

R6500 Microcomputer System APPLICATION NOTE

Interfacing R6500 Microprocessors To a Floppy Disk Controller

PURPOSE

Microprocessors in the R6500 family can operate with a wide variety of special-purpose peripheral controller devices. This Application Note describes the interface between an R6500 microprocessor and either of two Western Digital Floppy Disk Formatter/Controller devices, FDC 1781 and FDC 1791. The interface to the FDC 1781 requires a pair of one-shots, whereas the FDC 1791 can be interfaced directly. In both cases, the processor access time is one cycle.

DESCRIPTION

The basic interface for both Western Digital devices is shown in Figure 1. Data is passed between the R6500 microprocessor and the floppy disk controller on an 8-bit, bi-directional data bus. Address bus lines A0 and A1 select the FDC registers to be accessed. The remaining Address Bus lines, A2 through A15, can be used to generate a Chip Select signal $\overline{(CS)}$ when the FDC has been addressed. The $\emptyset 2$ clock from the processor is used to generate strobes \overline{RE} and \overline{WE} , for reading and writing the FDC registers.

TIMING

R6500 processors that run on a 1-MHz clock with 50-percent duty cycle will produce \emptyset_2 clock up and down times (PHW \emptyset_2) of 470 ns minimum. Since the Western Digital FDC 1791 device requires Read and Write pulse widths ($\overline{\text{RE}}$ and $\overline{\text{WE}}$, respectively) of 400 ns, the \emptyset_2 clock is adequate to generate these pulses directly. However, the FDC 1781 requires a minimum pulse width of 500 ns for both $\overline{\text{RE}}$ and $\overline{\text{WE}}$, so some additional strobe-generation circuitry must be included in that interface.

This circuitry is comprised of two one-shots, t_{W1} and t_{W2} , in which t_{W1} determines the start of the pulse and t_{W2} determines the width of the pulse. The limiting equation for t_{W1} is:

 $T_{ADS} + T_{ADD} + 50 < t_{W1} < 475 \text{ ns}$ (Equation 1) where $T_{ADS} = Address$ Setup Time from R6500 (225 ns max)

TADD = Address Detect Delay Time

and the limiting equation for tw2 is:

$$500 \text{ ns} < t_{W2} < 1000 \text{ ns} - t_{W1}$$
 (Equation 2)

A simple way to guarantee that the timing requirements are met is to make t_{W1} and t_{W2} approach their respective

lower bounds. The Write cycle timing is satisfied when the Read cycle timing is satisfied, except that the $t_{\rm W2}$ pulse should be made wide enough to allow the Write data to have adequate setup time. The constraints are reflected in this equation:

(Equation 3)

Time t_{W1} should be made as narrow as possible, with t_{W2} widened to satisfy Equations 1 and 2. Figure 2 summarizes the timing relationships.

INTERFACING 2-MHZ R6500 MICROPROCESSORS

The interface described is based on a 1-MHz R6500 microprocessor. To use a 2-MHz microprocessor (R6500A series), a clock stretching circuit is necessary. This circuit is described in a separate Application Note, "R650X Clock Stretching for Use with Slower Peripherals", Rockwell Document No. R6500N07.

YOUR LOCAL REPRESENTATIVE

WESTERN DIGITAL TIMING SPECIFICATIONS

Characteristic	Symbol	Min	Max	Units
Read Data Access Time, from RE	TDACC	e shaennes y	350	ns
Read Data Hold Time, from RE	T _{DOH}	50		ns
RE Pulse Width For FDC 1781 For FDC 1791	T _{RE}	500 400		ns
Write Data Hold Time, from WE	T _{DH}	20	percent of the fi	ns
Data Setup Time to WE	T _{DS}	250		ns
WE Pulse Width For FDC 1781 For FDC 1791	TWE	350 350	Kot	ns
Setup Address and CS to WE	T _{SET}	50		ns

NOTE: For R6500 timing specifications, refer to the R6500 Microprocessors Data Sheet, Rockwell Document No. 29000D39.

Figure 2. Read/Write Timing

ROCKWELL INTERNATIONAL - MICROELECTRONIC DEVICES

REGIONAL SALES OFFICES

CENTRAL REGION, U.S.A.

Contact Robert O. Whitesell & Associates 6691 East Washington Street Indianapolis, Indiana 46219 (317) 359-9283 Attn. Milt Gamble, Mgr.

EASTERN REGION, U.S.A.*

Carolier Office Building 850-870 U.S. Route 1 North Brunswick, New Jersey 08902 Phone: (201) 246-3630

Also Applications Centers EUROPE

Rockwell International Corp. Microelectronic Devices P.O. Box 3669 Anaheim, Ca. 92803 U.S.A.

Phone: (714) 632-0950 TWX: 910-591-1698

HOME OFFICE*

Rockwell International GmbH Microelectronic Devices Fraunhoferstrasse 11 D-8033 Munchen-Martinsried Germany Phone: (089) 859-9575 Telex: 0521/2650

MIDWEST REGION, U.S.A.

1011 E. Touhy Avenue, Suite 245 Des Plaines, IL 60018 Phone: (312) 297-8862

WESTERN REGION, U.S.A.

3310 Miraloma Avenue P.O. Box 3669 Anaheim, Ca. 92803 Phone: (714) 632-0950

FAR EAST

Rockwell International Overseas Corp. Ichiban-cho Central Building 22-1 Ichiban-cho, Chiyoda-ku Toyko 102, Japan Phone: 265-8808 Telex: J22198

808