68000

Why use a New OS & the 68000?
by Joe Bartel, Hawthorne Technology

—

Why Work With a New Operating System?

The small computer market is caught between two ruts
today. On the small side is the PC and on the large side is Unix.
The other players missed the boat by having a great (or so they
thought) interface with nothing behind it to do any useful work.
To be PC compatible is a dead end. The system is a kludge.

As developers try to squeeze the last bit of performance from
the PC there will be problems. It is true that there are several
million PCs in the world today. This doesn’t mean there is a good
market. Because the market is so large, it is hard (and expensive),
for a small company to make themselves heard. There are public
domain or low priced programs for every common application
that anyone wants. These are hard to compete with. The pressure
is to continue lowering prices while cutting profits. A business
person needs to look at what point he can no longer afford to
remain in this kind of market.

To break out of this rut a new system architecture is needed.
Use the PC and clones where they fit but start to forge ahead in
new directions. This doesn’t mean trying to run a PC program on
another machine. It is possible to emulate an 8086 on a 68000 but
a full PC emulation is not worth while. In every case so far the
emulation costs more than a PC clone. The interchange of disks
on the other hand is very economical and easy to do. This protects
the investment in data and makes it possible to add new machines
without giving up the old ones.

The first step to a new architecture is to have a new operating
system. It must be indpendent of a particular piece of hardware.
This doesn’t mean an operating system that can run on any
processor. It means not being tied to a limited set of hardware like
MS-DOS got tied to the PC hardware. The second step is to
separate the application programs from the operating system it-
self. To use networks or multiple processors there must be a clear
distinction between the logical and physical structure of the
machine. To do otherwise would be to set a limit on what can be
done with the operating system.

Bit map graphics and mice are good in some cases but to
hobble an entire system with tricks that are not often needed or
used is bad. The original use of mice was to allow people who
knew little about computers to retreive information from them.
They were not ones who had to put information into the com-
puter or the more experienced users who want low cost and high
performance. The operating systems like Mac and Atari are com-
plex to the point where they hinder the development of new
programs rather than helping. The windows that Microsoft has to
sell are no better. Look at any stock broker, they have mulitple
screens for dealing with different pieces of information at the
same time, not tiny windows on a single screen.

A very promising area to look at for the future is multiple
processor machines. With them, when more users are added to a
system, more processing power is added also. This makes it
possible to have multiple access without the slow down problems

The Computer Journal / |ssue #29

associated with trying to share a single CPU among many users.
For cost sensitive or low performance users the muliple user ap-
proach can be used for lowest cost. For applications where high
performance is important multiple processors can be used. If the
operating system is independent of the hardware then the same
program can be used in both cases.

Another area where multiple processors can be used to ad-
vantage is to split the operating system into component parts. For
example the file management system can be duplicated for each
disk in the system. Then when opening a file on disk A there
would be no operating system overhead imposed on the system
running disk B. If a disk is not involved then it would take no part
in the activity. This allows large numbers of users to all access
files at high speed if the load is balanced among different disks. A
remote disk and file system can be like a new resource that can be
easily added and integrated into a system. A company system can
start small and grow to almost any size without requiring that the
existing parts be replaced.

An individual workstation can have graphics and icons or
not as need or tastes dictate. This will allow some users to access
the system with icons but not impose that structure on other users
of the system. It also means that some users could have windows
and others could have more than one screen. Some users could
have a local floppy disk or printer too. This approach to things
opens a wide area of possible designs for working.

It is time to start planning for the future while the present
generation of computers is still adequate for today. If we don’t
start now we won't have the next generation when we need it. At
Hawthorne Technology we are working on new ways of doing
things. All of our programs are compatible with K-OS ONE at the
system call level. Our hardware varies a lot. We even use PC
Clones for some things. But any program that uses K-OS ONE
system calls to access the hardware, and doesn’t depend on special
terminals, will run on any K-OS ONE system. We intend to keep
this compatibility in the future for all systems whether
distributed, multitask or single task. You can join us in this by
using K-OS ONE or by writing applications to run with it. The
number of people using K-OS ONE is increasing every day. There
is a growing market for Languages and application software.
Anyone intarested in doing a package should contact us. We will
help out in iany way we can.

Why Use 5 680007

Most of the time it is not easy leaving an old processor and
going to a new one. On the old processor you are an expert and
know all the small things that can and will go wrong. When you
switch to a new processor you have to start all over again. So why
switch?

The 8 bit machines are limited and there is little room to grow
with them. The 68000 on the other hand has enough growth
potential to last for many years to come. There are other 32 bit

31

processors, but none of the others offer the same advantages as
the 68000.

After you start working with it, you will find that building
hardware with the 68000 is as easy or iq many cases easier than
building the same thing with an 8 bit processor. For small con-
troller projects there is even an 8 bit bus version (the 68008) that
comes in a 48 pin package. The 68000 and 68008 both have an E
clock signal output that allows you to directly connect any
peripheral device from the 68xx or 65xx families.

In most cases, the cost of doing the software for a project is
many times the cost of the hardware. All of the software cost has
to be paid for before the first unit is shipped. Hardware is paid for
as units are sold. The 68000 is easier to program than the smaller 8
bit machines. The mistake many people make is the idea that just
because you have 16 registers you have to use all of them. You
don’t. Just use the parts that you want and ignore the rest. After
you have some experience you can start using the other comman-
ds and addressing modes.

Inline code and programs in general can be as small for the
68000 as for any 8 bit machine. The reason many current
programs are so large is that they were written for the 8086
processor family, which is sloppy and many of them are written in
higher level languages with compilers that don’t generate very
good code. What was several lines of code for a Z-80 or 6502 can
often be done with a single instruction in the 68000.

The main limitation for the 8 bit machines is the small
memory space and the small size of the registers available. 1f you
want to work with more than 64k of memory you have to have
registers that are big enough to hold an address. This means that
without a full 32 bit register you will spend lots of time and effort
working on address pointers that sould be trivial.

The 68000 is much faster than an 8 bit machine for arithmetic
and full size pointer manipulation. For simple 8 bit operations
like those encountered in text editors it is true that the Z-80 is very
hard to beat. But if you need more memory to edit a large file or a
lot of features are added to the editor, things become difficult.
With a large address space you don’t have to page parts of the
program into memory from the disk. For spread sheets and
arithmetic, the larger register size of the 68000 is faster by far.

When you look at the small cost difference between the
68000 and the older machines the choice becomes easier. Keep the
8 bit machines for existing products or for very high volume or
where there is not much programming involved but for new
products go with the 68000. It is easier to program, faster, and has
more of a future.

Starting With HTPL

Welcome to HTPL programming. If you are familiar with
Pascal, Modula or Forth then HTPL will have many parts that
you already know. From Forth we borrowed the use of RPN
notation for expressions. From Pascal and Modula we borrowed
a structure. HTPL is good for writing small, fast programs. It can
also be extended to fit any special needs in other programming
areas.

To start learning any new language it helps to see a complete
example in that language. The example can then be related to the
same program in a language you are more familiar with. This
example is a simple but complete HTPL program that displays
*“Hello World!"’ on the console.

The first line is a comment. When anything is placed in
parenthesis in an HTPL program it is treated as a comment and
ignored. The word ‘“‘root’’ indicates that this is not an overlay,
and tells the compiler to include the runtime library with the

32

generated object code. The word ‘‘program’’ tells where the
program will start executing when it is run. The main part of the
program ccntinues until the first “‘end’’. The second ‘‘end”’ in-
dicates the ¢nd of the entire file being compiled. The words in the
double quote marks are a string constant. When a string constant
is encountered the contents of the string are saved in a data area
and the address of the string is placed on the evaluation stack.
The word *'sprint’’ is a call to a run time library routine to print
the null terminated string. The 13 is the numeric value of a
carriage return character. It is pushed on the stack. The word
“‘putc”” is another library routine that prints the low 8 bits of the
top of the stack as a single character. The ‘“10 putc’’ sends out a
linefeed character. .

Sample Program
root
program
““Hello World!"’ sprint
13 putc 10 putc
end
end

This is a complete HTPL program. When it is run it will
display ‘“Hello World!’® on the terminal. Most of the tokens are
refered to as words in HTPL just like in Forth.

Editor's Note: When this file is compiled, the executable BIN
file including the run time library is only 1,446 bytes. This is much
smaller thar a similar Pascal or C program.

HTPL Compile and Run

To conipile and run an HTPL program you first write the
program using any editor. The compiler assumes that all charac-
ters have the high bit a zero. The output of the compiler is an
executable tinary file.

To corapile a program type HTPL at the command line
prompt. Af:er the compiler is loaded it will prompt for the name
of the first input file. Next it will prompt for the name of the out-
put file. Any extension can be given for the output file but the
command processor will only try to load and execute files that
have the extension *‘.BIN”’. Next you will be prompted for op-
tions. If you enter an **N’’, there will be no listing of the source
code as the program is compiled. If you put an ‘S’*, there will be
no symbol table listing after the program is compiled. The options
can be given in any order, The complier reads the source program
and any files involved twice. The run time library hex file “‘HT-
PLRTL.HEX' must be on the default drive for the compiler to
find it. An overlay doesn’t include the runtime library so it is not
needed. You can include as many source files as you want at com-
pile time so 2ach source file can be kept small to be easier to edit.

Stack Notstion .

The coinmands in the manual have a comment describing the
stack before and after the call to the routine. This is necessary
because in a stack oriented programming environment the
programmer has to keep track of the stack. Errors in the size of
the stack is perhaps the most common kind of error made.

The let:ers or words before the **--'' are the contents of the
stack before the call. The top of the stack is on the far right hand
side. The words or letters after the *“--’’ are the contents after
returning from the routine or after the word is executed. If a word
appears before and not after it has been used up. The number of
items before and after the call indicate how the stack will grow or
shrink wher the routine is run. If a routine calls itself then this

The Computer Journal / Issue #29

can be used to estimate how many levels of stack will be required
to run the program.

EXAMPLE: ab--c¢
Shows the stack change: ‘b top
a c
- -— bottom
stack stack
before after

What is RPN, and Why Would You Want to Use It?

There are three different ways to mix operators and the
things they operate on: prefix, infix, and postfix. These simply
mean that the operator comes before the operands, between the
operands, or after the operands. Most of the common
languages like BASIC, C or PASCAL are

to right and some the other way. With RPN languages things are
much simpler. If it is data it goes on the stack. If it is an action
word, the action happens.

In an RPN language the programmer has more control over
what kind of code is produced. The sequence of operations is
given by the source code. You don’t have to worry about the
compiler rearranging the order to get better code. Even whern
using an optimizing compiler you are assured that the operations
will be executed in the sequence given.

RPN languages are more flexible with the way arguments are
passed to subroutines. You can pass parameters by value and
parameters by reference in a single call.

The :tems on the stack become abstract items. They can be
used as values or addresses. They can be used as byte pointers,
word pointers, long pointers, pointers to structures, or pointers to

infix languages. LISP is the only common
prefix language. Postfix languages,
refered to as RPN (Reverse Polish
Notation), are represented by Forth,
PostScript, and HTPL. The Teco editor
used RPN. Adding machines all use RPN
and most print_ing desk calculators use
RPN. Each notation has its adherents. So
why use RPN?

The compiler for an RPN language is
smaller and simpler than the compiler for
an infix algebraic language. A large por-
tion of most compilers is a syntax analysis
routine that converts the source language
to an internal RPN format. If the source
is RPN this step is eliminated. When a
subscripted variable is referenced a lot of .

CSE S

»

code needs to be generated to calculate the Mounts to Side of Drive *+ K-0S ONE, the 68000 Operating
address to use. In RPN these calculations * +5y 2A, +12 for RS-232 System {source code included)
are explicit rather than hidden. For ex- * Pover Connector same as * Command Processor (w/source)

pressions, all an RPN compiler needs to
do is push any operand on the evaluation
stack and call or generate code for any
operator.

In an RPN language, user created
operators look the same as the built in
operators. When a subroutine package is
used to extend an infix language the sub-
routine calls are very different from the
built in operators. If the extensions look
the same as the built in operators they are
easier to use and the whole program has a
more natural look about it. It is easy to
create a special set of words for graphics,
statistics, mathematics or data base
programs. By the time a conventional
language has been extended very far it
starts to look more like LISP than
whatever it started out as. An RPN
language in contrast looks the same no
matter how far it is extended.

An RPN language is much simpler to
learn than an ailgebraic language. There
are no rules of associativity or precedence.
The operations are done in the order
specified. In the C language there are 14
levels of precedence. Some associate left

L x L

For your

®

68000

32 bit Features 7 8bit Price

-Hardware features:

* 84HZ 68000 CPU

1770 Floppy Controller
2 Serial Pcrts (68681)
General Puroose Timer
Centronics Printer Port
128X RAH (expandable to
512K on board.)
Expansion Bus

5.75 x 8.0 Inches

disk drive
Add a terminal, disk drive
and power, and you will have
a powerful 680800 system.

ASSEMBLED AND TESTED OMLY .

*

K-0S ONE, 68000 OPERATING SYSTEM

existing 64000 hardware,
Operating System package for only $50.00. K-0S ONE is a powerful,
pliable, single user operating systém with source code provided
for operating system and command processcr.
read and write MS-DOS format diskettes with your 68000 system.
The package also contains an Assembler,
language)} Compiler, a Line Editor and manual.

SHIPPED ON AN M:3-DOS 5 1/4" DISKX.

Order Now:

(503) 254-2005

SINGLE BOARD COMPUTER
$395.00

-Software Included:

* Data and File Compatible with
MS-DOS

* A 68000 Assembler

* An HTPL Compiler

A Line Editor

... . $395.00

x L X L X L L » * 4 ® ® *

"

you can get the K-0S ONE

It allows you to

an HTPL (high level

... $50.00

R * * x * x x * = = ® ® ®

HAWTHORNE TECHNOLOGY

8836 S.E. Stark
Portland, Or 97216

Visa, MC

o~

The Computer Journal/ Issue #29

33

strings. Different numbers of parameters can be used by the
called routine depending on what is found on the stack. A
procedure can return a varying number of results depending on
what happened. Conventional languagesidon’t offer this kind of
flexibility. The 68000 is a very good processor to use with an RPN
language. All eight of the address registers can be used as stack
pointers. In the other contending micros you have only a single
stack pointer and that is used for return addresses. The 68000 also
has a very effective set of opcodes that make for small efficient
programs.

HTPL has very low overhead on procedure calls. In HTPL
there is only a BSR or JSR to get to the procedure and an RTS to
get back from the procedure. Any arguments used by the
procedure are found on the evaluation stack. This means that
there is no need for an explicit transfer of arguments.

Many new languages like Post Script are using RPN because
as a subject gets more abstract the use of a stack to hold operands
becomes more convenient. The algebraic languages were derived
from math equations. When computing is less numeric in nature,
it is useful to have a stack for a short term memory to hold what is
being worked on,

There are not many books or articles on theory for RPN
languages. In many cases this is because writers write about things
that are easy to write about. If you look at any book on compilers
you find good coverage of syntax and very little coverage of code
generating. If you write a compiler you spend lots of time on the
code generating and relatively little on the syntax.

Why Not Forth?

Because Forth is the best known of the current RPN
languages many of it’s quirks are assumed to be in all RPN
languages. While some of these disadvantages may be true with
Forth, they are not neccessarily true about all RPN languages.

RPN and threaded code are not the same thing. RPN is a way
for a programmer to describe the problem to the computer.
Threaded code is a technique for generating object code.
Threaded code has been popular for Forth on microprocessors
because it allows you to create a very fast interpreted instruction
set. For 32 bit machines like the 68000 there is no real need to use
threaded code.

Incremental compiling is also a technique that is often
associated with RPN languages. This was a technique used to
create an interactive environment without the slowness of a con-
ventional interpreter. Many RPN languages are now compiled.

As you can see, RPN languages do not need to be feared.
The weak points of popular RPN languages have given this
method a bad name. One it does not rightly deserve. It may seem
like an unnatural method at first. This is due to early mathamatics
training. Anyone who has learned to use a 10 key adding machine
has learned to use RPN with postfix operators. Most adding
machine operators wouldn’t recognize the terms, but after their
first couple of weeks training, they don’t even think about the or-
der they enter the information into the machine. Ask someone
you know who uses a 10 key by touch, what order they put the in-
formation into the machine. If they don’t have a machine they
can try it on to find out, they will have to think it through
keystroke by keystroke. The actions have become automatic. It
isn’t so unnatural after all.

HTPL Programming Techniques When starting to use
any new language there are lots of little tricks and
techniques that you learn to make it easier and faster to
write programs. Some of these are very dependent of the

34

kinds of programs that are being written and some are of a
much more general nature. For many languages there are
collections of algorithms. These can be used to write a
good sort program or to manipulate a data structure.

HTPL is a stack oriented language. 1f a stack is not a
familiar thing, code can be produced by making a literal
tranlation of simple algebraic code. Frequently used code
sequences can be given a name and made into a procedure.
The use of many small procedures results in a slight speed
penalty but tends to make the object code generated a little
smaller.

Because a stack is 5o easy to use, there is a tendency to
try to do too many things on the stack and save too many
values there. You should avoid ever having more than four
values on the stack at any time. Saving a value in a tem-
porary variable is not that hard. Having the wrong number
of items on the evaluation stack is probably the most
common error that occurs in RPN languages. The reset
command is used to reset the return and evaluation stacks.
Sometimes I use reset as a safty mechanism. When I’'m not
sure if the stacks are OK I use it to force them into a known
good condition,

Strings and Characters

Many of the program modules that
are used in the K-OS ONE system deal with strings or character
manipulation. In the early days of computing, the processing of
numbers was most important. Now it is more important to be able
to easily manipulate characters. The stack is used to pass single
characters or the address of a string. HTPL uses the C convention
where a string is a group of bytes that ends with a null or zero
byte. A string is referenced by pointing to the first charcter of it.
Also by convention, a valid pointer can never be equal to 0. That
is refered to as a null pointer and it means that it doesn’t point to
anything. Because all stack values are 32 bits long, a string can be
kept any place in memory.

The first two routines below deal with adding a character to
the end of a string that is being built. In both cases a pointer is
used to save the character then the pointer is incremented so it will
be ready for the next use. In some cases it is possible to have
characters and pointers on the stack. In most cases however it will
be easier if either the character or the pointer is in memory. A
short assemtly routine can be added to the run time library to do
many of these things if they are used a lot.

In the first case, the destination pointer is on the stack. The
item is placed on the stack. Then the over is used to make a copy
of the address to store the character. The !1 uses the character and
the copy of the pointer. The + 1 then increments the pointer for
next time.

In the second case, the destination pointer is in a variable and
the character is on the stack. First we get the pointer on the stack.
We then duglicate the pointer so that we will have a copy of the

“pointer as it is. We increment the top copy and store it back in the
variable that holds the pointer. The other copy of the pointer that
wasn’t increriented is used by !1 to store the character.

Add a character to a string:
l. if the destination pointer is on the stack:

@item over !l +1

The Computer Journal / Issue #29

2. if the item is on the stack:

@pntr dup +1 !pnter !l

i

Get the next character using a pointer and return it:

@pntr dup +1 !pntr @1

Change lowercase letters to uppercase letters:

if dup ‘a” ‘2z’

range then 32 - end

Looking for first space, (pointer is on stack):

while dup @1 °

Reader's Feedback

(Continued from page 4)

take a 64 pin header and replace the Z80
with a HD64180Z, if the HD64180Z will
run at 4 MHz. [think my 64K chips will
baulk at 6 MHz. :

If this works I plan to remove the 64K
chips later and replace them with 256K
chips and bring the system up to 6 MHz
along with new ROMS.

At this point [am a systems program-
mer. Also am learning to type and will try
to learn assembly language programming.
There is a lot to crowd into my later life. I
am 72 now.

What do you think of the idea?

Any help you can give me will be greatly
appreciated.

Hiram Desantis
1896 Keewin Ave. N.E.
Palm Bay, FL 32905

How about some of you hardware
gurus giving Hiram a hand on this project.

Disk Formats

The big issue around here is disk for-
mats. Number one is getting other
people’s files moved to the Macintosh
network, from IBM, CP/M, HP 31",
Tandy 100 312", etc. Number two is
keeping all the files on the CP/M systems
accessible when 8” SSSD seems to be ob-
solete and the CCS 2422 (at least mine)
won’t read/write the Ampro or Kaypro
formats everyone seems to be using for
disk exchange.

If Ampro format is the new CP/M
“‘standard,’’ how about publishing all the
details & hints on how to read it? Or a
series of programs to force the common
controller chips to read it (1793, 765A,
etc) and only require the proper I/0 ports
to be patched in?

The Computer Journal / [ssue #29

".<> do +1 end

Maybe my problem is trying to use my
Teac 55G (dBM-AT style 8” -ompatible)
drives in their 5" 300 rpm mode, instead
of regular 40 track drives,.. Has anyone
made this work?

L.A.

Jay Sage Fan

The past year has been terrific! Jay Sage
is a real boost. His insight and the
brilliance of his work is monumental.
Also, his understanding of those of us
with small TPAs (Osb 1, hard drive) is an
uplift.

I have used his new *“‘SUE’’ to make
programs leave ZCPR33, run in full TPA,
and then return to ZCPR33, fantastic!

Keep Clark Calkins writing about
debugging and Thomas Hilton’'s
educational articles.

Thanks for a terrific year.

AW,

780 User

I have two systems — both Z80 based

My “‘main”’ system is a TRS-80 Model
I1 with 256K memory, two 3" 1 Mbyte
floppies, and a high resolution graphics
board. I run OASIS, a multi-user OS on
this computer. My other system is a
Televido 806 with two 5% " floppies, run-
ning CP/M 2.2x.

1 would like to see articles on inter-
facing hard disks to $CSI con-
trollers — compatibilitiy of various SCSI
based controllers with various hard disks,
command sets for the controllers, exam-
ple drivers, comparisions of different con-
troller/disk combinations for speed and
ease of use, etc.

I would also like to see more articles cn
interfacing speech chips (SP0256) and
sound chips (AY-3-8210/8212) to varicus
buses, using IBM keyboards and monitors
with non-IBM equipment... (Which
reminds me, pin outs and signal descrip-
tions for the IBM keyboard, monitors,
and other peripherals would be extremaly
useful to us non- IBM types to support in-
terfacing attempts.)

L.S.

Miscellaneous Reader Comments

How about a wire wrap video board for
the IBM PC Bus?. Possibly using one of
the new graphics controller IC chips.
Suggest you drop CP/M & Z80.

Would like to see more hardware and
software articles for MS DOS, especially
AT systems.

I am renewing because you have more
articles on MS DOS. I am interested in
understanding MS DOS so [can write
programs such as device drivers or other
enhancements to MS DOS.

Like C.D.M. (Reader Feedback, Issue
#27), 1 was afraid that you might be
following in the footsteps of Com-
munications and Electronics, which I once
thoroughly enjoyed because of its blend
of hardware and software material
(generally not too complex for my
capabilities).

I was about to drop my subscription tut

decided to wait for issue #27 before [
made my decision. Happily (as owner of
an SB-i80) jay Sage’s column appeared
for a third consecutive issue with promises
of continuing regularly. This alone -was
enough to make me reconsider. Also Jor
Schneider’s article on the HD64180 put
the icing on the cake.

Please don’t forget us hardware hob-
byists (expert though we may not be).

I am still interested in CP/M stuff (MNor-
th Star). I recently acquired a Sage 11 and
would be interested in an article on how to
install K-OS ONE on it.

My systems are Ampro Z80 Lirtle
Board (1A), STD Homebrew, expancled
Little Board on STD Bus.

Just in — Hawthorne Little Giant. t's
gonna need hack ports of: VDQ,
Disk7/Sweep, NULU, Small C, Super-
zap, Fbad, MDM740, Unera, Vfiler,
DDT/SID, Config, Multidsk.

I’m designing/programming boards for

(Continued on page #1)

35

