K-OS ONE and the SAGE
Demystifing Operating Systems

by Bill Kibler

The people at Hawthorne Technology
have put together an inexpensive, but ef-
ficient operating system for 68000 com-
puters, K-OS ONE® . The original design
concept was for an inexpensive system, in
which all the code was provided, so that
hackers could still do something on their
own. We find that most systems today
have become so complex that it is im-
possible, in many cases, to get to the har-
dware directly. These companies in fact
have gone out of their way to make sure
that the user can not change or modify
their system in any way. Now that is fine if
all you want to do is run commercial
packages of software. .

If your desires run to making a system
to protect your home, or to talk to people
when you are not around, a non standard
design might be more to your liking. If
you are just starting to get into hardware
design and want to run special programs
to test out that design, multi-layers of
operating system are not what you want.
All these design considerations require the
operating system to be simple and straight
forward. The installation should be easy
and provide for many options or levels of
development.

All of these design considerations were
behind the development of the K-OS ONE
operating system. We felt that the 68K
was superior to the more common CPUs
in use today, but the lack of an inexpen-
sive operating system was preventing
people from discovering its features. Like
any project, this one has some learning
and work attached to it. Most people find
operating systems a mystical concept, and
feel that writing operating system
programs is beyond their capbilities. What
I hope to do here is demystify the topic,
especially the installation of K-OS ONE.

Getting Started

The major stumbling block for most
people is just deciding where to start. It
took me several days of looking at various
things before I could chose a direction to
go. The first thing needed is a computer
system. If the system is already running so

18

much the better. If the system is not run-
ning, special problems must be handled
first. What I am going to cover here is
bringing up K-OS on a Sage/Stricle com-
puter. At a later time I will expand on get-
ting a system up from scratch for the first
time. What we are interested in here now
is what steps are needed and what you will
need to learn to get the job done.

The first place to start is learning about
your current system. The Sage is a 68K
based unit, mine is five years old. The unit
came with all the books and software in-
cluding source code for all the current
PROMS AND BIOSs. Without the source
code it is almost impossible to bring up
older systems. It is possible with just
schematics to figure out how everything
talks to each other, but looking at all the
older programs, will make some of the
items quickly clear. 1 printed out all the
Sage source code, about two inches wor-
th, which is what most complex system
will be—very long.

To help us understand how to start, we
need to review how, and what steps, occur
in getting the operating system running.
The hardware on reset goes to a PROM
which must contain a program to start the
system. This is called a BOOT program.
The boot program will initialize the
system enough to start some form of

_operation. The better systems also contain

a DEBUGGER or MONITOR, should
some problem or special action be needed
to bring it up. In the Sage, the PROM
reads some switches on the back and
determines which actions to take. Nor-
mally it will test memory, then boot the
system. Options are to not test memory,
and go to debugger. In the debugger, a
simple command will start the system, or
you can disassembie the memory._

After the reset, we have a number of
functions that must be performed, such as
initializing the 1/0 devices. The initial set-
ting of the baud rate for your serial ter-
minal is taken from the switch setting in
the Sage. The parallel devices also need to
know which lines are to be input and
which to be output. The disk drives

should be reset to track zero and maybe
even checked as to what type they are.
These are the typical actions that occur af-
ter reset. If you enter into the debugger, at
this point you can explore your system or
do a ““IF” in the Sage which starts the
booting action from a floppy drive. At
that point this system goes and does its
boot action which means loading a
BOOTSTRAP program at a fixed
location and jumping to it.

Each operating system will have its own
disk format and number of files which
must be loaded in order to bring up the
system. Most operating systems are
broken into three parts; BIOS, BDOS,
and COMMAND. The BIOS stands for
Basic Input Output System, and does all
the talking to the hardware directly. The
BDOS is your Basic Disk Operating
System and provides a uniform means of
having programs talk to different forms
of hardware. The programs will make
calls to the BDOS and it will convert them
into the required number of commands
needed to achieve the task requested.
Typically you may have a terminal and a
printer installed. By sending the proper
command you can ECHO all output to
your terminal to the printer. The BDOS
handles the echo-ing while the BIOS ac-
tually makes separate outputs to the ter-
minal and the printer, each being a dif-
ferent routine in the BIOS.

The COMMAND processor takes
keyboard input and interprets it into a
number of predefined operations, such as
displaying a directory of the disk. To
display that directory it must request the
BDOS to read the disk for the directory
information, format that information and
then send it to the terminal port through
the BIOS via the BDOS. When running
programs, it is typical to replace the com-
mand processor with your program, and
then reload the command processor after
your program ends. That operation is
called warm booting.

In the K-OS those programs are
SYSTEM.BIO for the BIOS,
OPERATE.BIN for the BDOS, and

The Computer Journal/ Issue #31

COMMAND.BIN for the command
processor. In the 68000 the components
can talk to each other by using regular
jump tables and interrupt, or trap vectors.
K-OS uses both tables and vectors. To
bring the system up you will need to set
values for both items, but then we are get-
ting ahead of ourselves a bit here.

Bootstrappiog

We that said after reset the system can
automatically boot from disk or you can
clo this manually. In either case the Sage
process is the same, two sectors are loaded
from disk into memory location 400hex
and then the system jumps to it. This is
typical of all boot operations, what is dif-
ferent is the number of sectors, location,
and a special Sage signature. It is at this
point that we now get out our books and
determine the format of our disk. The
IBM PC line of disks use a 40 track for-
mat of 512 bytes per sector and are 9 sec-
tors per track. The PC can read, and did
use, other formats, but this is now the
most common format. The next bit of in-
formation we need is the location of the
directory information. The directory, or
the information that tells you where the
files are stored, is contained in two sec-
tions, FATs and directory entries. The
PCDOS system is based on the original
CP/M operating system which, only had
32 bytes set aside for each entry in the
directory. In CP/M, the sectors that a file
used were placed with the file name,
which limited it to a 16K file size before
another directory entry was needed.

The PC designers wanted to add date
and time, as well as to allow larger files, so
their answer was using File Allocation
Tables or FATs. These tables tell the
operating system which sectors were used,
based on a starting pointer contained in
the directory entry. Typically the FATs
are sectors 2 through § with the directory
entries being sectors 6 through 12. With
each side containing only 9 sectors, direc-
tory entries 10, 11, and 12 are on side 1
(the sides are 0 and 1). The bootstrap PC
loader is on sector 1 only and contains
data other than the bootstrap. The book 1
used for most of the PC information is
Peter Norton'’s Programmer’s Guide to
the IBM PC, and I can recommend it for
more details.

You need to know this information,
because K-OS uses the PC disk format.
Without this compatibility the porting
over of the system would be considerably
more complex and time consuming. All
things are not totally simple however, as
the Sage is not PC compatible. What we

The Computer Journal / 1ssue #31

Boot Loader Listing

e e Ba Ba W We Be We e we We We e Mo Wa We Wa Wo Wa We Wo W W e w2 We ws we o we Wh

KOSONE BOOTLOADIR ROUTINE - PC COMPATIBLE

Boot loader routine for the Sage/Stride computer,
wr{tten Sept 1987 by BI!| Kibier some portions
suppiled from HTPL sample BIOS: BIOSAMPL.ASM.

The Sage computor loads sector | and 2 when given

a boot command "IF". Each sector is 512 bytes long.

The first four bytes of the boot sector sust contaln
the word "BOOT™ or the boot loader In the PROM wl ||
error out. The code is loaded at 0400hex and the program
wlll jump to 0404h after checking for "S800T". Also the
sectors | and 2 are logical blocks, 0 and 1 (1). The
Sage PROM reads sectors by logical block numbers not
track, side, and sector.

The PC disk format |s compatible as far as sector and
track utilization. The PC uses only the first sector for
boot locader with the FATs starting at sector two. PCs use
Clusters of two sectors to a block while the Sage |s

one sector per block for the flioppy disks. This will
require doubiing of the cluster number and subing one

to get the propir sector number for passing to the

Sage FDREAD routlnes.

The program ioads ONLY the FIRST FAT and FIRST DIR
sector, to save space. This means that the SYSTEM.B!0O
or BIOS flile must be loaded within the first 15 flles!
The BI0S code | loaded at AOCh, space between 400h
and AOOh can be used after BIOS is completely {oaded.

TITLE "SAGE BOOT.ASM PC COMPATIBLE BOOTSTRAP LOADER"™

LA 4 4 &+ & (n l G i Ns 2 s sl st 2 2222222222 2aladgalls’)

BOOT EQU 00000004H

B0OT_CODE EQU 00000400H ;BOOTER LOCATION
BOOT_VAR EQU 00000SEOH ;SCRATCH AREA

BOOT FAT EQU 00000600H ;FAT READ WITH BOOT
BOOT DIR EQU 00000800H ;DIR | LOCATION

B10S CODE EQU 00000AO0H ;810§ CODE

TERMTEXT EQU OOFE0O18H sPRINTOUT TEXT STRING
TERMCRLF EQU OOFECO1CH ;PRINTOUT CRLF
FDREAD EQU OOFEQO28H ;READ FLOPPY DISKETTE
TOTRACK EQU 40 ;TRACKS PER DISK
TOTSECT EQU 9 ;SECTORS PER DISK
TOTSI1DE EQU 2 ;SIDES PER DISK
DEBUG EQU OOFEO0O10H ;DEBUG ENTRY

*84s2sessseestss SYSTEM INITIALIZATION seessee .

.. we

ORG B0OT_CODE
DC.B "BOOT® ; Sage checks for this statement
PROM starts program here...

LEA BOOT_VAR,A3
MOVE.L (A7)¥,RTNADD(A3)
MOVE.W (A7)+,DRIVE(A3)

JSR TERMCRLF
LEA INITMSG, AO
JSR TERMTEXT
JSR TERMCRLF

;tlag to booting is going on

MOVE.¥ #5,~(A7)
LEA BOOT_DIR,AO
MOVE.L AO,DIRPN(A3)
MOYE.L AO0,-{(A7)
MOVEA.W #512,A0 ;one sector load
MOVE.L AO,=(A7) ;PUSH sector length
MOYE.W DRIVE(A3),=(A7) ;PUSH drive number
JSR FDREAD ;90 read sector

;load tirst DIR sector
;DIR load locatlion
;ALSO LOAD DIRPOINTER
;PUSH location on stack

BNE.S ABORT ;90 debugger if error

LOAD BI0S

LEA BOOT_VAR,A3 ;setup pointer

MOVE.L #SYSNAM,FNAMPN(A3) ;load string polinter
MOVE.L #B810S _CODE,LOADPN(A3) ;LOAD B1OS ADDRS
BSR FINOFIL -

BNE.S ABORT
LEA MSG1,AC
JSR TERMTEXT
JSR TERMCRLF

390 debugger

BNE.S ABORT

19

learn here is that the Sage loads sectors |

jevessessasaseess SET UP DONE, START A PROGRAM

and 2 as the bootstrap program. Sector 2 ™ B10S CODE ;START B10S
however is the first FAT and cannot con- ; -
. . 2222222222222 22] 2 3
tain boot program. This leaves 512 bytes ASORT LEA Msggukg NOT LOAD SYSTEM
for the program, less four bytes for JSR TERMTEXT
“BOOT"”. Sage not only loads the ISR TERMCRLF
e e DEBUG ;EXIT TO DEBUGGER
program, but then checks to see if it is the RTS o=
correct program. The PROM reads the H ; R
first four bytes looking for *‘BOOT", if ; SYSTEM LWF?SgT;TEENM IN DIRECTORY
not found it will abort to the debugger. FINOF |L :
. X MOVEQ #15,D0
When found it jumps then to 404hex (just FIND20 MOVEQ #10.D1
pass ‘‘BOOT') and starts the BOOT- MOVEA.L DIRPN(A3),A0
< MOVEA.L FNAMPN(A3),Al
STRAP. The bootstrap must then load FIND30 CMPM.B (AO)+,(A1)+ ;COMPARE DIR ENTRY TO FILE NAME
the BIOS, jump to it, and then the BIOS DBNE DI1,FIND30
loads BDOS and command programs. BNE.S FIND4O
prog RTS SRETURN TRUE IF EQUAL
FIND4O ADDI.L #32,DIRPN(A})
The Real Work ’ %’320 E‘J?.EéNDZO ;ENDFOR
. The re.al work involves getting enough RTS ! SRETURN FALSE IF NOT FOUND
information and program samples from o LOAD BINARY FILE INTO MEMORY
the Sage BOOT loader, PROM, and BIOS ORI OVEAL DIRPN(AS) A0 :GET OIR.START
listings to figure out how to load the ADDA.L #26,A0
: : BSR LDINTELWORD
BIOS. What must also be considered is BSR BLKTOREC ;CONVERT START BLOCK TO START RECORD
handling the FATs and DIR data as they - MOVE.L 0O0,RECORD(AZ)
are in INTEL hex format. The 68000 zéi’\t %g":é"”"\" iGET DIR.SIZE
stores address or data in memory with BSR LD INTELLONG .
high values followed by low values. The g?/::‘L :3‘[‘”-00 ;CALC NUMBER OF RECORDS TO LOAD
Intel processors store the same infor- LSR-E 01.00
mation in LOW then HIGH, or backwar- MOVE.L DO,RECCNT(A}) ;FOR ALL RECORDS IN FILE
ds from real life (this is one reason people LOAD20 BSR TRANSFORM ;PUSH NEXT SECTOR/BLOCK
like Motorola products). Not only are MOVE.W SECTOR(A3),-(A7) ;PUSH sector number
values in the directory stored LOW then mxé’\LL kg“_’?’:f,’)m"‘o -PUSH location on stack
HIGH but the FAT table has 12 bit values MOVEA.W #512,A0 ;one sector load
with the bits shifted around. It is a bit mzst 33:35(?1%) AT) fsgg: :9‘;‘*0" '%9:"
funny, so just get a book and read about ISR FOREAD ! rive nume
it. The answers to our problem are found ADDI.L #512.LOADPNIAS) :ADY POINTER
in the sample BIOSs supplied by Joe Bar- BSR NEXTREC iCALC NEXT RECORD NUMBER USING FAT
tel who wrote K-OS. These sample BIOSs SUBQ.L #1,RECCNT(AD)
show just how to manipulate the Intel bits S#g's LOAD20 JENDFOR

and FATSs with 68000 assembly language.

. F
There are several ways we can boot load CALC NEXT RECORD USING FAT

NEXTREC MOVE.L RECORD(A3),CO

the BIOS. If code length was no problem, BTST.L #0,00 ;)F ODD(RECORD) THEN
irec- BEQ.S NXRC!O .
we would load all the FATs and direc BSR RECTOBLK ;RECORD=BLKTOREC(NEXTBLK(RECTOBLK(RECORD)))
tories, shuffle through them till we found BSR NEXTBLK
our program, and ihen load them. Space g:i s %E%EC
being limited, | decided to cheat a bit. I let NXRCIO ADDQ.L #1,00 sELSE RECORD = RECORD +1
the PROM load not only the boot NXRC20 MOVE.L DO,RECORD(A3)
RTS

program, but also the first FAT. 1 ; CONVERT RECORD NUMBER TO FAT INDEX
followed that by loading the first directory RECTOBLK ;
sector. Next I checked those two sectors Eg'LL ':zégo
for the file and its FATs, loading same. ADDQ.L #2,D0

. . . RTS
This requires that the BIOS be loaded fir- ; CONVERT FAT INDEX TO RECORD NUMBER
st, before any other programs. You can BLKTOREC
load it several times and even a few others SUBQ.L #2,D0

LSL.L #1,00

(not more than 16), but I would ex- ADDI.L #12,00

1 i i RTS
periment with a freshl.y formatted disk : GET NEXT BLOCK IN FAT CHAIN
and only the three files first. NEXTBLK MOVE.L 00,0

The next question is how do I get them ADD.L D1,D0 ;TABLEPO!INTER=BLOCK®3/2+FATBUF
on the disk, especially the boot loader. ng:t 2}'38
The PCDOS comes with DEBUG as a LEA BOOT_FAT,AQ
utility for reading disk data as well as QDsgA'L Egi:%_:umo
checking memory. I would look most of BTST.L #0,01 ;IF PREVIOUS WAS ODD
the commands up in the manuals first so BEQ.S NXBLIO

P . . LSR.L- #4,00 ;THEN SHIFT QUT LOW NIBBLE

you understand what you are doing. This RTS

20

The Computer Journal / Issue #31

NXBL1O ANDI.W FOFFFH,DO;ELSE MASK OFF HIGH NIBBLE

RTS
H LOAD A WORD STORED [N INTEL FORMAT
LDINTELWORD

MOYEQ 40,00

MOVE.B 1(A0),00 |

LSL.L 78,00

MOYE.B (A0),DO

RTS
; LOAD A LONG STORED IN INTEL FORMAT
LDINTELLONG

MOVEQ #0,D0

ADDQ.L #4,A0

MOYE.B -(A0),DO

LSL.L #8,00

MOVE.B8 =(A0),DO

LsL.L #8,00

MOVE.B ~-(AQ),DO

LsL.L 78,00

MOYE.B -(A0),D0

RTS
j==——=—===w===ee CONVERT LOGICAL RECORD TO SECTOR/SAGE BLOCK
TRANSFORM

MOVE.L RECORD(A3),00
MOVE.W DOQ,SECTOR(A3)

seeseersesestess RUN TIME CONSTANTS Seeevesve

SYSNAM DC.B8 "SYSTEM 810",0
INITHSG DC.B "HTPL-SAGE BOOTSTRAP®,0
MSGI DC.B "LOADING BIOS®,0

MS62 DC.B "READ ERROR™,0

.
»
a2 i s 2222 00 e a2tz vmlmss RS 25 S B R E AR HHH B R

ORG BOOT_VAR
VARS EQU $

RECORD E?J $-VARS
0S.L 1 ;LOGICAL RECORD TO READ.
FNAMPN EQU $-VARS /RITE
0S.L 1 ;LOAD FILENAME
LOADPN EQU $-VARS
0S.L 1 ;LOAD ADORESS
DIRPN EQ $-YARS
DS-L 1 ;DIRECTORY ENTRY
RECONT EQU $-YARS
0S.L 1 ;LOAD RECORD COUNTER
RTNADO EQU $-VARS
0S.L 1 FRETRUN ADDRESS
DRIVE EQU $-YARS
DS.L 1
SECTOR EQU $-VARS
DS.L 1
END

~F100 1000 00
~NBOOT . HEX

we s we we W wr we

To write this to disk use the following commands
A>DEBUG ; load debugger I

;Clear memory

;nams of source flle to load .

-L iload flle Into memory at 100hex

“WCS:400 1 0 | ;wrlte memory starting at 400 hex

jwrite drive B sterting with loglcal
;jsector zero and writes 1 sector

; -9

»

jprogram can read and write data to any
given sector. You can also modify files
and save them by file name. To prepare
the boot disk you will need to do both
operations. The first step is to prepare the
boot file. 1 used my favorite editor on the
sample BIOS supplied by Hawthorne and
pared it down to the essential items, and
then used the calls to the PROM to load
individual sectors.

There is another good reason to start
with the bootloader first, it is simple, and

The Computer Journal / Issue #31

;exit to system

it will show you the special considerations
needed in the 68000 assembly language.
Now I think the 68K is a lot easier to
program than Intel chips, but the struc-
ture does require you to remember some
simple principles. The 68K is a 32 bit
machine and can address data either as 8,
16, or 32 bits. In assembly we use .B, .W
and .L respectively for BYTE, WORD,
and LONG. I got sloppy copying code
from the Sage boot loader and shifted a
.W for a .L. Depending on the operation

this might give you the proper value, but
then it might just give you all zeros in-
stead. [kept sending those zeros until [
realized what was going on.

It gets more complex when we talk
about position independent code. In
position independent code, all loads and
stores are done off of values stored in ad-
dress registers. These become base ad-
dresses and you offset or point to a
memory location off of that register.
Words point to the first 16 bits, with the
values going to the lower 16 bits of the
destination. The same operation as a
Long will load the first 16 bits as high
values, then the next 16 as low values.
This problem became very important
when calling Sage routines, as they are
values pushed onto the stack. You can
push ((A7)-) or pop ((A7)+) values as
either words or longs, but whatever you
do, both ends must be the same. I messed
up and pushed some longs that should
have been words, only to have unsuc-
cessful reads.

Doing it

1 have supplied some code showing
what the boot loader is like, and the num-
ber of routines needed. Included with the
sample is the dialog used with DEBUG to
get the files on the disk. The steps go like
this for the boot loader: save disk drive
value (to make sure we continue to boot
from it); print a message so we know we
got this far; load the first DIR sector
(remember the FAT was loaded with
BOOT loader); find the file name and sec-
tor needed for loading the BIOS file; load
those sectors; jump to the BIOS. You
could save some time if you knew exactly
which sectors to load, but then every time
you made a minor change, the boot loader
would need changing. Putting in messages
may seem a luxury, but for systems that
don’t come up, knowing which routine
failed become very important. A common
way, and one possible here, is just output-
ting carriage returns and linefeeds. In the
Sage that is a simple call or JSR to the
PROM.

The Sage PROM deals with sector
locations as blocks, and does not use track
or side information. Their sector numbers
start with ZERO and not ONE so you
need to watch out for that. This made it
simple as the record number, becomes the
block number, which becomes the sector
number and gets passed to the disk read
routine. The Sage books talk about dif-
ferent formats, but I found that not to be
true. I had forgot that the block numbers
start at zero also, and had subtracted one
from the record number (sectors start at 1,

2

Yeost Program

BI10 LOADER TEST PROGRAM
\

; USED TO SEE !F BOOTSTRAP LOADER WORKS
; RENAME FILE TO SYSTEM.BI1O FOR LOADING
H AT 0BOOH USES PROM TERMINAL |/0 FOR

H SAYING 1T GOT THERE PROPERLY.....

B10S_CODE EQU

_ 00000AOOH
TERMTEXT EQU 0OFEOO18H
TERMCRLF EQU OOFEQO1CH
DEBUG : EQU OOFEQO10H

’ ORG BIOS_CODE

' JSR TERMCRLF
LEA MSGI,A0
JSR TERMTEXT
JSR TERMCRLF

P DEBUG
MSG1 DC.B
SCRATCH DC.L 1
END
A>DEBUG
-F100 3000 00

~-NBJO.HEX
H -L

; PROGRAM START

; TERMINAL STRING
;CRLF AT TERM
;DEBUG ENTRY

"B10S PROGRAM LOADED ",0

TO LOAD THIS PROGRAM USE MSDOS DEBUG AND THE FOLLOWING

;FILL MEMORY WiTH ZEROS
;NAME OF FILE TO LOAD
;LOAD FILE INTO MEMORY

; ~MAQD 2000 CS:100 ;MOVE FILE STARTING AT AOO HEX
;WHICH 1S LOADING ADDRESS OF THE BIOS
;PROGRAM, MOVING IT N MEMORY TO 100 HEX
;FOR PROPER SAVING TO DISK

FOR THE FINAL BIOS USE RCX AND SET CS:22? TO LENGTH OF BIOS
TYPICALLY 1800 HEX LONG IF USING AOO TO IFFF HEX.

H -RCX ;TELL SYSTEM HOW MUCH TO WRITE
; CX: 200 ;SAVE ONE SECTOR TO DISX

; ~NSYSTEM.BIO ;TELL NAME TO SAVE UNDER

; -¥ ;WRITE IT TO DISK

H -Q ;QUIT DEBUG

records/blocks go from 0). I found that
out after trying to load a simple BIOS test
program (also included) and found it
200hex later in memory. This explains
why any disk failures should return you to
your debugger so you can check memory
before a reset destroys what did happen.

The assembler I use was supplied by
Hawthorne and assembies into Intel Hex
format. The PC DEBUG will load those
programs and you can move them around
before letting it save them to disk. This
assernbler worked fine and only gave me
problems once. 1 had incorrectly defined
values in a table (used DS.L not DC.L)
which changed the program counter
which then caused all branch instructions
to be out of range. That shows that it does
check for programmer mistakes, which
helps us rusty old dogs.

Closing

1 am running a bit long, so 1 will try and
tie up loose ends now. After the boot
loader worked, I had the BIOS running
(well sort of) in one day! I spent about a
week studying the Sage code and K-OS

2

samples, then a week programming tle
bootloader. I then took the boot loader
and added terminal, printer, and a fuller
disk I7/0 operation and used it as the
BIOS. This was still making calls to the
PROM and loading sectors one at a time
(2 minutes to load the system), but it
showed me it worked and that I was cn
the right track. Next I need to do the disk
170 in the BIOS with track and sector ac-
tivity. I may later go back and change the
BOOT loader to load the BIOS in orne
move, speeding that operation up. Later
also I will put in interrupts and clock ac-
tion, but then I will have the K-OS rur-
ning and not be using the PC system.

A few fine points which need to be
stressed are program locations. The boct
loader in the Sage must go at 400hex. I
Allocated buffer space, by putting the
BIOS at AQOhex. The BIOS must include
or load a jump table 100hex lower than
the OPERATE.BIN location. Until you
have a chance to recompile the jump
locations to routines into the BDOS or
OPERATE.BIN, it will look for them
100hex below the starting location. Both

the command and operate programs are
position independent code so they can be
anywhere, so could your BIOS. The only
MUST do is put that jump table below
OPERATE.BIN and COMMAND.BIN
just above operate. | wrote and saved my
BIOS as one file starting at AOOhex and
ending at 1FFFhex. That included the
jump table and pre-zeroing out of variable
memory locations (done by the assem-
bler).

There are some other items that you
must also learn about concerning the
jump table. Each routine has certain items
that must occur when the routine is jum-
ped to. Typically items are pushed onto
the stack (this case A4) and some status
value returned on the stack after com-
pletion. Some routines must have this ac-
tion, otherwise the system will go to never
never land, I made lists and tables to help
me out here as the manual is incomplete in
this respect. [will go into more detail next
time on these important steps. Till next
time, read the manual and remember that
the OPERATE.BIN is a HTPL program.
HTPL programs must preserve registers
A7 through A3 and D7. Your BIOS must
not change these registers. Some variables
and parameters are supplied by the BDOS
as pointed to by A6. Read the HTPL user
manual and pay close attention to the
assembly language section.

This is by no means a complete
coverage of everything needed to bring up
the Sage or K-OS ONE. My major
problem was choosing a direction to start
with (I could have brought it up under the
Sage’s p-system), but once I started things
fell into place easily. Next time I will cover
more details about the BDOS and
operating system. [will be contacting Joe
about supplying more ‘‘how I did it”
details as well as how he is doing on his in-
stallation manual. I am sure ! missed
something that you might not understand,
so write us here at TCJ, and I will answer
it next time. W

The Computer Journal / Issue #31

