An Introduction
to NSC Tiny BASIC

The Language of the INS8073

Jim Handy
National Semiconductor
2900 Semiconductor Dr.

Santa Clara CA 95051
408-737-4613

National Semiconductor’s new INS8073 Microinter-
preter is the first single IC (integrated circuit) that can be
programmed in a high-level language. Since a description
of the hardware in INS8073-based systems has already
appeared elsewhere (see “On-Chip Tiny BASIC Dumps
Development Systems,” Electronic Design, November
22, 1980, page 235), this article will focus on the language
of the new chip. Called NSC Tiny BASIC, it resembles
other Tiny BASIC interpreters but has certain enhance-
ments, which I'll describe in detail. (See table 1 for a sum-
mary of NSC Tiny BASIC features.) Especially note-
worthy are NSC Tiny BASIC features that make inter-
rupts and input/output (I/0) routines easy to handle and
others that make provisions for multiprocessing.

NSC Tiny BASIC offers advantages to both the inex-
perienced and the experienced programmer. Using NSC
Tiny BASIC, the inexperienced programmer can write
comprehensive programs in much less time than
equivalent assembly-language programs would require.
And since NSC Tiny BASIC lets you jump back and forth

About the Author

At the time he wrote this article, Jim Handy was product marketing
engineer for single-chip microcomputers at National Semiconductor
Corporation. He is now employed by Digital Research.

472 April 1982 © BYTE Publications Inc

between machine code and BASIC, the experienced pro-
grammer can write less important routines in BASIC
while still using assembly-language for critical routines.

Language Expressions

NSC Tiny BASIC permits the use of 26 variable names:
the letters A through Z. The values assigned to these
variables are 16-bit signed integers. Fractions or floating-
point numbers are not allowed.

All numeric constants are decimal numbers except
when preceded by a number sign (#), which indicates a
hexadecimal number. For example, “55” would be treated
as a decimal number, while “#55” would be treated as
hexadecimal (equal to 85 decimal). Decimal constants
must be in the range of —32767 to +32767. Relational
operators are the standard BASIC symbols (= equal to;
> greater than; < less than; < = less than or equal to;
> = greater than or equal to; < > not equal to). The
relational operators return either a 0 (FALSE) or —1
(TRUE) as a result. Note that > < is an illegal operator.

Standard arithmetic operators are provided for the
four basic arithmetic functions (+ addition; — subtrac-
tion; / division; » multiplication). The arithmetic is stan-
dard 16-bit two's-complement arithmetic. Fractional quo-
tients are truncated at the right, not rounded, and re-
mainders are dropped; therefore, both 16/3 and 17/3

give 5 as a result. As usual, division by zero is not permit-
ted; it will result in an error break.

NSC Tiny BASIC follows the usual algebraic rules for
order in evaluating expressions. Parentheses control the

The following program shows how the logical AND can
be used with other relational operators:

order of evaluation, and you should use them liberally. > LIST
They insure clarity in complicated expressions 10 INPUT A
/ : i ' 20 INPUT B

NSC Tiny BASIC provides logical operators AND,
OR, and NOT. These perform bitwise logical operations
on their 16-bit arguments and produce 16-bit results. The

30 IF (A>50) AND (B> 50) THEN GO TO 60
40 PRINT “ONE OR BOTH ARE SMALL"

g 50 GOTO 10
AND and OR operators are 'called binary operators 60 PRINT “BOTH ARE BIG”
because they perform an operation on two arguments (or 70 GO TO 10

operands). Here’s an example of the use of AND, with the
binary interpretation shown at right:

Tf we run the program, console output will look like this:

>LIST
10A =75 A = 0000 0000 0100 1011
20B =99 B = 0000 0000 0110 0011 >RUN
30C=AANDB C = 0000 0000 0100 0011 151
40 PRINT C 752
>RUN BOTH ARE BIG
67 151

Expressions INPUT $ A {nputs a string to successive memory loca-
) tions starting at focation A
Variable Names A—2Z H A L
Decimal constants in the range — 32767 to + 32767 PRINT S:é?:‘t:l :?Jomr&?};?‘gzro‘:erggsﬁ m,gsnges
Hexadecimal numbers {preceded by a “'#") PRINT $B Prints string beginning at address B up to
‘Operators) next carriage rturn
) Assignment Statements
Retational Operators LET Sets a variable, memory jocation, string
= variable or the status register 10 value
> entered
< Program-Contro! Statements
>= GO TO Branches to line number
<> GOSUB Calls subroutine at line number
Arithmetic Operators RETURN Returns control from subroutine to line
+ following GOSUB statement
- {FITHEN Shifts program contro! based on resutlt of
! v logical test
) (DO/UNTIL Causes repetition of enclosed statements
Logical Operators until specified condition is met
ggo FOR/NEXT Causes repetition for specified number of
times
NOT STEP Sets size of increment in iterations of
. FORINEXT statements
The Indirect Operator . LINK Transfers control to @ machine-language
(/] Accesses absolute memory locations one routine at a specitied address
byte at a time; e.g., LET X= @6800 assigns ON Helps process interrupts; “ON interrupt-#1,
value at address 8800 to X. 200’ transfers control to GOSUB statement
Functions at line 200 when specified interrupt occurs.
STOP Causes program to stop and prints current
MOD (a.b) Yieids absolute value of remainder from line number, then returns to edit mode
division of a by b CONT Resumes execution of program stopped by
RND (a.b) Generates pseudorandom integer in range STOP
from a through b, inclusive DELAY Delays execution for specified number of
STAT Represents 8-bit value of the status register time units up to maximum of 1040
TOP Yields address of first byte above the pro- milliseconds
gram in the current page of RAM CLEAR Initializes all variables to 0, disables inter-
INC increments a memory location rupts, enables BREAK capability, resets all
DEC Decrements a memory location stacks
Statements Commands
Input/Output Statements NEW Establishes a new start-of-program address
INPUT Inputs one or more expressions or numbers, RUN Runs the current program
separated by commas (or spaces) LIST Lists the current program
Table 1: A summary of NSC Tiny BASIC features.

April 1982 © BYTE Publications Inc 473

749

ONE OR BOTH ARE SMALL
749

749

ONE OR BOTH ARE SMALL
1 C

STOP AT 10

>

The following similar program shows the use of a logical
OR with other relational operators:

>LIST

10 INPUT A

20 INPUT B

30 [F (A>50) OR (B>50) THEN GO TO 60
40 PRINT “BOTH ARE SMALL"

50 GOTO 10

60 PRINT “ONE OR BOTH ARE BIG”

70 GO TO 10

Here's a sample run:

>RUN

151

T52

ONE OR BOTH ARE BIG

‘Reliable Business
-~ Software

' DATASMITH software requires no previous computer
| experience, so itcan be used effectively by your present
" office staff. The menu-driven systems feature extensive
_ error detection and correction facilities, so they are
.. “friendly” to the user.

® GENERAL LEDGER. Everything you need to keep
the books. Features easy-to-use data entry and
error correction, trial balance, fast post, and a vari-
ety of comprehensive reports. Automatic error
detection keeps the books in balance. Writes
checks and makes journal entries in one operation.

® PAYROLL. A very flexible system that adapts to a
wide variety of needs. Features Federal, state, and
local tax calculations, El credit, and special pay
and deduction amounts. Prints all necessary
reports, paychecks, and W-2 forms.

e DATA MANAGER. A powerful generalized data
management system that lets you define, enter, up-
date, sort, select, and print reports from a database
of your own design. Applicable to almost any job
where records must be kept, this system can
replace literally hundreds of programs.

. Put your computer to work with these sophisticated

systems now. Programs are available for 48K or larger
| two-disk systems in your choice of code for Microsoft
BASIC-80® under CPIM® or Micropolis® BASIC. Write
or call for complete details. Customized systems aiso

available. DHTHSM‘TH

Box 8036, Shawnee Mission, KS 66208, (913) 381-9118

474 April 1982 © BYTE Publications Inc

Circle 138 on inquiry card.

751
749

ONE OR BOTH ARE BIG
749

749

BOTH ARE SMALL

1°C

STOP AT 10

>

The third logical operator (NOT) is unary; i.e., it per-
forms an operation on only one argument. An example
follows, again showing the binary interpretation at right:

>LIST
10A =11 A = 0000 0000 0000 1011 = 11
10
20B = NOT A
30 PRINT B B = 1111 1111 1111 0100 == —12
>RUN 10
-12

Tiny BASIC Functions

NSC Tiny BASIC offers several functions for use in
arithmetic expressions. For example, the MOD (or
modulo) function returns the absolute value of the re-
mainder from the division a/b, where a and b are ar-
bitrary expressions. If the value of b is zero, an error
break will occur as in any division operation. Here's an
example of the use of MOD:

>LIST
10 A = 95 2
20B = 44 44 /95
30 PRINT MOD (A,B) 88
>RUN 7 MOD (95,44)
7

The NSC Tiny BASIC random-number generator is
called RND, and it returns a pseudo-random integer in
the range from athrough b, inclusive. For the RND func-
tion to perform correctly, a should be less than b, and

b—a must be less than or equal to 32767 (decimal). A
typical example is:

>10 PRINT RND (1,100)
>RUN
27

The STAT function returns the 8-bit value of the INS8073
status register. STAT may appear on either side of an
assignment statement, enabling you to modify the status
register as well as read it. The carry and overflow flags of
the status register are usually meaningless, because the
NSC Tiny BASIC interpreter itself is continually modify-
ing these flags. The interrupt-enable flag may be altered
by an assignment to STAT (e.g., STAT = #FF). Loca-
tions of individual flags in the status register are shown in

table 2. The function of each bit in the status register is
shown in table 3. Here is an example of the use of the
STAT function:

>LIST
10 LET A = STAT
20 PRINT A
>RUN
176 The decimal number, 176, translates to
1011000 0 binary.

Other Functions

The TOP function returns the address of the first byte
of RAM (random-access read/write memory) above the
NSC Tiny BASIC program that is available to the user.
This will be the address of the highest byte in the NSC
Tiny BASIC program, plus 1. A program can use all the
memory in the RAM above and including TOP as
scratchpad storage. As an example:

>10 PRINT TOP
>RUN
4400 4400 is the first address of unused RAM

The INC and DEC functions increment or decrement a
memory location X. Here are some examples:

10 LET X=1032
20 A=INC(X)

.

50 B=DEC(X)
60 X =INC(6000)
70 Y=DEC(6000)

These instructions are used for multiprocessing and are
noninterruptible. This means that if two 8073s are used
on the same bus, whenever one processor executes an
INC (X) or DEC {X) instruction, the other processor must
remain idle. These instructions are generally used for
communications between processors in a multiprocessor
system.

Statements

The INPUT statement is used to input data to an NSC
Tiny BASIC program. One or more items (variables, ex-
pressions, etc.), separated by commas, may be entered
according to the following formats:

N U

Most Least
Significant Signiticant
Bit 7 6 5 4 3 2 1 0 Bit

CYIL. OV 88 SA F3 F2 F1 IE

Table 2: A representation of the INS8073 status register. Bits
5 through 0 can be either read or set from NSC Tiny BASIC.

10 INPUT A
20 INPUT B,C

When the statement at line 10 is executed, NSC Tiny
BASIC prompts you with a question mark. You typeina
number, which is assigned to the variable A after you
press the RETURN key. NSC Tiny BASIC then prompts

—

BIT DESCRIPTION

7 CARRYI/LINK (CYIL): This bit is set to 1.if a carry occurs .
from the most significant bit during an add, a subtract, or
any instruction that alters the status register. This bit
may aiso be set by the operations performed by the
SHIFT RIGHT WIiTH LINK (SRL) and the ROTATE RIGHT
WITH LINK (RRL) machine-language instructions.

6 OVERFLOW (OV): This bit is set if an arithmetic
overflow occurs during a machine-language add or sub-
tract instruction.

NOTE: ‘Bit 7 and bit 6 may be of littie or no use in an
NSC Tiny BASIC program.

5 SENSE BIT B (SB): Tied to.an external connector pin,
this bit can be used to sense external conditions. This is
a “read-only” bit; it is not affected when the contents ot
the accumulator are copied into the status register by a
STAT instruction. Sense bit B is also the second interrupt
input and may be examined by use of the “ON" com-
mand.

4 SENSE BIT A (SA): Like sense bit B, this bit is tied-to an
external connector pin and serves 1o sense external con-
ditions. In addition, sense bit A acts as the interrupt input
when the INTERRUPT ENABLE (see bit 3 of status
register below) ts set. This bit is also a “read-only” bit
and can be examined with the "'ON" command. NSC
Tiny BASIC uses this bit as the serial input bit from the
TTY or CRT.

3 USER FLAG 3 (F3): This bit can be set or resetas a
controf function for external events or for software
status. it is available as an external output from the
INSBO73.

2 USER FLAG 2 (F2): Similar to F3. This flag is used by
NSC Tiny BASIC to control the paper-tape reader relay.

1 USER FLAG 1 {F1): Similar to F3. This flag is used by
NSC Tiny BASIC as the serial-output bit (with inverted
data) to the TTY or CRT.

NOTE: The outputs of flags 1, 2, and 3 of the status
register serve as latched flags. These flags are set to the
specified state when the contents of the status register
are modified by an assignment to STAT, and remain in
that state until the contents of the status register are
modified under program control.

0 INTERRUPT-ENABLE FLAG (IE): The processor
recognizes the interrupt inputs if this flag is set. This bit
can be set and reset under program control. When the
interrupt-enabie flag is set, NSC Tiny BASIC recognizes
external interrupt requests received via the SENSE A or
B inputs. When reset, this interrupt-enable flag prevents
the INS8073 from recognizing interrupt requests.

Table 3: A summary of the function of each bit in the
INS8073 status register.

April 1982 © BYTE Publications Inc 475

you with another question mark, and you type in two
numbers, separated by commas. These numbers will be
assigned to B and C in that order. A sample run follows:

RUN
145
1 237, 4455

NSC Tiny BASIC would now continue execution of the
program,

NSC Tiny BASIC accepts expressions as well as
numbers in response to an INPUT request. For example:

>LIST
10A=10
20 INPUT B,C
30 PRINT B,C
>RUN
TA+1,A2
11 20

The comma between the entered expressions is not man-
datory and can be replaced by spaces if the second ex-
pression does not start with a plus or minus sign. There
must be at least as many expressions in the input list as
variables in the INPUT statement. If an error occurs
when NSC Tiny BASIC tries to evaluate the typed-in ex-
pression, the message

RETYPE

is printed along with the error message, and the question
mark prompt will appear again so that you can type the
expressions. correctly.

NSC Tiny BASIC allows string input, as described in
the section on string handling, found later in this article.
INPUT may not be used in the command mode.

The PRINT statement is used to output information
from the program. Quoted strings are displayed exactly
as they appear, with the quotes removed. Numbers are
printed in decimal format. A space precedes positive
numbers, and a minus sign precedes negative numbers.
All numbers have a trailing space. A semicolon at the
end of a PRINT statement suppresses the usual carriage
return and line feed with which NSC Tiny BASIC ter-
minates the output.

Strings stored in memory (such as those generated by a

string input statement) may also be printed. A typical ex-
ample:

>LIST
PRINT “THIS IS A STRING”
20 A=10
30 B=20
40 PRINT “10 PLUS 20=", A+B
RUN
THIS IS A STRING
10 PLUS 20= 30

476 April 1982 © BYTE Publications Inc

The word LET may be used or omitted in an assign-
ment statement, but the execution of an assignment state-
ment is faster if the word LET is used. The left portion of
an assignment statement may be a simple variable (A
through Z), STAT, or a memory location, which is in-
dicated by an @ followed by a variable, a number, or an
expression in parentheses. Here are some sample
assignments:

LET X=7
X=7

LET E=I+R
E=I+«R
STAT=#70
LET @A =255
@(T +36)=4FF

Conditional assignments may be made without using
an IE.statement. The method hinges on the fact that all
predicates are actually evaluated to yield —1 if true and 0
if false. Thus, if a predicate is enclosed in parentheses, it
may be used as a multiplier in a statement as shown here:

LET X= —A+(A> =0)+A+(A<0)

This statement would assign the absolute value of A to X.

Program Control

NSC Tiny BASIC provides an assortment of program-
control statements. The GO TO staterrent permits pro-
gram branches to a specific line number or a line number
called by an arbitrary expression. For example,

10 GO TO 50

would cause the program to jump from line 10 directly to
line 50, but

10 GO TO X+5

would cause the program to jump from line 10 to line
X+35. The value of X is variable, allowing dynamic con-
trol of program execution at this point.

The GOSUB and RETURN statements are useful when
a computation or operation must be performed at more
than one place in a program. Rather than write the
routine over again each time it is needed, you employ a
GOSUB instruction to “call” the computation or opera-
tion (referred to as a subroutine). After the subroutine
has been executed, a RETURN instruction (the last in-
struction of the subroutine) causes the program to resume
execution at the next line number following the original
GOSUB instruction. An example is shown in figure 1.
GOSUBs may be nested up to eight levels deep (including
interrupt levels).

The IF. . .THEN statement allows program control to
be modified by a logical test condition. The test condition
follows the IF clause of the statement. When the test con-
dition is true (nonzero), the THEN portion of the state-
ment will be executed. When the test condition is false
(zero), the THEN portion will be ignored and execution
will continue at the next numbered line of the program.
For example:

50 IF X>J THEN GO TO 140

NSC Tiny BASIC allows the omission of the word
THEN from an IF. . .THEN statement. This. omission,
also allowed on some larger BASICs, enhances the clarity
of the program. The previous example would become:

50 IF X>J GO TO 140

The DO. . .UNTIL statement is unique to NSC Tiny
BASIC. Borrowed from Pascal, this statement is used to
program loops, thus keeping GO TO statements to a
minimum. The DO. . UNTIL statement makes NSC
Tiny BASIC programs clear in structure and easy to read.
The following example shows the use of DO. . .UNTIL
statements to print numbers less than 100:

MAIN PROGRAM

10 LET X=5

20 B=X+8

50 GOSUB 200

10 PRINT 1: PRINT

20PRINT 2

301I=3 :REM 11S NUMBER TESTED

40 DO

S0J=1/2 :REM] IS THE LIMIT

60 N=1 :REM N IS THE FACTOR

70 DO :REM SEEKS A DIVISIBLE
FACTOR OF 1

80 N=N+2

90 UNTIL (MOD({,N)=0 OR (N>J))
100 IF N> J PRINT I :REM NO DIVISIBLE FACTOR
110 I=142

120 UNTIL (I>100) :REM ENDS THE SEARCH

By enclosing a 0 or more statements between the DO and
the UNTIL < condition> statement (where the < condi-
tion> is any arbitrary expression), you cause repetition
of the enclosed statements as a group until the < condi-
tion> evaluates to a nonzero number (a true condition).
DO. . .UNTIL loops can be nested, and NSC Tiny
BASIC will report an error if the nesting level becomes
too deep (more than eight levels).

The FOR. . .NEXT statement in NSC Tiny BASIC is
identical to the FOR. . .NEXT statement in standard

SUBROUTINE

60 X=A/B

100 GOSUB 200~

— 200 Y=X+B/R

F e - -
r'd
s
/ - .
s
' d
4
L4 - -
P
- .

9110 X=X*B

\

-
—-—
—— — — ——

Figure 1: The effects of fh_e GOSUB and RETURN statements in NSC Tiny BASIC. On the first GOSUB call (line 50), the order of
execution follows the solid arrows. On the second GOSUB call (line 100), the order of execution follows the dashed arrows.

April 1982 © BYTE Publications Inc 477

BASICs. A STEP function in the FOR statement may be
used to specify the size of the increment in each iteration
of the statement. In the absence of a specified STEP, NSC
Tiny BASIC assumes a STEP value of +1. The value of
the STEP may be either positive or negative. Starting and
ending values of the FOR. . .NEXT loop are included in
the FOR statement. The loop is repeated when the NEXT
statement has been executed, provided the upper limit of
the FOR statement has not been reached. When the upper
limit is reached, the program will exit from the
FOR. . .NEXT loop. NSC Tiny BASIC causes an error
break if the variable in the NEXT statement is not the
same variable as that used in the FOR statement.

FOR. . .NEXT loops may be nested, and NSC Tiny
BASIC will report an error if the nesting level becomes
too deep; a depth of four levels of FOR loop nesting is
allowed. A FOR loop will be executed at least once, even
if the initial value of the control variable already exceeds
its bounds before starting. The following program would
print the odd integers less than 100:

10 N=100 :REM UPPER LIMIT

20FORI=1TONSTEP2 :REM START AT 1 WITH
STEP OF 2

30 PRINT I :REM PRINT A NUMBER

40 NEXT I :REM REPEAT (at line 20)
20)

When increased execution speed is needed, you can use
a LINK statement to transfer control from an NSC Tiny
BASIC program to an INS8073 machine-language rou-
tine. A statement of the form LINK <address> will
cause transfer of control to the INS8073 machine-
language routine, starting at the specified address. Con-
trol is transferred by execution of a JSR (Jump to Sub-
routine) instruction.

The INS8073 has two address pointers, P2 and P3, in
addition to the program counter and the stack pointer.
When a LINK statement transfers control to a machine-
language routine, the routine can modify the pointers P2
and P3. The value of pointer P3 is unpredictable; P2
points at the starting location of the storage of A through
Z variables. These variables are stored in ascending
alphabetical order, two bytes each, low-order byte first.
Here is an example:

10 LINK #1800 NSC Tiny BASIC trans-
20 IF A=0 THEN PR fers to address #1800
“SENSE A IS LOW” to read sensor.
30 IF A=1 THEN PR
“SENSE A IS HIGH”

99 STOP Program transfers back
>RUN to NSC Tiny BASIC
SENSE A IS HIGH
STOP AT 99
>RUN
SENSE A IS LOW
STOP AT 99

478 April 1962 © BYTE Publications Inc

The program above requires the machine-language
program described below to be loaded into address 1800
hexadecimal.

1 TITLESENSE ;THIS PROGRAM
READS SENSE A PIN

20000 .=01800

3 1800 06 LD AS ;TINY BASIC JUMPS
HERE

41801 D410 AND A,=16

51803 6C02 BZ LOW

61805 C401 LD A, =1

71807 CA00 ST A,0,P2 ;STORES AC-
CUMULATOR INTO
LOCATION OF
VARIABLE A

81809 SC RET ;RETURN TO TINY
BASIC

9 0000 .END

The ON statement helps process interrupts. The format
of the statement is:

ON interrupt—#, line-number

When the numbered interrupt (interrupt — #) occurs, NSC
Tiny BASIC executes a GOSUB statement beginning at
the line number given. If the line-number given is zero,
the corresponding interrupt is disabled at the software
level. Interrupt numbers may be 1 or 2. Use of the ON
statement disables console interrupts (BREAK function).
Interrupts must also be enabled at the hardware level by
setting the interrupt-enable bit in the status register (e.g.,
using STAT=1).

Although the last line of a program does not have to be
a STOP statement, use of a STOP in this way does help
in debugging, The STOP statement may be inserted as a
breakpoint in an NSC Tiny BASIC program. On en-
countering a STOP statement, NSC Tiny BASIC prints a
stop message and the current line number, then returns to
the edit mode. Thus, you can see whether your program
has reached the desired point. Any number of STOP
statements may appear in the program. By removing the
STOP statements one by one, you can test the program in
parts until debugging is completed. Execution of a
stopped program may be continued after the STOP by a
CONT (continue) command.

Other Useful Features

The DELAY statement delays NSC Tiny BASIC for
“expr’” time units (nominally milliseconds, 1 through
1040). Delay 0 gives the maximum delay of 1040 ms. The
format is:

DELAY expr
For example:

>10 DELAY 100 Delay 100 ms.

The CLEAR statement initializes all variables to 0,
disables interrupts, enables BREAK capability from the
console, and resets all stacks (GOSUB, FOR. . .NEXT,
and DO, . .UNTIL). For example:

10 ON (2,250) Break is disabled, Interrupt 2 is
enabled.

300 CLEAR Break is reenabled, Interrupt 2

is disabled.

The indirect operator is an NSC Tiny BASIC exclusive,
at least in the realm of BASIC. This operator performs
the functions of PEEK and POKE with a less cumbersome
syntax. The indirect operator can access absolute
memory locations and can service input/output devices
as well. Its utility is especially significant for
microprocessors like the INS8073, for which interfacing
is commonly performed through memory addressing.

When an “at” sign (@) precedes a constant, a variable,
or an expression in parentheses, that constant, variable,
or expression is taken as an unsigned 16-bit address at
which a value is to be obtained or stored. Thus, if an in-

put device has an address of #6800 (hexadecimal), the
statement

LET X=@#6800

would input from that device and assign the value of the
input to the variable X. If the address of an output device
was #6801, the statement

@#6801=Y

would output the least significant byte of Y to the device.
The indirect operator accesses memory locations only
one byte at a time. An assignment such as @A =248
changes the memory location pointed to by A to 248
binary (1111 1000), since 248 can be expressed as one
byte. However, an assignment such as @ A =258 changes

the memory location pointed to by A to 2, because ex-.

pressing the value 258 causes a carry to a ninth bit, which
is lost, as shown below:

2580 = 1 0000 0010
extra one byte (stored into location to
bit which A would point)

Only the least significant byte of 258 (which is 2) is stored
at the location to which A would point.

In any place where a variable, such as B, would be
legal, the construct “@B” (which means the byte located
at the memory location whose address is the value of B)
would also be legal. Here are some other examples:

40 LET B=6000
50 LET @B=100.

Assigns 6000 to B.

Stores decimal 100 in
memory location 6000.
Sets C equal to 100.
Prints 100.

Sets D equal to the value
stored in memory location
(A+10-D).

60 LET C=@B
70 PRINT @6000
80 LET D=@(A+10+D)

Parentheses are required when @ is applied to an expres-
sion.

More than one statement can be placed on one pro-
gram line by placing a colon between the statements. This
technique can improve readability of the program and
can save memory space. Here is an example of the use of
multiple statements:

200 PRINT “MY GUESS IS”,Y:PRINT “INPUT A
POSITIVE NUMBER";: INPUT X:
IF X <=0 GO TO 200

If X is negative or zero, you will be instructed to enter a
positive number, and the program will return to line 200
for a new guess. If you had entered a positive number
correctly, the program would have proceeded to the next
numbered line after line 200.

You must use multiple statements per line with care.
The above example shows that if the condition of the IF

With REFORMATTER disk utilities vou can read and write
IBM 3740 and DEC RT-11 single density formaned diskettes on vour
CP/M® system.

REFORMATTER enables you to access farge system databases,
improve data exchange with other organizations, increase program
development capabilities, and use your micro in distributed processing,.

REFORMATTER programs feature bi-directional data transfer
and full directory manipulation. ASCII/EBCDIC conversion provided
with CP/M «IBM. MP/M is now fully supported.

Program Data Sheets, Application Guides, and Machine Compati-
bility Guides available.

Each program $195.00 from stock. Specify CP/M «» IBM or
CP/M <> DEC. Order from MicroTech Exports, Inc., 467 Hamilton
Ave., Suite 2, Palo Alto, CA 94301 5 Tel: 415'324-9114 I TWX:
910-370-745~ MUH-ALTOS [J Dealer and OEM discounts available.

= ®)

CP/M® is & registered trademark of Dagaal Research

-

Circle 276 on inquiry card. April 1962 © BYTE Publicatiors Inc 479

statement is false, control passes to the next program line.
Anything else on the line containing multiple statements
will be ignored.

String Handling
To input string data, a statement of the form

INPUT $ F

where F is a starting address, is used. When the program
reaches this statement during program execution, NSC
Tiny BASIC prompts you with a question mark (2). All
line-editing characters may be used (back space, line
delete, etc.). If a control-U is typed to delete an entered
line, NSC Tiny BASIC will continue to prompt for a line
until a line is terminated by a carriage return. The line is
stored in consecutive locations, starting at the address
pointed to by F, up to and including the carriage return.
For example,

20 INPUT $ A
may also be written
20 INPUT $A

and inputs a string to successive memory locations start-
ing at A.

An item in a. PRINT statement can include a string
variable in the form of $B. When the print statement is
encountered during program execution, the string will be
printed beginning: at the address B up to, but not in-
cluding, a carriage return. A keyboard interrupt will also
terminate the printing of the string if the interrupt is
detected before the carriage return. For example,

50 PRINT $B

prints the string beginning at the location pointed to by
lIBIl.

Characters in quotes can be assigned to string variables
just as numerical values are assigned to other variables. A
statement of the form

$C="THIS STRING IS A STRING”

when encountered during program execution, would
cause the characters in quotes to be stored in memory
starting at the address indicated by C and going up to and
including the carriage return at the end of the line. For
example:

70 $D="THIS IS A STRING WITH NO
INPUT STATEMENT.”

A T is stored at location “D”, an H at

location “D+1", etc.

Strings can be moved from one memory block to
another. A statement of the form

480 Apeil 1982 © BYTE Publications Inc

$A=%B

(where A and B are addresses) will transfer the characters
in memory beginning with address B to memory
beginning with address A. The last character, normally a
carriage return, is also copied. Note that a statement such
as

HA+1)=%A
would be disastrous, because it fills all of RAM with the

first character of $A. Here is an example of moving one
memory block to another location:

10 A=TOP :REM A POINTS TOEMPTY
RAM ABOVE TOP OF
PROGRAM
20 C=TOP+100 :REM C PQINTS TO RAM 100
BYTES ABOVE A
30 D=TOP+200 :REM D POINTS TO RAM 100
BYTES ABOVE C
40 INPUT %A :REM STORES CHARACTERS
WHERE A POINTS
50 PRINT %A
60 LET $C="1IS THE STRING INPUT AT LINE 10"
70 $D=%C :REM STORES CHARACTERS
WHERE D POINTS
80 PRINT $D
Commands

The NEW command establishes a new start-of-
program address equal to the value of “expr”’. NSC Tiny
BASIC then executes its. initialization sequence, which
clears all variables, resets all hardware/software stacks,
disables interrupts, enables BREAK capability from the
console, and performs a nondestructive search of RAM.
If the value of “expr” points to a ROM (read-only
memory) address, the NSC Tiny BASIC program that
begins at that address will be automatically executed. The
NEW: command does not alter memory (including the
end-of-program pointer used by the editor). For example:

>NEW 1000

NEW used without an argument sets the end-of-
program pointer equal to the start-of-program pointer, so
that a new program may be entered. If a program already
exists at the start-of-program address, it will be lost. For
example:

>NEW 1000 Sets program pointer to 1000
>NEW Sets end-of-program pointer to 1000

The RUN command runs the current program. For
example:

>RUN Execution begins at lowest line
number

The CONT (continue) command continues execution
of the current program from the point where execution
was suspended (via a STOP, console interrupt, or reset).
An NSC Tiny BASIC program that is executing can be in-
terrupted by pressing the BREAK or RESET keys on the
keyboard. Execution can be resumed by entering the
CONT command. For example:

>RUN
THIS IS THE STRING INPUT AT LINE 10
THIS IS THE STRING INPUT AT LINE 10
THIS IS THE STRING INPUT AT LINE 10
THIS IS THE STRING INPUT AT LINE 10 Press
_ BREAK or RESET.
C

>CONT
THIS IS THE STRING INPUT AT LINE 10
THIS IS THE STRING INPUT AT LINE 10
And so on...

The LIST(expr) command lists the current program °

{optionally starting at the line number specified by
“expr”). For example:

>LIST 10

10 INPUT $A

20 PRINT $A

30 LET $C="1S THE STRING INPUT AT LINE 10"
40 $D=9%C

S0 PRINT $D

Conclusion

NSC Tiny BASIC and the INSB073 Microinterpreter
Chip offer many advantages to the programmer. NSC
Tiny BASIC's indirect operator represents a substantial
improvement over the usual PEEK and POKE statements.
The DO . . . UNTIL statement brings the advantages of
structured programming into the realm of Tiny BASICs
for the first time. These and other advanced features of
NSC Tiny BASIC offer you tht convenience of a high-
level language as well as new possibilities for elegance
and efficiency in process-control and other applications
often reserved for assembly language.

Furthermore, with NSC Tiny BASIC and the INS8073,
transferring programs from RAM to ROM is remarkably
simple. Because the INS8073 executes ASCII (American
Standard Code for Information Interchange) data, if the
program will run in RAM, it will run in ROM. You don't
have to put anything in ROM except what you put on
paper.

Programmers have already used the INS8073 and NSC
Tiny BASIC for a wide variety of applications, including
precision measurement of conditions in oil wells and
testing the feasibility of the digital design of an FM tuner.
In the coming years, the INS8073 and NSC Tiny BASIC
will simplify many other complex tasks.m

CATCH THE S-100 INC. BUS!

e

OUR
MEMORY LIST SPECIAL
PRICE CASH
EXTRAVAGANZA __ PRICE
GODBOUT - RAM-17-64K
STATIC A&T 795.00 579.00
MORROW DESIGNS - 65K :
STATIC A&T 775.00 579.00 -
MEMORY MERCHANT ;
16K STATIC A&T 179.00 148.00 !
SEATTLE COMPUTER :
PRODUCTS 8/16 RAM - ,
STATIC 64K A&T 995.00 795.00
NORTH STAR RAM - 32
DYNAMIC A&T 739.00 399.00
SSM MB64 64K STATIC
A&T -849.00 695.00
CCS 64K DYNAMIC ART 750.00 519.00 +

Subject to Available Quantities = Pnoes Quoted include Cash Discounts.
Shipping & Insurance Extra.

S-100,inc.

14425 -North 79th Street, Suite:B
Scottsdale, ‘Arizona 85260
‘Order Number - 800-528-3138
Technica!l 602-991-7870

CAN'T MAKE ENDS MEET?

We couldn't either. At least, not untif 1978 when we
began connecting RS-232 devices to IEEE-488
computers with our family of serial interfaces. Three
units available for use with Commodore's PET/CBM, the
HP-85, Osborne-1 and others-plus our IEEE-488
auto-answer/auto-dial 103 Modem and data
communications software. Each interface complete with
cabinet, one-year warranty, documentation. Priced from
$129-389. Details from George Masters:

Dept. B. , 3444 Hancock St., San Diego, CA 92110

(714) 296-2115 » TWX 910-335-1194
VISA/MasterCard » Dealer inquiries Welcome

Circle 417 on inquiry card. April 1982 © BYTE Publications Inc 481

