Remote

Designing a Remote System Program

by Al J. Szymanski

The program that I am presenting here
came about because of a need on my part
to move files from two incompatible
systems. This program may also become
the core for a fully featured remote system
driver. I have a Tiny Giant 68000 with K-
OS and I love it. [also have my trusty
CP/M system which I use as a develop-
ment system. Herein lies my first
headache, format incompatibility. The K-
OS uses the MSDOS/IBM format for
_ disks and I cannot utilize that format with
my CP/M system. So I wrote this
program to allow me to drive the K-OS
system as a remote from the CP/M
system. Specifically, [now can develop
code on the Z80 and then ship it to the
68000 to assemble and run (More on
WHY later). Additionally, in order to
send TCJ the code and articles on one disk
1 had to be able to ship code from the
68000 back to the Z80. I generally try to
write straightforward code in the sense of
making tools, if it works for me then it's
OK. This is the first effort I’ve made to
make code as bombproof and friendly as [
could. I also realize that we all hate to re-
invent the wheel, thus the reason for my
sharing this code.

I will discuss each part of the program,
as it appears in the listing. HTPL is a For-
th-like programming l!anguage that has
been covered in previous articles. It uses
the stack for the evaluation of variables.
Since it is very sensitive to any garbage left
on the stack, your code must be very
clean. I felt that it was fairly easy to create
simple tools with HTPL, also it was the
only language available on the 68000
system. As [am a die-hard C program-
mer, it is my intent to port C over to the
K-OS environment.

First up are the variable declarations,
AUX: being the filename of the auxiilary
port. Bbuf is the string input buffer,
Rwbuf is a buffer for reading and writing
to and from the disk. Abuf is a small
character buffer. Recl and rec2 are the
received record number and its com-
plement, used to verify logical sequencing
of the records. Try is the counter for the

The Computer Journal / Issue #31

T e e el e e el e R T R R e R e e et e A e N I o T e e N

1)

2)

3

4)

3)

6)

7

8)

9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31
32)
33
34)
35)
36)
by
38)
39)
40)
41)
42)
43)
44)
43)
46)
47)
48)
49)
50)
51)
52)
53)
54)
53)
56)
5N
58)
59)
60)
61)
62)
63)
64)
65)
66)
67)
68)
69)
70)

(remote.
root

byte menu
byte smsg
byte rmsg
byte vmsg
byte cmsg
byte gqmsg
byte fmsg

byte auxname = "AUX:"

v1.0 In HTPL by Al J. Szymanski 11/87)

"MENU: R raocelve, S send, V view, Q quit :>" ;

"Send " ; .

»

=

= "Recelve " ;
= "Yiew " ;

=

=

"Command not Implemented.” ;
"Quitting Rlemote." ;
= "F|lenams.gxt 7 " ;

byte bbuf { 128] ;

byte rwbuf [512 1 ;
byte abuf [4 |
byte recl rec2 try response checksum ;

word lastrec status tichan auxchan ;

word time = 2500 ;

word pblock [20] ;
long bufptr ;

program

openaux
"Remote.V 1.0 - Ready" writein
while auxgetc 3 <> do’

"Remote.¥ 1.0 - waiting for controlAC" auxputs 13 auxputc

end
repeat Fmenu auxputs suxgetc toupper auxcrlt
case ['R* | receive
['S'] send
['V'] view
['Q") quit
else dontknow
end
tfaise until

end

(llll.l..l.PR {MARY ROUTINES’"“".")

proc receive
jrmsg auxputs gettllec frwbut lbutpir 0 !lastrec
while auxstat =0 co 21 auxputc 8time wait end
repeat

auxin dup

it 1 = then

end

6 lresponse
auxgetc lrecl auxgetc not !rec2
0 dup lchecksum
while dup 128 <> do
dup auxgetc dup 8checksum + tchecksum
sbutptr rot + 11 +1
end drop (128)
8checksum $OOFF and auxgetc $OOFF and
it <> then 21 !response end
frecl @rec2
It <> then 21 lresponse end
Sresponse 6 If = then awrite end
8status $0004 and $0004
It = then 24 lresponse end
Slastrec +1 $OOFF and @rec! $OOFF and
1t <> then 24 lresponse end
8recl $(OFF and |lastrec
Sresponse auxputc
Sresponsie 24 it = then return end

4 = until.
6 auxputc aclose auxerlt

end

proc send

#smsg suxputs gettileo
0 'recl while auxgetc 21 <> do end

(thls |s a MAGIC number, thls works for 1200 baud)

37

attempts made at sending a record, 5 is the m repeat

current limit. Response is the variable ;g; :;:::lza 0 Itry @reci +1 lrecl

used 1o hoid the response to make after 74) | auxputc 0 dup Ichecksum

r(_:l:civmg a 128 byte packet. It may be :’,2; :’;ﬁ‘e zggF";zg"3>°:g auxpute not auxputc
either: NAK or 21d, ACK or6d, CAN or m dup #rwbut + 81 dup

24d. These are the codes used in the ;’g; :C:OC:5021+ lchecksum

xmodem or Christensen protocol as han- 80 ond drom

dshakes. Checksum is the sum of the 128 81) 8checks.m SOOFF and auxputc

bytes in the packet mod 256. Lastrec is the g“;; auxge:zrgu;] Zf“" ftry It 5 = then errorout end
number of the last record received, used 84) [t = then drop aclose return end

to v_erify. that the .record that was just 321 .sfafgs's‘égzélana <>0 until

received s the next in order. Status holds 8N 4 auxputc

the contents of the status word from the gg; ond aclose

last operating system call made. Fichan 90}

and Auxchan are the file channels or g;; proc ;\l’;; suxbute cotelleo 't et '+ 0 1stat
descriptors for the currently open file and 93) While esratus 20008 ond =0 do me wa status
for the auxillary port. K-OS treats all files 94) aread! dup auxputc

and qcvices as channels. The word time is gz; it 263":';::“““"' ¢ return

a variable that was needed to slow down 97) end

the process of handshaking. (Probably 33; ' au:::;;ﬂ': ¥ Then

half of the bugs I encountered while 100) 1t 3 = then

working this code out, were due to in- }g;; ong aclose auxcrit return

coming bytes being stored in the character 103) end

queue on both machines. This meant that 104) end

there were occasionally garbage characters }82; end

waiting and being interpreted as han- 107) proc quit

dshakes. This value came about by testing :gg; #amsg auxwritein exit end

empirically as opposed to calculation and 110) proc dontknow

it works for 1200 baud, I don’t know what nn #cmsg auxwriteln end

112)

‘13) (llllll{lllo's. CALLS“"“““)
114)

115) proc openaux

would work for 300). Pblock is the struc-
ture for all of the operating system calls.
Bufptr is a long pointer to a byte in the

116) fpplock 5 over 12 0 over +2 12
wrhuf. nmn 0 over +4 12 fauxname over 6 + 14
. . 18) t f 4
The next block of code is the core of the o) ang TP poiock +4 82 lauxchan
program. It proceeds as follows: (line 21) 120)
. . 121) proc auxstat
open up the channel to the auxnllar)f port, 122) foblock 1 over 12 0 over +2 12
(line 22) send to the 68000 terminal a 23 @auxchan over 4 + 12
message that the program is up and run- 124) trap #pblock 2 + 82 1 and (returns 1 It char walting else 0)
L . 125) end
ning, it’s time to switch over to the CP/M 126)
machine, (lines 23-24) wait in a loop until 127) proc auxin
(.) R bp. 128) fpblock 2 over 12 0 over +2 12
a character comes in, assess it for Deing a 129) Qauxchan over +4 12 1 over 6 + 12
~C, if it is not, send a message asking for :g?; 2 ove; 8 : 12 h(:bu; overﬂl‘o +h14 rack)
the ~C. This was done to clear out the 132) end rap abu refurns The char on stac
queue. Next enter a large repeat forever : g})
; . ~ . 4) proc auxputc
loop (lines 26-33) which sends out the 135) labut #pblock 3 over 12 O over +2 12
menu and waits for a selection. The case 136) 8auxchan over +4 12 1 over 6 + 12
evaluates the choice and branches to a {g;; 2’_2;9" 8 + 12 #abuf over 10 + 14
routine, with a default at dontknow to 139) end
et- f the code. nly way out 140)
bullet-proo 'co e The only ‘y? 141) proc acreate
of the code at this level is to enter a ‘Q’ to 142) Fpblock 6 over 12 O over +2 12
quit the program. 143) swap over +4 14 0 over 8 + 14
. . 144) t #pblock +2 t
Next up are the 5 primary routines; 148 eng 0P foblock 42 02 lstatus
receive, send, view, quit and dontknow. 146)
. R . . 147) proc aopen
The bas.ls for what is going on in sepd and 148) foblock 5 over 12 0 over +2 12
receive is best described in the article by 149) 0 over +4 12 swap over 6 + 14
Donald Krantz, ““‘Christensen Protocols :g?; :;:Tog":blgc';z*':s:g..\ﬂ;ICM"
in C,”’ DR. DOBBS JOURNAL (#104 152) end
June 1985 pp. 66). It is the clearest presen- 153)
: 154) proc aclose
tation of the xmodem protocols [have 155) foblock 8 over 12 0 over +2 12
ever read. 156) #fichan over +4 12
Receive works this way: (line 39) it asks :g;; ong trap fpblock +2 82 Istatus
for the filename.ext to create and then 159)

o o o o o o P P e s o e o P s o P fm P o o N N e

does so, then starts sending 21d’s (NAK) 160} proc awrlite

38 The Computer Journal/ Issue #31

€ 161)
(162)
(163)
(164)
(165)
(166)
(167)
(168)
(169
€ 170)
[SRRAD]
(172)
(173)
(174)
(175)
(176)
177
(178)
€179
(180)
(181)
(182)
(183)
(184)
(185)
(186)
187
(188)
(189)
(190)
¢ 191
(192)
(193)
(194)
(195)
(196)
€ 197)
(198)
(199)
(200)
¢ 201)
(202)
(203)
(204)
(205)
(206)
(207)
(208)
(209)
(210)
211
« 212)
« 213)
(214)
(215)
(216)
c217)
(218)
(219)
(220}
(221)
(222)
(223)
(224)
(225)
(226)
« 227
(228)
(229)
(230)
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

231)
232)
233)
234)
235)
236)
237
238)
239)
240)
241)
242)
243)
244)
245)
246)
247)
248)
249)

end

proc

end

proc

end

proc

end

fpblock 3 aver 12 0 aver +2 !2
8flichan over +4 12 128 over 6 + 12
0 over 8 + !2 @butptr aver 10 + 14
trap Jpblock +2 82 !status

aread!

#pblock 2 over 12'0 over +2 12

@fichan over +4 12 1 over 6 + 12

0 over 8 + 12 #rwbuf over 10 + 14

trap Fpbiock +2 82 !status

#rwbut 81 (return read char on stack)

areadi 28 .
#pblock 2 over 12 0 over +2 12
8fichan over +4 12 128 over 6 + 12
0 over 8 + 12 #rwbut over 10 + 14
trap Jpblock +2 82 !status

walt (expects time on stack)
Fpblock 53 over 12 0 over +2 12
swap over +4 14 trap

(..........UTI L 1 TY ROUT ' NES..........)

proc

end

proc

proc

proc

proc

proc

proc

end

proc

end

proc

proc

proc

proc

proc

end
end

returnstat

8status

it $8000 and $8000 = then
"processed " auxputs

end -

@status

11 $0004 and $0004 = then
"unsucessful ly." auxputs

else "sucessfully." auxputs

end

crilt
13 putc 10 putc end

auxcrlt
13 auxputc 10 auxputc end

writeln
sprint crit end

auxwriteln
auxputs auxcrlf end
auxgetc
while auxstat =0 do end auxin end
auxgets
while auxgetc dup <>0
do
case
[17 } 30 exit
[131 drop O swap !1 return
[8] auxputc =1 32 auxputc 8 auxputc O
eise dup auxputc over 11 +1 0
end
end
auxputs

while dup @1 dup <>0 do auxputc +1 end
drop (pointer to end of string)

errorout
24 dup auxputc auxputc exit end

getflileo
filine #bbuf dup auxgets auxcrl|t aopen returnstat end

getfllec
fillne #bbuf dup dup auxgets auxcrif acreate aopen returnstat end

tfilline
#tmsg auxputs end

toupper
dup |f 96 > then 32 - end end

The Computer Journal/ Issue #31

until any response is made, then it enters a
large loop (lines 41-64) which begins by
getting the response and evaluating it for
being a 1 or SOH (start of heading), a4 or
EOT (end of text), all other responses
being treated as junk. If the response is a
SOH it sets up its own response 10 be a 6
or ACK (acknowledge). Then it gets the
next incoming byte which should be the
logical record followed by the com-
plement of the logical record. It then en-
ters a small loop (lines 47-50) that just gets
the next 128 bytes from the stream and
puts them into memory, while caiculating
the checksum for the record. The byte
that follows the data is the sent checksum,
which should match our calculated one, if
not we change our response to NAK (line
52). It then evaluates the sent record and
its complement for errors, again changing
the response on error (line 54). If by now
no change has been made in the response,
it writes the 128 bytes to disk. An
evaluation is then made to see if the write
went OK, if not the response is changed to
24d or CAN (cancel) which puts an iin-
mediate end to the data exchange for both
machines. Lastly an evaluation is made to
be sure that the record we just got was in
fact the next record we should have got-
ten, if it is not, again we set up to abort
the exchange. Finally, the response is sent
to the sending machine and exiting if it
was the CAN byte. If the first byte sent
for the next block was the EOT we have
reached the end of the loop and can close
the new file and return to the menu.

Send is a much simpler routine. As
there can be no transmission errors, all
that send needs to do is calculate the
checksum and send it and the record
numbers when it needs to. First (line 69)
asks for the filename.ext to send—opens
it and reports status. Then (line 70) waits
in a loop until a NAK is received. The user
must make sure that checksum mode is set
on the receiving machine as the sync byte
for CRC mode is ‘C’, and that is ignored
by this routine, (this could cause potential
lockup). Once the routine has received the
sync byte, it enters a large loop (lines 71-
86) in which 128 bytes are sent. Aread128
is an O.S. call which reads 128 bytes into a
buffer. The record count is incremented.
A smaller loop (lines 73-85) is then en-
tered. This loop first sends the 1 or SOH
byte, starting the transmission block. It
then clears the checksum. Next it gets the
current record, makes sure it is mod 256
and sends it and its complement (line 75).
The inside loop (lines 76-80) actually does
the transmission of the 128 bytes of data,
calculating the checksum along the way.

39

.

—————
68000 SINGLE BOARD COMPUTER

$395.00
32 bit Features /7 8bit Price

-Hardvare features:

* 8MHZ 68000 CPU

1770 Floppy Controller
2 Serial Pcrts (68681)
General Puroose Timer
Centronics Printer Port
128K RAM (expandable to
512X on board.)
Expansion Bus

* 5,75 x 8.0 Inches

* % % % %

»

-Software Included:

Mounts to Side of Drive * K-0S ONE, the 68000 Operating
* 45y 2A, +12 for RS-232 System (source code included)
* Pover Connector same as * Command Processor (w/source)
disk drive * Data and File Compatible with
MS-DOS
Add 3 terminal, disk drive * A 68000 Assembler
and power, and you will have * An HTPL Compiler
a poverful 68000 system. * A Line Editor
ASSEMBLED AND TESTED ONLY $395.00
] k 3 k3 ® * b] * b 4 L o L]] k 4 L] * *

K-0S ONE, 68000 OPERATING SYSTEM

For your existing 68000 hardware, you can get the KX-0S5 ONE
Operating System package for only $50.00. K-0S ONE is a powerful,
pliable, single user operating system wlth source code provided
for operating system and command processor. It allows you to
read and write MS-DOS format diskettes with your 68000 system.
The package also contains an Assembler, an HTPL (high level
language) Compiler, a Line Editor and manual.

SHIPPED ON AN MS-DOS 6 1/4" DISK. $50.00

® ® x " ® " L g L] » ® L4 b 4 * " L]

Order Now:
VISA, MC
(503) 254-2005

HAWTHORNE TECHNOLOGY

8836 S.E. Stark
Portland, Or 97216

Figs 1 (address of pblock) top of stack
-— {value of command)
(address of pblock)

word width
Figs 2 address of pblock ==> 3

—_— 0

command value
status word
file chan. #| from open
128 number of bytes
0 number written
|butfer address of source data| long data

40

The checksum is then sent, again being
corrected for mod 256. The try count is
incremented and evaluated against boun-
ds, exiting if it exceeds the limit. The next
line (line 83) gets the response from the
receiving machine, evaluating it for being
24 or CAN, exiting if it is. This meant that
the receiving machine found a non-
recoverable error. The routine looks for a
6 or ACK as a response, meaning that the
record was accepted correctly. The next
line (line 86) checks the status word from
this last read for the end of the file, and as
long as it is not, returns to the top of the
loop. If it were the end of the file, a 4 or
EOF is sent to complete the transfer, close
the file and return to the menu.

View is even simpler than Send as no
calculations are made, the data is just sent
to the receiver’s screen. The code is
straightforward, however note the check
for ~C in the loop (lines 100-101) to can-
cel the display of the file. Quit and Don-
tknow are unremarkable routines.

The next group of routines are the ac-
tual calls made to the K-OS operating
system. A parameter block is used to han-
dle all of the pointers and values used in
an O.8S. call. The first word in the block is
the actual command code—usually
followed by a status word. One of the
beauties of this type of arrangement is
that you can make as many parameters
blocks as you might need and place them
anywhere in memory. Pre-loading of
parameter blocks and just issuing the trap
call at the time of need can save a great
deal of time for critical operations. I'l
describe just one of the calls for example
sake, Awrite: #pblock gets the address of
the call buffer and places it on the stack, 3

_puts the number 3 onto the stack above

the address, ‘over’ is the HTPL macro
word that takes the next to the top item on
the stack and makes a copy of it and
places the copy onto the top of the stack
(see Figure 1). The ‘12’ means: take the
top item—treat it as an address and put
the next item down into that address, here
(line 161) it means put the value 3 into the
address of pblock. In doing this, the top
two items are removed from the stack,
leaving only the original copy of the ad-
dress. The code proceeds similarly until
the *+ 2' which adds 2 to the top item on
the stack, here (line 161) the address of the
pblock, offsetting the pointer by one
word. It continues until the ‘@fichan’
which means: put onto the stack the item
found in the variable fichan. By the time
the word ‘trap’ is reached the stack has
only the address of the pblock on it, and
trap performs the O.S. call. The

The Computer Journal / [ssue #31

parameter block looks like Figure 2 before
the call is made. After the call is made
there is nothing left on the stack from this
routine, sc we have to replace the address
of the parameter block onto the stack to
get access 1o the status word. Then we get
the word and store it in the variable
status.

The final group of routines are the
utility routines which allow for the byte by
byte exchange through the auxilliary port
and with the 68000 screen. Included in this
group is the routine Returnstat, which
evaluates the status word left from the last
operation made and displays the infor-
mation on the host machine. Auxgets
allows for inline correction through the
auxilliary port while getting a string from
the host. Toupper does have one quirk in
that if the characters ‘{’ through ‘'~ are
used it will make them unusable, or at best
treat them as the control characters [
through * .

[have used this program now for about
a month to make a cross compiler to port
a version of C onto the 68000 to run under
K-OS. There are a few changes that I
would suggest be made. One is to allow
the host to view the directory of the 68000
machine and eventually give the host full
command level capabilities, even to
writing a version of BYE for a full remote
operating system. As far as my version of
C, I have the cross compiler up and run-
ning and have most of the 68000 run time
library done. I owe credit to the fine folks
at Hawthorne Technology. They are only
40 miles up the road from me and have
helped me a lot.

I plan to write a few more articles about
the Tiny Giant and on the C compiler I'm
working on. That’s all for now folks. W

Reader's Feedback
{Continued from page 5)

natural for combining high-level language
with various assembler routines.

What have [been doing? Well, a while
back, I indicated that I was building a
linear supply for a second SB180. It’s
almost done and I intend to write up an
article on how I designed and built it.
Perhaps it will be good enough for TCJ to
publish.

I've also been doing a bit of PC Board
design on the Mac using MacDraw and
some templates that I've designed on my
own. Be glad to share that experience as
well if your readers might be interested.

T.M.
Editor’s Note: We'll be looking for-

The Computer Journal / Issue #31

ward to power supply article, and en-
caourage the readers to let us know about
their interest in PC Board design on the
Mac.

Hardware Control

I’m using MTU 130, Mac +, Mac SE,
Apple Ilgs, Apple lle, and HP Vectra.

Most of the effort is using the above for
data collection and some number crun-
ching. 1 primarily use True Basic and C
for programs, and 6502 assembly for
some speed in the Apple II.

[would like a good tutorial on 68000
assembly, and also on FORTH (it seems
to me to be a nice language but [haven’t
sat down to learn it). [also really enjoy ar-
ticles on hardware control, stepper
motors, ADCs, DAD:s, etc.

D.M.

Ripe Thinking

I’m using PCTECH XI16B 10MHz with
new OMTI 3520 CCS, controller of two
different drives, ST 225 and Minis 3650.
Earl Hinrichs software is outstanding.

[used to use (before my desert house in
29Palms was burglarized) in addition to
the X16B, a CP/M-86/MS DOS en-
vironment: FALCO TSI terminal, Slicer
with Shugart 860-2 and two Mitsi 4853s,
housed in a Ferguson BB cabinet with
Ferguson UPS. Damnation! The first
computer I built, ripped off by someone
who didn’t take the manuals with the
system.

Next quarter, I plan to add a TinyGiant
68000. 68000 is the way to go. I don’t like
DOS or segmented 86. DOS is a real
challenge to learn as a first machine, but
when you buy computers from PCTECH

-and Slicer, you get fantastic support that

makes the effort worthwhile.

TCJ is more than a breath of fresh air,
it’s a perspective, e.g. the editorial with
emphasis on real time programming,.

I'd like to see articles on cross assem-
blers, like cross assembling 68000 code on
the 8086, vice versa, etc. I've been won-
dering about relatively cheap cross assem-
blers such as Austin Codework’s $25
A68000.

Also interested in new Zilog Z280,
Transputers, NS32X32, digital image
progessing with NEC uPD7281, and
GSP'’s like TI's 34010.

Concerning the 32X32 and Job’s NEXT
machine, and other CPUs they’'re con-
sidering, I somethimes think it should be
called WHEN Corporation. Facetiousness
aside, I am intrigued what the impact of a
UNIX machine will have, including the
shock of the retail price of the machine.

I think Don Lancaster did hit one nail
on the head. when I paraphrase him from
“‘Ask the Guru’’ in '85/°86: The Macin-

tosh has a fascist operating system — it
forces you to be user friendly.

One of the greatest technical BBSs ['ve
used is Trevor Marshalls 1000 Oaks at
805-493-1495.

Turbo C (the only MS DOS C compiler
[have, don’t know about other ones) |has
a good feature with the ability to generate
symbolic files in command-line version
environment that are compatible with
MASM’s .SYMDEB — those two swit-
ches ‘-y’ and ‘-m’ make it really fun to
step through executable files.

Saw a demonstration of Tektronix’s|3-d
color terminal — you put on polarized
lenses and a LCD shutter in front| of
display, and its software makes basic [ob-
jects (wire frames in this case) pop out of
the terminal. Nice toy at $40,000,but like
much technology, a matter of time
(decade or so) to have a personal 3-D
graphic environment, and speaking| of
that, holographic environments like in
debugging — heap’s on my left, stack’s on
my right, registers straight ahead. How
long will Yon Neumannism survive?

Thanks for TCJ, every issue is for ripe
reading/thinking.

R.S.

32-Bit

[use CP/M Z80 S100 and single board,
plus UNIX, VAX, MICROVAX, Sun,
etc. (college is such fun, eh?).

I would really like to see more hardware
projects — especially in the area of 32Bit
single board computers. | am particularly
interested in finding out more about|the
Zilog 780,000 32-Bit micro-mainframe.
How about someone out there making a
workstation (Berkeley UNIX based, of
course) based on this chip?

R.A.

SB180

I am running a Micromint SB180, with
the hardware mods to enable DTR to my
Wyse 30 termainal, and four floppies (2
DSDD and 2 DSQD, all TEAC), as well as
the 9.216 MHz upgrade and XBIOS| In
other words, I have taken my SBI180
nearly, but not quite, as far as it will go.
Next step SCSI interface and, hopefully, a
2-4 meg RAM disk. (I really don’t want to
go Hard Drive, though I might end up
doing that. Afraid of reliability problems
-— probably unjustified, however.)

I'd like to see: 1) SCSI, 2) Solid state
“‘/drives’’ for CP/M or Z, 3) Advanced
CPU (Z800, Z280, etc), 4) Interface basics

— computer with drives, terminals,
DMA/keyboard/monitor vs. terminal,
modem.

J.B.

4

