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PREFACE

The Rockwell RH500 Microcomputer System combines the best features of
second-generation microcomputers into a product line that is a leader iam both
price and performance. A growing array of products and a unique microprocessor
(CPU) family provide the R6500 System user with answers to the most complex

microcomputer design problems confronting today's programmers and designers.

Integrated circuit fabrication techniques have moved micruocomputers to the
forefront of complex, sophisticated components. The R630(0 System benefits from
an advanced but proven integrated circuit process technology which is directly
- responsible for the high-performance characteristics obtainable Iin the single-
supply, 5-volt usage of the R6500 System,

The N-channel, silicon gate circuit technology which is applied throughout

the R6500 System is further enhanced by use of "depletion loads,” to provide
greater speed, lower power, and smaller chip size than previous processing
approaches. lon implantation techniques are basic elements in providing
control and stability of all processing parameters necessary to achieve the
electrical characteristics of the R6500 product line. These characteristics
provide a price/performance combination which establishes the R6500 family as
the product offering best meeting the economic and technical demands of today's

system designs.

A word of explanation 1s in order regarding the R6500 Microcomputer
System's microprocessor (CPU) "family' concept, since it is around this family

that the R6500 System is built.

The R6500 System's microprocessor (CPU) family includes a series of 8-bit
devices which offer the customer a wide range of options and capabilities.

For the single-application customer, a varled selection of devices 1s at his

disposal in choosing the one which best meets his specific needs. The "micro-

processor family"” concept has an even greater impact on the user who has a

variety of applications, each of which can best be served by a specific
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member of the family. It is importanmt to this user that all of the

different microprocessors he selects maintain compatibility — both hardware
(from the standpoint of bus and electrical specifications) and software. The
R6500 System product line offers the first microprocessor (CPU) family to
achieve such a level of éumpatibility because it was indeed conceptualized

as a totally software and hardware compatible family of microprocessors (CPls)
offering a range of performance options from which the designer can select,
The R6502 and R6512 are the two 40-pin members of the family, each offering
65K bytes of addressable wemory. The R6503 through R6507 and R6513 through
R6515 are 28-pin versions with various options of addressing capability and

control functions from which to choose.

The R652X Series represents Peripheral Input/Output devices, the first
being R6520 which is a direct replacement for the Motorola MC6820 Peripheral
Interface Adapter (PIA). The second device of this series is the 6522 Versatile
Interface Adapter (VIA). Subsequent members of this series will include
devices with expanded 1/0 capabilities.

The R653)X Serles represents combinational devices — those consisting of
variocus tradeoffs in RAM, ROM, 1/0, and Timing. The first of these is the
R6530 which contains 1K bytes of ROM, 64 bytes of RAM, an Interval Timer
and 16 I/0 llnes. The second is the R6532 RAM/I0/Timer with 128 bytes of RAM,
an Interval Timer and 16 1I/0 lines. Subsequent products in this series will
provide the customer with different combinations and new implementations of

I1/0, Timing and Memory.

All of the R6500 product-line subsystems utilize the same fabricationm
techniques and meet identical electrical specifications. With this family
of compatible products at his disposal, today's designer has avallable the
elements necessary to develop a system configured to meet the most demanding

tasks.

The R6500 family is compatible with standard Random-Access Memories
(RAMs), including the 2102, 2111, 2114 and the 2115.

To allow for minimum I/0 cost and maximum user flexibility, all of the

R6500 products are compatible with the M6800 bus structure.
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SECTION 1

THE Ré6500 MICROCOMPUTER SYSTEM

The past several years have seen the development of an exciting new
concept in electrical design. The microcomputer started out as a relatively
simple, difficult-to-use programmable device capable of handling simple control

or computational problems. However, it has since matured into a powerful,

insxpensive, easy~-to-use device capable of controlling all but the most
complex of systems.

Conventional system design is rapidly being revolutionized by the
component that forms the heart of the microcomputer -- the large-scale,
esingle-chip programmable microprocessor (CPU). Three primary attributes of

microprocessor-based systems are bringing about this revolution:

l. Microprocessors allow a significant reduction in overall systems
cost for products currently in production. Re-design of products
around the microprocessor is permitting many manufacturerg to
develop or maintain a price advantage over competitors.

2. The reduction in cost of microcomputer systems is opening up vast new

markets for microprocessors. A great number of systems which were
eimply impossible or were at best impractical, are beilng designed and
marketed today using the modern, low-cost microprocessors.

'3« At the same time that the price of microprocessors is dropping, their
capability i1s rapldly expanding, thus allowing them to be designed

into more systems than ever before.

- Anyone contemplating a new design or trying to reduce cost in an existing

‘“ll,ll must first ask himself if a microprocessor will solve his problem.

1-1



The success of the microprocessor 1s based on the fact that it permits the
design engineer and programmer to apply thelr expertise in solving a multitude
of design problems using cost integrated effective circuits. A small number of
large integrated.circuits can be configured to solve design problems from the

simplest to the most complex.

If the same integrated circuits are employed to solve a multitude of
unique designs, the first question one must ask 1is, "What makes the designs
unique?” The answer is: Programming. Although many different designs may
share common hardware, each has its own unique program. This brings us to
another very important characteristic of microcomputers. The integrated circuit
which makes each system unique is the "Read-Only Memory'" (ROM) which stores the
Bystem program. It 1is relatively easy for the integrated circuit manufacturer
to establish the particular pattern which uniquely defines the data in a ROM.
As a result, the typical charge for "designing”™ a ROM is generally less than
102 of the cost of designing a totally custom logic chip. Further, the
user benefits from a high-volume standard product which is still unique for

his own application due to the "customization” of one element of his systen.

It will probably surprise many designers, approaching the subject of

microcomputer design for the first time, to discover that designing a sys-
tem around a microprocessor is much the same as designing around conventional

logic. The total approach is the same: the process differs only in the

implementation of each step.

A brief examination of the system design process will help to put micro-
computer design In perspective and will also assist in clarifying the purpose

of this manual. One can expect to perform the following steps in designing

4 microcomputer system:

1. Define the requirements of the system. What functions should it

perform?

. Define basic system components.

2

J. Complete design details,

& Build and test prototypes.
5

. Finalize design and begin production.



Step 1 1s true for any system and, in general, for any product. Step 2
1s the first point of departure for microprocessor-based designs. It is at
this point that the designer must consider the puossibillity of using a micro-
processor in his system. For the very cost-sensitive application he must look
very carefully at total systems cost. Can a microprocessor do the job within
the price constraints imposed? At the other end of the design spectrum, the
system designer must evaluate the capability of microprocessors to assure
himself that the available devices can in fact perform the required fuuction.

Will a microprocessor be fagt enough to run the system? Will the system

require more than one processor?

The purpose of this manual 1s to teach the designer how to effectively
configure a microprocessor~based system and to evaluate the performance of the
system. After this step, the design will be completed by development of the

eystem program. Implementation of the system program is discussed in the

Program Manual.

[.1 INTRODUCTION 10 MICROCOMPUTER SYSTEAMS
1.1.1 Organization of a Microcomputer System

Figure 1-1 illustrates the basic organization of a microcomputer system.

It {8 important that‘the designer understand the operation of each component
a8 well as the operation of each data path in the system. Each of these is
discussed separately below. In addition, the following discussion describes

the operation of the overall system and the use of the various signal paths,

1.1.2 Basic Operation

The microcomputer Is a system which can be characterized as very simple

in its detail and very complex in its overall operation. It carries out

rather complex tasks by performing a large number of simple operations.

Control of the system ls primarily the responsibility of the processor. By
putting out addresses to program memory, it controls the sequence of operations
performed, and by interpreting and executing the instructions which it receives
from the program memory it controls the actual operations carried out by the

system. The processor is by far the most complex device In the system. For

this reason, it is important to overall system cost that this part stay the
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same for many different applicationg. 1In this way, the relatively high
development cost can be shared by thousands of users. In addition, those

thousands of users can all benefit from the economics of large-scale production.

The processor causes the system to perform the desired operations by
reading the first instruction in the program, and performing the very simple
task dictated by the specific pattern of bits in this instruction (referred
to ag "executing' that imstruction). It then goes on to the next instruction
in the program and executes it. This simple operation of fetching an instruc-
tion and executling it 13 performed over and over, each time on the next
instruction in sequence. In this way the program Llnstructs the processor to

bring about the desired system operation.

1.1.3 Addressing Terms and Concepts

Before entering into a detalled discussion of the system oPefation. it
would be useful to define a few terms and to introduce a few concepts concerning
addressing. This should assist in an understanding of the detailed discussions
which follow.

BIT

The term "Bit"™ is a general term referring to anything that can be assafgned
to binary value, i.e., anything that can be given a value of 0 or 1. Thus, an
eight-bit data bus is a set of 8 lines which can be assigned a value of logic
0 or logic 1. On these lines, the logic values are represented by two different
voltages or currents. Similarly, a 16-bit binary display can be built with 16
individual lamps. The logic 1 is represented by the lamp being on.

In this text, reference is made to an 8-bit data bus, a 16-bit address

bus, 4 bits of data, B8-bit registers, etc. In all cases, definition of a bit

remaing the same.

ADDRESS SPACE

The concept of an address space is very useful in uanderstanding micro-
computer systems. The term ''address sgpace' refers to the total set of
addresses which the microprocessor can generate. For example, 1f a processor

had only 4 address lines, it could generate the addresses 0 - 15 (binary 0000
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to binary 1ll1l1). This would not be adequate for any microcomputer operation
and, consequently, the typical processor has between 12 and 16 address lines.
Since each line can assume a value of 0 or 1, these devices can usually
address from 4,096 to 65,5)6 separate addresses. Flgure 1-2 contains a
plctorial representation of the address space avallable in a typical 8-bit
microcomputer with 16 address lines. In addition to the general address space,

this figure introduce the PAGE concept discussed below.

THE ADDRESS PAGE

The concept of a PAGE in memory is very important in 8-bit microcomputer
systems. The internal organization of an 8-bit processor 1is around 8-bit
registers, 8-bit parallel data paths, etc. Most arithmetic operations, logic
operations, etc. take place on 8 bits of data at a time. Similarly, the 16-bit
counter which determines which instruction is beling executed 1is actually
divided into two 8-bit busses. One contains bits Q0 - 7 (low-order address
bits), and the other contains bits 8 to 15 (high-order address bits). With
this in mind, one can think of the address space shown In Figure 1-2 as
consisting of 256 blocks, each consisting of 256 specific address locatlions.
Each of these blocks is referred to as a "PAGE" of memory. The high-order
8-bits of the address (ADH) therefore indicate in which page the address is

located, and the low-order 8 bits (ADL) indicate a specific address on that
page.

The first page in memory (ADH = 00) 1is referred to as page 0. The
next-high-order page (ADH = 0l) 1is referred to as page 1, etc.

l.1.4 System Components

The block diagram in Figure 1-1 shows the basic components which comprise
all microcomputer systems. Each block in the diagram may consist of one or
more integrated circuits and, in fact, several functions may be combined into

single chips. However, the basic operation of each remains the same.

CLOCK GENERATOR

The clock generator produces a continuous waveform which is normally
used to control all signal transitions within the system. It acts as the
"heart' of the system. In the typical microcomputer system the address bus

will change during one half of the clock cycle, and the data will be
1-6
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transferred during the second half. In addition to interpreting the address,
data and control lines, the processor and support chips must also examine the

system clock to know when to put cut data or when to latch in data generated

by another device.

PROGRAM MEMQRY

The program memory stores the¢-sequence of instructions which comprise
the system program. Like any memory, this unit puts a pattern of 1's and 0's
on the data bus in response to the address on the address bus input. Each
unique address selects a set of 8 binary bits and places these data on the
data bus. Note that it does not matter where the address is generated or
where the data are used; the memory simply obeys the rule that, given an

address, it will put the corresponding B bits of data on the data bus.

A unique characteristic of most microprocessor-based systems 1is that
the program is usually stored in Read-Only Memories {ROMs). The data are

stored in a fixed pattern of bits in the memory. Figure 1-3 shows a section

of a semiconductor ROM.

Since the data are stored in the physical configuration of the device,

the data will not be lost when power i{s disconnected from the chip. In addi-
tion, it is necessary only to insert the device into its socket to provide the
system program. The term "Read-Only Memory"” refers to the fact that, in
system operation, it is impossible for the processor to cause data to be
stored in the device. The processor can '"'READ" the data stored in the device
during the manufacturing process. "READING" a memory involves the simple
process of supplying an address to the device to obtain the corresponding

8 bits of data ou the data bus.

DATA MEMORY

For temporary storage of input data, the results ot arithmetic
operations, etc., the microcomputer uses a Read/Write Memory, commonly re-
ferred to as a RAM (Random-Access Memory). The processor can store data in
the RAM (called "WRITING" the RAM), or it can read back the data ft has

stored. As 1n the ROM, each address corresponds to eight memory cells.
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dowever, in a RAM the data must be placed into the memory by the processor

and are stored in cross-coupled latches. Turning off the power to a RAM will
cause the loss of all data stored there, and the data are said to be ''volatile."
Data in a ROM are not lost when power is disconnected from the device and the

stored data are referred to as "non-volatile".

"WRITING" data into a RAM takes place when the Write-Enable signal goes
to the write state. At this time the data on the data bus will be stored
into the eight memory cells corresponding to the address on the address bus.

The processor can READ this same data by supplying the proper address and
keeping the Write-Enable line in the Read state.

INPUT/OUTPUT DEVICES

The Input/Output Devices are the circuits which interface the printer,
keyboard, displays, etc. to the processor. These allow the processor to read
data from the keyboard, to test the state of sensors and switches, and to

display or to print the results of internal operations.
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No matter where data are generated, they must be, in the form of 1's and
O's before the processor can work with them. Similarly, actions to be inftjiated
by the processor must be triggered by 1's and 0's transferred by the processor

to a set of output lines.

The transfer of data from the processor to an output device is usually
accomplished by "WRITING" the data out in much the same manner as the pro-
cessor writes data into RAM. Each set of 8 input or output lines (referred
to as "PORT") is given an address, and the processor simply writes data to
that address. For each “1" written out to the peripheral port an output 1is

set high, and for each "0" the corresponding output is set low.

Although the basic concept of peripheral control 1is simple, the actual
fmplementation of these interfaces can involve many sophisticated techniques
designed to allow the processor to maximize its ability to control peripherals
and perform internal operations concurrently, These techniques are discussed

in detail in Section 3.

THE MICROPROCESSOR

At first glance it may seem strange to discuss the support chips

in the microprocessor-based system before mentioning the processor. llowever,
this approach 1is necessitated by the fact that most of the inputs and cutputs
on the processor are aimed at properly controlling the support chips and

peripheral devices discussed above.

The address bus, the bidirectional data bus and the Write~-Enable line
allow the progessor to exercise direct control over the rest of the system.
The address bus puts out addresses to control the source or destination of
data transfers. These addresses are derived from various sources within the
processor. During the fetch of instructions from program memory, the
addresses are usually derived from a counter which controls execution of
sequential instructions. Addresses for data transfers between the processor
and RAM are usually derived directly from the program or are calculated from

the data in the program and data in internal registers.
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The bidirectional data bus serves as a path for tranaferring data into

and out of the processors. The direction of the data tranafer is determined

by the Write-Enable line.

Another special function found in modern microcomputer systems 1is the
interrupt. Thie function allows the peripheral devices to directly affect the
operation of the processor. When the interrupt signal is generated, the
processor usually completea its current ingtruction and then, under program
control, will respond to the interrupt. The importance of this function is
that ft allowa the processor to execute the system program without requiring
the system program to monitor the status of the peripheral device. The

software which handles the eperation of each peripheral will be executed only
when required.

1.2 INTRODUCTION TO THE R6500 MICROCOMPUTER SYSTEM

The Rockwell R6500 microcomputer ayatem consists of the 40-pin R6512,
microprocessor; the 40-pin R6502 microprocessor, which has clock drivers on-
chip; and eight 28-pin processors, the R6503 through R6507 and R&513 through
R6515. Each of these devices is aimed at a specific range of applications.

Therefore, it is important to develop an understanding of the capabilities of

each and the differences between them.

The R6512 has application in existing M6B00 systems where conversion to
the R6500 system is to be performed. This processor requires the full high-
level two-phaee clocks of the M6800 system. The R6502 is expected to find
application in all new designs which require a full 16-bit address bus.
However, in the small cost-sensitive system, the 28-pin processors can

represent a savings both in processor cost and in printed circuit board area.

1.2.1 The Microprocessors

The R6502 should be uvsed in all new designs which require the capa-
bility of the 40-pin processors. The clock drivers can be driven with a

single TTL level square wave or with the internal oscillator. The frequency of
operation of the internal oscillator can be set by attaching an R-C combination
to the chip and, if the clock stability 1s required, by attaching a crystal
between the oscillator and ground. This feature totally eliminates the

problems encountered in geanerating MC6800-type clock signals.
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The R6502 provides a full 16-bit address bus, 8-bit bidirectional data
bus, and two interrupts. In addition, the R6502 provides a sync signal which

indicates those cycles in which the processor i{s fetching an operation code

from program mwemory.

Eight 28-pin versions of the processor are available. They differ in

the number of address lines and the clock generation methods required, the

number of interrupts provided. Having all three options available allows the

designer to tailor his processor to his particular application.

The R6504 and R6507 provide a total of 13 address pins and can, therefore,

address a full BK bytes In its memory space. The R6504 provides only one
interrupt request input, IRQ; the R6507 provides a RDY input instead of IRQ.
The non-maskable interrupt (NMl) is not included in the pinouts of this device.

The R6503 and R6505 provide one less address line. In the R65013 the
missing address line is replaced with a second interrupt input, NMI, and in
the R6505 it 1is replaced by the RDY signal. All other functions on these

processors are the same. The details of each of the pins are discussed in

the following sections.

The operation of the various busses, control signals, etc. is identical

on all R650X products, with all processors obeying the system specitications

discussed in Section 1.2.2.

The R6513 is the slave {(clocks driven in) version of the R6503, the
R6514 is the slave version of the R6504, and the R6515 1is the slave version

of the R6505.

1.2.2 PBus Structure

The R6500 microcomputer system {3 organized around two primary bdbusses.
Each bus consists of a ser of parallel paths which can be used to transafer
binary information between the devices in a system. The first bus, known as
the ADDRESS BUS, 1is used to transfer the address generated by the processor

to the address inputs of the memory and peripheral interface devices. The

processor is the only source of addresses in a normal system, so this bus is
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referred to as “unidirectional.” The address bus consists of 16 lines on the
R6502 and R6512, allowing those processors to access (READ or WRITE) up to

a total of 65,636 memory words, registers, etc. In the R650] through R6507
and R6512 through R6515 the address bus contains fewer lines; therefore, they
operate with a smaller "address space.” This is discussed in detail in
Section 1.1.3.

The data bus in the R6500 microcomputer system consists of an 8-bit
bidirectional data path. These lines transfer data from the processor to
the selected memory word, etc. during a WRITE operation and from memory
inta the processcr during a READ coperation. All data and all instructions
are transmitted on the data bus.

The direction of the data transfers is controlled by the READ/WRITE
(R/W) line on the processor. This line performs the Write Enable function
described in Section l.l1.4. As long as the R/W line is high (> 2.4V DC),
all data transfers will take place from memory to the processor (READ opera-
tion). This line will go low only when the processor is going to WRITE
data out to memory.

As in most microcomputer systems, thé timing of all data transfers
is controllied by the system clock. The clock itself is actually two
non-overlapping square waves. This two-phase clock system can best be
thought of as two alternating positive-going pulses. This text will refer
to the clocks as "Phase 1" and “Phase 2." A '"Phase 1" clock pulse is the
positive pulse during which the address lines change, and a "Phase 2"
clock pulse is the positive pulse during which the data 1s transferred.

The timing of the signals on the Address Bus, Data Bus, and R/W line 1s
shown in Figures 1-4 through 1-7. All signal transitions are specified
with respect to the Phagse 1 and Phase 2 clock signals. In particular, the
sddress lines and the R/W line will stabilize during Phase 1, and all

data transfers will take place during Phase 2.

The specific timing specifications for operating at a 1l-MHz clock
rate are also given in Figure 1-4. Note that the sequence of operations
will be the same for all processors. However, these timing specifications

will change for devices which are specified to operate faster than 1.0 MHz.

1-13
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The address is guaranteed to be stable 300 ns after the leading edge of
Phase 1, and the data must be stable 100 ns before the trailing edge of
Phase 2. At 1.0-MHz operation, this allows the memory devices approximately
575 ns to make data avallable on the data bus. Although there are many
factors which determine the actual data and address generated within the
system, it is important to keep in mind that the basic operation shown in
Figures 1-5, 1-6 and 1-7 does not change. These figures specify the system

bus discipline which applies to all R6500 processors and support chips.

1.2.3 Interrupt Structure

Through the generation of processor interrupt signals, the peri-
pheral devices (printers, keyboards, etc.) can request service from the
processor. Although this technique (s relatively simple in concept, the
proper generation and control of interrupts is one of the wmost important
problems which the designer will face. Total system capability can be
greatly expanded if the processor 1s required to execute the peripheral
goftware only when it is absolutely necessary. This is the goal of a well-
planned interrupt structure. The interrupt structure is very much a sys-
tems sophistication problem since the entire system which must pro-
perly respond to the interrupt inputs. In fact, the actual signals to
which the system must respond are usually applied to the inputs of a peri-
pheral interface device. In this device, the‘interrupts are enabled, dis-
abled and latched until the interrupt is processed. The peripheral inter-
face device generates signals which meet the requirements of the processor
interrupt inputs.

S

There are two interrupt input lines to the microprocessor, IRQ

(Interrupt Request) and NMI {(Non-Maskable Interrupt).

Since the requirements of the two interrupt inputs differ, they will
be discussed separately below. The response of the processor to these in-

puts is very similar, however, after the interrupt is recognized. For this
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reason, the internal operation of the processor during interrupt servicing
is discussed in the detafiled analysis of the processor chip. The present
section of the manual concentrates on the system-level considerations which

are required to assure proper operation of the interrupt structure.

APPLICATIONS FOR INTERRUPTS

One of the most important tasks facing the microcomputer system
designer is the determination of those signals which will cause processor
interrupts and those operations which will take place in response to the
interrupts. A detailed discussion of these considerations is included in
Section 3 of the manual; however, a few examples of Interrupt-driven opera-
tiona will be presented here to help the designer develop an understanding

for why this technique is used extenaively in microcomputer systems.

Example I —- A Fully-Decoded Keyboard
The problem of data entry is solved in many systems by a keyboard.

In small systems, the interpretation of the binary code assoclated with
each key can be determined by the processor. However, in large data ter-
minals, the keyboard usually includes an encoder which generates the unique
code corresponding to each key. When a key is closed, the corresponding
code 13 placed on the output pins and a strobe signal is generated to indi-
cate that a key has been pressed.

The keyboard represents a perfect candidate for interrupt-
driven operation. The interrupts occur relatively iInfrequently and the
operation to be performed 1s relatively simple. The keyboard strobe line
is connected directly to an interrupt Input on a peripheral interface de-
vice, Each time a strobe signal is generated, an interrupt occurs, the
processor reads the data on the peripheral port into memory, analyzes these
data, and then returns to the program that was in process. If no keys are
pressed, the processor spends no time at all in servicing the keyboard.

Without the interrupts, the processor would have to read the
keyboard data into memory periodically in order to detect an active key.
This operation would be performed about every 50 to 1U0 ms, In addition
to detecting an active key, the processor must make sure that each separate

activation of a key Is detected once and only once. (This i1s discussed

later in this section.} This software 1is much more complex than the
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simple interrupt routine. Another drawback of non-interrupt processing is
that the processor 1is required to spend a periodic portion of its time on the
keyboard. In many systems, this is not a problem, but in large terminals,
etc., the time spent checking for keyboard strobes could be better spent 1in
other operations. The designer must, therefore, ask himself if the system
under development {s such that the processor can perform the keyboard strobe

checking function while still completing its other tasks.

Example 2 -~ A Scanned Display

Although time is a major factor in determining the necessity of
interrupts, the interrupt technique can also be extremely useful when per-
forming parallel operations. A prime example of this can be found in a
system which contains a digital display and/or printer.

A digital display is usually “scanned” in such a way that each
digit is driven for a short period of time in sequence. The entire display
18 scanned at a rate faster than the eye can detect. However, it should be
noted here that the display requires scan-related attention from the pro-
cessor at fixed intervals. 1t is very difficult for the processor to cal-
culate repetitive time intervals while it is performing its normal system
program routines. The processor would much prefer to run the system pro-
gram without consideration for the display time intervals -- only executing
the display software only when it is required.

A solution to the above problem is the generation of proceasor
interrupts at fixed intervals, employing an external counter or clock. Each
time an interrupt occurs, the data for the next digit in the display are
placed on an output port. The processor then returns to the program it
had been executing.

Both of the operations described above represent solutions to
system problems, Events which happen very infrequentliy, and events which
must be performed in parallel with other events or in parallel with the
main system program, should be seriously considered as candidates for inter- .
rupts. Additional considerations are described in bSection 3 of this manual;
however, it is important to note here that the typical system may have
several sources of interrupts, each with its own timing and each with its

own set of operations which must be performed in response to the interrupts.
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INTERRUPT PRIORITIZING

After a careful analysis of the total system and a determination
of all the sources of interrupts, the designer oust ask himself, "What hap-
pens if more than one interrupt source requires attention at one time?"” A
priority level must be established between the various interrupt sources.

Which ones must be taken care of within a very short period? Which ones
can be put off for a while? This prioritizing and the technique for select-
ing among several concurrent interrupts is very important to the system
operation and should be established early in the system development process.
The R650X~based system can employ several hardware methods of
determining the highest-priority active interrupt. These usually involve
using a special "priority encoder” which allows the processor to go di-
rectly to the software which services the highest-priority interrupt.

r
After this is complete, it will go to the next higher priority and execute

that software. However, the R650X family provides a much less expensive
method of interrupt prioritizing —~ the "polled” interrupt. With this
technique, each time an active interrupt source is detected, the pro-
cessor executes a ''polled” interrupt program that interrogates the highest
priority interrupt, then the next highest, and so on until an active inter-
rupt is located. The program services that interrupt and returns to the
"nolled" interrupt program and continues to interrogate the next highest
priority interrupt until all have been interrogated, or clears the interrupt
disable to allow nested interrupts. The ''polled” interrupt program is al-
ways executed when an interrupt occurs, so that all interrupts that occur
concurrently will be serviced in order of priority level.

Several hardware techniques for prioritizing interrupts are dis-
cussed in Section J of this manual. The next section, however, describes

the system interconnect which allows use of the simple "polled” interrupt.

SYSTEM INTERCONNECT FOR INTERRUPTS

In the simple "polled" interrupt technique for prioritizing inter-
rupts, the interrupt software actually determines the highest-priority
active interrupt. The Eia;or‘ﬁﬁfiinterrupt request signals simply cause
the processor to jump to the polling software,.

For this reason, it is possible to "OR" the various interrupt
signals together to form the signal for the processor. Any active inter-

rupt source will then cause the processor to do the interrupt polling and
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servicing operation. Provision for generation of this OR function 1s
provided in the R6500 family peripheral interface devices. Since these
peripheral adapters perform many of the enabling and latching functions
necessary for proper luterrupt servicing, the peripheral adaptor interrupt
output then provides the actual signal which interrupts the processor.
These interrupt outputs can be "wire-OR'd" by connecting them all together
and then connecting this single line tc the processor. This input should
then be pulled to +5V with a resistor. Any one of the interrupt outputs
on the peripheral adaptors can then pull this interrupt low. This simple

configuration is shown in Figure 1-8.

INTERRUPT SERVICING

Although a greatl deal has been said previously about the process
of establishing interrupts and determinipg just what happens in respouse to
an jinterrupt, it would be useful to detall the sequence which takes place
when an intertupt is recognized by the processor. This will establish a
basis for understanding of the details of the processor interrupt inputs,

An interrupt request is signaled by a GND (< 0.4V) signal on the
interrupt request input. This interrupt will be recognized after the pro-~
cessor completes the instruction which it is currently executing. The next
step 1s tec store enough of the contents of the internal procesdor repisters
to assure that the processor can resume execution of the program which was
interrupted. In particular, the Pragram Counter and the Processor Status
Register are stored in a series of memory locations specified by another
internal register, the Stack Pointer. As discussed in Chapter 9 of the
Programming Manual, saving the contents of the Program Counter and Proces-
sor Stactus register uniquely defines, in memory, the state of the micro-
processor at the time the interrupt occurred. The processor then goes to
two fixed locations in memory to determine the address low and address high
of the interrupt software.

The operation to this point is automatic and is determined by the
internal processor logic. After the processor has properly set the address
bus, execution of the interrupt program commences. Everything which occurs
subsequently is determined by the system software.

The total interrupt software described above will cousist of a com=

plex combination of polling and interrupt servicing routines. However, unless
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a hardware prioritizing scheme is used, the actual system interconnections

will not become any more complex than that shown in Figure 1-8.

INTERRUPT REQUEST (TIRQ)

As stated earlier, the two interrupt lines for the microprocessor
are IRQ and NMI. The requirements for proper operation of the maskable Inter-
rupt Request input (LRQ) are more stringent than for the second interrupt
input, NMI. This is due priwarily to the fact that NMI is edge-sensitive.
With the IRQ input, che processor will be interrupted any time the signal on
IRQ i3 GND (< 0.4V) and the internal Interrupt Disable flag is cleared. The
Interrupt Disable flag (I) is a single bit in the internal Processor Status
Register. The details of this register are described in Section 3.2 of the

Programming Manual.

In the processing of interrupt request from the'IEG input, the I
flag is extremely important. This is the element which assures that an
interrupt will be recognized and serviced only once for each request and
only when an interrupt is desired. This is described in detail below.

Figure 1-9 details the sequence of operations which should take
place during the servicing of anliia'interrupt. A positive or negative
transition of the signal from the peripheral device (printer, keyboard,
etc.) is detected on the edge-sensitive inputs to the peripheral interface
device. If the interrupt is enabled within the peripheral interface de-
vice, the interrupt request output (Tﬁa) on this chip will go low. The
interrupt condition is latched within the peripheral interface device to
allow sufficient time for the processor to poll the interrupt sources,
assuring that the iInterrupt signal will not be cleared before the polling
can be completed. This latch is reset by the processor as it executes the

software associated with that interrupt. Detaills of this operation are

described in Section 2.

The Interrupt Disable flag (1) is set automatically when the pro-
cessor recogpnizes an interrupt. This assures that this same interrupt will
not be recognized again. Resetting this flag can be performed manually
with an instruction in the program or automatically with a "Return from
Interrupt’ instruction. It is very important that "I" not be cleared before
the interrupt fnput is reset. Performing the "Clear I" instruction too early

in the program can cause this same interrupt to be recognized again. The pro-

cessor will then proceed to service this as if it were a new interrupt.
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NON-MASKABLE INTERRUPT (NMI)
The NMI input to the processor is edge-sensitive. To cause an

interrupt to occur, there must be a negative tramsition of the signal on

the NMI input. This negative transition will cause a3 single interrupt to

occur. After servicing the interrupt, the processor will ignore this input

until the NMI signal goes high (> +2.4V) and then back to ground.

The response to an ﬁﬁT‘interrupt signal cannot be disabled within
the processor. After the processor completes the instruction being exe-
cuted, it will recognize the interrupt and will proceed to service the
interrupt as described in the previous section. The proper discipline to
employ in all interrupts is for the interrupt signal to be latched until
the processor completes servicing the interrupt. This method of operation
is assured 1if all the interrupts are connected to the interrupt fnputs of
the peripheral interface devices in the family.

Processing of multiple interrupts in a polled interrupt structure
requires that all of the interrupts be polled before executing a "Return
from Interrupt” instruction. This is necessitated by the "WIRF-OR” tech-
nique for combining the interrupts, since no knowledge exists of which line
went to ground. If one of the interrupts is left unserviced, it will hold
the iﬁi'signal to ground, disabling the interrupts from all other sources

since it 1s necessary for the NMI signal to go high (> 2.4V) and back low

1-24



again for an interrupt to occur. This is not true for the IRQ input since this
latch is level-sensitive. Performing a "Return from Interrupt" before all IRQ

interrupt sources are serviced will simply cause another Tﬁﬁ interrupt to occur.

1.2.4 System Reset
Tnme of the baslc system control functions is the system RESET signal.

Whether this signal is generated automatically by external power-on circuitry
or manually from a push-button switch, the system components must obey a fixed
gset of rules to assure proper system operation. This is particularly true for
the peripheral interface devices.

In the R650X-based systems, an assumption is made that RESET pins on
all peripheral interface devices and on the processor will be held low during
power-on until the supply voltages and the clocks have stabilized. This pro-
cedure assures that the peripheral pins will remain in a known state until the
entire system is initialized and the processor is ready to assume control of
the output lines, {,r., is ready to run the system program.

It should be mentioned that in the entire set of microcomputer chips,
the contents of latches, registers, etc. are totally random after power is
applied. On the peripheral output pins, random data can be disastrous. The
only way to force these lines to a known condition is to apply the RESET sig-
nal. The designer can then make sure that the known condition will not cause
spurlous operations in the peripheral devices. The effect of RESET on the
peripheral chips is discussed in the analysis of each chlp.

In the processor, the single register which must be placed iIn a known
state is the program counter. This is the register which selects the instruc-
tions to be executed. The RESET input causes the program counter to go to
the first instruction in the system program, The specific details of this
operation are discussed in Section 2.2.8. ‘

There 1s one other very important functien performed by the RESET input
on the peripheral interface devices. Although the recognition of the pro-
cessor interrupt signals is automatic and does not depend on software, the
sequence of operations performed by the processor to totally service an inter-
rupt is determined by the program. Until the various internal registers in
the processor have been initialized, the processor is not ready to respond
properly to any external interrupts. For this reason, it is important that
the system RESET disable all external interrupt signals until they are enabled
by the processor. The programmer can then make sure that the system has been

properly initialized before the interrupts are enabled.
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SECTION 2

THE MICROPROCESSOR FAMILY

2.1 FUNCTIONAL FEATURES

The microprocessors in the R6500 family have very similar internal
architectures. A block diagram of the basic architecture 1s shown in
Figure 2-1. This section of the manual begins with an analysis of this block
diagram, discussing the function of the various registers, data paths, etc.
A detailed discussion of the cperation of the various pins on the chip
follows. |

The internal organization of the processor can be split into two
sections. In general, the instructions obtained from program memory are
executed by implementing a series of data transfers in one section of
the chip (register section). The control lines which actually cause the .
data transfers to take place are generated in the other section {control
section). Instructions enter the processor on the data bus, are latched
into the instruction register, and are then decoded along with timing sig-
nals to generate the register control signals.

The timing control unit keeps trvack of the specific ecycle being
executed. This unit is set to "TO0" for each instruction fetch cycle and
is advanced at the beginning of each Phase One clock pulse. Each instruc-
tion starts in TO and goes to T1l, T2, T3, etc. for as many cycles as are
required to complete execution of the instruction. Each data traansfer,
etc., which takes place in the register section is caused by decoding the
contents of both the instruction register and the timing counter.

Additional control lines which affect the execution of the instruc-
tions are derived from the Interrupt logic and from the Processor Status
register. The Interrupt logic controls the processor interface to the
interrupt inputs to assure proper timing, enabling, sequencing, etc. which
the processor recognizes and services.

The Processor Status register contains a set of latches which

serve to control certain aspects of the processor operation, to indicate
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the resulls of processor arithmetic and logic operations, and to indicate the
status of data either generated by the processor or transferred into the
processor from outside.

Since the real work of the processor 1s carried on in the register
section of the chip, a detailed study will be made of this section. The

components are:

@ Data Bus Buffers

e [nput bata Latch (DL)

e Program Counter (PCL, PCN)
e Accumulator (A)

e Arithmetic Logic Unit (ALU)
e Stack Pointer (S)

e Index Registers (X, Y)
e Address Bus Latches (ABL, ABH)

e Processor Status Register (P)

At 1 MHz, the data which come into the processor from the program
memory, the data memory, or from perlipheral devices, appear on the data
bus during the last 10C ns of Phase 2. No attempt is made to actually
operate on the data during this short period. Instead, it 1s simply
transferred into the input data latch for use during the next cycle,
The data latch serves to trap the data on the data bus during each Phase
2 pulse. The data can then be transferred onto orne of the internal busses,

and from there into one of the internal registers. For example, data being

transferred from memory into the accumulator (A) will be placed on the in-
terpal data bus and will then be transferred from the internal data bus
into the accumulator. If an arithmetic or logic operation is to be per-
formed using the data from memory and the contents of the accumulator, data
in the input data latch will be transferred onto the internal data bus as
before. From there it will be transferred into the ALU. At the same time
the cuntents of the accumulator will be transferred onto a bus in the reg-
ister section and from there into the seccnd input to the ALU. The results
of the arithmetic or logic operation will be transf{erred back to the accumu-
lator on the next cycle by transferring first onto the bus and then into
the accumulator. All of these data transfers take place during the Phase 1|

clock pulse.



The program counter (PCL, PCH) provides the addresses which step

the processor through sequential 1instructions in the program. Each time

the processor fetches an instruction from program memory, the contents of

PCL are placed on,the Jow-order 8 bits of the address bus and the contents

of PCH are placed-nn the high-order 8 bits. This counter is incremented

each time an Instruction or data is fetched from program memory.

The accumulator is a general-purpose 8-bit register which stores

the results of most arithmetic and logic operations. In addition, the accu-

mulator usually contains one of the two data words used in these operations.

All logic and arithmetic operations take place in the ALU; this

includes incrementing and decrementing of internal registers (except PCL
and PCH). However, the ALU cannot store data for wmore than one cycle: 1if
data are placed on the inputs to the ALU at the beginning of one cycle, the

result {s always gated into one of the storage registers or to external

memory during the next cycle. Each bit of the ALU has two inputs. These

inputs can be tied to various internal busses or to a logic zero; the ALY
then generates the SUM, AND, OR, etc. function using the data on the two

inputs.
The stack pointer (5) and the two index registers (X and Y) each

consist of 8 simple latches. These registers store data which are to be

used in calculating addresses in data memory. The specific operation of

each of these iIs discussed in detail in the Programming Manual.

The address bus buffers (ABL, ABH) consist of a set of latches and
TTL compatible drivers. These latches store the addresses which are used

in accessing the peripheral devices (ROM, RAM, and 1/0).

2.1.1 Functional Features of 28-Pin CPUs
Table 2-] summarizes the functional features of the R6503 through

R6S07 and R6513 through R6515. The operation of each function 1is exactly

the same as on the R6502.
Figure 2-2 summarizes the pin designation for the eight processors,

indfcating the tradeoffs that exist between control signals and addressing

capability due to pinout constraints. Like the R6502, five of the 28 pin

microprocessors also have the on—-the-chip oscillator and clock drivers.
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2.2 SIGNAL LINES
Figure 2-2 summarizes the pinouts of the R6500 CPU's. These pins

and their uses in microcomputer systems are discussed separately below.

2.2.1 Address Bus (ABOO-AB1S)

The address bus buffers on the R6500 family of microprocessors are
push/pull type drivers capable of driving at least 130 pt and one standard
TTL load.

The address bus will always contain known data as detailed in
Appendix A. The addressing technique involves putting an address on the
adress bus which is known to be either in program sequence, on the same
page in program memory or at a known point in RAM. A brief study of Appen-
dix A will acquaint the designer with the detailed operation of this bus.

The various processors differ somewhat in the number of address
lines provided. In particular, the R6504, R6507 and R6514 provide 13
address lines (ABOQ - ABl2) and the R6503, R6505, R6506, R6513 and R6515
provide 12 address lines (ABOO - ABll). This total address space should
prove to be more than sufficient for the small, cost-sensitive systems
in which these devices should find their greatest application,

The specific timing of the address bus is exactlyv the same for
all the processors, The address is valid 300 ns (at 1 MHz clock rate) into
the #1 clock pulse and remains stable until the next #1 pulse: this speci-
fication will change only for processors which are speclfled to operate at
a higher clock rate. Figure 2-3 details the relationship of address bus
to other critical signals.

Because of the reduced number of address lines on the 28-pin
processors, it is possible to write a program which attempts to access non-
existent memory address space, f.e., the address bits 13, 14, or 15 set to
logic "'1." These upper address bits in the program will be ignored and the
program will drop into existing address space. This assumes prnper memory
management when using devices of large addressing capability such that the
addressed memory space will fit within the constraints of a device with

smaller available memory addressing capability.
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2.2.2 Data Bus (DBO-DB7)

The processor data bus is exactly the same for the processors
currently avallable and for the software-compatible processors which will
be introduced in the near future. All Iinstructions and data transfers be-
tween the processor and memory take place on these lines. The buffers driv-
ing the data bus lines havé full "cthree-state' capability. This is neces-
sitated by the fact that the lines are bidirectional.

Fach data bus pin 1is connected to an i{input and an output buffer,
with the output buffer remaining in the “floating” condition except when
the processor is transferring data into or out of one aof the support chips.
All inter-chip data transfers take place during the Phase 2 clock pulse,

During Phase 1 the entire data bus i{s "floating.™
The data bus buffer i{s a push/pull driver capable of driving

130 pf and one standard TTL load at the rated speed. At a 1-MHz clock rate,

the data on the data bus must be stable 100 ns before the end of Phase 2.
This is true for transfers in either direction. Figure 2-3 details the

relationship of the data bus to other signals.

2.2.3 Read/Vrite !R!H!

The Read/Write linme allows the processor to control the direc-
tion of data transfers between the processor and the support chips. This

line is high except when the processor is writing to memory or to a peri-

pheral interface device.

All transitions on this line occur during the Phase 1 clock

pulse (concurrent with the address lines). This allows complete control

of the data transition which takes place during the Phase 2 clock pulse,
The R/W buffer is similar to the address buffers. They are

capable of driving 130 pf and one standard TTL load at the rated speed.

Again, Figure 2-3 details the relacive timing of the R/W line.

2.2.4 Data Bus Enable (DBE)

Oun the Rb65]12, a data bus enable signal is provided to allow
external enabling of the data bus. This line is connected directly to the

Phase 2 input clock signal for any normally operating system and is detailed

in Flgure 2-3.



The DBE signal affects only the data bus buffers. It does not
affect processor timing and has no effect on the address or the R/W lines.

This input 1is provided primarily for use in systems which use
non-R6500 devices for either the memory or the peripheral interface func-
tions. In particular, it allows the d;ta bus to be enabled for a period
longer than the Phase 2 clock pulse for systems requiring greater proces-—
sor hold time on the data bus. This application is covered in greater de-

detail in Sectrion 3.

2.2.9 Ready (RDY)
The RDY input delays execution of any cycle during which the RDY

llne Is pulled low. This line should change during the Phase 1 clock
pulse. This change is then recognized during the next Phase 2 pulse to
enable or disable the execution of the current internal machine cycle.
This execution normally occurs furing the next Phase 1 clock; timing is
shown in Figure 2-3.

The primary purpose of the RDY line is to delay execution of a
nrogram fetch cycle until data are available from memory. This has direct
application in prototype systems employing light-erasalhle PROMs or EAROMs.
Both of these devices have relatively slow access times and require imple-
mentation of the RDY function if the processor is to operate at full speed.
Without the RDY function a reduction in the frequency of the system clock
would be necessary.

The RDY function will not stop the processor in a cycle in which
a WRITE operation is being performed. If the RDY line goes from high to
low during a WRITE cycle the processor will execute that cycle aud will

then stop in the next READ cycle (R/W = 1),

2.2.6 Non-Maskable Interrupt (NMl)

The NMI input, when in the interrupted state, always interrupts
the processor after it completes the instruction currently being executed.
This interrupt is not "maskable" -- i.e., there is no way for the processor
to prevent recognition of the interrupt.

The NMI input responds to a negative transition. To interrupt
the processor, the*ﬁﬁibinput must go from high (> +2.4V) to low
(¢ +0.4V). It can then stay low for an indefinite period without affecting

the processor operation and without another interrupt. The processor will
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not detect another interrupt until this line goes high and then back to low.
The RMT signal must be low for at least two clock cycles for the interrupt

to be recognized, whereupon new program count vectors are fetched.

2.2.7 Interrupt Request (IRQ)

The interrupt request (IRQ) responds in much the same mainner as
NMI. However, this function can be enabled or disabled by the interrupi
1nhibit bit in the processor status register. As long as the 1 flag (inter-
rupt inhibit flag) is a logic 1, the signal on the Tﬁa'pin will not affect
the processor.

The Tﬁaipin is not edge-sensitive. Instead, the processor will
be interrupted as long as the I flag is a logic '0" and the signal on the
'TEE input is at GND. Because of this, the fia signal must be held low un-
til it is recognized, i.e., until the processor completes the instruction
currently being executed. 1f I is set when'TEabgnes low, the interrupt will
not be recognized until I is cleared through software control. To assure
that the processor will not recognize the interrupt more than once, the I
flag is set automatically during the last cycle before the processor begins
executing the interrupt software, beginning with the fetch of program count.

The final requirement is that the interrupt input must be
cleared before the I flag is reset. If there is more than one active
Interrupt driving these two lines (OR'ed together), the recommended pro-
cedure is to service and clear both interrupts before clearing the 1 flag.
However, if the interrupts are cleared one-at-a-time and the I flag is re-
set after each, the processor will simply recognize any interrupts still
active and will process them properly but more slowly because of the time

required to return from one interrupt before recognizing the next. If the

procedure recommended above is followed, each interrupt will be recognized
and processed only once. Figure 2-4 provides several examples of inter-
rupts, microprocessor recognition of each interrupt (IRQ and NM1), and pro-

cessor selection of interrupts during overlapped requests.
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Each major event affecting the microprocessor is numbered in
Figure 2-4, and the correspondingly numbered explanations for each are

given below.

Event
Number System Activity

1. Processor is executing from main program and IRQ goes
to low state.

2. Upon completion of current f{nstruction, the processor
recognizes the interrupt, stores the contents of PC
and P onto the stack and then sets I during the fetch
of the interrupt vector.

3. After servicing the interrupt, IRQ :should be reset
before resetting the interrupt mask bit to avoid
double interrupting.

4. Before the processor resumes normal main program exe-
cution the interrupt mask bit will be reset low.

5. NMI now goes low, signalling a non-maskable interrupt
request.

6. The NMI interrupt is recognized and serviced in the

same manner as IRQ.
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Event

Number System Activicy
7. The processor has resumed normal operation when NMI

again goes low requesting an interrupt.

8. The interrupt mask bit is set high in response to
the NMI request.

9. Here IRQ has gone low to signal an_interrupt request.
This request is ignored since the NMI interrupt is
being serviced and the interrupt mask is set.

T T

10. The interrupt mask bit is reset after servicing the NMI
interrupt.
11. The processor is now able to recognize the IRQ signal,

which is still low, and does so by setting the inter-
rupt mask bit.

12. During the servicing of [RQ, NMI goes from high to low.
The processor then completes the current instruction

and abandons the TRQ interrupt to service NMI. NMI
is serviced regardless of the state of the interrupt

mask bit.

13. After completing the NMI interrupt routine, the pro-
cessor will resume execution of the 1RQ routine, even

though IRQ has subsequently gone high,

2.2.8 Reset (RES)

The RES line is used to initialize the microprocessor from a

power-down condition. During the power-up time this line 1s held low, and
writing from the microprocessor is inhibited, When the line goes high, the
microprocessor will delay 6 cycles and then fetch the new program count vec-
tors from specific locations in memory (PCL from location FFFC and PCH from
locaction FFFD). This is the start of the user's code. It should be assumed
that any time the reset line has been pulled low and then high, the internal
states of the machine are unknown and all registers must be re-initianlized

during the restart sequence. Timing for the reset sequence is shown in

Figure 2-3,

2.2.9 Synchronization Sigunal (SYNC)

In the R6502, a SYNC signal is provided to identify those cycles
in which the processor is doing an OP CODE fetch. The SYNC line goes high
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during Phase | of an OP CODE fetch and stays high for the remainder of that
cycle. Lf the RDY line 1is pulled low during the Phase | clock pulse in which
the SYNC line went high, the processor wi-l stop in its current state. It
remains in that state until the RDY line goes high. 1In thie manner, the SYNC
signal can be used to contral RDY to cause single-instruction execution. This

application is discussed in detail in Section 3. Figure 2-5 contains a timing

diagram for this signal.

2.2.10 Set Overflow ES.D.!

Ihis pin sets the overflow flag on a negative transition from
TTL one to TIL zero. This is designed to work with a future (/O part and
should not be used in normal applications unless the user has programmed

for the fact the arithmetic operations also affect the overflow flag.

cc’ vss)

The VCC and VS

the chip. The supply voltage is +5.0 V DC + 52Z. The absolute limit on

the VCC input is +/7.0 V DC.

2.3 DEVICE TIMING — REQUIREMENTS AND GENERATION

2.2.11 Power Lines (V

S pins are the only power supply connections to

The R6512 through R6515, requires a 5-volt, two-phase clock. The
R6502 through R6507, however, can be used with an externally generated
time base consisting of either a TTL-level single-phase clock, crystal
oscillator, or RC network.

Figure 2-6 and 2-7 show the configuration for setting the fre-
quency of oscillations with a crystal or with an RC network.

Figure 2-6 displays the crystal mode of operation in which the
frequency of oscillation is set by the crystal operating in conjunction
with the RC network. Figure 2-7 displays the same interconnects as in the
crystal mode of time-base generation, with the crystal removed from the
circuit. Values of the feedback resistor, RF‘ and feedback capacitor, CF,
will be different for the crystal mode versus the RC mode. While the
detail specifications for values of RF and C.. are found in the data sheet

F

for the R6502, clock timing can be generated by use of combinations of RF

in the range of 0 to 500K olins and C_ in the range of 2 to 12 pf., The

F
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wa l; II

SYNC

During a microprocessor write cycle, R/W signal low, the
SYNC pulse does not occur.

The R/W signal gues high to signal the beginning of a
microprocessor read cycle.

At the beginning of the read cycle a SYNC pulse will oe

be generated. This pulse will last for one cycle tim:. The
SYNC pulse indicates that the microprocessor is reading an

OP CODE trom the memory field. In this case the SYNC pulse is
high for one cycle as the processor reads the OP CODE.

The processor outputs another SYNC pulse indicating it has
completed the previous instruction and is fetching aother

OP CODE. In this case three more cycles are needed to complete
this instruction before the next SYNC pulse is generated. The
SYNC pulse 1is aperiodic in that its generation is a function of
the program and the resultant lengths of the instructions and
addressing modes.

R6502 SYNC Signal
FIGURE 2-5
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reader 1s referred to the R6502 data sheet for a detailed description of

the application of RC networks and crystal osclllators for generation of

the time base in these modes of operation.

The R6500 bus discipline described in Section 1.2.2 is applicable
wherever the oscillator is located. For data transfers to be properly
carried out between the processor and the various support chips in the sys-

tems, the timing of the clocks controlling the intermal processor opera-
tions must be very close to that of the Phase 2 clock out of pin 39 of

the processor with no more than two TTL delays for clock buffecing. It is
important in systems which drive the clock generators with a TTL square
wave that this input wavefora not be emnployed to control the peripheral

chips, unless care is taken to assure proper timing of the Phase 2 clock

being used in these support chips.
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SECTION 3

CONFIGURING THE MICROCOMPUTER SYSTEM

The first part of any microprocessor-based design effort 18 the micro-
computer system configuration task. In fact, this probably requires more crea-
tivity from the designer than any other part of the design effort., The goal of
the system configuration effort is the generation of a list of components which
will make up the system, a detalled interconnect dlagram, and a detalled descrip-
tion of the total system operation. This includes a definition of how the
processor will control the peripheral devices as well as a definition of the
internal operations to be perfermed. This does not include det2ailed implewmentation
of the design such as laying out printed-circuit boards and writing programs,
but does involve enough analysis of the total operation to ensure that the
system wlll operate properly after all of the hardware and software has been
assembled.

The technically based selection of components and the definition of the
general operation of the system must be based on consideration of two factors:

1. System speed requirements

2. System input/output requirements
Both of these factors are interrelated. Accordingly, 1t will usually be necessary
to define an 1I/0 configuration, and then to verify that the processor can operate
at the speed required by the peripheral devices. If there appears to be any diffi-
culty with the L/0 operation, the structure must be redefined and reanalyzed.

In addition to the speed requirements of the 1/0 devices, there are also
general speed requirements for the internal processor operations (arithmetic
operations, data manipulation, etc.). This speed requirement 1s usually some-
what more tlexible tharn that associated with L/0 but it should be defined along
with any other svstem requirements. The ultimate test of system speed must wait
for the generation of both the hacdware and the program; however, the system
requirements and capability must be analyzed very ecarly in the system develop~

ment process to ensure that no problems will arise dering the last stages of the

design.



3.1 INPUT/OUTPUT TECHNIQUES

3.1.1 The General-Purpose Input/Output (I/0) Port
Although the concept of the 1/0 port was introduced briefly in Sec-

tion 1, and the operation of two R6500 system devices which provide general-
purpose I/0 capability has been discussed in Sections 1.5 and 1.6, little has
been said about what factors must be considered when configuring 1/0 structure
using these devices.

The general-purpose 1/0 port consists of eight lines, each of which
can act as either an input or an output. As an input, each line can detect
the state of one switch or can detect one bit of data. As an output, each
line can control one light, solenoid, etc. or can provide one bit of data
to a peripheral device. 1f this technique is used in peripheral control,
the operation of each line is totally defined in the system program.

For most systems, the general-purpose interface device provides more.
than adequate speed and flexibility to solve the entire peripheral inter-
face problem. Usually, cost savings can be realized because of the re-
duced component cost and the necessity to stock only one type of inter-
face device. In addition, use of the general-purpose peripheral interface
device allows the designer to tailor the operation of the interface device
to fit the problem at hand.

The ultimate component selection must be preceded by a study of
each section of the system I/0 structure and a study of the overall sys-
tem performance. Ultimately, the set of general-purpose and speclal-purpose
peripheral interface devices selected for a system must be chosen to mini-
mize total cost, while ensuring satisfactory system performance.

Processor speed is a function of two factors: (1) the number of
instructions required to perform the desired operations, and (2) the percent-
age of processor time required to service interrupts. The typical micro-
computer system may employ several interrupt signals which occur at fixed
intervals. At times, these may be combined with other interrupts being
generated by a peripheral device. 1t i3 important that the total service
time for these interrupts does not exceed that which is allowable, and that
the time available to the processor for executing the main program is

sufficient to allow the system to operate at its required speed.



During the system configuration process, detailed system programs
need not be generated. However, it will be necessary to wrlite small portions
of the software to verify the speed of execution and to ensure proper
operation of the total system.

This chapter will discuss speclal techniques for the control of the
various components which may be included in a microcomputer system, as well asg
techniques for controlling peripheral devices which are atcached to the systen.
A discussion of programming techniques which can be used to optimize the

total system performance is contaiped in the Programming Manual.

3.1.2 The Special-Purpose Peripheral Interface Device

The special-purpose, dedicated I/0 device must also be considered in

any microcomputer design. These devices are designed to completely handle
a8 single vwell-defined problem -- for example, driving a particular printer,
handling a particular type of communications line or driving a scanned dia-
play. These special-purpose devices are designed to totally handle their

particular tasks with very little help from the processor.

The primary advantage of this type of interface device is that it
requires an absolute minimum amount of attention from the processor. The
major disadvantage of special purpose I/0 is increased component cost. The
total production volume for these devices is less than that of the more
universal 1/0 chips and also the total chip size is usually greater.

The use of special-purpose peripheral control devices will not bhe
discussed in this manual. Instead, a detailed study will be made of the
nore general problem of configuring the 8~bit bidirectional peripheral
port. 1n addition, this chapter will cover some special techniques which

can greatly enhance the power of this type of interface device.

3.1.3 Configuring the General-Purpose I/0 Port

The 8-bit peripheral contreol port included on the R6520 and the
R6530 permits each line to be programmed to act as an input or an output.
This is accomplished when the processor writes a pattern of 1l's and 0's
into the data direction register. Writing a 1 causes the pin to become an
output, and writing a O causes it to act as an input. Although thls vpera-
tion is normally performed only during system inicialization, the ability
to do 8o under program countrol allows some very important peripheral con-

trol techniques. An example of this is described below.
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The process of configuring the general-purpose 1/0 port involves,
first, examining thie peripheral devices to analyze the various control in-
puts, switches, sensors, data signals, etc. which must be handled by the
microprocessor to properly control the device. FEach function must then be
assigned to a line on the 1/0 port. The ultimate goal of this process is
the creation of a list of 1/0 pins, the function of each pin, and an indi-
cation ol whether each pin 1Is to be an input or an output.

Since each line is capable of operating as an input or an output,
and since there is very little to differentiate one line from any other,
the actual assignﬁent can be made fairly late in the system development
cycle after consideration of software techniques and printed-circuit board
layout. In fact, software considerations may be the only thing which dic-
tates that a signal be connected to one pin or another.

Developing a thorough understanding of the software in the R6500
‘systems will require a detail study of the Programming Manual. However,
sevaral operations which can be performed by the processor and which atfect

the assignment of inputs and outputs will be discussed briefly here.

ASSIGNMENT OF OUTPUTS
A mszjor factor in the assigmment of output pins can be the ability

of the R650X processor to increment and decrement memory. Since the 1/0

port is treated as a location in memory, this incrementing and decrementing
can be used to rapidly set and clear the low-order bit in this memory loca-
tion. This is illustrated in Figure 3-1.

Note that this does not affect anything but the low-order bit 1if
it 1s used properly as shown. This coperation can be performed more rapidly
than several other software techniques which can be employed to affect a
single bit. Therefore, control of a single indicator, data line, etc. can be
greatly enhanced by putting it on the low-order bit of an I/0 port. This
is the reason the low-order bit of both the R6530 peripheral ports (PA and
PBO) provide the ability to drive transistors directly. In many appli-
cations, a simple transistor attached to one of those pins would provide

very convenient control of a motor, lamp, etc.

The ablility of the microprocessor to shift data in memory can be

another very important factor in the assignment of outputs. Uperations
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which require sequential strobe signals can be controlled conveniently by
shifting a single high (or low) signal from pin to pin under software con-

trol. The specific choice of pins can greatly enhance the ease with which

this signal {s controlled:

ASSIGNMENT QF INPUTS

In general, the processor deals with the input data from switches,
keyboards, etc. by reading the data on the /0 port into the internal regis-
ters of the processor (usually the accumulator) and using the resulting con-
dition of flags in the Processor Status Register to control the program
which 1s executed. During this transfer process, the N flag in the Processor
Status Reglster 1s set equal to the high-order bit (bit 7) of the word read
Erom the 1/0 port. This N flag can then be used to cause the processor to
execute different sections of the program (See the Programming Manual,
Chapter 4, for a detailed distcussion of Branching). Likewise, by performing
certain instructions, the V flag in the Processor Status Reglster can be set
equal to bit 6 on the 1/0 port. This flag can then be utilized to affect
the program which 1s executed.

This operation of setting the internal flags from bits 6 and 7 of
the memory word means that making these two lines inputs on an 1/0 port will
permit very convenient testing of the condition of the switches, sensors,
etc. attached to these inputs. 1f more than two input signals are to be
attached to a port, the additicnal inputs should be placed on bit 5, then
bit 4, and so on. The processor can then perform operations which shift
the lower-order bits into bit 7 one at a time and sets the N flag equal to
this bit. After each shift the N flag can be used to determine the actual
program which is to be executed. (See the Programming Manual for a
discussion of the Shift instructions.)

From the above example, one should conclude that the assignments
which the designer makes will be very much a function of the software tech-
niques which will be employed in controlling each line. 1t 13 very import-
ant that the designer be familiar with these techniques, and that he docu-
ment the techniques which he has in mind when making the assignments. This
is particularly f{mportant when the system program is to be written by someone

else. Also, it is important that those persons doing the system development



work constantly review the I/0 structure to optimize the software involved

a8 the system propram is written.

1.1.4 Power-On Considerations

Section 1.2.4 discusses the operation of the system RESET function.
Reference is made to the fact that this can be used to assure that all 1/0
lines come up in a known state when power is applied to the chip. Although
this is a very important function, the designer must assure himself that this
RESET state does not adversely affect the peripheral devices., This section
describes some of the problems which can be encountered when the system is
reget and discusses several techniques which can be used toc guarantee smooth
power-up operation.

The I/0 lines of the R6530 and R6520 all enter the input state when
the reset line goes to GND (< 0.4V). For the R6530 1/0 lines, and for the
Pezipheral A port on the R6520, these pins will go to +5V DC (Vﬂd). This
is due to the output structure on these pins. When these lines are in the
input state, the output switch becomes an open circult but the pull-up
device continuves to supply current to the pin.

Figure 3~2 shows a peripheral port which is configured to drive two
solenoids. These solenoids can be controlled properly after the system is
initialized; however, when the manual reset switch is activated, both I1/0
lines enter the input state, the transistors saturate (close) and the sole-
noids are activated. This can be catastrophic in most mechanical subsystems,
80 it is important that this potential condition be understood and prevented.
Figure 3-3 shows two satisfactory solutions to this problem. The first,
Figure 3-3a, requires that a "0"” be written into the output line by the
processor to actuate the solenoids. This ensures that the solenoids will
not be powered simultaneously when the manual reset switch is pressed;
however, it does introduce another potential problem. When the reset line
on the peripheral interface device goes low (< 0.4V), the contents of both
the Peripheral Data Register and the Data Direction register are cleared to
zeros. If the Data Direction Register 1s set to 1's, both solenocids will
Immediately actuvate due to the 0 stored in the Peripheral bata Register.

This can be avoided completely if the system software first sets the bits
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FIGURE 3-2

in the Peripheral Data Register to a 1 and then sets the Data Direction
Register to a 1. The I/0 pin will go high when the reset switech is actuated
and will simply stay high through the initialization routine.

Figure 3-3b illustrates a sclution which may be more applicable to a
large system or a complex reripheral. In this approach, a separate output
line is used to apply power to the peripheral device. The power to the
entire peripheral, or to only the critical elements, is kept "off" until the

entire system ls initialized and 1s ready to run the system program.

On the R6520 Peripheral B port, the /0 lines are open-circuit
(high-impedance) in the input state. As a result, the configuration in
Figure 3-2 will not cause the same problem on the R6520 Peripheral B port
as would be experted on the R6530. In the input state, the I/0 pin is

incapable of sourcing any more than a few microamps.

However, if one were to use a solenoid driver as shown in Figure 3-4,
the TIL input structure on the drivers would interpret the high-impedance
state as a logic 1 and would actuate the solenoids; both the solutions in
Figure 3-3 would be satisfactory in this case. However, tlie transistors
are connected to the 1TL buffer. 1In addition, the extra output shown in
Figure 3-3b, controlling power to the peripheral device, could actually be
utilized to enable the solenoid drivers if an enable input is available to

these devices. This configuration 1s illustrated in Figure 2.5.
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3.1.5 Handshaking

The R6520 provides both interrupt control and data transfer control
capability. The technique for controlling the transfer of data between the
processor and a peripheral device is referred to as "handshaking."” In this
procedure, each device (the processor or peripheral) is capable of signalling
the other that its operation is complete. The sequence differs somewhat for
transfers into or out of the processor, so they will be discuased separately

below.

HANDSHAKING ON DATA TRANSFERS FROM THE PROCESSOR

The transfer of data out of the processor into a peripheral device
is performed by first writing the data into the data register within the
R6520. These data then appear on the peripheral output lines where they

can be read by the peripheral device for storage, display, etc.
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Control of this data-transfer by handshaking requires first that
the processor signal the peripheral device that data are available on the
I1/0 port. The peripheral device then reads these data and signals to the
processor that the data have been taken and that new data can be made avail-
able. The processor then makes new data available and the cycle is
repeated.

As described in Section 1, the Peripheral B Interface Port on the
R6520 1is designed to perform handshaking on WRITE operations. The CB2
peripheral control line can be programmed to act as an output which goes
low each time the processor writes data onto the Peripheral B 1/0 port.
This {s the signal which tells the peripheral device that data 1g available
on these output lines.

The CB2 output linc will stay low until the peripheral device sig-
nals the processor that the data is taken. This is accomplished by inter-
rupting the processor through the CHBl interrupt input.

The sequence which takes place during fhe "WRITE' handshaking

operation described above is shown in Figure 3-6.

HANDSHAKING ON DATA TRANSFERS INTO THE PROCESSOR
The Peripheral A I/0 port on the R6520 Ig designed to handshake

on data transfers from the peripheral device into the processor. In this
sequence, the peripheral device must signal the processor that data are
available and the processor must signal back that data was taken. This is
basically the same sequence as that performed in the previous operation.
The CAl interrupt input is used to interrupt the processor to indicate that
there are data available on the Peripheral A 1/0 port. The peripheral de-
Vice must then hold the data there until the processor reads them into its
internal registers. When the processor reads the Peripheral A I/0 port,
the CAZ2 peripheral control line goes low to signal to the peripheral device
that the data have been taken and new data can be made available. This en-
tire seguence is shown on Figure 3-7,

The bandshaking operations described above can be an extremely
powerful technique for interfacing data storage devices or, in general, any
device which must transfer blocks of data and which has a variable re-

spounse time. If the processor cannot predict the speed with which the

3=-11



ENABLE I I ll || | | I Il II II

' R

ADDRESS )( )(
e e ——————————————
e

R/W ll I

2
DATA BU’S——O—-———-———4 e ——
R
PERIPHERAL .

1. Processor puts out address of peripheral device and changes R/W
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2. During Phase 2 processor puts out data on Data Bus.

3. Data from the processor is accepted by the R6520 on the
falling edge of the enable clock.

4. Peripheral Interface device now begins the handshake by signaling the
peripheral device that data are avallable to read on the output port.

5. When the external peripheral device reads the data on the output
port it will respond by a change in CBl.

6. The change in CBl is followed by a positive transition of CB2
signalling the processor that data were accepted.

Write landshake Sequence
FIGURE 3-6

3-12



ENABLE ,_J——_-l____[——_1____j_4‘-l____[___-[___J___-l___q[_-__

P—-————-————-———-————
PERIPHERAL .

i.-.___——-——_——-——-—-—-——--
CAl :><

*———__—————-——-—_

B . |
ADDRESS s x
———-——-——l———l———-‘

é
CA2 3/ \ ?

- New data are put out by peripheral device.

The peripheral interface device is signaled by CAl that the
new data are ready to read at the input port.

CAZ is put into the high state.

The processor is signalled that new data are ready to be read
by a low level on the IRQ line.

The processor begins servicing the Interrupt request, and during
the routine the processor will put out the read signal and the
Address of the Peripheral Interface device. |

The Perjipheral interface will transfer the new data from the peripheral
device to the microprocessor through the data bus.

. When data have been transferred, the peripheral device will be signaled

by CA2 going low.

Rcad llandshake Sequence
FIGURE 3-7
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peripheral takes data, for instance, it must rely on the peripheral to

signal that it has done so.
Initiating?the data-transfer sequence is usually accomplished

through a set of 1/0 lines separate from the port which is transferring the

data. However, ouce the sequence is under way, the processor must deal with
the peripheral device only when an interrupt has occurred. This allows the

processor to execute the primary system program while still servicing these

peripheral devices.

3.2 THE MICROPROCESSOR/SUPPORT CHIPS INTERFACE
The syastem block diagram (Figure 3-8) ashows the basic data paths which

allow the R6500 system to operate. Data Bus, Address Bus, R/W signal, etc.
are shown as simple connections between the various chips in the system.
These data paths will exist in any system, no matter how complex. Never-
theless each element of the microprocessor interface must be examined to
ensure that each chip is properly driven with signals which meet all specifi-
cations for the device, that the inter-chip timing Is proper, and that the

overall system is operating as required.

3.2.1 Assigning Addresses in the R6500 System

The only method which the microprocessor has for selecting between the
various RAMs, ROMs, etc. in a system 18 through the address output lines. For
this reason, the designer must use these lines very carefully to achileve
minimum system cost and to ensure satlisfactory system performance.

Before looking at how the address lines can be configured to minimize

total system cost or program execution time, the designer should understand

how the binaryfvalue assoclated with each address line is related to the total
address space avallable to the microprocessor and how the AND function of
various address lines can be employed to select large blocks of addresses.
Figure 3-9 illustrates the state of the three high-order address lines for the

entire address space available to the R650X. Note that the highest—order ad-
dress line is a logic 1 for exactly half of the available address. The AND

function of the two highest-order address lines is a logic 1 for one~fourth of
the available addresses, and sao forth. Figure 3-9 also illustrates several
AND functions derived from the three highest-order address lines; each is true

for a different block of the available addresses.
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Generation of the AND function of various high-order address lines 1i»s
extremely important because of the chip select techniques employed on the
processor support chips. As described in Section 5.1.4, the R6520 has
three chip-select lines. The entire chip is selected for reading or
writing data when CS1 and CS2 are high (> 2.4V) and CS3 is low (< 0.4V).

Selection of the address lines which enable the varicus chips in the systenm

is a very basic but very important part of the system configuration task.

It is important to note here that very few microprocessor-based systems
actuwally require that the processors be able to access a full 65,536 wordas.
In fact, most systems can be programmed in less than 2,000 words for program
and data memory. The full address space is made available primarily because
it permits the configuration of systems with an absolute minimum of separate
decoding chips between the processor and the support chips. 1t is possible to
assign any block of address to each type of chip (RAM, ROM, peripheral inter-
tace chips, etc.) in the system. However, each of the assigned addresses must
be mutually exclusive. Only one of the support chips should be selected for

every addresa used in the system program.

ROM ADDRESS ASSIGNMENT

The assignment of ROM addresses i1s dictated by the fact that the
interrupt and RESET vectors must be located in the eix high-order words in
memory. These are fixed vectors and must be stored permanently in these
locations. For this reason, the program memory (usually ROM) is usually
assigned the high-order addresses. In fact, the recommended procedure is to
use Al5 (Al2 for R6504 and R6507 and All for R6503, R6505 and RH506) to
select program ROM,

RAM ADDRESS ASSIGMMENT

There are several factors which determine the location of the RAM
in an R650X-based system. Data stored in memory under control of the intermnal
processor Stack Pointer will always go into Page One (ADH = 0l1). Also, the
entire set of Page Zero addressing modes relies on there being data storage
RAM in Page Zero, For this reascon, the RAM in a R650X-based system should be
placed in the low-order addresses in memory.

With the RAM In low-order memory and the ROM in high-order memory,

the peripheral interface devices must go somewhere in between. This 1is

J=17



accomplished in Figure 2.10 by using Al5 - Al4 to select ROMs, Al5 to select
RAM, and Al5 ° Al4 to select all peripheral interface devices. This allows
differentiation between the types of support chips. The addressing structure
can be completed by allovwing for selection of each chip in the groups.

The addresses which select the variocus registers, peripheral ports,
etc. within the peripheral interface devices that are normally employed will
not be sequential. For this reason, it is usually recommended that the tech-
nique shown in Figure 3-10 be employed to differentiate between the peripheral
interface chips. This permits selection of 12 devicea with no decoding in a
R6502-based system, up to nine R6520 devices in a R6504 or R6507 based system,
and up to eight devices in a R6503, R6505 or R6506-based system,

ADDITIONAL ADDRESS ASSIGNMENT TECHNIQUES

In many syatems, the techniques illustrated above may not represent the
best solution to the system problem. This is particularly true {f program
execution speed 18 a primary consideration. The time required to access the
peripheral devices can be reduced by putting these devices in Page Zero. The
entire set of Page Zero addressing wmodes can then be used to access these
devices. In addition, the polling of the R6520 caontrol registers during
interrupt servicing can be facilitated greatly by putting the control registers
in sequential addresses. These regiasters can then be accessed, making use of
the Page Zero, Indexed addressing mode described in the Programming Manual.
The address interconunect which allows this is shown in Figure 3-1ll. Note thac
this implementation requires external address decoding chips, but, for the
systes requiring ft, this incremental cost will result in high operating
speeds.

The system designer must become familiar with the addressing lines and
their effect on the address space available to the processox. Even more
importantly, there is a significant relationship betveen software and hardware
in microprocessor systems and a full understanding of both can facilitate

optimization of the trade~off between speed and cost for the system under

design.

3J.2.2 Interrupts

The basic concept of Interrupts is introduced in Section 1.,2.3 of

this manual. However, little is sald there about the hardware and software
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techniques which are required to assure proper implementation of the interrupt
system, This section is designed to introduce the designer to the details of

interrupts and interrupt servicing techniques.

INTERRUPT PRIORITIZING

Chapter 1 makes reference to various techniques for hardware
prioritizing of interrupts to allow more rapid servicing of interrupts. The
goal of this hardware is to allow the processor to go directly to the
program which services the highest-priority active interrupt without taking
the time to poll each interrupting device.

All hardware prioritizing techniques are based on the "priority
encoder’ shown in Figure 3-12. Thils device has eight inputs which are
assigned a priority level from one to eight and generates a three-bit binary
code corresponding to the highest-priority active input signal.

The generation of this three-bit code is in reality a trivial task
for the designer. However, relating this code to the address of the corre-
sponding interrupt service routine is much more difficult and represents an
opportunity for creativicty on the part of the designer. Several solutions
will be illustrated here to demonstrate what can be done. These are certainly
not assumed to be the only solutions. Each system must be considered sepa-

rately to assure that the implementation chosen is as close to optimum as

possible.

EXAMPLE 1: SELECTING THE INTERRUPT VECTOR

The final step of interrupt response within the processor is the
fetching of an interrupt vector from two fixed addresses in memory. The
interrupt vector located in these fixed addresses identifies the address of
the software which the processor executes to poll the interrupting devices.
Instead of pointing to the polling routine, it would be much faster to go
directly to the software which actually services the interrupt. This re-
quires a unique vector for each interrupt.

The technique illustrated in Figure 3-12 assumes that the interrupt
vectors are located in ROM at addresses below that normally assigned to the
Interrupt vector. The decoder detects the fact that the processor 1is reading

FFFE or FFFF. At this time the address inputs ADl1, AD2 and AD]) into the ROM

are driven from the priority encoder. Instead of accessing FFFE or FFFF, the
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interrupt vector will come from two addresses selected by the priority encoder.
The actual hardware involved 18 quite simple and the interrupt response

time {s an absolute minimum.

EXAMPLE 2: USING THE PROCESSOR SOFTWARE POWER

These several solutions to the vectored interrupt problem take ad-

vantage of certain instructions which can be performed by the processor.
The first of these employs an instruction called the "Jump Indirect.'" This
instruction causes the processor to begin executing the program located at
that address contained in two sequential memory locations,.

As in Example 1, the three-bit output from the priority encoder
becomes part of the address of the interrupt software. 1f the output of
the priority encoder is connected to the inputs of a peripheral interface
device, the processor can then perform a Jump Indirect operation using the
address on the two peripheral 1/0 ports. This ie illustrated in Figure 2.13.

Another solution which takes advantage of the processor software is
shown in Figure 3-1l4, Once again, the output of the priority encoder s
connected to the inputs of a peripheral I/0 port. However, in this approach,
the priority encoder is connected to the low-order bits and the other bits
can serve as control or input lines for other functions.

In this method, the three bits from the priority encoder will become
part of an address established in memory. This address will then be

used in a Jump Indirect {instruction as before. This operation is detatiled
in Figure 3-15,

3.2.3 Memory Interface Control Using RDY

The ability to stop the microprocessor can be extremely importaat
when using memory devices that are not directly compatible with the R650X
family.

The RDY 1ine can be used to stop the processor in any "non~write"
cycle —- i.e., any cycle in which the processor is not attempting to write
data into memory. The processor can be stopped for any number of clock
cycles -- from one cycle for interfacing with slow memories to many cycles

for DMA applications and for single cycle execution,
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INTERFACING SLOW PROMS
One of the principal applications of RDY is in the control of light-

erasable PROMs or EAROMs. These devices generally have longer access times
than that required by the microprocessor when operation at 1 MHz clock
frequency and are incapable of making data available on the data bus withinm
100 nanoseconds of the end of the Phase 2 clock pulse. The Phase 2 clock
pulse is used to latch data or ianstructions on the data bus; therefore, {f
the data are not avallable at the correct time, the processor must be held
up for one full cycle. The instruction will then be latched on the following
rhase 2 pulse. Execution of the instruction will then proceed during the
next cycle. Suggested logic for performing this function 1s shown in
Figure 13~-16,

Note that the data present on the data bus during the Phase 2 clock
pulse after RDY goes high are the data that will be used in the instruction

execution which takes place during the following cycle.
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DIRECT MEMORY ADDRESS (DMA) TECHNIQUES

Transfer of data from peripheral storage devices into the micro—-
computer data memory (RAM) can norwmally be handled one byte at a time under
control of the microprocessor. However, in large data terminals, control
systems, etc. the primary data storage device may be a high-speed tape or
disk. In systems such as these, the data transfer from the storage device
into memory must be performed at speeds greater than the processor can
handle. The control of the transfer must be performed outside the processor
in a separate controller, and the peripheral device must gain direct access
to the system RAM.

Direct Memory Access requires primarily that the processor have no
need to access the memory involved. This is generally ensured by stopping
the processor completely. The DMA controller must then gain access to the
R/W line and both the address and data busses on the memory unit.

Provision for stopping the processor is available on the R6502,
R6505 and R6507. This is accomplished by pulling the RDY line on the
processor to GND (< 0.4V). The processor will stop in the first non-write
cycle with the data bus in the high-impedance state. After the processor
has stopped, the DMA controller must provide the address and data for the

memory and must control R/W if data are being transferred into memory.
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Providing addresses for the memorles can be accomplished by gating
addresses from either the DMA controller or the microprocessor into the
memories. This can be accomplished very easily with a Quad 2-input data
selector. During the DMA operation, the addresses fed to the mewmories are
those generated by the DMA controller. After the DMA operation is complete,
the input—-select signal to the data selector is inverted, and the addresses
generated by the processor once again determine which memory word is being
accessed. The R/W line to the memories can be controlled in the same way
as the address lines.

The data bus must be controlled in a somewhat different manoner.

This is necessitated by the fact that thesec lines are "bidirectional,”
with the data bus pins on the processor and the support chips serving for
both input and output. The output buffers in each of these chips are capable

of entering a high-lmpedance state to allow any of the devices to drive the

bus during data and {rstruction transfers. For this reason, a bldirectional,
“shree-state” bus extender is requlired to interface the DMA controller to
the syatem data bus. The logic necessary to provide full address bus and
data bus control for DMA applications is shown in Figure 3-17,

The R6502, R6503, R6504, R6505, and R6507 do not make provision for
the Bus Available signal. However, these processors still stop in the
first non-write cycle. For this reason, the logic shown in Figure 3-17

should be used to generate a Bus Available signal for the DMA controller.

CONTROL OF DYNAMIC RAMS IN THE R6500 SYSTEM
For systems which must contain a large quantity of Read/Write

memory (RAM), the 4096-bit dynamic RAMs can provide the required storage
with a minimunm number of parts. However, there 13 one major drawback to
these devices -— they must be refreshed periodically. For most devices
currently available, this refresh period is about 2 milliseconds for the
entire chip. Refreshing the entire chip requires 32 Read operations which
can be performed all at once every 2 milliseconds, or performed one-at-a-

time approximately every 64 microseconds.
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Unless a separate controller ias used to perform this refresh
operation, the use of dynamic memories can pe very detrimental to system
performance.

As with any Direct Memory Access, the processor must be stopped to
assure that the procegeor and the DMA controller are not attempting to
access the memories concurrently. The RDY fnput provides this capability.
A counter operating directly Erom the system clock will provide a very
convenient refresh signal. Each time the counter goes through a count of
63, e "refresh request" pulse is generated. The actual wmemory refresh

operation must take place during a Read operation with the processor

stopped for 1 cycle. Detérmining when the processor has stopped presents
exactly the same problem as in DMA operations. The controller must pull
the RDY line low and must then examine the R/W line to determine when the
processor is in a Read cycle.

The specific operation performed during the refresh cycle s a
function of. the devices being used. However, it should be noted that the
time available for refreshing the memory is "N - 1/2" cycles, where N
is the number of cycles that the processor is atopped. Control of the
memory addreas lines must be returned to the processor at the beginning
of Phase 1 if the memories are to have a full cycle to make valid data

available on the data bus. This leaves one-half cycle avallable to perform
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the refresh operation if the processor 1ls stopped ftor one cycle. A full

1-1/2 cycles can be made available by stopping the processor for two cycles.
This latter implementation 1a more compatible with most dynamic RAMs currently
available.

As described above, a primary problem in the implementation of
dynamic RAM systems is related to knowing when the processor has stopped.

A full one-half cycle is required in the implementations described above.
The R6502, howvever, provides a signal -- the SYNC signal -~ which can be
utilized to predict that the processor will stop in the very next cycle.

It is impossible for a Write operation to immediately follow an instruction
fetch cycle. This sllows the memory refresh controller to assume control
of the address lines at the beginning of that cycle lastead of after the
trailing edge of Phaase 1.

The RDY line is pulled low on Phase 1, and the processor is
guaranteed to stop. Control of the address lines is returned to the pro-
cessor on the next Phase 1 and RDY is set high at the same time. The result
is the refresh logic has a full cycle to refresh the memories and the
processor loss only one cycle of execution time. A suggested configuration

for this control logic 18 il}lustrated in Figure 3-18,

. REFRESH
s
GRANT
REFRESH
TO RDY AND
REQUEST .- b Q REFRESH
SYNC CONTROL)
1C o
) -

Control Logic for Refresh Signal for Dynamic RAMS
FIGURE 3-18
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3.3 ADDITIONAL SYSTEM CONSIDERATIONS

After the basic system configuration is complete, extensive breadboarding
and testing are usually required before the design is finalired. However, this
breadboarding and evaluation must be preceded by a complete evaluation of the

cost and performance of the proposed design to guarantee that the varlous goals

of the project will be mect.
The first step in evaluating the design is to estimate the amount of ROM

and RAM that will be required, as well as the number and type of interface
devices required to control the peripherals

J.3.1 Peripheral Interface Devices

The number and type of peripheral devices can generally be estimated

very accurately. However, it 1is important to keep in mind that these esti-
mates must be subject to review after a full analysis of system performance
1s completed. The designer may find it necessary to employ a speclal-purpose
interface part or to redesign the I/0 structure {f the evaluation of system
performance reveals that the system cannot operate at the required speed.
Use of special-purpose peripheral interface parts will reduce the number of
tasks which must be handled by the processor and consequently can increase
the overall system speed, but this generally involves additional component
cost.

Similarly, the use of a fully vectored interrupt can lead to increased
performance at increased cost. The goal of any design program must be to
meet all the system performance at the minimum possible cost.

After the various peripheral devices in the system have been evalu-
ated to determine the number of inputs and outputs required, the total re-
quired by all peripherals can be divided by 16 to determine the number of
devices required. This is a good first approximation which will be re-

evaluated as the system development progresses.

3.3.2 RAM

The evaluvation of the amount of RAM required by the system is a some-
what more difficult problem than estimation of peripheral devices. This is
due primari{ly to the fact that much of the RAM is required by the system

software as working storage, such as storage of immediate results in
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arithmetic operations. Since the system program will probably not be
written when these estimates are first attempted, the probability of error
in this portion of the estimate may be fairly high.

In addition to working storage, the RAM must provide storage for:

1. The "stack' (described in the Programming Manual)
2. Peripheral input data storage

3. Peripheral output data storage

Items 2 and 3 above can be evaluated quite accurately, since a de-
tailed analysis of the peripheral devices has usually been completed when
these estimates are first attempted. In general, a block of RAM must be
made available for each peripheral device. The amount of RAM required for

each is a function of the type of peripheral device being interfaced and

just how the device i3 to be controlled.

The amount of RAM required by the stack is a function of both the
interrupt structure and the system software. As a result, an estimate of
this requirement must be based on the system programmer's best estimates
of his requirements. This should be combined with an estimate of the re-

quired working storage and the peripheral data storage requirements to ob-

tain an estimate of the total system RAM.

3.3.3 ROM
The amount of ROM required in a system cannot be determined accu-

rately until the system program is completed. However, by partitioning the
system program into definable pleces, an estimate can be made of each task
and the total can be obtained of the ROM required by each section.

Most progfﬁms cansist of easily defined sections such as the software
for each peripheral device, arithmetic routines, etc. These are the pieces

which should be examined separately to estimate the ROM required by each.

3.4 EVALUATING SYSTEM PERFORMANCE

As discussed in the previous section, the peripheral intertace structure

for a system is falrly easy to configure if one assumes that R6520-type de-

vices are used. However, before going too far into hardware construction, it is

important that the total system performance be evaluated to minimize the proba-

bility that major problems will arise in the later stages of the design.

Evaluating system performance involves first determining whether or not

the processor is capable of processing all interrupts with the speed required,
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and then determining that the processor has sufficient time to perform non-
interrupt operations.

The prioritized interrupt structure assumes that, at times, more than one
interrupt will occur and that there will be delays encountered in servici<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>