ISSUE NO. 5

For Your Information 13
3 Coming Soon . .. 14
AIM 65/40 16
4 Data Files for AIM 65 19
BASIC 21
6 More BASIC Data Files 22

A Move/Relocate Program 24

THE NEXT GENERATION!

TTY Output Utility

Data Statement Generator
Cassette Load Utility
Interrupt Driven Keyboard
A Basic Hint

Letters to the Editor

Easy RS232C

Rockwell International

..where science gets down tobusiness

Page 2

EDITOR’S CORNER

I want to thank all you supporters who have been sending in articles,
comimients, suggestions etc. It's nice to know that INTERACTIVE has
so many fans out there. We have a pretty good mix of articles in this
issue with maybe a bias towards data files. But, that's what you seem to
be interested in.

Keep in mind that this publication is a dynamic entity. You are the force
behind it. Whatever you collectively say GOES. If you wish to influence
the direction we re taking, then write an article about the subject you'd
like to see. It’s as simple as that!

1 would like to see more articles on how to interface the AIM 65 to dif-
ferent devices such as A/D, D/A, counter chips, DVM chips, speech
synthesizers, graphic output, etc. etc. etc. . . .

How about it?

I have received some good stuff in the area of CAD (Computer Aided
Design). Not enough for a complete issue, though, so I'll start running
them in issue #6 (or #7).

We re getting ready to do another update on the AIM 65 User’s Guide.
If you have found any errors or think we could explain something better,
let us know. Send all comments to the attention of THE DOCUMEN-
TATION MANAGER, Rockwell Intl., POB 3669, RC55, Anaheim, CA
92803.

Two interesting articles appeared recently in EDN magazine. The Jan-
uary 7, 1981 issue carried two articles which featured AIM 65. One of
them showed how a mechanical engineer could simulate a physical model
on a BASIC language equipped AIM 65. The other article gave complete
details (hardware and software) so an AIM 65 (or other 6502/6522 sys-
tem) could control the intensity or speed of ac operated devices such as
lamps or motors through an interrupt driven zero crossing detector.

If you don’t have access to this magazine, we can send you reprints of
the articles. Just ask for EDN #1 if you want the ac power interface or

EDN #2 for the digital simulation article. Send requests to the attention r

of SALES SUPPORT SERVICES, Rockwell Intl., POB 3669, RC55,
Anaheim, CA 92803.

All subscription correspondence and articles should be sent to:

EDITOR, INTERACTIVE
ROCKWELL INTERNATIONAL
POB 3669, RC 55
ANAHEIM, CA 92803

COPYRIGHT 1981 ROCKWELL INTERNATIONAL CORPORATION

Rockwell doss not assurrie any liability arising out of the application or use of any
products, circuit, or software described herein, neither does it convey any license
under its patent rights nor the patent rights of others. Rockwell further reserves
the right to make changes in any products herein without notice

INTERACTIVE

)

A version of the PASCAL programming language is now *‘in the works’
for AIM 65. At this point. all the information I can give you is that it will
consist of a five ROM set and be a subset of Standard Pascal which was
defined in a book called ‘‘Pascal User Manual and Report’’ by Jensen
and Wirth. No, there 's no data sheet as of yet so please don 't call or write
until we say that more information is available. This is not a product an-
nouncement . . . just some advance information that is intended to give
a hint about where Rockwell is heading. More on Pascal later.

Eric C. Rehnke
Newsletter Editor

FOR YOUR INFORMATION

From the Editor:

Here are some books that may help you along on the road to mastering
microcomputers.

BASIC FOR HOME COMPUTERS by Albrecht, Finke, and Brown.
Published by John Wiley & Sons (605 Third Ave., New York, NY
10016).

PROGRAMMING AND INTERFACING THE 6502 by Marvin De
Jong. Published by Howard W. Sams & Co. (4300 W. 62nd St., In-
dianapolis, Ind 46268).

THE FOLLOWING BOOKS ARE AVAILABLE FROM ROCKWELL
INTERNATIONAL AT SPECIAL PRICES:

6502 SOFTWARE DESIGN by Leo J. Scanlon. Published by Howard
W. Sams & Co. 6502 Assembly language tutorial and hardware inter-
facing examples. $7.00 (U.S. & Canada) $9.00 (overseas)

MICROCOMPUTER SYSTEMS ENGINEERING by Camp, Smay, and
Triska. Published by Matrix Publishers (30 NW 23rd Place, Portland,
ORE 97210) General intro to microcomputing, 6502, 6800, and 8080
Assembly language programming, and some system design principles.
$17.00 for U.S. and Canada and $19.00 overseas.

AIM 65 LABORATORY MANUAL AND STUDY GUIDE by Leo J.
Scanlon. Published by John Wiley & Sons. Provides 17 programming
and /O experiments for the AIM 65. $5.00 (U.S. & Canada) or $7.00
(overseas)

ORDERING INSTRUCTIONS for books available from Rockwell: Or-
ders must be accompanied by payment. U.S. and Canadian orders
must be by check or money order and overseas payment must be drawn
on U.S. bank. California residents add 6% state tax. Send orders to
the attention of SALES SUPPORT SERVICES, Rockwell Intl, POB
3669, RC55. Anaheim, CA 92803.

CORRECTION TO THE AIM 65
USER’S GUIDE

There seems to be a problem with the program on pages §-37 and 8-38
of the AIM 65 User’s Guide (Rev 3, December 1979). Insert the se-
quence HERE JMP HERE between ;CONTINUE and the dotted line

(Continued on page 22)

h —

INTE

b A

COMING SOON. ..
AIM 65/40

Rockwell International will shortly be introducing the AIM 65/40. The
AIM 65/40 microcomputer is made up of an R6502 based single board
computer with on-board expansion to 65 kilobytes of memory, a full
graphic 280 X N dot matrix or 40-column alphanumeric printer, a 40-
character alphanumeric display, and a full ASCII keyboard with user as-
signable function keys.

An advanced generation of Rockwell ‘s popular AIM 65 microcomputer,
the AIM 65/40 will be available as a complete system or as individual
computer and intelligent peripheral modules.

The AIM 65/40 Series 1000 single board computer modules feature
system address expansion up to 128K bytes with on-board memory up
to 48 kilobytes of RAM and up to 32 kilobytes of ROM or EPROM.
Six level priority interrupt logic and six 16-bit multi-mode timers are
included for flexibility in production automation and laboratory control
applications. Extensive IO capability provides an RS-232C asyn-
chronous communications interface channel with programmable data
rates of up to 19,200 baud for terminals or modems, plus a 20 ma current
loop TTY interface, dual audio cassette interfaces, and two user-defin-
able 8-bit parallel ports with handshake control two 16-bit timer/counters
and an 8-bit serial shift register.

Three additional 8-bit parallel ports are directly programmable as dic-
tated by the user’s application to provide more TTL level I/O or inter-
face to keyboards, displays, and printer modules. Manufacturer supplied
ROM resident software included with the AIM 65/40 Series 1000 com-
puter provide I/O drivers for the intelligent peripherals and more. The
printer connector is compatible with the Centronics parallel interface that
is so popular with high speed dot matrix printers.

A buffered system bus accommodates off-board expansion via Rock-
well’s RM 65 microcomputer modules which include intelligent periph-
eral controllers for mini or standard floppy disks, CRT monitors and the
[EEE-488 instrumentation bus, plus additional communications inter-
faces and a selection of RAM, ROM and PROM memory expansion
options up to 128K bytes of memory and memory-mapped IO capacity.

The AIM 65/40 Model 0600 graphics printer module consists of an in-
telligent microprocessor controller integrated with the printer mecha-
nism. This module operates in two modes. Character mode operation

Page 3

prints upper and lower case ASCII characters, mathematical symbols,
and semi-graphics character font formatted as 40-characters/line at 240
lines/minute. Full graphics mode outputs any data pattern desired as a
280 %N dot matrix. With its own microprocessor controller, user chang-
able character generator ROM, thermal head drivers, motor control, and
parallel handshake ASCII interface. this freestanding peripheral mini-
mizes demand on the AIM 65/40 central processor, permitting maximum
system performance.

The Model 0400 display module features a bright, crisp vacuum flou-
rescent 40-character alphanumeric display. This stand-alone module has
its own microprocessor controller for display of alphanumeric, special,
and limited graphics characters, parallel handshake ASCII interface, sup-
port circuitry and operates from a single +5 volt power supply. Special
control commands permit varable display timing, cursor control, auto-
scroll, and character blinking.

The Model 0200 keyboard module provides a terminal style alpha-
numeric and special character keyboard matrix with 64 keys, including
locking ALL CAPS, control, and eight user definable function keys.
Three keys labelled ATTN, RESET, and PAPER FEED have dedicated
lines to the interface connector.

The AIM 65/40 Series 5000 incorporates a ROM resident software sys-
tem and integrates all four modules into a complete microcomputer sys-
tem. The interactive monitor software controls the AIM 65/40 system
with single keystroke, self-prompting commands, supports software de-
velopment with assembler, debug and control commands. A multi-file
text editor supports both line and screen editing functions. Optional lan-
guages include a fully symbolic R6500 assembler and BASIC. FORTH,
PASCAL, and PL/65 software packages arc in development.

The AIM 65/40 is expected to be available sometime during the third
quarter of 198].

For price and delivery information contact your local Rockwell sales
office. -

Page 4

DATA FILES FOR
AIM-65 BASIC

Jerry K. Radke
U.S. Dept. of Agriculture

The storage and retrieval of data on a permanent (or semipermanent)
medium is often necessary. Unfortunately, Rockwell AIM-65 BASIC
does not provide data file capability for its cassette recorder interface.
Even worse, Microsoft does not provide a listing of the BASIC it wrote
for the AIM-65 so the user can easily modify it. However. the procedure
presented here will provide the user of the AIM-65 with a cassette data
file capability that is relatively painless though not very elegant.

I use two short BASIC subroutines to open files (one each for read and
write) and one to write an end-of-file. These statements start at 9000. 1
usually reserve certain blocks of data statement numbers for certain sub-
routines which can be saved and loaded individually, e.g. 4000°s are re-
served for my real-time clock and timing subroutines, 5000’s are my
sorting subroutines, 6000’s are for my formatted printing subroutines,
etc. This allows me to build programs using these standard subroutines
as modules.

In addition to the three subroutines, some BASIC statements are needed
in the main program to control the tape recorder(s) and to select the active
output device (AOD) and active input device (AID). The remote control
lines to the tape recorders should be functional. The minimum procedure
to write on tape is to call the subroutine at 9000 to open a file, set the
AOD to *‘tape’’, print (via BASIC ‘“‘PRINT’" statements) to tape, re-
turning AOD to “‘display’’, and finally end-filing the tape by calling the
subroutine at 9100. This causes the 80 byte tape buffer to fill and dump
to tape in blocks while automatically turning the tape recorder on and
off. Reading tapes is performed by calling the subroutine at 9200 to open
the file. setting the AID tape. ‘‘INPUTting "’ the data. and rcturning the
AID to the ‘‘keyboard™".

To make the data files compatible with text files that are written and read
by EDITOR, a few additional things should be done. The first five char-
acters *‘PRINTed’" to the tape buffer should be the filename. (The first
position in the buffer was set to indicate block zero by statement 9010
thus the filename takes up characters 2 through 6). The 7th character
must not be a CR (SOD) or it will not be accepted by EDITOR as a text
file. EDITOR also wants to see two consecutive CR's at the end of the
file to indicate EOF. The EOF subroutine does this as well as filling the
rest of the block with “‘nulls’’. However, the user is free to set up his 80
byte blocks to suit his own needs. e.g. a special character to indicate
EOF. Obviously. to read data from tapes, a proper INPUT format is nec-
essary to match the way the data is stored. The filename will also need
to be INPUT from block 0.

The program on page 5 gives an example that we can follow. Statements
20 through 50 load array P$. Statement 60 inputs a title for the data (not
the filename). Staternents 90~ 120 sets up tape recorder 1 or 2 for output
and turns the tape controls off. (User should respond with a 1 or 2 to

INTERACTIVI

statement 90). At statement 120, place tape recorder in ‘‘record’’ mode
and answer query. Input ‘‘filename’’ at 140. Statements 150-230 ac-
tually do the writing to tape. Note that 170 prints the filename, a comma,
and the number of data lines (N). Commas are necessary if more than
one data element are to be read per line. Statement 240 turns the tape
recorders on to allow the user to reposition the tapes if necessary. The
tape read example is similar. Statements 560-630 input the data, 640—
690 prints the data, and 700 turns the tape controls back on. The user
can place the recorder in the ‘‘play’" mode after the prompt *‘?’" is dis-
played for statement 580. Of course, the tape should be properly placed
in a gap just before the start of the desired file.

Statements should be kept to a minimum while the AOD or AID is set to
‘‘tape’’. If data is going to be written or read several different times in
the program, return AOD or AID to ‘‘keyboard/display’’ after each
PRINT or INPUT loop orroutine. In other words, only have the AOD or
AID set to “‘tape’’ when absolutely necessary. I have not tried all com-
binations possible, but do know that data can be easily written or cor-
rected by the EDITOR and read as data by BASIC. I would be interested
in hearing about any *‘discoveries’” vou make. If you have questions. |
can be reached at 612/589-3411 during normal working hours.

This procedure offers quite a bit of flexibility, and I have left it this way
even though a neater package could be written using WHEREIN and
WHEREOUT and putting almost everything in the subroutines. One
thing to remember with this routine is that the tape must be positioned so
that block zero will be the first block read. This can be changed if de-
sired, however. Also, a search procedure could be used to locate block
zero of a given file.

MINIMUM STATEMENTS TO WRITE ON CASSETTE TAPE

*

* USER PROGRAM

*

GOSUB 9010 OPEN FILE WRITE

POKE 42003, 84 ACTIVE OUTPUT DEVICE SET TO
“TAPE"

*

* USER PRINT STATEMENTS TO
TAPE

*

POKE 42003.13 ACTIVE OUTPUT DEVICE
RETURNED TO “‘DISPLAY ™"
GOSUB 9110 WRITE EOF ON TAPE

END

MINIMUM STATEMENTS TO READ FROM TAPE

*

* USER PROGRAM

*

GOSUB 9210 OPEN FILE (READ)

POKE 42002 ,84

*

POKE 42002,13

END

TAPE SUBROUTINES

9000

9010

9020

9030
9040

9050
9100

9110
9115
9120

9130
9140
9150
9160
9170
9200

9210
9220

9230

REM: OPEN
FILE (WRITE)

POKE 278.0

POKE 42039,1

POKE
POKE

360,0
41993 22

RETURN

REM: WRITE-
EOF

POKE 42003,84

PRINT CHR$(13)

NL=80-PEEK
(42039)

FOR NC=1 TO NL

PRINT CHR$(0);

NEXT NC

POKE 42003,13

RETURN

REM: OPEN
FILE (READ)

POKE 277.0

POKE 42038,80

RETURN

EXAMPLE PROGRAM

20
30
40
50
60

DIM P$(40)

_—

ACTIVE INPUT DEVICE SET TO
“TAPE”’

USER INPUT STATEMENTS TO
READ FROM TAPE

ACTIVE INPUT DEVICE RETURNED
TO ““KEYBOARD™’

USER PROGRAM

$0116 TO O (SET 1ST CHAR IN BUFF
FOR BLK 0)

SET OUTPUT TAPE POINTER
($A437) TO *“1

BLOCK COUNT (30168) TO ZERO

SET TAPE GAP
(3A409) TO $16

SET OUTFLG TO “‘T”

OUTPUT OD,OD,QA

CHECK POINTER FOR BUFFER
SPACE

FILL BUFFER WITH NULLS

SET OUTFLG TO ‘“‘D”

SET BLOCK ($0115) TO ZERO
SET COUNTER ($3A436) TO END
(850

REM: TAPE WRITE EXAMPLE
INPUT “*# ENTRIES " :N

FOR I=0 TO N~-1

PRINT “‘ENTRY # ™

NEXT I

INPUT “TITLE" ;H3

.1+ 1; :INPUT PS(1)

Page 5

70 INPUT *“‘STORE ON TAPE Y/N'’ ;A$

80 IF A$S="''N"’ THEN STOP

90 INPUT “T = "; T.T=T-1

100 POKE 42037, T:REM: SET TAPOUT

110 POKE 43008,204:REM: TURN TAPES OFF

120 INPUT “TAPE READY Y/N'";A$

130 IF A$=‘N"" THEN STOP

140 INPUT “‘FILENAME” :AS$

150 GOSUB 9010:REM: OPEN FILE

160 POKE 42003,84:REM: TAPE AOD

170 PRINT A% : ‘" ; N

180 PRINT H$

190 FOR I=0 TO N-1

200 PRINTI + 1; " ;P$(D)

210 NEXTI

220 POKE 42003,13:REM: DISPLAY AOD

230 GOSUB 9110:REM: WRITE EOF

240 POKE 43008,252;:REM: TURN TAPES ON

250 ‘END

500 REM:; TAPE READ EXAMPLE

510 DIM R40), R$(40)

520 INPUT “READ TAPE Y/N'"; A%

530 IF A$=*N’'""THEN STOP

540 INPUT “T =" T:T=T-1

550 POKE 42036,T:REM: SET TAPIN

560 GOSUB 9210:REM: OPEN FILE

570 POKE 42002,84:REM: TAPE AID

580 INPUT AS,N

590 INPUT H$

600 FOR I=0 TO N-1

610 INPUT RI),R$(I)

620 NEXTI

630 POKE 42002,13

640 PRINT **°

650 PRINT! ** ";PRINT!'H$

660 FORI=0 TO N-1

670 PRINT! R(1); TAB(5);R3(1)

680 NEXT I

690 PRINT! **

700 POKE 43008.252

710 END

Some useful locations:

Hex Decimal Label Remarks

$0115 277 BLK Block count for input (tmust be
Zero 1o start)

30116 278 TABUFF 80 byte tape buffer starts here

$0168 360 BLKO Block count for output
(set to zero)

$A409 41993 GAP Block gap for tape recorder

$A411 42001 PRIFLG Printer ““ON"" = (),

“OFF ™" = 128 ($80)

Page 6

MORE BASIC DATA FILES

Steve West and Frank Nunneley
Johannesburg, South Africa

(EDITOR’S NOTE: Yes, I know that you've already seen a data file han-
dling program. But, this program is a bit different and it shows a neat
way to add new commands to AIM 65 BASIC.)

The ability to process and store data on cassette greatly enhances the use-
fulness of BASIC programs.

Any system of this type should be easy to use. The method described
here extends the instruction set of BASIC to include instructions to open
and close files and to input and output data. The new instructions are;

(Continued from previous page)

$A409 41993 GAP Block gap for tape recorder
$A411 42001 PRIFLG Printer *‘ON"" = 0,
“OFF’" = 128 (380)
$A434 42036 TAPIN Tape 1 or 2 controls for input
) default = 1
) if not changed
$A435 42037 TAPOUT Tape | or2 controls for output
) (otherwise last)
$A436 42038 TAPTR Tape buffer pointer for input
$A437 42039 TAPTR2 Tape buffer pointer for output
(N 2)
$A800 43008 DRB Data Reg B for monitor
6522—PB4 and PBS wurn
tape controls on and off.
Hex Decimal Remarks:
$CC 204 Both tapes
OFF
$DC 220 Tape 1 on,
2 off
$EC 236 Tape 2 on,
1 off
$FC 252 Both tapes
on
Useful Monitor Subroutines
Hi Lo
Hex Decimal Decimal Decimal Remarks
SE6BD 59069 230 189 Toggle Tape
#1 control
$E6CB 59083 230 203 Toggle Tape
#2 control

=

PRINT# ‘NAME’] Opens a cassette output file. The name of
the file is in single quotes and is followed

by the recorder number, (Default is T=1)

PRINT#A,B$ Outputs data to the currently open output
file. Format is identical to standard PRINT
Statement.

PRINT## Closes current output file.

INPUT# ‘NAME 2 Opens an input file by finding the file
“NAME"". The file name is again fol-
lowed by the recorder number (Default to
tape recorder 1)

INPUT#AS,B$ Inputs data from currently open input file.

INPUT# # Closes Input file.
Only one tape buffer is available while BASIC is in use, thus only one
VO file can be open at a time.

To use BASEX, BASIC must be limited to 3883 bytes in response to
the question “MEMORY SIZE?’" when entering BASIC. Answer
*““WIDTH?"" as before, then ESCape to monitor and Load BASEX from
cassette. Reenter BASIC using 6 and the extension program is ready to
work. This order is important as the divert routine on page zero must be
modified after BASIC is initialized.

The assembly listing follows. When entering this file in source it is rec-
ommended that the editor be placed above $800; the assembler symbol
table can be placed between 200 and 800. This way the Editor won’t be
corrupted when the program is tested. After entering BASIC after assem-
bling the file it will be necessary to modify the instructions on page zero
using Mneumonic Entry. After the file is working and the initialization
procedure from tape is used this is not required.

<*>=C8§

<I>
00C8 4C JMP OF2D
00CB EA NOP
00CC

<

When the file is working dump it (object) to cassette, the link to the ex-
tension must be included here.

<D>

FROM=F2D TO=FFF
OUT=T F=BASEX T=1
MORE?Y

FROM=C8 TO=CB
MORE’N

2000
2000

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
OF 2I
OF 21
OF 2D
OF 2F
OF31
0OF 33
OF 3%
OF37
OF 39
OF 30

OF 3D
OF 3E
OF 41
OF 43
OF 45
OF 47
OF 49
OF 49
OF 4C
OF 4F
OF 4F
OF 51
OF 54
OF 55
OF 57
OF 59
OF SR
OF 5D
OF SF
OF 5F
OF 60

ce
FO
ce
FO
ce
RO
4C
60

48
20
Ao
Bl
co
Fo

20
4C

ny
8h
C8
Bl
(0
FO
ce
FoO

B8
20

Q7
oc
84
34
3A
03
cc

PE
01
()
23

06

FE
63

54
13

Cé
27
39
23
4

AO

INTERACTIVE

00

EER

E8
OF

A4

OF

sk TAFE DATA FILES
$ STEVE WEST AUG
FHXY =$ERPE
FLXY =$ERAC
CRLF =$EPF O
LL =$E8FE
OQUTFL.G =%A413
INFLG =%A412
QUTDIS =%$EFO0S
TORYTE =%$F18R
DILINK =%$A406
DUMFTA =$E56F
TAFQUT =$A435
TAFIN =$A434
DRE =$AB00
nuil =$ES50A
NAME =4 A4 2E
LOADTA =$E32F
FNTR =$Cé

X=%F 20
BASEXT

CMF #4$97

RBEQ FRINT

CMF #$84

REQ INFUT

CMF #$3A

BCS NOTNUM

JMP SCC
NOTNUM RTS
FRINT FHA

JOR FHXY

LDy #1

LItda (FPNTR)»yY

CMF #/#

REQ STATAF
FRi1

JOR LL

JMPEXIT
STATAF

Lna #/7

STaA OQUTFLG

INY

LI (FNTR)YyY

CMF /77

BEQ OFENFL

CMF #7#

REQ CL.OSE
STl

DEY

JOR UFPENTR

‘80

OF &3
OF 66
OF &7
OF 68
OF 69
OF 469
OF6A
OF &I
OF 6F
OF71
OF73
OF75
OF77
OF7a
OF7E
OF 7D
OF7F
OF81
OFB3
OF 85
OF88
0oF 88
OF8E
OF BE
OF91
OF94
OF 94
OF 97
OF9A
OFen
OFAQ
OFAl
OFA2
OF A4
OF a6
OFaB
OFAA
OF AR
OFAER
OF AE
OFR1
OF R4
OFR4
OFR6&
OFR9
OFRC
OFBF
OFC2
OFC3
OFCS
OFC6
oFC7
OFC7

20
468
3B
60

48
20
A0
E1l
ce
no
AY
80
Ce
E1l
ce
FoO
ce
FO
4C

20
8C
20
4C

20
8C
20
4C
28
18
65
83
?0
Eé
60

20
20
20

A
20
8n
20
20
68
A
38
60

C8

AC

PE
01
Cé
23
4
54
12

Cé
27
07
23

oF
SF

c7
34
2F

63

C7
35
6F
63

Cé
Lé
02
c7

FoO
FO
0A

CF
00
00
FE
AC

8E

A4

OF

OF
A4
E3
OF

OF
A4
ES
OF

E9?
E9
ES

AB
AB
E8
ER

EXIT

INFUT

LOADFL

OFENFL

UFFNTR

UF1
CLOSE

OFFTAF

RONAME

JBR
FLA
SEC
RTS

FHA
JSR
Loy
LA
CMF
ENE
L.IA
STA
INY
LIA
CMF
REQ
CMF
BEQ
JMF

JOR
8TY
JER

JMF

JGR
8TY
JBR
JMF
TYA
cLc
AllC
STA
RCC
INC
RTS

JSR
JOR
JOGR

LA
AND
STA
JER
JOR
FlL.A
L.I1A
SEC

RTS

INY

Page 7

FLXY

FHXY

¥1
(ENTR) »Y
L 2

FR1

7T
INFLG

(FNTR) » Y
#III
LOADFL.
'z

OFF TAF
5T1

RIINAME
TAFIN
LOADTA
EXIT

RIINAME
TAFOUT
DUMFTA
EXIT

ENTR
ENTR
UF1
FNTR+1

CRLF
CRL.F
nuii

FHLF
IIRE
LRE
L.L.
FLXY

$58E

Page

OFCe
OFCE
OFCID
OFCF
OFI1
OFI13
OFIé
oFnv
OFDe
OF DR
OF BE
OFE1
OFEA4
OFES
OFE®
OFEA
OFEC
OFEE
OFEE
OFFO
OFF2
OFF 4
OFFé&
OFF8
OFFA
OFFI
OFFE
OFFF
00C8
oocs
QOCE

00ocCC

8
20 A0 OF JBR UFFNTR
A0 0O Loy #0
Bl Cé NEXT LIa (FNTR)»Y
ce 27 CMF &7~
FO OE BREQ ENIINAM
29 2E A4 STA NAME:Y
c8 INY
CoO 05 CPY #5
no F2 BNE NEXT
20 A0 OF JER UFPNTR
4C EE OF JME RDI
20 A0 OF ENDNAM JSR UFPPNTR
A% 20 LA %
99 2E A4 EN1 STA NAMEsY
C8 INY
CoO 05 CFY #5
no rF8 ENE EN1
RINl

A0 01 Loy #1
Bl C6 LA (FNTR) Y
coe 32 CHMF 72
FO AA REQ UFFNTR
C? 31 CMF %71
no 03 BNE RD2
20 AQ OF JSR UFPNTR
88 RI2 DEY
60 RTS

*=$C8

DIVERT

4C 2D OF JMF BASEXT
EA NOF

+ENI

As a final note, the BASIC data files are EDITOR compatible so that
data to be processed can be produced by using the EDITOR.

AN EXAMPLE PROGRAM ILLUSTRATING THE USE OF
THE NEW COMMANDS

Notes:

No tape number was specified when opening the files thus tape
recorder 1 is used (default)

At 600 is a subroutine to toggle the tapes to make rewind and fast
forward possible.

SOME COMMENTS ON THE EXAMPLE BASIC PROGRAM:

Line

Number Action
45 turn tape #1 ON
55 wait for key when operator is ready

58 turn both tapes OFF

10
30
40
45
S0
S99
58
60
70
80
90
100
110
120
130
140
200
210
220
230
240
250
260
270
280
290
300
310
320
590
600
410

L A S P e Y

60 the output file is opened and called
“NAMES"

100 .LAST indicates that the last name
has been entered

140 end of output to TAPE routine

200 start of input from TAPE routine

220 looks for file with NAME= ‘““NAMES"

230 prints heading (1st string in file)

260 inputs name from TAPE

270 has last been read?

280 echos to printer

300 closes file

600 TP=0 (both tapes OFF

TP=1 (#1 ON, #2 OFF)
TP=2 (#1 OFF, #2 ON)
TP=3 (both tapes ON)

FRINT!" EXAMFLE FROGRAM®
FRINT!® °®
REM STORE NAMES ON CASSETTE
TP=1:G0SURG00
FRINT" TAFE TO RECORD®
GETA$IIF Afg="" THENSS
TFP=0:GOSURA600
FRINT# NAMES "NAME LIST®
FOR I=1T0O30

INFUTAS
FRINT#A% ¢ REM # S0 TO TAFE
IF A$=" LAST"THENL20

NEXT

REM CLOSE FILE

FRINT##

END

REM READ NAMES FROM TAFE
FRINT*TAFE TO FPLAY*®
INFUT#NAMES “H4
FRINT!TAR(S) sH$

FRINT!" *©

FOR I=1T0O30

INFLUT#A%
TFA$=",LAST"THEN30O
FRINTIA%

NEXT

INFUT#4

FRINT* D ONE ' T

END

REM TAFE ON/OFF

FOKE43008y 207ANDFEERK (43008)0R16XTF

RETURN

-

........... ~

INTERACTIVE

A b, AL

A MOVE/RELOCATE
ROUTINE

Anthony Chandler,
Montreal, Canada

SUMMARY

This routine will, at the user’s option, either MOVE a block of data or
RELOCATE a machine-language program from one area of memory into
any other area of RAM from $0200 up. It can perform both forward and
backward shifts, and resides entirely in Page Zero.

INTRODUCTION

Often the need arises to shift a block of data or a machine-language pro-
gram from one set of locations in memory to another.

If a block of data, such as a ‘‘look-up’’ table has to be shifted, then a
simple MOVE routine which sequentially reads each byte of data in the
SOURCE area and writes it into the DESTINATION area is sufficient.
Examples of MOVE routines are given on pages 6-26 and 6-27 of the
R6500 Programming Manual.

However, if a machine-language program has to be shifted, then a simple
MOVE routine may not be satisfactory. Those instructions in the pro-
gram which use the absolute addressing mode (such as JMP 0345 or LDA
0567) have operands in the form of an address. If the operand points to
an address within the span of the program being re-located, then the in-
struction must be modified so that its operand points to the correspond-
ing address in the destination area. On the other hand, if the instruction
refers to an address outside the span of the program, then it must be
moved without alteration.

In order to shift programs, a more complex routine which calculates the
necessary address changes is required.

In AIM 65, the memory area available for programs extends from ad-
dress $0200 up to the limit of installed RAM (81000 if 4K of memory is
installed). Any MOVE/RELOCATE routine which occupies part of this
area will naturally be restrictive, since the area it took up could not be
used. A special effort has been made to enable the following routine to
be located entirely in Page zero, which is not normally used for program
instructions, so as to leave the entire working area from $0200 up free.

DESCRIPTION

Fig. 1 is a disassembly of the MOVE/RELOCATE routine. The pro-
gram itself occupies addresses $0000-$00DD. Addresses SO0EB- $00FF
are “‘borrowed’’ from the Text Editor *‘Find"’ command for temporary
storage, pointers and prompt messages. Loading of the ‘‘RELOC’’ rou-
tine will not disturb any operations of the Text Editor except the
*‘Find’’ command and only then if an attempt is made to find a character
string longer than 12 characters. The Text buffer addresses, stored in
$00DF-$00E9 are preserved.

Page 9

EXECUTION—RELOCATE

The program starts at $0000 and can be run using the * =0000 command
or by setting up a linkage to $0000 via one of the Function keys. The
following example illustrates the entries necessary to re-locate a pro-
gram presently residing at addresses $0456 to $0567 to a destination
starting at address $0234. In this example, the address of the last in-
struction is $0567—the last byte of the program might be at $0569, if
the program terminated with a 3 byte instruction.

PROGRAM PROMPTS

S = START ADDRESS

F = FINISH ADDRESS

D = DESTINATION ADDRESS
MR = MOVE/RELOCATE

* =0000

G/

S= Enter 0456 (NOTE—NO ERRORS
PERMITTED. IF
INCORRECT DIGIT
THEN RE-START
PROGRAM)

S=0456F= Enter 0567

S=0456F=0567D = Enter 0234

(Display wraps around)
0456F =0567D=0234MR = Enter ‘R’ (for re-locate)
(any other key except *‘M"™" will

do)

The routine will run, displaying a disassembly of the source program as
the re-location takes place.

On completion, control returns to the Monitor. The next free available
address following the re-located program ($0348 in the above example)
will be found by examining memory locations 00F5-00F6 (1.SB first—
4803)

EXECUTION—MOVE

If the source addresses, $04 56 to $0567 contain data (or text) then a sim-
ilar procedure is followed.

In this case, however, the Source Finish address entered in response to
the prompt *‘F=""should be one address less than that of the last byte of
data (for example, 0566 instead of 0567).

After entering the addresses, the response to the move/relocate prompt
“MR="" should be ‘M’ for move.

The Destination Finish address to be found at SOOF5-00F6 will be the
address of the last byte of data moved (for example $0345). The next free
address is $0346.

Page 10

If the MOVE routine is used to shift the contents of the Editor’s Text
Buffer, then the Source Start address should be that shown (Low order
byte first) at SO0E3-00E4. The Source Finish address should be one less
than the text end address shown at $00E1/E2. On completion of the
MOVE operation, it will be necessary to reset the Text Buffer addresses
as follows:

00El1 Text end address—same as 00F5
00E2 00F6

00E3 Text start address—same as Destination
O0OE4 Start

00E5 Text buffer end address—this can be any

O00E6 address higher than that in 00E1-00E2
depending on the amount of free space
required.

During execution of the MOVE option, no messages are displayed and
return to the Monitor is very rapid.

OVERLAPPING

The routine permits backward overlapping—for programs, the DESTI-
NATION START address must be at least three addresses lower than the
SOURCE START. For a data MOVE, there is no restriction.

Forward overlapping is not possible, but a program or data block can be
temporarily re-located or moved to a high or low memory area and then
shifted back to overlay its original source area.

SELF-REPRODUCTION

Incidentally, the program will successfully re-locate itself and so, if the
terminating instruction were replaced with instructions calculating a new
destination, it could become self-perpetuating until its progeny filled
available RAM.

STORING ON CASSETTE TAPE

When dumping the routine for storage on to cassette tape, the addresses
to dump are FROM= 0000 TO= 00DD

MORE? Y

FROM= 00F7 TO= 00FF

This procedure avoids recording on tape the Editor's Text start and finish
addresses from $00E! to $00E6. This means that, when *‘RELOC’" is
loaded from tape at some futurc time, it will not affect any Text Editor
which is set up.

INTERACTIVE

AS_FL_TN

PROGRAM LISTING AND COMMENTS

The following temporary stores and pointers are used:

SOURCE START (S) $00EB (LO)

00EC (HD)
CURRENT SOURCE ADDRESS 00ED

00EE
SOURCE FINISH (F) 00EF

00F0

OPERAND ADDRESS (from instruction 00F1

being read) 00F2
DESTINATION START (D) 00F3
00F4

CURRENT DESTINATION ADDRESS 00Fs
00F6

Prompt messages are stored (in ASCII) as follows:
M =00F7 /53 3D 46 3D

O0FB /44 3D 4D 32
00FF /3D * * *

&l

S F
D =M

(* = unchanged)

06000 A2 LDX #00 INITIALIZE. X INDEXES
MESSAGE BYTES

Y INDEXES PROGRAM
BYTES EACH INSTRUCTION
DISPLAY PROMPT MESSAGE
ASKING FOR ADDRESS
0090 GET 4-DIGIT ADDRESS AND
STORE IT

SEE IF 12 DIGITS (ALL
THREE ADDRESSES)

TF NOT-BACK FOR NEXT
ADDRESS

DISPLAY FINAL PROMPT
(“MR=")

0002 A0 LDY #00

0004 20 JSR 00D2

0007 20 ISR

000A E0 CPX #0C

000C DO BNE 0004

000E 20 JSR 00D2

0011 20 ISR E973
0014 C9 CMP #4D
0016 FO BEQ O007E
0018 AS LDA ED
001A 8D STA A425
001D A5 LDA EE
00IF 8D STA A426
0022 20 ISR F46C
0025 AS LDA EA
0027 C9 CMP #02
0029 DO BNE OO06E
002B A0 LDY #0l
002D B! LDA (ED).Y
002F 85 STA Fl
0031 C8 INY

0032 Bl LDA (ED)Y
0034 85 STA PR
0036 38 SEC

0037 A5 LDA FI
0039 E5 SBC EB
003B AS LDA R
003D ES SBC EC
003F 90 BCC O006E
0041 A5 LDA EF
043 E5 SBC FI
0045 A5 LDA FO
047 E5 SBC R
0049 90 BCC O006E
004B 18 CLC

04C A5 LDA FI
004E 65 ADC F3
0050 48 PHA

REDOUT---SEE IF USER
WANTS MOVE OR
RELOCATE

IF HE SAYS “M”’ THEN—

GO TO MOVE ROUTINE FOR
STRAIGHT COPY
OTHERWISE, GET CURRENT
SOURCE ADDRESS FROM ED/
EE AND PUT IT IN SAVPC AT
A425/A426

DISASM—INTERPRET
INSTRUCTION & DISPLAY IT
LENGTH—ACCUMULATOR
HAS LENGTH MINUS ONE
ISIT A3-BYTE
INSTRUCTION?

NO—SO GO MAKE
STRAIGHT COPY

YES—IS A 3-BYTE SO MAY
HAVE TO ALTER

GET FIRST BYT OF OPERAND

SECOND BYT OF OPERAND
OPERAND INTO F1/R2
SUBTRACT SOURCE START
ADDRESS FROM OPERAND
TO SEE IF OPERAND POINTS
TO ADDRESS BELOW
SOURCE START

IF SO—CARRY CLEAR AND
NO CHANGE REQUIRED
SUBTRACT OPERAND FROM
SOURCE FINISH ADDRESS
TO SEE 1IF OPERAND POINTS
TO ADDRESS ABOVE
SOURCE FINISH

IF SO—CARRY CLEAR AND
NO CHANGE REQUIRED.
OPERAND REQUIRES
CHANGING SO PREPARE TO
ADD. ADD OPERAND TO
DESTINATION START
ADDRESS

TEMPORARILY STORE LO-
BYT SUM ON STACK

0051
0053
0055
0056
0057
0058
005A
(005B
005C
00SE

0060
0062

0064
0066
0067
0069
006B

006E

0071

0074

0077

007A

007C

007E

007E
0080
0082
0085

0088

AS

65

38

68
ES

8A
E5
A0
91
88
68
91
88
Bl
91
4C
20

20

20

90

LDA
ADC
TAX

SEC
PLA
SBC
PHA
TXA
SBC
LDY
STA
DEY
PLA
STA
DEY
LDA
STA
IMP
JSR

JSR

ISR

ISR

BCS

BCC

F4

EB

EC
#02
(F5),Y

(F5).Y

(ED),Y

(F5),Y

0071

00C6

00AD

EA13

00A3

0018

008D

Page 11

TEMPORARILY STORE HI-
BYT SUM IN X

NOW SUBTRACT SOURCE
START ADDRESS FROM SUM
GET LO-BYT SUM

STORE IT ON STACK
GET HI-BYT SUM FROM X

PUT ADJUSTED OPERAND
INTO CURRENT
DESTINATION PLUS 3

AND PLUS 2

NOW GET OP-CODE FROM
CURRENT SOURCE

PUT IT IN CURRENT
DESTINATION

GO TO UPDATE AND END
CHECK

MAKE STRAIGHT COPY OF
COMPLETE INSTRUCTION
INCREMENT CURRENT
SOURCE AND DESTINATION
ADDRESSES BY LENGTH OF
INSTRUCTION PLUS ONE
CLEAR THE DISPLAY
(CRLOW)

SEE IF PAST END—CARRY
CLEAR IF SO

NOT AT END SO GO BACK
FOR NEXT INSTRUCTION
BRANCH ALWAYS (AT END)

THE FOLLOWING ROUTINE IS JUMPED TO IF USER
REQUIRES A MOVE OPERATION RATHER THAN
RELOCATE. IT TRANSFERS A STRAIGHT COPY. BYTE
BY BYTE FROM SOURCE INTO DESTINATION

20

LDA
STA
JSR
JSR

ISR

#01
EA
00C6
00AF

00A3

SET LENGTH TO ONE

TRANSFER THE DATA
INCREMENT CURRENT
SOURCE AND DESTINATION
ADDRESSES BY ONE

SEE IF PAST END—CARRY
CLEAR IF SO

Page 12
008B BO BCS O07E NOT AT END SO BACK FOR
NEXT BYT OF DATA
008D 4C JMP FEE9 PATC10—CLEAR DISPLAY
—HOME TO
MONITOR
—REVELATION 6.14
0090 THIS SUB-ROUTINE GETS A 4-DIGIT ADDRESS AND

0090

0093
0095
0097

009A
009C
009E

009F
00A0
00A1
00A2

00A3

00A3
00A4
00A6
00A8
00AA
00AC

00AD

STORES IT, LO-BYT FIRST, IN TWO ADJACENT PAIRS
OF THE STORE STARTING AT $OOEB.
WHEN CALLED FOR THE FIRST TIME, X = 0

20 ISR E3FD RBYTE—GET TWO DIGITS
(Hl ORDER)

95 STA ECX STORE THEIR HEX VALUE

95 STA EEX SAME AGAIN

20 ISR E3FD RBYTE—GET NEXT TWO
DIGITS (LO ORDER)

95 STA EBX STORE

95 STA EDX AGAIN

E8 INX INCREMENT X READY FOR
NEXT ADDRESS

E8 INX

E8 INX

E8 INX

60 RTS

THIS SUB-ROUTINE CHECKS TO SEE IF THE CURRENT

SOURCE ADDRESS HAS EXCEEDED THE SOURCE
FINISH ADDRESS—IF SO, THE MOVE OR RELOCATE
IS COMPLETE.

38 SEC

AS LDA EF
ES SBC ED
A5 LDA FO
ES SBC EE
60 RTS IF NOT PAST END, CARRY

REMAINS SET

THIS SUB-ROUTINE INCREMENTS THE CURRENT
SOURCE AND CURRENT DESTINATION STORES BY AN
AMOUNT EQUAL TO THE LENGTH OF THE LAST-
INTERPRETED INSTRUCTION PLUS ONE, SO AS TO
POINT TO THE NEXT INSTRUCTION TO BE READ

IF DATA IS BEING MOVED, THE LENGTH (IN $00EA)
IS SET TO #01 AND THIS SUB IS ENTERED AT $00AF
SO THAT SOURCE AND DESTINATION ADDRESSES
ARE INCREMENTED BY ONE EACH TIME

00AD
00AF
00BO
00B2
00B4
00B6
00B8
00OBA
00BB
(00BD
00BF
00CI
00C3
00C5

00C6

00C6
00C8
00CA
00CC
00CD
00CF
00Dl

00D2

00D2
00DS5

00D8

00D9%
00DB

00DD

INTERACIIVE

S I A

E6 INC EA
18 CLC

A5 LDA EA
65 ADC ED
8 STA ED

ADD ONE TO LENGTH

%0 BCC 00BA
E6 INC EE
18 CLC

AS LDA EA

65 ADC FS
85 STA F5

90 BCC 00C5
E6 INC F6
60 RTS

THIS SUB-ROUTINE IS CALLED WHEN NO
MODIFICATION OF THE OPERAND IS REQUIRED. IT
COPIES A COMPLETE INSTRUCTION FROM THE
ADDRESS POINTED TO BY CURRENT SOURCE, INTO
THE ADDRESS POINTED TO BY CURRENT
DESTINATION

GET LENGTH OF
INSTRUCTION

A4 LDY EA

Bl LDA (ED),Y GET BYT FROM SOURCE

91 STA (F5)Y PUT IT IN DESTINATION

88 DEY

CO CPY #FF ANY MORE ?

DO BNE 00C8 YES—GO BACK FOR NEXT
BYTE

60 RTS

THIS SUB-ROUTINE DISPLAYS THE FOUR PROMPT
MESSAGES WHICH ARE STORED IN ASCII AT $00F7 ET
SEQ. WHEN CALLED FOR THE FIRST TIME, Y = 0
AND IS USED TO INDEX ALONG THE MESSAGE
TABLE.

EACH MESSAGE ENDS WITH AN EQUALS SIGN, =
(ASCII #3D). AND THIS IS USED TO DETERMINE THE
END OF EACH PROMPT MESSAGE

B9 LDA 00F7Y GET THE CHARACTER

20 JSR E97A OUTPUT—DISPLAY THE
CHARACTER

C8 INY READY FOR NEXT
CHARACTER

C9 CMP #3D ISIT »“=""7

DO BNE 00D2 NO—SO GET ANOTHER
CHARACTER

60 RTS e

INTERACTIVE

P PR -

TTY OUTPUT UTILITY
PROGRAMS

Mark Reardon
Rockwell International

Many peripheral devices (printers, CRT Monitors) can use inputs in the
form of a 20 ma current loop or RS-232. The AIM 65 has a built-in 20
ma current loop that can be utilized, or the loop can be modified to being
an RS-232 (DOC. No. 230: RS-232C Interface for AIM 65).

One large problem still remains. For the AIM 65 Firmware to use the
TTY port, the Keyboard/TTY switch must be in the TTY position. Un-
fortunately, the AIM 65 then uses the TTY port for all of the inputs that
usually come from its Keyboard. Most printers have no way of commu-
nicating back to the AIM 65. In order for the keyboard to retain control,
one of the following programs can be used. Each uses the TTY subrou-
tine in the AIM 65 Monitor (OUTTTY=3EEAS). They also require the
user to enter the correct values for the baud rate in locations $A417 and
$A418. The first program (ECHO) utilizes the DILINK ($A406) vector
to intercept all data on the way to the display/printer and then redirects it
to both the TTY and display/printer. If this program or any other program
that modifies DILINK is assembled on the AIM 65 the object code has to
be directed to an external device.

If the object code is directed to memory, the AIM 65 will lock up. To
free it, the power has to be turned off. Reset will not correct the problem.
The second program (UOUT) is a user output program. It allows the user
to select the TTY port by responding to the QUT= prompt with a U.

In this way any command that uses the Qutall subroutine will direct its
output to the TTY port. AIM 65 Basic uses Outall for all of its printing
commands. Unfortunately, AIM 65 Basic also sets the Qutflag to equal
P. To use the user output program the instruction: ‘‘POKE 42003,85,"’
needs to be inserted.

Page 13

In actual use there have been two major sources of failure with these pro-
grams. The easiest to cure is if the baud rate isn’t entered properly. To
determine the appropriate values do the calculations as shown below. The
second source of trouble has been that different manufacturers have de-
signed their peripheral requiring different inputs than are provided. In
these situations these two programs had to be modified to satisfy the pe-
ripheral's needs.

ECHO PROGRAM
0000 OUTTTY =$EEAS8
0000 CR=$0D
0000 LF=$0A
0000 NULL=$FF
0000 DILINK =3A406
0000 *=DILINK
A406 00 02 .WOR ECHO :SET VECTOR TO THIS ROUTINE
A408 *=$200
0200 C9 0D ECHO CMP #CR :CR?
0202 DO 0A BNE NOTCR :No, JUST OUTPUT IT

0204 20 A8 EE JSR OUTTTY :YES, ADD LF AND NULL
0207 A9 0A LDA # LF
0209 20 AB EE JSR OUTTTY
0200 A9 FF LDA #NULL
Q20E 4C ABEE NOTCR IMPOUTTTY :OUTPUT AND RTS
211 .END
UOUT PROGRAM
0000 OUTTITY=3EEAS8
0000 CR=30D
0000 LF=$0A
0000 NULL=$FF
0000 UouUT=810A
0000 *=UouT
010A 00 02 .WOR START :VECTOR TO PROGRAM
o10C *=$200
0200 90 12 START BCCRETRN :NO SETUP
0202 68 PLA :A ON STACK
0203 C9 0D CMP #CR :IF CR ALSO SEND
0205 DO 0A BNE NOTCR :A LF AND NULL
0207 20 A8 EE JSR OUTTTY :OUTTTY ALSO SENDS
020A A9 0A LDA #LF :TO DISPLAY/PRINTER
0200 20 A8 EE JSR OUTTTY
020F A9 FF LDA #NULL
0211 4C A8 11 NOTCR JMP OUTTTY
0214 60 RETRN RTS
0215 .END -

METHOD TO CALCULATE
BAUD RATES FOR THE AIM 65

When used with terminals running at 1200 baud and up, the Rockwell
AIM 65 needs to have the Baud Rate entered manually. To calculate the
values to enter perform the procedure outlined below:

Note: All variables are integers and have us/bit as their units.
1. 10%(Baud Rate) = X
2. X-67ushb =Y
3. Y256 = Z remainder W
4. $A417 = Z in Hex
5. $A418 = W in Hex

Examples: Baud Rate 4800
1. 10%4800 Baud = 208
2. 208—67 us/b = 141
3. 141/256 = 0 Remainder 141
4. $A417 = 01(1 = 0016
5. $A418 = 141,, = 8Dy,

Baud Rate 150
1. 105150 Baud = 6667
6667—67 us/b = 6600
6660/256 = 25 Remainder 200
SAI47 = 25,, = 19,4
$A418 = 200,, = C8¢ Fau

[VS I)

Page 14

DATA STATEMENT
GENERATOR

G. Brinkmann
W. Germany

Remember the last time you had to convert a machine language program
to data statements so your Basic program could poke it into RAM some-
where? I'll bet you really enjoyed having to convert each hex byte into
decimal and then typing it in. No? Well, then maybe you’ll find this pro-
gram will come in handy next time around.

What it does is convert hex data to decimal and generate BASIC data
statements with the decimal data. The statements that it generates are
sent out to the audio cassette interface which is used as temporary stor-
age. The input is in the form of hex numbers which could come from the
conversion program itself, as is in the example or, from memory with a
minor change to the conversion program.

Note that this approach needs only one tape without remote control and
only ‘‘on board’’ assembly language routines. The following example
converts the first 26 HEX-values of R. Reccia’s program (INTERAC-
TIVE 1) into BASIC-DATA-Statements and writes them to tape.

It works as following:

—the HEX-values of the assembler language program are put into the
BASIC-Program by DATA-statements. They must be ended by an
*“END’’ DATA (or any other special mark, see lines 90, 260).

—In line 190 you are asked for the line-number of the first DATA-state-
ment to be generated, depending on your BASIC-program.

—Line 210 performs a call to WHEREO and opens the outfile. Ifitisa
tape, with a gap of 80 (POKE 41993,128).

—The main loop starts at line 230, the STRING S$ is filled with the
statement-number and the constant ‘‘DATA’".

—In line 260 we read the HEX-input-data until “‘END’’. The data is
added to S$ after converting to decimal in a subroutine. Each DATA-
line takes 10 items.

—The PRINT-statements (line 350) write the STRING S$ to any open
output, adds 1 to the statement-number and goes to the start of the
main loop (line 230). Note that until now the first statement-line has
a linenumber of d+1 (where d was your input).

—If-the END-mark has been read, the last DATA-statement will be
printed, followed by the statement-line ‘‘d’’ with a counter of all
DATA-items.

—The file will be closed in line 410 through a jump to B52B, a BASIC-
routine which prints a CTRL/Z, closes the file and waits for the new
input.

—The HEX to DECIMAL conversion takes place in statement 450-560
and uses the STRING HS$ in 170. Leading zeroes in the HEX-numbers
are not needed.

—If an error occurs, the faulty item will be printed to the printer and the
file is closed. Therefore, you should make a trial run before going to
tape (by hitting RETURN after OUT=) and any error will go to the
printer (which has not to be on).

When everything worked ok until now, you have a file with DAT A-state-
ments on tape. To read it into your actual program, just use a statement
as

100READ N:FOR I = 0 TO N—1:READ X:POKE xxxx+LX:NEXT

Remember, the first DATA -statement contains a counter of the following
DATA-items. So you don’t have to bother about it, the first READ will
get it for you. This is extremely useful during the test phase, where
changes occur quite frequently.

The next step is to load the statements into your BASIC program with the
LOAD command. Be sure that you have chosen the right line-number,
the LOAD command will over-write duplicate line-numbers. However,
while testing, it might save you deleting the old lines.

If you are working with the ASSEMBLER and the BASIC at the same
time, you could change the READ in line 260 to PEEK 's. This saves you
the initial typing in of DATA-statements and the conversion will be done
by BASIC. However, you should either use a counter or a unique mark
as 0,0,0 to find an end to the data.

Of course, the data need not to be in memory at all. You can generate
DATA-statements by reading from keyboard or by using your BASIC-
program to compute them from other data. I use this program regularly
while computing moving averages and other statistics and then replacing
the old values by the new ones for the next run.

70 NATAAY v B v BD 2 ABvZ0v LD FE vy 2820040 F 2

B0

S0

160
110
120
130
140
150
166G
L7720
180

400
410
G720
AZ0
440
A0
REQ
470
460

DATAAZy GBI OQ e GF o 20 4Ry FE v EBCR e 21 o DO F 5
Darn EWND

REM HEX T0 DECTIMAL
REH GENERATES DATA-LINES N TAPE-FLLE
REM G, BRINKMANN
FEM AUF M GRAEVERICH 19%A
REM D-5414 Vsl LENDAR
REM WEST GERMAMY
RIZM O INTT
M= 0134567 89ARCHEF P
REM FIRST LAIME FOR COUNT OF DAaTH TTEMS
INFUT "M OF FIRST DATA-LINE" I 20=D141
REM OFEN TARE-FITLE WITH LONG GAF
FORE e DAFIPOKE Dy 2320POKE 41993128
HalIGR OO0
Se=CTRE D " DaTA"
REM 10 TTEME PER LINE
FOR =170 10
PUsalt aE T aEs"ENDY THEN 396
el SUBRROUTINE HEX - DECIMAOL
GRSUR 470G
ek N ERROR CLOSE FILE
TF o aLsx"ER"THEN 310
FORE 4200y LRAPRINTICERROR TN LINE "sD:GOT0430
TENEYL THEN S$=G64" "
REM SGTRING CONCATYENATION
pe R 3AL S INEXT
QUTEUT T ANY OFEM FILES ENC LINE NUMRER
FRINT S6i=D+1 16070 230
REM PRINT LAST LEHE AN THEN FIRST
FRINT &
STES LY DIATAFSTRSCCD-DL 1) KLO+N~1)
INT &4
REM CLOSE QUTFUY FILE
FORKE 4«4Z2P0ORE S 81 IX=USRI0)
REM JUME T0O BAGSLILC TNPUT
NI
REM SUBROUTIME HEX -> DECIMAL
TF LENCAS)=1 THEN A$="0"4+Aa%
FOFR I=1 Y0 17
TF mtDecasy 1y 1) =MIDG (HEe Le 1) THEN A=16%CI-12260TO
REM AFTER LAST NEXT =x ERROR
NEXT i GDTH S8R0
FOR 1=1 70 17
TE MIDNECAS» 2 10 =MTIRS (HE Do DITHEN A=A+ -1 1E0T0SA0
NEXT2GOTO S80
FEM TT % & 600D ONE
ALE=5TRS (A SRETURN
REM FRINT ERROR MSG

p—;

020

Page 15

Page 16

CASSETTE LOAD UTILITY

. . . For AIM 65

Mark Reardon
Rockwell International

This multi-purpose utility program allows you to load programs with
offset and recover programs that have load errors.

For example, suppose you wish to reload a program to reside at $0500
that was originally dumped from $0200. First, start the program by
pressing the ‘F1' key. The ‘FROM=" prompt should appear first. Enter
0200 to specify where the program used to reside in memory and press

the ‘RETURN key. Answer the ‘TO=" prompt with 0500 to show where
the program is going to be loaded. (Programs can only be offset by even
page amounts. For example, if a program originally resided at $0236,
it could only be offset to $0436, $0636, $0A36 etc. not $0400, 30777,
or $0100. Get it? This is because the offset calculation is done only on
the page number (upper byte) and not the byte number (lower byte).)

The rest of the cassette load prompts are the same as the normal ones
in the standard cassette load routine.

This program will also let you load a program even though there are
loading errors. This, at least, gives you a chance to recover a program
that would otherwise be impossible to recover. The normal cassette load
routines will stop when an error occurs.

2000 NAME =HA42E

2000 CRSUM =$A41F

2000 TAFAR =$A436

2000 ADDR =$A410

2000 S1 =4$A41A

2000 TEMF =460117

2000 ’

2000 TAISET =$EDEA

2000 GETTAF =4EE29

2000 FLXY =$ERAC

2000 FHXY =SERPE

2000 NAMO =$EBCF

2000 OUTALL =$EYRC

2000 SAIDR =$ER78

2000 COMIN =%$E1aAa1

2000 FROM =$E7AZ

2000 T0 =HE7AY

2000 ANDRG1 =4%$F910

2000 CRLOW =$EAL3Z

2000 BLANK =4E83E

2000 CHEKA =$ES4E

2000 NXTAI =$E2CD

2000 NUMA =4EA46

2000 CLRCK =$ERA4D

2000 ¥=%10C sOET UP F1 KEY
oloc

010C 4C 61 00 JMF START

010F X=$00

0000 00 ERRO +BYT $00

0001 4% 32 M&G +BYT “ERRORS IN
Q00R 4C 4F MSG L +BYT “LOADIN‘ »$C7
0011 C7

0012 44 4F 4 862 +BYT “DON‘y$CE

0015 CE

0014
0019
0010
001F
0021
0023
0025
0027
0029
Q02
002
0031
0032
0034
0036
0039

003A
003D
0040
0042
0044
0047
0049
004C
0041
0050
0053
0055
0057

005A
0050
005LE
0060

0061
0064
0067
Q06A
Q061
Q06K
0071
0074
0077
007A
007D
0080
0082
008
0088
008A
oosn
0020

20
20
20
ce
FO
ce
o
Fo
A2
20
on
£E8
EO
o
20
60

20
AE
EO
o
20
A2
I
E8
8E
20
EO
FO
4C

AS
o
Eé
60

20
20
20
20
38
Al
El
81
20
20
20
A2
8E.
Al
[o
EIl
on
[o

PF
EA
29
23
06
16
F2
3
00
29
16
52
F5
AC

4
36
4F
05
16
00
17

36
AC
00
09
4E

00
02
00

Ad
3E
10
A7

1n
1R
1R
13
CF
16
05
36
16
F3
16
20

ER

ER
ED
EE

EE
01

ER
A4

00
01

A4
ER

ES

E7
E8
F9
E7

A4
A4
A4
EA
E8
00

A4
01

01
A4

TAFE
READ
SYNC

FOUND
MORE.

COUNT

TIRI

ERROR

RET

START

RLOCK

AGATN

JER
JER
JOR
CMF
REQ
CMF
IINE
REQ
L.IvX
JER
5TA
INX
CEX
ENE
JER
RTS

JER
LIX
CFX
BNE
JER
L.ITX
LA
INX
5TX
JSR
CFX
REQ
JME

L.I'A
BNE
INC

RTS

JER
JER
JEHR
JER
SEC
LIiA
SEC
5TA
JER
JER
JER
L.I3X
GBTX
LA
BNE
LIA
CMF
ENE

FHXY
TAISET
GETTAF
*4
FOUND
#4516
REAI
SYNC

£0
GETTAF
TEME -1y X

¥4652
MORE
FLXY

FHXY
TAFAR
#79
TIRI
TAPE
#00
TEMF » X

TAFAR
FLXY
$¥00
RET
CHEKA

ERRQO
RET
ERRO

FROM
RLANK
ANDRS1
TO

ANDR+1
S1+1
5141
CRLOW
NAMO
TAFE

#5

TAFAR
TEMF 1
RBL.OCK
TEMF~1yX
NAME -1 ¢ X
RLLOCK

FSET UF TAFE
sGET A CHAR
BLOCK SYART

FHYNT

FSTORE IN BUFFER
GET A CHAR

s RUFF FULL
§NO

s RUFF FOINTER

s BUFF EMFTY

N0

s READ A BLOCK

s RESET FOINTER

s GET CHAR

§ INC BUFF FOINTER
FBAVE FOINTER

$ X0 THEN ADD CKSUM
yALD TO CKSUM

$0=N0 ERRORS

i MARKE >0

FORIG ADDR

sLEAVE A SFACE

sANDDR TO S1
s NEW ADDIKR

POFFSETYT VALUE
FCLEAR DISFLAY
sFILE NAME

FRLK NO
sNOT RBLK O

CMF NAMES
SDIFFERENT

Page 17

Page 18

0092
0093
0095
Q097
009A
00N
00PF
00Al
00A4
00AY
00AH
00AY
00AR
00AE
O00AF
OOR2
O0R%
QORB
OORE
OORE
00Co
0003
00C3
0003
000Cs
0008
0009
00CC
O0Cnh
QOCF
oonz
o0ns
oonz
0o0nA
Oonn
QODF
O0E2

QOE4
00E7
OOE®
O0OER
OO0EN
QOEF
O0F O
O0F2
0O0F 4
O0FS
00F8
00F9
00FA
OOFC
O0F D

A
no
A2
20
20
ce
no
20
E8

20

AA
FoO
20
18
oI
8

8n
20
AQ
20

FO
20
c8
20
CaA
no
20
Ch
no
20
chn
FO
20
o

20
AR
A
8é
FO
20
A2
BY
448
20
E8

10
60

FS
0A
Fo
34
3R
Fo
41

39
3A

1R
1n
3A
1C
3a
00
78

03
SA

EC
3A
1F
08
3A
1E
RE
A
ké
13
00
00
00
01
11
01

ke

Fé

00

00

ER

00

00
A4
A4
00
A4
00

ER

00
A4

00
A4

00

EA

NEX
BNE
L.I1X
JER
GETCH ISR
CMF
ENE
JOR
INX
JER
TAX
REQ
JER
cLC
ADC
5TA
JBR
GSTA
LOANZ JSR
LIy
JBR
70 ELIMINA
sREMOVE “RE
REQ
JER
OK INY
JOR
EX
BNE
JSR
CMF
ENE
JEBR
CMF
BEQ
ERF JER
BNE

STOF JHR
L.ItX
LIaA
H8TX
REQ
«RYT

NOE L.IX

our LIIA
FHA
JOR
INX
FlL.A
BFL.
RTS
+END

AGAIN
#MSG1-MS6
ouY

COUNT

#/

GETCH
CLRCK

ar

COUNT

STOF
COUNT

H51+1
ANDR+Y1
COUNT
AR
COUNT
#0
SADDR

INTERACITIVE

......... o A SR

sDISPLAY LOADING

sGET A CHAR
sRECORD START

s CLEAR CRSUM
$RECORD LENGTH

$O=DONE

sAND OFFSET

FGET DATA AND STORE

$STORE AND CMF

TE MEMORY FAIL ERRORS
Q OK‘ AND “JSR ERRORS

OK
ERROR

NXTALI

LOAD2
COUNT
CRSUME 1
ERK
COUNT
CRHUM
GETCH
ERROR
GETCH

CRLOW
#00
ERRO
ERRO
NOE
$2C
EMOBGE2 MGG
MGG X

OUTALL

ouT

sDI MEM ACCEFRT?T

$Y=1
sARD Y TO ADDR
$COUNT RYTES

$CRSUMS OK

O IF NO ERRORS

sCOLBE FOR BIT ARS
SFINAL M&SG AND RTS

PMER==]

|

INTERRUPT-DRIVEN
KEYBOARD
FOR THE AIM 65

Dr. Will Cronyn
Borrego Springs, CA

A common requirement in interactive computer systems is the entry of
ASCII characters through the keyboard at random or erratic intervals
when a program is executing. The program may be computational, pro-
cess control, monitoring or some combination of these or other functions.
The AIM 65 monitor routines require an explicit call to the keyboard and
all (i.e. READ, RBYTE, etc.) except RCHEK demand a response before
execution continues. The results would be disastrous if your AIM 65
controlled desert irrigation system had to wait 4 weeks before resuming
execution for you to return from your summer vacation in Alaska to
answer the question: Do-you want the citrus put on a 3-days-a-week
watering schedule? You could lace your program with calls to RCHEK
but such calls, which consume 959 microseconds each (if there is no
keyboard entry), can consume a large fraction of the execution time of
the computer in spite of the fact that they are utilized for only a tiny
fraction of the time.

One solution to the problem was described by De Jong in issue 3 of
Interactive. He suggested the fundamental solution to the problem: gen-
erate interrupts for which the interrupt service routine looks for a key-
board entry. To allow continuation of program execution in the absence
of a keyboard entry, De Jong modified AIM Monitor routines. The result
is an interrupt routine which requires $A3 (163) bytes of code in 87 lines.
In addition to the fairly lengthy code, it does not appear that his routines
are fully debounced, i.e. debounced on both keystroke initiation and
termination.

My solution is to use two interrupt service routines: one to jump from
an executing main program to JSR READ, and the other to jump from
READ (in the most likely event that no keyboard entry is available) back
into the main program. Not only does this approach work but also it uses
unmodified monitor routines and is instructive in its utilization of a dy-
namically programmed interrupt vector. The interrupt service routines
require $40 (64) bytes of code in 29 lines.

DETAILED PROGRAM DESCRIPTION

There are three parts to the code which appears in the listing: (1) system
configuration and initialization, $200-22B: (2) a *‘main’’ program which
provides an immediate, positive verification that the interrupt-driven
keyboard is functioning properly, $22C-24C; and (3) the interrupt rou-
tines themselves in a location which would be appropriate for most 4K
AIM applications, $FCO-FFF. The interrupt routine sequences and con-
figurations can best be undersiood by referring to the ﬁi6 signal display.
The T1 timer counter ($A004,5) is loaded with $FFFF, which produces
an interrupt 65 milliseconds execution of the main program begins. The

Page 19

timer latch ($A006,7) is loaded with $4000. Thus, in the T1 free-run
mode (UACR loaded with $40), when T1 times out after 65 milliseconds,
which results in a jump to MNSVC, the contents of the T1 latch is trans-
ferred to the counter, thereby setting up another interrupt 16 milliseconds
later. The interrupt vector is reconfigured to RDSVC and the T1 latch
is loaded with $FFFF. Thus after 16 milliseconds in MNS VC the inter-
rupt results in a jump to RDSVC, which returns program execution to
the *‘main’’ program for another 65 milliseconds. Parameters for the next
cycle are established by reconfiguring the interrupt vector to MNSVC
and loading the T1 latch with $4000.

It may appear that 16 milliseconds is a long time to decide whether or
not READ will actually be presented with a keyboard entry. However,
because of timing requirements in READ which are based on the need
to debounce key stroke and key release (a total of about 11 milliseconds)
this time cannot be significantly reduced. In tests 1 performed, errors
were evident at an allowance of $2800 microseconds, while none were
seen at $2C00. I tested the program at keystroke rates up to about 540/
minute (my maximum single-key stroking rate) with no sign of errors.

Note that the stack pointer is saved in SAVSP when MNSVC is entered.
This procedure is required because normally, i.e. when there is no key-
board entry for READ, exit from READ is achieved through use of the
interrupt rather than through an RTS within READ itself. Thus the stack
is not properly restored and since there are 3 layers of subroutines within
READ it would be unnecessarily difficult and risky to keep track of the
depth of the stack when READ is exitted via interrupt.

The ‘‘main’’ program was a key element in testing and debugging the
interrupt-driven keyboard. Through the display of ‘*?’" at the rate of
about 3/second, with a carriage return/line feed after 10 *‘?"’, it provides
an immediate indication that borh the ‘‘main’’ program and the keyboard
program are functioning. Of course a character entered through the key-
board would normally be placed in a buffer accessible to other parts of
the program instead of simply being displayed via OUTPUT. The source
code, even in its fully annotated form, is short enough that it, the As-
sembler symbol table, and the object code can all be co-resident in the
AIM during development or modification.

FTHIS FROGRAM EMARLES

200 g THE & 1IM-&5 10 HAVE

2000 Fab TN TERRUP T -TETUVEN

2000 SEPYROARD T LB ENTRY
SWITHOUY EXxeLicyT
SENTRY Call Freakts

FTOOTHTS CODET1 1N~
STERKUFT COMFTGURA
FTLONG 2 IUHMY Ha TN
SPROGRAM WHICH DG
FFLAYS Zere/GECy 10
FuR Y LEME S B TNTY E R
SRUIFT SERVICE ROU-
STIMES WRITTEN EY &

Page 20 INTERACTIVE

AP 40 LI #1440
g 07 Ao STa UT1LL Y
L oLt

w00 sTRGWILL CRUONYN

SOO6 PEYMREBIOTTO Dava COMM
D000 3Pl BA &26é

SO00 FRORREGHD SPFRINGS» DA
S000 PELASTHT G498 PRG04
LOGO YT CTYEG,

FETART "MAIN FROGRM

Az oA HEGIN LDX #10
§ONONT HAVE INTRUFTS
SUURING FRINT OF *%¢

78 TOLE GET

D0 N BV JER (M

56 Ll

DGORE 0D JBR DELAY

CA DE
SOARE WE UP TO 107

no Fy BENE TDLE

20 FO E9 JBRCRLE

AC 2000 JHE BEGTN
SEOF DELAY HAVE 2
FLOCFS-0UTS L TIE =%
iOINDEX=CNYR.
SINGTDE=$FF « INDE Y=Y

AL FF DELAY LIY #$FF

AY ©20 L6 #4860

85 00 ETA CNTR

£6 LUOFL DEY

no Fo ENE LOOF 1

CH 00 DEC ONTR

o FY ENE LOOF

GOO POINTERFEUPT CONEG O2aC 60 RS

Kok ODO0

ROUTEINES .
2000 T CRESTY
S000 DUMMY MATHN
2000 §EROGRAM .
000 MG Lo
000 CRILF
2000 DUTFLEY
2000 RE @I
SO0 (M

SO0

2000 SITRQ VECTSTL CONFIG.
ERIIN TRAQVY =4$n400

200G Uack #EAO0R

Q00 ANEAN shA QO

20006 UYL =HAOGE

2000 ULE R R 10760

2000 PoPAGE G VaRIAaRLES
2000 om0

GOGH CMTE Kt

QOGL ¢ MAIM OUNLY.

I

024N FINTRFYT SRVC RTNG.
as ol LA #oMNESUE 0240 FMNGUC LEAFS FROM
are o0 /a STH LROV2 O2an FUMAINTTD READIRDSUE
e OF LA 4 MNSUE 0241 FLEAFS FROM READ YO
B0 01 A4 ST6 LROVA4 0241 PTMALNY L RECAUSE OF
PV FREE-RUN MODE$ OR4N FINTRPT-DRLIVEN EXLT
A% A0 LA dkba0 aeal FFROM REAUMUST Saul
an ok Ao S1a VAt 24N SETOR PNTR © SaUsk.,
ST SARLE all Ula 02410 FNEXT INTRET aFTER
FIMTRFTS EXCE S I 024 SMMNGWT TS RDGUE g)
aY F LDe g 7F AN kg OFCO
BroE an STA UTEFR SAVER ket
A% Lo LOA #6500 46 MNGU FHA
80 OF A0 SYa UTER e XA
FIMYREY “MAIN" AFTER LYe FHA
A% MSECESFIFFE USEC i G
AY TF LA #$FE 8E GO OF STX HAVSER
I 04 /O SYe UT1L PGk T OINTHRRPY VECTOR
B O% Ao QTA UT1LL+) i FOR NEXT INYRE
VINTRFT READL AaFTER FUYOLE CNUY CURRENT)
Pl MBEU=$4000 USED. GFiCE av Ea LI sy
A% 00 LI &0 OFGA B 00 A4 ST6 TR
Bl 06 A0 RTA UTLLL GFCIE @e QF LDA $RISVE

l‘q

INTERACGTIVE

... A T A

A BASIC HINT

Howard A. Chinn
S. Yarmouth, MA

Issue No. 1 of INTERACTIVE called attention to the use of the AIM 65
text editor for editing BASIC programs. Mention was not made, how-
ever, of the use of the text editor to write BASIC programs that contain
both direct (calculator mode) and indirect (programming mode) com-
mands. This feature (which is not available on a TRS-80 until you up-
grade to a disc system) provides an opportunity for many interesting
applications.

Listing No. 1 is that of a short demonstration program prepared in the
text editor and printed using the Editor’s ‘‘L’’ command. This program
was recorded on tape using the Editor's ‘L’ command. Next, BASIC is
entered and the program loaded using BASIC'S ‘‘LOAD’’ and with the
printer turned ‘OFF’’ (for this particular demonstration). Listing No. 2
was generated automatically while the program was being loaded!

Listing No. 2 shows that a title and explanation is printed without the
distracting ‘‘REM’s. Program lines 10 to 40 are then placed in RAM.
Next, the POKE command turned the printer ‘‘ON’". The list command
did its thing just as if you had typed in the command using the keyboard.

Page 21

The possibilities of this feature of the AIM 65 are limited only by your

imagination.

Now, can someone tell me how to write a BASIC program in the text
editor including the essential ‘‘CTRL Z’* and a command to automati-
cally turn off the cassette recorder after a dump to tape?

(The *“Z"’ at the end of Listing #1 is a control Z).

LISTING NO. 1

=L

/

OUT=

21*BASIC PGM VIA EDITOR™

N “AUTOMATICALLY LISTS
AND RUNS PROGRAM”’
?1*“ALSO TURNS PRINTER ON
AUTOMATICALLY "

7““FOR LIST AND RUN"’

LISTING NO. 2
BASIC PGM VIA EDITOR

AUTOMATICALLY LISTS AND
RUNS PROGRAM

ALSO TURNS PRINTER ON
AUTOMATICALLY

FOR LIST AND RUN

LIST
10 FORN =1TO 5

20 PRINTN““X15="N*15

And, finally, the “‘RUN"’ command ran the program automatically and 10 FOR N=1TO 5 30 NEXT N
since the printer was still ““ON’’ the result is shown on the printout. The 207N *X15=""N*15 40 END
program, of course, resides in RAM. It could have been made to disap- 30 NEXT N RUN
pear had the original listing contained ‘‘NEW’’ at its end. 40 END 1 X15= 15
POKE 42001, 128 2 X15= 30
In a nutshell, when using the AIM 65 text editor any entry without a line LIST 3 X15=45
number becomes a direct command and those with line numbers are in- RUN 4 X15= 60
direct commands that are placed in RAM in the usual fashion. Z 5X15=175 maS
. 801 ha HSTA TRAVaALt AT OF LLe e MMGUE
0 SLENGTH-NEXT TNTRFT 8I01 &4 5Té TRAVAHD
oFng ioDYULE=¢FFFF USE paT O TVERM OF THI!
OFE Ay FF LIa A F FIMTRET CYCLE MEXT
OFDa - 8I 06 A0 STa UT1LL - EE sWLLL HAVE L& MGt
OFIDY AY FF LIA #4FF FEE A G0 LIVAG G
OF D& 7 Ao HSTa UTI1L L+ TEEG 206 A0 STa UL
QFLC CLI O E A% a0 LI 440
OF LT Ee? JHRREAD GFFYS 8D 07 a0 O T W
OFEG ¢ MHONT ALLOW INTRERFT OFF & SNOW RESTORE aeXe8f
' O DURING OUTEUT GFFE Ak o OF LI wntthf
gt GET OFFR 90 S
aEY sk DUTHUT OFF L &8 Fri.é
2 EXTT O FRM OMMNSVE GFFI BA Tex
sSET O OUNTRFT FOR LEAR OFFE &8 (e
i FROM "MAIN OFFF a0 RT1
fy 01 EDEVE DA $FIMNSYC 100G o LMY

8000 a4

5TA

TRAVA

Page 22

(Continued from page 2)

above the IRQ Interrupt Processing section of the program. Also change
the instruction BNE INTRET in the IRQ Interrupt Processing section to
read BEQ INTRET.

The disassembly listing will also have to be changed. Add a JMP 0388
instruction betwecn thc CLI and LDA #40 instructions. The BNE 0392
will then be changed to BEQ (395 because that part of thc program is
shifted upwards in memory.

UNHELPFUL USR HELPER

For somc unknown reason. the following program lines were omitted
from the BASIC USR HELPER article on page 18 of issue #3.

The following lines are required:

0 DB=13*11+11:F=15FA=15*¥16+10:GO TO 3

1 POKE4,.DB:POKES5.F:RETURN:SET UP FOR SETARD
2 POKE4 FA:POKES,F.RETURN:SET UP FOR CALLIT
3 REM PROGRAM MAY START HERE

Note that the definition on line 0 will speed up operation by eliminating
the required conversions to decimal every time lines | or 2 arc called.

NEWSLETTER REVIEW

From the Editor:
The Sept/Oct issue of the Target, a newsletter dedicated entirely to the

AIM 65 was, perhaps, the best issuc of that newsletter that I've seen. In
it were two articles that should tickle the fancy of most any serious AIM
65 user. The first article showed how to hook up the new General Instru-
ment Programmable Sound Generator (AY3-8910) to the Aim 65 and
presented a software driver to make the thing generate telephone touch
tones from phonc numbers which are stored in memory.

I have plaved with this chip quite a bit and am really impressed with all
its capability. The AY3-8910 interfaces very easily with the user R6522.

The other neat article that was in the issue presented complete plans
(hardware and softwarc) for an EPROM programmer that can program
virtually all of the most popular EPROMS—2708, both styles of the
2716 and 2532 The software is self prompting and the hardware design
is complete down to the AC power supply.

The Sept/Oct issue (1980) of Target is casily worth the $6.00 yearly sub-
scription rate (it's published bimonthly). Outside of the U.S. and Canada
the price is $12.00. Contact Donald Clem, RR#2, Spencerville, OH
45887.

BEHAVIORAL SCIENCES
AIM-65 USERS GROUP

Workers in the behavioral and biological sciences who are currently us-
ing, or are interested in using the AIM 65 are invited to participate in
a user’s group now forming. Areas of interest include hardware and soft-
ware for experimental control, data acquisition, statistical analyses, and
other applications. If interested, please write, outlining areas of interest,
current and planned projects, etc., to Dr. J. W. Moore, Jr., Box 539
MTSU, Murfreesboro, TN 37132.

=

INTERACGTIVE

LETTERS TO THE EDITOR

Dear Eric:

In a previous letter 1 complained about the lack of readability of many of
the programs in issues #1 and #2 of INTERACTIVE. This letter is to
thank you and commend you for the fine job you have done in issue #3
in rendering the programs more readable. The only one which is faint at
all but still is quite readable is the simultancous equations from George
Sellers.

Here is a question you might be able to answer in the journal. Does any-
one have a machine language program which will make a software con-
version from ASCII to Baudot and output serial Baudot on the AIM 655
20 miliampere current loop? A relay could then be used to transfer the
Baudot to the 60 miliampere current lcop of a Model 15 five level tele-
type. A pcrhaps related question—can the 20 miliampere TTY loop out-
put of the AIM 65 be used to output to a printer and still usc the AIM 65
keyboard? If so. where would the KBD/TTY switch be placed?

Another question—Since the AIM 65 monitor has routines in it which
convert shifted characters so that the output is entirely capitals (no lower
case) how can the AIM 65 board be used to feed a printer the necessary
codes for lower casc? I thought perhaps Dr. DeJong’s program for the
Interrupt Driven Keyboard on page 12 would answer this, but his routine
contains at location @C7F *‘if alpha characters do not shift’" just as does
the monitor. Could one just leave out the routine between @C7F and
P C85 and get lower case characters output?

Keep plugging along and keep up the good work. Happy to see that
INTERACTIVE is getting larger all the time. Thanks.

Sincerely,
John U. Keating, M.D.
8415 Washington Blvd.
Indianapolis. IN 46240

Dear John,

I don’1 know of any program available 1o convert the TTY port to Baudor.
Doesn't sound too difficult, however. See the program on page 13 of this
issue for the procedure for using the TTY port without regard to the TTY/
KBD switch. I would assume that lower case output could be achieved
by modifving an input program (such as DeJong's) and writing a new
output program.

Eric
Dear Editor,

I must apologize. 1 am rather negligent in sending in programming
“*goodies’’ 1o share and this contribution does not make up for it. How-
ever, I noticed in Issue 2, there was an 18 line step disassembler. This
should make it even easier; excluding the F3 jump, it is only 3 lines
long. If printout is desired, it requires all of 4 lines.

0112 JMP 00DO (this is arbitrary)

00D0 INC A419

IACTIVE

00D3 JSR
00D6 RTS

E71D

To run, toggle the printer off. Next, disassemble the first instruction of
the program under examination using the K command and a RETURN
following the / prompt. This sets up the various flags and registers. To
disassemble subsequent instructions, just press the F3 key.

The printing version goes as follows:

0112 IMP 00D0 (again, this is arbitrary)
00D0 INC A419

00D3 JSR E71D

00D6 JSR FO4 A

00D9 RTS

Toggle the printer off, and disassemble the first instruction as above. Hit
the PRINT key to print the first instruction. Each press of F3 will di-
sassemble and print the next line.

Michael L. Brachman
3513 Lake Ave. #307
Wilmette, 1L 60091

Dear Editor:

1 think I've hit on a good way to build data files on tape from AIM
BASIC. This is an alternative to the method described by Ralph Reccia
in Issue No. 1.

To write a file on tape, insert the following line in the BASIC code before
the first PRINT statement you wish to send to tape:

POKEA.113:POKES,232:X=USR(X)

This line calls the monitor subroutine WHEREO, which issues the fa-
miliar prompts OUT=, F=, T=. Answer these prompts with T, your
desired file name, and 1 or 2. This initializes a tape file with the given
name. From here on. all BASIC PRINT statements will direct output to
the tape buffer, and when the buffer is filled it will be dumped to tape.

Don't forget to close the tape file before leaving the BASIC program.
This is necessary to ensure recording the last dab of output. To close,
insert the following line after the last PRINT which you want directed
1o tape:

POKE4.10:POKES,229:X=USR (X)

This calls thc monitor subroutine DUIL1. which closes the file and re-
directs output to the display/printer. As a final touch, optional but nice,
stop the tape recorder by inserting the line:

POKE43008.207 AND PEEK(43008).

(I've assumed that you have the tape recorder remote control connected.)
To read a tape file, insert the following code before the INPUT statements;

POKE4,72:POKE5.232:X = USR(X)

Page 23

This calls WHEREI, which issues input prompts, searches for the desired
file, and loads the first block into the buffer. Additional blocks are loaded
as they are needed. To restore normal operation, insert the line:

POKEA2002,13

A potential problem on input from tape and be sidestepped by ending
the file with a distinctive end-of-file flag, say 9999, when it is written.
Thus, the end of file can be detected on input by testing each datum as
it is read. There is room for some ingenuity here.

Adroit use of POKE42002,84 and POKE42002,13 permit reading alter-
nately from the tape and from the keyboard. The tape file need not be
re-initialized each time. POKEA2003,84 and POKEA2003,13 serve a
similar function for output.

Incidentally, I've found that the tape recorder remote controls as pro-
vided on the AIM6S interject intolerable noise into the recordings. This
is because the power ground is in common with the signal ground and
it can be remedied by electrically isolating the power circuit. I use opto-
isolators and transistors, but the relay method shown on the back page
of 1ssue No. 1 is probably better.

The TEXT EDITOR can also be useful in dealing with these files. For
example, I've prepared a data file of our natural gas usage for the past
five years. For this, it was convenient to set up a text file in which each
line was one month’s gas use. After appending an end-of-file flag, this
file was dumped on tape under the file name GAS by means of the
editor’s L command. The advantage here is that the file can be proofed
prior to recording with the help of the T. B, U, D, K. I, and F commands.

How about sending BASIC output to a serial printer? I've found that
when the KB/TTY switch is in the TTY position, output is routed to the
serial port. Unfortunately, this also disables the keyboard. One way out
is to insert the line

WAIT 43008,08.08

which stops program execution until the KB/TTY switch is thrown to
TTY. To restore normal operation, insert

WAIT 43008,08

which again halts execution until the switch is returned to KB. Don't
forget to set the baud rate parameters.

I have found the AIM®65 to be very educational, as was the case with the
KIM-1 before it. I use both. 1 appreciate the support Rockwell is giving
AIMS65 through this newsletter, as well as through peripherals and tech
notes.

Earl O. Knutson
51 Ralph Place

Morristown, N.J. 07960 i
~>

EASY RS232C

R. M. Dumse
Rockwell Int’l

To meet the RS232C requirements it is necessary to convert the TTL
levels of the 6500 Series 1/O devices on the AIM to RS232C levels. TTL
levels are defined as values below 0.8V for a logical zero and above 2.4V
for a logical one, with 0V and 5V being the outside limits. The middle
region is undefined, meaning a TTL device operating with an input be-
tween 0.8V and 2.4V could interpret it to be either a zero or a one. Its
output is therefore indeterminate. To have TTL circuits work correctly
we must make sure that these levels are correct. RS232 levels are differ-
ent. A logical one is defined to be any voltage between —3V and — 15V,
a logical zero between +3V and + 15V in the *C" version. The region
between —3V and + 3V is indeterminate. Note that this is inverted to the
way we normally think of logic, a one being negative going and a zero
being positive.

To communicate across an RS232 interface, the AIM must be able to
send and receive all RS232 signals at these levels. Although not well doc-
umented, the AIM is already equipped with a receiver that will translate
RS232 signals to TTL levels. This receiver accepts an input from pin Y
on the Applications (J1) Connector, Part of the circuitry used is shared
with the 20ma current loop receiver. The 20ma current loop transmitter
can easily be converted to RS232 levels off the board with the circuitry
detailed below.

Not yvet mentioned is the fact that RS232 devices communicate serially.
The format is generally selectable with at least one mode that is identical
to the Teletype format used by the AIM with one start bit and two stop
bits. We can therefore use the software in the AIM’s Monitor to com-
municate when the convertor is added.

(J1) RS232
SERIAL v e 1 GND
IN ‘Mt
3 2 TXD
)
)
20 ma{+) S I —<.:
) | _77—<3 RXD
20ma .
4 RTS
Ret !
(Ret) 'T4
5 CTS
45 A
e 6 DSR
GND L Lr 7 LOGIC GND
THE DC TO DC CONVERTER COULD BE REPLACED < g pop
BY A -5V SUPPLY. WITH THE SWITCH UP—AIM
LOOKS LIKE MODEM. SWITCH DOWN—AIM LOOKS
LIKE TERMINAL b 20 DTR

If the device to be connected has a ‘‘*handshaking’’ version of the RS232,
it is necessary to generate handshaking signals that allow continuous
communication. The circuit shown below uses a scheme of simply
“‘wrapping around’” any handshaking signals to meet this end. That is,
when it is set to be a modem. a Request To Send (RTS) is wrapped
around to the Clear To Send (CTS) line. (Note: To further confuse the
issue these signals are negative logic. A zero, meaning level between
+3V and + 15V, is considered the true condition ie: a Request To Send
is a positive voltage when true.)

The circuit shown will work well at speeds in excess of 9600 baud if the
AIM 65 used has a 3.3K ohm resistor in R24. This resistor is labelled on
the board and can be found behind the printer. Older AIM 65°s have a
1K ohm resistor in that position which will not work. Replacing that re-
sistor with the higher value will correct the problem, but will void the
AIM’s warranty. Refer to section 9. 2. 3. of the AIM 65 USER’S

GUIDE for direction on initializing and operating the serial interface.
£

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
Anaheim, CA 92803 U.S.A.

Bulk Rate
U.S. POSTAGE
RATE
Santa Ana Cailif.
PERMIT NO. 15

