NO. 73 internationsl Ediion. 33,00 JULY 1984

AICRO

for the Serious Computerist

\ Hedsd siddnpd - ~emas? #‘ I= =c.'::“¢i
~ A\, ersr-esvig yﬂ

‘.-,,ik';.'_;L ‘:--ch;—.l 1 e
-

"

=
emsbf sosqd — fnsdansm (Hocd spoosd)

A PSP PhQ TS

AT A e 1A - A AT I N
dpuct bns stniprtV o hovest—

ctmzalae T ibAa0 A+ SEAF e Asll o~

IS Y i t!ullii LR RV A VR LI LR] =

nooM slttid — nem niednuom Mool Fsdod

£781- 7% avar-atat
vl mmi el | s QY fed Jr- f At hataaraned
(SRR R T g S l': Wl aouuTyeu

A=
ot Lt .
rioH pideabssdl 18 bat(dugod

T T Tl W 4 5
. 44!!!'ﬂduvﬂi§?h¢!- amy EEn = - =
A %_.4!!'4¢gv'AIEV.4!g'A!!7) I!5 :’!5:1!55
441Fﬂ';41!!'.4!!="4125r J!!"i.!!! ll!! !lla ‘!!!L

Basic DVORAK Keyboard
Applesoft Compression
Better BASIC Hex Loader
HiRes Graphic Printouts
6809/68000 Comparison
Flight Simulator Il

KOHE COMPUTERS

 BOOXL.....covvreinncnn. $149
800XEL......creuereunnnnen. $BR9
WHILE SUPPLY LASTS

1200XL..........

__1480XL........
. - CX30 Paddles...
* €X40. Joystick..

850 Intem‘a.ce

-$189.00
$

4025 Defender..
8026 Dig Dug...
8031 Donkey Kong.
8034 Pole Position..
8040 Donkey Kong Jr.
- 8043 Ms Pacman.

1084 Memory Module
Touch Tablet/Software
Light Pen/Software..

DISK DRIVES FOR ATARI

PERCOM

RANA

.$279.00 1000.

"ATARI " APPLE/FRANKLIN
Axlon 32K. Axlon I28K..
Axlon 48K. Axlon 320K“

Axlon 1R8K...

MAXELL ELEPHANT

5% MD-1 St 888D
5l MD-2.. . S’ 88/DD....
8" FD-1.. $39.99 54’ DSDD

' FD- DISK HOLDERS

CONTROLLERS & JOYSTICKS

WwWIco

KRAFT

$21.99 Joystick

lHoala
Atari (ROM).. $79.99 IBM
C-64 (ROM).... ...$79.99 Apple/Franklin...

— west

———: 800-648-3311

In NV call (70R)588-5654, Dept. 125
8

* Mark XII (1200 Baud)...

Color * 3...
. Color 4? IBM

. JB: 1218 Color..

SRT-2 RGB

can
Ontario/Quebec 800-268-3974
Other Provinces800-268-4559
In Toronto call
416)828-0866, Dept 125

AXIOM

AT-100 Atari Interface Printer$239.00

GP-100 Parallel Interface........ $199.00

@P-580 Atari Bidirectional.....$319.00

GP-700 Atari Color Printer....$489.00

GP-550 Parallel Printer...... $269.00
BMC

401 Letter Quality..

BX-80 Dot Matrix...

C.ITOH

Gorilla Banana....................
Prowriter 8510P...
Prowriter 1550F..

1$569.00

AlO (18 cpsj)....

Hot Dot Matrix. ...CALL

F10-40.. ..$999.00

F10-565 $1349.00
COMREX

ComWriter II Letter Quality.$499.00
DIABLO

620 Letter Quality....
630 Letter Quality..

Prism 80...For Configuration.....CALL
Prism 32...For Configuration....CALL

JUKI ’
BO0.....eovieeciee e $499.00

It all adds up...

PRINTERS

HAI'NISHAH TALLY

160L$589.00

180L $799.00

Spiris 80.. .. $309.00

NEC

8023 Dot Matrix.$388.00

8025 Dot Matrix$869.00

2010/18/30.....$749 00

3510/15/30 . ..$1369.00

7710/16/30 ...

OKIDATA
82, 83, 84, 92, 93, 2350, 2410...CALL
OLYMPIA

Compact 2...... ...$479.00

Compact RO.. ...$509.00
$1449.00

SMITH CORONA
TP-1000. . oo i $449 00
Tractor Feed......................... $119.00
SILVER REXD
500 Letter Quality..... ...$449.00

550 Letter Quality.. $549.06

770 Letter Quality ...$899.00
STAR

Gemini 10X..................... $299.00

Gemini 15X... .

Serial Board.. ..$75.00

Radix 10.... $599.00

Radix 15.... $699.00

1340....
1361....

130P ...
315 Color.

MODEMS

ANCHOR

Volksmodem
Mark IL Serial ...$79.99
Mark VII (Auto AnsiAute Dlal)$99 99

Mark TRS-80............
9 Volt. Power Supply...

HAYES
Smartmodem 300....
Smartmodem 1200
Smartmodem 1200B.
Micromodem Ile...

....$R09.00

.$499.00
.$449.00
.$269.00

NOVATION

Smart Cat 103..
Smart Cat 103/212.

Apple Cat II.. .. .$249 00
212 Apple Cat..$449.00
Apple Cat 212 Upgrade ..$289.00
$399.00

PC Cat Access 1 8 3. ...
ZENITH

Micromodem 100.. $299.00
Smart Com II.. ...$89.99
€Chronograph$199.00
‘ MONITORS
. AMDEX ' SAKATA
300 Green..... -.$149.00 $C-100 Color ...$269.00
300 Amber. -.$159.00 §G-1000 Green........ $129.00
310 Amber... SA-1000 amber........ ..$139.00
TAXAN
Color 1 Plus. 210 Color RGB.....$299.00
Color 2 Plus. 400 Med-Res RGB.................. $319.00

‘nuc
1201 (]2" Greer)... .
1201 Plus (12" Green Hx Ees)
9191 PIUS..cooiiiiiiiiiiieiiiiecs

12 Green......
12 Amber....

TB 1260 GPEOM....crrrrereveneeererea
B 1201 Green.........
JB. 1205 Amber.

JC 1218 RGB...

JC 1460 Color.........c............... $35
PRINCETON GRAPHICS

MAX-12 Amber..
HX-13 RGB..

. Quadchmme 8400 Calor

415 Hi-Res RGB
420 Hi-Res RGB (IBM).
100 12’ Gresen.
106 12" Amber.

Pi 1, 9" Green....
Pi 2, 12" Green
Pi 3, 12" Amber.
Pi 4, 9 Amber.
1400 Color .
mmnnu :

SZENITH
ZV M122 Amber..
ZVM1R3 Green..

2VM124 IBM-Amber 3149 00

ZVM131 Color........... .. .$309.00
ZVM133 RGB.......o... . ol $429.00

ZVM135 RGB/Composite....... .$469.00

east
800-233-8950

In PA call (717)327-857€, Dept. 1R35
Order Status Number: 327-9576

Customer ﬂeW1ce Number “BR7- MSQ r

Larger shipments may require additional charges. NV and PA res1dents add sales tax. All 1t.ems sub]ect to availability and price change. Call today for
our catalog.

the best prices

APPLEFRANKLIN FRANKLIN 7
NEC 2050.. T ,
MICRO-S8CI NEC 3850.. » [
..$215.00 .
.$299.00 “;‘;‘;“;gv':s“ MICROPRO
-$319.00 51" 320K Flo $219.00 WordStar Professional Pack. $389.00
C2 Controller.. $79.99 N PDY oo ' InfoStar.
Ca7 Controller $89 99 5 Meg Hard w/Controller.....$1049.00 SpeliStar
: 10 Meg Hard w/Controller..$1349.00 CaleStar :
) 20 Meg Hard w/Controller..$1899.00 ~OSWal s oo o
Elite 1.... ...8279.00
Elite 2. VISIconP Crosstalk
Tlite 3.... VisiCale IV..

APPLE IIs STARTER PACK VisiWord +. .
64K Apple ITe. Disk Drive & Controller, Acy 1000 Color Computer......... CALL Vist-on APPM&NOR anager. $79.99 ASHTON-TATE
80 Column Card. Monitor IT 8 DO8 3.3 ACE PRO PLUS System............. CALL Viston Cale... B teed
COMPLETE.....cccvvaeeerarrrsarnaas CGALL ACE 1200 Office Mgmt. System.CALL Vist-on Graph.. .
Call on all other Apple Models ACE PORTABLES. CALL Visi-on Word.... -$185.00

Optical Mouse.. ..
AST RESEARCH

Six Pak Plus.... ...from...$279.00

Combo Plus II..

BasyWriter II...
EasySpeller..
EasyPiler .

GOI':II’:II!AL SOFTWARXE

....$249.00
..$119.00

MBC 580......
MBC 888..

weesenee.. CALL
CALL

MBC BS8B-2..................CALL m.,.$139.00 lst Class Mail/Form Letter.....$79.99
. -Home Ameum:a.nt PRuS.. v $88.89
MBC 1100 ...$1499.00 «Quadlmk ...$479.00 LOTUS
MBC 1150.. $1899.00 Quadboard as low a.s $288.00 Symphony.--
MBC 1200.. $1849.00 Quad 512 Plus......as low as...$249.00 1-2-
MBC 1250..... $2099.00 Quadcolor ..as low as...$219.00
PR 5800 Printer. $599.00 Chronograph $89.99
Parallel Interface Board. $89.99 Filo M SYNAPSE
84K RAM Chips Kit.... .99 File a.nager
(ﬁﬁ] HEWLETT PACKARD HP ﬁg” S e
' (e} HP 15C..
HP 160C..

CE- 155 BK: RAM..:
" cr181 16K. B.AM

CBM 8033.
CBM 8096..
CBM 9000.

6400 Printer..
Z-RAM. .
Silicon Office..
Tha Manager...
SoftROM..

. Visfcalc_

Administrator
Power..

V\:l“fést‘
800-648-3311

P.0C.Box 6689
Stateline, NV 89449

,PC-8281.A Data B.ecord.er

In NV call (702)588-5654,Dept. 125
Order‘ Status Number: 588 5654

HP 78D..
HPIL Module.
HPIL Cassette or Prmcer
Card Reader. .
Extended Function Module

Time Module

NEC
PC-822lA Thermal Printer

C1541 Disk Drive... R $249.00

C1530 Datasette. $69.99

Cl520 Color Printer/Plotter

M-801 Dot Matrix Print
28 Pot M

Pilot 64....
Word Pro 6 Plus

Calc Result 64.

Vidtex Telecommunications... 854 95

MBD

SD1 Disk Drive..
SDR Disk Drive...

...$349.00
$599.00

Ontario/Quebec 800-268-3974
Other Provinces800-268-4559

In Toronto call

(416)828 0866 Dept. 125

Z-150 PC

SOFTWARE

agl
Hard Hat Mack

nfoCom
Witness $29.99 $29.99 829 99
Infidel $29.99 $29 99 $29.99

Deadline

Joust

Moon Patrol $35 99 N/A
Ms. PacMan $35.99 N/A
PacMan $35 99 N/A
Donkey Kong $35.99 N/A
Pole Position N/A

$35.99
PO

~ L 3 3 R D
Traction Fever $22.99 $22.99 $22 99
Alphabet Zoo $22 99 $22 99 $22.99
In Search of $24.99 $24.99 82499
Facemaker $22.99 $22 99 $23.99
Kinder Comp $17 99 $17.99 $17 99

Dynatech . .

bt
Write
Graph N/A N/A
Report N/a N
File N/&A N/A
Solutions:* as low as NiA N $16 99

*Call on Titles

800-233-8950

In PA call (717)3R7-9875, Dept. 125
Order Status Number 3_7- 95'76

TERN :
irtifted check only.- Irrchrde
shipping and handlmg, EDUCATIONAL DISCOUNTS: Additional discounts are available to qualified Educational Institutions. APO & FPO: Add 3% (minimum
$5) shipping and handling.

Z2-160 PC

Call for price and configurations

Apple

$29 99
$290 99

$22.99
$22 99
$24 99
$22.99
$17 99

This Month in
Micro

L P T T rrre T
This month we have 10 complete, useful, exciting
programs for you on a diverse group of topics. The
longer ones are available on MicroDisk as well to

save you time and effort.

Featured This Month

DVORAK Keyboard — Try out a new keyboard
arrangement that can increase your typing speed
dramatically. The keyboard now commonly used on
computers was deliberately designed to avoid
jamming slow typewriter keyboards. Technology
eliminated the problem, but the awkward solution
is still with us. However, a different layout is
becoming more widely accepted, which results in
productivity and typing speed skyrocketing. This
demo program will allow you to convert your
keyboard temporarily and see if you like the
arrangement.

6809 vs. 68000 — While the 68000 based computer
is far more expensive than the 6809, it can be
100 times more powerful, but, what are the real
differences. A checkbook offers a good way to
compare their abilities. This program contains the
main subroutines to create a machine language
program which runs on either kind of machine to
allow comparison.

Flight Simulator Il — Studying an accepted
masterpiece of program design is one way to learn
really fine programming skills. Flight Simulator II
is just such an exciting state-of-the-art package.
Looking into its details and the way it was created
will give even experienced programmers more than
a few pointers.

C-64 Graphics Dump — This "'perfect’’ dump for
the impressive C64 graphics works in either HiRes
or multi-color mode, allows large size printouts,
works with many printers and graphics packages,
can vary color and intensity, and is very fast. This
program is available on a MicroDisk.

Communication Between Computers — What do
you do when you have several different computers
and only one printer? Interface and merge it all
into one efficient system.

HILISTER — Highlighting lines of text and
programs can be very useful for emphasis or clarity
when discussing material on the screen in business
meetings, classrooms, seminars. This program also
allows easy movement within a program or text.

Simple Numeric Sorting — This simple method
lets long lists be arranged in order, without user
supplied programs. It takes advantage of a built-in

BASIC feature.

Applesoft Compression Program — With other
programs, extra long listings often do not work,
overflowing the Called Line Number Table. This
program has several unusual features which surpass
other Compression routines.

Useful Math Functions — Save time and
mathematical aggrevation with a compilation of
defined functions.

Commodore to Apple — Sort of a poor man's
modem. Commodore cassette files can be sent to
Apple disks for storage or interfacing with
peripherals which don't work with Commodore.
This works with data files, BASIC programs and
memory ranges.

Circles for the C64 — In a HiRes environment,
creating circles can be a problem. The code for this
mathematical way of defining and plotting circles in
a game or business type analysis is most helpful.
The theory will generally work on any 6502 based
computer with HiRes capabilities.

BASIC Hex Loader — This handy BASIC Utility
will load Machine Language code in Hex, and a
special version for the C64 will even generate the
DATA statements.

2 MICRO

No. 73 - July 1984

Publisher/Editor-in:Chief
Robert M. Tﬁpp

Assoclate Publisher
Cindy Kocher

Production Manager
Jennifer Colhns

Technical Editor
Marks M‘orano;- ;

Tochnlca[Editor

~Ad€e&l§lng Manager S
" 'Willlam G..York -

[

/NICRO

for the Serious Computerist

JULY

A Basic DVORAK
Keyboard for the
VIC-20 and C-64

Alfred J. Bruey

194

A “new’” key arrangement
is gaining acceptance,
increasing typing speed
and productivity
enormously.

!

Contributinq 1
Cornehs Bongers

A Comparison of 6809
and 68000

Mike Rosing

The checkbook offers a
simple, effective way to
compare these two
microprocessors.

[

Flight Simulator II:
Microcomputer
Simulation At Its Best

Chris Williams

By analyzing this design
masterpiece, programmers
may discover the elements
needed to make their own
software great.

. MICRO is pubhshed mon

Graphic Print for C-64
Michael J. Keryan

Create a full-page graphic
printout from a
Commodore 64 high
resolution display.

MICRO ‘Chelmsford, MA

30

Interface Clinic:
Communication
Between Different
Computers

Ralph Tenny

Merge several computers
into one efficient system,
sharing a single printer.

o Subscriptlan Bates;(er year)'
- U8, 7$24.00 or $42.00 for two
Foteign surface mail: $27.00

. Kir'mail: Europe - $42.00
’ ‘;Mexico, Centr'

3

HILISTER — A Study
and Teaching Aid

J. Morris Prosser

Move easily within your
programs and highlight
parts of text or listings for
emphasis, drama, clarity.

~AIE nghts Reserved 3t

3

Super Simple Numeric
Sort

Robert L. Martin

MICRO

Arrange a list in numerical
order without the need for
a user supplied sorting
program.

No. 73 - July 1984

4 CMPRSS: Improved

Applesoft

lan R. Humphreys

NO. 73

Compress large programs
and retain comments
without overflowing Called
Line Number Table.

Compression Program
5 Useful
Functions — Part Il

Paul Garrison

Save time and
mathematical aggrevation
with a compilation of
defined functions.

5 Commodore-To-Apple
Cassette File Loader

| Art Matheny

Transfer cassette files
written on VIC-20 or C64 to
an Apple disk for
interfacing, etc.

6 5 BASIC Hex Loader
Robert M. Tripp

Handy BASIC utility to
load Machine Language
code in Hex.

66 Circles for the
Commodore 64

Lester Cain

An interesting
mathematical way to plot
circles on the C64.

Product Reviews

11 Paint Magic Easy to use
graphics with
joystick and

keyboard.

11 Promenade
Model C1 EPROM
Programmer

Add-on programmer
which handles 12
models of EPROM
and at least 8 of
EEPROM.

11 TimeTrax Time management
system for personal
or business life,
including printed

scheduies.

12 Spell Perfect

Machine language
spelling checker for
Letter Perfect or any
standard text files.

12 The Complete
Graphics System

2 and 3 dimensional
graphics including
108 colors.

Departments

2 Highlights

6 Editorial

7 Feedback

8 Spotlight: Sage

No. 73 - July 1984

10 Lyte Bytes
11 Reviews
72 CoCo Bits
73 Microbes

MICRO

74 Catalog

78 Books

79 Listing Conventions
80 Advertiser Index

80 Next Month in Micro

— edilonial

Dear Readers,

As we approach the midpoint of 1984, I find myself
looking towards the future. In the field of computers so
much happens so quickly that it is hard to imagine what
will transpire in the remainder of this year, let alone five
years hence. One way to approach the future is by
examining the present, noting the trends and then
projecting. At this time the world of the microcomputer
continues to dish up new surprises. It seems every time
you turn around a new computer is being launched.
Although the appearance may differ from machine to
machine they are all based on a few standard chips. At its
inception, MICRO chose to focus on the 6502 chip. This
chip has proven itself to be a well designed and dependable
innovation. Although the heyday of the 6502 has passed, it
is not dead. This is clearly evidenced by Apple releasing
yet another 6502-based computer - the Apple IIc. Apple
seems to also be aware of the need to move onward and did
so with the introduction of the Macintosh. The 68000
brings the general populace in touch with 16-bit machines.
(I will not go into the advantages of a 16-bit over an 8-bit
because, if there weren’t any, the 68000 would never have
surfaced.) Presently the big name in chips seems to be
Intel, not Motorola. The 8088, 8086 and other chips
developed by Intel have become the backbones of micros
made by IBM, Hewlett-Packard, and Digital, to name a
few. These are not names to scoff at. As popular as 6502
based machines {Apple, Atari, Commodore, etc.} are, the
bulk of sales is starting to shift to machines based on other
chips. Unfortunately or fortunately, depending on your
viewpoint, there are rumors that Intel is only going to be
able to fill 25 percent of its orders. If this proves to be true
then someone will have to pick up the slack. The question
is who. Perhaps Motorola will seize the opportunity and
cover the deficit, using their chips.

But, even if Intel completely dominates the market,
the 6502 will carry on. People don’t throw away

there are still many IBM mainframes using cards is a
testimony to this. Why do people continue to use outdated
computers? Certainly the monetary aspect can't be
overlooked. Even with drastic reductions in the price of
memory (the new HP Nomad has as many words of
memory as the old IBM 360 series), and the lowering of the
price of computers in general, they are still not cheap. For
many it is a matter of loyalty. Others are content with the
familiar and prefer the comfort of an old friend to the fear
of the unknown. And there are those people who prefer to
live in the past, not be bothered and are perfectly content,
thank you very much. For these and other reasons there
will be a need for 6502 machines, journals, software and
support for many years to come.

But what about the future? Certainly one cannot ignore
the 68000 or Intel’s 80186. To pretend they aren’t
improvements on previous chips is folly. Rather than seek
to delude ourselves I suggest we embrace new technology

computers because they become outdated. The fact that

with open arms and open eyes. To blindly accept
something simply because it has been billed as new and
improved is foolish. I think the best approach is one of
open skepticism. A willingness to explore new territory
and seek new frontiers. After all, isn’t that what the world
of computers has always been about? Let's examine the
innovations and carefully separate the wheat from the
chaff. Bearing in mind past mistakes, we will always find
room to improve and go forward. We have built better
mousetraps; we have even built better ‘'mouses’’; why not
now create men? Because, of mice and men, there is no
end.

Motk S Norarr

Mark S. Morano
Technical Editor

On The
Cover

sl
SRR TR

e
€ £ =

1
-
C
£
ar

George Cook, merchant - Grace Adams
1778-1849
1775-1842

1793-1845

Raobert Cook, mountain man - Little Moon
o o

William Cook, lawyer - Bonnie Lee

102701067
L IT LTSS

msdarata Mz -l Tiiar
gagrate Major; Ll

On the bridge at Concord, Massachusetts, a colonial
minuteman dreams of past and future glories of
family and country. Data Bases, long thought of as
tools for business and government, have many
useful applications in personal life as well. Keeping
family trees, health information, employment
records are just a few uses which can make you
paper-independent. Happy Independence Day!

6 MICRO

No. 73 - July 1984

—— deedback

Dear Ian,
{RE: Micro 67, Dec. 1983|

I have a question about your program
‘C-64 Alarm Clock’. For some
unknown reason, when 1 use ‘GOSUB
9140’ to reset the alarm, the computer
displays ‘SYNTAX ERROR IN 48'. It
does not affect the operation of the
clock, but I would like to know why
this statement appears, since there is
no statement 48 in this program. I have
tried to list statement 48, however,
nothing lists. Please reply as soon as
possible. Thank you.

Kenneth K. Choy
San Francisco, CA

Dear Kenneth,

The situation you describe, getting a
‘syntax error’ after ‘gosub 9140°, seems
to occur only occasionally. The
simplest explanation is that the
GOSUB command is intended to be
used from within a program. If you type

it into the keyboard directly, then
BASIC will execute the subroutine ok.
When it is finished, however, it will try
to resume executing the program at the
next statement after the GOSUB. Since
there is no program running, it gets
confused and gives an error message.

The error seems to be quite
harmless, and does not affect anything.
If you use the ‘gosub 9140° statement
within a program, you should not incur
an error.

There is no line 48, of course, and
that number is meaningless.

I hope you enjoy the alarm clock
program, Kenneth, and that this odd
error doesn’t cause any problems.

Ian Adam
Vancouver, BC, Canada

To the editor,

Ref. Micro No.51 August 1982,
page 97.

First things first. I truly enjoy your
magazine. Similarly for Mr. Bongers
articles.

In Mr. C. Bongers program on an
improved method of garbage collection,
MICRO No. 51 page 90, the program
works as advertised. However, I found
a slight problem when I attempted to
use it with string arrays. The second
paragraph on page 97 appears to be too
brief. I tried using the string version of:

&CLEAR A:DIM A(20,20)

to initialize a string array to zero. This
version:

&CLEAR A$:DIM A$(20,20)

didn't do anything until it was
modified to force a cleanup as follows:

&CLEAR AS$:FRE (1,K] DIM
A$(20,20)
From then on I was smiling.
James Fulton
Corona Del Mar, CA
AICRO"

0
>

Added to All
Subscriptions

N
One Month

I_——_____q

At fast!. . .A dual 6522 versatile
interface adapter (VIA) board
for the Commodore-64.
The 6522 VIA, long the preferred

.

Because of our combined April/May issue, we've
gotten some questions from readers wanting to know
if we were going to be bimonthly, if they were going to
loose an issue, if we were taking a vacation early, etc.

The answer is much simpler. When we redesigned
MICRO to make it more readable,we needed some
extra time between issues to gear up our production
department (artistic temperament and all that). So we
gained the needed time by combining two issues.

It was a one-time thing. We are not going to be
bimonthly. More importantly, you will not lose an
issue. If you subscribed for 12 issues, you will receive
just that — and the combined issue counts as only
one. All subscriptions will be extended one month.

While we’re on the subject of subscriptions, please
check your mailing labels to be sure all information is
correct; tell us about problems right away.

No.

73 - July 1984 MICRO

input/output chip for 6502 mi-
crocomputers, is now available for the
C-64. 6522 programming techniques,
covered in many available books, can now
be applied to the C-64 for even the most
sophisticated real-time control applica-
tions. Board allows full use of the IRQ
interrupt. When combined with the
C-64’s memory capacity, it provides an
extremely powerful yet cost-effective de-
velopment system and controller in one
package. Includes extensive application
notes and programming examples.

Up to four boards can be connected to-
gether, providing sixteen 8-bit ports.
Order Model 641F22, $169 for one, post-
paid USA. Each additional $149.

Complete reconstructed Assembly Lan-
guage source code for the C-64’s BASIC and
KERNAL ROMs, all 16 K!

Extensively commented and cross-
referenced. Far more than a mere “memory
map” of useful locations, this book really does
tell all. An incredible time-saver in effective
C-64 programming and understanding. Order
C-64 Source $29.95, postpaid USA.

SCHNEDLER SYSTEMS
1501 N. Ivanhoe, Dept. M7
Arlington, VA 22205
Telephone orders/information: (703) 237-4796
VISA MASTERCARD

h_———__—

T

Microcomputer
System

Distributor

Sage Computer
4905 Energy Way
Reno, NV 89502

Introduction

The SAGE 1I is a fast 32-bit computer using the p-System
Operating System with a 68000 Interpreter to emulate the
‘p-machine.” SAGE chose this operating system for a
number of reasons. To develop their own Operating
System would have been time consuming and costly, and
once it was finished they would be incompatible with
everyone else. Instead they opted for a highly portable
system which would allow programs to be transferred
from one machine to another with very little difficulty.
Portability being the key, many programmers purchased
SAGE:s to use as developmental tools. The SAGE also had
the added attraction of being very fast. With these points
in mind, the majority of the SAGEs sold during the first
year were bought by programmers and developers. Since
that time the market and support of the SAGE has greatly
expanded.

The Processor

The SAGE 1II uses an 8mhz, interrupt driven 68000
microprocessor. It has a 16-bit data bus and a 24-bit
address bus, directly addressing 16 million bytes. There
are more than 1000 executable instructions, the set
containing 56 instruction types with 14 different
addressing modes. With 17 general purpose registers, each
32 bits long, a 24-bit program counter and a 16-bit status
register, the SAGE is a powerful machine. Using an 8 Mhz
clock the MC68000 (without wait states) runs at 2 million
instructions per second. There is a light on the processor
which indicates when the bus is active, inactive or the
processor is in process.

Memory

RAM memory for the SAGE II is configurable from 128K to
1024K bytes in 128K increments. On the Main processor
board {CPU board] up to 512K bytes may be stored, with
an additional 512K on the Winchester board. A self-test,
DEBUGGER, and bootstraps are in the EPROM firmware.

Keyboard and Physical Description

Basically a standard Qwerty keyboard, the entire unit is
connected with a telephone-like cord allowing the user to

move the keyboard to his lap or any convenient position.
The basic alphanumeric keys are laid out in the usual
manner with a numeric pad to the right. Above this pad are
four programmable function keys (their function changing
from program to program)|. The SAGE II is contained in an
aluminum case measuring 3.5'"' x 12.5"" x 17''. Weighing
in at 151b. 8 oz., it is easily moved.

Interfaces

SAGE decided to simplify I/0O implementation by using
I/0 memory-mapped assignment. The connections
provided are: Terminal - RS$232-C, Modem - RS232-C,
Printer - parallel, Group-A and B - dipswitch, and IEEE-
488 -GPIB bus. A second RS232-C port is available. With
the Winchester board 4 serial ports can be supported.

Documentation

The documentation we received included a Getting
Started/Word Processing volume, a Technical Manual,
and a p-System Operating System Manual. Each manual

8

MICRO No. 73 - July 1984

was contained in a 3-ring hard-cover binder which fit into
another hard-covered box. The documentation was clearly
written, with indexes and table of contents that were very
helpful. Most of the information was easily accessed and
references were provided where appropriate.

Software

There are some fine software packages available for the
SAGE II. These include some excellent business,spread-
sheet and database products. As the SAGE II uses the
p-System Operating System, it lends itself to easy
transferral of software developed on other p-System
machines. Given this portability of programs, 1 would
expect a steady influx of software for this microcomputer.

Peripherals

The SAGE II supports single and dual disk drives,
Winchester disk, dot matrix and daisy-wheel printers,
monochrome and color monitors. The system came with a
QUME monitor which is ergonomically designed {i.e.,
takes people into consideration). This was a very nice
addition, being able to rotate and swivel the screen to
avoid glare, and position the monitor to suit the user’s
preferences and body (tall, short, etc.).

Price

The SAGE II with one 640K floppy drive is listed at $3,200,
with two 640K floppy drives it is listed at $3,900. If you
choose to expand to 512K bytes of parity RAM [which is
necessary for either the Sage Multi-User system or the
Idris Operating System), it is an additional $500. The
Qume CRT comes in a variety of flavors, prices ranging
from $690 for the green QVT-102 to $1,310 for the amber
QVT-211GX which has full graphics capabilities.

Conclusion

The SAGE II is a well designed and competent computer.
SAGE is the only low-cost multi-user (2 users) and multi-
tasking micro on the market. Allowing foreground and
background activites to run concurrently, you can compile
while using the word processor. Although this not the
micro for everyone it is definitely one of the best 68000
micros currently available. For those who are interested in
a more serious micro, particularly for developmental or
business purposes this is definitely a machine worth
considering.

0S9

APPLICATION
SOFTWARE

ACCOUNTS PAYROLL
PAYABLE GENERAL
LEDGER $ 499
$ 2 9 9 with
CASH SMALL
ACCOUNTS JOURNAL BUSINESS

RECEIVABLE INVENTORY
399

$299 *? $299

COMPLETE DOCUMENTATION $19.95

0S9 & BASIC 09 ARE TRADEMARK OF
MICROWARE, INC. & MOTOROLA CORP.

SPECIALTY
ELECTRONICS

(405) 233-6564
2110 W. WILLOW — ENID, OK 73701

No. 73 - July 1984 MICRO

most complete _
computer protection!

More features to prevent errors, false printout, disc
skips! Only ISOBAR has 3-way spike protection, noise
suppression for RFI PLUS isolated filter banks! In-
dividual filter banks isolate each load from other loads
minimizing data errors of any kind. MOV surge sup-
pressors arrest both common mode and differential
mode surges. L/C filter network rejects radio fre-
quency noise at any amplitude. Torroidal coils for
greatest efficiency! All-metal housing.

Order toll free 1-800-662-5021 25z

Model IBAR 4-6
Indus-Tool, 325 W. Huron, Dept. M (4 outlets,
Chicago, IL 60610 : 6 ft. cord)
Send model #___ Only $79.95
Enclosedis$ orcharge on ¢ ysoqel IBAR 2-6
I 0 MasterCard or U1 Visa Expires (2 autlets,
Card no. 6 ft. cord)
Name Only $54.95
Signature Model IBAR 8-15
Address | g% cf)tutietsd)
. . cor
[Stae_——2p———] Only $97.95

NCEMMUOIN

LXEPI

VICRSEURE
RPHEOP

EDPCOUESOD
GRMIOTLAH

CIKDOLRG

~ CAUPDETIL
ITUNENOMLITOEMCAC
RIBYAN

ILECDHAMXIE

CBYISOML

(T T IO T T

Why Winchester failed his
computer course?

@)

Ol

OF T T TT]

Last month we printed a puzzle,
(see copy). The secret is now revealed
-read the slashes and circles as ones and
zeros, divide them into groups of
seven, translate each group into its
ASCII equivalent, then read the letters
in reverse order; you get the following
message -'‘welcome to lyte bytes.’”’

This month to text your computer
literacy we have a word scramble. To

find the answer — first decipher each
word and write it in the adjacent box;
extract the letters that fall within the
circles; take these letters and
unscramble them to arrive at the final
answer using the blank lines under the
cartoon. We will of course provide the
answer in next month's Lyte Bytes.

10

MICRO

No. 73 - July 1984

4

E—’ L7 12777 8

Product Name: Paint Magic

Equip. Req'd: Commodore 64 with disk drive,
joystick and color monitor

Price: $50

Manufacturer: Datamost, Inc.
8943 Fullbright Avenue
Chatsworth, CA 91311

Description: A graphics program that creates pictures
with the help of a joystick and the keyboard. You advance
from circles and boxes with one color fills, to sketches
with self-designed color patterns which can be transposed,
exchanged and saved for later recall. Portions of the screen
can be magnified for detailed work. Sample pictures are
provided to show you what Paint Magic is capable of.

Pluses: Any screens you design can be saved and included
in your own BASIC programs. Because of the numerous
color and pattern choices you have amazing flexibility to
experiment with.

Minuses: Only five colors can be used at a time. A
joystick with eight positions is essential and being able to
select diagonal lockout is a very useful feature.

Documentation: An attractive and simple tutorial
provides the needed information

Skill level: Beginner and up

Reviewer: Mike Cherry

Product Name: Time-Trax

Equip. Req'd: AppleII, II or Ile, monitor |preferably
Black and White), disk drive, blank
diskette, 2 AA alakaline batteries

Price: $99.95

Manufacturer: Creative Peripherals Unlimited, Inc.

1606 S. Clementine
Anaheim, CA 92802

Description: An easy to use time management system,
designed to help you keep track of events, scheduled
meetings, etc., in your personal or business environment.
One package can manage an infinite number of users. The
program keeps a calendar of scheduled events for one year,
and enables the user to print out a daily, weekly, or
monthly schedule. It has a search of entries option, using
keyword(s) and wildcards.

Pluses: Very simple to use, clean, clear and helpful
menus. Hitting an escape {at most three times) will return
you from anywhere in program to the main menu. Will not
allow you to make an entry into the past. Has two kinds of
cursors: blinking — displayed when you are to type
information in; and non-blinking — displayed when you
are to select an option. Retains data for the present month,
and eleven months past and in the future, deleting any

month that becomes 12 months old. Maximum of 311
entries per month or 9079 characters of text. Maximum of
99 entries per day. Good error messages. A clock is
included |[hardware and assembly instructions]. This
maintains the correct time and date, using two AA
batteries as a backup. The clock itself makes this package
worth the price. The clock can also be used in Applesoft
BASIC or 6502 assembly language programs, a machine
language program is included on the disk. Clear readable
graphic display of calendar (month at a time)].

Minuses: Time-Trax has a feature which reminds you of
upcoming appointments and tells you when you have
missed a scheduled event. A great idea, but one that is
limited by the necessities of 1) your computer must be on,
2} it must be running Time-Trax, and 3] a menu or
calendar must be displayed. If you haven’'t met these
requirements your reminder becomes a missed event. Not
very practical in practice, since most people will not
choose to keep their computer always running and tie up
their system with one program, i.e., Time-Trax. Rather, I
suggest they should have made this a background instead
of a foreground task.

Documentation: Thorough, easy to understand. Unlike
much documentation, an index has been provided.

Skill level: Beginner and up.

Reviewer: Mark S. Morano

Product Name: Promenade model C1 EPROM
Programmer
Commodore 64 or VIC-20 Computer,
Disk or Tape
Price: $99.50 plus $3 postage/handling
Manufacturer: JASON-RANHEIM

- 580 Parrott Street

San Jose, CA 95112

Equip. Req’d:

Description: The Promenade is a highly capable EPROM
programmer which operates from the User Port of the VIC
or C-64 computers. It can program at least 12 models of
5-volt only EPROM (Erasable Programmable Read Only
Memory) ranging in size from 1K x 8 to 32K x 8 and 8
models of EEPROM (Electrically Erasable PROM]. In
addition to programming EPROMs and EEPROMs (and
erasing EEPROMs) the unit will save assembly language
object code {as will any programmer] and also will put
BASIC object code into ROM. An auto-start loader is
furnished which can make any ROM auto-start when
plugged into the computer’s expansion port. Promenade’s
own software will put several BASIC programs on an
EPROM, along with a directory of those programs. Thus,
working programs can be '‘cast in silicon’’ on EPROM and
simply plugged in to change job assignments for a
computer. This feature is being widely used in industry
where the low cost of a VIC-20 makes it attractive to

No. 73 - July 1984

MICRO 11

RO

4

dedicate a computer. The ease of BASIC programming and
subsequent installation of the program in EPROM, allows
major cost savings for computerized projects. Rapid
turnaround of modified programs is possible with
EEPROMs: the time for erasure and reprogramming an
EEPROM can be as short as 2 minutes or less!

Pluses: This package outperforms most other add-on
programmers, yet the cost is lower than any I've heard of.
If you have the computer, all you need is mass storage, a
Promenade and EPROMSs to start generating programs
which don’t go away if the power fails. It is rugged,
attractive, highly engineered and well made. Their
immediate concern is to get the customer’s problems
solved as promptly as possible, even if this requires
express mail delivery of a replacement unit.

Minuses: The major lack of this equipment is in
documentation for programming EPROMs with assembly
object code, and on how to manipulate assembly files with
a debug monitor co-resident with the Promenade software.
Everything works well together - it is just hard to learn
how from the documentation. It is my personal prejudice
that electrical schematics should be furnished with all
electronic products, but the low cost of Promenade
overcomes this feeling somewhat.

Documentation: A 16 page manual [but no schematic) is
furnished. It covers saving BASIC programs to EPROM in
meticulous detail. The manual is not well organized, but
it is small enough that everything can be found rather
easily. Documentation regarding use of Promenade for
‘‘normal’’ assembly-language programming is very sparse.

Skill level: In general, using EPROM programmers
requires considerable knowledge about preparing assembly
code for use in a read-only environment. However, this
combination of equipment and documentation should
allow inexperienced persons to save BASIC programs
readily.

/041_/

-

%
s

Product Name: Spell Perfect

Equip. Req'd: Apple II w/48K and drive
Price: $89.95
Manufacturer: LJK Enterprises, Inc.

7852 Big Bend Blvd.
St. Louis, MO 63119

. Description: A machine-language spelling checker
. program operating on Letter Perfect or any standard text
\files. It is compatible with most 80 column cards and has a

file buffer of over 40,000 characters. Words are easily
added to the dictionary from corrected documents and up
to 255 dictionary disks are allowed - the program prompts
for disk insertions.

Pluses: The well-written manual is not needed for the
most part being menu driven and having easily understood
prompts. The program is fast (a 100 sector file took less
than 2 minutes) and offers words to be corrected in context
with the surrounding text. A ‘‘help’’ command is available

to prompt you with similar sounding words from the
dictionary or you can edit the word in place.

Minuses: The program doesn't recognize ' ' '' or *' - "'
leading to problems with hyphenated or contracted words.
A prompt to add word to dictionary instead of rerunning
the program on the corrected file would be nice.

Documentation: The 72 page manual nicely
complements the on-line prompting and answers all
questions with specific examples.

Skill level: No particular computer knowledge necessary.

Reviewer: Phil Daley

Product Name: The Complete Graphics System

Equip. Req’d: Apple II, II, Ile, Color Monitor, disk
drive, extra diskettes for backup copies
and work disks

Price: *

Manufacturer: Penguin Software

830 4th Avenue
P.O. Box 311
Geneva, IL 60134

Description: As the title says, this is a complete graphics
system. Easy enough for those who aren’t programmers
and sophisticated enough for those who are. You can
create two and three dimensional graphics, use 108
blended colors, outline areas, fill them in, draw with lines,
brushes (96 choices|, use freehand drawing, employ
preprogrammed boxes, arcs, circles, triangles, and ellipses.
There is a program in which you can create your own
shapes, store them in a table, and then draw on them
whenever you choose. A variety of input devices are
compatible: ordinary keyboard, joystick, trackball, touch
tablet, paddles, Apple graphics tablet, a mouse, and
Houston Instruments HiPad. (What's left?] An object can
be magnified 2, 4, or 8 times its original size, rotated,
shrunk, varied in intensity, and easily transferred to any
drawing. Text can be added to graphics using another
special program. As originally stated — this is a

- complete graphics system.

Pluses: The pluses are many. The fact that it can do all of
the above is a plus; that it does them well merits special
aﬁplause.

Minuses: Overall, there is no such thing as a perfect
grabhics package. There will always be flaws. As far as
minuses go with this product they are truly insignificant,
bordering on non-existent.

Documentation: The documentation is generally clearly
written. There are some sections that could be more lucid,
but with some rereading most everything can be figured
out.

Skill level: Intermediate to advanced.

Reviewer: Mark S. Morano

AICRO"

12

MICRO

No. 73 - July 1984

—— featune

A Basic DVORAK Keyboard

for the

VIC-20 and Commodore 64

CUR | INST

«p7 s |39 |e|2]|4]|6|8])+]|-|LE]omlom

CTRL ? , P Y F G C R L * t | rESTORE

RUN |SHIFT -

s1op | Lock A @ E U I D H T N S ; = RETURN

& SHIFT ; J K X B M W v SHIFT vt -
13 —

by Alfred J. Bruey

A e e e TR

The current keyboard was designed to slow typists
down. A new arrangement can increase productivity

enormously

e TR TAY

At the 1876 Centennial Exposition one
exhibitor presented a strange gadget
which is now known as the
“typewriter.”’ It did not receive as
much attention as it should have
because this new, practical discovery
was overshadowed by the ‘‘telephone,"’
another strange new invention.

One of the first typewriter
designers, Christopher Sholes, found
that if the keys were arranged in a
reasonable order, they would jam
because of their slow action. So he
rearranged them so the keys that were
often hit together would not get tangled
with each other. His arrangement,
which assigns the letters
QWERTYUIOP to the top row of
alphabetic keys, is still used today. I
will refer to this arrangement as the
QWERTY keyboard, for obvious
reasons. If there is a QWERTY
keyboard, there must, of course, be a
non-QWERTY keyboard. Otherwise,
what would I be writing about?

Actually, there are, or have been,
many non-QWERTY keyboards. The

one that I'll be discussing here, the
Dvorak keyboard, was designed by
August Dvorak in the 1930Q's. Dvorak
wasn't the first to develop a non-
QWERTY keyboard; in the last quarter
of the nineteenth and first quarter of
the twentieth century, there were a
great variety of typewriter keyboard
arrangements from which to choose.
When I was collecting old typewriters a
few years ago, before a lack of storage
space put an end to that hobby, I found
that probably the easiest-to-find non-
QWERTY keyboard was found on the
old Oliver typewriter whose model
numbers went all the way to Number 9
before they were discontinued.

The DVORAK Keyboard

Figure 1 shows a drawing of the VIC-20
and C-64 keyboard with the commonly
used keys changed to represent a
simplified version of the Dvorak
keyboard. Notice that no attempt was
made to incorporate all the special
characters. The arrangement in this

figure follows that shown in an article
(Dvorak Keyboard for Your Computer)
by John Raines in the August, 1983
issue of MICRO Magazine. This article
presented a 6502 machine language
program for the Apple Computer,
which allows the Dvorak arrangement
to be used to input data to Apple
programs.

The VIC DVORAK Program

The Dvorak keyboard program shown
in Listing 1 is a demonstration program
that you can run to see whether or not
you like this ‘‘new’’ arrangement. All
it does is put whatever you type on the
screen.

The program logic is straight-
forward. A GET instruction is used to
get characters, one at a time, from the
keyboard buffer. Then the ASCII value
of the character is obtained. A con-
version table, entered with a DATA and
READ statement, is used to convert the
QWERTY characters to the equivalent
Dvorak keyboard positions. Then the
character is printed on the screen {in

No. 73 - July 1984

MICRO

13

Program Extensions

Listing 1

As this program now stands, it is only
useful as a demonstration of the
Dvorak keyboard. You can’t use this
program to input data into a different
program without some programming

1@ DIM MT(47)
5@ DATA 87,00,86,99,56,55,53,51,49,57,48,58,52,54,83,00
55 DATA @@,00,00,00,00,65,88,74,69,46,85,73,68,67,72,84
é¢ DATA 78,77,66,82,76,63,80,79,89,71,75,44,81,7@,59

65 FOR I=1 TO 47:READ MT(I):NEXT I

1P@ GET K$:IF K$=""THEN 19¢ effort.
Jig;. II(;AEE égss%HEN Kedd :0C=1:G0TO 115 1. You can change this program to an
193 IF K=62 THEN K=46:UC=1:GOTO 115 input subroutine which you can attach
1¢4 IF K=63 THEN K=47:UC=1:GOTO 115 to a more useful program. Then you
1¢5 IF K=91 THEN K=58:UC=1:GOTO 115 can use the subroutine to enter data for
1¢9 UC=@:IF K< > 1¢¢ THEN UC=1:K=K-128 the main program.
11¢ IF K$=CHR$(13) THEN PRINT CHR$(13);:GOTO 1¢g 2. If you are going to use the Dvorak
111 IF K$=CHR$(32) THEN PRII;IT CI:IR$(32); :GOTO 109 keyboard for your permanent keyboard
115 PRINT CHR$(MT(K-43)+128¥UC); arrangement, you will probably want to

12¢ GOTO 1¢¢

lines 110, 111, or 115}. Then execution
is returned to line 100 to GET the next
character.

Using the Program

First press the SHIFT and
COMMODORE keys to put the VIC
into text mode. Next load the program
(QWERTY LOAD translates to Dvorak
NRAE)} and the RUN it (RUN becomes
PGB|. Then you begin typing as though
you had a Dvorak keyboard. When you
are done using the program, press the
RUN/STOP key to get out of the
program and revert to the QWERTY
keyboard. _

Notice that only the characters
outlined in the heavy black lines in
Figure 1 are defined. You can use other
characters, but you will probably get
the message

?ILLEGAL QUANTITY ERROR IN 115
if you do.

Changing Your Keyboard

There are various ways to change your
keyboard:

1. The easiest way is to put squares of
masking tape on the keytops and write
on the proper leters with a felt-tip pen.
You might write the QWERTY symbols
in one corner of the tape and the
DVORAK in another.

2. You can change keycaps. This is not
a trivial task and you should consider it
only if you are making a permanent
change.

3. Another temporary solution is to
put the Dvorak character on tape on the
front of the keycap, the way APL
characters are often imprinted on keys.
These characters can also be painted on
the keyfronts for a permanent change.

Getting New
Arrangements Adopted

Keyboard

The major problem in trying to get a
new keyboard arrangement adopted is
that there are millions of people trained
on the QWERTY keyboard. Another
problem is that there are millions of
QWERTY Keyboards in use. Tests
performed since the 1940’s have shown
convincingly that it does not take long
for the increased productivity possible
with the Dvorak keyboard to recover
the investment in re-training QWERTY
typists on Dvorak keyboards. But
many companies don’t have the money
to hire replacement help to keep up
with the day-to-day work as their
typists are being retrained. They also
do not have the money to replace all
their QWERTY hardware.

A simple solution to the hardware
problem is in sight. The availability of
computers with programmable
keyboards makes it possible for users
trained on two different keyboards to
use the same computer [at different
times, of course)| by plugging in
differently defined keyboards. By using
this method, companies can gradually
switch their employees to the Dvorak
layout. A Dvorak keyboard is already
available as an option for the IBM PC.

re-write this technique in machine
language and use this program as a
replacement for your computer’s input
routine. You can get help doing this
from the MICRO article referenced
earlier.

3. You might want to extend this
system to handle the characters that I
didn't include in my program.

4, You can add coding to print the
characters on the printer as well as the
screen, so you can have a record of your
typing progress if you are using this
program to learn the new keyboard.

MNCRO"

14

MICRO

SAFEWARE™ Insurance provides fuil
replacement of hardware, media and
purchased software. As little as $35/yr covers:
* Fire « Theft = Power Surges
» Earthquake Water Damage * Auto Accident

For information or immediate coverage call:

1-800-848-3469

In Ohio call (614) 262-0559

SAFEWARE, THE INSURANCE AGENCY INC.

No. 73 - July 1934

:b/emw

A Comparison:

O] =

= B—ate—0

The checkbook offers a simple but effective way to
compare these two microprocessors

o] e——

O= G 11al;

The 6809 microprocessor is found in
several computers, including the Radio
Shack color computer which is
available just about anywhere. The
68000 microprocessor is also found in
several computers. Some of these are
APPLE’s LISA and MACINTOSH
computers and the SAGE II. While the
68000 based machines can cost 10
times the price of the 6809 based
machines, they are easily 100 times
more powerful.

To compare these two machines at
the machine level requires a specific
project; the check book is simple, but
illustrative. This requires addition,
subtraction, movement of values, the
conversion of ASCII to binary. What
tollows is not a complete program. It
does contain the main subroutines

required to create a simple check book
program in machine language on either
the 6809 or 68000.

To avoid rounding problems the
choice of integer arithmetic is
preferred. The smallest unit of money
is the penny, so all calculations are
done in pennies.

Next we have to decide the
maximum value with which we are
going to deal. This value should be a
power of two and so large that we will
never reach it. Since 16 bits leaves us
with $327.67 as a maximum value we
take 32 bits as the size. This gives us
$21,474,863.54 as a maximum value.
Very few check books exceed this value
(positive or negative].

Good machine code writing
involves subroutines. Because the

=—Jalc———0—ilal—=|ale=————[a]

comparisons here are so simple, the
subroutines may look silly. Remember
that the purpose is comparison and not
necessarily good code.

An implicit assumption in these
subroutines is that some operating
system is involved. Thus the user stack
on the 6809 is presumed to be
initialized. The 68000 is presumed to
be in user mode and the stack pointer is
initialized.

Movement

The first subroutine (MOVEATOB) is
to move a quantity from point A to
point B in memory. The 6809 code
requires two load and two store
instructions. These destroy the A and B
registers so they are pushed on the
stack before and recovered at the end of

No. 73 - July 1984

MICRO

15

the subroutine. The 68000 code can
move 32 bits from memory to memory
in one instruction without disturbing
any other registers.

Addition * MOVING 32 BIT VALUES CODE COMPARISON

Next we need a subroutine to add * :

numbers into an accumulator [see ¥ 68@9 CODE

SUM). For the 6809 adding the least * SUBROUTINE MOVEATOB MOVES A 32 BIT VALUE PQINTED
significant 16 bits is no problem. Since * TO BY X TO THE PLACE POINTED TO BY Y.

the carry can not be added to the D *

register, we have to go to byte MOVEATOB: PSHU D SAVE D REGISTER

addressing to sum the most significant LDD ’)Y(GET 16 BITS

O
bytes. Another way to do this i§ to igg .;.,X Sﬁg ig ggg ©
create a 'loop count with .the B register STD 2,Y SAVED
and use it as an offset. This runs slower PULU D RECOVER D REGISTER =
than straight inline code. RTS AND LEAVE -

The 68000 code can add 32 bit *
quantities in a single crack, so there is ¥ 680¢¢ CODE
no need to worry about the carry bit. ¥ SUBROUTINE MOVEATOB MOVES A 32 BIT VALUE POINTED
The ADD instruction is not as powerful * TO BY A TO THE PLACE POINTED TO BY Al. ¥
as the MOVE instruction. It can only X

MOVEATOB: MOVE.L (A@),(Al) MOVE 32 BITS

add with a data register. So we bring the
32 bit value into a data register and %
then sum this into the accumulator.

RTS AND LEAVE

Note that the MOVEM [move multiple * o
registers| can be used with a single * SUMMING 32 BIT VALUES CODE COMPARISON
register as well as many registers. *
* 68@9 CODE 3

ASCII to Binary * SUM ADDS A 32 BIT NUMBER POINTED TO BY X TO AN
The simple example so far has assumed : ACCUMULATOR POINTED TO BY Y.
that the .nurnbers are already in SUM: PSHU 5 SAVE REGISTER E
memory. Since most computers have DD 2X GET LEAST SIGN. BITS _
keyboards which work in ASCII, we ADDD 2iY ADD TO ACCUMULATOR
need a routine (GETNUM)] to convert STD 2,Y SAVE RESULT _
an ASCII string to a binary number 1DA 1,X ONE BYTE UP :
which our subroutines can then add. ADCA 1,Y ADD IN CARRY TO NEXT BYTE
Every operating system has its own STA 1,Y SAVE BYTE
method of getting characters from the LDA X MOST SIGN. BYTE
keyboard. Here we assume that a ADCA »Y ADD TO ACCUMULATOR AND CARRY &
subroutine can be written called STA)Y SAVE RESULT =
GETBYTE which will return a byte ggé‘u D BEANnggVEREGISTE
from the keyboard into a register. M .

Once the string is pulled into * 6800¢ CODE :
memory and all the digits are in the ¥ SUM ADDS A 32 BIT NUMBER POINTED TO BY A@ TO AN :
range ASCI ‘0’ to ASCI '9', the * ACCUMULATOR POINTED TO BY A2 ol
process of conversion can begin. *
Multiplying the result by 10 and adding SUM: MOVEM.L D@,-(SP) SAVE A REGISTER
in each byte of the string converts from MOVE.L (A@),DF GET NUMBER o
human base 10 to computer base 2. A ADD.L Dd,(A2) SUM INTO Agggﬁ#TOR
simple way to multiply 32 bits by 10 is ggg}m L (5P)+,Dg EEN]():O‘LHE‘;,EVERE

to first multiply by 2 and save this in a
temporary location. Then multiply by 0

b 3

4 [giving a final multiplication by 8) *
and add in the temporary value. * CONVERTING ASCII TO BINARY CODE
Multiplication by 2 consists of a shift * ol
left. * 6809 CODE -
For the 6809, the subroutine ROTL * GETNUM BRINGS AN ASCII STRING INTO MEMORY AND COgVERTS
i ¥ IT TO A BINARY NUMBER. ALL ENTRIES ARE IN PENNIES, :
rotates the result area left one bit * ENTER WITH X POINTING TO PLACE FOR NUMBER TO GO. o i

Calling this 3 times with a
MOVEATOB and the SUM subroutines
completes the multiplication. Finally,
a digit from the input string is masked %]
off and added to the result. The
addition requires propagating the carry

16 ' MICRO No. 73 - July 1984

GETNUM: PSHU

GNLOOP: BSR
CMPA
BEQ
CMPA
BLT
CMPA
BGT
STA
BRA

*

* HAVE STRING IN
*
KRUNCH: CLR

CLR
*

» X
INSTRING
GETBYTE
#13
KRUNCH
#1 ¢ 1
GNLOOP
#rogt
GNLOCP

, T+
GNLOOP

SAVE REGISTERS
ZERO RESULT AREA

POINT TO INPUT AREA
GET BYTE FROM KEYBOARD

WAS IT A CARRIAGE RETURN ?

THEN PROCESS STRING
WAS IT TOO SMALL ?

THE IGNORE IT

WAS IT TOO BIG ?

THEN IGNORE IT

SAVE BYTE INTO STRING
AND GET NEXT CHARACTER

MEMORY, NOW PROCESS IT.

s Y
COUNT

* MULTIPLY RESULT BY TEN.

*

CNVRT: LEAY
BSR
BSR
BSR
BSR
EXG
BSR
EXG
BCS

TEMP
ROTL
MOVEATOB
ROTL
ROTL
XY

SUM

XY
TOOBIG

¥ ADD IN BYTE FROM STRING

STA

INSTRING
COUNT
A,Y

DONE

#15
2,X
2,X
BMPCNT
1,X

#9

1,X
BMPCNT
»X

#0

»X

MARK END OF STRING
BYTE COUNT INTO STRING

POINT TO TEMP AREA
RESULT TIMES 2

PUT INTO TEMP

RESULT TIMES 4
RESULT TIMES 8

ADD RESULT

TO TEMP AND SAVE

INTO RESULT

ERROR: NUMBER TOO BIG

GET NEXT

BYTE

FROM STRING

NO MORE TO DO

HIGH BYTE OF D CLEARED
KEEP LOW NIBBLE ONLY
ADD IN RESULT

SAVE RESULT

NO CARRY TO PROPOGATE
ADD IN

CARRY BIT

TO EACH

BYTE IF

NECESSARY

¥ BUMP TO NEXT BYTE IN STRING AND CHECK FOR DONE

*

BMPCNT: INC
LDA
TST
BNE

DONE: PULU

RTS
¥

COUNT
COUNT
AY

CNVRT
D,X,Y

BUMP STRING COUNTER
DONE WITH STRING ?

NOT YET
RECOVER REGISTERS
AND LEAVE

* ERROR HANDLER WILL BE MACHINE DEPENDENT

*

TOOBIG:
*
* DATA AREA
*

INSTRING: 2¢ BYTES
TEMP: 4 BYTES
COUNT: 1 BYTE

(SEND ERROR MESSAGE TO SCREEN)

through all 32 bits of the result. The
loop is repeated until all string digits
have been converted or an error occurs.

Comparing the 68000 version of
GETNUM to the 6809 version, we see
that one instruction of the 68000 does
the same as two calls to a 10 line
subroutine of 6809 code. To shift 32
bits left once, takes ROTL for the 6809.
To shift 32 bits left twice, takes only
one line of code for the 68000. The
number of registers on the 68000,
reduces a lot of memory requirements.
While the 6809 must continually swap
pointers from register to memory, the
68000 keeps all values in registers, for
this simple example at any rate.

Conclusion

These simple comparisons are intended
to be educational. Experience with the
68000 sometimes makes writing code
on the 6809 frustrating. The ability to
address 16 megabytes of RAM on the
68000 versus 64 kilobytes on the 6809
makes one wonder if the term '‘micro’’
really applies anymore.

The reduced coding required for the
68000, increases programmer
productivity and decreases the time for
producing a final result. Obviously,
there are many ways to solve each
problem. The flexibility of the 68000
and the number of registers, makes this
microprocessor the most powerful chip
to date. While the 6809 makes a great
home based computer, the power of the
68000 makes it far more useful in the
business or scientific environment.

Bibliography

'MC6809 Preliminary Programming
Manual’’, Motorola Inc., 1979

““Color Computer Assembly Language
Programming’’, William Barden, Radio
Shack

'16-Bit Microprocessor Users Manual’’,
Motorola, Prentice-Hall, 1982

‘'Motorola Microprocessors Data Manual'’,
Motorola, 1981, pgs. 4-298 to 4-329 and pgs.
4-661 to 4-710

E—alalc———lol o]t 0=

Mr. Rosing received a B.S. Engineering
Physics from Univ. of Colorado in 1976, and
a Ph.D. in Nuclear Engineering from Univ.

of Wisconsin in 1982. He is presently Chief
Engineer for Network Telecommunications

in Denver.

= = o] Slol=

No. 73 - July 1984

MICRO

17

ATARI 48K * TRS CI/C 32K
COMMODORE 64

*
747 FLIGHT SIMULATOR * SUBROUTINE TO ROTATE 4 BYTES LEFT ONCE i
¥ ENTER WITH X POINTING TO BYTES TO ROTATE
EEER ©E SEEER *
ROTL PSHU D SAVE REGISTER
ANDCC #¢ CLEAR CARRY BIT
LDB #3 SET COUNTER
ROTLOOP: LDA B,X GET BYTE
ROLA TIMES 2

N | :.'..'..'.' STA B,X SAVE BYTE

~ [DECB DO 4 TIMES

- BPL ROTLOOP ol
@ ﬁ} ! PULU D RECOVER REGISTER =
. | RTS AND LEAVE

ACTUAL SCREEN PHOTOGRAPH ¥ 6800¢ CODE o i
Superbty realistic inst tati d pilot' i
e e nmertaton and sl * GETNUM BRINGS AND ASCIT STRING INTO MENORY AND -
emergencies such as engine fires and systems * CONVERTS IT TO A BINARY NUMBER. ENTRIES ARE
failures. This program uses high resolution *¥ ASSUMED TO BE IN PENNIES. ENTER WITH A3
graphics to the fuif to produce the most realistic ¥ POINTING TO THE PLACE FOR THE RESULT.
flight-deck display yet seen on a home *

c ter. Th 2 I di d 25 oth
indicators. Your sontrols operate. throttle GETNUM: MOVEM.L Dg-D2/A@,—(SP) SAVE REGISTERS
ailerons, elevators, flaps, slats, spoilers, LEA INSTRING, AQ POINT TO INPUT AREA
landing gear, reverse thrust, brakes, etc. You GNLOOP: BSR GETBYTE GET KEYBOARD INPUT
see the runway in true perspective. Uses CMP.B #13,D¢ WAS IT A CARRIAGE RETURN °?
joysticks and includ tions to start with ’
jtar:-:;:ﬂ‘soranrz-mlcrt;:n:| I:id?:glo::prgacsh.alkv:;al BEQ KRUNCH THEN PROCESS STRING
simulation, not just another game! Cassette CMP.B #'9',D@ WAS IT TOO SMALL ?
only, $27.95 (add 6% In Calif). Sole U.S. BLT GNLOOP THEN IGNORE IT
distributor for D.A_C.C. Lid., England. CMP.B #|91 ,D¢ WAS IT TOO BIG °?
F. Ashton BGT GNLOOP THEN IGNORE IT
MOVE.B D@, (A@)+ SAVE BYTE INTO STRING -
P'O'. Box 7037 BRA GNLOOP AND GET NEXT BYTE o
Chula Vista, CA 92012 * -
¥ HAVE STRING IN MEMORY. NOW PROCESS INTO BINARY [
* ;
KRUNCH: CLR.B (A@) MARK END OF STRING :
CLR.L D1 CLEAR RESULT
Come See Us at LEA INSTRING,A§ POINT TO TOP OF STRING &
*
Commodore %* MULTIPLY RESULT BY TEN :
a * .
Conventlon CNVRT: LSL.L #1,D1 RESULT TIMES 2 o
MOVE.L Di,D2 SAVE THIS RESULT
Sat. & Sun,July 28-29 LSL.L #2,D1 RESULT TIMES 4 MORE FOR 8 b
; ADD.L D2,D1 ADD IN 2 FOR 1@ TIMES :
Hershey, Pennsylvania BVS TOOBIG NUMBER TOO BIG
*
The show is being run by the : NOW ADD IN BYTE FROM STRING o 5

. . . ﬁ s
Mid-Atlantic ~ Regional MOVE.B (A@)+,D@ GET BYTE FROM STRING g
Commodore Association AND.L #15,Df MASK OFF ALL BUT LOW NIBBLE
(MARCA) and there will be ADD.L D@,D1 ADD TO RESULT
speakers, workshops, and BVS ‘?OSI;IG TOO MANY DIGITS o
exhibitors. For info. call TST.B (A DONE YET ?

Mindy at 717/486-3274 BNE CNVRT NOPE, KEEP ADDING BYTES N
y : MOVE.L D1(A3) SAVE RESULT MEMORY ol
MOVEM.L (SP)+,D¢—D2/A¢ RECOVER REGISTERS s
It's an easy trip from all areas RTS AND LEAVE
of the east, from CT to VA, * 5.
and a lovely place with lots of * SUBROUTINE TO SEND ERROR MESSAGE T0 SCREEN o |
family fun. TOOBIG: SEND ERROR MESSAGE TO SCREEN :
Come visit us at * ol
* s
Booth Number 101 % DATA AREA
try some of our latest INSTRING: 2@ BYTES
software packages, and say * o
“Hi” to the MICRO Staff. *
MAICRO"

18 MICRO No. 73 - July 1984

——W

At Its Best

software great

By analyzing this design
masterpiece, programmers

may discover the elements
needed to make their own

Until now, simulations designed for
microcomputers have been unexciting,
crude approximations of whatever real-
life phenomenon they were trying to
model. They were slow. They lacked
detail. And all too often, the modeling
equations employed were out-and-out
wrong. But no longer. A company
called SubLogic Corporation has seen
fit to single-handedly advance the
state-of-the-art in microcomputer
simulation technology beyond its
childhood stage into exciting, energetic
adolescence.

SubLogic was the manufacturer of
Flight Simulator, the first popular
microcomputer flight simulation. It
was designed to run on a 16K Apple II,
and it did so -- more or less. Amid
relatively little fanfare, they've now
released a sequel designed for the newer
crop of Apples that sport 64K. There are
also versions out for other machines.
They call it Flight Simulator I, but
there all similarity between sequel and

Flight Simulator II
Microcomputer Simulation

by Chris Williams

Approach for landing at Miegs Field

original ends.

Flight Simulator was revolutionary
in its day. No one had done a flight
simulation on a microcomputer before
Bruce Artwick, co-founder of SubLogic,
worked his magic. The final product
ran reasonably well, but it was slow
and the graphics lacked pizazz.

Not so with Flight Simulator II. The
screen updates are faster and detailed
scenery for four different parts of the
U.S. are included with the package.
Additionally, the company advertises
the availablility of scenery disks for
other areas of the U.S. It all makes for
a degree of realism never before
approached on a microcomputer.

Flight

The airplane modeled in Flight
Simulator II is a Piper PA-28-181
Archer II; a single engine, 148 mph.,
non-retractable gear general aviation
aircraft. In real-life, the Archer II

performs very well while remaining
easy to fly. It is, consequently, an
excellent choice for the product.

The simulation flight controls are
on the keyboard. SubLogic includes
helpful cue-cards with the package that
specify which keys do what. As a pilot,
I found flying with keys instead of
a control yoke and rudder pedals
disconcerting at first, but I soon
adjusted. At my request, other pilots
tried it and agreed the adjustment came
easy. A non-pilot would probably never
notice.

The layout of the keyboard is
fascinating and all computerists
writing user-interactive routines could
learn from it. The T,F,H,B diamond is
used as the control yoke of the aircraft.
It's perfect for one hand operation and
easily learned.

But it's in the use of the G key that
something innovative has been added.
Whatever the value of the aileron

No. 73 - July 1984

MICRO

19

control variables (set by F and H]J, they
are nulled to neutral with a single press
of G. Without this, several key presses
of either F or H would be necessary to
return a given setting to zero. They
gave this problem a lot of thought and
came up with an excellent answer.

Some of the most interesting
features of the product are in
the navigation and communications
radios. Here the simulation uses cntl-C
and cntl-N followed by greater-than or
less-than signs to simulate changing a
frequency. This is a good choice as cntl
keys are generally a bit awkward. Why
is that good? Because nothing in flying
is as awkward as changing radio
frequencies in turbulence. Making it
difficult on the simulation is entirely
appropriate.

The Editor

The product includes a particularly
valuable feature called ‘‘The Editor’’.
At any time during flight, a touch of the
ESC key sends you to The Editor, and
from there you can change the current
flight situation to be anything you
wish.

The procedure is interesting and,
again, programmers should take note.
When you press the ESC key, a menu
entitled ‘‘Simulation Control’’ is
displayed. The menu is two pages long.
Moving off the bottom of one page
automatically sends you to the other.
These two pages contain a list of
simulation variables and their current
values. By positioning the cursor at the
proper variable line and entering a new
value, the user can quickly change his
situation without having to fly into it.

There are two valuable applications
for this feature. First is the ability to
set North and East coordinates which
allows the user to instantly change
from, say, the Chicago scenery area to
the Boston-N.Y. scenery area without a
time consuming crossing of the
intervening distance between.

The second valuable application has
to do with Critical Attitude Recovery.
CAR is required by the FAA (Federal
Aviation Administration] as an integral
part of the instrument flight training
curriculum for pilots attempting to add
an instrument rating to their license.
CAR is taught in an actual airplane,
generally as follows. The student,
wearing a hood to restrict his vision to
the instrument panel, is told to close
his eyes or cover them while the
instructor takes control of the aircraft.

The instructor then places the aircraft
in an "‘unusual’’ or ‘‘critical”’ attitude.
This is typically an extreme nose high
or low configuration with a very steep
bank included.

After a few seconds delay [to let the
gee-forces confuse the student’s
equilibrium|, the instructor tells the
student to open his eyes and, using no
outside visual references |[i.e.,
instruments only), recover the aircraft
to normal, straight-and-level flight.

The Editor allows a user to practice
this procedure. Extreme values for the
pitch, roll, and yaw variables can be
entered at the Simulation Control
menu and then, when the user exits
Edit mode, he is faced with a critical
attitude. Recovery technique is the
same on the simulator as in real life so
the exercise is excellent practice.

The Weather

Any pilot will tell you that the single
most important factor in flying is the
weather. Winds aloft, turbulence, and
clouds often determine more about a
flight than the pilot’s wishes.
Therefore, a simulation predicated on
its accuracy in modeling real-life
operation must have user variable
weather. Naturally, Flight Simulator II
does.

This is another area where the
computerist can learn from what
SubLogic has done. They've devoted
attention to detail and implemented
features to promote realism even where
it makes the programming complex.
Having this sort of professional attitude
is probably more important than sheer
technical skill in producing excellence
in a program.

SubLogic handled the weather by
allowing the user to define two layers
of clouds and four of wind. Wind
adjusts the airplane’s ground speed for
given airspeeds and clouds simply clear
the screen to white when the airplane
is at a blanketed altitude. With cloud
bases set at about 500 feet, the airplane
‘‘breaks out’’ on an ILS (Instrument
Landing System) instrument approach
lined up nicely with the runway,
making final descent and landing both
easy and immensely satisfying.

Incidently, when the #1 Nav. radio
is tuned to the ILS frequency, the
glideslope mneedle on the indicator
becomes active. The Localizer needle
acts as it does for all the VOR
navigational beacons. The pilots
reading this will appreciate the level of

detail SubLogic is covering there.

Turbulence is also permitted as a
user-defined feature. Its effect is
random motion of the instruments
which makes the airplane harder to fly.

Lastly, the user can specify a given
season. The effect of this is to change
the time of day when night falls. Oh
yes, there’s a night mode, and it is
hairy. Would you have expected
anything less?

Seeing the World

The reason most pilots love to fly is
nowhere near as esoteric and romantic
as they'd have you believe. It's really
very simple. The higher you are, the
more pleasant things you can see.
Flight Simulator II was clearly designed
with that in mind. The original Flight
Simulator was a forward-looking
simulation that had nothing of
consequence to see in its database. This
product allows the user to look in all
directions by wusing a special key
sequence. Such is the attention to
detail that when you look out the rear
window of the cabin, the rudder is
superimposed on the screen as a thick
vertical line. And, of course, when you
look out the side, the wingtip is
prominent at the bottom of the screen.

There’s another viewing mode
included that is not realistic. It's called
Radar Mode. In this mode, the user can
get a top view of the world and an
impression of where the airplane is
with respect to landmarks. This is
unavailable on a real airplane and
therefore somewhat bizzare, but for
users to whom flying is unfamiliar it
probably is a valuable, perhaps even
vital, feature.

Emergency Procedures

What do you do if the engine quits?
That is the first question people new to
single-engine flying ask. The answer
(which I've found is always responded
to with a chuckle] is to execute the
emergency procedures all pilots are
trained to perform. But there are also
other emergencies in flying that a pilot
can encounter. Flight Simulator I has a
feature that will throw them all at a
pilot randomly to see how he reacts.
It's called the Reliability Factor. This is
a number the user selects from the
Editor's Simulation Control menu.
Anything less than 100 percent here
and things start to go wrong. The lower
the number, the more they go wrong.

20

MICRO

No. 73 - July 1984

x

(% .]

oo

mmm N in T

‘e

(X181}

This is an excellent feature. The
malfunctions modeled are often subtle
and a pilot's inattention to his
instruments can result in a simple
problem becoming fatal. It's a good
training aid in that it really brings
home to the user the importance of
staying sharp and alert.

The Dogfight Game

They call it World War I Ace, and since
today's general aviation airplanes are
similar in performance to World War I
fighters, I suppose it was inevitable. As
an option of the Simulation Control
menu, the user may select the dogfight
game and fly against enemy fighter
aircraft.

Actually, it's not bad. It's not
simply a shoot 'em up. The user still
has to fly his airplane properly and
manuever into position in order to
bomb ground targets or shoot down
enemy fighters. If he fails to fly
properly, the airplane will stall and
crash, just as it would in the pure
simulation mode.

Rules of the game are standard; you
get points for shooting fighters down or
bombing fuel depots, and you lose
points for getting shot. Additionally,
your plane degrades in performance
each time it gets hit.

One rather interesting feature of
the game is worth special mention
because of its educational value to
computerists. Unlike any actual World
War I fighter, the one in this game has
air-to-air radar. What this does is
provide the user with information

-4 f
1]
Lo
]

L

~AMY

mmm £ o

bi] 2
ny u
fs] B

24

TE RESU

m

il
x}c o
Pet.
iy

“
"

|

o
0

concerning targets where no
information would otherwise have
been available.

That is important because it
demonstrates a flexibility on the part of
SubLogic. They concentrated hard on
realism throughout the product, but
they didn’t lose their ability to perceive
the need for a feature that wasn't real.
That's rare. I often see programmers
who, once they learn to juggle
assembly language routines, refuse to
take advantage of those features of
BASIC that simply cannot run any
faster. That sort of locked-in attitude
costs hours of programming time. One
should guard against it.

Conclusions

This product is one of those that can be
perceived as something special even
before the marketplace has passed its
judgement. As such, one feels
compelled to examine it and determine
what core characteristic makes it what
it is and, further, what does it have in
common with other software programs
already acknowleged as masterpieces of
design.

Through this sort of analysis,
programmers can remove a bit of the
uncertainty in software design. They
can find certain prerequisite things
their programs must have to excel.
They can make the process more of a
science and less of an art. So what is it
about Flight Simulator II? What is it
that makes it superb? Is it something
that can be emulated?

My opinion is that the program was
planned intricately, written intricately,
and, most important, debugged
intricately. That all comes down to one
phrase - attention to detail. They
covered everything. Frankly, most
programs don’t cover half of what they
could — and therefore should.
Programmers need to make a rule for
themselves. This rule would say that
on the day the 'Finished!!"’ tag is hung
on a program, an X is placed on the
calendar for two weeks in the future.
The programmer must continue testing
and working on the program until that
day. Just think of how many bugs
would never find their way to market.

MNICRO"

el AT e L

No. 73 - July 1984

MICRO

21

B
8
¥
H

SEA LS e

22

MICRO

No. 73 - July 1984

(Part 1)

Graphic Print for Commodore 64

by Michael J. Keryan

Editor’s Note: This is part 1 of a three

and 3 will appear in

Create a full-page printout from a Commdore 64

high resolution display

The Commodore 64 1is capable of
displaying some pretty impressive
graphics. Take a look at a few of the
games recently introduced, like
Neutral Zone, Blue Max, or Pogo Joe.
Most sophisticated games use a high-
resolution bit-mapped display rather
than the alphanumeric/graphic-symbol
display that most of you use for your
programs.

High-resolution bit-mapped
graphics {and the multi-color variation)
are described in the Commodore 64
Programmer’'s Reference Guide. The
manual even shows you how to create a
display using PEEKs and POKEs.
However, since several thousand
memory locations are involved, BASIC
is extremely slow. Any practical use of
high resolution graphics must use
machine language routines. Since most

people are not familiar with assembly
or machine language programming,
quite a few graphic aid and drawing
programs for the Commodore 64 have
been developed.

I was quite disappointed when I
learned that pictures that were created
on my Koala Pad could not be dumped
to my printer. I also found that even
though other graphic packages
contained graphic dump routines, the
resulting printouts were much less
than perfect. Many routines give rather
small drawings, one dot on the screen
to one printed dot--this results in a
picture a little smaller than 3 inches by
4 inches. Many graphic dump routines
use the Commodore 1525 graphic
mode which can be emulated by a
number of interfaces with non-
Commodore printers, but this

technique is very slow. The most
serious fault of all of the routines I've
seen is their inability to recognize a
color on the screen and translate it to a
pattern that is approximately the same
darkness of the color. Most graphic
dumps print, at most, 3 or 4 varying
shades of black dots, even though one
of the colors represented is white.
Since a perfect graphic dump
program wasn'’t available, I decided to
write one. These were the objectives
that I set for this program:
1. It will work in either standard HiRes
or multi-color mode.
2. Printouts should be large, about the
same size as the display on my
Commodore 1701 color monitor
{approx. 7'’ x 9"’). This will fit nicely
on a normal sheet of paper with one
inch borders on all sides.

No. 73 - July 1984

MICRO

23

Figure 1. Graphics Bit-map Mode
8192|8200 8504
8193|8281 48 Columns of 8585

to to 8 bits each to
8199|8287 for 328 dots 8511
8512 horizontally
82;3 23 Rows of
8519 g bits each
for 2808 dots
vertically
Total of
8088 Bytes to
16191

3. The dump routine should work on
my printer as well as those of my
friends. These include NEC 8023,
" Prowriter (C. Itoh), Epson MX-80 and
FX-80, and Gemini (Star] printers.
Sorry 1525 owners, you're on your
own.

4. Fast--to get the needed speed to
print a full page of graphics, the print
commands should directly access the
printhead (transparent interface
operation).

5. Aunique dot pattern should be used
for each of the 16 colors, so that any
two adjacent colors can be distinguish-
ed. Each pattern should vary in
intensity roughly in proportion to the
darkness of the color on the CRT.
Needless to say, the program should be
able to determine the color of each dot
on the screen.

6. Printouts of any part of the screen or
the whole screen should be possible.

7. Most important, the program
should be able to access graphic
displays made from a number of
graphic aid and drawing programs.

All of these objectives have been
met and the resulting Assembly
language program, GDUMP, is shown
in Listing 1. The program is not
especially compact; in fact, it uses
quite a bit of memory for lookup tables.
However, it works as per the above
objectives and is the best graphic screen
dump program that I have seen for the
Commodore 64.

High Resolution Bit Map

Before describing how the program
works, a short review of Commodore
64 bit map graphics is helpful. The
standard high resolution bit map screen
of the 64 is divided into 320 dots
horizontally and 200 dots vertically.
Each dot corresponds to a bit in
memory. Therefore, 320 x 200 = 64000
bits, or exactly 8000 bytes of memory
is required to hold this bit map pattern
of ones (bit is on) and zeros (bit is off].
Let’s assume our bit map memory
starts at $2000 hexadecimal {or 8192

decimal]. The order of the bytes in
memory do not correspond to the
manner in which the lines are scanned
on the CRT--they are arranged in 8 byte
blocks as shown in Figure 1.

Despite the fact that the bytes are
arranged in memory a little strangely,
you can see that the screen is made up
of 320 bits across and 200 bits down.
You can think of this as: when a bit is
off (O] the corresponding dot will be off
(black), and when a bit is on (1) the dot
will be on (white|. Many two-color
screens are set up like this, but the
HiRes screen [HIRES) is a little more
complicated than this, as shown in
Figure 2. For every 8 byte block of bit
map memory (or every 8x8 dot square}
there exists a corresponding one byte of
screen memory.

Let’s assume this 1K block of
memory starts at $0400 (1024
decimal). The colors of the foreground
and background are picked up in the
screen byte. The way one byte can hold
two colors is by breaking the 8 bit byte
into two 4 bit nibbles. With 4 bits, each
nibble can hold a number from O to 15,
for one of the 16 colors. Therefore, for
every 8x8 square of dots, the color
displayed for any of these 64 dots can
be found in the high nibble of the
corresponding screen memory if the bit
is on {1) and in the low nibble if the bit
is off (0]. Note that only two unique
colors can be displayed in any 8x8
block of dots, but an adjacent block can
have any two other [or the same]
colors.

Color of each
individual bit
as follows:

Figure 2. Memory - High-res Mode
1624 1K Screen Memory
8132
to 8K Bit-map Memory
8199

B - Low nibble of the screen
1 - High nibble of the screen

24

MICRO

No. 73 - July 1984

Figure 3. Memory - Multicolor Mode

23296 1K

Color Memory

1824

iK Screen Memory

8139
to
8199

8K Bit-map Memory

Color of each
2 bit sequence
as follows:

A8 - sDB21
18 - Low screen

B1 - High screen
11 - Low color

Multi-Color Bit Map Mode

If you thought the last section was
difficult, you may as well skip this
section right now. With the HIRES
mode, there are two separate blocks of
memory to worry about. In multi-color
mode ([MULTI] there are three blocks of
memory, as shown in Figure 3. An
additional 1K block of memory
(usually starting at $D800 or 55296
decimal] is also used to store color
information. In MULTI-color mode,
the harizontal resolution is reduced to
160 dots, half of that as HIRES mode.
Actually, there are still 320 dots on the
screen, but the color can only change
for every two dots. In every two-dot
sequence of the bit-map memory, we
can get four possible patterns of bits:
00, 01, 10, or 11. The pattern
determines where the color for these
two dots can be found. So in any 8x8
square of dots, a total of 4 colors are
possible. Three of these colors can be
different for every 8x8 square, but one
color is common to all squares--the
sequence of two zeros calls for the color
in the background color register $D02.1.

To get an accurate graphic screen
dump, we must first determine the
location of each bit in an BK bit-map
block, and determine the corres-
ponding colors from either the upper or
lower nibble of screen memory, the
lower nibble of color memory, or from
the background color register. Each
color must be translated to a unique

pattern for a dot-matrix printer, and
these patterns must be sent to the
printer. A method is also required to
duplicate dot patterns for grids larger
than the original 320x200 dot grid.

GDUMP

The assembler (Listing 1] is com-
mented, so you should be able to follow
along, if you are familiar with machine
language. The program is assembled to
begin at $5000. There were very few
memory areas left to put this code,
when you want it to be compatible
with the files containing graphic data
from various third party routines. I
decided to stick it right in the middle of
your BASIC workspace. All the
important constants were brought near
the beginning to allow easy changes.
The minimum and maximum hor-
izontal and vertical byte numbers are
located at $5003-$5006. The upper left
of the screen is 0,0; the lower right is
39,199. You can change these if you
want only part of the screen printed
(but you will also have to change
N1-N4 and EN1-EN2 in GSETUP and
ESETUP).

There are four modes of operation:

0. Mode 0 is for two-color HIRES
printouts. Every bit equal to 1 prints a
2x2 black square.

1. Mode 1 inverts the dots of mode 0.
Bits that are equal to 1 print a 2x2
white area; bits equal to O print black
dots.

2. This is MULTIcolor mode in which
colors are determined from one of four
possibilities as in Figure 3.

3. This is HIRES color mode in which
colors are determined from either high
or low nibbles of the screen memory as
in Figure 2.

The starting page number for the
bit-map memory, screen memory, and
color memory are stored in
$5008-$500A. These can be changed
from the defaults ($2000, $0400 and
$D800) for non-standard screen
configurations.

The program begins by jumping to a
printer setup routine. For TYMAC
CONNECTION interfaces, an extra
sequence is required before any other
sequences. This is equivalent to
CHR$({27) "W CHR$(00]. It disables
the width command in the interface
and is necessary to disable printing a
carriage return after 80 graphic bytes.
The printer channel is opened with a
secondary address which puts the
interface into transparent mode (5 for
CARDCO, 6 for CONNECTION]). Next
the correct codes are sent to change the
printer spacing to 1/9 inch vertically,
to eliminate blank spaces between
lines. These sequences are different for
NEC/C.ITOH and EPSON/GEMINI
printers. Then a carriage return is sent
to start the printer at a known state.

Three loops can be found in the
code: LOOPH, LOOPV and LOOPN.
LOOPH cycles through the 40
horizontal screen bytes. LOOPV cycles
through the 200 vertical bytes. LOOPN
cycles through the repeat counter REPT
several times for each of the 200 lines.
REPT is set up to 3 for NEC/C.ITOH
and 2 for EPSON/GEMINI. This gives a
total of 600 or 400 dots, respectively for
the top to bottom CRT scan (left to
right on the printer]. For both types of
printers, this gives a line length of
about 7 inches. Actually LOOPH is
cycled through twice, since two dots
are printed for every horizontal dot on
the screen. If you follow through the
logic in the area of LOOPN, you will
see that every byte sent to the printer
{for the 8 dots on the printhead) is made
up of two 4 bit nibbles, each derived
from a two-bit horizontal dot sequence
on the screen.

Subroutine CHKREV simply
reverses the 8-bit pattern for EPSON
type printers since the printhead is set
up the opposite of NEC type print-
heads. This routine also replaces every
$0D bit pattern with $0B. For an

No. 73 - July 1984

MICRO

25

Listing 1

GRAPHIC SCREEN DUMP V1.2

;M. J. KERYAN 3-27-84 5@28 1B ESPC BYT $1B ;LINE SPACING
H 5@29 41 EA BYT $41 ;OF 8/72 INCH
; TO BE USED WITH 'TYMAC CONNECTION' 5@24 @8 ENN1 BYT $@8 ;FOR EPSON TYPE
; OR SIMILAR TYPE OF INTERFACE 5@2B @D ERET2 BYT $¢D
; AND PRINTERS— ;
; NEC 8@23, PROWRITER, C.ITOH 8518 #@FD PL EQU $FD ;MEMORY USED FOR
; OR EPSON WITH GRAFTRAX OR J@FE PH EQU $FE ; INDIRECT
; EPSON COMPATIBLE PRINTER. ; POINTERS
H 5@2C ¢ DATA BYT ¢ ;MEMORY REGISTERS
5@2D @@ VBYT BYT ¢ ;USED IN THIS
5000 ORG $5000 5g2E @¢ HBYT BYT # ; PROGRAM
; 5@2F 99 NBYT BYT ¢
5@@@ 4C 39 5¢ GDUMP JMP GSTART 53¢ @g TBYT BYT ¢
; 5@31 @@ NIBL BYT ¢
5@@3 FF MINH BYT $FF ; HORIZ. MIN.-1 5@32 9@ DATAXX BYT ¢
5094 27 MAXH BYT 39 ; HORIZ. MAX. 5¢33 0@ DATAYY BYT ¢
5005 ¢ MINV BYT @ ; VERT. MIN. 5@34 0@ DATATM BYT ¢
5@@6 c8 MAXV BYT 20¢ ; VERT. MAX.+1 5@¢35 @¢ COLORB BYT ¢
5007 @3 REPT BYT 3 ; REPEAT BYTES 5036 @¢ SCREEN BYT ¢
5008 2¢ BMPG BYT $2¢ ; BIT MAP PAGE # 5¢37 @9 ETEMP1 BYT ¢
5009 @4 SCPG BYT $@4 ; SCREEN PAGE # 5@38 0@ ETEMP2 BYT ¢
5@@A D8 CLPG BYT $D8 ; COLOR PAGE # ;
5008 99 PTYPE BYT $#@ ; PRINTER ga71 GFILE EQU $71 ;PRINTER FILE #
; @ = NEC/C.ITOH ; TYPE — ;
; 1 = EPSON TYPE FFCC CLRCHN EQU $FFCC ;KERNAL ROUTINES
5¢@C @6 SECADR BYT $#6 ; SECONDARY FFC3 CLOSE EQU $FFC3
; (TRANSPARENT) ; ADDR FFBA SETLFS EQU $FFBA
5@¢D @¢ INTERF BYT $0¢ ; INTERFACE FFBD SETNAM EQU $FFBD
; @ = CONNECTION ; TYPE — FFCY OPEN EQU $FFCQ
; 1 = OTHER FFC9 CHKOUT EQU $FFC9
50E @2 MODE BYT $@2 ; MODE TYPE ;
; 5@39 2@ 21 52 GSTART JSR SETUP ;OPEN PORT, ETC.
; MODE @ = NORMAL HIRES B/W 5@3C AD @4 5@ LDA MAXH
; 1 = INVERTED HIRES B/W 5¢3F 8D 2E 5¢ STA HBYT ;INIT. WIDTH
; 2 = MULTI-COLOR 5@42 A9 0@ LDA #$00
; 3 = HIRES COLOR 5@44 8D 31 5¢ STA NIBL ;FIRST NIBBLE
; 547 AD @5 58 LOOPH LDA MINV
5@¢F @D GSETUP BYT $@D ;SET UP CARR RET 5@4A 8D 2D 5@ STA VBYT ;INIT. HEIGHT
510 2¢ SP1 BYT $2¢ ;AND 4 SPACES 5@4D AQ @@ LDY #$0¢
5¢11 29 SP2 BYT $2¢ ; FOLLOWED BY 5@4F AD @B 5¢ OUTNUM LDA PTYPE ;PRINTER TYPE
5¢12 2¢ SP3 BYT $2¢ ;THE NEC/C.ITOH 5@52 D@ @D BNE OUTN2
5¢13 29 _ SP4 BYT $2¢ ;REQUIRED 5@54 B9 ¢F 5¢ OUTN1 LDA GSETUP,Y ;OUTPUT
5@14 1B ESC BYT $1B ;GRAPHIC CONTROL 5@57 2@ CA F1 JSR $F1CA ;GRAPHIC
5@15 53 ES BYT $53 ;SEQUENCE— 5@54 C8 INY ;CONTROL CODES
5@16 3¢ N1 BYT $30 ; BSC, S, N1, N2, 5@5B C@ @B CPY #3$¢B ;FOR 1 LINE
5017 36 N2 BYT $36 ; N3, N4 WHERE 5@5D D@ F5 BNE OUTN1 ;11 BITS
5018 3¢ N3 BYT $30 ; N'S ARE 4 DIG. 5@5F F@ @B BEQ LOOPV
5@19 3¢ N4 BYT $30 ; BYTE COUNT 5¢61 B9 1A 50 OUTN2 LDA ESETUP,Y ;OUTPUT
; 5¢64 2¢ CA F1 JSR $F1CA ;GRAPHIC
5@1A @D ESETUP BYT $D ;SET UP CARR RET 5@67 C8 INY ;CONTROL CODES
5@1B 20 ESP1 BYT $20 ;AND 4 SPACES 5¢68 C@ @9 CPY #3609 ;FOR 1 LINE
5¢1C 24 ESP2 BYT $2¢ ;FOLLOWED BY 5@6A D@ F5 BNE OUTN2 ;9 BYTES
5¢1D 24 ESP3 BYT $2¢ ;THE EPSON 5@6C AD @7 5¢ LOOPV LDA REPT
5¢1E 24 ESP4 BYT $2¢ ;REQUIRED 5@6F 8D 2F 5@ STA NBYT ;INIT. COUNTER
5@1F 1B EESC BYT $1B ;GRAPHIC CONTROL 5¢72 A9 @@ LDA #3080
5@20 4B EK BYT $4B ; SEQUENCE— 5¢74 8D 3@ 50 STA TBYT ;RIGHT BYTE
5@21 9¢ EN1 BYT $9¢@ ; ESC, X, N1, N2 5@77 20 B4 51 JSR DATACL
5022 §1 EN2 BYT $81 ; 5@74 8D 2C 5@ STA DATA
; 5¢7D AD 2C 5¢ LOOPN LDA DATA
5@23 1B SPC BYT $1B ;LINE SPACING 5¢8@ 29 @3 AND #303 ;00000011
5024 54 TEE BYT $54 ;OF 16/144 INCH 5@82 2¢ @B 51 JSR DATACO ;CONVERT TO
5@25 31 NN1 BYT $31 ;FOR C.ITOH/NEC 5085 29 @F AND #$@F ;4 BITS
5@26 36 NN2 BYT $36 5@87 8D 34 5@ STA DATATM ;HOLD IT
5@27 @D RET2 BYT $¢D 5@8A AD 2C 50 LDA DATA

26 MICRO No. 73 - July 1984

5@8D 29 @C AND #$0C ;00001100 5129 18 . CLC
5@8F 4A LSR 4 5124 9¢ @F BCC ONETWO
5099 4A LSR A 512C E¢ 93 ONE CPX #$03 ;TWO BITS = 117
5¢91 20 ¢B 51 JSR DATACO ;4 MORE BITS 512E F@ 1F BEQ THREE
5094 @A ASL A 513@ AD 36 50 LDA SCREEN ;TWG BITS = 1¢
5095 @A ASL A 5133 E@ 92 CPX #3¢2
5396 @A ASL A 5135 F@ @4 BEQ ONETWO
5@97 @A ASL A 5137 4A HINIB LSR A
5@98 @D 34 5@ ORA DATATM ;COMBINE 8 BITS 5138 4A ISR A
5@9B 2@ DB 58 JSR CHKREV ;CHECK IF REVERSE 5139 4A 1SR A ;HIGH NIBBLE
S5@9E 2¢ CA F1 JSR $F1CA ;OUTPUT BYTE 5137 4A LSR A ;CONTAINS COLOR
5@A1 CE 2F 59 DEC NBYT ;END OF REPEAT? 513B 29 ¢@F ONETWO AND #30@F
5¢A4 F@ ¢B BEQ NEND 513D AA TAX
5@A6 AD 3@ 5@ LDA TBYT 513E BD BE 52 LDA TABCOL,X ;GET SHADE #
5049 49 @1 EOR #$@#1 ;TOGGLE BYTE # 5141 AA GETCOD TAX
5¢AB 8D 3¢ 50 STA TBYT 5142 BD CE 52 LDA TABCOD,X ;GET CODE
S¢AE 18 CLC 5145 AE 30 50 LDX TBYT
5@AF 99 CC BCC LOOPN ;CONTINUE REPEAT 5148 F@ @4 BEQ DATAE ;ALTERNATE LOW
5¢B1 EE 2D 5¢ NEND INC VBYT 5148 4A ISR A ;AND HIGH
5¢B4 AD 2D 5@ LDA VBYT 514B 44 LSR A ;NIBBLES OF
5@B7 CD @6 5@ CMP MAXV ;END OF VERT.? 514C 4A LSR A ;CODE
5@BA D@ B@ BNE LOOPV ;CONTINUE VERT. 514D 4A LSR A
5@BC AD 31 50 LDA NIBL 514E 6@ DATAE RTS :
5@BF 49 @1 EOR #$@1 ;TOGGLE NIBBLE 514F AD 35 5¢ THREE LDA COLORB ;COLOR IN COLOR
5¢C1 8D 31 5¢ STA NIBL 5152 18 CLC ; MEMORY
5@C4 AD 31 5@ LDA NIBL 5153 9@ E6 BCC ONETWO
5@C7 D@ ¢F BNE TOLPH 5155 E¢ @9 HIR® CPX #3¢@ ;BITS @@
5@C9 CE 2E 5@ DEC HBYT 5157 D@ @6 BNE HIR3
5¢CC AD 2E 5@ LDA HBYT 5159 AD 36 50 IDA SCREEN ;USE LOWER
5¢CF CD @3 50 CMP MINH 515C 4C 3B 51 JMP ONETWO ;NIBBLE
5¢D2 DY P4 BNE TOLPH 515F E¢ 93 HIR3 CPX #3@3 ;BITS 11
5@D4 20 98 52 JSR SETDWN ;UNDO SETUP 5161 D@ 96 BNE HIR2
5¢D7 6@ RTS 5163 AD 36 5@ LDA SCREEN ;USE UPPER
5@D8 4C 47 50 TOLPH JMP LOOPH ;BRANCH TOO LONG 5166 4C 37 51 JMP HINIB ;NIBBLE
; 5169 EP P2 HIR2 CPX #$02 ;BITS 1¢

5@DB 8D 37 5¢ CHKREV STA ETEMP1 5168 D@ 1B BNE HIR1
5¢DE 8D 38 5@ STA ETEMP2 516D AD 36 5@ IDA SCREEN ;GET UPPER
5¢E1 AD @B 5@ IDA PTYPE ;IF PRINTER IS 5179 29 37 51 JSR HINIB
5¢E4 FP 1B BEQ PCR ;EPSON, THEN _ 5173 20 A3 51 JSR HIRC
5¢E6 A9 @@ LDA #$@@ ;REVERSE DOT 5176 @A ASL A ;DATA IN BITS
5QE8 8D 38 5@ STA ETEMP2 ;ORDER 5177 PA ASL A j—— R =
50EB A@ @8 LDY #$08 5178 8D 32 50 STA DATAXX =
5@ED B9 F2 52 EP1 IDA TABBIT-1,Y 5178 AD 36 5@ IDA SCREEN
5¢F@ 2D 37 5@ AND ETEMP1 517E 2@ 3B 51 JSR ONETWO ;GET LOWER
5¢F3 F@ @9 BEQ EP2 5181 2¢ A3 51 JSR HIRC x¥
5¢F5 B9 FA 52 LDA TABTIB-1,Y 5184 @D 32 5 ORA DATAXX ;COMBINE (3]
5¢F8 gD 38 50 ORA ETEMP2 5187 6 RTS
5¢FB 8D 38 5 STA ETEMP2 5188 AD 36 50 HIR1 LDA SCREEN ;BITS @1
5¢FE 88 EP2 DEY 5188 29 3B 51 JSR ONETWO ;GET UPPER
5@FF D@ EC BNE EP1 518E 2@ A3 51 JSR HIRC
51¢1 AD 38 5¢ PCR 1DA ETEMP2 ;IF BIT CODE 5191 @A ASL A ;DATA BITS
5194 C9 @D CMP #$¢D ;IS SAME AS 5192 @A ASL A ; *r__
5106 D@ @2 BNE PRET ;CARR RETURN, 5193 8D 32 5@ STA DATAXX -
5108 A9 @B IDA #$¢B ;CHANGE IT 5196 AD 36 5§ LDA SCREEN -
5104 6@ PRET RTS 5199 2¢ 37 51 JSR HINIB ;GET LOWER

; 519C 2@ A3 51 JSR HIRC ; *x
5108 AA DATACO TAX ;X = 2 BITS 519F @D 32 50 ORA DATAXX ;COMBINE o
510C AD @E 5@ LDA MODE 5142 6@ RTS
51¢F C9 @2 CMP #$02 ;<27 ;
5111 By @B BCS D@ ;NO, GO ON 5183 48 HIRC PHA JTHIS ROUTINE
5113 BD DE 52 ZERONE IDA HICOD,X ;YES, @ OR 1 5184 29 @3 AND #$@3 ;AVERAGES THE
5116 AE @E 50 LDX MODE 5146 8D 33 5 STA DATAYY ;THE BITS
5119 FP @2 BEQ D1 ;
511B 49 @F EOR #30F ;INVERT GRAPHICS 51A3 48 HIRC PHA ;THIS ROUTINE ©
511D 6@ D1 RTS 5144 29 @3 AND #$@3 ;AVERAGES THE
511E C9 @3 D@ CMP #3@3 ;MODE 3? 5146 8D 33 5 STA DATAYY ;THE BITS
5120 F@ 33 BEQ HIR# ;YES, HIRES COLOR 5149 68 PLA ; *k
5122 EP 9@ MULTI ~ CPX #$@@ ;TWO BITS = @@? 51A4 4A LSR A ; AND &
5124 D@ g6 BNE ONE 51AB 4A ISR A PR
5126 AD 21 D@ IDA $D@21 ;COLOR IN $Dg21 51AC 29 @3 AND #$03

No. 73 - July 1984 MICRO 27

51AE 18 CLC 5231 2¢ BA FF JSR SETLFS ;TQ AVOID EXTRA
51AF 6D 33 5@ ADC DATAYY 5234 A9 @0 LDA #3080 ;CARR RETURNS
51B2 4A LSR A ;DIVIDE BY 2 5236 2¢ BD FF JSR SETNAM
51B3 6@ RTS 5239 2@ C@ FF JSR OPEN
; 523C B@ 56 BCS GCLOSE
51B4 AD 2D 5¢ DATACL LDA VBYT ;GET MEMORY 523E A2 71 LDX #GFILE
51B7 4A LSR A 5240 2@ C9 FF JSR CHKOUT
51B8 4A LSR A 5243 A9 1B LDA #31B
51B9 4A LSR A 5245 2¢ CA F1 JSR $F1CA
51BA AA TAX 5248 A9 57 IDA #$57
51BB BD FC 54 LDA HCTAB,X 5244 2¢ CA F1 JSR $F1CA
51BE 85 FE STA PH 524D A9 99 LDA #$0¢
51C@ BD E3 54 IDA LCTAB,X 524F 2¢ CA F1 JSR $F1CA
51C3 18 CLC 5252 A9 @D LDA #$@D
51C4 6D 2E 5@ ADC HBYT 5254 2@ CA F1 JSR $F1CA
51C7 85 FD STA PL 5257 A9 71 LDA #GFILE
51C9 99 @2 BCC CL3 5259 2¢ C3 FF JSR CLOSE
51CB E6 FE INC PH 525C A9 71 SET2 IDA #GFILE
51CD A5 FE CL3 LDA PH 525E AC @C 50 LDY SECADR
51CF 48 PHA 5261 A2 @4 LDX #$04
51D@ 18 CLC 5263 2¢ BA FF JSR SETLFS
51D1 6D @9 5@ ADC SCPG 5266 A9 @@ LDA #$00
51D4 85 FE STA PH 5268 2¢ BD FF JSR SETNAM
51D6 A¢ @@ LDY #3300 526B 2@ C@ FF JSR OPEN
51D8 B1 FD IDA (PL),Y 526E B@ 24 BCS GCLOSE
51DA 8D 36 5@ STA SCREEN ;SCREEN MEMORY 527¢ A2 71 LDX #GFILE
; 5272 2@ C9 FF JSR CHKOUT
51DD 68 PLA 5275 A @0 LDY #$0¢
51DE 18 CLC 5277 AD @B 5@ LDA PTYPE
51DF €D @A 50 ADC CLPG 5274 D@ @C BNE OUTSP2
51E2 85 FE STA PH 527C B9 23 5¢ OUTSP LDA SPC,Y
51E4 Bl FD DA (PL),Y 527F 2¢ CA F1 JSR 3F1CA
51E6 8D 35 5@ STA COLORB ;COLOR MEMORY 5282 C8 INY
; 5283 C@ @5 CPY #3@5
51E9 AC 2E 5@ LDY HBYT 5285 D@ F5 BNE OUTSP
51EC AE 2D 5¢ LDX VBYT 5287 6§ RTS
51EF BD @3 53 IDA LTAB,X 5288 B9 28 5¢ OUTSP2 LDA ESPC,Y
51F2 85 FD STA PL 528B 2¢ CA F1 JSR $F1CA
51F4 BD CB 53 IDA HTAB,X 528E C8 INY
51F7 85 FE STA PH 528F C@ @4 CPY #304
51F9 B9 93 54 IDA LTABA,Y 5291 D@ F5 BNE OUTSP2
51FC 18 CLC 5293 6@ RTS
51FD 65 FD ADC PL 5294 2@ 98 52 GCLOSE JSR SETDWN
51FF 85 FD STA PL 5297 6 RTS
5201 9¢ @2 BCC CL1 ;
52¢3 E6 FE INC PH 5298 A9 @D SETDWN LDA #3@D ;CARR RETURN
52¢5 B9 BB 54 CL1 LDA HTABA,Y 5294 2¢ CA F1 JSR $F1CA
5208 18 CLC 529D A9 @C IDA #$0C ;FORM FEED
5209 65 FE ADC PH 529F 20 CA F1 JSR $F1CA
52¢)8 85 FE STA PH 5242 A9 1B IDA #31B ;LINE SPACING
52¢D 18 CLC 5244 20 CA F1 JSR $FICA ;BACK TO 1/6 IN.
52¢E 6D @8 50 ADC BMPG 52A7 AD @B 50 LDA PTYPE
5211 85 FE STA PH 524A D@ @4 BNE EPCL
5213 AQ @9 IDY #300 52AC A9 41 LDA #$41 ;ESC A FOR NEC/
5215 B1 FD DA (PL),Y 52AE D@ @2 BNE LSPC ; OR C. ITOH
5217 AE 31 50 LDX NIBL 52B@ A9 32 EPCL LDA #332 ;ESC 2 FOR
521A F@ @4 BEQ CL2 52B2 2¢ CA F1 ISPC JSR $F1CA ; EPSON
521C 4A LSR A 52B5 2@ CC FF JSR CLRCHN
521D 4A LSR A 52B8 A9 71 LDA #GFILE
521F 4A LSR A 52BA 2@ C3 FF JSR CLOSE
521F 4A ISR A ;ACCUM = BIT MAP 52BD 6@ RTS
522¢ 6@ cL2 RTS ;BYTE ;
; 52BE @F TABCOL BYT 15,0,11,3,18,7,12,1
5221 A9 71 SETUP LDA #GFILE 52C6 @8 BYT 8,14,5,13,9,2,6,4
5223 20 C3 FF JSR CLOSE 52CE @@ TABCOD BYT $0@,$20,304,$28
5226 AD @D 50 LDA INTERF 52D2 @A BYT $0A,$25, 344, $A5
5229 D@ 31 BNE SET2 52D6 €9 BYT $69,387,$2D,$A7
522B A9 71 IDA #GFILE ;FOR CONNECTION, 52DA 6D BYT $6D,3$DB, $9F, $FF
522D AQ 00 LDY #$0¢ ;WIDTH MUST BE 52DE §¢ HICOD BYT $@@,303,30C,30F
522F A2 @4 IDX #$@4 ;SET TO ZERO TO 52E2 28 AUTHOR BYT '(C) M.KERYAN 1984'

28 MICRO No. 73 - July 1984

unexplainable reason, my printer-
interface would print two $0D patterns

52F3 8¢ 4@ 2¢ TABBIT BYT $8¢,340,$20,$10,$08,304,$02,301
52FB @1 @2 @4 TABTIB BYT $@1,$02,$04,308,310,320,3$40,380

for every one sent, messing up the 600 5393 @9 91 g2 LTAB BYT $00,$01,302,303,304,305,306,307
byte counter. Instt.',ad of t.rac.kmg down 5308 49 41 42 BYT $48,$41,$42,343,844,345,$46,847
the reason fgr this, 1 eliminated any 5313 8¢ 81 82 BYT $8¢,$81,$82,%83,$84,$85,$86,3$87
chance for this glitch to occur. 531B C@ C1 C2 BYT $C@,$C1,$C2,$C3,$C4,$C5,3C6,3$C7
At the beginning of every line a 5323 @0 @1 @2 BYT $00,301,$02,303,$04,$05,3$06,$07
carriage return is sent, followed by 4 532B 4@ 41 42 BYT $40,841,842,843,844,845,346,347
spaces (to center the drawing), then a %gg gg gi gg g%g ggg’ggi’ggg’gg?zgijggg,ggg’ggg
de is sent to set up the printer t 2 PLLy Pl PUTH PR, DL 5 PLD,
Z::)csptlstl:slzncor(r)este nﬁfnbe: (I))fr lgr:;hig 5343 0@ 91 @2 BYT $00,3$01,$02,303,3%04,%05,$06,387
; 534B 49 41 42 BYT $4@,8$41,%42,$43,$44,$45,846,347
characters {600 or 400 as explained
5353 8@ 81 82 BYT $8¢,$81,$82,$83,384,$85,$86,$87
a‘;gvggg{f;e are the labeled GSETUP 5358 C@ C1 C2 BYT $C@,3$C1,8C2,$C3,$C4,$C5,$C6,$C7
a ‘ 5363 @@ 91 @2 BYT $00,301,$02,%03,304,%05,306,$07
Subroutine DATACL returns the 536B 4@ 41 42 BYT $40,341,$42,343,344,845,846,347
contents of three memory cells, based 5373 8¢ 81 82 BYT $8¢,$81,$82,$83,$84,$85,%$86,3$87 ot
on the current horizontal and vertical 537B C@ C1 C2 BYT $C@,$C1,$C2,$C3,$C4,$C5,$C6,$C7
coordinates: the SCREEN memory, the 5383 0@ @1 @2 BYT $00,$01,$02,$03,304,$05,$06, $07 L
COLOR memory and the bit-map 538B 4g 41 42 ng g‘rg,241,242,23,%2:%2:222:237
i h X i 5393 89 81 82 Y 80,$81,3$82,]]] » $87
ey in she sl Towvld | 2353 80 63 BT 30,351 802 307 5450530037
things up a bit, lookup tables are used 5343 99 91 @2 BYT $¢¢)$¢1:$¢2)$¢3:$¢41$¢5:$¢61$¢7
extossively in ihi pt. 53AB 4@ 41 42 BYT $40,$41,$42,$43,844,$45,846,$47
Ssb v Srozéne', q 53B3 8¢ 81 82 BYT $89,$81,$82,$83,$84,$85,$86,$87
_ Subroutine. DATACO is entere 53BB C@ C1 C2 BYT $C@,3$C1,$C2,$C3,$C4,$C5,$C6,3C7
with the lower two bits of the 53C3 @@ 01 g2 BYT $0¢,301,$02,$03,304,$05,306,307
accumulator equal to two bits from the 53CB @9 @9 #¢ HTAB BYT $00,3$00,300,300,300,3$00,$00, $00
bit-map memory. When finished, this 53D3 @1 91 @1 BYT $d1,$01,$01,$01,$01,$01,301,$01
routine returns with a four bit matrix 53DB @2 @2 @2 BYT $@2,$02,302,302,302,$02,$02,$02
pattern that eventually gets sent as half 53E3 @3 @3 @3 BYT $03,$03,$03,$03,$03,9$03,303,$03
Of a byte to the printhead. ThlS routine 53EB ¢5 ¢5 ¢5 BYT $¢5J$¢5)$¢5J$¢5)$¢5)$¢5!$¢5)$¢5
works differently for the four modes of 53F3 96 96 86 gg wé’$¢6’$gg’$gg’$gg’$gg’$gg’$gg
operacion. Tn Modes 0 and 1, simple 4 2205 oo o6 0o BYT 306,300,905, 06,905,306, 905. 908 |
D e Cop lcate ﬁ"f ‘nge“; Ny 5408 @A @A 0A BYT $@A,$0A,30A,$04,304,504,304,308 © |
original 2 bit sequence. In modes 2 an 5413 @B #B @B BYT $¢B,$¢B,$¢B,$dB,$dB, $0B, 0B, $¢B i
3, the correct colors are determined. 541B @C @C @C BYT $0C,$0C,$0C, $C, $4C, $4C, $4C, $4C
Then unique patterns are found 5423 ¢D @D @D BYT $¢D, $¢D,$6D,$0D, $8D,$ED, $8D, $@D .
through lookup tables TABCOL and 542B @F @F @F BYT $@F,$0F,$0F, $0F, $0F, $0F, $0F, $0F
TABCOD. Note that each of the 16 5433 1¢ 19 19 BYT $10,$10,$10,310,$10,$10,$19,$10
colors are associated with two different 543B 11 11 11 BYT $11,$11,$11,$11,$11,$11,$11,$11 :
4 bit patterns--the high and low nibbles 5443 12 12 12 BYT $12,$12,$12,$12,$12,$12,$12,812
. 544B 14 14 14 BYT $14,$14,$14,$14,$14,$14,814,$14 5
of TABCOD. These two different codes
5453 15 15 15 BYT $15,%$15,$15,$15,%15,%15,$15,815
are alternately used when the same
e tyd o o] 1 5458 16 16 16 BYT $16,$16,$16,$16,$16,$16,$16,$16 .
yie 1s repeated to avoid vertical Hines 5463 17 17 17 BYT $17,$17,$17,$17,$17,$17,$17,$17 © |
on the printed. . 546B 19 19 19 BYT $19,$19,$19,$19,$19,$19,$19,319 |
After the picture is printed, 5473 1A 1A 1A BYT $1A,$1A,$14,314,$14,$14,814,314 e
SETDWN sends a carriage return and a 5478 1B 1B 1B BYT $1B,$1B,$1B,$1B,$1B,$1B,$1B,$1B
form feed to the printer and then 5483 1C 1C 1C BYT $1C,$1C,$1C,$1C,$1C,$1C,$1C,$1C R
changes the line spacing back to 1/6 548B 1E 1E 1E BYT $1E,$1E,$1E,$1E,$1E,$1E,$1E,$1E
inch for normal printer operation. 5493 @9 @8 18 LTABA BYT $¢¢,308,$10,$18,$20,$28,$30,$38 '
GDUMP can be run by your BASIC | - 298 /8 8 %0 YT 360,955,990, 806,400 946, 350, 408
programs by POKEing the required set- 54AB C@ C8 Df BYT $CJ,$C8,3Dd,3D8, 3EQ, SE8, $F0,$F8 |
up parameters into the area in the
beginning of the orogram then SYS 54B3 99 @8 19 BYT $@¢,$08,%$10,$18,$20,$28,$30,$38 8
sinning program,) 54BB @@ @@ 0@ HTABA BYT $00,$00,$00,300,$00,$09,$00, $00
20480. Next month we'll continue this 54C3 9@ 00 09 BYT $00,$00,300,300,300,500,300, 00
series by adding another small machine 54CB 90 00 090 BYT $¢¢,300,300,300,3$00,300,300, 300 i
language program and a BASIC program 54D3 09 00 09 BYT $00,$00,300,$00,3$00,$00,300,300 © |-
that will allow GDUMP to print 54DB ¢1 @1 @1 BYT $01,$01,$01,301,$01,$01,$01,301
pictures made from SIMONS’ BASIC, 54E3 @@ 28 58 LCTAB BYT $0@,$28,%$50,$78,$A0,3C8,$F@,$18
ULTRABASIC-64, DOODLE, KOALA- 54EB 4@ 68 9@ BYT $48,$68,$90,$B8,3EQ,$08,$30,$58
PAINTER and TPUG's SLIDESHOW. ggg gg A8 D@ §§$ ggg,$A8,$D¢,$F8,$2¢:$48:$7¢:$93
For those of h ' ;
o e O Jou who dont have an | 54rc 0o g0 @9 HCTAB BYT 300,309, 509,500,500, 309, 300, 501
Wlﬂ rovide these 10 ams’on 1541 55¢4 gl gl gl BYT $¢1)$¢1’$¢1J$¢l’$¢1’$¢2’$¢21$¢2
P programs on ©9 550C @2 g2 g2 BYT $@2,3$02,$02,$02,$03,$03,$03,$03
disks for $15 (US}. Order MicroDisk 5514 @3 BYT $¢3
No. MD-4. AICRO 5515 END

No. 73 - July 1984 MICRO 29

—— features

INTERFACE CLINIC:
Communication Between Different

Computers

How to merge several computers into one efficient

system

A few columns ago I answered a letter
query about communication between
different computers. Here's another
example: I have two Radio Shack Color
Computers and one Commodore 64,
but only one printer (EPSON MX-80).
The 64K Color Computer is in use
constantly, mostly as a word processor;
the 32K (home brew] Color Computer
is usually idle. Both computer systems
(computer, disk, cassette and display)
are plugged into separate power Strips.
Thus, each system is individually
controllable. In order to drive the
printer from the Color Computer using
standard software, the EPSON switch
SW2 needs to be set to 0000. For
the Commodore, using a ‘‘The
Connection’’ serial interface, the
settings must be 0010. Thus, whenever
I print from the other computer, I must
move the printer power cord to the
other power strip, open the printer case
and move one switch, and connect the
other drive cable. The C-64 printer
interface has a 2K buffer, but the Color
Computer interface has no buffer. All
my writing is done using
ELITE*WORD, and I often must wait

for one file to print out before working
on another.

Obviously, things would go better if
I had a large printer buffer to capture
several pages of data and print it whileI
work on another file. Figure 1 shows
how to merge my existing computers
into a single, more efficient system.
The printer and the 32K CoCo will be
powered from a third power strip which
turns on when either or both the other
systems are active. A special interface
board for the CoCo will have a serial
input from the 64K CoCo printer port
and a parallel input from the C-64
system. A separate parallel output will
drive the printer. Either computer will
be able to direct output to the printer.
If the printer is busy, the requesting
computer will have to wait as usual. I
expect that 28K of memory would be
available in the 32K CoCo after
allowing for display memory, stack and
controller program workspace. 28K of
buffer is enough for more than 15 pages
of double-spaced text, which exceeds
any need I have had so far.

veliminating the

COMMODORE &'t

:H PARALLEL TAPUT

€%k COCO

32k _cgoca
Y ERTAL THPUT

FARRLLEL JUTPUT

S

EFSON AR-30

Figure 1. A special network connection will allow two computers to
feed a third computer which will serve as a printer buffer.

by Ralph Tenny

Let me share some of my
philosophy used in designing this
system. Three primary considerations
were involved: first, the new system
should be compatible with commercial
software running on both the 64K
CoCo and the C-64. Primarily, that
means no special printer drivers will be
written for any commercial software.
Second, the expansion will be modular.
As I complete some part of the task,
an improvement in system efficiency
will result. Finally, no internal
modifications will be made to either
the 64K CoCo or the C-64. All these
considerations are met by the
{apparently) clumsy plan to configure
the 32K CoCo interface to respond to
either of the other computers as if it
were a printer. That is, the input
interfaces will handshake with the
driver computers exactly as does the
existing printer interface. Software
options for straight-through printing or
formatting by the 32K CoCo will be
written.

At some future time, I may consider
‘*Connection’’
interface; most commercial software
uses the Commodore serial port. To
eliminate this interface would require
hours of experimentation and study,
designing an interface to convert from
Commodore serial to RS-232 format,
and there isn’t time or need for that.
The C-64 claims to have an RS-232
serial port available, but this requires
a special output interface. Also, much
commercial software for the C-64 does
not support this port which is
implemented by simulating a 6850
ACIA in software. Finally, the data
transfer rate of the serial port is faster
than the RS-232 transfer rate.

I am beginning to implement this
printer buffer system as outlined above.

30

MICRO

No. 73 - July 1984

Due to various time pressures, the
conversion will need to be made in
several phases. Each phase will be
reported in the column as the work is
performed. A separate problem had to
be solved first. The 32K CoCo must be
capable of booting (starting up)
unaided, so it must have an autostart
ROM in the expansion [cartridge] port.
I have an EPROM programmer for the
C-64, along with 6502 development
software which will handle the
Commodore programming required.
My 6809 development software has no
way to send 6809 code to the C-64
programmer. The temporary link
between the CoCo and the C-64 is
presented this month; probably, the
CoCo expansion interface will follow
next month.

The simplest way to transfer data
between dissimilar computers is to use
a standard data rate and interface at the
transmitting computer. If the software
and hardware at the receiving computer
is fast enough to capture the data as it
comes, no handshake is needed. For
this one-way data flow, the CoCo/C-64
interface can be a one-transistor level
translator and inverter (Figure 2). R1
and D1 limit base drive to Q1, while
Q1 and R2 drive PB7 of the

Commodore User Port. The CoCo
printer port incorporates a BUSY*
signal, so a third wire is needed to feed
back a high level [“‘not busy’’| to the
serial in-line.

The program listing is a rudi-
mentary data input program which ser-
vices the interface of Figure 2. Figure 3
shows the flowchart for the program,
which assembles incoming serial data
into bytes and saves the data in
sequential locations beginning at
$2000. Since the C-64 has a timer
available, complicated bit timing is not
needed. Using a timer means that less

experimentation is needed to get the
timing correct. Instead of counting
down a software loop, the CPU polls
the CIA Interrupt Status bit to learn
when the timer has finished.

For those who need the review,
Figure 4 shows how the 8-bit serial
asychronous data is formatted. A Start
bit (TTL low level} is sent first,
followed by eight data bits which may
be either low or high. At least one Stop
Bit {high level) is sent to complete the
transmission of a single byte. Note that
Radio Shack 1.0 BASIC sends only
seven bits with one Stop bit; later

ELSY o * —aPFIN 2
-0 OF ZERIAL IN } Pz - 1k
2
Bl - 10k (#————aFIN K
ZERIAL OUT »"orst gl - NFN
o1
1IMN31Y
COCO CORMON = 1 PIN 1

Figure 2. Two resistors, a diode and one transistor make up a data
transmitter to send data from the Color Computer to the Commodore

64 (see text).

Announcing.

!

e

Money-Saving i
Bonus Paks |
of 64 Software I

(BP-1)—(disk)
totl.text/
totl.speller/totl.label
reg. price $103 NOW $79
(BP-2)—(disk)
totl.business/
totl time manager/
totl.infomaster/totl.text
reg. price $228 NOW $159
(BP-3)—(disk)
totl.infomaster/
totl.text/totl.speller
reg. price $129 NOw $99
(BP-4)—(disk)
totl.text/
totl.speller/
research assistant
reg. price $118 NOW $89
(BP-5)—(tape)
toti.text/toti.label
reg. price $60 NOW $49

Commodore 84 and VIC 20 are trademarks of
Commodore Business Machines Inc.

.. TOTL. MONEYMINDER

FOR THE COMMODORE 64™
W The home accounting package that will make
your budget, not break it! ONLY $39.95

INFORMATION AND ORDER COUPON

TAPE DISK
TOTL.TEXT 2.0(VIC +8K) 0 24,95 O 28.95
TOTLTEXT 2.5(VIC + 16K) 0 3495 O 3895
TOTL.LABEL 2.1 (VIC + 16K) 0 19.95 O 23.95
TOTLTIMEMGR. 2.1 (VIC+8K) (] 29.95 O 33.95
RESEARCHASST.2.0(VIC +8K) (0 29.95 (O 33.95
TOTL.BUSINESS 3.0(VIC + 24K) O 84.95
TOTL.TEXT 2.6 (C-64) (0 39.95 O 43.95
TOTL.SPELLER 3.6 (-C64) 0 34.95
TOTL.LABEL 2.6(C-64)] 19.95 O 23.95
TOTL TIME MGR. 2.6 (C-64) C 34.95 O 3895
RESEARCH ASST. 2.0 (C-64) [0 3495 O 38.95
TOTL.INFOMASTER 3.6 (C-64) 0 49.95
TOTL.BUSINESS 3.6 (C-64} 0 94.95
TOTL.MONEYMINDER 3.6 (C-64) 0 39.95
BONUSPAK#_

Total

Check, Money Order or

C.0.0." alsoaccepted. C.O D. Charges/Sales Tax

additional (CA residents Shipping & Handling
add 6'2% sales tax) Amount Enclosed

FOR ORDERING ONLY—CALL OUR TOLL FREE NUMBERS
Continental U.S. 1-800-351-1555, California 1-800-351-1551
Hawaii and Alaska 415-943-7877

[0 SEND MORE INFORMATION (no charge for catalog)
Name

*C.0.D. orders $2 00 $3.00

Street
City State Zip
Phone() Omc Cvisa
Exp.
Card # Date
quality you can afford
1555 Third Avenue
Z W F ™ walnutCreek, CA 94596 l
SOFTWARE, INC. 415/943-7877 I

Figure 3. This flow chart
describes the program
listing for the Commodore
to receive data from the
Color Computer.

DELAY
ONE &IT

1 EBIT -
1 i z Y4

.
. ZTART EIGHT DATA EITx ATOP

5 c 1 P2 EIT

Figure 4. This diagram illustrates a typical binary data byte as
transferred by the circuit of Figure 2.

versions send eight data bits and one
Stop bit.

Refer to Figure 3 and Listing 2 for
the following discussion. NEW
initializes various locations and the
program waits for Bit 7 to go low. GET
performs a 6502 BIT test which sets the
N Flag equal to Bit 7. Until the Start bit

testing to continue. When the Start bit
arrives, the half-bit delay is called to be
sure the input is still low. This test
provides noise rejection only. If the line
is still low [valid start bit], INBIT calls
a one-bit delay. This allows time for
the first data bit to arrive and settle.
Next, the incoming data is captured
and a test for eight bits received is
made. The loop is executed eight
times, until SAVX becomes zero.

Listing 1

5 REM DATA TRANSFER IN BINARY
1@ FOR X=49152 TO 49168
2¢ H@=PEEK(X)
3¢ PRINT#-2,CHR$(H@);
4@ NEXT
42 REM CHECKSUM COMPUTATION
45 AT=1:LM=65536
5@ FOR X=49152 TO 49168
6@ A=PEEK(X)
7¢ AT=AT+A
83 IF AT> LM THEN AT=AT-LM
9@ NEXT X
1¢@ PRINT''CHECKSUM = '!',AT

Listing 2

DD@¢@
DD@1
DD@2
DD@3
DD@4
DD@5
DD@6

; THIS PROGRAM IMPLEMENTS A TTL

; LEVEL SERIAL INPUT PORT ON THE

; COMMODORE 64 COMPUTER WHICH WILL
; INPUT AND STORE BINARY DATA

J

; EQUATES

APORT EQU $DD@@ ; CIA REGISTERS
BPORT EQU APORT+1

ADDR EQU APORT+2

BDDR EQU APORT+3

TMRALO EQU APORT+4

TMRAHI ~ EQU APORT+5

TMRBLO EQU APORT+6

takes PB7 low, the BMI test forces the .

32

MICRO

Incoming data appears on PB7. The
LDA BPORT reads all eight bits, but Bit
7 is stripped off by shifting the bit into
the Carry Bit. Then the Carry Bit is
shifted into the location named
WORD. After eight bits have been
received, DUMP saves the assembled
data byte into the next sequential
buffer location and increments the
pointer. When the Y Index ‘‘rolls over’’
from $FF to $00, the location PAGE,
which is the high order byte of the
buffer address, is incremented. This
way, the transferred data can be as large
as necessary up to $8000 (32768) bytes.
Special Note: The listing was
assembled at $3000 to avoid destroying
the Editor package at $C000. In normal
use, this program is intended to reside
at $C000, thus providing $8000 bytes
of data buffer. Otherwise, only $1000
(4096) bytes of buffer is available with
Listing 2.

SKIP makes sure the CIA Interrupt
Status bit is clear before a full-bit delay
is called. After the delay, control
returns to FIX to test for the next Start
bit. The delay routine is called once
(enter at HLFBIT) for a one-half bit
delay, or twice (enter at FULBIT) for a
one bit delay. The timer is started and
the Timer A Interrupt Status Bit (Bit O
in the CIA Interrupt Register] is
repeatedly polled. When this bit goes
high, the timer has timed out, so the
RTS causes normal program operation
to resume. There is a special caution
regarding use of the CIA timers. Timer
A can be operated in the free-running
mode to allow generation of arbitrary
waveforms for special purposes. The
one-shot mode, as demonstrated here,
should always be used for normal
timing. This mode selection is shown
controlled by the assignments for
TMRNIT and TMROFF.

This program is intended to be
loaded and operated under control of
HESMON 64 or another debug
monitor; the RESTORE key forces a
stop. CoCo can send data using a
simple BASIC program. Data integrity
can be verified by using another BASIC
program to checksum the data in CoCo

No. 73 - July 1984

and the same program to checksum the

: DD@7 TMRBHI = EQU APORT+7
fllata in .C’-,64d memory. A more DDGD CIAZIR E%U APORT+§D
automatic ata transfer woul.d DD@E TMRACR EQU APORT+SE
rgqunf far more prog;am.mmg, S0 thlcs1 DD@F TMRBCR EQU APORT+$F
simpler approach 1is a goo ; :
compromise. ; CONSTANTS
The BASIC program, Listing 1, will P09 TMRNIT EQU $@9 ; TIMER ON/ONE SHOT
transfer binary data between a CoCo Ppa8 TMROFF EQU $@8 ; TIMER OFF f
and a C-64 and checksum the data at gg2c BAUDLO EQU $2C ; TIMER VALUE FOR |
both ends. Lines 10-40 send the data 0093 BAUDHI ~ EQU $03 ; 609 BAUD :'
across to the C-64 which receives the j
data with the program in Listing 2. ; BUFFERS :
Compute the CoCo memory checksum gg;g gﬁ& ggg :Z]CZ
before or after §ending data by typing d07F SAVY EQU $7F]
"GOTO 45", Lines 45 100 of the same L) POINTR EQU $8¢ ; DATA BUFFER POINTER
program, entered into the C-64, will gps1 PAGE EQU POINTR+1 ; BUFFER HI BYTE
compute the checksum after the ggs2 WORD EQU POINTR+2 ; INPUT SCRATCH BYTE
transmission. Note that line 10 ; -
specifies addresses 49152-49168 3000 ORG $300¢ ‘
[$C000-$C010], which happens to be ; MAIN PROGRAM
the first 16 bytes of the expansion area gggg gg gg oD NEW é‘gﬁ gﬁggF ; INSURE TIMER OFF
disk) Obviously, chis could have been | 390 49 80 IDA 4900 ; INIT DATA POINTER o |
Y 3007 85 8¢ STA POINTR ; LOW BYTE
any set of locations, as long as the C-64 3909 A8 TAY ; AND INDEX POINTER :
buffer area is long enough. Note also 300A A9 2C LDA #BAUDLO ; SET TIMER FOR _
that line 50 must specify the same 30¢C 8D @4 DD STA TMRALO ; HALF-BIT TIME
addresses as line 10. The C-64 version I0@F A9 @3 LDA #BAUDHI :
must use the target addresses set up by 311 8D @5 DD STA TMRAHI
the C-64 receive program. 3014 A9 2¢ 1DA #$20 ; INIT DATA POINTER
I recommend the following 3016 85 81 STA PAGE ; HI BYTE 9
sequence for data transfers using these ggjlj gg gg FIX é‘gﬁ ggsx ; INIT BIT COUNTER
programs:
1. Connect and test the interface. ggig Zg o0 igi 400 i Igé‘% ggéU%NTERRUPTS -
. ; :
programaning i an EPROM, use | UL 89 82 STA ORD ; SCRATCH PAD
HESMON 64 to prepare the buffer area: : INPUT LOOP
F2000 2FFF FF 3@¢21 2C 1 DD GET BIT BPORT ; TEST FOR START BIT
This command fills 4096 locations (a 3024 30 FB BMI GET ; WAIT FOR IT
full 2732 EPROM| with $FF. Thus, if 3026 20 53 30 JSR HLFBIT ; FOUND IT
the code transferred is smaller than 3@29 2C @1 DD BIT BPORT ; WAIT ONE-HALF BIT :
4096 bytes, unused EPROM locations 3@2C D@ F3 BNE GET ; FALSE START BIT? ¢
will remain undisturbed. 302E 2¢ 5¢ 3¢ INBIT JSR FULBIT ; SAMPLE NEXT BIT f_
3. Set up the CoCo by entering the ggg}' ﬁ #1 DD }st)ﬁ EPORT i gg%DIﬁgﬁi DATA BIT :
BASIC program. Compute the ’
1 3035 66 82 ROR WORD ; ROTATE INTO BUFFER
checksum now or later. . 3937 c6 TE DEC SAVX ; COUNT BIT AND |
4, SFart the receiving program in the 3039 F@ @3 BEQ DUMP ; TEST FOR LAS |
C-64 (it will wait on data if the 3@3B 4C 2E 3¢ JMP INBIT ; GET MORE
interface is connected) using: 3@3E A5 82 DUMP LDA WORD ; SAVE ASSEMBLED
G3000 304¢ 91 8¢ STA (POINTR),Y ; DATA o
5. Type RUN on CoCo. 3@42 C8 INY ; BUMP POINTER
6. When CoCo prints “BREAK IN 3043 D@ @2 BNE SKIP ; PAGE BOUNDARY?
40", hit RESTORE on the C-64. 3045 E6 81 INC PAGE ; INCREMENT PAGE BIT
7. Save the data using this 3¢47 AD 9D DD SKIP LDA CIARIR ; CLEAR STATUS BIT Q|
HESMON command: (disk assumed} 3046 20 50 30 JSR FULBIT ; WAIT FOR STOP BIT .
S“'filename’’ 08 2000 2FFF 304D 4C 18 38 NP FIX ; AND CONTINUE ':
HESMON command XC; enter the 3¢5¢ 20 53 3¢ FULBIT JSR HLFBIT ; TWICE FOR FULL BIT :
checksum program and compute the 3@¢53 A9 @9 HLFBIT LDA #TMRNIT ; START TIMER j
checksum. In case other than 3@55 8D @E DD STA TMRACR ol
HESMON is used, it may be necessary 3@58 AD ¢D DD TEST LDA CIAZIR ; WAIT FOR
to load the data from disk with an offset 3@5B 29 @1 AND #$01 ; STATUS BIT
to avoid conflicts with BASIC. If the 3@5D F@ F9 BEQ TEST
checksum is OK, you are free to 3@5F 60 RTS ; RETURN ©
program the EPROM. 3060 END
AICRO"
No. 73 - July 1984 MICRO 33

-—_—W

HILISTER - A Study and
Teaching Aid

(Part 1)
4

\ 4
\ 4
¢

[ole———alol—=lole=——=a|o]e——lo| c——— | 0| c———=]o| —=]o| 0| 0 | 0—=|0)]
Move easily within your programs and highlight
parts of text or listings to add emphasis, drama or

clarity

ol jol—0nx-—xJ|

=[] IEE

G [all a

HilLister is a machine language program
which may be called from either
Applesoft or the monitor to invert one
line at a time on the screen display,
thus ‘‘highlighting’’ that line. In
addition, an Applesoft program, a block
of disassembled memory locations, a
disk catalog [either drive|, a memory
dump (in both hex and ASCII), or
almost anything else may be listed to
the screen, after which one can jump to
the beginning or end of the listing,
move forward or backward by screen
“‘pages’’, scroll either up or down, or
step up or down one line at a time.
Lines may be highlighted in this mode
also.

HilLister began as a simple line
inverter, to highlight lines on the
screen while teaching a beginner’s
programming class. The instructor sat
at the keyboard and used a separate
monitor to show the class what was
happening. In order to point out a
particular line for discussion, he had to
get up and point to it on the monitor.
HiLister made it possible for him to
remain seated, pointing out the line by
causing it to be printed in inverse
characters.

At that point, it was possible to
highlight only those lines already on
the screen display, so I added a list
function to allow an entire Applesoft
program to be examined with the
highlighter. When the list function is
in effect, if the highlight is moved to
the bottom of the screen and an
attempt is made to move it further, the
screen scrolls up one line, and the
bottom line is again highlighted. A
similar action occurs at the top of the
screen. The additional functions of
jumping to beginning or end, paging,
scrolling, and stepping are icing on the
cake.

Once the Applesoft list function
was in operation, I found that the
program was very helpful for studying
program listings at any time, rather
than being useful only in a teaching
situation. It was at this point that I
decided to add a list function for
machine language disassembly listings.

It also appeared that some other
functions might be useful, so I added a
command to dump a block of memory
to the screen in hex and ASCII and
another to allow the listing of long
catalogs from either drive. The final

by J. Morris Prosser

step was to add a method of listing
other things I had perhaps overlooked.

HiLister is initialized by "'BRUN
HILISTER" or by ''BLOAD HILISTER"'
and ""CALL 3276 8''. The initialization
consists of setting the ampersand (&)
and ctrl-Y vectors. The program is then
accessed by entering ctrl-Y from the
monitor (for the highlighter function
only), or “"&’' from Applesoft {for all
functions}. ‘‘&LIST'' causes the
Applesoft program in memory to be
listed in its entirety to both the screen
and to a buffer area used by HiLister for
the list function. Commas or hyphens
and beginning and ending addresses
may be used as in the standard
Applesoft LIST command to obtain a
partial listing.

To get a listing of a machine
language program or other
disassembled machine code, the
command is an ampersand followed by
a dollar sign and the start address {in

‘hex) of the memory to be disassembled.

Thus, ''&$8000"’ would print 256 lines
of disassembled code starting at $8000
(a partial listing of HiLister, for
example). ‘&$8000L"" would produce
the same result. Addition of a plus sign

34

MICRO

No. 73 - July 1984

after the address {for example, &$8000)
causes 512 lines of disassembled code
to be listed. Note that ''&$8000L"
would produce only 256 lines of code,
since the program looks for only one
character following the address.

To obtain a memory dump, the
command is ‘‘&$’’ followed by the
range of memory to be dumped. For
example, ' &$8000.84FF"’ would dump
the range $8000 to $84FF, just as in the
normal monitor command.

Disk catalogs are listed by using the
command ‘‘$C"’ for the default drive,
or "&C1" or "&C2" to specify the
drive.

To list anything else to the program
buffer, use “‘&B’’ to initialize the
output detour and the buffer, then list
or print whatever is desired, then enter
the HiLister program with ‘‘&E’’.

While the program is listing to the
screen and buffer, ctrl-S and ctrl-C may
be used to pause and end the listing,
respectively, just as with the normal
Applesoft LIST command. Note,
however, that ctrl-C is not effective in
a catalog listing.

If a program is too long to be
completely listed to the buffer, the bell
sounds and a message is displayed
offering the options of using the part of
the program already listed or leaving
the HiLister program and re-entering it
with only an elected part of the
program to be listed. The buffer
normally starts at $4000, so an
Applesoft program of more than 57
sectors would overwrite it. The
Applesoft program length is checked by
HiLister, however, and if necessary the
start of the buffer is moved up in
memory. In this event, of course, the
buffer size is decreased and it will not
hold as long a listing.

Applesoft programs of this length or
longer may be too long for complete
listing. For very long programs it is
better to load the program, delete those
lines not required for study, and then
invoke the list function of HiLister.
This will provide for a larger buffer and
make the maximum number of lines
available for study. Note that an
Applesoft program longer than 120
sectors will overwrite the HiLister
program itself. In this case it is possible

to load the Applesoft program, delete

part of it, then BRUN HILISTER.

The assembly listing for HiLister is
quite long and is liberally commented,
so only a brief description of how the
program works will be provided here
(Listing 1).

No. 73 - July 1984

Upon first running the program, the
ampersand and ctrl-Y vectors are set up
and control is returned to BASIC. Upon
entry to the main program, the program
determines whether the highlighter
alone is requested, or one of the other
options is desired. If a listing is
required, the program sets the output
vector (subroutine OUTSET) to cause
all output to pass through the program,
so that it may be listed to the buffer as
well as to the screen. It also fills the
buffer with carriage returns so there
will be no extraneous material at the
end of the listing. If an Applesoft
listing, the program goes to a portion of
code which replaces the standard
Applesoft ‘'LIST’’ routine. The
standard routine could not be used,
since it does not normally return to the
caller and, in addition, some special
formatting was required.

If a disassembly listing is requested,
the program determines the start
address for the listing, then checks to
see whether 256 or 512 lines should be
listed. This is done in subroutine
““MEMLST,’’ which also checks to see
whether ""DEF’’ is part of the address
entered. The reason this is needed is
that Applesoft would interpret this as

the beginning of a ‘‘DEF FN"
command, and so would replace it with
the token for ‘‘DEF'' ($B8). If this
happens, the “DEF’’ address must be
restored so the listing will start at the
correct address. While this situation
will seldom arise, I thought it should
be covered.

MEMLST also checks to determine
if a memory dump is desired rather
than a disassembly listing. It does this
by looking for a period between
addresses.

When all is well, if a disassembly
listing is requested, the program goes to
""MONLIST,”" which replaces the
monitor ‘'LIST2’ subroutine. It is
called twice if 512 lines are to be listed.

If a memory dump is required, the
program jumps to "'DUMP,"” which
performs a function similar to the
""XAM'' function in the monitor, with
the added feature that the hex code is
converted to ASCII and shown at the
same time. Control (non-printing]
characters are shown as blanks.

If a catalog listing has been
requested, the program jumps to
““CTLG,"” which first removes the

pause from the DOS CATALOG
routine, then calls it. When the catalog

Listing 1

p8gg * HILISTER1 (REV @4/16/84)

gsgg *

pg8gp * Written by

pg8gp *

pg8gp * J. Morris Prosser

psdd *

2006 LINE EQU $06 ;LINE NUMBER FOR HIGHLIGHTER

2007 TEMPY EQU $@7 ;TEMPORARY STORAGE FOR Y REGISTER
0d09 TEMPX EQU $@9 ; TEMPORARY STORAGE FOR X REGISTER
9@19 FLAG EQU $19 ; FLAG FOR USE BY HIGHLIGHTER

#g1A LSTFLG EQU $14 ; A/S LIST FLAG

@918 COUNT EQU $1B ; COUNTER
ggic PLUSFLG EQU $1C ;FLAG FOR EXTENDED MONITOR LIST
g@1D CATFLG EQU $1D ; FLAG FOR CATALOG LISTING

@@1E DIRFLG EQU $1E ;FLAG FOR STEP DIRECTION
o924 CH EQU $24 ;CURSOR HORIZONTAL POSITION
9925 cv EQU $25 ;CURSOR VERTICAL POSITION i
g@31 MODE EQU $31 ;MODE OF MONITOR COMMAND

9036 CSWL EQU $36 ; CHARACTER OUTPUT VECTOR

@@3a PCL EQU $34 ;PROGRAM COUNTER
. 9@3C AlL EQU $3C ; GENERAL PURPOSE COUNTER

@@3E A2L EQU $3E ;GENERAL PURPOSE COUNTER

0940 A3L EQU $4¢ ; GENERAL PURPOSE COUNTER

@b AL EQU $42 ;GENERAL PURPOSE COUNTER

o050 LINNUM EQU $5@ ;GENERAL PURPOSE 16-BIT REGISTER
gg85 FORPNT EQU 385 ;GENERAL POINTER

¢@oB LOWTR EQU $9B ; GENERAL PURPOSE REGISTER o
#@9D DSCTMP EQU $9D ; TEMP STRING DESCRIPTOR

¢gB1 CHRGET EQU $B1 ;GET CHAR.,INCREMENT POINTER

9gB7 CHRGOT EQU $B7 ;GET CHAR., NO INCREMENT
ggr9 MEMFLG EQU $F9 ;MONITOR LIST FLAG

@@FA BUFST EQU $FA ; BEGINNING OF LIST BUFFER

MICRO 35

@gFC
) OOFE
© @200

@300

§3EA
@3F5
@3F8
4000
. COg@
Cg1@
D61A
DAgC
© DAFB

DB5C

DEC9

ED24
FaD@
Fo40
F953
FBC1
FC22
FC58

A9
8D
8D
A9
8D
8D
A9
8D
8D
4C

86
86
86
86
86
C9
Fg
4C

A2
86
86
F@
2C
19
AD
2C
C9
D@
85
4C
C9

Listing 1 (continued)

63

4C
F5 83
F8 @3

F6 @3
F9 93

F7 93
FA @3
D@ @3

03
CF 8¢
00
19
06
5B
o0
FB
00 cg
19 cp
9B
@5
19
91
88

cd

80

SCRST
LSTEND
IN
BASIC
TELLDOS
AMP
CTRLY
BUFLE
KBD
KBDSTRB
FNDLIN
LINGET
CRDO
OUTDO
SYNERR
LINPRT
INSTDSP
PRNTYX
PCADJ
BASCALC
VTAB
HOME
CLREQL
NXTA1l
PRBYTE

cout
CcouT1
MOVE
BELL
GETNUM
ZMODE

*

EQU $FC

EQU

ORG
NOG

$FE
$200
$3D¢
$3EA
$3F5
$3F8
$4000
$Co00
$CO10
$D61A
$DAGC
$DAFB
$DB5C
$DECY
$ED24
$F8DY
$Fo4L0
$F953
$FBC1
$FC22
$FC58
$FCIC
$FCBA
$FDDA

$FDED
$FDF@
$FE2C
$FF3A
$FFA7
$FFC7
$a00d

; BEGINNING OF SCREEN BUFFER

;END OF LISTING

;Input buffer

;Sof't entry to BASIC

;D0S routine to get change in

;Ampersand vector

;Control-Y vector

;Buffer low end

;Keyboard input address

;Keyboard strobe

;Find mem. loc. of line in LINNUM

;Get line no. from input buffer
;Print carriage return

;Print character in accumulator

;Syntax error routine

;Print line number

;Print disassembled instruction

;Print Y and X registers

;Adjust program counter

;Calc. start addr. of screen line

;Set cursor vertical position

;Clear screen — home cursor

;Clear to end of line

; Increment pointer AlL,A1H

;Print accumulator as hex
byte

;Print to output device

;Print to screen

;Move memory block

;Sound bell

;Get hex bytes from input buffer

;Set MODE for GETNUM

* Set ampersand and ctrl-Y vectors

*
START

BEGIN

HILITER

*

HILITER1

KEYCHK

NOTESC

LDA
STA
STA
LDA
STA
STA
DA
STA
STA
JMP
LDX
STX
STX
STX
STX
STX
CMP
BFL
JMP

LDX
STX
STX
BFL
BIT
BPL
LDA
BIT
CMP
BTR
STA
JMP
CMP

#34C
AMP
CTRLY
/BEGIN
AMP+1
CTRLY+1
#BEGIN
AMP+2
CTRLY+2
BASIC
#0
CATFLG
LSTFLG
MEMFLG
PLUSFLG
DIRFLG
#0
HILITER1
LISTER

#e
FLAG
LINE
NXTLN
KBD
KEYCHK
KBD
KBDSTRB
#3898
NOTESC
FLAG
NXTLN
#$88

;jClear flags

;0ther command
;No - HILITER

;Set FLAG and LINE to zero

;Branch always

;Check keyboard

;Key not pressed

;Key pressed - get it
;Reset keyboard strobe

;Is it 'ESC’

;No - branch

;Yes ~ set FLAG

;Remove highlight and exit
;Is 1t left arrow

listing is complete, the program
restores the pause to DOS.

When listing is completed, the
program pages back one screenful and
sets the address at that point as the
start of the screen buffer and as the
address of the end of the listing. It then
reprints this screen, sounds the bell,
and prints a ‘'LISTING COMPLETED"’
message.

The operation of the jumps to
beginning and end of the listing is fairly
obvious - simply a matter of setting the
start of the screen buffer to the start of
the listing buffer or the end address of
the listing, as mentioned above.

The paging and scrolling are based
on checking the buffer for the next
previous or next following carriage
return. For paging, 23 returns are
counted before the next screen is
printed, while for scrolling the screen is
reprinted after each return is found, and
then the next one is searched for.

Stepping one line at a time is
accomplished by use of the space bar.
The program checks to see whether the
last movement called for was forward
or backward (by looking at DIRFLG],
then calls UPDO or DOWNDO, as
appropriate. Default is UPDO, to scroll
forward one line.

Commands available
manipulating the listing are:

for
B - jump to the beginning of the
listing

E - jump to the end of the listing

+ or ; - page forward (previous
bottom line becomes top line)

- or = - page back (previous top line
becomes bottom line)

Right arrow - scroll up (stops on any
keypress)

Left arrow - scroll down [stops on any
keypress|

Space bar - step forward or backward
one line.

& - calls highlighter
ESC - returns to BASIC

If the highlighter was requested, the
top line of the screen is changed to the
inverse of what it was; that is, normal
characters become inverse, inverse
characters become mnormal, and

MICRO

No. 73 - July 1984

flashing characters are unchanged. The
program then looks for keyboard input.

Listing 1 (continued)

If a right arrow is pressed, the top lineis | 864C D@ 1F BIR NOTLFT ~ ;No - branch
restored and the next line is inverted. | S#4E A6 @6 LDX LINE ers - get LINE
Further presses of the right arrow key gggg ig 14 gg, LFT1 f;ﬁ iiﬁriﬁezzrizn
cause the highlighting line to move on [g553 7o N ;Top of sereen
down the screen in this manner. The | ggss a5 14 IDA ISTFIG ;List in effect
left arrow works the same way, except | ggse g5 F9 ORA MEMFLG
that it moves the '‘highlight’” up the | sgs8 g5 1D ORA CATFLG
screen. 8@5A F@ @B BFL LFT1 ;No - branch
If the highlighter was called from | 885C 85 19 STA FLAG jYes
any list routine, then when the | 805E 20 91 8¢ JSR NXTLN ;Restore top line
highlighted line is at the bottom of the | 8061 2@ 83 83 JSR DOWNDO ;Seroll tiown one line
screen, further right arrows make the 8064 4C 91 8¢ JMP NXTLN jlnvert 1t
screen scroll up one line. Left arrows gggg ig gg LFI1 ig; ;gMPX
work in an analogous fashion when the 806B F9 23 BFL INVERT ;Put 1in highlight ol
h1ghhghted line is at the top of the 806D C9 95 NOTLFT CMP #395 ;Is 1t right arrow
screen. The ""ESC' key causes the 8@6F D@ C5 BTR KEYCHK ;No - get next keypress
currently highlighted line to be | s8g71 aé @6 LDX LINE ;Get line number
restored and the program returns to the | 8973 E8 INX ;and increment it
caller. 8¢74 E@ 18 CPX #24 ;Bottom line
One problem occurs with the ggzg l();g 14 gg RT1 ;§° — branch
highlighter if your listing includes ites
lower case letters, in that the Apple 1 ngg gg ;g (I).g: EB’I{‘;LLS sL1st In effect
cannot show lower case letters in 8¢7D @5 1D ORA CATFLG
inverse. I thought the best thing to do 8@7F F@ OB BFL RT1 ;No - branch
in this event was to convert the lower | ggg1 g5 19 STA FLAG ;Yes
case to upper case before highlighting. 8@83 2¢ 91 8¢ JSR NXTIN ;Restore line 5
Naturally, when the highlighting is | 8@86 2¢ 65 83 JSR UPDO ;Scroll up one line
removed the material remains in all | 8@89 4C 91 8¢ JMP NXTLN ;Invert 1t ;
upper case. If the list function is in 8@8C 86 @9 RT1 STX TEMPX ;Save line number
effect, the lower case will be restored as gggg é‘i 4 INVERT EDE;((#0
soon as the screen is rgpnnted for any 8091 45 06 NXTLN DA LINE ;Get 1line number
reason, such as scrolling, paging, or | g03 o5 o1 g JSR BASCALC ;Find address of left end
stepping. Another way of handling this 8096 Ad 27 LDY #39 ;Start at end of line
situation would be to show all | ggog p1 28 GETCH IDA ($28),Y ;Get character
characters except lower case in inverse, 8@9A C9 E@ CMP #3EQ ;Is it lower case
leaving the lower case characters 8¢9C 9¢ @2 BLT NOTLC ;No — check further
normal. If you would like to try this | 8@9E 29 DF AND #3DF ;Yes — make 1t upper case 0
option, get into the monitor with | 8A@ C9 AP NOTLC ~ CMP #$A@ ;Is 1t normal
CALL-151, then type '809C:B0 16 EA | 8@A2 98 94 BLT INV iNo — check further :
EA'' and press RETURN - after having 804 29 3F AND #33F jYes — lnvert it 3
BLOADed HILISTER, of course. 80A6 BP @C BGE I;ISP jand display it ;-
Walle the hghighier 13 o | SS2W D B e wme
operation, all keys except ""ESC'' and 8PAC 69 8¢ ADC #3890 ;Must be inverse - make it normal
the right and left arrows are ignored. 8PAE C9 A CMP #$A0 ;Normal now
The assembly listing for the | agBg Bg @2 BGE DISP ;Yes -~ display it
highlighter portion of the program is 8@B2 69 4@ ADC #3490 ;No - make it so
included here as Listing 1. This is a | 8¢B4 91 28 DISP STA ($28),Y ;And print it (&)
stand-alone program as shown, so it | 8¢B6 88 NXTCH ~ DEY jGet next character
can be put to use immediately after | 80B7 14 DF BPL GETCH jNot done yet
keying it in. It should be saved as 80B9 A5 19 IB?‘?, ggANg i qus Fmiez;tx o
HilListerl. If you are entering the code gggg i‘g g; DX #8 ;YZs_—cclear 1t
without using an assembler, the 8gBF 86 19 STX FLAG :
command is: 80C1 60 RTS ;Done
BSAVE HILISTER1, A$8000, L$DO. 80C2 8A CONT TXA S X-¢ O
Part 2 of this article will present a | ggc3 pg @3 BTR CONT1 ;No - branch -
listing of the remainder of the program, | 8@C5 4C 36 8¢ JMP KEYCHK ;Yes — get next command
and will include instructions for adding | 84C8 A5 @9 CONT1 LIDA TEMPX ;Invert next line O |
it on. Some of the code in the first part ggg‘é gg g6 ?%A(LINE "
pf the listing appears refiundant, but it 800D F9 C2 BFL NXTIN ;Branch alvays
is necessary for interfacing to the other dcF x Ie)
parts of the program. ZQ’CF D8 LISTER RTS
ANICRO" 8@D@ END
No. 73 - July 1984 MICRO 37

Super Simple Numeric Sort

by Robert L. Martin WB2KTG

Arrange a list in numerical order without a user sup-
plied sorting program

Everyone, at some time, has had to
take a list of numbers and arrange them
in numerical order. The effort involved
in accomplishing this task can, of
course, be minimized by the use of a
computer and a sorting program.
Explained in this article is a sorting
technique which doesn’t require a user
supplied program, but instead uses a
built-in BASIC feature-automatic
program statement sequencing.

All BASIC interpreters will allow
non-sequential program statement
eniry. That is, the line numbers of
statements need not be entered in any
specific order. The BASIC interpreter
will automatically LIST them in
ascending order.

To arrange a list of numbers in
ascending order, input each number
followed by a period, asterisk, or some
other non-numeric character. For non-
integer values the decimal point will
serve as the non-numeric character.

The Basic interpreter assumes that
any digits input preceding a non-
numeric character are line numbers.
All alphanumeric characters entered
following the first non-numeric
character are assumed to be BASIC
program statements. As long as no
attempt is made to RUN the program,
no error message will be given.

The example shown is the actual
printed output from my Sharp PC-1500
pocket computer and CE-150
printer/plotter.

The use of this technique was
discovered at work when I was given a

list of 140 repair orders to sequence.
Each repair order number was four
digits long. Fortunately, I had my
PC-1500 with me, along with a bit of
imagination. I hope this example of

using a computer's ‘‘hidden’’ talents
will result in other non-standard
techniques being developed to save the
time and patience of the human

interface. AICRO"

1500/CE-150

29

36.5
414
13.2

5

1019
7.25987

a)List of Numbers

5.

“LLIST" command.

Sample Printout From Sharp PC-

b)Numbers as Input to the Computer
(note Decimal Points).

7:.25987
13: .2
29:.

36:.5
414,
1019:.

c]Output of Computer in Response to a

29.

36.5
414.
13.2

5.
1019.
7.25987

38

MICRO

No. 73 - July 1984

FLOPPY DISKS SALE *$1.19 ea.
Economy Model or Cadillac Quality
LORAN:ts®%5 We have the lowest prices! LORAN ts=Es

*ECONOMY DISKS
Good quality 5% " single sided double density with hub rings.

Bulk Pac 100 Qty. $1.19 ea. Total Price $119.00
10 Qty. 1.39 ea. Total Price 13.90

CADILLAC QUALITY
s Each disk certified e« Free replacement lifetime warranty ¢ Automatic d|
For those who want cadillac quality we have the Loran Floppy Disk. Us
on Loran Disks to store important data and programs witho
exclusive process) plus each disk carries an exclusive
disks you can have the peace of mind wi

development. ;

100% CERTIFICATIO
Some floppy disk manufac
certified. Each Loran disk is’
lifetime!

FREE REPLACEMENT L}
We are so sure of Loran Disks t
ty materials or workmanship fa
AUTOMATIC DUST REMO
Just like a record needle, disk d
disks the Loran smooth surface f
grind your disk drive head like sa
(dust & dirt) are being constantly ¢l
probability rate of any other disk in

Loran is ¢
Just to prove it even further,
List $4.99 ea. INTRODUCT

|s because they can rely
sk is 100% certified (an
ARRANTY. With Loran
urs spent in program

1 then claim they are
am loss during your

srform due to faul-

like other floppy
igh surface will
the disk-killers
las the highest

All disks come w

disk drive doctor

FACTS
60% of all drive downtime is directly related to poorly maintained drives.

Drives should be cleaned each week regardless of use.

Drives are sensitive to smoke, dust and all micro particles.

Systematic operator performed maintenance is the best way of ensuring error free use of your computer
system.

The Cheetah disk drive cleaner can be used with single or double sided 5%" disk drives. The Cheetah is an
easy to use fast method of maintaining efficient floppy diskette drive operation.

The Cheetah cleaner comes with 2 disks and is packed in a protective plastic folder to prevent contamination.
List $29.95/ Sale $19.95

- A A G G D D GED D GED GED 4l GED IS Gl GNP Gy .
U Add $10.00 for shipping, handling and Insurance. MHiinois residents ¥ TE CTD
| please add 6% tax. Add $20.00 for CANADA, PUERTO RICO, HAWAII |

' orders. WE DO NOT EXPORT TO OTHER COUNTRIES. E N TE R P R I z E s WE LOVE QUR CUS TOMERS)
I Enclose Cashiers Check, Money Order or Personal Check. Allow 14]

days for delivery, 2 to 7 days tor phone orders, 1 day express mail! BOX 550, BARRINGTON, ILLINOIS 60010
§ Canada orders must be in U.S. dollars. Visa - MasterCard - C.0.D. : Phone 312/382-5244 to order

EXECUTIVE LETTER QUALITY

DAISY WHEEL PRINTER SALE $3799°

COMSTAR 13”

COMSTAR 13" “DAISY WHEEL” POWER TYPE
PRINTER is typewriter friendly. It uses a simple
drop in cassette ribbon. Just turn on the COM-
STAR 13" for Crip executive quality cor-
respondence at 18 CPS with a daisy wheel that
prints 96 power type flawless characters, bi-
directional. Designed for personal and business
applications. COMSTAR 13" carriage accepts
paper from letter to legal size, continuous com-
puter paper or single sheets, you can set right
and left margins, vertical and horizontal tabs.
(Serial and parallel interface). LLIST PRICE $599°°
SALE PRICE 3379

computer printer

‘. OLYMPIA “DAISY WHEEL” COMBINATION

PRINTER/'TYPEWRITER SALE 548900

THE “ o'YI‘“Pla COMPUTER PRINTER
ELECTRONIC TYPEWRITER is the ultimate for
Home, Office, and Word Processing. You get the
best Electronic Typewriter made and used by
the world's largest corporations (better than IBM
Selectric) plus a Superb Executive Cor-
respondence Computer Printerf! (Two machines
in one!) Just flick the switch for the option you
want to use. The extra large carriage allows
14%"' printer paper width. It has cassette ribbon
lift off correction. Baud rates, Jumper selectable
75 through 19,200 (parallel interface)

LIST $799° SALE %489°°

“ Olympla worLD's FINEST)

e 15 DAY FREE TRIAL — 90 DAY FREE REPLACEMENT GUARANTEE

— T T
| Add $17.50 for shipping and handlirig!! ! pno E c o

|
: Enclose Cashiers Check, Money Order or Personal Check. Allow | E N TE R PR I z E s (WE LOVE OUR CUSTOMERS)

| 14 days for delivery, 2 to 7 days for phone orders, 1 day express
1 mail! Canada orders must be in U.S. dollars. VISA — MASTER : g'?:nzsg‘.gagglzn‘c‘;r.g:;dl:}mous 60010

| CARD ACCEPTED. We ship C.O.D.

- I D G G CED IR IR IR CED R G S S G G D G AR e e e e sl

40 MICRO No. 73 - July 1984

®

9" Data Monitor

® 15 Day Free Trial - 90 Day Immediate Replacement Warranty

9" Screen - Green Text Display

12" Screen - Green Text Display (anti-reflective screen) $ 99.00

12" Screen - Amber Text Display (anti-reflective screen)
12" Screen-Super 1000 Line Amber Text Display

14" Screen - Color Monitor (national brand)
Dispiay Monitors From Sanyo

With the need for computing power growing every day, Sanyo has
stepped in to meet the demand with a whole new line of low cost, high
quality data monitors. Designed for commercial and personal com-
puter use. All models come with an array of features, including up-
front brightness and contrast controls. The capacity 5 x 7 dot
characters as the input is 24 lines of characters with up to

80 characters per line. .

Equally important, all are built with Sanyo's commitment

to technological excellence. In the world of Audio/Video, Sanyo is
synonymous with reliability and performance. And Sanyo quality is
reflected in our reputation. Unlike some suppliers, Sanyo designs,
manufactures and tests virtually all the parts that go into our products,
from cameras to stereos. That's an assurance not everybody can
give you!

* LOWEST PRICES » 15 DAY FREE TRIAL * 90 DAY FREE REPLACEMENT WARRANTY
» BEST SERVICE IN U.S.A. « ONE DAY EXPRESS MAIL « OVER 500 PROGRAMS ¢ FREE CATALOGS

---------------------- . 3 I 1]
¥ Add $10.00 for shipping, handling and | ce. lllinols residenta ¥
| please add 6% tax. Add $20.00 for CANADA, PUERTO RICO, HAWAII |

T T

SANYO MONITOR SALE!!

* 80 Columns x 24 lines

* Green text display

e Easyto read - no eye strain

e Up front brightness control

* High resolution graphics

* Quick start - no preheating

* Regulated power supply

¢ Attractive metal cabinet :
¢ UL and FCC approved ;

$ 69.00

? SANYO

Official Video Products
of the Los Angeles 1984 Olympics

' orders. WE DO NOT EXPORT TO OTHER COUNTRIES. l

I Enclose Cashiers Check, Maney Order or Personal Check. Allow 14 | E NTE R PRIZ E s (WE LOVE OUR CUSTOMERS)

| days for delivery, 2 to 7 days for phone orders, 1 day express mail!

1 Canada orders must be in U.S. dollars. Visa - MasterCard - C.0.D. = BOX 550, BARR'NGTON, ILLINOIS 60010
Phone 312/382-5244 to order

—— featiune
CMPRSS —

Improved Applesoft
Compression Program

. s & &8 &R 0 R B B § B K R N R §B B B B E B B |
Compress large programs easily and retain com-
ments without overflowing Called Line Number
Table

42

MICRO

by lan R. Humphreys

=6 M N——1 [0 ——a=

Editor’s Note: This program improves on
programs previously done by: Barton M.
 ¥¥APPLESOFT SUBROUTINES** Bauers (MICRO 52:89); Peter |.G. Meyer
’ (MICRO 55:26).
D61A "FNDLIN EQU $D61A ;Pind start of =m - = = b=
@sdd ;elvn Applesft 1n
D697 STXTPT EQU $D697 ;Init TXTPTR for
g8@@ ;pass of program .
DAGC LINGET EQU $DA@C ;Convrt dec to hex Requirements:
DAFB CRDO EQU $DAFB ;Output carriage Apple II or Apple II Plus; 48K
g8gd ;return to screen and Applesoft BASIC in ROM
DB3A STROUT EQU $DB3A ;Output a text
@8p@ ;etring to screen
ED24 LINPRT EQU $ED24 ;Print a hex line
g;gg CHRGOT BQU $09B7 ;geinciiiilg;ie I had just finished writing a large,
d80d 'w/o ine TXTPTR wel.l-cornrnented App’lesoft program
o0B1 CHRGET EQU $d¢B1 :Ine TKTPTR and Wthl:l was part of a major System [was
0800 ;get next byte working omn. .Unfortunately, when 1
came to test it, there was not enough
room for its several large arrays and
various string variables, and the
program would not run. Coinci-
j dentally, on that same day, [purchased
s¥XZERO PAGE LOCATIONS*X the September 1982 edition of MICRO
0007 ,MAXX EQU $0007 ;Loop ctrl for magazine and was .excited to see that it
9800 ;transfLINBUF to new prog contained an article by Barton M.
@05 OLDBEG EQU $@d¢5 ;Ptr to last EOS Bauers, giving a source listing of a
080¢ ;in orig prog machine language routine which
n@@s LASTX EQU $0@p4 ;Ptr to last EOS compressed Applesoft programs. I
L) ;in LINBUF eagerly hurried home, read the article
00a3 NEWPTR+1 EQU $0@@3 and proceeded to key it into my Apple.
pog2 NEWPTR EQU $00@2 ;Ptr to curr posn I tested it on several small programs
2800 31n compr prog first and found that it seemed to work
gggé TFFLAG BQU 30001 ’giii dsiz ‘1’2:2 IF as described, so I set about running
good ERRORS EQU $¢0¢d¢ ;Flag for errors COMPRESS on my large program.
0800 ;during PASS #1 Much to. my dismay, CQMPRESS
g0 1STEOS EQU 3$dgdA ;Last EOS token aborted with ERROR #3 which meant
gagg ;300 or $FF that the Called Line Number Table had
Poe9 OLDEOP+1 EQU $00@9 overflowed and so I couldn’t use it! Not
Wg; OLDECP EQU $¢@@s ;Value of EPROG only does Barton Bauers’ program
@8

No. 73 - July 198«

;at beg of PASS#2

gg51 LINNUM+1 EQU $@@51
)] ga50 LINNUM EQU $005¢ ;Line num returnd
impose a limit of 256 called line pagg ;by LINGET
numbers, but it doesn’t even check for ge67 TXTTAB EQU $0067 ;Ptr to start of
duplicates, so for anything but a very g8gg ;Applesoft prog
small program the table soon fills up B@6E EARS+1 EQU $@Q6E
and overflows. One of the major gggg EARS EQU $o@6D iPtr to end of
f ti ;array space
oo o vaning 0 compres e | G e e
PP cC ° € 906B ARS EQU $¢06B ;Pir to start of
accommodated!] ~—HBauers'’ 9800 ;array space
program/ ‘contains an error. Applesd J06A LOMEM+1 EQU $9@64
allows a statement of the form: 9069 LOMEM EQU $@069 ;Lomem pointer
P68 TXTTAB+1 EQU 30068 :
100 NEXT 1,7, gg;; g%ﬁ:ﬂ ggg :33;;’ Himem point :
; ;Himem pointer
) Mr. Bauers’ COMPRESS reduces @09C LSTLIN+1 EQU $¢¢9C o
this to: 9098 ISTLIN EQU $8#9B ;Ptr to start of
1¢@ NEXT g809 ;1ine found by FNDLIN
. d of: P@AF EPROG EQU $@OAF ;Ptr to end of
instead of: g980@ ;Applesoft prog
1¢@ NEXT :NEXT :NEXT 9@B9 TXTPTR+1 EQU $9@B9
;. ¢@B8 TXTPTR EQU $0@B8 ;Ptr to current
Ve
9809 ;byte of program
_ introducing a logic error }'wo your @OFD IN2+1 EQU $@0FD v progr
AEP“’«\SQ& program! 7 [1[1) 3 LN2 EQU $@@FC ;Hex line number
Not being-able-tc " COMPRESS my @800 ;of undefnd line
large program, 1 resorted to removing @gFB IN1+1 EQU $@0FB
all the REMs manually and finally, POFA LN1 EQU $@0FA ;Hex line number
after several hours work, my program 0808 jcontaining error
was small enough to run. gggg TOKEN EQU $F9 COSUB. THEN tok
. ; , oken
Unfortunately, my source version has o088 OLOPTR EQU $@B8 iPtr to curr posn
suffered as it now lacked comments d8dd ;in old progrem
and was consequently difficult to read. @gFC TEMP EQU $@@FC ;Holds EOS byte
I resolved that I would redesign and 2800 ;until put into LSTEOS
rewrite the compression routine and I
hereunder present my results. I have '
called my routine CMPRSS because it H
will compress an Applesoft program s ¥¥OTHER LOCATIONS**
z;;inuizrleestshﬁﬁ?hgf}iss does; it 9309 DOSWS EQU $@3D@ ;DOS warmst vector
pace. g3F5 BJP EQU $43F5 ;& vector
9509 LINBUF EQU $95@0 ;Base address of
What CMPRSS does dead jemprasd In buffer
CMPRSS compresses an Applesoft) i
program by: 3 *%CONSTANTS** o
{a} Concatenating as many statements ; -
as possible onto one line, thus 1010 ENDLIN EQU $0¢ ;Non-referenced
eliminating many of the unreferenced page ;1ine token
line numbers %23 gUggEA ggU :gg ,ggg quote
. 2 0 U ; comma
(b) Removing the text qf REM 0030 7ERO EQU $3¢ sASCII zero :
statements apd wheret possible the #0939 NINE EQU $39 ;ASCII '9! ol
REM itself {in some instances even 9034 COLON EQU $3A 3ASCII ':!
when a REM line is referenced|* gl LETTRA EQU $41 ;ASCII 'A! :
(c) Removing LETs gggz grm'rox ggg :Zg ;ﬁlt'i ' ol
; oken -
(dl Removing the variable names from QQAA LETTOK EQU $AA ;LET token]
NEXT statements (correctly!) 0BAB GOTOTK EQU $AB ;GOTO token
(e) Truncating variable names to a #0Bd GOSBTK EQU $B¢ ;GOSUB token ol
maximum of two characters* @PAD IFTOK EQU $AD ; IF token
. @gB2 REMTOK EQU $B2 ;REM token
* Additional features not performed by 3aC4h THENTK EQU $C4 STHEN token
COMPRESS. @gFF REFLIN EQU $FF ;Referenced line
g8pp ; token
g8gd ;
No. 73 - July 1984 MICRO 43

900d
ORG $900¢
9@
%gg gg %2 5 START é.gA #<BEGIN ;Establish &
985 A9 9¢ LD: 3?;}3 ; vector How CMPRSS works
00n 15 00 smh bip2 CMPRS
A A9 0@ S operates in two pa
9¢dC 85 73 LDA #<START ;Reset HIMEM to Applesoft program Thp sses of your
9@PE A9 9¢ STA HIMEM ; protect CMPRSS consi : e first pass
; nsists of scanni
LDA #> START ning the program fo
9010 85 74 STA HIMEM referenced line numb oo
9¢12 6@ RTS +1 found in the foll o which are
0
Zgig ig gg DA BEGIN JSR CRDO ;0utput CR t statement types: wing Applesoft
’ 0 screen ’
9p18 AG 94 gy“ :; ggsu ;Print PASS #1 GOTO
9gm 20 3A DB JSR smou'rslA ;message GOSUB
9f1D A2 9@ IF...THEN
9@1F 86 ¢¢ éDT))E g:ggas ;Init error mess ON...GOTO
Zgzll’ 2¢ 97 D6 ISR STXTPT - ON...GOSUB
9027 18 g1 JSR CHRGET jGet next byte CMPRSS does not check the
9929 B1 B8 LDY fhun following commands for referenced
9¢2B D@ 27 BN; S(,.XxvipTR)’ Y ;End-of-prog? line numbers:
9221) 20 FB DA 5B CRDOIN ;No—so branch LIST RUN DEL
9930 A9 6D T
9932 AP 94 IDA #<PASS1B ;Print End Pas hese statements are not
LDY #> PASS1B si commonly used
9934 2¢ 3A DB J Y and can be adjusted
9037 2 ¥ DA JSR STROUT manually after running CMPRSS if