplied with the
system. Both of those should be studied to see how
these routines are used. If more information on
the exact pature or behavior of any run time
routine is needed you should look at the source
code for HTPLRTL.

These routines are currently supplied with the
HTPL compiler runtime library. As the language
changes new 1library routines will be published.
Any routine that is needed but not included can be
built from standard words or can be created using
an ASM file and linked in. If there are small
routines that you use frequently then they can be
added to your version of HTPLRTL and the flle
reassembled. We often debug a piece of code first
in HTPL using other routines. We then recode it in
assembly language form for greater speed and
smaller size. ’

MACRO WORDS

This 1list contains the words in the library that
are macro words.

ABORT NIP =0
AND NOT +
ATCALL OR -
ATGO OVER =
DECR PICK O
DROP RESTORE <
bup ROT =
INCR SAVE >
NDXL SHL =
NDXW SHR +2
NEGATE SWAP +4
TUCK -2
-4
+1
-1
(>0

RUNTIME LIBRARY WORDS

This 1list contains the words that are in the
HTPLRTL.HEX runtime library.

ALLOCATE GETC RANGE
APRINT GETLINE RECLAIH
BFPRINT IGET RELEASE
BIPRINT IPRINT RESET
CCOMP LENGTH SPACES
CONCAT MARK SPRINT
CoPY MOVEC TRAP
FGET NEWHEAP *

FILL PUTC */
FPRINT EXIT HOD

LIBRARY WORDS

pup (a ~—aa)

Duplicate top item on evaluation stack.

DROP (a ——)
Delete the top item on the stack.

NIP (ab -—-Db)
Like drop but delete the next to the top item.

ROT (abc-—bc a)

Rotate the top three items on the evaluation
stack.

SWAP (ab--ba)

Swap the top two items on the stack.

OVER (a b --—a b a)

Copy the next to the top item.

TUCK (ab -—-bab)

Like over but copies the top item on the stack.

PICK (a-—a)

This 1s used for random access of an item on the
evaluation stack. The sequence 1 PICK is like DUP
and the sequence 2 PICK is like over.

AND (ab-—-c)

Logical and*'s the top two items on the stack.

OR (ab--c)

Logical or's the top two items on the stack.

NOT (a--b)

Does a 1's compliment of the top item on the
stack.

RANGE (abc -—-4d)

Compare the third item on the stack to see if it
is between the top two items. The top item is the
high 1limit, the next is the low limit, and the
third is the item being tested. The result is true
i1f the item is in range and false if it is not.

NEGATE (a -- b)

Does a 2's compliment of the top item on the
stack.

SHL (ab--c)

Shift left, the next to the top item on the stack,
using the top item on the stack for the number of
bits to shift.

SHR (ab--c)

Shift right, the next to the top 4item on the
stack, using the top item on the stack for the
number of bits to shift.

+

®

/

-~~~
[
CcooUT
|
aao0aa

These are the normal arithmetic operations. All
operations are done with 32 bit numbers. They use
the top two items on the stack and put the result
on the stack.

*/ (abgc-—4d)

This is used to calculate a scaled product using a
larger intermediate result. d= (a*b)/c The
intermediate result is 64 bits long.

MOD (ab -c)

This returns the remainder from a division rather
than the gquotient.

~
oy e
oOooDOoUOoDU

5
anaaaaq
St vt Nl Nt Nt

vvAAALd
]
_ -~ -~

These are the normal compare operations. All
values are treated as 32 bit signed integers. They
use the to two items on the stack and put the
result on the stack.

=0 (a-—-a)

This tests the top item on the stack and returns
true if the value is 0.

<0 (a-b)

This macro word tests the top item on the stack to
see {f it is non zero. If it is not zero the
result is true.

TRUE (—— tt)

This pushes SFFFFFFFF on the stack.

FALSE (—-0)

This routine pushes a zero on the stack.

+1 +2 +4 (a--a)

Add 1, 2, or 4 to the top item on the evaluation
stack and leave the result.

DBLINC (a b -ab)

This adds one to the top two items on the stack.
This is the same as: +1 swap +1 swap

-1 -2 -4 (a-—-a)

Subtract 1, 2 or 4 from the top item on the
evaluation stack and leave the result.

DBLDEC (a b - ab)

This routine decrements the top two items on the
stack. This is the same as: -1 swap -1 swap

11 12 4 (ab--)

Store the next item on the stack using the top
item as the address. All items are trimed to the
proper size before they are stored.

Q1 @2 Qa4 (a--b)

Load 1, 2, or 4 bytes from memory using the top of
the stack as the source address and push on the
evaluatlon stack. Bytes are expanded to 32 bits by
adding high order zeros. Words are sign extended.
NDXW (ab-——-c)

This 1is wused to calculate the address of an
element in a word array. The top of stack has the
base address of the array, the next item has the

index value. The index value is multiplied by two
and added to the base value forming the address.

NDXL. (a b --c)

This is used to calculate the address of an
element in a long array. The top of stack has the
base address of the array, the next item has the
index value. The index value is multiplied by 4
and then added to the base address. The resulting
address is left on the stack.

IPRINT (a b -~)
This displays the next item on the stack as an

integer using the number of spaces given by the
top item.

BIPRINT (abc ——)

This converts the next item on the stack, as an
integer., to a buffer. The top item on the stack
gives the number of spaces to be used. The third
item points to the buffer.

FPRINT (a b ¢ --)

This displays the third item on the stack as a
pseudo floating point value. The top item is how
many digits to the right of the decimal point and
the next item is how may places for the entire
number.

BFPRINT (abcd --)

This prints the third item on the stack as a
pseudo floating point value. The top item is how
many digits to the right of the decimal point and
the next 1item is how may places for the entire
number. The fourth item is the pointer to the
buffer.

SPRINT (a —)

Print the string whose address is given as the top
item of the stack. A string is assumed to
terminated with a null byte.

APRINT (a b —-)

This prints a group of characters of bytes
including nulls. The top item 1ls the count of how
many bytes to send and the next item is the
address of where they will come from.

IGET (a —-- b)

Get an integer from the input stream. The top item
on the stack tells how many characters to use. The
result is left on the stack.

FGET (a b ——- b))

Get a value from the inmnt stream ac A neandn

floating point number and store it on the stack as
a 32 bit binary integer. The top item on the stack
tells how many places to the right of the decimal
point. The next item tells how many charactors
there are in the entire number.

CRLF (—)

Send out a carriage return linefeed sequence.

SPACES (a -

Prints a groups of spaces on the console.

GETC (--a)

Get the next character from the console but do not
echo it.

PUTC (a--)

Send the top item on the stack to the console as a
character. Getc and putc are used in combination
to create interactive user programs.

GETLINE (ab-—-a)

Get a line of characters from the console. All
characters are echoed and simple inline editing as
defined by the operating system is permitted. The
top value on the stack Is the maximum number
ofcharacters to read in. The next to the top item
is the address of a buffer to put the characters
in. The procedure will return the actual number of
characters read.

ABORT (——)

This causes the program to be restarted and all
stacks to be reset to their original values.

EXLT (A ——)

This turns control of the system over to the
command processor (operating system). The top item
on the stack contains the terminate code.

RESET (--)

This word resets the return and evaluation stacks
but does not restart the program. The reset
command is used to set the stacks to a known
conditlion after a branch or an error.

ALLOCATE (a —- a)}

This is used to allocate memory from the heap. The
heap 1is just above the stacks and grows from low
to high in memory. The routine allocates the
amount of storage requested by the top stack value
if possible. If storage is allocted then a pointer
to it 1s returned. If not enough memory remains
then a null pointer is returned.

RECLAIM (ta-—)

This is used return a block of memory that was
gotten by the allocate procedure.

MARK (--a)

This returns a pointer to the current top of the
heap.

RELEASE (a--)

This sets the heap pointer to the value on top of
the stack.

NEWHEAP (—-)

This resets the heap to its initial value after
being used or if its state is unkown.

SETLOCAL (pp —)

This uses the top of stack value to set a pointer
to local data.

GETLOCAL (-- pp)

This routine returns the base pointer (A5) used to
access loacl data.

LOCALSIZ (-~ ss8)

This routine returns the size of the 1local data
area that was delared by the program.

SAVE (-- a)

This copies the evaluation stack pointer to the
evaluation stack.

RESTORE (a --)

The top 1item on the current evaluation stack
replaces the evaluation stack pointer.

MOVEC (abc -

This routine moves bytes from 1left to right
anyplace in memory. The parameters are from
address, destination address, and number of
characters to move.

MOVER (src¢ dst cnt ——)

This routine moves characters from right to left.
The source and destination pointers must point to
the right hand end of the fields to be moved. The
count is the number of bytes to move.

FILL (abc¢c -

This routine is used to £fill a section of memory
with a constant byte. The first parameter (a) is
the address to start £illint, the next is the byte
to £i11 with, the last (top of stack) is a count
of how many bytes to £ill.

TRAP (a—-—-)

The trap word uses the top of the stack, puts it
in A0, and does a ‘trap 1'. The trap command
expects the item on the stack to be pointing to a
parameter block. This allows communication between
the command processor and the operating system.

ATGO (pp —-)

This causes an unconditional branch to the
location whose address 1is on the top of the
evaluation stack.

ATCALL (pp --)

This routine causes an uncondtional call to the
location whose address is on the evaluation stack.
CONCAT (sl s2 --)

This routine combines two strings into one by
appending the second string to the first string.

COPY (s1 s2 ~-)

This routine makes a copy of the first string
where the top stack itme 1is pointing.

CCoMp { pl p2 cnt ~~ torf)

This routine compares two areas of memory pointed
at by pl and p2. If the two areas are equal for
the number of bytes then true is returned else
false 1s returned.

DELETE (str pos num --)

This routine deletes part of a string. The first
argmuent tells how many characters to delete. The
second argument tells where in relation to the
etart o£f the stiluy is iLne desirea part to delete.

LENGTH (a -— b)

This finds the length of a null terminated string
whose address is the top item of the stack.

POS {srch obj -- pntr)

This routine searches the object string for the
search string. If the string is found then Iits
position is returned. If the search string is not
found then a null pointer is returned.

SCOMP (s1 82 ——- torf)

This routine compares two strings. If they are
equal then true is returned. If they are not equal
then false 1s returned. To be equal, both strings
mnust be the same length.

CHMATCH (str chr -- pos)

This routine scans the string until it finds a
match for the byte. If a non zero byte is being
searched for this routine will keep looking even
if it runs past the end of the string.

HAWTHORNE TECHNOLOGY

LINE EDITOR

USER'S MANUAL

(C) 1986 Hawthorne Hﬂﬂ:bowomw

All Rights Reserved

Hawthorne Technology
8836 S.E. Stark
Portland, Oregon 97216

(503)254-200%

EREERENENRERNNE

Table Of Contents

*

Operating Procedures

Description Of Each Command
Data Entry Commands
Moving Current Line Pointer
Printing (Display)
Tind Sisiuy
Editing Commands
Changing Strings

Administrative Commands

Appendix A - A table of Edit Commands

Index

i
. . r e N e . « o
J S : ‘
{ . i i |

» 1
FI’ l l I |

OPERATING PROCEDURES

This editor has two major modes of operation,
ENTER mode and COHHMAND mode. Each line of data or
command entered 1is activated by pressing the
RETURN key. The backspace key can be used in edit
mode to back up and re-work part of or all of a
line. This is only good for the current line, so
it must be used prior to pressing the return key.
Changes on other lines must be made from command
mode.

All data is entered from enter mode. The commands
EN -enter, IN insert, and AP append get you into
cater wmode. riom eanier mode, all data is aaded to
the £ile until a line where the only charactor on
the line is a '.®' (period) is encountered.

Oon leaving enter mode, you will be {in command
mode. Using edit commands while in enter mode will
result in the commands being entered as part of
the file.

Command mode is designated by a prompt: '=®¢, on
the left margin. In command mode the edit commands
are used to view or modify the file.

COHHAND MODE OPERATION

IMPORTANT NOTES:

1. In Command Mode, all two letter commands must
be terminated with a Carriage Return (CR).

2. Commands are not case sensitive. They may be
entered either upper or loweéer case letters.

3. Commands that require a parameter must have one
space between the command and the parameter. If
no parameter is entered, a default value that is
equal to the previous condition or a value of 1 1=
used.

4. Commands that work with strings of charactors
use delimiters to define the limits of the string.
A delimiter can be any non-alpha/numeric charactor
that 1is not contained in the text of the string
1tselk.

5. Many of the commands function relative to the
line that is considered current. The 'Current Line
Pointer* 1is always polinting to the current 1line.
If the CLP is at line 1, and you PRINT (display)
25 lines, the CLP is not affected. It still points
to 1line 1. Only commands that are specified for
moving the CLP will affect its position.

DESCRIPTION OF EACH COMMAND

DATA ENTRY COMHANDS

Append Command = AP

AP (return) - The append command gets you into
ENTER mode. The data you enter is added at the end
of the file. You remain in ENTER mode until a line
with nothing but a . (period) is entered.

Enter Data Command = EN

EN (return) - The enter command gets you into
ENTER mode. Each line you type while in ENTER mode
is put after the last existing line. A line 1is
completed when you press the return key. You
remain in ENTER mode until a line with nothing but
a . (period) is entered.

Insert Command = IN

IN (return) - The insert command gets you into
ENTER mode. The 1lines you enter are inserted
directly following the ‘current' line in the file.
The insertion is terminated by entering a 1line
wiht nothing but a . (period) on it.

PRINTING (DISPLAY)

MOVING CURRENT LINE POINTER (CLP) Print command = PR

PR - Prints the entire contents of file.
Top Command = TO

TO (return) - Positions the CLP at top of the file
and displays the first line.

PR n - Displays "n®" lines, starting with the next
line after the current line.

Bottom Command = BO
FIND DATA
BO (return) - Positions the CLP at last 1line 1in
the file, and displays it.
Find Data Command = FI

FI /string/ - Find the group of characters
specified by "string®” starting from CLP +1. The
string specified in the command line must be set
off using delimiters. The 1ine on which the
"string® is found is displayed. The CLP is now at
the found line.

Here Command = HE

HE (return) - Display the current line.

Down Command = DO

DO n - Moves the pointer down "n" lines and Find Next Command = FN

displays the line. (Default is one line.)
, FN (return) - Find the next occurrence of the

*string"™ that was specified in the prior Find Data

(FI) command. This *find* starts at CLP + 1 and

displays the line on which the string was found.

Up Command = UP

UP n - Hoves the pointer up "n" lines and displays

l1ine. (Default is one line.)
the ne Find All Occurrences Command = FA

FA /string/ - Find all occurrences of the *string"”
in the entire file and display each line on which
the string was found. This can be useful {n
creating a cross reference of particular items {n
your file.

Find Line Command = LN

LN n - Hoves pointer to line number "n".

YRR E RS RS EEN R RE

EDITING COMMANDS

Copy Command = CO

CO begin,end - Coples the 1lines "begin®” through
"end” on to the spot just before the current line,
vhere begin is the number of the first line to be
copied and end is the last line to be copled.

Delete Lines Command = DE

DE n - Deletes "n" lines (default 1) starting with
the current line.

Move . Command = MO

40 begin,end - Moves the lines "begin® through
"end” to just before the current line, where begin
is the number of the first line to be moved and
end is the number of the last line to be moved.

New Text Command = NE
NE (return) ~ Deletes all old text and restarts

the editor. Clears the buffer for new text to be
entered,

Replace Current Line Command = RE

RE (return) - Replaces the current line with the
next line you enter.

Truncate Last Lines Command = TR

TR (return) - Deletes all lines after the current
line.

E A
: » " 9 | iy '
“)

CHANGING STRINGS

Change String(s)
: Command = CH

CH /o0ld/new/n - The characters in the new string
replace those 1in the o014 string. If no value for
n i3 given, the change takes place only on the
current line. If a value is given for "n®, the
change will be made for every occurrence of the
old string, within *n® lines. To delete a string
of characters, instead of specifying a “new"
string, use two consecutive delimiters i.e. ®//°".
Any valid delimiter, (a non alpha-numeric
character), can be used in nlace of ®s/%. B2
changed lines will be displayed.

Caution: The charactor used as a delimiter
can not be used in old or new text string.

NOTE: If the substitution applies to all
occurrences in an entire file, start at the top of
the £file and use a number for "n” that is 1larger
than the last line number in the file.

Change By Pasition Command = CC

CC c/new/n ~ The *c® indlicates the column number
in the line at which point "new” data will start
overlapping the original data. Change starts on
the current line and changes *"n” lines. All of the
lines that are changed will be displayed.

ADMINISTRATIVE COMMANDS

Open File Command = OP

OP - Opens a disk file, reads it into memory, and
then closes it. This command is used vhen you want
to edit a file that already exists on your disk.

Save Flle Command = SA

SA fllename -~ Saves the file on disk. A copy of
your file is saved on disk. If the file is already

~en o Al il Sha mamos ssmis hatca hanen wackins ~en
—-- ——— —-——ang et e W sV arwwas Towecmea- 1 -=

will replace the old copy on the disk.

Exit Editor Command = XX

XX - Exits the line editor and returns command to
the operating system.

APPENDIX A

A TABLE OF EDITOR COMMANDS

DATA ENTRY
AP - Append
EN - Enter Data
IN - Insert
. — Exit Enter Hode

HOVING CURRENT LINE POINTER
BO ~ Bottom

DO - Down

HE - Here

LN - Gotao l.ine
TO ~ Top

UP - UP

PRINTING (DISPLAY)
PR - Print

FIND STRING
FA — Find All Occurrences
FI - Find Data
FN - Find Next

EDITING COMMANDS

CO - Copy
DE - Delete Lines
MO - Move

NE - New Text
RE - Replace Current Line
TR - Truncate Flle Here

CHANGING STRINGS
CC - Change by Position
CH ~ Change String

ADMINISTRATIVE COMHANDS
OP - Open File
SA - Save File
XX - Exit Editor

INDEX

AP - Append

BO - Bottom

CC - Change by Position
CH - Change Stringl(s)

CO - Copy
DE - Delete Lines
DO - Down

EN - Enter Data

FA - Find All Occurrences
FI - Find Data

FN - Find Next

HE - Here
IN - Insert
LN - Goto Line

MO -~ Move

NE ~ New Text

OP -~ Open Flle

PR -~ Print

Replace Current Line
Save File on Disk

Top
TR ~ Truncate Flle Here
UpP - UP

. — Exit Enter HMode

K NR
S w00
o>»m
[I |

APPENDIX A
A Table of EDIT COMMANDS

HAWTHORNE TECHNOLOGY

68000 ASSEMBLER

HT68K User's Manual

(C) 1986 Hawthorne Technology

All Rights Reserved

Hawthorne Technology

8836 S.E. Stark
Portland, OR 97216

(503) 254-2005

TABLE OF CONTENTS

THE ASSEMBLER
INTRODUCTION
OPERATING INSTRUCTIONS
ASSEMBLY LANGUAGE FORMAT
PSEUDO OPERATORS
ERROR MESSAGES

WARNING MESSAGES

THE 68000 LANGUAGE
ADDRESSING MODES
THE 68000 INSTRUCTION SET

SAMPLE PROGRAM

INTRODUCTION

The Hawthorne Technology HT68K Assembler is
designed to run on the HT21 microcomputer system
under 68K-0S. The assembler reads a source code
file from a disk. It then generates a machine
language object file in the Intel Hex format.

Listing of the assembly is optional. All or part
of the code may be listed using the LIST and UNL
(unlist) commands in the source file. The listling
may be directed to the console or the printer.

Scz== gesudc—cperaticas G¥s inciudcd in ithe
instruction set, such as storage definition

instructions and listing control.

The HT68K user's manual assumes that the operator
is already familiar with _.the processors’
instruction set, the operating system, and with
the general operation of assemblers. Those
needing further assistance on these points should
consult one of the many books avallable on these
subjects.

OPERATING INSTRUCTIONS

Commands can be gliven to the assembler on the
compand line used to start it or can be given 1in
response to prompts. Some options can also be
given as directives in the body of the program
being assembled.

When commands are given as part of the command
line the flle name to be assembled is given first.
Any file extension can be wused. There are no
assumptions made. Next all the options are given.

When no file name or options are given on the
command 1line the assembler will prompt for the
file name and for the optlons.

Tha file name i< tha nath nama =€ the ssupce £ils.

The object file will have the same name with an
extension of .HEX {f an object is generated.

The 1ist options are C - 1list to console, P - 1ist
to the printer, and N - for no listing., If N is
selected then any lines that contaln errors and
any error messages are sent to the console. The
symbol table and cross reference are sent to the
same place as the listing.

Cross referencing is selected by an X. Cross
referencing adds to the amount of space used by
the symbol table and takes extra time and paper to
print but does not significantly slow down the
assembly.

To supress the generation of an object .HEX file
select option O. This will cause the assembler to
run slightly faster and will still detect any
errors that may be present.

To prevent the symbol table from being printed use
the S option. This will prevent the symbol table
from being printed. Other than print time it has
no effect on the speed of assembly.

(of List to console
p List to printer
N No listing

X Cross reference
0] No object

S

No symbol table

EXAMPLES

A>HT68K MONITOR.ASM XP

This will assemble file MONITOR.ASM, will generate
an object £ile MONITOR.HEX, will send the listing
to the printer, and will create a symbol table and
A cross reference. .

A>HT68K

Because the are no command line arguments then the
operator will be prompted for the file name and
the options wanted.

B S N

il

3 4 - . 4 3] A | 3 i

ASSEMBLY LANGUAGE FORHAT

A standard assembly language source statement
contains up to four flelds {in the following
format:

LABEL MNEMONIC OPERANDS COHHENT

There wmust be at least one blank character or tab
between each field. The label, mnemonic, and
operand fields must all be within the £irst 60
characters of each line.

LABEL FIELD

The 1label is made up of from 1 to 16 characters,
the £irst of which must be alphabetic. It must
start in the first position of the line of source
code. If there i3 no label on a line of source
code, the £first space must be 1left blank.
Optionally, the label can be followed by a colon.
The label must be followed by at least one space,
or by a tab character which terminates the 1label.
When the cross assembler identifies a 1label, it
assigns the current address to that label.

MNEMONIC FIELD

This field contains a name which represents either
an assembly language directive or a program
instruction. The mnemonic field is required,
except where the entire line is a comment, since
it describes the operation which 1is to be
per formed. It begins after the first blank space
on the line and ends with a blank space.

OPERANDS FIELD

The operands specify either the memory 1locations
of the data to be used by the instruction, or
immediate values. This fleld begins following the
last blank after the mnemonic field. The memory
locations can be specified by constants, symbols,
or expressions to describe any of several
addressing modes avalilable.

COMMENTS FIELD

Comments can be entered following the last blank
after the operands field. If the first character
position of a line contains a ;' or a **!', then
the entire 1line 1s considered to be a comment.
Although comments are listed in the source portion
of the assembler, they have no effect on the
generated object code, but are there only for the
benefit of the programmer.

PSEUDO OPERATORS:

¥

The following pseudo operators are accepted by the
assembler:

SYMBOLS DC.B Define Constant Byte
bC.W Define Constant Word
Symbols are used in the label field, the operator DC.L Define Constant Long
fleld, or the operand field. A symbol is a string DS.B Define Storage Byte
of characters beginning with an alphabetic DS.W Define Storage Word
character, and contains only letters and digits. DS.L Define Storage Long
END End
£y Equate
EXPRESSIONS EVEN Force Even
INCLUDE Include
Expressions are composed of symbols and constants LIST Listing On
with operators. The operators are evaluated from ORG Origin
left to right without precedence. PAGE Start new page of listing
SYMOFF Symbol Table Off
TITLE Print Title Line
CONSTANTS UNL Listing Off
UNLIST Listing Off

Constants may be of various types (i.e. Binary,
Octal, Hex, or Character). These types are
denoted by the following characters:

(I) Leadling: The following operators are used when formulating
type symbol example expressions:
Binary % %01010101
Octal e @125 + Adad
Hex $ $SE - Subtract
b Multiply
(II) Trailing: / Divide
type symbol example > Shift Right
Binary B 01010101B < Shift Left
Octal Q 125Q & And
Hex H SEH | Or
(III) Decimal
type symbol example
Decimal (none) 12345

]

' o 1 o : | :

(IV) Character: =
.—p-
nm-
‘AR’

l. _
i L e

DC

Define Constant initlalizes bytes of storage. Each
operand must evaluate to an 8, 16, or 32 bit
value. For each operand, bytes of storage are
initialized to the value of the operand. The DC
pseudo op is also used to initialize text strings.
Each byte of the text occupies one byte of
storage. The text 13 normally 7 bit ASCII with the
high bit set to zero.

DC.B Byte - 8 bits
pDC.W Word - 16 bits
DC.L Long - 32 bits

DS

Define ' Storage 1=z n=ed to reserve a hlock of
memory, but does not generate any object code and
does not initlalize the storage to any value. If a

label 1is used, it 1is assigned the address of the

first byte of storage reserved. This should be -

used to reserve RAM locations 30 as not to confuse
a PROM programmer.

Ds.B Byte - 1 byte
DS. W Word - 2 bytes
DS.L Long - 4 bytes

END

The 1last statement in the source file must be an
END statement. An END 1in the main flle will
terminate the assembly process. An END 1in an
included £fille marks the end of the included flle,
and returns to the main line of the program.

EQU

Egquate 1is wused to assign a value to a program
symbol. The symbol to be defined is placed in the
label fleld, and the value to be assigned 1is
placed 1in the operand field. The expression used
must be known during pass 1, and must be defined
before its first use.

)

5 E , 4 . .
& 4)
; d S i 4 4 ¥ |

Y . . P { p <
i ! E 4 4 3

EVEN

Even is used to require that the next command land
on a word boundry. It checks for even. If odd, a
DS 1 is inserted forcing it to be even.

INCLUDE

Include 1s used to include another file 1in the
assembly code. The next line of code will be read
from the included file and will continue until an
END 1s found in the included file. An included
file cannot name another included file. For large
programs, a maln section can be defined that
includes the other parts of the program. This
enables a large program to be edited in parts so
that the source flle does not- have to be
concatenated prior to assembly.

LIST

List is used to turn the 1isting on 1f it has been
turned off. The default condition is for the
1isting to be on. When List is on, the 1listing
will be sent to the device specified by the
operator in response to the options prompt.

ORG

Origin sets the first location address for the
assembly code. If no ORG statement 1is used, a
default ORG value of 0 1s assumed. Hultiple ORG
statements may be used to create separate blocks
of object code. An ORG statement may also be used
to redefine a prior memory area. The expression in
an ORG statement must have a defined value during
pass 1.

PAGE

If the 1listing is enabled, this will force the
next line of the 1isting to start on a new page.

SYMOFF

This turns off the listing of the symbol table
which appears at the end of the program listing.

TITLE

This 1s used to designate a title to be placed at
the top of each page of the listing.

UNL or UNLIST

Unlist 1is used to turn the listing off. It will

remaln off until it is turned back on with a List
directive.

ERROR MESSAGES

An error message appears on the line below any
program line which contains an error. There will

never be more than one error message per line,
even when the line contains more than one error,
so be sure to check for additional errors when
correcting your programs.

FORMAT:

®%wxxx FERROR: (error name)

BAD LABEL

Label contains an invalid character.

MULTIPLE DEFINED SYMBOL

Symbol has been defined more than once.

INVALID OPCODE
Invalid character string in the OPCODE location.

SIZE MISMATCH

Number 1is too large for reglster.

INVALID REGISTER

Register is not valid in this context.

RANGE ERROR

Tried to branch to a location that is too far
awvay.

UNDEFINED SYMBOL

The symbol used as an argument 1is elther un-
defined, or was Iimproperly defined in an EQU
statement.

BAD CONSTANT

Constant is the wrong size or the wrong mode.

INVALID ADDRESS

-

imis addressing mode is not valid for this
operator.

i

s
N

o i

- .

WARNING MESSAGES

A warning message appears on the line below a
program line which may not be interpreted the way
the programmer had intended. In general, this is
a result of elther too 1little or too much
information.

FORMAT:

wxxkx YARNING: (warning name)

IMMEULATE UPEKAND LONGER THAN SIGNIFICANT LENGTH
The value of the immedlate operand will not £it
in a byte. The high order bits are discarded.

OPERAND SIZE INDETERMINATE, WORD ASSUMED
The programmer hasn't specifled whether the
operand(s) are byte or word slized. -‘In most
cases, word 1s the default size.

OPERAND SIZE INDETERMINATE, BYTE ASSUMED
In the case of IN and OUT 1instructlons, the
default size 1is byte.

SYMBOL LONGER THAN SIGNIFICANT LENGTH

The symbol has more than 16 characters. The
tralling charaters are ignored.

ADDRESSING MODES AND DATA ORGANIZATION

Registers are commonly identifled as follows:

OPERAND SIZE An - Address Register (n specifies number)

Dn - Data Register (n specifies number)
The operand size for each instruction is elther an Rn - Any Register, Address or Data
implicit part of the instruction, or explicitly PC - Program Counter

SR - Status Register

CCR - Condition Code Half of Status Register
SP - Active Stack Pointer (elther one)

USP - User Stack Pointer

defined by - the programmer. All explicit
instructions support byte, word, or long word
operands.

BYTE = 8 BITS } SSP - Supervisor Stack Pointer
WORD = 16 BITS d - Displacement Value
LLONG WORD = 32 BITS ; N -~ Operand size in Bytes (1, 2, 4)

KEULDOTEKS

In an 1instruction, the register £field specifes
which register number is to be used. Other parts
of the instruction specify whether it 1{is an
address register or a data register and how it is
to be used. .

Each of the eight data registers is 32 bits wide.
They support data operands of 1, 8, 16 or 32 bits.
Byte operands use the low 8 bits of the register.
Word operands use the low order 16 bits and 1long
word operands occupy all 32 bits.

L 7

31 23 15 7 0

MSB LSB

In bit, byte, or word operations, only the low
order portion of the data register 1s changed. The
remalning high order bits are not used or changed.

The seven address registers and an actlive stack
pointer are 32 bits wide. They support 16 and 32
bit operands. When used as the destiniation
operand, the entire address register is affected
regardless of the operation size.

' " ’ '

ADDRESSING

There are two kinds of information contained |in

68000 instructions: the function to be performed

and the location of the operands to perform the
functions on.

The location of an operand can be specified in one
of three ways:

1 EFFECTIVE ADDRESS - Use one of the effective
address modes.

2 REGISTER SPECIFICATION -~ The number of the

register 1is glven in the register field of the
instruction.

3 IMPLICIT REFERENCE - The use of specific

mnmpunonu i3 defined in certain instructions.

EFFECTIVE ADDRESS

An effective address is used by most of the 68000
instructions. The effective address specifies the
location of the operand. The three groups of
effective address modes are register direct,
memory addressing, and special.

REGISTER DIRECT

DATA REGISTER DIRECT - In data register direct
mode, the operand is in the data register that is
speclfled by the effectilve address register field.

Syntax: Dn

ADDRESS REGISTER DIRECT - In address reglster
direct mode, the operand 1is in the address

retisterthat is specified by the effective address
register fleld.

Syntax: An

"

MEMORY ADDRESSING

REGISTER INDIRECT - The address of the
wwwwmww is in the address register specified by
the register €£1eld. In all but the jump and jump
to subroutine instructions, address register
indirect is classified as a data reference.

Syntax: (An)

ADDRESS REGISTER INDIRECT WITH POSTINCREMENT - The
address of the operand is in the address nom»unMn
specified by the register fleld. After being use m
the operand address 1is incremented. If the operan
is byte sized, the increment 1s by one. If it is
word sized, the increment is by two. If it is long
word sized, the increment is by four.

the address reglister 1s the stack pointer, to
ﬂmmv ﬂ:o stack pointer on a word boundary, Lf the
operand 1s byte sized. the stack pointer s
incremented by two.

Address register indlrect with postincrement 1is
classified as a data reference.

Syntax: (An)+

ADDRESS REGISTER INDIRECT WITH PREDECREHENT - The
address of the operand is in the address register
specified by the register fleld. Before being
used, the operand address is decremented. If it 1is
byte sized, the decrement is by one. If it is word
sized, the decrement is by two. If it is long word
sized, the decrement 1s by four.

If the address register is the stack pointer, to
keep the stack pointer on a word boundary, 1f the
operand 1s byte sized, the stack pointer s
decremented by two.

Address register indirect with predecrement 1is
classified as a data reference.

Syntax: —(An)

ADDRESS REGISTER INDIRECT WITH DISPLACEMENT - One

word of extension 1s required with this address
mode. The address in the address reglster is added
to the sign-extended 16-bit displacement Integer
of the extended word to get the address of the
operand. In all but the jump and jump to sub-
routine {instructions, address register {indirect
with displacement i3 classified as a data
reference.

Syntax: dl16(An)

ADDRESS REGISTER INDIRECT WITH INDEX - The address
of the operand is the sum of the address in the
address register, the sign-extended displacement
integer in the 1low order eight bits of the
extension word, and the contents of the 1index
register. The reference is classified as a data
reference with the exception of the jump and jump
to subroutine instructions.

Syntax: d8(An,Rn. W)
d8(An,Rn.L)

SPECIAL ADDRESS MODES

ABSOLUTE SHORT ADDRESS - The absolute short
address mode requires one word of extension. The
extension word contains the address of the
operand. The 16 bit address is sign extended
before it is used. In all cases except the Jump
and jump to subroutine instruction, this mode is
classified as a data reference.

Syntax: xxx.W

ABSOLUTE LONG ADDRESS -~ The absolute long address
mode requires two words of extension. The address
of the operand is developed by the concatenation
of the extension words. The high-~order part of the
address is the first extension. The low order part
of the address 1s the second extension word. In
all cases except the jump and jump to subroutine
instruction, this mode i3 classified as a data
reference.

Syntax: xxx.L

i fi i

PROGRAM COUNTER WITH DISPLACEMENT - This address

mode requires one word of extension. The address
of the operand 1s the sum of the address in the
program counter and the sign-extended 16-bit
displacement integer in the extension word. The
value in the program counter is the address of the
extension word. This is classifed as a program
reference.

Syntax: LABEL(BC)

PROGRAM COUNTER WITH INDEX - This address mode
requires one word of extension. The address is the

~sum of the address in the program counter, the

sign-extended displacement integer ‘in the 1lower
eight bits of the extension word, and the contents
of the index register. The value in the program
counter 1s the address of the extension word. This
reference 1is classifled as a program reference.

Syntax: LABEL(PC,.Rn. W)
LABEL(PC,Rn. L)

IMMEDIATE DATA - This address mode requires either
one or two words of extension depending on the
size of the operation. In a byte operation the
operand s the low order byte of the extension
word. In a word operation the operand 1is the
extension word. In a long word operation the
operand 1is in the two extension words. The high
order 16-bits are in the first extension word and
the 1low order 16 bits are in the second extension
word.

Syntax: #xXXXX

IMPLICIT INSTRUCTIONS

INSTRUCTION

IMPLIED REGISTER(S)

Branch Always (BRA)
Branch Conditional (Bcc)
Branch to Subroutine (BSR)

Check Reglister Against Bounds(CHK)
Condition, Dec & Branch(DBcc)
Signed Divide (DIVS)

Test

Unsigned Divide (DIVU)

Jump
Jump
Link
Move
nove
Move
Move
Move
Push

Trap

(JHP)

to Subroutine (JSR)

and Allocate (JSR)
Condition Codes (MOVE CCR)
Control Register (MOVEC)

Alternate Addr.

Space (MOVES)

Status Register (MOVE SR)
User Stack Pointer (MOVE USP)
Effective Address (PEA)
Return and De-allocate (RTD)
Return from Exception (RTE)

Ret.& Restore Condition Codes(RTR)
Return from Subroutine (RTS)

(TRAP)

Trap on Overflow (TRAPV)
Unlink (UNLK)
L.ogical Immediate to CCR
Logical Immediate to SR

PC

PC

PC, SR
SSP, SR
PC

SSP, SR
SSP, SR
PC

PC, SP

pPC, sp

SR

VBR, SFC, DFC
SFC, DFC
SR

usp

Sp

PC, SP

PC, SP, SR
PC, SP, SR
PC, SP
SSP, SR
sSSP, SR

SP

SR

SR

. F 1 J .
J ‘ i : f) il
- N . - . E

STACKS AND QUEUES

SYSTEM STACK

The system stack pointer is in address register
seven (A7). The system stack pointer is elther the
supervisor stack pointer (SSP) or the user stack
pointer (USP). Which pointer is used is determined
by the state of the S bit in the status register.
Each system stack £ills from high memory to low
memory. Address mode —(SP) creates a new item on
the active system stack. Address mode (SP)+
deletes an item from the active system stack.

On a subroutine call, the program counter is saved
on the active system stack. The program counter
and the status register are saved on the
soparviocor CtaSk Juling Lue prucessing Or traps

and interrupts. They are restored on return.

To keep the system stack alligned properly, data

entry on the stack 1is restricted to word
boundaries. If byte data is pushed on or pulled
off the stack, only the high half of the word is
changed.

USER STACKS

User stacks use an address register (one of A0
through A6). They can be filled from high memory
to low memory or from low memory to high. Some
things to remember vhen implementing and

manipulating user stacks are:

Using predecrement, the register is
" decremented before its contents are used as
the pointer into the stack.

Using postincrenent, the register is
incremented after its contents are used as the
pointer onto the stack.

Byte data must be put on the stack in palrs
when mixed with word or long data so that the
stack will not get misaligned when the data ls
retrieved. Word and long accesses must be on
word boundary (even) addresses.

For stack growth from high memory to low, use:

~(An) to push data onto stack
(An)+ to pull data off of stack

Register An points to the last (top) item on the
stack after either a push or a pull operation.

For stack growth from low memory to high, use:

(An)+ to push data onto stack
~(An) to pull data off of stack

Register An points to the next available space on
the stack.

QUEUES

User queues use a palr of address registers (two
of AO through A6). Queues are pushed from one end
and pulled from the other. Two registers are used
for the get and put pointers.

For queue growth from low memory to high, use:

(An)+ to put data into the queue
(An)+ to get data from the queue

After a put operation, the put address register
points to the next available space in the queue,
The wunchanged get address register points to the
next item to remove from the queue.

After a get operation, the get address register
points to the next item to remove from the queue.
The unchanged put address register points to the
next avallable space in the queue.

If using the queue as a clircular buffer, check the
address register and 1f necessary, adjust it
before the put or get operation is performed. The
address register is adjusted by subtracting the
buffer length (in bytes).

For queue growth from high memory to low, use:

~(An)- to put data onto the gueue
~(An) -~ to get data from the gueue

.
.

e

After a put operation, the put address register

points to the last item put in the queue. The
unchanged get address register points to the last
item removed from the gueue. The unchanged put
address register points to the last item put in
the gueue.

If the que is to be implemented as a circular
buffer, the get or put operation should be
performed £irst, and then the address register
should be checked, and if necessary, adjusted. The
address register is adjusted by adding the buffer
length (in bytes).

