
Workshop	Series

Bringing	up	CP/M	on	Your
S-100	Floppy	Drive	System

Richard Cini – Altair32, N8VEM

Page 2

Agenda	and	Outline

• Introduction	and	my	story
• Understanding	the	structure	of	CP/M
• Tools	and	items	required

– What	you	should	have	on-hand
• The	process	itself

– How	to	bring-up	a	new	system
• Q&A

Introduction

Page 4

My	IMSAI	as	an	Example

• I	“adopted”	my	system	from	a	gentleman	in	Arizona	who	was	
downsizing.

• This	system	had	a	partially-working	iCOM	“Frugal	Floppy”	8”	
drive	system	(now	part	of	the	MARCH	collection).	Drives	were	
unreliable	and	disks	that	worked	contained	CP/M	1.4.	
Controller	is	proprietary	TTL.

• Memory	size	was	48k	of	RAM	in	three,	16k	boards.	
Uncommon	SRAM	chip	used.

• Serial	console	card	– working	(proven	through	booting	
existing	CP/M).

• No	obvious	way	to	regenerate	system	disks	or	move	to	CP/M	
2.2.	Can’t	use	cross-platform	image	tools	because	FD400	
floppy	can’t	be	connected	to	a	PC	controller.

Page 5

My	IMSAI	(con’t)
• Hardware	Check-out:	serial	card	and	memory	checked-out.
• Alternate	ROM	monitor:

– There	was	simple	ROM	monitor	on	the	iCOM	disk	controller	card,	but	it	had	no	HEX	
loader.	

– Found	a	good	basic	monitor	program	from	Dave	Dunfield.	Made	changes	for	the	SSM	
card	and	burned	to	2716	for	use	on	an	EPROM	card.	PASS

• This	is	the	stage	at	which	the	system	sat	for	months	because	I	couldn’t	get	
the	iCOM	system	working	consistently,	and	only	working	drive	was	
beginning	to	work	only	intermittently.

• Finally	shelved	the	iCOM	system	and	started	locating	8”/5.25”	intelligent	
floppy	controller	cards	to	build	a	setup	from	scratch.

• Help	arrives	from	Internet	friend	with	same	system.

Understanding	CP/M

Page 7

CP/M	Internals
• A	CP/M	system	memory	map	is	comprised	

of	several	regions	(from	lowest	address	to	
highest):
– “Low	Storage”	contains	system	jump	

vector,	restart	vectors,	default	FCB	and	file	
buffer	area.

– TPA:	Transient	Program	Area	(the	“user”	
area	where	programs	are	loaded).	

– CCP:	Console	Command	Processor.	This	is	
the	start	of	CP/M	itself.

– BDOS:	Basic	Disk	Operating	System.	
Contains	callable	DOS	APIs.	BDOS	calls	
routines	in	the	CBIOS	through	
standardized	jump	table	located	between	
BDOS	and	CBIOS.

– CBIOS:	User-supplied	Customized	Basic	I/O	
System.	Accessed	through	the	jump	table	
in	BDOS.	This	functions	as	a	hardware	
abstraction	layer.

Source: Oscar Vermeulen

Page 8

CP/M	Internals	(con’t)
• “CP/M”	is	defined	as	the	CCP+BDOS	(supplied	by	DRI)	plus	

CBIOS	(user-supplied).	All	parts	of	CP/M	(through	the	CBIOS	
jump	table)	have	to	be	in	contiguous	RAM	memory.	

• Each	part	of	CP/M	is	located	at	a	fixed	address	based	on	
memory	size.

• Minimum	memory	requirement	is	20K,	resulting	in	a	TPA	of	
about	13K.	

• Memory	size	was	based	on	need…RAM	was	very	expensive	
back	then.	Could	be	expanded	easily	as	needs	changed.

• Booting:	first-level	bootstrap	(GETSYS)	in	EPROM	loads	
second-level	cold-start	loader	from	track	0/sector	1	of	disk;	
remaining	CP/M	image	loaded	by	cold-start	loader.	

Page 9

Obtaining	CP/M

• Purchase	“integrated”	system	from	local	computer	store	or	
semi-integrated	from	multiple	mail-order	vendors.

• There	was	no	“standard”	system	configuration	other	than	
assuming	you	had	RAM,	a	console	card	and	a	disk	controller.	
Most	manuals	came	with	sample	code	for	modifications.

• Disk	controller	or	system	usually	came	with	manual	and	CP/M	
disk	that	had	to	be	customized	for	specific	hardware	
configuration	unless	vendor	did	it	as	part	of	their	sale	value-
add.

• CP/M	can’t	auto-configure	for	different	hardware.
• Rely	on	local	help	(store	gurus,	users	groups)	to	assist	with	

building	CBIOS	from	template.

Page 10

CP/M	the	Modern	Way
• Decompiled	CP/M	source	code	available	publicly.
• Still	need	to	build	customized	BIOS	for	your	system.
• Ability	to	use	either	legacy	or	modern	tool	chains,	including	

emulators.
• Flexibility	as	to	how	CP/M	loads	(all	from	disk	or	hybrid	

disk/ROM)
• May	use	one	method	to	produce	first	CP/M	disk	and	another	

method	later.	
• Sample	source	code	more	readily	available	in	on-line	legacy	

archives	like	CPMUG	or	SimTel.

The	Modern	Way	(con’t)

• More	flexible	memory	arrangements	
potentially	allow	for	packing	memory	tighter,	
resulting	in	larger	TPA.

• Ability	to	use	external	drive	emulators	like	the	
Altair	Peripheral	Emulator	
(http://home.comcast.net/~forbin376/)	for	
bootstrapping.

• Phone	a	friend.

April 4, 2014 Page 11

The	Rebuild	Process

Page 13

First	Steps
• Basic	troubleshooting	and	system	evaluation/qualification:

– Inventory	hardware;	locate	manuals	for	every	board.
– Basic	testing,	repair	and	validation.
– Enough	working	RAM	cards	to	get	32k+?
– Need	EPROM	board?	Maybe	switch	RAM	to	card	which	can	support	

EPROMs,	like	the	CompuPro	RAM17	(6116	==	2716).	I	eventually	did	
this	to	fill-out	memory	and	use	EPROM	card	in	other	system.

– Working	serial	console	card?	
• Is	there	an	existing	ROM	monitor?	Can	it	load	Intel	HEX	files?

– This	is	key	because	HEX	loader	is	eventually	used	to	get	CP/M	into	
memory	for	the	first	time.	Get	simple	ROM	monitor	working	before	
tackling	disk	system.

Page 14

First	Steps	(con’t)
• Begin	to	evaluate	disk	system:

– Is	existing	disk	system	in	reasonable	condition?	Proprietary	or	
standard	controller	and	interface?

– Stick	with	8”	(Shugart,	Qume,	others)	or	use	5.25”	HD	(YD-380)	as	
equivalent	to	replace	failing	8”	drives.

– Convert	to	native	5.25”/360k?	Larger,	like	3.5”/720k	(hard	to	find	as	
native),	or	3.5”/1.44mb.

– If	using	PC-compatible	drives,	check	them	out	on	a	PC	first.
– Check	jumpers	and	cabling.
– Can	you	communicate	with	controller	card?	For	intelligent	controllers,	

the	“seek”	command	is	easiest	to	use	(3-byte	controller	command:	
$0F,	$0,	$0	to	seek	track	0).

– Again,	basic	blocking-and-tackling	to	ensure	you	can	communicate	
with	controller	card.

Page 15

First	Steps	(con’t)

• Some	controller	cards	configurable	for	8”	or	5.25”	drives,	but	
there	are	some	gotchas	when	using	modern	drives	with	old	
controllers

• Modern	drives	have	signals	in	different	places	and	controllers	
have	signals	that	are	no	longer	supported	by	modern	drives:
– Floppy	*READY	signal	on	pin	34	(new	drive:	disk_change)
– Head_load	(HL)	on	pin	2	(new	drive:	density_select)
– Drive	outputs	*READY	on	pin	4	(controller	pin	34).

• May	need	to	re-jumper	or	modify	drive	to	work	with	
controller.	Follow	the	manual	and	schematic.

Page 16

CP/M	Load	Methods
• Contiguous	Disk	Load:

– CP/M	(CCP+BDOS+CBIOS)	loaded	from	disk	by	small	bootstrap	program	in	EPROM.
– CBIOS	changes	require	regenning	CP/M	and	copying	to	every	bootable	disk.	
– Still	has	its	place	today	if	bootable	disks	already	exist.
– Good	if	using	system	for	programs	other	than	CP/M	(fewer	ROM	holes).

• Split	Disk	Load/ROM:
– Changes	to	CBIOS	that	don’t	impact	the	jump	table	won’t	require	re-copying	updated	

system	to	every	boot	disk.	If	there’s	room,	you	can	build	“patch	space”	into	the	ROM	to	
keep	addresses	aligned.	

– Can	fragment	memory	depending	on	flexibility	of	EPROM	board,	but	could	also	increase	
TPA	through	address	space	compaction.

– PUTCPM	routine	in	ROM	makes	it	easy	to	create	new	bootable	disks.
– Good	choice	for	modern	rebuilds.

• ROM	CP/M:
– Used	in	some	SBC	systems	like	the	N8VEM.	Moved	to	RAM	from	banked	ROM	by	reset	

bootstrap.

Page 17

Building	a	Memory	Map
• CP/M	requires	about	5.5k	for	code	(not	including	CBIOS)	and	

RAM	area	for	working	variables	and	buffers.	
• CBIOS	code	“budget”	is	1.5k.	My	CBIOS	requires	about	1.9k	

for	code,	but	it	includes	ROM	monitor,	disk	formatter,	and	
APE	bootstrap.

• RAM	usage	includes	1k	for	track	buffers	and	350	bytes	for	
variables.

• How	flexible	and	configurable	is	memory	system?
– One	memory	board	or	multiple	boards?	Board	density?
– Separate	EPROM	board?

• Start	thinking	about	location	of	and	method	to	load	CP/M:
– Depends	on	state	of	repair.	If	you	have	nothing,	it	might	be	easier	to	

split	CCP+BDOS	from	CBIOS	(split	loadable).

Page 18

Building	a	Memory	Map	(con’t)
• Since	I	was	basing	my	configuration	on	someone	else’s	system,	I	

needed	to	have	my	system	look	as	much	like	that	system	as	
possible.	ROM	monitor	also	contained	functional	CBIOS.

• I	used	a	CompuPro	RAM17	(6116	SRAM	chips);	2716	drop-in	at	
$F000;	disk	buffers	and	working	variables	at	$F800.	Avoids	having	
to	use	separate	EPROM	card	(I	had	only	one).

• In	this	configuration,	CP/M	“size”	won’t	necessarily	match	actual	
contiguous	RAM	memory	size	because	of	ROM	boundaries	in	
comparison	to	CP/M	Alteration	Guide	address	table.
– Use	right	system	“size”	number	to	get	addresses	in	the	right	place.
– CP/M	configured	as	a	“61K”	system	but	only	has	60K	contiguous.
– 61K	size	picked	as	it	places	CBIOS	stub	ending	address	closest	to	(but	

not	over)	the	starting	address	of	ROM	monitor.
– Some	small	amount	of	wasted	address	space	between	CBIOS	stub	and	

actual	CBIOS	code	in	ROM,	but	that’s	the	price	you	pay.
– Putting	buffers/variables	above	EPROM	added	to	TPA.

Page 19

Building	a	Memory	Map	(con’t)

Layout	for	my	61K	IMSAI	System

Traditional		60K	CP/M	Memory	Layout

RAM $0- RAM @ $100 - $EFFF CCP @ BDOS @ CBIOS @ ROM Monitor/Loader
$FF $D400 $DC00 $EA00 - $F000-$FFFF
CPM Use TPA $100 - $D3FF $EFFF 4K

loaded from disk by cold-start loader

RAM $0- RAM @ $100 - $EFFF CCP @ BDOS @ CBIOS ROM @ RAM @
$FF $D800 $E000 stub @ $F000 $F800
CPM Use TPA $100 - $D7FF $EE00 CBIOS

loaded from disk by cold-start loader

Page 20

Building	a	Memory	Map	(con’t)

;::
; S Y S T E M E Q U A T E S
;********************|
MSIZE .EQU 61 ;| ; CP/M system size in K
;********************|
; CP/M Definitions - Valid for version 2.2 only
K .EQU 1024
BIAS .EQU (MSIZE-20)*K
CCP .EQU 3400h+BIAS ; CCP ENTRY POINT
BDOS .EQU CCP+800h+6 ; BDOS ENTRY POINT
CBIOS .EQU CCP+1600h ; CBIOS jump table

Equates area of CBIOS shows how to calculate the CP/M addresses. “20” is
the minimum memory size; the calculated BIAS amount (address offset)
enables relocating the image for different memory sizes.

Table on next page contains pre-calculated addresses.

Memory	Map	(con’t)

April 4, 2014 Page 21

Source: Programmer’s
CP/M Handbook

Page 22

Building	CP/M	the	DRI	Way
• CP/M	Alteration	Guide	written	from	the	perspective	of	having	

access	to	new	system	master	disks	or	other	way	of	obtaining	
original	disks.

• Two-step	process:	
– Configure	distribution	disk	for	correct	hardware	at	20K	
default	memory	size	(“first	level	system	generation”)

– Regenerate	system	for	actual	RAM	size	(“second	level	
system	generation”).	My	IMSAI	would	be	a	“61K	System”.	

– System	sizes	were	usually	integral	multiples	of	4K.

Page 23

Building	CP/M	the	DRI	Way
(First	Level)

• Write	and	test	GETCPM	and	PUTCPM	routines.	These	routines	read	and	
write	the	system	tracks.

• Test	on	uninitialized	disk.
• Write	and	test	CBIOS	code;	start	with	simple	routines	and	work	up:	

console,	disk
• All	patching	occurs	in	memory	and	written	to	disk	using	PUTCPM	routine.
• Write	bootstrap	for	track	0/sector	1	based	on	working	GETCPM	code	

above.	Write	it	to	disk.	This	code	can	also	be	in	EPROM.
• Always	work	with	scratch	diskette	until	certain	everything	works.
• Results	in	working	CP/M	system	but	at	a	20K	memory	size.

Page 24

Building	CP/M	the	DRI	Way	
(Second	Level)

• Second	level	system	generation	re-sizes	working	20K	system	for	the	actual	
memory	size.

• Again,	another	involved	process:
– Make	any	required	changes	to	customized	CBIOS	and	CBOOT	using	tools	on	

20K	system	(ED	and	ASM).	Recompile	and	save	as	HEX	files.
– Load	CP/M	as	a	relocated	image	into	TPA	from	system	tracks	using	MOVCPM	

with	parameter	for	new	memory	size.
– Use	SAVE	command	to	save	relocated	system	to	a	file.	Code	is	located	relative	

to	start	of	TPA	(100h)	rather	than	where	in	memory	it	should	be.
– Use	DDT	commands	to	adjust	addresses	so	that	they’re	in	the	right	place	for	

new	memory	size.
– Use	SYSGEN	to	write	relocated	system	to	new	blank	diskette.

Page 25

Items	Required	to	Build	Initial	Disk	
using	Today’s	Tools

• Of	course,	tested	and	working	hardware.
• Source	code	for	CP/M	(CCP+BDOS).	Grab	source	from	Gaby.de.	Only	the	

“memory	size”	and	load	address	parameters	get	changed	based	on	
address	table	in	Alteration	Guide.

• Skeletal	CBIOS	code	from	DRI	manual	or	elsewhere.	This	is	what	gets	
modified	to	match	your	hardware.		To	save	some	work,	try	to	locate	one	
for	a	similar	disk	controller	card.

• EPROM-related	tools	if	needed.
• Software	tools:	cross-compiler	or	native	compiler	using	available	CP/M	

emulations	(MyZ80	or	SIMH).
• Related	tools:	binary	file	editor,	binary-to-hex	converter,	text	editor.
• CP/M	books	and	user’s	group	archives.

Page 26

Building	CP/M	Using	Split	Loading	
Method

• This	is	the	method	I	used	on	my	IMSAI.
• Method	relies	on	the	fact	that	part	of	CP/M	(CCP+BDOS)	resides	on	the	

floppy	disk	and	part	(CBIOS)	resides	in	EPROM.
• CCP+BDOS	compiled	separately;	minimal	development	work	needed	other	

than	setting	the	right	memory	size	and	compiling.	Object	code	merged	
with	the	CBIOS	stub	and	written	to	disk	at	the	very	end	of	the	process.

• This	leaves	development	time	free	for	working	with	the	CBIOS	in	EPROM	
using	more	modern	tools	on	a	different	platform	(Mac/PC).

• Might	not	always	be	the	best	way	or	final	way	for	getting	a	system	
running.	After	bootstrapping	this	way,	one	might	want	to	try	building	a	
new	master	disk	exactly	like	an	original	DRI	disk	(CCP+BDOS+CBIOS	all	
loaded	from	disk).

• APE	Disk	Emulator	is	an	option	as	well.

Page 27

Building	CP/M	Using	
Split	Loading	Method	(CP/M)

• Used	memory	map	to	determine	that	I	needed	to	configure	CP/M	for	a	61K	
system.	Change	two	equates	at	top	of	cpm22	source	file.

• With	split-loaded	CP/M,	some	trickery	is	needed	since	CP/M	and	CBIOS	reside	in	
different	source	files	and	because	of	EPROM	boundaries,	addresses	used	won’t	be	
perfectly	linear.

• CCP+BDOS	is	compiled	with	“fake”	CBIOS	jump	table	at	the	expected	address	so	
that	target	addresses	in	the	source	file	are	valid	(but	point	to	0).

• CCP+CBIOS	code	from	gaby.de	uses	CP/M	ASM	directives	so	rather	than	make	
changes	for	other	tools,	I	used	ASM	under	MyZ80	to	compile	code	(need	to	first	
import	asm.com	to	disk	image):	
– Import	source	file:	import	cpm22.asm
– Compile:	asm	cpm22.asm
– Export:	export	cpm22.hex

• Need	to	patch	the	cpm22.hex	file	later	with	jump	table	output	from	CBIOS	
compilation	(HEX	file	is	simple	text	file;	easy	to	patch).

Page 28

Building	CP/M	Using	
Split	Loading	Method	(CBIOS)

• CBIOS	is	similar	to	IO.SYS	in	MS-DOS
• First	block	of	code	is	a	function	jump	table;	called	by	the	BDOS	(similar	to	

MSDOS.SYS).
• Core	CBIOS	can	be	combined	with	other	“useful”	routines	for	disk	

formatting	and/or	system	monitor	(common	with	EPROM).
• NO inline	code	(i.e.,	no	RETs)	allowed	in	jump	table;	must	only	be	JMP	

instructions	followed	by	target	address.
• Certain	programs,	like	MBASIC	and	BYE,	rely	on	structure	and	ordering	of	

jump	table	in	order	to	perform	address	intercepts	and	redirects.
• Routines	grouped	by	general	function:	booting,	console,	list,	punch,	and	

floppy	disk,	and	reflect	hardware	available	at	the	time.
• Most	hardware	manuals	come	with	sample	code	that	can	be	used	in	

modifying	the	“skeletal	BIOS”	from	DRI	or	elsewhere.

Page 29

Building	the	CBIOS
Primitives

• CBOOT/WBOOT	– cold-start	and	warm-
start	routines	to	load/reload	CP/M	into	
RAM.

• CONST/CONIN/CONOUT	– console	
access	routines	for	channel	status,	input	
and	output.

• LIST/LISTST	– printer	device	output	and	
status	routines.

• PUNCH/READER	– device	driver	for	
paper	tape	punch/reader.

• Floppy	disk	– track/sector	selection,	
read/write	primitives.	SEKTRN	translates	
logical	sector	#	(zero-based)	to	physical	
sector	on	disk	(interleave	table).

CBios .equ 0EE00h ;Start of CBios-61k system

;
.org CBios

;

;::
; J U M P S - jump table defs
;::
; sample jump table from CBIOS

JMP CBOOT ;Cold boot
JMP WBOOT ;Warm boot

JMP CONST ;Console status input

JMP CONIN ;Console input
JMP CONOUT ;Console output

JMP LIST ;List output
(oddly, list status is at the bottom)

JMP PUNCH ;Punch output

JMP READER ;Reader input

JMP HOME ;Set track to zero
JMP SETDSK ;Select disk unit

JMP SETTRK ;Set track
JMP SETSEK ;Set sector
JMP SETDMA ;Set Disk Memory Address

JMP CREAD ;CPM Read from disk

JMP CWRITE ;CPM Write to disk
JMP LISTST ;List status (output)

JMP SEKTRN ;Translate sector number

Page 30

Building	the	CBIOS	(con’t)
Key	Functions

• CBOOT	(the	cold-start	loader):
– Loads	CP/M	image	from	disk	using	GetCPM	routine.
– Sets	initial	variables	and	jumps	to	CCP.
– EPROM	may	or	may	not	have	code	to	bring	entire	CP/M	image	into	RAM	(otherwise	must	use	

bootstrap	program	on	disk).
• WBOOT	(the	warm-start	loader):

– re-loads	CP/M	from	disk	when	user	program	exits	by	terminate	call	or	when	Control-C	pressed	to	log	
in	a	new	disk.

• Console	in/out/status;	list;	punch/reader:
– Code	to	talk	to	these	devices	is	very	simple.

• Disk	code:
– More	complex;	intelligent	controllers	use	multi-byte	controller	commands.
– Sector	blocking/deblocking	based	on	interleave;	can	ignore	if	disk	is	formatted	with	interleave.
– Drive	select	logic.
– Need	to	translate	BDOS	calling	parameters	to	ones	useful	for	controller.	Lots	of	MOV/RAL/ROR.

Page 31

Building	the	CBIOS	(con’t)
Preparing	for	Floppies

• Manuals	usually	have	details	on	configuring	for	CP/M	
and	include	a	template	CBIOS	to	work	with.

• Two	key	data	items	for	floppies:	
– DPB	(Disk	Parameter	Block):	

• 15-byte	data	block	that	describes	disk	geometry
• One	DPB	per	each	different	type of	drive

– DPH	(Disk	Parameter	Header):
• 16-byte	data	block	storing	logical	drive	info
• One	DPH	for	each	available	logical	drive	letter
• Points	to	directory	buffer	and	related	DPB	

Page 32

Building	the	CBIOS	(con’t)
DPB	and	DPH

;::

;D P B ' S - DISK PARAMETER BLOCKS.
;::

;THE FORMAT OF THESE AREAS ARE AS FOLLOW:

; DW = SECTORS PER TRACK.
; DB = BLOCK SHIFT, BS MASK, EXTENT MASK.
; DW = MAX ALLOCATION BLOCK NUMBER - 1.
; DW = DIRECTORY ENTRIES NUMBER - 1.

; DW = ALLOCATION BLOCKS BITMAP FOR DIRECTORY.
; DW = CHECK AREA BUFFER SIZE (1BYTE/4 ENTRIES).
; DW = TRACKS OFFSET BEFORE DIRECTORY (SYSTEM AREA).

;

; Use one DPB per *type* of drive, not for each drive
; if they are the same drive type.

;
DPBS2 ;DSSD 8” DISK

.DW 26 ;26 SECTORS / TRK

.DB 4,15,1 ;2048 BLOCK SIZE PARAMETERS

;((77*2SIDES-2)*26SECS)/(2048/128 SEC/BLK)-1 AND ROUND DOWN

.DW 245

.DW 127 ;64 ENTRIES/STD 8" DISK SIDE–1
;2 ALLOC BLOCKS (128ENT X 32B/ENT / 2048B/BLK)
.DB 11000000B,00000000B

.DW 32 ;128ENT / 4ENT/BYTE

.DW 2 ;2 TRKS BEFORE DIRECTORY

;::

;D P H ' S - DISK PARAMETER HEADERS
;COPY THESE -> RAM @DPHBASE BEFORE CPM RUN

;One for each block device

;::
DPHROM
; LOGICAL DISK A 8" FLOPPY

.DW 0 ; 8" SKEW TABLE VECTOR

.DW 0,0,0 ; CPM RESERVED

.DW DIRBUF ; DIRECTORY BUFFER VECTOR

.DW DPBS2 ; DISK PARAMETER BLOCK VECTOR

.DW DSK1CV ; CHECK VECTOR (was NO)

.DW DSK1AV ; ALLOCATION VECTOR

; LOGICAL DISK B 8" FLOPPY
.DW 0 ; 8" SKEW TABLE VECTOR
.DW 0,0,0 ; CPM RESERVED
.DW DIRBUF ; DIRECTORY BUFFER VECTOR

.DW DPBS2 ; DISK PARAMETER BLOCK VECTOR

.DW DSK2CV ; CHECK VECTOR (was NO)

.DW DSK2AV ; ALLOCATION VECTOR

Page 33

Building	the	CBIOS	(con’t)
Optional	Functions

• Not	part	of	a	standard	CBIOS:
– System	monitor
– Blank	disk	formatting.	Usually	separate	CP/M	
program	but	nice	to	have	in-ROM.

– PUTCPM	to	write	CP/M	to	system	tracks.
– Non-standard	hardware	drivers	like	video	or	RTC

Page 34

Building	the	CBIOS	(con’t)
Compiling	&	Merging

• Steps	will	vary	based	on	tool	used.	I	use	TASM	(Table	Assembler)	to	assemble	the	
CBIOS.

• Need	to	produce	both	binary	and	HEX	file	output	which	can	be	used	to	burn	into	
ROM	and	to	patch	the	jump	table	in	the	HEX	file	from	compiling	CCP+BDOS.
– Since	my	EPROM	programmer	software	isn’t	good,	I	had	to	compile	twice	to	produce	both	HEX	and	a	

straight	binary	file	for	burning	to	EPROM.	Others	may	be	able	to	do	this	in	one	step.
– Simple	cut-and-paste	job	to	remove	null	jump	table	from	CCP+BDOS	and	insert	active	jump	table	

from	CBIOS	object	file.	
– Remaining	CBIOS	object	code	is	burned	to	ROM.

• HEX	files	are	plain	text	files	which	contain	memory	location	information,	so	when	
they’re	loaded	into	memory	using	ROM	monitor,	the	code	ends-up	at	the	right	
addresses	in	RAM.

• Once	CCP+BDOS	is	in	memory	(with	right	jump	table),	use	PUTCPM	utility	to	write	
it	to	the	system	tracks	on	a	blank	disk.
– Need	to	figure	out	number	of	sectors	to	write	based	on	contiguous	address	

space	used.

Page 35

Formatting	A	Disk

• Format	utility	writes	$E5	to	all	data	areas	of	disk.
• Walk	tracks	and	translate	to	T/H/S	for	controller.
• Can	be	a	separate	program	or	part	of	an	enhanced	
monitor	EPROM.

• For	intelligent	controllers,	build	format	command	
buffer;	send	to	controller	as	a	format	command.

• Controller	chip	takes	care	of	writing	sync	and	track	ID	
bytes.

• Other	controllers	may	not	be	as	programming	
friendly	so	refer	to	the	manual.

Page 36

Getting	CP/M	Onto	Disk

• “PUTCPM”	utility	configured	to	write	specific	memory	region	
to	the	system	tracks.

• Can	be	a	separate	program	or	part	of	an	enhanced	monitor	
EPROM.

• My	CBIOS	relies	on	multi-sector	write	capability	of	8272;	
other	controllers	may	be	different.
– Need	to	specify	starting	DMA	address	and	number	of	whole	(128-

byte)	sectors	to	write,	up	to	26.
– Repeat	as	necessary;	my	CP/M	needed	45	sectors,	which	is	two	

separate	write	commands.
– Controller	takes	care	of	the	heavy	lifting.

Questions?

Page 37

Page 38

Historical	Context

• Early	systems	had	limited	storage	capabilities	
– paper	tape	or	audio	cassette
– low	storage	density;	sequential	access
– good	for	small	programs	or	limited	data

• Growth	in	adoption	of	platform	demanded	better	
storage	options
– floppy	systems	already	existed	on	mini-computers

• Expandable	S-100	buss	and	available	8”	floppy	drives	
served	growing	user	base

Page 39

Historical	Context	(con’t)

• Initial	floppy	systems	were	expensive
– $1,500	for	single	Altair	88-DCDD	controller	and	FD400	
drive.	237.25k	formatted	capacity.

• Increased	demand	for	smaller	form	factor	and	lower	
cost.	Push	by	Wang	Labs	for	form	factor	smaller	than	
8”	for	new	desktop	word	processing	system	being	
developed.

• Shugart	Associates	developed	5-1/4”	SA400	(SSSD)	
and		introduced	it	in	1976
– Cost:	$425.	
– Capacity:	89.6k	formatted	(110k	unformatted)

Page 40

Historical	Context	(con’t)

• Two	different	sectoring	types	(VHS	versus	
Beta)
– Hard-sectored	(90k	unformatted)
– Soft-sectored	(110k	unformatted)

• 5-1/4”	quickly	displaced	8”	and	hard-sectored	
format	eventually	disappeared	

• By	1978,	there	were	about	10	mini-floppy	
manufacturers.

Page 41

Historical	Context	(con’t)

• 1978	leap	to	double-sided	recording	and	then	
double-density.	360k	capacity.

• 1982	introduction	of	the	YD380	high-density	
(1.2mb)	format	used	on	the	PC/AT.

• The	YD380	can	substitute	for	an	8”	drive	in	
restoring	a	system	as	it	runs	at	same	RPM	and	
transfer	rate.

