nstantPascal

el

R

[enueur s;lasn [BISeduessur

Electronic Devices Division
3310 Miraloma Avenue
P.O. Box 3669

Anaheim, CA 92803

Toll Free (800) 854-8099
in California (800) 422-4230

o\

(uiv‘mgod interactive microcomputer

Rockwell

Rockwell International

International

on:

where science gets down to business

 AIM6S

advanced interactive microcomputer |

Rockwell
International

2\

..where science gets down to business

c Rockwell International Corporation 1981 Document No |

All Rights Reserved

Printed in the U.S. A 29650“85

Cm | = e T 1

.- — - e T S,

TABLE OF CONTENTS

Section Title Page

1 Introduction

1.1 ATM 65 Instant Pascal OvVerview.:..ss:seseees i-2
1.2 AIM 65 Instant Pascal User's Manual

DESCI’iPtiOn-*--.--.--......---.---- ------ » 1-3
1.3 Reference DOoCUMENES .t s eo v oo veovsvecsscsnes 1~-5
2 Tnstallation and Initialization
2.1 Installing Instant Pascal ROMS.....c.0ceesn 2-1
2.2 Entering, Exiting and Re-Entering Instant
Pascaltiil--lllill-lrl-ililllli!lilltiitli-lilll 2—5
2.2.1 Entering Instant Pascal (5 Key).... 2->
2.2.2 Exiting Instant Pascal (ESC Key)... 2-5
2.2.3 Re-entering Instant Pascal (5 Key). 2-6
2.2.4 Start Application Program in PROM
(6 KQY)tliilli-lli!ililliilllllilii 2""6
7. 9.5 Transitions Between Wait States.... 2—-6
3 Instant Pascal Operation
3.1 Read Source Input (R Command)}...... ceeeee 3-1
3.2 Source Output CommandsS...cecoeessssoecsoen 3-3
3.2.1 List Current Text Unit
(SPAEE Commaﬂd) --------------- PRI TN 3-3
3.2.2 Move Text Polinter to the Top
(T Command).--..--.-...--f-----n--- 3_3
3.92.3 List Text Units (L Command)........ 3=4
3.3 Initializa—timnlli'illitliiii‘lli‘ lllllllll 3—.6
3.3.1 Report Available Memory
(M Command) « o s coossevecerssansossoes 3-6
3.3.2 Initialize Memory (N Command) 3=7
3.3.3 1Initialize Instant Pascal
(Z Command)----------..--.--.--u--n 3_7
3.3.4 Redefine Page Width (W Command)... 3-7

3-4 ProgramEditil‘lg-.-.---.....-..--.-..--..--. 3"'8

3.4.1 Move the Text Pointer to the Bottom
(B Command) e coeeesessssonssnssenses 3-8
3.4.2 Move the Text Pointer Up
(U Command) ccavevsseoscsconsossssas 3-9
3 View Five Text Units (V Command).. 3-9
.4 Move the Text Pointer Down
(D ComManA) e o eeeeeesssosesecsssosses 3=

Section

TERRWE

Program Debugging

4.1

4.2

TABLE OF CONTENTS (con't)

Title

LR S N N

W W W Ww
e S N WO

Program Binding {(C Command)....
Program Execut1on.cecececrsessoeecnsonse

3.6.1
3.6.2

3.6.3

Tracing......

4.1.
4

1
. 1.2

Delete Text Units

Insert a Text Line
Find a Text String
Program Change Examplec....oc...

Execute Program

Execute and Trace Program
CommMand) v oo veeserooscccncsoncs
Interrupt Program

& & & & & % @9

(G Command)...

*

(K Command)..

(I Command).
(F Command)

(DEL Command)

*

Statement Tracing (S Command)...
Assignment Tracing (A Command)....

Immediate Statement Execution (X Command)

Instant Pascal Text Units

L

5.1
5.2

Diagnostic Messages

6.1
6,2

6.3
6.4

Instant Pascal TL.anguage Definition

7.1

Text Units 1in EAiting.cee...
Definitions of Text Units...

Source Input Diagnostics....
Binder DiagnosticCS.esecasose

L
»

oW N -

NN OV Oy
N NN N

- »

Execution-Time Diagnostics.

* & & & © & &% & B

t % 9 & & &

SEQUENCE DiagnostiC.e:seeceecsss
Identifier Lookup Diagnostics.
Label Lookup DiagnosticCS......
Type Consistency Diagnostics..

Source Output D1agnosSticCS.ceceeeecsees

* & & & » »

Summary of DLxtensions and Restrictions.

7.1.1
T.1.2

i1

E}(.tenSiDnSllil"'l‘li‘i.lﬁl.lﬁﬁﬁ
Restrictions. .

% & & & & & & T ¥ " & B & F 8 B B

3~10
3-11
3-13

3—15

3-16
3-17

Ui
I
~1 N

Sy Y
I
(D

mclhmm
U Do Ww

oy O\
{
N OV

~J ~J
I
N

Section

7

7.3

. 2

TARLE OF CONTENTS (con't)

Title

Word-Symbols and Predefined Identifiers....

L]

*

o L B
NN BB BN
O Wi+

Comparison to Standard Pascal.ceecsseo

7.3.1

ot N IS R

- »
W w W wWw
L]

S RN N PN RN O

w W W W

G W N

= O

- 00~ O

Notation,
VocabularXy.es oo

Identifiers,
Constant Definitions...
Data Type Definitions......
Declarations and Denotations of
Variables...
EXpresslonsS.. ...

StatementSeeesoess *
Procedure Declarations...

Predicates..
Input and Output...
ProgramsSe s« e e s e

Wword Symbols...
Predefined Type Identifiers....
Predefined Boolean Constants...
Predeclared Procedures....
Predeclared FunctlionsS....

111

»

« & # & » P

» &2 &+ 8

* & @

& & = & & & = B

L]

Terminology and

s 8 » » & 5 ¥ 8 9 B

* & ©

& & W &

"« & & % & &% & 8 & ¥

L]

v =&

Numbers and Strings..

4 & + »

a & & B & & = ¥ @

iiiii

7-10
7—-11
7-11
7-11

7-12
7-13
7-13
7-14
7-14
7-14
7~-15

SECTION 1

INTRODUCTION

TABLE OF CONTENTS (con't)

Pascal is a powerful high level computer programming language

A Summary of Commands......ee40..
B Language Summary Tables_.‘. * 8 F F & & % 4 4 & R R A S SR W A_]_ . , i ,
C Page O Memory Map *escr s s ssses s s B-l originally designed for educational purposes. Developed by
D L L I R K IR I I N I R R R R R R T T R R R T N v , .
. ASCII Qharacter Set..ciiieierncncosnanna D1 Niklaus Wirth of the ETH Technical Institute of zurich in 1970
Executlonn—Tlme Dlagnostics . & 2 B B 4 B E"'l _ .
3 Selected Bibliography ceesestsencesssersresreas C=1 _ 1971, Pascal has gained acceptance world-wide as a standard
SRRRAAARELER RS language to teach computer programming. The rich variety of
LIST OF FIGURES rascal language features 2]1lows a wide range of data structures
to be specified and complex algorithms to be implemented. Pro-
pPY o=

using structured programming techniques
understand and main-

coupled with

gramming in Pascal

Figure Title
Page duces programs that are easy to write,

The wide—spread teaching of the language,
programmer and the improved

2-1 AIM 65 Instant Pascal Memory MabD....... 2=2 tain

the increased productivity of the

reliability of the generated program, is causing Pascal to be

LIST OF TABLES
ific applications

increasingly adopted 1in industrial and scient

as well as in the c¢lassroom.

Table Title .
' age
3
2”; AIM 65 Instant Pascal ROM Addresses....... 5
State Transitions in Instant Pascal o -4 .
tesscoresceseas 2= The Pascal language defined Dby Niklaus Wirth 1is recognized as

Standard Pascal
—wide installations of Pascal on main-

1ters have resulted 1n many varia-

Numerous world frames,

minicomputers, and miCcrocomp
tions of the language in the for
features beyond Standard Pascal) and re

rascal features that have not been implemented) .

mn of extensions (added language

strictions (Standard
These

installations typically require a large amount of computer
a CRT-

resources, e.g. up to 64K of RAM, a floppy disk, and |

based terminal.

1* is a unique implementation of an exten-

AIM 65 Instant Pasca
scal which combines the immediacy of

sive subset of Standard Pa

ROM based system software, interactive debug facilities at the

source code level, on-board AIM 65 printer and display periphe-

rals along with low—-cost expansion memory .
development and application system.

to provide a com-

plete Pascal educational,
*Tnstant Pascal is a trademark of Melvin E. Conway

1v 1-1

1.1 AIM 65 INSTANT PASCAI OVERVIEW

Instant Pascal 1is an implementation of the Pascal programming
%anguage for the Rockwell AIM 65 Microcomputer. The firmware
1s embodlied in a five-ROM set which is installed by means of
the AIM 65 expansion connector. Instant Pascal incorporates
facilities to write and debug programs entirely at the source
language level. These include source-level editor, statement
and assignment trace and immediate source—-statement execution

for examination and modification of data.

Instant Pascal is a highly interactive programming tool which
substantially extends the power of the AIM 65. A major subset
of the Standard Pascal language, it incorporates all of the
simple and structured statements, and the most widely used
simple and structured data types. Extensions to the language

permit direct control of memory-mapped I/0 of the microcomputer
systems and allow interfacing to machine-language programs
developed with the AIM 65 assembler.

Features of Instant Pascal include:
- All editing occurs at the source language level

- Translation at program input and output obviates any

need to know internal program formats

- Lister contains a built-in prettyprinter which displays

program and data structure

— Source programs may be convenlently modified during the

program testing process

~ Source-level trace lists statements as they are executed

1-2

- Independent assignment trace lists values as they are

changed

_ Tmmediate statement execution permits operator

examination and modification of data

- String extensions to language facilitate development of

interactive programs

ATM 65 Instant Pascal implements a substantial subset of the

cst+andard Pascal defined 1n the Jensen and Wirth boock "Pascal

User Manual and Report" (see Appendix F). Extensions to their

standard included in AIM 65 Instant Pascal and language fea-

rures in the standard but not included in AIM 65 Instant Pascal

are described in detail in Section 7.

ATM 65 Instant Pascal is both a compiler and an interpreter.

It tompiles source statements wriltten in Pascal directly from
the keyboard, from the AIM 65 Text Editor or from external
media (audio tape oOr user defined) into an internal format.
Me internal format contains both the object code to Dbe inter-

sreted upon execution and source code identifiers for formatted

yrintout to support debugging and editing at the source code

level.

1.2 AIM 65 INSTANT PASCAL USER'S MANUAL CONTENTS

Jaction 1, Introduction, introduces the AIM 65 Instant Pascal

rroduct with language features, extensions and restrictions

summarized. Common Pascal language and programming books are

also referenced.

Section 2, Installation and Initialization, tells how to

install the AIM 65 Instant Pascal ROMs and how to enter,

re—enter and exit Instant Pascal.

1-3

Section 3, Instant Pascal Operation, explains how to operate
AIM 65 Instant Pascal in conjunction with the AIM 65 Debug
Monitor and Text Editor. This includes program input, output,

editing, checking and execution.

Section 4, Program Debugging, describes how to use Instant
Pascal commands to debug a program written in Pascal. This
includes statement and assignment tracing, as well as immediate

statement execution.

Section 5, Instant Pascal Text Units, explains how the Pascal
Source code is treated for the purpose of editing, checking and

execution.

Section 6, Diagnostic Messages, describes the meanings of
diagnostic messages that may occur during translation,

execution and listing as well as the effect on Instant Pascal

operation.

Section 7, Instant Pascal Language Definition, defines the

language extensions and restrictions with respect to Standard

Pascal.

Appendix A, Summary of commands, summarizes all commands used

for source program entry, editing and saving, as well as

debugging and execution.

Appendix B, Language Summary Tables, includes several summary

tables of language words, symbols and capabilities.

Appendix C, Page 0 Memory Map, defines variables that are

alterable by the user.

1-4

Appendix D, ASCII Character Set, lists the hexadecimal and

lecimal codes for letter, number and special characters as well

A5 control commands.

Appendix E, Fxecution-Time Diagnostics, defines the meanings of

orror codes displayed during Pascal program executlion.

11sts several reference

Appendix F, Selected Bibliography,

books on Pascal and programming.

1.3 REFERENCE DOCUMENTS

Hsers of this manual should have the manuals supplied with

particularly the AIM 65 User's Guide (29650 N36),

thelir AIM 65:
R6500 Hardware

the R6500 Programming Manual (29650 N30) and the
Manual (29650 N31).

readers who are unfamiliar with Pascal are advised to read one

of the many tutorials on this language (See Append1X F). These

lhree books are especially recommended:

» Cherry, George W., Pascal Programming Structures. Reston
Publishing Company, Reston, VA, 1980.

» Grogono, Peter, Programming in Pascal. Addison-Wesley
Publishing Company. Reading, MA, 1980.

o Fox, D. and Waite, M., Pascal Primer. Howard W. Sams Co.
Inc., Indianapolis, IN, 1981.

1-5

SECTION 2

INSTALLATION AND INITIALIZATION

The AIM 65 Instant Pascal is provided in five Rockwell R2332
AK-byte ROMs. Four of the ROMs must be installed 1n a PROM/ROM
nodule external to the AIM 65 while the other one may be
installed on-board the AIM 65 Master Module. Figure 2-]1 shows
the memory map of AIM 65 Instant Pascal. Note that Instant
Pascal operates in conjunction with the AIM 65 Monitor, there-
fore the Monitor ROMs must be installed. Since Instant Pascal
can link to machine code, the optional AIM 65 Assembler may
reside on-board concurrently with Instant Pascal, but 1s not
required. After installing the Instant Pascal ROMs and
connecting the PROM/ROM module to AIM 65, Instant Pascal 1s

vready for operation.

2.1 INSTALLING OF IN3TANT PASCAL ROMS

Before removing the ROMs from the shipping package, be sure to
observe the handling precautions lilsted in Section 1.4 of the
AIM 65 User's Guide. Since MOS devices may he damaged by the
inadvertent application of a high voltage, be sure to discharge
any static electrical charge accumulated on your body by touch-
ing a ground connection (e.g. a grounded equipment chassis)
before touching the ROMs or the AIM 65. This precaution 18
especially important 1f you are working in a carpeted area Or
in an environment with low relative humidity. Ensure that
power 1is turned off to the AIM 65. Carefully remove any PROM
or ROM device that is installed 1in socket 726 on the AIM 65
Master Module. Remove the ROMs from the shipping package and

verify that the pins are straight and free from foreign

FI'FE |

000
DEEF

1910J010
O O O K

cO00
BEFEFFE

BOOO
AFFEF

A0QO
QFFF

8000
T¥FFE

4000
3FEFF

1000

Tw=> FFF !

FC3
FC2
D2
ED1

B—--> 300
2FF

200

LFF

100

FE

0O

AIM 65
Monitor ROMs

ATM 65 Assembler ROM
or User Avallable
({ non—-Pascal)

——_ -

User Avallable
(non—-Pascal) ,

ATM 65
Instant Pascal
ROM

“’IH-IJ.!-.—H-.'

AIM 65 I/0

Reserved

AIM 65

Instant Pascal
ROMs

—

User Avallable

60-Byte Translator
Input Area

2560-Byte Translator
Output Area
Pascal Program

Object Code

l Expands |
Downward
Expands

*T Upward

Execution Stack
Instant Pascal
- Variables

l
I

]

R6502 CPU Stack

Page Zero Variables*

On-Board PROM/ROM

On-Board 1/0

Off-Board PROM/ROM

Off-Board RAM or
PROM/ROM

Instant Pascal
On-Board RAM Usage

= Top of the user program including Translator input and

output areas {(default value = SOFFF)
Bottom of the user-~-program (default wvalue = $0300)

See Appendix D

Figure 2-1.

2-2

AIM 65 Instant Pascal Memory Map

material. Install the ROMs on the AIM 65 Master module and on

the PROM/ROM Module in accordance with ROM address ranges

1isted 1n Table 2-1. You can 1nstall R32P6 on-board the AIM 65

in socket Z26, however the other ROMs must be installed off-

hoard. After the ROMs are installed in the PROM/ROM module,

connect the module to the AIM 65 Expansion connector 1n accor-

Jdance with the PROM/ROM or adapter nodule user instructions.

The 4K bytes of AIM 65 on-board RAM provide 2764 bytes avairl-

able for the application prograun 1 fter subtracting memory dedi-

cated to page 0, page 1 and AlM 65 Instant Pascal overhead (see

3.3.1). This allows a Pascal program of about 1800 source cha-

rascal program object code, i.e. compiler input 1s from the

r external media, or about 1100 source characters
the text buffer in

keyboard o
~when the compiler input 1s from memory, 1.€.

rhe AIM 65 Text Editor. For larger brograms, add off-board
cxpansion RAM from 51000 - S3FFF.

NOTE
r+ is recommended that a Rockwell RM 65 16K PROM/ROM
Module be used installed 1n an RM 65 card cage and
connected to the AIM 65 through an RM 65 Adapter/
Ruffer Module. Additional RAM can easily be added
using RM 65 8K Static RAM modules or an RM 65 32K
Dynamic RAM module. The RM 65 modules that may be

used and theilr part numbers are:

RM65~3216 16K PROM/ROM Module*
RM65-3132 32K Dynamic RAM Module
RM65-7004 A-Slot Piggybhack Module Stack
RM65-7008 3-Slot Card Cage -
RM65-7016 16-Slot Card Cage

RM65~7101 Single Card Adapter®
RM65-7104 Adapter/Buffer

RM65~7116 Cable Driver Adapter/Buffer

*Minimum Expansion Set for AIM 65 Instant Pascal ogeratign,

ALY I

L0 Tleo

RO UL I

12301

32

R3I205H

R32P6

(1)

—_— - uma e e T o — -

] . ATM G Instant Pascal ROM Addresses

Aol oo ”fj_m Module (1) | Socng-—-__
Q000 P KM 65 PROM/ROM 7212 (2)
LOn L | KM 65 PROM/ROM 713 (2)
GOOO G RM 65 PROM/ROM 714 (2)
TO00=71 1 M 65 PROM/ROM Z15 (2)
BOOO 1300 ALM 65 Master Module | 226

e i e rmar s - ——— o e o+ e m e e e AE UL N TEEE TEM —mm e EE meym e i - Al LA EEEE S rWER | —TER -y - i - ki - SNy - g SNy L Emy em—— . m—— mo— - e e — o — U ——— .

NOTES

ROMs may be installed in any PROM/ROM module that operates

with R2332 ROMs 1n the corresponding address rande.

Recommended sockets - ROMs may be 1nstalled 1n any socket

that can be configured for the corresponding address

ranges.

2.2 ENTERING, EXITING, AND RE-ENTERING INSTANT PASCAL

2.2.1 Entering Instant Pascal (5 Key)

Press 5 to enter Instant Pascal from the AIM 65 Monitor when
the Monitor prompt "<" is displayed. When power has Just been
t urned on, or when Instant Pascal has not heen previously
cntered, the AIM 65 will respond with the first of two

iniltialization gquestions:
<5> MEMORY SIZE?

Press RETURN to enter the default value of 4096. If more
contiguous RAM than 4K bytes is availlable and you wish to take
ardvantage of it, enter the number of bytes 1n decimal, up Lo a

maximum of 16384, The second question,

WIDTH?Y

requests the page width for program listings and data output.
'ress RETURN to enter the default value of 20 for the AIM 65
printer. If the KB/TTY switch is, or is about to be, set to
M"Y (see AIM 65 User's Guide, 1.9.2), first enter the number of
printer columns in decimal. (This value may be changed laterx

hy using the +<W> command in Instant Pascal; see 3.3.4).

2.2.2 Exiting Instant Pascal (ESC Key)

Any time Instant Pascal is in an input wait state, pressing ESC
will return control to the AIM 65 Monitor. This can occur when
lhe AIM 65 1s waiting for an Instant Pascal command after the
"+<" prompt or when an Instant Pascal program 1s waiting for
input data. Also, a listing produced by the +<L> command or a
program trace may be aborted and control returned to the AIM 65

Monitor by holding down the ESC key until the printing stops.

2.7 .1 Hv~wnlwr|nﬂ.[n5tant Pascal (5 KEY) Tahle 2-2. State Transitions 1n Instant Pascal

—_— e .. L T - —— - R

Whenover Tnstant Poasceal is exited to the AIM 65 Monitor, you r |
can return to tTnstant Pascal without loss of the program 1n 'md | State IKQX_ ;Effect |
memory, provided that the RAM occupied by the program 1is not

disturboed. Just press 5 when the Monltor prompt 1is displayed. 1 Waiting ESC Returns to AIM 65 Monitor
Tnetant Pascal ochecks Tocations $60 and $61 for a value wh 1ch for source| RETURN Completes 1input, command prompt
1s sct up Jdaring the tniti1alization seguence. 1f this value 1s 1nput

nresent, the initialization scquence 1s bypassed and the |
Instant Pascal prompt "+<" 1s displayed. When this happens, R Waiting ESC Returns to AIM 65 Monitor
Tnetant Pascal has assumed that the integrity of RAM storage for sourcel| RETURN (2) Completes input, command prompt
has not been disturbed. If RAM occupied by the Instant Pascal input

program was altered while the AIM 65 Monitor was 1n control,

the results are unpredictable. This can be avoided (at the G Executing DEL(held) Breaks to command prompt

cost of the Pascal program in memory) Dby reinitializing memory

e i

after entering by means of the +<N> command (see 3.3.2). Walting ESC Returns to AIM 65 Monitor

for data

2.2.4 Start Application Program in PROM (6 Key) input
When the AIM 65 Monitor is wailting for a command, pressing 5 Tracing ESC(held) Returns to AIM 65 monitor
causes the Monitor to execute a JMP to $B00O, which enters SPACE(held)| Pause; any key resumes

Tnstant Pascal. Pressing 6 executes a JMP to $BO03. The

Instant Pascal ROM contains a JMP $CO00 1n S$BOO03, so that Key 6 L Listing ESC(held) Returns to AIM 65 Monitor

may be used to enter a function at SCO000~-$D0O00 from the SPACE(held)| Pause; any key resumes

Monitor. A Pascal program is limited to $300-$3FFF, however | , l

(see Figure 2-1).

7 2.5 Transitions Between Wait States

Table 2-2 expands upon Section 2.2.2 Dby describing certaln

transitions which may be forced hy other Xeys as well as ESC.

SECTION 3

INSTANT PASCAL OPERATION

All resources of the Instant Pascal system are made avallable
ey you by means of a command interpreter which executes one-
lobter commands. The Instant Pascal command prompt is "+<".
"is chapter describes the six major processes of the Instant

Pascal system which you may 1nvoke:

1. Source input from keyboard or other devices available to

+the AIM 65 Monitor.

. Source output (listing) to the AIM 65 printer or other
output devices avallable to the AIM 65 Monitor.

. Initialization to an empty program condition.

1. Editing of the Pascal program.

.-. Binding (identifier references) and syntax checking of the

Pascal program.

i . Execution of the Pascal program.

.1 READ SOURCE INPUT (R COMMAND)

"irn on AIM 65 power, then press 5 after the Monitor prompt.
'ress RETURN in response to both of the initialization ques-
{ions. This will ready Instant Pascal to accept the first

command

ROCKWELL AIM 65

<5> MEMORY SIZE? 4096
WIDTH? 20

+<

The "R" (Read) command causes Instant Pascal to accept Pascal

source i1nput until it receives an empty line; 1.e., two RETURNSs

1T a row. Press R, then RETURN 1in response to the IN= prompt;
this denotes keybhoard input. (Other i1nput devices may be

designated; see the AIM 65 User's Guide, 3.8.1.)

Now enter the following from the keyboard as shown:

PROGRAM SOUARES:
VAR 1:INTHEGER;
RIGIN

FOR T:=1 TO 10 DO
WRITEIN(I,SOR(T))
END

Finish with an extra RETURN to terminate input and return to

the command prompt.

For 1nput and editing purposes, the language of Instant Pascal
1s grouped into indivisible units called "text units"”. Each
line of input must contaln a sequence of complete, syntacti-
cally correct text units. An input line may be up to 60 cha-

racters long, 1including the final RETURN.

If, after keying in a line, the line 1s i1mmediately printed
back out with two "#"s, one at the beginning of the line, then
an input syntax error was detected. The second "#" 1s
immediately to the left of the character which led the 1input

translator 1nto an impasse. No part of the line went into the

program memory, so kKey 1t 1n again.

3-2

.72 SOURCE OUTPUT COMMANDS

I'he Pascal program in memory 1s a sequence of text units. The
natant Pascal editor maintains a pointer, called the text unit

sointer, which always points to one text unit in the program.

whon the program is initialized to an empty state, 1t contains
e text unit, which is the "." at the end of every Pascal pro-

nam. This text unit is always present and 1s never entered.

A1 editing is done relative to the point in the program
lenoted by the text unit pointer. In particular, text units
cntered by the R and I commands are inserted 1nto the program
mmediately before (above) the text unit designated by the text
it pointer, and the text unit polnter remains pointing at
(hat text unit. Therefore, after the program of 3.1 1s

‘ntered, the text unit pointer still points to the “.".

1. 2.1 List Current Text Unit (SPACE Command)

I"Me SPACE command +< > lists the designated text unit (1.e.,

| he text unit designated by the pointer). Press the SPACE bar

Alter entering the program in 3.1l.

1.2.2 Move Text Pointer to the Top (T Command)

e pointer may be moved to the top of the program by the T

command.s Type T:

+<T>
PROGRAM SQUARES;
+ <

P ke - WPl Tt o e el B LA O e T D T o el

3.2.3 VList Text Units (L Command)

The IL. command lists a specified number of text units {not
lines), beginning with the designated text unit. The listing
1s generated by a process called "the lister". The text unit

pointer 1s not moved by the L. command. After you key L, the

system will prompt for a numeric input with "/". The standard

AIM 65 conventions apply:

RETURN = 1
. = forever (actually 9999)
sequence of digits terminated by RETURN = that number

Then the 0OUT= prompt will ask for the output device. RETURN

specifies the AIM 65 printer. (Other output devices may he

specified; see the AIM 65 User's Guide, 3.8.2.)

Now execute the standard sequence for listing a program:

+<T>
PROGRAM SQUARES;
+<L> /.
OUT=RETURN
PROGRAM SQUARES;
VAR
1: INTEGER;
BEGIN
1l FOR I:=1 TO 10 DO

2 WRITELN(I,SQOR(I))
END.

Detaills:

a. The VAR and I1:INTEGER; are on separate lines even though

they were keyed 1n on the same line. They are separate

text units; the formatting algorithm works entirely from
the 1nternal form of the program, which disregards the

number of text units appearing on an input line.

. The numbers in the left-hand margin of the statement part
of the program count the indentation level. (The blank

preceding BEGIN and END 1s really a zero, which 1s blanked

for the sake of appearance.)

1. The listing format is such that corresponding structured
statement delimiters (BEGIN...END, REPEAT...UNTIL,
IF...FLSE, CASE...END) are at the same indentation level,
and can thus be matched up over a span of program lines by

use of the marginal numbers.

n. TIf corresponding statement delimiters are not shown by the
lister to be at the same indentation level, the program

has a sequence {(syntax) error which will be caught Dby the

Binder (see 3.5).

|Ff a tape recorder 1is connected to your AIM 65, you can avold
rekeying this program later by writing it to tape now. First
rdjust the interblock gap parameter 1n SA409 to a value appro-

sriate to your recorder. ($20 is a reasonable place to

start.)

+<ESC Return to Monitor

<M>=A409 08 xx xx xx Display $A409...5A40C
</> A409 20 Change $A409 to $20

<5> Return to Instant Pascal (polnter at
top) |
<5>+<L>/ . List all; position tape

OUT=T F=SQRS RETURN Start tape motion in record mode

T=1 RETURN Recording begins

+ < Recording 1s complete; turn off
recorder

vou may wish to examine the contents of this tape by reading it

‘nto the AIM 65 Text Editor and listing it. The text 1s essen-

ially as listed by Instant Pascal except for indentation and

nmarginal numbers. You therefore have the option of using the
ALM 65 Text Editor for preparing and correcting Pascal source

program tapes.

¢t 2 et e T T e D T e R Ll T

3.3 INITIALIZATION

Before destroying this program you can execute 1t by keying the

Go command:

0 100

3.3.1 Report Available Memory (M Command)

The number of free bytes in memory may be ilnterrogated with the

M (memory) command.

+<M>=2653

Details:

a. Excluded from the definition of free space 1s space allo-
cated to all fixed tables (most of page 2), pages 0 and 1,
and the translator input and output buffers (317 bytes at
the very end of declared RAM). Also, 250 1is subtracted so
that even when free space reads zero there will be 250

bytes available for the system's stacks to permit

execution to begin.

b. You will find that memory occupied by programs 1s 1ndepen-

dent of the use of spaces as separators 1n the 1nput text.

c. Typically, the space occupied by a program 1s 150% of the

space occupled by the ASCII text of the Pascal source.

This number is obtained by subtracting the program's M

3-6

value from the M value of an initialized system. The

source code i1dentifiers are 1ncluded 1in the program toO
allow the lister to reconstruct the source program for

output.

1.3.2 Initialize Memory (N Command)

"ie program may be cleared by the N (New) command. Because N
13 irreversible, you get a chance to change your mind; you must
answer "Y" to R U SURE? for N to work.

+<N> R U SURE? Y

rom this polnt on, a new program can be entered as described

1 3.1,

t 3.3 Initialize Instant Pascal (Z Command)

Instant Pascal may he completely restarted Dby typing Z. 1In
vildition to initializing memory like the N command, the memory
tize and page width prompt messages are displayed the same as
apon initial entry from the AIM 65 Monitor. The R U SURE?
nrompt 1s also displayed to minimize accidental clearing of the
nenmory. (You even get one more chance to save your program 1 £

vou push ESC in response to the MEMORY SIZE? prompt.)

+<7Z> R U SURE? Y
MEMORY SIZE? 4090
WIDTH? 20

1.3.4 Redefine Page Width (W Command)

r'he WIDTH? part of the initialization sequence can be executed

' its own with the W command. This is useful 1f you wish to

change output devices.

+<W>WIDTH? 80

3.4 PROGRAM EDITING

After 1nitializing to an empty program recreate the program
SQUARES in memory, either by keying it in (see 3.1) or by

reading it from tape, as follows. First position the tape.

+<R>IN=T F=SQRS T=l1

Now start tape reading. (See the AIM 65 User's Guide, 9.1.5
and 9.1.6, for a more detailed discussion of the use of tape.)

The command prompt +< indicates a successful completion of the

read operation. (If the tape 1is not read successfully, you may

have to RESET the AIM 65 and then re-—-enter Instant Pascal.

Listing the program will then show you how much has been

entered.)

In this section, the following commands will be used to modify
the program SQUARES.

U/n Move the pointer up n text units {(toward the top)

D/n Move the pointer down n text units (toward ".'")

B Move the pointer to the bottom, or ".", text unit

F Find the line containing the 1ndicated string

K/n Delete n text units beginning with the designated one
I Insert one input line of source

\Y View a neighborhood of the designated text unit

First, list the program (T L RETURN). Now verify that the

pointer is at the top by executing the +< > (SPACE) command.

3.4.1 Move the Text Pointer to the Bottom (B Command)

Move to the bottom by executing the + command. The "." that

indicates the end of source code 1is displayed.

1.4.2 Move the Text Pointer Up (U Command)

Now move up to the I:INTEGER; by executing +<U>/5 RETURN. Note

{ hat after U the new designated text unit is listed.

+<U>»H
T:INTEGER:

1.4.3 View Five Text Units (V Command)

sometimes the designated text unit will be a semicolon or some
sther indistinguishable feature such as BEGIN or END. You can
view a neighborhood of the designated text unit with the V
command. Try 1it.

+<V>

PROGRAM SQUARES;:

VAR - ~
I:INTEGER;
BEGIN

1 FOR I:=1 TO 10 DO
2

Notalls:

v. V is egquivalent to U/2 L/5 except that the text unit
pointer 1s not moved.

. Normally V displays five text units wlth the designated
text unit at the center. Exceptions occur near both ends

of the program.

| 4.4 Move the Text Pointer Down (D Command)

AMter satisfying yourself that you are at the I1:INTEGER, move

lown three text units to the output statement by executing D/3:

+<D> /3 RETURN
WRITEIN(I,SQR(I)
+ <

3-9

3.4.5 Delete Text Units (K Command)

Now delete the text unit WRITELN(I,SQR(I)) by executing
+<K>/RETURN. (Remember that RETURN means 1 when a numeric

input, prompted by "/", is being requested.)

+<K> /RETURN
WRITELN(I,SQR{I))

* K %
END.

Instant Pascal lists exactly what it is deleting, followed by

"kk*" followed by the new designated text unit.

Detaill:

K/n is 1mplemented as L/n followed by an internal block
move which overlays the portion which was just listed. It
vou have second thoughts during the listing part of a K
command, qguickly hit RESET. Upon returning to Instant
Pascal you will see that nothing has been deleted

(assuming you were fast enough).

3.4.6 Insert a Text LLine (I Command)

Insert one line of text by pressing I, typing 1n the next text
and terminating the entry with RETURN. The text will be

entered immediately before the current text unit (use the SPACE

command 1f needed).

Detail:

The command sequence K/RETURN I is the standard method of
altering one text unit. The typical Pascal line A:=1l;
consists of two text units; 1f the A:=1 1s the designated

one, this command sequence will not touch the semicolon.

3—-10

hofore inserting something in place of the WRITELN, list the

program.

+<T>

PROGRAM SQUARES:
+<L>/ .
OUT=RETURN
PROGRAM SQUARES;

VAR
I: INTEGER?
BEGIN
1 FOR I:=1 TO 10 DO
2
END.

Note that this is a syntactically correct program with an empty
ilatement in the scope of the FOR. You can execute 1t Dy
pressing G. If you don't believe that anything happened, you
an re—execute it with the assignment trace on (see 4.1). This
| races assigned variables. Remember to toggle the assignment
i race off after the program has executed.

+<A>ON

+ <G>

FOR I:=1 TO 10 DO
1

VoW W W WV Y Y VY Y

3
4
5
5
7
8
9
1

O+ <A>OF!

">y insert a new statement in the scope of the FOR, you must
rind the END, because Pascal source 1s 1nserted before the
lesignated text unit. This can be done by commanding a -+

| <U>/RETURN.

1.4.7 Find a Text String (F Command)

vou can also find the END using the F (Find) command. Position

o the top (+<T>) then key the +<F> command. At this point the

3-11

AIM 65 1s walting with a text 1nput prompt in the display. {(If
the KB/TTY switch is set to TTY, the text prompt is "*" at the
terminal.) Key 1n some string characteristic of the FOR state-

ment, such as FOR or :=, then return. The editor will find the

text unit. Now move down one text unit to the END,.

+<T>

PROGRAM SQUARESL;
+ <>

: = RETURN

FOR T:=1 TOC 10 DO
+<D>/RETURN

END.

+ <

Detalls:

a. Find is implemented by internally performing a L/. and
diverting the lister's output to an i1nternal bhuffer, 1in
which a string match 1is performed at the end of each line

(not text unit).

b. Some lines contain two text units, notably lines ending 1in

. and

If a string match 1s found, the designated
text unit 1s the last one listed, namely the ";" or ".".

!

This can be disconcerting 1f the search for "X" IN "X:=1;"
ends up on ";", so the following special case has heen
internally programmed: 1f a string match 1s found and the
designated text unit is ":", +<U>/1 1s expected. This
special case does not test for ".", so a search for END 1in

this example will end up pointing to ".".

c. Because the spaces that come out follow the rules of the
lister and bear no necessary connection to the use of
spaces (as separators) during source input, 1t 1s 1inadvis-
able to use space separators in a search argument until
one understands how the lister puts them out, namely as

seldom as possible.

1.4.8 Program Change Example

How that the END has been found, change the program to generate

1 ktable of factorials by 1inserting a new statement before the

nND), using the I (Insert) command.

+<1>
WRITELN(I,FACT (1))
+ <

I'is program 1s 1incomplete, because FACT 1s an undefined

lymctlion: this can be verified by pressing G:

+ <G>

UNDEF FACT
WRITELN(I,FACT(I))
SEQUENCE™
WRITELN (I, FACT(I)
END.

hivtalls:

| . The diagnostics come” from the Binder, wnich 1s called by
the C (Check) command (see 3.5) or whenever execution 1s
called for (+<G>) but the program has been changed or has
not been bound. The Binder looks up all i1dentifier and
label references and performs a total syntax check on the
program. The lookup function of the Binder led to the
UNDEF message; the syntax check function led to the
SEQUENCE message.

Y. Normally an undefined i1dentifier would not lead to a
SEQUENCE error, but an undefined i1dentifier 1in an
expression 1s assumed to bhe a variabhle, and the "("

following FACT 1s erroneous under that assumption.

i. The "OK" following +<G> or +<C> 1s produced by the Binder

wheéen 1t finds no errors.

3-13

Now key in a definition of FACT:

+<T>

PROGRAM SQUARES;
+<F>

BEGIN

BEGIN

4+ <R>IN=RETURN

FUNCTION FACT(N:INTEGER) :REAL;

VAR I:INTEGER:

J : REAL:

BEGIN

J:=1;

FOR I:=2 TO N DO
Je=J*1;

FACT :=J

END;:

RETURN

Go to the top and list the

+<T>
PROGRAM SQUARES;
+<L>/.
QUT=
PROGRAM SQUARES:;
VAK;

I: INTEGER;

PUNCTION FACT(N:INTEGER) :REAL;

VAR
I: INTEGER:
J:REAL:;
BEGIN
1 J:=l1l:
1 FOR I:=2 TO N DO
2 J:=J*1;
1 FPACT:=d
END;
BEGIN
1 FOR I:=1 TO 10 DO
2 WRITELN(I,FACT(I))
END.

program:

Find

the string argument
Found 1it.

Begin input.

Now, pressing G will give you the first ten factorials.

+<G>0K
1 1

2 2

3 6

4 24

5 120

6 720

7 5040
8 40320

9 362880
10 3628800

3-14

1.5 PROGRAM BINDING (C COMMAND)

hinding is normally an automatic process, called by +<G> before
wxecution 1f a program is unbound, that 1s, 1f 1t has not yet

hoen bound since it was entered or 1f 1t has heen changed since

1t was last bound.

ince the Binder produces intelligible diagnostic messages, 1t
an be used as a syntax and undefined i1dentifier checker; the C
(check) command exists for this purpose. It calls the Binder
only, and produces the message "OK" or one or more Binder

l1agnostics (see Section 6.2).
hhetallss

n. The Binder does not check for type mismatches 1in expres-
sions, assignments, or actual parameters. These are

checked at execution time.

I,. If the binding is without error, the text unit pointer 1s
left at the top of the program. If the binding terminates
with a *SEQUENCE* (syntax) error, the text unit pointer 1S
at the first text unit printed after the word *SEQUENCE*.
If the binding goes to completion (i1.e., does not termi-
nhate on a *SEQUENCE* error) but causes diagnostics such as
UNDEF (undefined identifier), *DUP* (duplicate 1identi-
fier or label), *UNDECL* (undeclared lahel), or *TYPE?*
(type inconsistency in declaration), the text unit pointer

will be left at the bhottom of the program.

1.6 PROGRAM EXECUTION

1.6.1 Execute Program (G Command)

e G {Go) command calls the Binder 1f necessary and then, 1f

' he program has been bound without error, gives control to the

'hscal Interpreter to execute the program.

3-15

P R LY .

Normally execution begins at the beginning of the program.
There 1s one exception to this rule. Break-—-in-progress 1s a
command-time condition which 1s true 1f the program was execut-
ing and execution was discontinued either by execution of the
BREAK predefined procedure or by depression of the DEL key
during execution. If Break-in-progress 1is true, G will cause

execution to resume at the point of the break.

Detalls:

a. Break-in-progress 1s preserved even 1f ESC causes an exit
to the AIM 65 Monitor. It is turned off by the New (+<N>)

command.

h. Break-in-progress 1s turned off by invocation of the

Binder. This has two consequences:

(1) If the program is changed after a break, G will cause

execution to start at the bheginning, because the

Binder wi1ll have been i1nvoked.

(2) The C command may be used explicitly to force G to

start at the beginning after a bhreak.

3.6.2 Execute and Trace Program {, Command)

The +<,> (Step) command is basically the same as +<G>, with the

following additional properties.

a. Execution 1s traced. That 1s, text units are printed out

before they are executed and the values of variables are

printed out after they are changed by assignment.

b. Execution continues only until the start of the next
statement, at which time the command prompt occurs with

Break—-i1n-progress true.

3—-16

e +<,> is, in effect, a source-level single-step command.

Any time that +<,> 1is in use, execution may be resumed with the

7 command, since break-in-progress 1s set.

Continuous execution may be interrupted and control returned to
| he command interpreter by holding down the DEL key. This key
1 sampled at the start of execution of every text unit. If 1t
i down, KEY BREAK is printed and control 1s returned to the
command interpreter with Break-in-progress set. Then the +<,>

may be used to single-step for a while.

hotalrls:

1. A text unit 1s printed just before the command prompt when
execution is discontinued, both when the DEL key and the

+<,> command are used. This 1s the text unit about to be

executed.

. The text unit pointer (which is not the same thing as the
Interpreter execution pointer) is set to the text unit
printed out before the command prompt. If 1t 1s not clear

where the stoo occurred, you can use the V command to

enlarge the view.

—————— —.- .
R [v

SECTION 4

PROGRAM DEBUGGING

cChapter 3 described the basic facilities of Instant Pascal for

reating, changing, and executing a Pascal program. In addi-

{ ion, the Step (+<,>) command and DEL key have been shown to be
aneful for analyzing the dynamic behavior of a program. This

chapter describes several additional facilities which are

available for program debugging.

1.1 TRACING

when the Step command is used, tracing is automatic. In
jeneral there are two kinds of tracing, which can be 1ndepen-—

lently controlled in Instant Pascal during continuous execution

("<G>) "
a. Statement tracing

b. Assignment tracing

These two kinds of trace may be independently controlled by two
toggles, called S and A, respectively. These toggles are
switched by the S and A commands.

4.1.1 Statement Tracing (S Command})

Statement tracing prints each text unit Jjust before 1t 1s

axecuted.

Detail:

The state of the toggle after entering the S command 1S

indicated by the word ON or OFF printed immediately after

the command.

4-1

———— kb = kdd

4.1.2 Assignment Tracing (A Command)

Assignment tracing.prints values changed by assignment and FOR

statements.

NDetaills:

a. The state of the toggle entering the A command is indi-

cated by the word ON or OFF printed immediately after the
command.

b. If S 1s off and A is on, assignment statements are never-—

theless printed in order to associate them with the

printed values. FOR statements are also printed, but only

the first time through the loop.

4.2 IMMEDIATE STATEMENT EXECUTION (X COMMAND)

It 1s possible, under well defined conditions, to key in a

single statement and have it executed 1mmediately, independent

of the execution of the program in memory. This 1is useful

during a break or after an abnormal program termination for

examining and changing the values of variables.

The +<X> (eXecute) command immediately sets up a text input
prompt. Key 1n one statement; it will be executed upon

depression of RETURN. Note the restrictions to the use of X

which are listed below.

Detaills:

a. There must be a program in memory which has been success-

fully bound and whose execution has begun. That 1s, X

should be executed only during a break or after completion
of a program, either a normal completion or one accom-
panied by an ERROR message. Other use of X will lead to

unpredictable results.

——em 2 e e aem . e L
. o ST A e am, R oomor ma L= .
. .- - - . iy - . . - e ——— PR, - - H '
. - ."::._._'_-_‘.. = _"-‘i".".. | il i il o L T . " "
- - a . = R
- —re .,.'.'.,,."""'-*.' = e e - r e - - :__.,ll.,.,_._,_—r - -
" FLLREI - - il = p e

R R L ST A
SR TR e T e T e AR i e AT ?._‘

- _ -
— —a—— 1 R a.-_,: oL ag gl 1w
—wlnm Sy I a-—_-:-_j_,.._.- R A .F"t‘::.“_.u -
1-_1_ J.oa. = - eyt N T H
- - - s

e — -
r

., -
- "

r-..l_
-t .

- —

Iy,

i*.

f'].

h.

If the program is not bound when X 1s executed, 1t will
first be bound before the statement 1s executed. This
program binding is indicated by the printout ".C.". If 1t

leads to a diagnostic, the statement will not be executed.

The statement must itself be bound before 1t can be

executed. This can lead to diagnostics, 1n which case the

statement will not be executed.

There is the question of visibility of identifiers. That
is, the statement WRITELN(A[I]) may have different inter-
pretations of A and I depending on the block 1in which 1t
is presumed to be executed. This block 1s i1dentified by

the position of the text unit pointer at the time +<X> 1s

executed. The text unit pointer must be 1n the statement

vart of an active block or at the bottom of the program.
The movement commands used in text editing (see 3.2, 3.4)

may be used to position the pointer before using X.

Note that at a break, the text unit pointer 1s at the text
unit listed and about to be executed.

If the program terminates with an ERROR message, the text
unit pointer is at the text unit listed, 1.e., the one

whose execution caused the error.

If the program is bound in response to X (i.e., 1f “".C."
is printed), and there are no Binder diagnostics, the

interpretation of the statement will be with respect to

the statement part of the main program, since, 1n this

case, the Binder leaves the text unit pointer at the

bottom of the program.

The single statement executed can be a structured

statement. Its complexity, therefore, 1s limited only Dby

the 60-character length of the AIM 65 input line.

4-3

| ‘
I
wkﬂ
il
[
v |
1l
i
ik | SECTION 5

| i | INSTANT PASCAL TEXT UNITS

gl
g
il

i;!m; "Me internal form of a Pascal program in the Instant Pascal

j'jfﬁ nystem has been designed to satisty three objectives not

i lﬁf previously considered compatible 1in systems supporting

i E!% ntructured languages:

o o6 The internal form of the program must be backwards trans-
f|:i ': | , . , .
i latable to equivalent source code. Thls objective permlts

| ygué building a system which can support the 1llusion of

TR

i “HPE directly executing the source code.

e

| - - ' Lt] |

IR o Fxecution time should be insensitive to complexity of data

%i !ﬁi or statement structures. For example, the time recqulred

;'.Lﬂ: by an IF statement to skip over an unexecuted compound

S |

!;,yy statement should be about the same whether the compound

Qﬁfhé statement is three lines or one hundred lines long.
L

| | I

; ?H?E o The consequences for the structure of the internal form of

i f_;i the program of any source-program change must be confined

| il o

] . iﬂi to the portions of the program which are changed. As a

;2' ﬂ counterexample, changing one letter, VAR A,B:SEAL; to VAR

j' h% A,B:SEAT; (where SEAL and SEAT are defined types) 1n a

| ;?% compller-based system can completely alter the object

| %jh program and therefore requlres total recompilatzion.

A

| :ii 'he approach which has been taken to reconcile these objectives

ééﬁﬁﬁ 'n Instant Pascal divides the process of transforming source

i:;ﬁg lext into answers 1into three phases.

| 'HI:EE;,

.Ii;i'l

:ill

| Bl

L

| rﬁ
1

| i
J !' 5-1 |

{_5 '

el b W R TR W TRTET W TEET

5.1

Translation (elicited by the R, I, and X commands) pPro-

cesses Pascal source code and translates it into the
Internal program format which is in executable form except
for certain addresses and integer values, such as polnters
to variable declarations and lengths of structured types.
The proper values cannot be computed for these values
because the program cannot be assumed to be whole.

1s left,

space
however, for these values to be later added.

(These entities are called "spanners” in this section).

Binding (elicited by the C and X, and possibly by the G
and step commands) scans the entire program (or in the
case of X, the statement), verlifying its structural

integrity and assigning values to all spanners.

Execution (elicited by the G, step, and X commands)

sequentially interprets program statements and alters data

values 1n accordance with the rules of Pascal.

TEXT UNITS IN EDITING

In order to ensure that the user's freedom to edit programs 1s

not seriously constrained by the design approach taken above,

this design approach also incorporates the following principle.

Every program is conceived as being built of a single-

level, linear sequence of syntactic building blocks called

"text units". From the editor's point of view, the text

unit 1is the throwaway unit. Program building and altering
reduces to inserting text units into, and deleting text

units from, this linear sequence.

Ay a consequence of thas principle, character—level editing

wilhin a given text unit 1is accomplished by deleting the text

Tn some cases, text units

it and 1nserting a replacement.
Wrre small enough that the editing process, viewed as deletion

(6l lowed by insertion, 1s essentially the same as conventional

haracter-oriented editing. For example, the following are

| oxt units:

(as a statement separator), REPEAT, ELSE

BEGIN, REND,

11 the other hand, some text units are larger. TFor example,

A1l simple statements are text units; 1n fact, eXpressions are

vlways contained within larger text units.

'he person familiar with Pascal will readily 1ncorporate the
Lo xt—-unit orientation into his or her editing style. Here 1s a
hrief and informal definition of most of the Pascal text units.
and function headings, 1ncluding

. Program, procedure,

formal parameter lists.

Example:

FUNCTION ISPRIME(N:2..MAX):BOOLEAN;

h, Certain part header words:

CONST
TYPE
VAR

+. Constant definitions, including the final semicolon.

Example:

GREETING='HELLO, THERE! ';

5-3

B e T i) [

- = ——

e el e —————e e s T fe emle am e amm s

Type definitions, 1including the final semicolon, except 1n

the case of record type definitions, i1n which case the

word RECORD stands 1n place of the type and final

semlcolon.

Examples:

TARLE=ARRAY[{ RANGE JOF COST:
HASHTABLE=RECORD

Variable and field declarations {they are the same).
Example:

GAP=5SA409, INPUTCHAR:CHAR:
(Note that the final semicolon after a field declaration
1s always required in Instant Pascal unless the field type
1s RECORD.)
END and ; at the end of a RECORD definition.
Simple statements.
Examples:

GOTO 5

SUBRR(CRLOW)
A:=B[N+1]1*C

54

......

h. The connective fragments which are used to build

structured statements.

Examples:

REPEAT
UNTITL A=N

IF ODD(I) THEN
WwITH R[P] DO

l.abels and case constant lists preceding statements.

j. Comments.

Example:
(*THIS IS A COMMENT?Y)

In general, the lister begins each text unit on a new line.

Fxceptions occur when labels and case constants precede

statements and, most commonly, when semicolons follow

This fact is important in editing because the
cument 1n

statements.
formatted listing is frequently used as a reference do

the editing process, and the editing commands which regqulre

numeric parameters {(+<L>/n, +<K>/n, +<U>/n, +<D>/n) always

count text units, not lines. The most COmMMON €aSE +o remember

when counting text units on a listing is to count as two text

any line containing a simple statement Or a structured

statement connective fragment followed by "7 " .

unlits

Examples:

END:
UNTIL NOT ODD(N) ;:

5=5

" T L T . L -

5 There 1s a special case 1n the input translator which is The reason for excepting END and the separate semicolon 1s that

necessltated by a syntactic ambiguity in Pascal. Consider the

lhey can occur 1in both statements and at the end of RECORD

| plight of the input translator on encountering the following lypes.

text i1n the course of program creation.

DEFINITIONS OF TEXT UNITS

.' : | N
A,B,C,D:F:

"hiLs section presents a list of the text units of Instant

Is 1t a variable declaration, or 1is it a case constant list Pascal. It 1s not a formal definition of the syntax of the

followed by a procedure statement? These two objects must be source language. Such a definition 1s 1mplied in Chapter 7.

(3) Otherwise, 1if the preceding text unit is one which
occurs 1n declaration or definition parts, the wvalue
1s changed to DECLARATIVE; or if the preceding text
unit 1s one which occurs in the statement part, the

value 1s changed to STATEMENT.

5~6

f% translated differently. This 1s the only case in which the Rather, this section uses the reader's assumed knowledge of
| ?& translation process 1s context—-sensitive. The translator cx1sting syntax definitions of Pascal to present the source
i fﬂ decides how to treat this input by examining a context flag of language from the linear, single-level text unit point of view.
ﬂﬁ type (DECLARATIVE, STATEMENT). The flag's value is maintained
é }ﬁ& according to the following rules. "here are two metalinguistic elements used 1n these lists.
% - a. It 1s 1nitialized to DECLARATIVE. . Square brackets [] enclose an optional element.
? THEE b. Otherwise, 1ts value depends on the 1i1dentity of the text b, Elipses mean that the previous element 1s optionally
]! unit 1mmediately preceding the text unit pointer, and the repeated any number of times.
%?'ﬂﬁ value 1s subject to change every time the identity of the
é::?ﬁ? preceding text unit 1s changed, according to the e detall notes accompanying the lists clarify specific polnts
| E?#ﬁ?i following rules: and cite deviations from standard Pascal practice.
- ; ifﬁ
-gl'.$i (1) If there is no preceding text unit, the value 1is ".2.1 Program Heading
; f !ﬁi% unchanged.
o % Ji@ PROGRAM 1dentifier;
'} :Ef (2) If the preceding text unit is END or the separate
Ok r ' ' ' '
f?i; ":", the value 1s unchanged. 10242 gzitSUnlts Appearing 1n Both Declarative and Statement
[l

1. (* comment text *)

N

END
3, .

NDetalls:

1. Comment text may not contain the character sequence "*)".

57

| . The character ":" appears at the end of certain heading, 1. The semlicolons at the end of cases 1,3,5,8,10,11 are not
fﬁ declaration, and definition text units. This use of ";" optional. Therefore, the optional semicolon permitted by
. VEE is not a separate text unit but is an 1inseparable part of Pascal after the last field declaration 1in a record
| ijﬂ the heading, declaration, or definition text unit. definition is not optional 1in Instant Pascal; 1t 1s
Eifﬁf requilred.
!:ﬂ“ﬁ 5.2.3 Text Units Appearing in Declarative Parts
{yPER o - “".2.4 Simple Statements
: ,%i The text units are:
; HH The statements are:
é;iﬂﬁ 1. LABEIL integer [,integer]...:
! :T& 7 CONST . variable:=exXpression
?iiﬁﬁ 3. identifier=constant: 2. function designator:=expression
N :;-Mﬁ 4, TYPF b, GOTO 1integer
§ IW¢ 5, identifier=type; 4., 1dentifier([actual parameter list)]
EFL 6. 1dentifi1er=RECORD |
.ﬂﬂ{ 7. VAR hetalls:
J@h 8., identifier[=$hhhhll[,identifier[=$hhhhjl...:type;
jliﬁi 9. identifier[=$hhhh][,identifier{=$hhhh]]...:RECORD 1. Statement type 2 expresses assignment to the value of a
| !ﬁh 10. PROCEDURE identifier[(formal parmeter list)]:; function.
:'Eﬁ 11. FUNCTION identifier[(formal parameter list)]J:type:
;.Ha . The integer in the GOTO statement must appear in the LABETL
| , o |
) '%? Detaills: declaration of the block containing this statement part.
“ . |gﬂ GOTO may not jump outside 1ts own hlock.
]| a. The constant definition identifier=identifier; is not in
.; it the language. . The identifier in the statement type 4 1s a declared or
. -é !w% predefined procedure name.
E Hﬁw b. The option [=$hhhh] denotes a global variable asslgned to
; !iﬁ the absolute hexadecimal address hhhh. If the type 1s “.2.5 Statement Connective Fragments
. E i longer than one byte, hhhh is the lowest-numbered address
L . | EH in the variable. The connective fragments are:
:;'-.!EE 1. BBEGIN
" ;giﬁ c. The identifier[=%hhhh] cases above are used for both 2. END (the same as 1n 5.2.2)
ﬁﬁﬁi variable and field declarations. The option [=$hhhh] 1s 3. ; (the same as 1n 5.2.2)
% 5 “;” not permitted in field declarations. 4. IF Boolean expression THEN

gl | 5. ELSE

ey 6. WHILE Boolean expression DO SECTION 6
7. REPEAT

I? 8. UNTIL Boolean expression DIAGNOSTIC MESSAGES
|

9. FOR identifier:=expression TO expression DO

'* 10. FOR identifier:=expression DOWNTO expression DO

iﬁﬁ 11. CASE expression OF "mis chapter describes diagnostic messages which can occur

| ‘%“ 12. case constantl,case constant]...: (uring translation, binding, execution, and listing.
13. OTHERWISE:

nﬁ 14. WITH record variablel ,record variablel]...DO .1 SOURCE INPUT DIAGNOSTICS
|
| 15. label:

nach correct source input line 1s a seqguence of one or more

i Detalls: nyntactically correct text units. There 1s syntax checking

fﬁf . ; -Mﬂ ‘ring translation, but only within each text unit. With the

':$ a. Case constants are not strongly type checked against the rxception noted in 5.1, there 1s no concern at translation time

expression in the CASE fragment. A case constant will be Abhout the order in which text units are entered or about the

p
“AWE selected at run-time if its ORDinal value matches the sverall structure of the program.

C o

i
|-, , :
iwﬂ ORD1inal value of the exXpression.

.-[!

1

hmring source i1nput (I, R, or X command), an entire line 1s

b. OTHERWISE: is the default case "constant’. input before any of the line 1s translated. This permits free

nse of the DEL key to correct kKeying errors. Once translation

il bhegins {(immediately after keying RETURN) each text unit 1s

. t ranslated without regard for any text units either preceding

or following it on the same line. 1If an error 1s discovered

. I i , -
¢ | !!WH luring the translation of any text unit 1n an input line, no

: ' . !{ﬁh loxt unit in that line 1s incorporated into the program. If no
e] 3 !hwﬂ crror 1s discovered, all text units 1in the line are
s R R
o L _ S j o] 07 -
e T e e T R] i';; tncorporated i1into the program.
TTEmE s L eI e LS e TS (il ‘
o SRR = e
e S Pt SR R 1
e Re Eo e B Y| - - - -
e P SR :__i | |, ! . "ree diagnostlic messages can occur durlng source input.
A T TR e ey Bl
T U e T T e T T S R T |
e ‘ gl
G T e e i
S e S S) _;i -Hy o The syntax error messagdge
TR : T 1 See 3.1 for a discussion of this message.
R SFAEE e me s —ET L

R T

B ﬂ N A] | I| i

LR = : i
N 3 R e JHIE
S caEeE 1 5-10
e s 6-1

= WL TR SCT I T o T e Doy ook iyt (g [-ooF Ll L ey

i1, ! '
] a1 .
i i
- P
1 1 H
| S
| 1
. . 1
'- P
E i I
it I .' .':
= I n
A
| 1
|
i
- ‘ !
1o
i I
.
1

. WHILE Boolean expression DO SECTION 6
REPEAT

L ~d O

;}; . M* . UNTIL Boolean expression DIAGCNOSTIC MESSAGES

55§%" | o fﬂﬁ 9, FOR identifier:=expression TO expression DO

;féjiif# _ﬁf;i;_ i%ﬁi 10. FOR identifier:=expression DOWNTO expression DO

%;EET?i§ﬁ:;§§iE§; ?Jﬁ 11. CASE expression OF is chapter describes diagnostic messages which can occur
iggfiﬁﬂ% h%;figé uﬁ: 12. case constantl,case constantl]...: Juring translation, binding, execution, and listing.
T s 13. OTHERWISE:

(IR i : ol

'H 14, WITH record variablel ,record variablel., ..DO 6.1 SOURCE INPUT DIACGNOSTICS

1
ol 15. labels:

~H llach correct source input line is a sequence of one or more
il

“fgf ﬁ;&ii .V Detalls: syntactically correct text units. There 1s syntax checking

during translation, but only within each text unit. With the

a. Case constants are not strongly type checked against the rxception noted in 5.1, there is no concern at translation time

Hwh expression in the CASE fragment. A case constant will be ahout the order i1n which text units are entered or about the

| selected at run-time if i1ts ORDinal value matches the overall structure of the program.

1 ORDinal value of the expression.
o

huring source input (I, R, or X command), an entire line 1s

Jijﬁ:ﬂﬁ¥§;|7ﬂ h. OTHERWISE: is the default case "constant’. mput before any of the line 1s translated. This permits free

L e L] nse of the DEL key to correct Keylng errors. Once translation
oE o S i
- B T w - - , - * ;
B . e AE hegins (immediately after keyilng RETURN) each text unit 1s
s ERETERT L Wl |
- #'_"'-:'._ R : !l'l i
2 T T 1

-l | ranslated without regard for any text units elther preceding

or following it on the same line. If an error 1s discovered

luring the translation of any text unit 1n an 1nput line, no

t oxt unit in that line 1s incorporated into the program. If no

: d 1 ’
'-ﬁ crror 1s discovered, all text unlits 1n the line are
'i
|

imcorporated 1nto the program.

R I'ree diagnostic messages can occur during source 1nput.

o The syntax error message

#..,.%

I See 3.1 for a discussion of this message.

i 5-10 6-1

o The message

"NO SPACE LEFT™

This 1ndicates that the current number of free memory
3.3.1)

which this line has been translated 1s negative.

bytes {see +<M>, minus the number of bytes into

o The message

"TOO MUCH CODE"

This message, which 1s expected never to occur, says that
the 256-byte buffer which receives the output of the
translator 1s not large enough to hold the internal form
of the entire 1input line. If the message occurs and 1f the
input line contains multiple text units, break the input

into more than one line.

NDetalls:

a. In the case of the syntax error message, the right-most

"#" usually gives a strong clue about the error, since the
character i1mmediately to 1ts right 1s the one which led
the syntax analyzer 1nto the impasse. If the right-hand
"#" 1s the last character of the diagnostic message,
something 1s missing at the end of the input, for example,

a final semicolon in a declaration or definition.

b. The usual response to the "NO SPACE LEFT" message is to
save the program on tape and then to figure out how to do
what needs to be done 1in less space. If a larger memory

size could have been declared because RAM is available

which wasn't used, 1t 1s still necessary to write the

program out and then read 1t back 1in.

H.2 BINDER DIAGNOSTICS

hiagnostic messages which occur during binding have the

following distinctive form: an indicator line describing the

nrror, followed by one or more program text lines describing

where the error occurred. The following indicator lines can

ST AT B -

SEQUENCE
UNDEF 1dentifierx

DUP 1dentifier

UNDECL label

DUP label

PYPE 1dentifier

h.2.1 *SEQUENCE* Diagnostic

'he *SEQUENCE* diagnostic indicates a syntax error. This 1s

wsually an inter-text-unit syntax error, for example, a missing

semicolon, but intra-expression syntax errors which escape the

hecking in the translator are possible, as the example 1n

1.4.8 11lustrates.

'"he indicator line 1s followed by four text units to display

the context of the error. The actual error was discovered,

rhat 1s,
| 1stead.

the impasse occurred, at or in the first text unit

A *SEQUENCE* diagnostic immediately aborts binding with the

lext unit pointer at the first of the four listed text units.

NDetails:

n. If the only thing following the *SEQUENCE* line 1is .,
Listing the

this indicates a missing END 1n the program.

whole program will show this in the form of a nonzero

indentation on the last source line.

6-3

S 1
‘fff ﬁ'gﬂ_f_-?f |;% b. If examination of the program shows that the syntax error 'Me case in which a label is declared and occurs 1in a GOTQO but
| ;#f #_F ;;‘.. _ !ﬁﬁ 1s due to somethling missing immediately before the first loes not occur preceding a statement 1s caught at run—-time when
;i%{fﬁ;fiiQ%E T; #E listed text unit (a missing semicolon is a common (and 1f) the GOTO is executed.
i) | i%ﬂ example), it can be immediately entered with the +<I>
¥ N”Hﬁ command without moving the text unit pointer. Neither of these diagnostics stops the Binder. Note that
s) :%i labels are stored and searched as character strings, eXcept
'jﬂ 6.2.2 1ldentifier Lookup Diagnostics i hat insignificant zeros are suppressed. Instant Pascal does
. Hf not impose the conventional limit of four digits to the length
The 1indicator lines *DUP* identifier and *UNDEF* identifier ar: af a label.
each followed by one text unit which contains the cited ident i
k Firer occurrence. 6G.2.4 Type Consistency Diagnostics
. fﬁ The *DUP* diagnostic 1s generated at a defining occurrence of e indicator line *TYPE* identifier can indicate an 1nconsis-
f ¥ an 1identifier if the 1dentifier has a prior defining occurrenc: | ency between the types of the upper and lower bounds of a sub-
E'Hi at the same block level. range type; 1t can also be generated by a STRING type with a
i'mﬁ noninteger length. The identifier in the indicator line 1s a
- .Tﬁﬁ The *UNDEF* diagnostic 1s generated at a referring occurrence t ype i1dentifier appearing in either the subrange oOr string
r.ﬁ% of an identifier if the identifier has no prior defining type; this identifer refers to a type which is inconsistent
:: occurrence at the same or at any higher block level which woul:l with the definition in which it occurs. This definition occurs
!@ﬂ be visible to this referring occurrence. in the text unit following the indicator line.
Neither of these diagnostics stops the Binder. 'his diagnostic does not stop the Binder.
I
é%g 6.2.3 Label Lookup Diagnostics hetalls:
L
}fﬁ The 1ndicator lines *DUP* label and *UNDECL* label are each 1. If no Binder diagnostic occurs, the Binder will output the
1ﬁﬂ followed by one text unit which contains the cited label message "OK" and the text unit pointer will be at the TOp
_%ﬁ occurrence, of the program.
ﬁf%ﬁ The *DUP* diagnostic is generated at a label: preceding a h. If a Binder diagnostic occurs but no *SEQUENCE* diagnostic
"“E statement 1f there was a prior occurrence of the same label: in occurs, the text unit pointer will be at the hottom of the
B wﬁ the statement part of the same block. progtad.
Q'élﬁﬂ,_ - i#ﬂ The *UNDECL?* diagnostic is generated at a GOTO label if there c. It is not possible to execute a program without an error-
P ﬁﬂ 15 no label declaration in this block which names the label. free binding.

S D 53 _ R ;
&SIk S & 'ﬁh |
g | ‘ 'li |
| . |||| : i
. 1 : : |
| Lﬁi 6.3 EXECUTION-TIME DIAGNOSTICS however, the lister may encounter a value which does not trans- |
- !H% late meaningfully; this will lead to the output of a single "
. ; “;i The are 53 possible execution-time diagnostics enumerated in s part of the output text. N
N | 'ﬁﬁ% Appendix E. This section deals with what is common to all of f
- :Ei them. ("ortain corrupted memory configurations can cause the lister to ;{
B . ._ B _ |
) - ; !ﬁ? loop continously:; 1t may be necessary to RESET the AIM 65 under |
| Gf. All execution-time diagnostics are fatal to execution. The | hese conditions.
S ? ﬁﬂ% error reported by the diagnostic message 1is discovered in the
| Ff; process of interpreting a text unit. This text unit is printed Netall:
iﬁm: as part of the diagnostic message: then execution terminates
. L |!i r . , | , , | _
iﬁﬁ (with Break-in-progress false) and control returns to the Under certain conditions the lister will only praint a
B . , , | | | . - - S
'@d_ command 1lnterpreter with the text unit pointer at the offending partial text unit as part of a diagnostic message. Thils
1HEE ; :
. Hﬂg text unit. can occur where lists are involved and an error was caught
i M in the middle of a list: 1in LABEL and VAR declarations,
EEWEE The form of the diagnostic message 1is. parameter lists, and case constant lists. In one case,
i %ﬂ namely parameter lists, the backward translation algorithm
. ! fl;!; i' | | _
) s%M$§ ERROR #nn may hecome confused if the translation starts 1in the
;!Eﬂg text unit middle of the list, and an extra semicolon might come out.
B L ,
| Also, the text unilt polnter may actually be positioned 1in
i S | _ . | - -
. N The definitions of error codes nn are listed in Appendix E. the middle of a list. This will not lead to difficulty,
ﬁﬁ however, and the text unit pointer can be repositioned as
]| L
Ll . :
4 ;ﬁg After control returns to the command interpreter, a series of usual. Care should be taken not to delete anything until
Lk . , . -
H%L WRITELNs may be executed with the +<X> command to examine the the text unit vointer 1s back to the beginning of a text
“%“ state of the data. The position of the text unit pointer unit.
fﬁ“ Lnsures that visibility of identifiers is the same as that
e . , .
5@¥ which prevailed at the time of the error. The data structures
:ﬁj built during execution are not initialized until the next +<G>
alf | |
;-ﬁﬁ or +<,> 1is executed, so data are available for examination.
;ﬁ? (This 1s true after an error-free termination also, but first
HH? do a + before the +<X> command to position the text unit
-fﬁy pointer to the bottom of the program).
i 6.4 SOURCE OUTPUT DIAGNOSTICS
ﬁij Under normal conditions, the lister will never encounter some-
s Ll

KRG thing which it cannot translate. If memory becomes corrupted,

o 6—6 67

il

SECTION 7

INSTANT PASCAL LANGUAGE DEFINITION

'he language definition 1in this chapter presupposes a knowledge
o Pascal concepts, particularly as they are presented 1.n the
“"Report" section of "Pascal User Manual and Report", Second
nilition, by Kathleen Jensen and Niklaus Wirth (see Appendix F).
‘ollowing is a list of deviations from Jensen and Wirth Pascal;
 t. may be presumed that any feature of Pascal which 1s not

cxplicitly discussed here corresponds tO Standard Pascal.

1.1 SUMMARY OF EXTENSIONS AND RESTRICTIONS

7.1.1 Extensions

rollowing is a list of the features of the AIM 65 Instant

Pascal language which are not found in Standard Pascal.

1. Variables, both simple and structured, may be given
absolute memory addresses. The syntax "=$Shhhh" (where h
is a hexadecimal digit) after any variable identifier 1in a
variable declaration fixes the variable at address S$hhhh

and makes it global. (That is, 1its value survives the

block in which it is declared.)

" i

. The underline character may appear 1n user-—defined

identifiers wherever a digit may appear. This character

ig not on the AIM 65 keypoard, but it can be entered from

a terminal.

~. The OTHERWISE: default clause may precede the last

statement in a CASE statement in place of a case constant

list.

7'1‘2

The following features of Standard Pascal are not found in AIM

Identifiers and labels may have any length; the entire
string (exceot for insignificant zeros 1n labels) 1is

significant.

The STRING data type may have values whose length varies

dynamically up to the declared maximum.

The predeclared procedure BREAK causes interruption of

program execution, 1f 1t 1s enabled.

The predeclared procedure SUBR(ENTRANCE) calls the
machine-language subroutine whose entrance address 1s the
declared address of the absolute CHAR variable ENTRANCE.
SUBR(ENTRANCE,DATA) does the same, but before entéring the
subroutine 1t places the (lowest) address of DATA 1n

SFE, SFF and places the first {(lowest-addressed) byte of
DATA 1n A.

The predeclared function FUNC(ENTRANCE) has a value of
type CHAR. It calls a subroutine the same way that
SUBR{ENTRANCE) does; upon return, it uses the contents of
FUNC{ENTRANCE, DATA) does the same as
SUBR(ENTRANCE,DATA): upon returning, it uses the content

of A for 1ts CHAR value.

A for its value.

Restrictions

65 Instant Pascal.

FILE types are not i1mplemented, nor are the predeclared
procedures GET, PUT, RESET, REWRITE, PAGE or the pre-

declared functions EOLN, EOF. The predeclared procedures

READ, READLN, WRITE, WRITELN, are 1implemented to work with

all character—-serial devices avallable to. the AIM 65

.

Monitor. These devices act like TEXT files and can read
into and write from the following types: CHAR, INTEGER,

REAL, BOOLEAN (Y or N on input), variable-length STRING.

Set expressions {[expression..expression] and operators +,
-, *) are not implemented. One-byte sets (up to eight
elements in the base type) and the relational operator IN

are implemented:; together with absolute-addressed

variables these permit Pascal-level testing of bits 1in

memory, for example, I/0 status.

Records are implemented, but record variants are not.

Dynamlc storage allocation (procedures NEW, DISPOSE) and

the pointer type are not i1mplemented.
The directive FORWARD 1s not implemented.

The constant definition identifier=identifier; 1s not

implemented.

Ambiguity between field and variable names 1s not
supported. Other Pascal visibility rules are fully

supported.

The procedures PACK and UNPACK are not 1mplemented.
Packing of data is not done below the byte level. The
word-symbol PACKED is accepted but nonfunctional.

Procedural and functional parameters to procedures and

functions are not implemented.

GOTO may not jump outside 1ts own block.

7.2 WORD-SYMBOLS AND PREDEFINED IDENTIFIERS

This section lists all word-symbols and predefined 1dentifiers
1n Instant Pascal. If no comment accompanles a particular list
1tem, 1t may be presumed to follow Pascal 1n 1ts definition.

7.2.1 Word*Symbols

The list of word-symbols 1in Instant Pascal 1s the same as in

Standard Pascal, with one addition: OTHERWISE. Two Pascal

FILE and NIL, are not i1mplemented and should be

word—- symbols,

avolded as 1identifiers. (In fact, they cannot be used as

1identifiers.)

The Instant Pascal word-symbols are:

AND, ARRAY, BEGIN, CASE, CONST, DIV, DOWNTO, DO, ELSE, END,

FILE, FOR, FUNCTION, GOTO, I1F, IN, LABEL, MOD, NIL, NOT, OF,
OR, OTHERWISE, PACKED, PROCEDURE, PROGRAM, RECORD, REPEAT, SET,
THEN, TO, TYPE, UNTIL, VAR, WHILE, WITH.

7.2.2 Predefined Type Identifiers

The predefined type 1dentifiers are the same as 1n Pascal:

BOOLEAN, CHAR, INTEGER, REAL, STRING, TEXT.
TEXT 1s recognized but not implemented and should not be used
as an 1dentifier.

STRING 1is 1implemented differently from Pascal, as described

below.

As a group,

in the fact that they cannot bhe redefined. 1In theory, Pascal

the predefined type 1dentifiers deviate from Pascal

11 lows the 1dentifier REAL to be used as a defined type name;
Instant Pascal does not allow that.
The type STRING[length] where length 1s a positive integer

1dentifier} whose value 1s less

1s defined as ARRAY[O..length)] OF CHAR.

comnstant (either a literal or

| han 256, The dynamic
vitlue of a variable S:STRINGIN] i1s the sequence of characters
101,801}, ...,S[ORD(S[0])], where 0<=0RD(S[0])<=N.

lhe first byte S[0] stores the dynamic length of the string.

That 1s,

‘haracter and string literals are 1internally realized as values

of type STRING. That 1s, the constant 'A' 1s a two~byte object

whose bytes have the hexadecimal wvalues 501 $41. For thais

rerason, type compatibility constraints have bheen relaxed to the

tollowing extent: any value of type STRING, 1f 1ts dynamic

liongth 1s 1 (1.e., 1f the value of the first byte i1s $01), may

ntand 1n place of a value of type CHAR 1n assignment and

comparison. For example,

PROGRAM STRINGDEMO:
CONST
CHARCONST="'A"'":
VAR
S:STRING[10]:
C:CHAR:
BEGIN
READ(S);
IF S<>CHARCONST
C:=5
END

THEN

willl execute without a diagnostic 1f, and only 1f, one charac-

ler followed by RETURN, 1s entered 1n response to the READ.
'ascal allows a statement like X:='ABC'

PACKED ARRAY[3] OF CHAR;

where X 1s of type
Instant Pascal does not. The com-
X:="ARC'

17 X were of type PACKED ARRAY[4] OF CHAR, but 1in Instant

nensation for this 1s that, i1n Pascal, would not work

Phascal,

any STRING type of declared length 3 or greater can be

assigned the value 'ABC'. In general a STRINGI[N] wvariable can
be assigned a value of type STRING whose dynamic length is N o

less, even zero, and even if the declared maximum length of the

source 1s greater than N. Reference to the 1individual array
components of a STRING type value 1s allowed. TFor example,

given S:STRING[N], the CHAR-type variables S[0],...,S[N] are

available to the program.

7.2.3 Predefined Boolean Constants

The BOOLEAN type is implemented as a one-byte enumerated type
with the two values (FALSE,TRUE). The predefined i1dentifiers

FALSE and TRUE have the same meaning as 1n Pascal, as the con-

stants of type BOOLEAN. For example, REPEAT ... UNTIL FALSE 1

a way of bracketing a nonterminating loop. The 1dentifiers

FALSE and TRUE may not be defined; they may be used only as the

Boolean constants.,

7.2.4 Predeclared Procedures

As 1in Pascal, the predeclared procedure 1dentifiers are con-

sidered to be declared at a level above the program block; they

can be redefined in the program.

The following procedure identifiers are predeclared 1n Instant

Pascal; their definitions are given below.

BREAK
READ
READLN
SUBR
WRITE
WRITELN

1"ye following Pascal procedure 1dentifiers are not predeclared

i1 Instant Pascal and are availlable as user-defined i1dentifers.

DISPOSTE
GET

NIA
PACK
PAGE
PUT
RESET
REWRITE
UNPACK

he definitions of the predeclared procedures follow.

. BREAK. See 4.,2.

by, READ, READLN. READ and READLN are the same except that

after reading 1nto the last parameter, READLN outputs a

new line (CR or CR/LF) to the printer or attached

terminal. READ(Pl,...,Pn) sequentially executes
READ(Pl),...,READ(Pn); 1t 1s therefore necessary to

describe only the single-parameter procedure READ(P).

The behavior of READ(P) is consistent with the Pascal
READ(P) from the 1implied TEXT file INPUT, where the INPUT

file 1s the AIM 65 Monitor's input device. Specifically

1t depends on the type of P, as follows:

BOOLEAN: Only two one-character values are accepted: "Y"
and "N". "Y" sets P to TRUE; "N" sets P to
FALSE. Other inputs cause "?" to he output and

the READ walts for a correct 1nput.

CHAR: One keystroke 1is accepted; 1ts ASCII value 1s

assigned to P.

————_— . f——

INTEGER: A signed or unsigned 1lnteger in the range
~32768..32767 1s accepted and assigned to P.
Inputs are read into an input buffer and only
scanned after RETURN 1s keyed; therefore the
DEL key may be used to correct keylng errors.
Scanning terminates at the first nondigit
(after the possible initial sign)}. If the

input buffer is empty, "?" 1s output and the

READ again waits for input.

REAL: A signed or unsigned real number, with or with-
out an exponent part, 1s accepted and assign-
ed to P. The syntax accepted is exactly as 1n

the source language, whilich corresponds to

Pascal in this respect. Inputs with 1nteger

syntax are also acceptable. Remarks under
INTEGER regarding the input huffer apply to
REAL.

STRING: If the declared length of P 1s N, up to N

characters followed by a RETURN are accepted

More than N characters of

The DEL

and assigned to P.
input will produce a run-—-time error.
key 1s available for correcting keying errors.

Empty 1input strings are acceptable.

SUBR. See 7.1.

WRITE, WRITELN. WRITE and WRITELN are the same eXxXcept
that after writing the value of the last parameter,
WRITELN outputs a new line (CR or CR/LF) to the printer or
attached terminal.
lent to SUBR(CRLF) where CRLF=$E9F0:CHAR;. WRITE(Pl,...,

Pn) sequentially executes WRITE(Pl),...,WRITE{(Pn); it 1is

WRITELN with no parameter is equiva-

7-8

therefore necessary to describe only the single parameter

procedure WRITE(P).

The behavior of WRITE(P) i1is consilistent with the Pascal
WRITE(P) to the implied TEXT file OUTPUT, where the OUTPUT
file is the same as the AIM 65 Monitor's output devaice.
The ":" parameter separators of Pascal, and the formatting
function they control, are not supported by Instant

Pascal. The behavior of WRITE(P) Jdepends on the type of

P; what follows also describes output during tracing.
BOOLEAN: The letter "F" or "T" 1s output, 1f the value
1s true or false, respectively.

CHAR: The character 1s output untranslated. If the
character 1s an ASCII nongraphic, behavior
denends on the output device.

INTEGER: Values are output 1n the range -32768..32767.

Nonnegative values are output with a leading

space.

REAL: Values dare output 1n nonexponential or
exponential format, depending on their
magnitude. Nonnegative values are output
with a leading space.

STRING: The dynamic value of the string 1s output

untranslated. The length byte 1s not output

but defines. the number of characters written.

ENUMERATED: The ordinal value 1is output as a two-digit

hexadecimal number preceded by "S",.

7.2.5 Predeclared Functions

As 1n Standard Pascal, the predeclared function 1dentifiers are

considered to be declared at a level above the program block;
they can be redefined 1in the program.

Instant Pascal implements, 1n accordance with Pascal, all the

predeclared functions of Pascal except the Boolean functions

EOF, BEOLN.

In addition, Instant Pascal includes the

predeclared function FUNC.

Following 1s the list of Instant Pascal predeclared functions:

ABS, ARCTAN, CHR, COS, EXP, FUNC, LN, ODD, ORD, PRED,
ROUND, SIN, S5SOR, SQRT, SUCC, TRUNC,

All are defined as 1in Pascal except FUNC, which 1s defined 1in
7.1,

7.3 COMPARISON TO STANDARD PASCAL

This section 1s organized to facilitate a direct comparison
between Instant Pascal and Standard Pascal, as reported 1in the

"Report" section of "Pascal User Manual and Report", Second

Edition., The number 1in parenthesis parallels the numbering of

the Report. The content of each paragraph 1s a statement of

any deviation which exists from Standard Pascal as defined 1in

that paragraph of the Report.

7.3.1 Notation, Terminology, and Vocabulary (3)

a. Lower-case letters are not supported.

b. The character "[L" is Fl on the AIM 65 keyboard; "1" is F2.

Co A 1s not supported.

7=10

f
e

3

1.

"{" is replaced hy "(*"; and "}" 1s replaced by Wk
NIL is not supported.

FILE 1s not supported.

OTHERWISE is added to the list of special symbols.
Comments may only occur in places where text unilts are

accepted.

3.2 Identifiers, Numbers, and Strings (4)

The underline " " may appear in an identifier wherever a

digit 1s allowed.

Strings of any length N in quotes are constants of the

tvpe ARRAY[O..N] OF CHAR, where the Oth element contains
the value N.

3.3 Constant Definitions (5)

tconstant identifier> 1s excluded from the <constant>

doefinition.

/.

3.4 Data Type Definitions (6)

cpointer type> 1s not supported.

il -

.

Structured Types (6.2)

<file type> 1is not supported.

Record types (6.2.2)

(1) Variants are not supported.

(2) There must be a semicolon following the <field list>

and preceding the END.

T
ﬁf c. Set types (6.2.3) 7.3.6 Expressions (8)
il - -
ol (1) The operators +, -, and * on sets are not supported. T NIL is not supported.
B , |
i (2) The base type of a set may have a cardinality of at
?E most 8.). <set> 1is not supported.
DO aF
fﬁ d. File type (6.2.4) (1) Multiplying operators (8.1.2)
B (1) FILE type i1is not supported.
i , | -
il (2) TEXT type 1s not supported. Operations on sets are not supported.
m
Rl
I e. Pointer types (6.3) (2) Adding operators (8.1.3)
;%
'Mﬁ Pointer type 1s not supported. Operations on sets are not supported.
S
o
| :!;j:ﬁ
. | | ik 7.3.5 Declarations and Denotations of Variables (7) 7.3.7 Statements
fg Redefine <variable declaration®> as follows: 1. Procedure statements (2.1.2)
N <variable declaration> ::= Procedure and function parameters are not supported.
| I 5 | |
i <variable 1d> { , <variable 1d> } : <type>
};m <variable 1d> ::= <i1dentifier>|<identifier>=$ <hex digit> . Goto statements (9.1.3)
| '#T { <hex digit> }
ﬂﬁ <hex digit> ::= <digit> | A | B] Cc I D | E | F It 1s not nossihle to jump out of a procedure or function.
:l : |
a“
il (1) Component variables (7.2) . Case statements (9.2.2.2)
1
iﬁ <file buffer> is not supported. (1) Redefine <case statement>:
:ﬁﬁ <case statement> ::= CASE <expression> OF
%iﬁ (2) File buffers (7.2.3) <case list element> { :;<case list element> }
ATH <otherwlse element> END
5F This form of wvariable is not supported. <otherwise element> ::= OTHERWISE:<statement> |
]
|QE <empty>
!iﬁ (3) Referenced variables (7.3)
;f (2) The END may be preceded by a semicolon.
g This form of variable 1s not supported.
ﬁ
1 7-12 7-13

L |
it
}%
Eﬂ d. With statements (9.2.4)
ﬁ@ (1) The procedure read (12.1)
EE (1) On page 49 of the Jensen and Wirth Pascal User Manual '
ﬂﬂ and Report, there 1s an example showling ambiguity (a) The only file supported is INPUT, which 1s never
B between a variable and field identifier. Instant named .
) {? Pascal does not support such ambigulty.
{ﬁ | (2) The procedure readln (12.2)
| 7.3.8 Procedure Declarations (10)
0 (a) The only file supported is INPUT, which 1s never
?ﬁ The word symbols PROCEDURE and FUNCTION may not be used in a named .
_EH formal parameter section.
f%! (b) READLN 1is 1nterpreted as 1n 7.2.4 of the present
if@ a. File handling procedures (10.1.1) document .
Tfé These procedures are not supported. (3) The procedure write (12.3)
.
ﬁm b. Dynamic allocation procedures (10.1.2) (a) The only file supported is OUTPUT, which 1s
“ﬁi never named.
Tﬂ These procedures are not supported.
f;E (b)) The write-parameter separator ":" 1s not
ot c. Data transfer procedures (10.1.3) supported, nor are the formatting functions
| which they control.
These procedures are not supported.
ik (4) The procedure writeln (12.4)
Lf 7.3.9 Predicates (11.1.2)
i? The only file supported is OUTPUT, which 1s never
I; EOF, BEOLN are not supported. named.
? HEE 7.3.10 Input and Output (12) (5) Additional procedures (12.5)
]@ a. The predeclared files INPUT and OUTPUT are not named. PAGE is not supported.
ﬂﬂ (However, see 7.2.4 of this document.)
ﬂi 7.3.11 Programs (13)
b ,
%Eé The <program parameters> part 1s empty.
il
. 7-14 718

|

i

1

ol

I 1
oo
11 ||
b

APPENDILX A
SUMMARY OF COMMANDS

MeXT UNIT POINTER MOVEMENT

<>

F<I35>

F<U> /n

PﬁD)/n

<> argument string

NIEVICE SOURCE I/0

F<R>IN=device

-<T,> /n OUT=device

SOURCE TEXT EDITING

h(K)/n
F<T >
+< >

<V >

Position to top text unit.

Position to bottom text unit. (Always
TR

Position up n text units. ("."=forever;
RETURN=1)

Position down n text units.

Find the line containing the argument

string.

Read lines of Pascal source text until an
empty line.

Device=RETURN 1s the keyhoard.

List n text units to the specified device.

CR 1s the on-board printer or

Device

attached terminal.

NDelete n text units.

Insert one line of source text.

(space) List current text unit.

View five text units centered on the

current text unait.

1 1
| o
| A
: I
| |I|I
; -
-,
I"I I:
[P
i

TOGGLES

+<5>

+<A>

PROGRAM CONTROL

+<C>
+ <G>

+<X> one statement

+<,>

MISCELLANEOUS

+<W>
+<N>
+<M>

+<Z>

Toggle statement trace.

Toggle asslignment trace.

Check program syntax; invoke the Binder.
Execute program, Starts at beginning of
program unless Break—-i1n-progress 1s true.,
Immediately execute the statement.

Execute and trace program, returning to
command interpreter with Break-in-progress
true at start of next statement. Starts at
beginning of program unless Break-—-in-

progress 1s true.

Redefine page width,
Initialize to empty program.

Report number of free memory bytes.

Initialize Instant Pascal {cold start).

Regserved Words

APPENDIX B

LANGUAGE SUMMARY TABLES

AND END NIL SET
ARRAY FILLE NOT THEN
BREGIN FOR OF TO
CASE FUNCTION OR TYPE
CONST GOTO OTHERWISE UNTIIL
DIV LE PROCEDURE VAR
NO IN PROGRAM WHILE
DOWNTO LABEL RECORD WITH
LS MOD REPEAT
Reserved Symbols

; ' ;
+- —~ * / = :
= <= > = <> >

*)

|

.- .- - .
- = - - . - L= - — — —aee
ot m et B e W1 AT = L TS T W EE, W=l

— - .
e TR T LA S SR A m . L R W TR Ll - T L= e L T S
[— a—r—— [——

Standard Identifiers

[Constants:

FALSE

TRUE

Types:

BOOLEAN
REAT,

CHAR
STRING

INTEGER
TEXT

lFunctions:

ABb
ARCTAN

CHR
COS

EXP

FUNC
LN
ODD
ORD
PRED

ROUND
SIN
SOR
SQRT
SUBR

SUCC
TRUNC

iIProcedures:

READ
BREAK

READLN

Procedures:

READ
BREAK

READLN

s

WRITE

WRITELN

WRITE

-

WRITELN

Real and Integer Functions

ABS
ARCTAN
COS

1N XP
LN
ODD
ROUND
SIN
SOR
SQRT
TRUNC

= —— ————

_Euncgion ~
Absolute Value
Arc Tangent
Cosine
Exponent

Natural Logarithm

Round

Sine

square
Square Root

Truncate

—

Operand (s)

el

Result

Integer,
Integer,
Integer,
Integer,
Integer,
Integer
Real
Integer,
Integer,
Integer,

Real

Real
Real
Real
Real
Real

Real
Real
Real

Same as Operand

Real

Real
Real
Real
Boolean
Integer
Real
same as

Real

Integer

Operand

Character Functions:

e . e - b - SRR R g E—r—— e LAl R S—— —

Operand (s) | Result

—_— — L o —] = - — - ——

Word Function

e o

el o el

CHR Character Integer Character

ORD Ordinal Scalar except Real . Integer

PRED Predecessor Scalar except Real Same as Operan:!

[T -—r st - —— m — .mow.-f

a re i e dnk —prain - —

Same as Operatul

. SUCC . Successor Scalar except Real

1
i
¢
i
E
!
P
+
i
!
!

—— —— —— - —
: | —— r— et ¢ —— Sy A B E—) — TR | — ['—l—h"--'ﬁ — T — =k S P E— e T e AR (- Sk —HSHE TERR - = | —— —r— ——
. a ——— — . e

Machine Language Functions

e e e e e
Word Function | Operand (s) _L Result o
v B Y W

!

!
SUBR Subroutine Call Address i -

|

I

FUNC { Function Call : hAddress, Data

b

T —————— g SRR R e R e e e e S ——— gl - L L E— —E—r—— 7w —Ef CTEEES FE—m—

Debug Functions

—— wmar o e« N LN EEECTTE TR T gl TR - E—— T w—

| e e 5 —— ——— e Sl AT A N E— e e wwmb b - LR o -—l--—-r‘T-—'l—l-'--ll-—l- —r—

Word | Function ‘Operand (s) L_ Result

——— - — —— ¢ —ular —-—-—-l--—--r-—+

N

BREAK Tnterrupt Execution — ; -

Arithmetic Operators

Symbol /Word

Operation

DIV

MOD

Addition (plus sign)

Subtraction (minus sign)

Multiplication

Division

Division {(yields a truncated integer result)

Modules (yields the remainder of division)

Relational Operators

¥ﬂymbol/Word

Operation J

<>

Greater than

Greater than or egual to

LbLess than

Less than or egual to

Egqual to

NOt egual to

APPENDILX C
PAGE O MEMORY MAP

e Instant Pascal software uses nage 0 locations 06-B4 and
'C-FF. (All addresses in this Appendix are hexadecimal.) The

following locations, 1in particular, may bhe of direct 1nterest

o the user.

Cold

[Tex NO . Start

Address Bytes Value Parameter Description

06~-07 0200 The first address used by

the software.

The last address used by

the software. {(one less
than the answer to the

MEMORY SIZE? question).

The address of the first
hbyte of the Instant Pascal
program. This address de-
creases as tne program

JrOws .

The address of the last
byte of the Instant Pascal

program.

The starting address of the
translator's 60~byte 1input
area. The 1nput area's

last byte 1s at the address
in 08.

ﬂu Cold Warm Cold Warm
fﬁ Hex No. Start Start Hex No. Start Start -
;% Address Bytes value value Parameter Description Address DBytes Value Value Parameter Description
0
C'E; 18-19 2 OEC4 - The starting address of the 1E 1 Holds the contenté ot the
f% translator's 256-byte out-~ processor’'s 5 r?ngt?r
'E put area. The output area after an execution-—-time
Li¥ immedilately precedes the error or break. Upon
i:ﬁ input area, and the object return to the interpreter
i .? program immediately pre- from a break, a check 1s
f?jf cedes the output area. made to ensure that the
i current value of S does not
. 1A-1B 2 02FC - Location $0200-$02FF con- exceed the contents of 3JIE,
Wiﬁ tains fixed tables. A which would i1ndicate the
'W-f run-time stack normally loss of information.
L begins at $0300 and builds |
%'ﬁ upward. SI1A-~S1B contains 2A-28B 2 0014 — Contains the answer to the
B E the initial address of the WIDTH? question.
h; the top of the empty stack
? which 1s 4 less than the FE-FF 2 Used by SUBR and FUNC to
| & address of the first byte communicate the address of
ilﬁ to be used by the stack, a Pascal data 1tem to a
E that is, SO2FC. The answer machline-language subroutine
; to the + <M> guestion (see 7.1).
i is ($12)-($1A)-250, that
; i is, 246 less than the num-
ii;% ber of free bytes from the
1L?§ bottom of the stack to the
?i% start of the program.
i
fﬂi NOTE
JéLi You may open up a hold from $0300 to a higher
EKE address by 1ncreasing the address 1in $1A after the
I;Eﬁ initialization sequence. For example, 1f you wish
;ﬁﬁ Instant Pascal not to use $0300-503C9, the address
_;:g 1s $1A should be set to $03C6 or greater.
'fﬁi ., C-3
ﬁﬁ

‘ il
: ik
*\ b
| i '
ﬂh r
B
-
I APPENDIX D
; l| lI- |
5 L
[L ASCIT CHARACTER SET
{1k
i
|4 HEX DEC ASCII| HEX DEC ASCII| HEX DEC ASCII| HEX DEC ASCIT
| _ o # w~NuL | 20 22 sp | a@g 4 @ A 96
i 31 1 SOH >1 33 41 65 A A1 97 a
K 32 > STX 02 34 " 42 A6 B 2 98 b
i %3 3 ETX 23 35 & 43 67 C 2 99 o
[k a4 4 EOT 24 36 S 44 A8 D 64 198 d
1l a5 5 ENO 25 37 % 45 69 E 65 1Pl e
il n6 6 ACK 26 38 & 16 I8 F A6 182 f
o 7 BEL 27 329 ¢ 47 71 G 57 163 g
18 B RS 28 4 ¢} (48 72 H ~8 14 h
9 9 HT 29 41) 49 73 T 69 145 1
¢A 1¢ LF A 42 & 4n 74 J 6A 1066
AB 11 VT 2B 473 + 4B 75 K ~B 107 k
e 1?2 FE 2C 44 / 4C 76 L HC 1728 1
0D 13 CR 2D 45 = 4D 77 M AD 149 m
UE 14 o0 2E 4 A . 4K 78 N AF 114 n
GF 15 51 2F a7 / 41 79 0 33 111 o
1A 16 DLE 34 48 & 5 B 1% 70 112 p
11 17 DC1 31 49] 51 81 0 71 113 g
12 18 DC?2 32 51 2 52 82 R 772 114 r
13 19 DC3 33 51 3 53 8 3 S 73 115 s
14 20 DC4 J 34 52 4 54 84 T 74 114 L
15 21 NAK 35 53 5 I 55 85 U 75 117 u
16 22 SYN 36 54 o H6 86 \Y) 76 118 v
17 23 ETE 37 55 7 577 877 W 777 119 w
18 24 CAN 38 56 8 58 /e X 78 120 X
19 25 EM 39 57 O 50 89 Y 79 121 vy
1A 26 SUB 3A H 8 : 54 ap Z TA 122 =z
1B 27 ESC 3B 59 ; 5B 4] [7B 123 {
1C 28 FS 3C 60 < 5C 92 \ 7C 124 |
1D 29 GS 3D A1 = 5D 93] 7D 125 }
1E 30 RS 3K Y > 5E 94 TE 1246
1F 31 VS 3F 63 7 5F 25 TE 127 DEL
NUL - Null DLE — Data Link Escape
$OH - Start of Heading DC -~ Device Control
STX -~ Start of Text NAK - Negative Acknowledge
12T X - End of Text SYN - Synchronous Idle
FOT - End of Transmission ETB - End of Transmission Block
FNQ - Enguiry CAN - Cancel
ACK - Acknowledge EM - End of Medium
BEL — Bell SUB — Substitute
BS - Backspace FSC - Escape
HT -~ Horizontal Tabulation FS - File Separator
LF - Line Feed GS - Group Separator
4l VT - Vertical Tabulation RS - Record Separator
il | FF - Form Feed Us - Unit Separator
i Wi CR - Carriage Return SP ~ Space ({BRlank)
% “@ SO - Shift Qut DEL - Delete
it St - Shift In
I D-1

Note:

03

06
07
08

11
12

13

L6
L7

19

Value Stack has exceeded avalilable space.

Too few actual parameters

Too many actual parameters

Actual parameter of a VAR formal parameter 1s an

APPENDIX [

EXHECUTION-TIME DIAGNOSTICS

Error nunbers with an asterisk are internal checks.

Their occurrence may indicate loss of memory integrity.

expression.

Nonordinal type where ordinal (scalar) type required.

Maximum permissible dynamic statement depth of 24

exceeded,

Ordinal value computation out of range (Array and set

selection)

Expression result type should be Boolean and 1s not.

Function identifier on left-hand side of assignment does

not refer to a declared function.

Type compatibility error in assignment or actual value
parameter.

Type (s) improper for operator.

Attempt to make array selection on a nonarray.

String length excessive for operation.

Empty string improper for operation.

E-1

24 *

25 Attempt tO negate a nonnumeric.

26 Operand should be Boolean.

27%*

28 GOTO with destination textual depth greater than that of
GOTO.

29 Actual/formal parameter type discrepancy.

30 Control variable has changed in FOR loop.

31 Argument of CHR not in 0..255,

32 Value less than lower limit of subrange.

33 Value greater than upper limit of subrange.

34 Argument not ordinal (scalar).

35 Argument not real or integer.

36 GOTO refers to an undefined label.

37 Actual/formal VAR parameter type discrepancy.

38 Array reference to STRING with noninterger subscript.

39 Right operand of IN not a set or packed set.

40 Source String to long for receiving string.

41 Improper argument of record select (.) operator.

42%

43 No match between value of expression and CASE constants.

44 Argument of WITH 1s not a record variable.

45 More than the maximum of 16 records 1n a program.

46 Field 1dentifier not preceded by "." and not in the
scope of a WITH.

47%

48 Processor stack polinter 1s higher than when break dis-
continued execution; Break—-in-progress 1s now false and
+ G wi1ill start at beginning.

49 Processor stack 1s about to overflow.

50 Attempted division by zero.

51 Floating-point overflow.

52 Fixed-point overflow in TRUNC or ROUND.

53 MOD with negative divisor.

APPENDIX F

SELECTED BIBLIOGRAPHY

Conway, R., D. Gries and E.C. Zimmerman, "A Primer on PASCAL",

Winthrop Publisher (197¢6).

Dahl, ©.J., E.W. Diikstra, C.A.R. Hoare, "Structured

Programming", Academic Press (1972).

Dyjkstra, W.E., "A Discipline of Programming", Prentice Hall
(1976).

Fox, D. and M. Waite, "Pascal Primer", Howard W. Sams Co., Inc.
(1981) .

Findlay, W., and D.A. Watt, "PASCAL-An Introduction to

Methodical Programming", Computer Science Press (1978).

Grogono, P., "Programming 1un PASCAL", Addison Wesley

(1978-Revised Edition 1980).

Jensen, K., And N. Wirth, "Pascal User Manual and Report”,

Springer-Verlag (1978)

Kiebuntz, R.B., "Structured Programming and Problem-Solving

with PASCAL", Prentice-Hall (1978)

Schneider, M., 8. Weingart and S§. Perlman "An Introduction to

Programming and Problem Solving with PASCAL", John Wiley & Sons
(1278) .

Tiberghien, "The PASCAL Handbook", Sybex (1980).

Welsh, J., and J. Elder, "Introduction to PASCAL",
Prentice Hall (1979).

Wilson, I.R., and A.M. Addyman, "A Practical Introduction to
PASCAL", Springer-Verlag (1978).

Wirth, N., "Systematic Programming-An Introduction'", Prentice
Hall (1973).

Yourdon, E., "Techniques of Program Structure and Design',

Prentice tHall (1975).

)) _)) ——) i A . . .- . L . .
. T = T 7 . . = .- L ¢ —a—am T n
— N P .. - I . Py - T e — — D .
. — — . — —— -_ - - - - et - PR - - - = Lar! e —
—— — . i . - e - - - . N i i
- - . wl - - = - — ———
- . - == p——p - — - r— el

h e ke T

T R TR T T TN Ly e i Yl ey -0 T - R S et Cleplefleepeink - a - : - .

v

Zaks, R., "Introduction of PASCAL Including UCSD PASCAL", Sybex
(1980).

