CHAPTER 6
PROGRAMMING THE SYM-1

Creating a program on the SYM-! involves several steps. First, the input to the
program and its desired output must be carefully defined. The flow of program logic
is usually worked out graphically in the form of a flowchart. Next, the symbols on
the flowchart are converted to assembly language instructions. These instructions are
in turn translated into machine language, which is entered into memory and executed.
If (as usual) the program does not run correctly the first time, you must debug it to
uncover the errors in the program. This chapter ilustrates the steps involved in
creating a program to add two 16-bit binary numbers, and provides two other pro-
gramming problems with suggested solutions. All three programs are designed to
communicate basic programming principles and techniques and to demonstrate a pro-
grammer's approach to simple problems.

6.1 HARDWARE

All the sample programs listed here can be loaded and run on the basic SYM-1 with
the minimum RAM. The only I/O devices required are the on-board keyboard and
display.

If a printing or display terminal is available, by all means use it instead of the Hex
keyboard provided. Both types are more comfortable for most users and allow much
more data to be displayed at once.

Connect the terminal cable to the appropriate connector on the left edge of the card
as described in Chapter 3, Verify that the switches on the terminal are set for
full-duplex operation and no parity. The duplexing mode switch will usually be labelled
HALF/FULL or H/F; the parity switch will be labelled EVEN/ODD/NO. if your terminal
has a CRT, wait for it to warm up., To log on to a terminal, enter a "Q" immediately
after reset.

6.2 DOUBLE-PRECISION ADDITION

Since the eight bits of the accumulator can represent positive values only in the range
0-255 (00-FF Hex), 255 is the largest sum that can be obtained by simply loading one
8-bit number intoc the accumulator and adding another. But by utilizing the Carry
Flag, which is set to "I" whenever the result of an addition exceeds 235, multiple-byte
numbers may be added and the results stored in mermnory. A 16-bit sum can represent
values greater than 65,000 (up to FFFF Hex). Adding 16-bit rather than 8-bit numbers
is called "double-precision” addition, using 24-bit numbers yields triple precision, etc.

6.2.1 Defining Program Flow

Flowcharting is an otderly way of representing a procedure. Much easier to follow
than a list of instructions, a flowchart facilitates debugging and also serves as a handy
reference when using a program written weeks or months earlier, Some common
flowcharting symbols are shown in Figure 6-1. below.

6-1

INPUT/OUTPUT

PROCESSING

DECISION

TERMINATOR

o{JOLIL

ON PAGE CONNECTOR

Figure 6-1. COMMON FLOWCHARTING SYMBOLS

The object of our program is to add two 16-bit numbers, each stored in two bytes of
RAM, and obtain a 16-bit result. The sequence of operations the processor must
perform is shown in the flowchart in Figure 6-2.

To accomplish double-precision addition, first clear the Decimal Mode and the Carry
Flags. (The addition is in binary, so the system must not be expecting decimal numbers.
The Carry Flag is used in the program and must start at zero.) Load the low byte
of the first 16-bit number into the accumulator and add the low order byte of the
second number using an Add With Carry (ADC) command. The contents of the
accumulator are the low order byte of the result. The Carry Flag is set if the low-byte
sum was greater than FF (Hex).

You now store the accumulator contents in memory, load the high order byte of the
first number into the accumulator, and add the high order byte of the second number.
The ADC command automatically adds the carry bit if it is set. After the second
addition, the contents of the accumulator are the high order byte of the result. The
example below shows the addition of 384 and 128,

0000 0001 1000 00GO 384 (0180 Hex)
0000 0000 1000 000G 128 (0080 Hex)

Add low order bytes: (clear carry)
16Q0 0000
10000000
Carry = 1 000G 0000

Add high order bytes: (carry = 1)

0000 0GO01
0000 0000
1 CARRY

Carry = 0 0600 001G

Result = 0000 GO10 0000 0000 = 512 (0200 Hex)

6-2

START

CL. DEC MODE
CLEAR CARRY

'

LOAD LOW BYTE
lst NUMBER

l

ADD LOW BYTE
2nd NUMBER

!

STORE LOW
BYTE RESULT

i

LCAD HIGH BYTE
Ist NUMBER

|

ADD HIGH BYTE
2nd NUMBER

!

STORE HIGH
BYTE RESULT

RETURN TO
MONITOR

Figure 6-2. DOUBLE-PRECISION ADDITION FLOWCHART
6-3

¢.2.2 Coding and "Hand Assembly"

Once you have flowcharted a program, you may "code" it onto a form like the one
shown in Figure 6-3, SY6302 Microprocessor Assembly Language is described in Sections
4.3.3 and &.3.5, Additional information is available in the Synertek "Programming
Manual® (MNA-2) for the 6500 family. Figure 6-4 shows the coding for our example.

The first step involves finding the SY6502 commands that correspond to the operations
specified in the flowchart. A summary of the commands and their mnemonic codes
is given in Table 4-7. Arbitrary labels were assigned to represent the addresses of
the monitor, the two addends and the sum and entered in the operand field, As
written, the assembly language program does not specify where in memory the program
and data will be stored.

To store and execute the program, you must "assemble! it by translating the mnemonics
into hexadecimal command codes and assign the program to a set of addresses In user
RAM. Performing this procedure with pencil and paper, rather than with a special
assembler program, is "hand assembly".

The SUPERMON monitor begins at Hex location 3000, and the addends and the sum
have been arbitrarily assigned to locations 0301 through 0306, You should note that
the high and low order bytes of a l6-bit number need not be stored in contiguous
locations, although they are in this example.

The program will be stored beginning in location 0200, another arbitrary choice. Data
and programs may be stored anywhere in user RAM. Columns Bl, B2, and B3 represent
the three possible bytes in any 6502 instruction. Bl always contains the Hexadecimal
operation code. B2 and B3 represent the operand(s), Looking at the coding form, you
can see that the CLD and CLC instructions each occupy one byte and that the LDA
instruction occupies three bytes. On your instruction set summary card, you'll see
that the LDA mnemonic represents several different operation codes depending on the
addressing mode chosen. AD indicates absolute addressing and specifies a three-byte
command. When all the operation codes and operands have been translated into pairs
of Hex digits, the program is ready to be entered intoc memoty and executed.

6.2.3 Entering and Executing the Program

The procedure for entering the double precision addition program is shown below.

YOU KEY IN DISPLAY SHOWS EXPLANATION

(RST)

(CR) SYL. 1.

{MEM) 200 (CR) 0200.%*, Enter memory display and medify mode

D3 0201.**. Store D& in location 0200, advance to
next location

18 0202.%%, Store 18 in location 0201, advance to
next location

AD 0203.%%, .

02 0204 %%, .

03 0205.%%, .

6D 0206.%%, .

20 0217 %%,

{CR) 217 %%, Exit memory display and modify mode

WHOL DNIAOD FTdWYS

"€-9 2.n3rg

SLNZWWOD

ONYHIdO

td| CH€ 1€ aaav
OINOWINK T8V SNOILONMLSNI

1Lvd

dIWWYHDOUd

WY 3 D0ud

NOILVYOdYOD SWILSAS MILHANAS h

- TR

R IET B = i
CeASEy =8 RAg wrowm T 20% ¢ = £7 TE
Tl Y ok RIAG XITHD A ore S y = £H Sog
RSP O R D AR ZDOAR MO poE ¢ = 27 oL
T ek e T M €58 § = zH £2E
PRIV Sy D AL FROMT MT rATT o <3 = 77 23E
NIOEvY LS —w RIAL 2R T (o & = 15 oL
v Al Aoy Tot i i~ o | oo | 2| 2| 9
ST T GIAR SROaT e PRI £ Yl £ | sa]l dg | /2 ©
e TN VT ST T ¥ T T R T T e R VY T 2 ZA 2z £o | g2 (g2 | T2
EVCT WY VT Y WA V¥ - e WL YR T | HT7 fo | /o |a¥ igaz
TS | RUAE HIOHD MTT TeAis £7 | #ic £2 |79 | 48 ||§92
TR RV T SR VY (- SNV T T z7 | 2@t £21#7 | L7 ||592
a5 RIAT wDEHT MTT O] ’7 i fo | za | @V || 292
[cochapers) DTS AXELD PHITD 270 @/ || 122
(5 = F00m) obny S0oi wwivesd sWTI D) #d jlo°Z
SINAKRWOD QNYEIA0 pquozmzx Tadvl mmmﬂmmmrﬁmm oy

BLRON OOAY CNIISIDIRL . DR I0T

WY YDOd

1o afeg

41vd

YIWWYEDOUd

NOLLYHOdHYOD SWILSAS MALUIANAS

S

The program is now entered. Examine each location to make sure that all values are
correct. Then store the addend values in locations 0301-0304 as shown below. We'll
use the numbers that were used in the example in Section 6.2.1, 0180 (Hex) and 0020
{Hex).

YOU KEY IN DISPLAY SHOWS EXPLANATION

(MEM) 301 (CR) 0301,%*,

01 0302, %%, Enter high order byte, first addend
80 0303, %%, Enter low order byte, first addend
00 0304, %*, Enter high order byte, second addend
80 0305, %, Enter low order byte, second addend
(CR) 305.%%,,

To execute the program, enter the command shown below.

YOU KEY IN DISPLAY SHOWS EXPLANATION

{GO) 206 (CR) g 200. Execute program starting at lo-
cation 0200.

Now use MEM to examine locations 0305 and 0306. Verify that they are high and
low order bytes of the result, 02 and 00. 1If you find other data at these locations,
you will be pleased to know that the next section of this chapter tells you how to
debug the program.

6.2.4 Debugging Methods

The first step in debugging is to make sure that the program and data have been
entered correctly. Use the MEM command to examine the program starting address,
and use the right-pointing arrow key to advance one location at a time and verify
that the contents of each are correct. If you have a terminal, you can generate a
listing by entering an SP command without turning on the tape punch or by using the
VER command. Also examine the locations that contain the initial data.

H the program and data are correct, but the program still does not execute properly,
you may want to use the SYM-1 DEBUG function. If DEBUG is ON when the execute
(GO) command is entered, the program will execute the first instruction, then return
control to the monitor. The address on the display will be the address of the first
byte of the next instruction. If you again press GO (CR) to execute (do not specify
an address this time), the computer will execute the next instruction, then halt as
before. The program may be executed one step at a time in this manner.

By entering a non-zero Trace Velocity (at location A656), execution will automatically
resume after a pause during which the Accumulator is disptayed, Depress any key 1o
halt automatic resumption.

After certain instructions, you will want to examine the contents of memory locations
or registers. Use the MEM or REG commands, then resume operation by entering
another GO command.

To examine the Carry Flag after the low order addition, for example, use the REG
command as shown below.

67

YOU KEY IN DISPLAY SHOWS EXPLANATION

(ON) unimportant Turn DEBUG function ON
{GO) 200 (CR) 0201.2 . Execute D8 instruction
(GO) (CR) 6202.2 . Execute 18 instruction
{GO) (CR) 6205.2 . Execute AD instruction
(GO) (CR) 0208.2 . Execute 6D instruction, low order
add with carry

(REG) (CR) P 0208, Program Counter

rl Fd. Stack pointer

rz 63, Status register
(CR) 2 &3 End register examination
(GO) (CR) 020B.2 . Execute 8D instruction

The Carry Flag is the lowest (rightmost) bit of the Status Register. To determine
whether the flag was set, convert the Hex digits 63 to binary. The result of this
conversion is 0L10 00l1, and since the low bit is "1, this confirms that the sum of
the two low order bytes was greater than 255 (FF Hex)

You may turn the DEBUG switch OFF after any instruction. When you next press
GO, the program will finish executing.

' Since reading from or writing to any I/O port is the same as reading from or writing
" to a memory location, the DERUG feature may also be used to debug I/O operations.
When the port address is examined with a MEM command, the two Hex digits that
represent data indicate the status of each line of the port. For example, if the value
C2 is displayed, pin status is as follows:

PIN 7 6 54 3210
STATUS 1 1 0 0 0 0 1 0O
0= Low

For more advanced debugging techniques, including how to write and use your own
trace routines, see Sections 9.5 and 2.6.

You now know how to code, enter, and debug programs on the SYM-1. Let's go look
at two more examples that illustrate useful programming concepts.

6.3 CONDITIONAL TESTING

Most useful computer programs don't go in straight lines -- they don't simply execute
a series of instructions in consecutive memory locations, They do perform different
operations for different data by testing data words and jumping to different locations
depending on the results of the test. Typical tests answer the following kinds of
gquestions:

L. Is a selected bit of a specified data word a 1 or a 07
2. Is a specified data word set to a selected ASCIl character or numeric
value?

6-8

The sample program discussed below will answer gquestion "1". It can be patched easily
to answer question "2". You can use the principles you learn in the first two examples

to make many more complicated tests.

Bit Testing

This sample program looks at the word in Hex location 31 and tests bit 3. If bit 3
is set to one, it jumps to location 8972; if bit 3 is zero, it returns to the executive.
Location 8972 is a monitor subroutine that makes the SYM-1 go "beep'.

The only problem involved is in isolating bit 3. The simplest way is to use a mask
- a word in memory with bit 3 set and none other. If we logically AND the mask
with the sample word, the resultant value will be zero if bit 3 was zero and non-zero
otherwise., The BIT test performs the AND and tests the value without altering the
state of the accumulator.

Here is the flow chart. The code is in Figure 6-5. The mask (08 Hex) is in location
30, the test value in location 31.

¥
GET MASK

GO TO 8972 PES @

NO

RETURN

Hint

If you wish to test bit 0 or bit 7 of a byte, you need not use a mask. Simply use a
shift operation to place the selected bit in the CARRY status bit and use a BCC or
BCS to test CARRY. This saves one ot more program locations. Note that it alters
the accumulator - you may have to shift it back for later processing.

Character, Value, or Magnitude Testing

To test whether a byte is exactly equal to an ASCIH character or a value, use the
Compare command or first set a mask location exactly equal to the character or value.
Then use the EOR command to find the exclusive OR of the two values and test the
result for zero. It will be zero if and only if the values were identical. Note that
this destroys the test value -- keep another copy of it if you must use it again.

To test whether a byte is greater, equal to, or less than a given value, use the Compare
command or set a mask to the test values and subtract it from the test value. The
test value will be destroyed, Test the result to see whether it is positive, negative,
or zero (this takes two sequential tests) and skip accordingly. Try writing a program
that makes a series of magnitude tests to determine whether a given byte is an ASCII
control character (0-1F Hex), punctuation mark, number, or letter. The values of the
ASCII character set are listed on the summary instruction card.

6-9

<
n
Y ENEY FHIH b 6oz |
FEU VIO VN 7 AT S &g | 2L | DF |9z
N P T T Y = el £o | 2 || F22
ST TRDE LTS ONE AT L5FL L rE| £z 222
FEVEY LT S g va7 o |G | o2
(s=rrti INFAZAAT 757 7 FTEY o T 7E
A T eI, 20 || <%
: £d| €4 T2 |Iyagy
SINARHOD aNYYIE0 OINOWANW| — TSV ji—errormhar=
SIVILO RS LSl LT LS
aLvg O#ER-LHT (80h)
0606 BIUIOLI[RD ‘RIR[) PIUES
HIWWYEDOUd PIBAIINOS 11005 g8CT _
NOLLYHOJUOD SWHLSAS MILUIANAS
WY UDOYd Od
10 adeg

6.4 MULTIPLICATION

The sample program described here multiplies two one-byte unsigned integers and stores
the resubts in two bytes. Note that in any base of twoe or more, the product of two
numbers may be as long as the sum of the lengths of the numbers, In decimal, 99
X 99= 980l; in Hex FF X FF= FEGI.

Since many programs will involve multiplicatipn, it is not good practice to write a
multiplication routine every time the need comes up. The sample is set up as a
subroutine to allow it to be used by many programs. Serious programmers will usually
wind up with libraries of subroutines specialized for their applications.

How to Multiply

Multiplication is normally introduced to students as a form of sequential addition.
Humans can in fact multiply 22 (decimal} by 13 by performing an addition:

22 + 22 +22....22 =286
This technique is of course foolish -- it invelves a lot of work and a high probability
of error. It would be easy to write a program that would multiply this way (try it}

but it would be a terrible waste of time.

How then to multiply? We could use a table. Humans use memorized tables that
work up to about 10 X [O:

7 X 8 = 56
Humans cannot, however, remember well enough to know that:
22 X 13 = 286

Computers, of course, can “remember" an arbitrarily large table, But the table for
the problem at hand would have FFFF entries, which is far too many for practicality.

Humans solve the problem by breaking the multiplication down into smaller steps. We
multiply one factor, one digit at a time, by each digit of the other factor in turn.
Then we shift some of the partial products to the left and add:

N

2
X 13
[

a8}
N o

|

K
[e]

6
We would multiply the binary equivalents of the numbers the same way:

10110
1101
tallo
0
1G110
101L0
106011110

6-11

I AP HEHS

SET TEMP.
RESULT LOCATIONS
TO ZERO

SET X REG
TO B (COUNT SHIFTS)

w

SHIFT LSE OF
MULTIPLIER INTO
CARRY

NO

CLEAR CARRY

ADD MULTIPLICAND,LO TO RESULT,ILO

oo

ADD MULTIPLICAND,HI TO RESULT,HI

HHEHDW

SHIFT MULTIPLICAND, LO ORDER
LEFT ONE BIT
(BIT 7 INTO CARRY)

SHIFT MULTIPLICAND, HI ORDER

LEFT ONE BIT
{CARRY INTQ BIT 0}

HZ2COon

DECREMENT

X REG

NO

RETURN FRON *SB = least significant Bit
SUBROUTINE MSB = most significant Bit

Figure 6-6. GENERAL MULTIPLICATION FLOWCHART

6-12

A little figuring will verify that the result is correct. Note that the “tables" for
multiplying binary numbers by a single digit are very simple — a number times one
is itself; a number times zero is zero. We can multiply, then, by using a series of
additions and shifts, as shown in the flow chart below. The first factor is eight bits
long; the second is extended to two bytes (the high-order byte is zero), and the result
goes into two bytes set initially to zero. The flowchart in Figure 6-6 is general and
not suitable for direct coding.

This procedure could be coded quite easily. Each bit test on the first factor could
he made with a different mask as shown in the previous example. Note, however,
that the same basic set of instructions is repeated eight times, wasting memeory space,
A more efficient routine would loop over the same code eight times.

The more efficient routine could also use eight masks, but there's a simpler way.
Stmply shift the factor to the left once per addition. The bit to be tested will wind
up in the CARRY indicator, and we can simply test that. Figure 6-7 is a more formal
flowchart of the multiply routine as it is coded that it includes the coding details.
The coding chart is shown in Figure 6-8.

Testing

The listing below shows one way to key in the program. The code occupies the RAM
space from 200 to 222 Hex. The factor come from locations 21 and 22; the product
goes to locations 23 and 2%,

Note that the original factors are destroyed by the routine. If it is necessary to
preserve them for other subroutines, simply copy them into unused memory locations
and perform the multiplication on the copies.

Division

Try to write a parallel routine for performing integer division that divides a two-byte
quotient and a two-byte remainder. You may wish to test the remainder and, if its
MSB is one, round the result by incrementing the quotient.

Arithmetic

The examples given so far show some basic integer arithmetic technigues. They may
be expanded easily for double-precision cperation. (Multiply two bytes by two bytes
for a four-bit product. Use double-precision addition and fifteen shifts instead of
seven,)

MULTIPLIER = P

MULTIPLICAND = Q

IS BIT Q OF P

NO

ADD TO OUTPUT

i

—_— SHIFT Q ONE BIT LEFT

IS BIT 1 OF P = 17

ADD) TO OUYPUT

Y

T SHIFT Q ONE BIT LEFT

I

»
+

(etc., through bit 7)

Figure 6-7. DETAILED MULTIPLICATION FLOWCHART

6-14

ANLLOOCE ATJILTINW NOISIDZEd-ITONIS -g-9 2m81g

NI AT 2l woE P) | MIG sLY @? || zZz2
T LxY 0 OV ot o O < ¥ o EEEY. 0 R | OF || P22

(SOTY 4™i>2D) FRUSIDIN WIONS _INIHATHNT 2 vo A2
[rzonss " a2in2] 1257 AE Hork i 7 AT FI 22 |2z (d/z
POLITT Y LXIN VA LATT L T/ 7EE LIBNTZ iz |20 1g/z

DHAZ i GO BV 7T T Hic 2z | 52 6z

e A ek L B e d IHAdT L 2qY =2z | 57 | é/2

Dir o~ IPTF TS LAY prafel 15D PH LD e +z | St ||z

I MOT Frivoph? IS DILD e ez | 52| £z

AR INZZ2 2 GO TV 2d fz g2 7z

Weltst TE- @IIANTEEA UAE MIF LFD g L H77 sz | SF |22

AT ST D7D 27 || Fee

g L 1D VL GG OAC O = AT [TFr) LBFTE mog do | & ([272
LU RRIIOLS AN (zz) zA/ oC 7 Bzl zz2| P || ¥

SUAHES T 2L g AL W I 2 X7 go| zv| 822

w < (#2) . . . HP (7)) /#2r? P2 £z | 29| 2oz

- (€22 . LTOETY ZAZ MEF (€27 G770 eLs £z | 58| F£22
CASE @l (PE) NPT oeHals ATl 3 (22D 1#rv7 L oZ | 87 || 2oz
WAL TP AT e 3 v 7 S LION od| &V neZ

SLNIRROD aNeIId0 OINOWANW| TZavT mmmﬁammmpmmw AATY

BNLURTD AT LTy NG SIS R - FTDMIS

6-15

31vd

HIWANYEDOY

WY HDOHd

NOILYHOdHOD SWHLSAS MIALUIANAS

CHAPTER 7

OSCILLOSCOPE OUTPUT FEATURE

7.1 INTRODUCTION

Your SYM-1 module is hardware-equipped to allow you to use an ordinary oscilloscope
as a display device. In this section, we will describe the hardware and connections
between the system and the oscilloscope and also provide a listing of a software driver
for this output. This listing is just one way of handling the oscilloscope output; you
may wish to modify it or develop your own.

7.2 OPERATION OF OSCILLOSCOPE OUTPUT

The circuitry shown in the detail on the schematic (Figure 4-9) enables the SYM to
output alphanumeric characters to an oscilloscope. The circuitry is adapted from a
published schematic and was included on the SYM to help relieve the bottleneck found
on most single-board computers, i.e., the 7 segment displays. Many things can be done
with the scope-out circuit, like displaying alphanumeric characters, bar graphs, and
game displays. The alphanumeric output is usually organized as 16 or 32 characters,
each character being a 5-by-7 dot matrix. The characters could be English, Greek or
Cuneiform, or could even be stick-men, cars, dog houses, or laser guns.

The "video" signal from the collector of Ql0, is 3V peak-to-peak with a cycle time
of about 50 ms (using the suggested software driver included in section 7.3). The sync
pulse which begins the line should synchronize all triggered sweep scopes and most
recurrent sweep scopes. In the driver which follows, sync could be brought out on a
separate pin by replacing the code from SYNC to CHAR with a routine that would
output a pulse on PB4 or some other output line.

7.2.1 Connection Procedures

Connect the oscilloscope vertical input to pin R on connector AA {"scope out") and
connect scope ground to pin 1 of connector AA (SYM ground). Start the software and
adjust the scope for the stable 32-character display. If the sync pulse was output on
PB4, connect the scope's trigger to pin 4 of connector AA.

7.2.2 Circuit Operation

The operation of the circuit is simple. Basically, the circuit is a sawtcoth waveform
generator whose output is sometimes the sawtooth and sometimes ground. The sawtooth
is generated by the current source, Q9-QI7-R42-R43, charging C9. When C9 gets up
to about 3V the discharge path, Ql9-Ql8-R&i-R#44, shorts it back to ground due to a
pulse sent out by CA-2. The sawtooth waveform is shown beiow and forms the columns

of the display. ‘/\/\/\/\/\/\/\/\/\/

By pulling the sawtooth to ground with QIlCG any columns or portions thereof can be
vremoved" from the display. The result of this can be seen below:

st = furf e

The sawtooth is pulled to ground by bringing CB-2 high.

7-1

Because QL0 in the "ON" state will cause loading of C9 (thru R43) and C9 will charge
a little more slowly, the time for a "dark" column should be slightly lenger than for
a "light" column.

If more than 8 vertical dots are desired, the charging rate of C9 must be slowed by
lowering the charging current. R#2 controls the charging current and can be increased
up to about [0K before the loading effects of R45 get completely out of hand,

7.3 USING OUR SOFTWARE

The program listing in Table 7-1 is one way of handling oscilloscope output. After
entering the program and character table and attaching an oscilloscope to the scope
output, enter the following commands:

Comments
.SD 500, A670(CR) Change SCANVEC, (DISPLAY GOES BLANK)
-SD 53C, AGLI{CR) Change OUTVEC.
5D 560, A661(CR) Change INVEC.
Now enter any stream of characters from the HKB to fill SCPBUF.
Put the scope input on AC couple and the trigger on DC couple. Adjust the time
base, attenuation, and trigger until the display becomes readable. If your screen is
very small, you may wish to change the number of characters per line by adjusting
the value at location $0506,
Exampite: Creating translation table for scope driver.

Character: E (Greek capital letter sigma)
I 2 3 4 5

Dot

QO — W FE Oy

C A 9 8 C Hex Equivalent

6 A 2 2 &

Each byte corresponds to 2 single column, with each bit corresponding to a single dot.
sigma = 5C6, SAA, 592, 582, $Cé

Bit ¢ is always § to raise the character off of the Ground line.

7-2

Table 7-1. OSCILLOSCOPE OUTPUT DRIVER SOFTWARE LISTING
LINE # LOC COE LINE

S DRIVER 05701778

: TER SET IN TABLE SYMELS

BYTES CHAR

ENTRY LINE’ 18§ ANALDGOLS TO “SCANDS

FELOW ROUTINES HKEY AND HOOUT INTERFACE TO HEX KB
CHaR SET PROVIDED IS FOR HEX KE

ANGE RELATED TO ASCIT TakLE IN MONITOR ROM

THIS DRIVER AN ACCESS A #HaX OF 51 CHARS

000 0000
Q03 0000
Q004 0000
2005 0000
Q004 0000
GO07 0000
0008 0000
g00% 0000

B T e 1]

Q010 0000 TXTEHY =4BA0s
0011 0000 SUNVELD =8ab66F
Q013 0000 GETKEY =%g8alF

EY =HEHPR3
=$53188

0013 0000
a0t4 0000
onLE 0000
Qors 0000
0017 0000
Q018 0000 =$HAL00 FLARSCRZ = BLORE
Q01?0000 TXT!T& =& G3FE

Q20 0000 COLLETR =%03FF

Q021 0000 TEXT =$AH00 FSCOFE RUFFER IN Y5 RAM
Qo2 Q000 SYMRLS =60400 JCHARALCTER TAEBLE

003 0000 #o= $JOQ

002 Q300 AvY LR LENE LI
002E 0502 8D O0C AL 8TA
Q026 CEOT AP 21 1Ly
0027 Q507 80 FE 03X ST FX!LTh
Qo2 050Aa A% CC GYNG : ™
Q2% 0B0C 8BIr OC AC

Ad30 OD0F A2 EA ALY
031 0511 Ca

0032 0Z12 Do FC

Q033 0914 CE FE 03 CHAR
0034 0¥N17 AE FE 03

0035 O0%51A DO 03 . 3

0036 O0GIC 40 23 BY EXIT JSMPKEYR FECAN KB ANIF RETURN
0037 O51F]

OD38 0S1F BRI FF A5 FOINFG LDA TEXT-1¢X FROINTER MANUFACTURER
Q037 0522 0A ASL A PR X 4 + PTR

0040 OM“S GA Aol M

Q041 052 18 GLC

0042 0525 70OFF AL AL TEXT-1eX FMULT PY BY O
0043 0528 AA Tax

0044 0532% AP 046 LG 46

0045 OTZR 8D FF 03 5Té COLETR

o444 OS2E AY LR CUiUMN L0A #4
Q047 0530 8L OC AL STa F
0048 0S33 OCE FF O3 nEC CHHCTR

0049 05356 30 I BMI CHak FERANCH IF DONE W/é COL'S
0050 0538 Do 02 BHE EU!H%

QOElL 0d3a A2 00 X
Q0%2 OHB3IC AY EC LOLur
0083 OH3E 8D OC AC

00%4 004l EB

O05S 054l BaA

Q06 0343 48

L =481C

s ULSCHARGE CAF

¥ CHARS FER LINE
FCHARGE CAF FOR SYNC

PlLONG DELAY !

PLOOF HERE FOR CHAR

FLOOF HERE FOR COL7G
PRISTHARGE CAF

§ INTER CHar SFACE
FETART RAMP UF v
Feso BUT HOLID TOT IFOWN
sNEXT COL

FSAVE X

7-3

L. INE

Q057
0058
Q05Y
Q040
0061
Q042
0063
Q064
004G
Q0h6
QQH7
Q048
00 4&%
Q070
0071
0072
Q073
0074
QQ75
0074
Q077
0078
Q07
0080
Q081
o0E2
0083
0084
o085
Q086
9087
0088
008y
QOR0
Q071
0092
003
00% 4
Q095
Q096
Q07

Table 7-1. OSCILLOSCOPE OUTPUT DRIVER SOFTWARE LISTING {Continued)

LOC

0544
0547
0%49
054A
O5AL
0540
Qo4F
OnTl
0553
[eltise)
0853
0558
[¢151=1M
o5SEh
0540
OB &0
0360
0563
0564
0% &8
O56A
[e LT
OS6F
O56F
a571
0574
Q874
0577
0579
0576
PEN
O57E
0580
[17
OnB3
0585
0o8s6
058y
0S8c
OS8F
[t

20
0
29
G2
ile
40

GCOUE

FF
08

OF

04
EC
o
cec
0
49

2E

AF
88
7F
a7
03
7%
3b
EE
06
Fi
C4

03

Aac
0%

05

28
g1

ay

gR

81

8ha
g1
0%
ab

L.INE
LA SYMELS-LsX
LOY #8
noT EY
BRI CLEAN
LGSR A

BGS LIGHT
NARK LIOX #$EC

BHE *+4
LIGHT LIX #%CC

gTX FOR3

JHE DOT
CLEAN FLA
TaX

WP COLUMN
i
¥
HEEY JER GETKEY
SCFNSFE JSR SaAVER
AND F571F
CHP #4907
BNE WERELL
JMF BEEFF3
3 SEARCH ASCLL TARLE
NERELL LDX #$36
oune CMFP ABCIMLX
BEG GOTX
BEX
BNE QU
JMP RESALL
GOTX QIEX
TXA
CHF #60E
BpeC Goon
SEC
SHC #3
GCHOL DEX
JBR THTEMY
JMF RESALL
HEOWUY JSR SCPIGE
JMF SCNVEC
JENT

7-4

FGET COL
sCOUNF DOTS

FNEXT DOT TN CARRY
$C SET = LIGHT, C CLEAR = DARK
FEULL QUTEUT LOW

SOUTEFUT FOLLWS RaME UF

FRESTORE X

SGEYT KEY + ECHO TO CCOFE
SFILL SCPRUF FROM ASCIT IN A

FRELLY

TN MONITOR ROM

FNOT LN TABLE

$TABLE NOT CONTINUOUS

FADJUST NIISCONTINUITY
FSHOVE SCPRUF DOWN

sCHAR TO BCPEUF AND SINGLE SCAN

Table 7-1. OSCILLOSCOPE OUTPUT DRIVER SOFTWARE LISTING (Continued}

8X5 MATRIX CHAR SET FOR SCOPE LINE DRIVER
COMTAINS AlL HEX KE CHARS
FIRGT BYTE OF TARLE MUSYT RE
EACH CHAR § FIRST BYTE = L
MSE = TOF NOT«

10
HMOST COLUMNYy
= O HIT 1 o= BOTTOM ROT

s e Er SRR AE e

-

k=5400 FFAGE 4 ALLOCATED TO CHARACTER SET
CBYT $00370 692 $A2, 570
JBYT $00-54255FE»$02:400
CBYT BAE v BF2 e RF Ry $P2» B4H2
YT G440 58208720 $P2y A0
JEYT B1B 428348, 4$FEy 508
CBYT $E4$A2$A2» $AR 90
JEYT $30s 4 BT EP2 v kO
CEYT 5845488470 $A0 SO
BYT S804 F2 v P20 3P v A0
SEBYT $é0¢$92?$99y$94y$?
JBYT $3EE50y 370800
SHYT 500vllvﬂéy$4ﬂvl_
SBYT $10y%10e510v$10%50

LBYT 44y 6289102300 vhlﬂﬂr ARRCY
+RBYT e B FE e hFE s $FE §5H

SEBYT $B2yFE2 A 4L 5O

<BYT $P0 Py B4 42

LBYT $40, 530y 540 $FE

+BYY SO e B2 e HOE 02

LEYT $44-5A2s 59245830y E4A4
SEYT 480,380 $80 $R0 480
CBYT $02s 502y $0T 4022402
SEYT $82s kB2 682 B2y BE2
CRYT $FE 2400200600500
JEYT HFE-8000 500300 $FE
JEYT $1Es$ 12,312,412y %1E
SRBYT $F09$90!$90v$909$|0
JBYT $80. $809$80y$90; "
CSEYT 404302y 3029402y
SEYT $E0y$13y$0én$18y$h0
SEYT BFF o FF o $FF o $FF e $FF $0S0CTT
JEYT SFE S92 492y 92860 ¥ 1
JEYT $70y 3823820483y 644
CEYT SFE 382,382,482 %7
JEBYT SFEy$92-472 0582y
LEYT FE90y390.3580$80
JRYT #4944 $A2yE92 BB haa
SBYT #1102 $ 10470 v 0e$10
LEBYT $00y$10»$28,444 0482
JEBYT $00s 350000500400
CEYT $FE 3029402y 3020302
LEYT $440402y 3920 58A 1044
LBYT SFE s 04408 5040 $FE
CEYT SFEs$02:402:4$02:4032
SEYT 4442 GA2 $92 e BBAy B4 §T
LEYT 400404 406 00500 Pllﬁm
LBYT 00 $00s 500 s 00 KO0 AL AMNE
JEYT 44023850, 683Av 3902460 JUI ST TN
CEYT SFE$F0 v 3902 4908460
SEND

7-5

CHAPTER 8
SYSTEM EXPANSION

This chapter discusses the means by which you can expand your SYM-1 microcomputer
system by adding memory and peripheral devices to its basic configuration. By now,
you realize that data access, whether from RAM, PROM or ROM is a function of
addressing interface devices (l.e., 6322's and 6532). Hardware has been built into your
5YM-1 module to allow large-scale expansion of the system. A thorough understanding
of the SYM-1 Systern Memory Map (Figure #-10) will aid considerably in understanding
how to expand your system.

8.1 MEMORY EXPANSION

Your SYM-1 module comes equipped with 1K of on-board RAM. It also contains all
address decoding logic required to support an additional 3K on-board with no changes
by you. In other words, to add 3K of on-board RAM, ail you need to do is purchase
additional SY211% devices and plug them into the sockets provided on your beard.
Your PC board is marked for easy ideniification of 1K memeory blocks. RQ equals
the lower 1K block and R3 equals the upper IK block. LO means low order data lines
(DC-D3) and HI means high order data lines (D&-D7).

You will recall that the lowest 8K memory locations are defined by an address decoder
included on your 5YM-| module (a 74LS138). The eight cutputs of this decoder (G0-IC)
each define a 1K block of addresses in the lowest 8K of the Memory Map. Four of
the outputs (00, 0F, 08, OC) are used to select the on-board static RAM. The remaining
four outputs (ﬁ, 12, 18, [C) are used to interface to the Application Connector
(Connectar "A"), where you can use them to add another 4K of ofi-board memory.,
Again, no external decoding logic is required. By this simple means, you can convert
your 5YM-1 module into an 8K device quickly. Figure 8-1 shows you how to interface
these decode lines at the connector for your SYM-1 system.

To go beyond this 8K size, conceivably up to the maximum 635K addressability limit
of the SYM CPU, you could build or buy an additional memory board with on-board
decoding logic. In this case, you will use the Expansion Connector {Connector "E") in
a manner shown schematically in Figure 8-2. Note that the three high-order address
bits {AB13-AB15) not used in the earlier expansion are brought to this connector as
shown. These are then used with a decoder to create outpuis MO through M7, which
in turn are used to select and de-select additional decoders (line receivers). You need
add only as many decoders (one for each 8K block of memory} as you need for the
expansion you require.

Incidentally, the line receivers shown in Figure 8-2 are provided for electrical reasons.
There are loading limitations on the address bus lines of the 6502 CPU, which require
the insertion of these receivers. (For your information, each 6502 address line is
capable of driving one standard TTL load and 130pf of capacity.)

You should make a careful study of the loading limitations of the required SYM-I lines
before deciding on memory expansion size and devices. It is likely you will want to
use additional buffer circuits to attain "cleaner" operation of your expanded memory
in conjunction with your S5YM-1 system.

a-1

4K MEMORY EXPANSION

522 IK X 6
bl ez — K X8
74L5138 |53 VIM-] ON BOARD RAM
2 K X B
3|0C —1K X8
ABIO| ks
_ABT 5|14
B2, i
—5l 7}
HH
'P 16](E)
| 41
[O]k[H]F [E D c[B]e— —~APPLICATION CONNECTOR
ABIZ 19] B3 S
ABI4) AVAILABLE FOR
T ABIS 4K EXPANSION
740527

Figure 8-1. %K MEMORY EXPANSION

MEMORY [0 EXPANSION TO 65K

4K RAM ON
VIM-|
G K 4 &
oo |
Ut | s
ABI2 ABH ABIO 74LSi38 08
ABI3 2/0C
ABl4 A ATE
ABIS a 14
c AL
/ 1
740527 = i
LR P
[T7s n P N _M|E @] [J KHFEDECBA
L —— L ————
L. EXPANSION 4K RAM
R 4K RAM CN BOARD
(106G -IF FFH{OQO0-OF FF)
R (LINE RECEIVERS
TYPE 74367 SUGGESTED)
4K BLOCK
ADDRESSES
o OPTIONAL
N O'Ii*l SAME ADDRESS
" 3 . AS EXPANSION
B IE_ tO00-FFF 9 |INES ON
MG 2 CONNECTOR
0 . e
— | ™1 A 31 ¥
° o2 U 45
& -
¢ Lsiss 32 ol . 2000 -2FFF
7ALSI38 M3 7415138 it |
o5
o o
Gt G2A 62BN A bl
I 3000 -3FFF
B
238
= ¢ ko
LGzA 45_@_
+31e o2 |
K 532 14000 -4FFF
J HETY
7415138 g7 |
1
I
|
e
1 -
B ey (EOC0-EFFF
: Jec
e ¥
G
o S FOOO-FFFF
74L5138 _|Ft

Figure 8-2. MEMORY - I/O EXPANSION TO 65K

3.3

3.2 PERIPHERAL EXPANSION

As you already know, the SYM-l microcomputer system includes 51 IJO lines. This
means, theoretically, that you could drive as many as 51 peripheral lines {plus & control
lines) with your SYM-I.

Using either Application Connector ("A" or "AA"), you can add most commercially
available printers or other devices requiring parallel interfaces, although you will have
to create your own software driver for the printer. Since the provision of that driver
is, to some extent, dependent upon the printer you purchase, we do not attempt to
discuss the implementation of the software in this manual.

You can expand your SYM-1 system's peripheral I/O capability easily and quickly merely
by installing an additional SY6522 in the socket provided for that device. This will
ive you 16 additional on-board data lines with no requirement for additional work
beyond the software driver} on your part. To go beyond that level, you must use the
Expansion Port (Connector "E") described earlier.

Again, we emphasize that the proper understanding and use of the Memory Map in
Figure 4-10 will allow you to use your imagination in expanding the I/O capability of
your SYM-1 system. Its flexibility is extremely broad and the fact that all I/O and
memory arc handled as an addressing function allows you expandabitity to the full
capability of the 6502 CPU itself.

3-4

CHAPTER 9
ADVANCED MONITOR AND PROGRAMMING TECHNIQUES

This chapter contains information which you will find useful as you explore the more
sophisticated capabilities of your versatile SYM-1 microcomputer system. As we have
pointed out many times, the SYM-1 is the most flexible and expandable monitor of
its kind. The SUPERMON monitor uses transfer vectors and other techniques to allow
you to modify its operation, and these are provided in detail in this chapter. 1In
addition, the extended use of debug and trace facilities, which are invaluable tools as
your programming skill advances, are explained. The use of the Hex keyboard provided
on your SYM-1 for configurations using a printer (or other serial device) without a
keyboard is also described. And last, an example and discussion of extending
SUPERMON's command repertoire.

2.1 MONITOR FLOW

SUPERMON is the 4K byte monitor program supplied with your SYM-1. It resides in
locations 8000-8FFF on a single ROM chip. It shares the stack with user programs
and uses locations DOF3-00FF in Page Zero. In addition, it uses locations A600-A67F
{(RAM on the 6532), which are referred to as 'System RAM'. Since these locations are
dedicated to moniter functions SUPERMON write protects them before transferring
control to user programs.

The flowcharts in Figures 9-1 through 9-5 will demonstrate the major structure of
SUPERMON. You will notice that GETCOM (and its entry, PARM), DISPAT, and
ERMSG are subroutines, and therefore available for your programs' use. Note that a
ISR to ACCESS to remove write protection from System RAM is necessary before
using most monitor routines. Alse, notice that the unrecognized command flow {error)
is vectored, Thus, you can extend the monitor with your own software.

9.2 MONITOR CALLS

SUPERMON contains many subroutines and entry points which you will want to use in
order to save memory and code and avoid duplication of effort. Table 3-1 is a summary
of calls and their addresses.

The three calls which you will most commonly use are:

JSR ACCESS (address 8B86) (must be called before using LED display)
JSR INCHR (address 8AIR)
J5R OUTCHR (address 8A%47)

ACCESS is used to unwrite-protect system RAM. In performing the input/output, these
routines save all registers and use INVEC and OUTVEC, so all you need be concerned
with when using them are the ASCII characters passed as arguments in the accumulator.

9.3 MONITOR CALLS, ENTRIES AND TABLES

Table 9-1, which occupies the next several pages of this Chapter, provides you with
a comprehensive list of important subroutine symbolic names, addresses, registers and
functions of SUPERMON monitor calls, entry points and tables, With this data, you
can more easily utilize SUPERMON to perform a wide variety of tasks. All (except
those marked with an asterisk) are callable by ISR.

9-1

Table 9-1. MONITOR CALLS, ENTRIES AND TABLES

REGISTERS
NAME ADDRESS ALTERED FUNCTION (5)
*MONITR 8000 Cold entry to monitor. Stack, D flag initialized,
System RAM unprotected.
*WARM 8003 Warm entry to monitor
USRENT 8035 User pseudo-interrupt entry - saves all registers

when entered with JSR. Displays PC and code 3.
Passes control to moenitor.

SAVINT 806% ALL Saves registers when called after interrupt. Re-
turns by RTS,

DBOFF 80D3 A,F Simulates depressing debug off key.

DBON 80E4 AF Simulates depressing debug on key.

DBNEW 80Fé6 AF Release debug mode to key control.

GETCOM &0FF A,F Get command and (-3 parameters,

No error: A=0D (carriage return)
Error: A contains erroneous entry.

DISPAT Bl4A AF Dispatch to execute blocks.
Dispatch to URCVEC if error.
At return, if error: Carry set, A contains byte in

etror.
ERM3SG 2171 F If Carry set, print (CR)ER NN, where NN is con-
tents of A. '
SAVER 8188 None Save all registers on stack. At return, stack looks
likes F (See paragraph 9.%)
A
X
Y
*RESXAF 31B3 restored Jumped to after SAVER, restore registers from

stack except A,F unchanged, perform RTS.

*RESXF 8IBE restores Jumped to after SAVER, restore registers from
stack except F unchanged, perform RT3,

*RESALL 3iC4 restored Jumped to after SAVER, restore all registers from
stack, perform RTS.

INBYTE 81D9% AF Get 2 ASCIl Hex digits from INCHR and pack to
byte in A. If Carry set, V clear, first digit non-Hex.
If Carry set, V set, second digit nonHex. N and
Z reflect compare with carriage return if Carry
set.

*Do not enter by JSR.

9.2

Table 9-1. MONITOR CALLS, ENTRIES AND TABLES (Continued)

NAME ADDRESS REGISTERS FUNCTION (S)

PSHOVE 8208

PARM 8220

ASCNIB 8275

OUTPC 82EE
OUTXAH 82F4
OUTBYT 82FA
NIBASC 8309
COMMA 833A
CRLF 834D

DELAY 335A

INSTAT 8386

GETKEY 88AF

HDOUT 8%00

SCAND 2906

KEYQ 8923

KYSTAT 896A
BEEP 8972

HKEY 89BE

*Do not enter by ISR

xXF

AF

A,F

A,X,F

F,X

AF

AX,Y,F

AX,Y,F

AF

AF
None

A,F

Shove Parms down 16 bits;
Moves P2 to Pl

P3 to P2

zeros to P3

Get 0 to 3 parameters, Return on {CR} or error,
A contains last character entered. Flags reflect
compare with (CR).

Convert ASCIH character in A to 4 bits in LO
nibble of A. Carry set if non-Hex.

Print user PC. At return, A=PCL, X=PCH.
Print X,A (4 Hex digits)

Print A (2 Hex digits)

Convert LO nibble of A to ASCII Hex in A.
Print comma.

Print (CR) (LF).

Delay according to TV. (Relation is approximately
logarithmic, base=2). Result of INSTAT returned
in Carry.

If key down, wait for release. Carry set if key
down. (Vectored thru INSVEC)

Get key from Hex keyboard (more than one if
SHIFT or ASCII key used} return with ASCII or
HASH code in A. Scans display while waiting
{(vectored through SCNVEC)

ASCII character from A to Hex display, scan display
once, return with Z=1 if key down.

Scan the LED display once from the data in
DISBUF. Return Z set if a key on hex keyboard
is down.

Determine if key down on Hex keyboard. If down,
then Z=1.

Determine if key down. If down, then Carry set.
BEEP on-board beeper.
Get key from Hex keyboard and echo in DISBUF,

ASCII returned in A. Scans display while waiting
{vectored thru SCNVEC)

9-3

Table 9-1.

MONITOR CALLS, ENTRIES AND TABLES {Continued)

NAME ADDRESS REGISTERS FUNCTION (S)

QUTDSP 89C1

TEXT 8A06

INCHR 3A1D

NBASOC BAu44

OUTCHR 8AU47

T
INTCHR 8AS58

TSTAT 8B3C

*RESET 8B4A

*NEWDEV &beh
ACCESS 8DB36
NACCESS 8B3C
*TTY 8BA7

*DFTBLK 8FAQ

*ASCII 8BEF

*SEGS 8C29

*Do not enter by ISR

None

A,F

AJF

None

AF

A,F

All

None
None
AXF

Table

Table

Table

Convert ASCIH in A to segment code, put in
DISBUF.

Shove scope buffer down, push A onto SCPBUF.
Get character {vectored thru INVEC). Drop parity,
convert to upper case. If character CTL O (0F),
toggle Bit 6 of TECHO and get another.

Convert low nibble of A to ASCI, output (vectored
thry QUTVEC)

Output ASCH from A (vectored thru OUTVEC)
Output inhibited by Bit 6 of TECHO.

Get character from serial ports. Echo inhibited
by Bit 7 of TECHO. Baud rate determined by
SDBYT. Input, echo masked with TOUTFL.

See if break key down on terminal. If down, then
Carry set.

initialize all registers, disable POR, stop tape,
initialize system RAM to default values, determine
input on keyboard or terminal, determine baud rate,
cold monitor entry.

Determine baud rate, cold monitor entry.
Un-write protect System RAM,

Write protect System RAM.

Set vectors, TOUTFL, and SDBYT for TTY.

Default block - entirely copied into System RAM
{A620 - A&7F) at reset.

Table of ASCII codes and HASH codes.

Table of segment codes corresponding to ASCII
codes (above).

94

MAIN MONITOR FLOW

MONITOR

'

INIT 5, P
UNPROTECT
SYSTEM RAM

WARM

JSR GETCOM

v

JSR DISPAT

Y

ISR ERMSG

Y

RESET/POWER ON

Get command
and 0-3 parameters

Dispatch to execute
block or unrecognized
command vector.

Set Carry if error

Print 2 digit representation
of Accumulator if carry set.

POWER ON or
RESET
ENTRY

Perform all initialization,
including move default values
to System RAM

Go to Main Moenitor

Figure 9-1. MAIN MONITOR FLOW

9-5

GETCOM

PRINT CRLF

¥

GET CHAR

STORE CMD
IN LSTCOM

-

GET SECOND
CHAR

no

]

PRINT SPACE

y

ZERO THE PARAMETERS

HASH TO
ONE BYTE
(HASH CODE)

e PARM

Figure 9-2. GETCOM FLOWCHART

9-6

PARM “‘—‘—l

PARNR = 0

y

#1 GET CHAR

CONVERT TO
BINARY

l

ROL & BITS
INTO P3

SHOVE ALL
PARAMETERS
DOWN

Pl = P2

P2 = P3

P3 =0

!

INCREMENT
PARNR

PARNR >3

Figure 9-3.

yes

ALL
OTHER
CHARS

y

RETURN,

LAST CHAR

ENTERED [®

IS IN ACC

PARM FLOWCHART

DISPAT

n

L}

&

yes

LOAD LSTCOM
INTO ACC

!

LOAD PARNR

yes
PERFORM

Z
=
Q
>

o URCVEC

yes
PERFORM

&

URCVEC
no

yes
PERFORM

&

no URCVEC

ye PERFORM

&

no URCVEC

= URSVEC

Figure 9-4. DISPAT FLOWCHART

9-8

RETURN

PRINT
CRLF

PRINT
E,R,SPACE

¥

PRINT 2 DIGITS FROM
ACCUMULATOR

RETURN

Figure 9-5. ERMSG FLOWCHART

9.4 VECTORS AND INTERRUPTS

A concept which is very important in understanding the S$Y6502 and SUPERMON is
that of a transfer vector. A transfer vector consists of two or three locations at a
fixed address in memory. These locations contain an address, or a Hex 4#C (JMP} and
an address. The address is In low-order, high-order byte order.

As an example, consider the function of outputting a character. In some cases, the
character is to go to the display, in others to a terminal device. The action required
in each case is radically different. It would be inefficient, in code and in time, to
make the decision before outputting each character. The solution is a transfer vector.
Whenever SUPERMON must output a character, it performs a JSR to OQUTCHR.
OUTCHR saves all registers, then performs a JSR to QUTVEC (at A663, in System
RAM). If you are working at the Hex keyboard QUTVEC will contain a JMP HDOUT.
HDOUT is the subroutine which will enter a character, in segment code, into the
display buffer, If you are using a TTY or CRT, OUTVEC will contain a JMP TOUT.
TOUT is the subroutine which sends a character, one bit at a time, to the serial I/0
ports. When HDOUT or TOUT performs an RTS, control passes back to QUTCHR.
OUTCHR. restores the registers and performs an RTS, returning control to the caller,

Notice that the calling routine need not worry where the output is going. Tt is all
taken care of by QUTCHR and OUTVEC.

When a vector is to be referenced by a JMP Indirect, only two bytes are required.
Two-byte vectors are normally used only for interrupts.

An INTERRUPT is a method of transferring program control, or interrupting, the
processor during execution. There are three interrupts defined on the SY6502:

r

NMI - non-maskable interrupt
RST - reset/power-cn
IRQ — interrupt request

When one of these interrupts occurs, the processor pushes the PC register and the
Flags register onto the stack, and gets a new PC from the INTERRUPT VECTOR.

The interrupt vectors are located at the following addresses:

FFFA,FFFB -- NMI
FFEC,FFFD - RESET
FFFE,FFFF — IRQ

These locations must contain the addresses of programs which will determine the cause
of the interrupt, and respond appropriately.

In the SYM-1, System RAM (A600-A67F) is duplicated at FF80-FFFF (it is "echoed"
there). ©On Reset, SUPERMON points these vectors to its own interrupt-handling
routines. When an interrupt occurs, SUPERMON displays the address where the interrupt
occurred with one of the following codes indicating the cause of the interrupt:

0 = BRK instruction

1 = IRQ

2 = NMI

3 = USER ENTRY (caused by JSR to USRENT at 3035)

Because all registers are saved, a {G) (CR) will cause execution to resume at the
point of interruption. The user can intercept interrupt handling by inserting pointers
to user interrupt routines in TRCVEC, UBRKVYC, NMIVEC, or IRQVEC. See Section
9.8.2 for a discussion of the User Entry pseudo-interrupt. Table 9.2 describes all

vectors used by the Monitor.

9-10

NAME
INVEC
QUTVEC
INSVEC

URCVEC

SCNVEC

EXEVEC

TRCVEC

UBRKVC

UIRQVC

NMIVEC

IRQVEC

Table 9-2,

LOCATION
A660-A662
AGE3-Ab6S5
A666-A668

AGBC-AGEE

A66F-A671

AG672-A673

Ab74-A6T5
A676-A677
A678-A679

AB7A-A67B

A67E-A67F

9.5 DEBUG ON and TRACE

SUPERMON VECTORS

FUNCTION
Points to input driver,
Points to output driver.

Points to routine which determines whe-
ther or not a key is down.

Unrecognized command, All unrecog-
nized commands and parameter entry er-
rors vectored here, Points to a sequence
of:

SEC - Set Carry

RTS - Return

Points to routine which performs one
scan of display from DISBUF.

Points to RIN - get ASCH from RAM
subroutine.

The Execute (E) command temporarily
replaces INVEC with EXEVEC, saving
INVEC in SCRA, SCRB. The Hi byte of
EXEVEC must be different from the Hi
byte of INVEC.

May be used to point to user trace rou-
tine after TRCOFF (See Section 9.6).

May be used to point to user BRK routine
after IRQVEC.

May be used to point to user NON-BREK
IRQ routine after IRQVEC.

Points to routine which saves registers,
determines whether or not to trace,
based on TV.

Points to routine which saves registers,
determines whether or not BRK has oc-
curred, and continues thru UBRKVC or
UIRQVC.,

When the DEBUG ON key on your SYM-1 is depressed, DEBUG mode is established.
In DEBUG mode, an NMI interrupt occurs every time an instruction is fetched from

an address that is not within the monitor.

SUPERMON's respense is to save the

registers and display the PC, with code 2 (for NMI). With each (G) {CR), one instruction

of the user program will be executed,

This is called Single-Stepping.

In order to TRACE, alter the Trace Velocity (TV, at A656) to a non-zero value. (09
is a good value.,) If you now enter (G) (CR), SUPERMON will display the PC and the
contents of the accumulator, pause, and resume execution. Addresses and accumulator
contents will flash by one at a time. To stop the flow, depress any key (Hex keyboard)
or the BREAK key (terminal). Execution will halt. A (G) (CR) will resume execution,
The length of the delay is related to TV {not linearly; try different values) and, of
course, the baud rate, if you are working from a terminal.

2.6 USER TRACE ROUTINES

As the complexity of your programs increases, you may wish to implement other types
of trace routines. To demonstrate how this is done, an example of a user trace routine
is provided in Figure 9-6. It prints the op code of the instruction about to be executed,
instead of the accumulator contents.

But first of all, we don't want to be interrupted during trace mode by respending to
an interrupt {a problem called recursion). SUPERMON will handle this by turning
DEBUG OFF, then back ON. However, to implement this program control of DEBUG,
you must add jumpers W24 and X25 to your SYM-1 board {see Chapter 4).

Now that you have added the jumpers, we are ready to enter the program UTRC and
change vectors.

First, enter the program UTRC as given in Figure 9.6. Then change NMIVEC to point
to TRCOFF, which will save registers, turn DEBUG OFF, and vector thru TRCVEC:

sD 80C0,A67A (CR}
Now, point TRCVEC tec UTRC.
SD 0380,A674 (CR)
Enter a non-zero value in TV, depress DEBUG ON, and you're ready to trace.

NOTE: BRK instructions with DEBUG ON will operate as two-byte instructions
and should be programmed as 00,EA (BRK,NOP).

Also, the first instruction after leaving SUPERMON will not be traced.

LINE

0002
AOO3
0004
QOO
Q00
2007
Q004
0009
001G
0011
0012
Q013
Q014
Q0LS
Q016
QL7
Q018
0019
0020
Q021
0022
0023
o024
Q025
GO2G
Q027
Q028
Q029

i 0

0000
Q000
Q000
Q000
0000
Qo0
0000
Q000
0000
Q000
Q000
Q000
0000
0380
0383
Q0386
03886
038R
Q380
038K
0391
0394
Q397
Q399
Q3wC
OJFPE
G3ml
O3A4

20
Al
89
ANl
84
AQ
Bl
20
FO
20
20

4L

CATIE

37
59
FO
56
1l

FoO
40
0%
56
03

Chn

B3
Ab

AH

83
Ak

83

g0
80

Figure 9-6.

L INE

UTRE - USER
FRINT NEXT OF

e ws

OFFCOM
FCLR
FCHR
ORCRLF
DEL®Y
WARM
TRACON

=HB337
=HAENT

=HEOCH

Fem g 380
JEROFPCOM
I.0Aa FCLR
STa 50
LI PCHR
BTA HF)
Loy #0
LIA (BFOY Y
JEROOBCRELF
Lox TV
REQ NOGO
JER DELAY
RCE GO
NOGO JMP WARM
G JHE TRACON
+ENE

UTRC

COnE

TRACE ROUYINE -
INGTEAD OF

ACCUMULATOR

FRERINT FLCy FRINT COMMA

PRRINT RYTE FROM ACCs PRINT CRLF
FHELAY BASED ON TV
sWARM MONITOR ENTRY
FTURN TRY ONy RESUME
FTRACE VELOGCITY

EXEGUT TON
(W
RaM (ENTIRELY RELOCATE!

CoMMA
PR T 0P

FPUT IN MI
FFRINT FCO»

FUSE PO a8 COLE

FPICK Up OF
sOUTEUT O
FLET TRACE
FNOGO TF ZERD
FOELAY ACCORDING 70 TV
FCARRY SET IF KEY DOWN
FHALT

F CONTINUE

COnE

LISTING OF SAMPLE USER TRACE ROUTINE

USER TRACE EXAMPLE

.V 200,20A (CR)

700 A9 00 A9 11 A9 22 A9 33,0A

0208 4C 00 02,58
0358
.SD 80C0,A67A (CR) Vector medification
3515 330,A67% (CR) Vector medification
.G 200 {CR) Single-Step (Remember
0207,A9 to set DEBUG ON before

each (G) (CR)

G {CR)
0704,A9

M A656(CR)

AG36,00,09(CR) Trace Velocity = 2
A657,4D (CR)

.G 200 (CR)

0202,A9

0204,A9

0206,A9

0208,4C Continuous trace of op codes
0200,A9

0202,A9

0204,A9

0206,A9

0208,4C

0200,A9

0202,A9

9.7 MIXED 1/O CONFIGURATIONS

The Reset routine that is activated when power is turned on or RST is pressed
establishes the terminal 1/O configuration by loading a specified value into a location
in System RAM, TOUTFL (A654). The high-order four bits of TOUTFL define which
terminal devices may be used for input and output. A "1" signifies that a device is
enabled, @ "0" that it is disabled. The meaning of each bit and the values assigned
at system reset are shown below. The routine referenced by entry (1) in the JUMP
table will enable the TTY for input. For other configurations, load the appropriate
value into TOUTFL.

TOUTFL bit: 7 6 3 4
default value: 1 0 1 1
meaning: CRT TTY TTY CRT
INPUT INPUT OUTPUT OUTPUT

9-14

Bits 6 and 7 of another location in System RAM, TECHO (A653), are used to inhibit
serial output (bit 6) and to control echo to a terminal (bit 7). Bit 6 may be toggled
by entering "(CONTROL) O" (OF Hex) on the terminal keyboard or in seftware. The
possible values for TECHO are shown below.

TECHO 80 echo (default value)

output

Cco echo
no output

40 no echo
no output

00 no echo
output

With this information, you can alter the SUPERMON standard 1/O configurations to
suit your special needs. A common use would be routing your output to a terminal
while using the Hex keyboard as an input device, Two possible ways of doing this
will be discussed.

First, by merely altering SDBYT and OUTVEC, your input and echo will use the on-board
keyboard and display, while Monitor and program output will go to the serial device.
Choose the proper baud rate value for your device from the following table and put
it in SDBYT (at A651) with the "M" command. Then enter the address of TOUT into
OUTVEC from the hex keyboard as follows:

.SD 8AAD,A664 (CR)

Terminal Baud Rate Value Placed in SDBYT
110 D5
300 4C
600 24
1200 10
2400 06
4800 01

Second, if you wish your input to be echoed on the terminal device, a small program
must be entered. First, complete the sequence discussed above. Then, enter the
following program:

UIN ISR GETKEY 20 AF a3
BIT TECHO 2C 53 Ab
BPL UOUT i0 03
JMP OQUTCHR 4C 47 8A
UQUT RTS &0

Enter the program called "UIN" above at any user RAM location. Then use the "3D"
command to put the address of UIN into INVEC (at A661) as follows:

.SD {UIN),A661 (CR) (ENTER AT HKB)

where (UIN} is the address of the program UIN.

9.8 USER MONITOR EXTENSIONS

Having read the section on Monitor flow, you will have noticed that unrecognized
commands and parameter entries are vectored through URCVEC (A66C-A66E), which
normally points to a SEC, RTS sequence at 8IDI. By pointing URCVEC to a user-supplied
routine in RAM or PROM, SUPERMON can easily be extended. The following example
will illustrate the basic principle; many more sophisticated extensions are left to your
imagination.

9.8.1 Monitor Extension Example

This example will define UQ with two parameters as a logical AND. The parameters
and the result are in Hexadecimal.

LOGAND CMP #3514 ;USRO
BNE NEXT
CPX {#2 stwo parms
BNE NEXT
DOAND LDA P2ZH
AND P3H shere's the ‘and' hi
TAX
LDA PZL
AND P3L s'and' lo
JSR CRLF ;get new line
ISR SPACE _
JMP OUTXAH ;PRINT X and A
NEXT SEC ;last
RTS
.END

To attach LOGAND to the monitor, it must be assembled (probably by hand), entered
into memory, and URCVEC altered to contain a JMP to LOGAND. Notice that more
than one command could have been added, by pointing NEXT to the next possible
command, instead of a RT3,

9.8.2 SUPERMON As Extension to User Routines

Because SUPERMON contains a user entry, it can easily be appended to your software.
An example of the utility of this feature is a user trace routine, which could have an
'"M' command, which would direct it to make SUPERMON available to the user. Here's
what the code would look like.

UTRACE
Trace code
JSR INCHR
CMP #M
BNE ELSE
JSR USRENT
IJMP UTRACE
ELSE Code executed if character

input is not '™

9-16

In this example, the user will type an 'M' to get into monitor, and a (G) (CR) to return
to the calling portion of UTRACE. Note that the user PC and S registers should not
be modified while in monitor if a return to UTRACE is intended.

9.9 USE OF SAVER AND RES ROUTINES

SAVER and the RES routines are designed to be used with subroutines. Their usage
is as follows:

UPROG JSR USUB usuB ISR SAVER
{(UPROG CODE) (USUB CODE)
JMP RE3ALL

In this example, UPROG calls USUB. USUB calls SAVER, performs its function, and
then jumps to RESALL. RESALL restores all registers and returns to UPROG. If
RESXF or RESXAF were used instead of RESALL, UPROG would receive the F, or F
and A registers as left by USUB.

APPENDIX A

IMMEDIATE ACTION

Your 5YM-1 microcomputer has been thoroughly tested at the factory and carefully
packed to prevent damage in shipping. It should provide you with years of trouble-free
operation. If your unit does not respond properly when you attempt to apply power,
enter commands from the keyboard, or attach peripheral devices to the system, do
not immediately assume that it is defective, Re-read the appropriate sections of this
manual and verify that all connections have been properly wired and all procedures
properly executed.

If you finally conclude that your SYM-1 is defective, you should return it for repair
to an authorized service representative. Specific instructions for obtaining a service
authorization number and shipping your unit are contained with warranty information
on the card entitled "LIMITED WARRANTY AND SERVICE PLAN" that is included
with system reference material.

APPENDIX B
PARTS LIST
MATERIALS AND ACCESSORIES

QTY. DESCRIPTION MANUFACTURER/PART NUMBER
1 CONNECTOR, DUAL 22/44 Microplastic 15622DPIS

| CONNECTOR, DUAL 6/12 Teka TP3-061-E04

6 RUBBER FEET 3M 535013

| SYNERTEK SOFTWARE MANUAL MNA-2
1 SYM-1 REFERENCE CARD SRC-1
1 SYM REFERENCE MANUAL - MNA-1
1 SYM-1 PC BOARD ASSEMBLY
1 RED FILTER
SYM-1 PC BOARD COMPONENTS

QTY. DESCRIPTION MFR. NO. REFERENCE DESIGNATION
I CPU SYP6502 Us

2 VIA SYP6522 u25,U29
i RAM-1/O SYP6532 u27

2 4K BIT RAM SYP2114 Ul2, U3
1 32K BIT ROM SYP2332 U20

1 NAND GATE 7400 Us

1 HEX INVERTER ' 7404 U2

1 AND GATE 7408 U24

2 HEX INVERTER-O.C. 7416 u30, U38
1 NAND GATE 741500 Ul

1 HEX INVERTER 741504 U9

{ TRIPLE NOR GATE 741527 U3

I TIMER 555 Us

QTY. DESCRIPTION MFR. NO. REFERENCE DESIGNATION

1 DECODER 74L5138 ul

1 TRIPLE 3 INPUT NAND 741510 uz

1 CECODER 7h145 U3z

2 DECODER T4LS145 uio, Ull

1 COMPARATOR 311 Uz6

1 RES-190 chm, %W, 3% RF14J100B R128

3 RES-200 ohm, %W, 5% RF143200B R43, 111, 114

1 RES-300 ohm, %W, 5% RF14J300B R107

b RES-470 ohm, %W, 5% RF143470B R84, 88, 124, 127

14 RES-1K, %W, 5% RF14J1KB R9-12, &1, 61-63, 73, 78,
85, 92, 97, 101, 113, 123

13 RES-1M, %W, 5% RF14J1MB R72

Iy RES-2.2K, AW, 1% RJ14J2.2KB RI103

14 RES-3.3K, %W, 5% RF14J3.3KB R42, 59, 60, 70, 74, 79-82, 87,
gl;: 98, 126

10 RES-10K, %W, 5% RF14J10KB R45, 67-69, 75, 76, 83,
39, 93, 104

3 RES-47K, %W, 5% RF14J47KB R44, 46,71

1 RES-330K, %W, 5% RF14J330KB R77

2 RES-27K, kW, 5% RF14J27KC R90, 96

2 RES-150 ohm, %W, 3% | RF14J150B R99, 110

1 RES-6.8K, %W, 5% RF14J6.3KB R100

1 CAP-10pf DM15100] Cli3

13 CAP - .0l mid, 100V DB203YZl032 Cl, 3, 5, 7, 10, 11, 17, 19, 21,
23, 25, 29

10 CAP - 10 mfd, 25V T368B106K025P5 ;'162, ;40, 6, 8, 12, 20, 22, 24,

’

QTY. DESCRIPTION MFR. NO. REFERENCE DESIGNATION
3 CAP - .1 mid, 30V 3429-050E-104M C9, 18
| CAP - .22mid, Cle
2 CAP - .47 mid C330CH75M5VSEA C15
1 CAP - .0047 mid UR2025100X7R472K Clb
12 NPN TRANSISTOR 2N2222A Ql-4, 10, 18, 19, 27-29, 32, 33
11 PNP TRANSISTOR 2N2907A Q9, 17, 20-26, 30, 31
I1 DIODE, G.P. IN9LIY CR25-33, 37, 38
1 DIODE, ZENER IN4735 CR34
& SOCKET - 24-PIN DIP TIC8424-02 SK20-23
b SOCKET - 40-PIN DIP TIC8440-02 SKS5, 25, 27-29
8 SOCKET - 18-PIN DIP TICR418-02 5KI12-19
1 KEYBOARD KBl
1 PC BOARD PCl
6 7-SEGMENT DISPLAY, 0.3" MAN 71A U3l-36
2 LED RL4850 CR35,36
i SPEAKER 70057 S5PL
1 CRYSTAL CYlA Y1
TAPE - 1%" x 2" STRIP
i RES. PACK - 150 ohm 898.3-R150¢ RNZ
1 RES. PACK - 3.3K ohm 899-3-R3.3K RNI
2 RES. PACK - 1K ohm 899-3-R1K RN3, RN&

B-3

[—— [12] LA 1 13daw WS SWILSAS AHILHINAS

213

‘480D SWILSAS NIiZINAS @is1 il — N
ETlS ir (‘ ¥r m o \ .

{ m R T O o Wi e
/ ~ [m_w .:A\é— A.no::: / @.J @J .J
h—— T T g [m
« o — o 3 .
[T . N alt 6z W nnn..,mo_u
o Loy ﬁu T
T LY . . _
D odan w2 LA
! — :
oy “ewIve =] gFTrm=- wles I
T (00 _
120, " H L 4.
[_ 1ew orn
N e o R

T 1
' ' ' . asn
P N T] ' vos2 ¥ siw '
3] — l 1 — T2 1]
Lo ' ' LY T e D
1 1 1 ¥ —] 1
G : Vo oo () -
v ! r t i v] 1 N wzn
v
T ' ST L RN s R
£He ! ! ! ' 5182
sz '] R —~ az ——
- ! ' Bov: * o4¥ b -
26| ' 1 3 N [<€ e ma
1 1 | ' en — £ M [#
! ! ' ' hd 7820349 R | ' 3 v ¥
R | ' ~ . - io W EEND
' ! 1t _\ _\ Ay qors 1 ' via it
e R (s moint et
. el [~) 2 LLEW¥SSLR ® 1Ll TLCLe gL g oLy an“ NNDD
Voo LE59L% oo v+ [T .r_:. £ 7 H]
Lo I Ll e i G
' v N eer B2t
-] 1 1 I A
v ey o+ ooen : I
ot [[Lo
sege 1t [P o prved
[sen gy, e IEn 1£n . —— o —_—
- SEIsIeE 1N gosIe w0 vov N

||||||||||| * ey
iiiiiiiiiii stad]
R ™

T4 Cox

wize sos C—J
zzn -
l_._N.‘
IIIIIIIIIII itu
4 tH H I a1 01 o NN e eaoa FIE)
cH zn it oy 2] zn 1] - .wllk.
*lz eIz FHE T *1T L1 et
aLn Zn SiLR SLn Tin Ed Ew |]
nllx_ [} 1 1 1 L] 1 1] 1 L gLz FEO S ! Ly
P Vo I eIn u_u@.zznu.—
[[T % nwou
S T N T Voo
[T T S T [T - _,ita_sEu
1 [[[1 [[1 ZTE9AS m
[T T T T T o .p. rear stn o T e
1] 1 L}] 1 I
L L L I N

T
HH iy
T A eads f H
3 ° 11F)
H hlsietel o
oo ey e vqu FaaT) nﬁ Yy5%ag B -y
%

5 (> w HoiZiNNG> ¥OLIINNGY o

g GDEZwu-Oe

COMPONENT LAYOUT
B-4

v R
nmn _ — H HNO3d _ — 1 v * > Tz

SN &

.%l

&
N

V/ie? @m\.l/ —|f||NQ.h.||tl

= 44

L

3

— = ¥ Gz B

I%I .
Nk.\ﬂ

CIFOH m.l\
WeT L

fa— S0~ oy

o0 4+

e—— &2

OUTLINE DRAWING

APPENDIX C
AUDIO TAPE FORMATS

HIGH-SPEED FORMAT -- High speed data transfer takes place at 185 bytes per second.
Every byte consists of a start bit (0), followed by eight data bits. The least significant

bit is transmitted first,

A "I" bit is represented by 1 cycle of 1400 Hz, while a "0"

bit is represented by % cycles of 700 Hz. Physical record format is shown below,

8 sec. "mark"

256 SYN chars. | *| ID[SAL|SAH|EAL|EAH | DATA | /|CKL|CKH|EOT |EOT

+1 | +1

& sec. "mark"
SYN (16 Hex)

* (2A Hex)
iD
SAL

SAH
EAL +l
EAH +!

DATA

/ (2F Hex)

CKL
CKH

EOT (04 Hex)

Allows the tape to advance beyond the leader and creates
an inter-record gap.

ASCII synch characters that allow the SYM-1 to synchronize
with the data stream.

ASCII character that indicates the start of a valid record.
Single byte that uniquely identifies the record.

Low order byte of the Starting Address from which data was
taken from memory.

High order byte of the Starting Address from which data
was taken from memory.

Low order byte of the address following the Ending Address
from which data was taken from memory.

High order byte of the address following the Ending Address
from which data was taken from memeory.

Data bytes.

ASCIl character that indicates the end of the data position
of a record.

Low order byte of a computed checksumn,
High order byte of a computed checksum.

ASCII characters that indicate the end of the tape record.

: Typical boundary
! | Value (HSBORY = $ 46)
!

“ &

ANALOG O

[25508 —>——— 450 uS ———*

DEFAULT
NAME LOCATION VALLE DESCRIPTION
HSBDRY AG32 446 (35049) HS Boundary
TAPET1 AB35 $33 (25505) HS First Haif * Bit
TAPET2 A63C $5A (45005) HS Second HIR AN

HIGH SPEED AUDIO FORMAT BIT WAVEFORMS

KIM FORMAT -- Data transfer in KIM format takes place at approximately 8§ bytes
per second. A "I" bit is represented by 9 cycles of 3600 Hz followed by 18 cycles
of 2400 Hz, while a "0" bit is represented by I8 cycles of 3600 Hz followed by 6
cycles of 2400 Hz. Each 8-bit byte from memory is represented by two ASCI
characters. The byte is separated into two half-bytes, then each half-byte is converted
into an ASCI character that represents a Hex digit. The least significant bit is
transmitted first. The KIM physical record format is shown below.

128 SYN chars. | * | ID | SAL | SAH DATA /| CKL | CKH | EOT | EOT

The sync characters, the ASCII characters "*' (2A Hex} and "/* (2F Hex) as well as
ID, SAL, SAH, CKL, CKH and EQT serve the same functions as in HIGH-SPEED format,
Sync characters, ¥, / and EOT are represented by single ASCII characters, while the
remaining record items require two ASCIl characters. Note that EAL and EAH are
not used in the KIM format.

APPENDIX D
PAPER TAPE FORMAT

When data from memory is stored on paper tape, each 2-bit byte is separated into
two hailf-bytes, then each hali-byte is converted into an ASCII character that represents
a Hex digit (O-F). Consequently, two ASCIl characters are used to represent one byte
of data. In the paper tape record format shown below, each N, A, D, and X represents
one ASCII character.

i NiNg A3AA 1A (D)D) (D D)y « v . (DDE) XXX X,

H - Start of record mark

NIND - Number of data bytes in (Hex) contained in the record
ABAZAlAO - Starting address from which data was taken

(DIDO)-(DIDO)n - Data

XXX, X - 16-bit checksum of all preceding bytes in the recerd including

3m2mmo NINO and A3A2A1Ao » but excluding the start of record mark.

A single record will normally contain a maximum of 16 (10 Hex) data bytes. This is
the system default value that is stored in system RAM at power-up or reset in location
MAXRC (A658). You can substitute your own value by storing different number in
MAXRC. To place an end of file after the last data record saved, place the TTY in
local mode punch on, and enter ;00 followed by (CR).

APPENDIX E
SYM COMPATABILITY WITH KIM PRODUCTS

If you are a SYM-1 user who has peripheral devices which you have previously used
with the KIM system or software which has been run on a KIM module, you'll find
SYM to be generally upward compatible with your hardware and software. The following
two sections describe the levels of compatability between the two systems to allow

you to undertake any necessary modifications.
E.]1 HARDWARE COMPATABILITY

Table E-1 describes the upward compatability between SYM and KIM at the Expansion
(E} connector, while Table E-2 describes the compatability on the Applications (A)
connector.

1/O port addresses differ between the two systems; you should consult the Memory
Map in Figure #-10 for details.

Power Supply inputs are provided on a separate connector with SYM-1, which means
that if you have been using your power supply with a KIM device it will be necessary
to rewire its connections to use the special connector on the SYM-1 board,

E.2 SOFTWARE COMPATABILITY
Table E-3 lists important user-avajlable addresses and routines in the KIM-l monitor
program and their counterparts in SYM-1's SUPERMON. Most of the routines do not

perform identically in the two systems. Before using them, check their operation in
Table 9-1.

Table E-1. EXPANSION CONNECTOR (E} COMPATABILITY

S5YM PIN KIM

SYM DESCRIPTION NAME # NAME KIM DESCRIPTION
Jumper (Y,26) Selectable: DBOUT | 17 { SSTOUT From
OFF - Open Pin (5YNC o NOT MONITOR)
ON - Debug On/Off U26-6

Qutput (LJ8-8)

BT 13 No equivalent

gl
o

Power On Reset Signal
Output:
"Q" After power on
"1" When reset by
software

E-1

Table E-2. APPLICATION CONNECTOR (A) COMPATABILITY
SYM PIN KIM
SYM DESCRIPTION NAME # NAME KIM DESCRIPTION
Jumper (V,23) Selectable: AUD.RC | N +12V +12V Not required on S5YM
OFF - Open Pin
ON - Remote Audio
Control Out
Jumper (HH,#41) Selectable: K | DECODE Enable 8K Decoder
OFF ©Open Pin Enable
ON ICXX Decode Out
Table F-3. SYM-KIM SOFTWARE COMPATABILITY
SYM KIM FUNCTION
Label {Address(es) | Label |[Address(es)
PCLR A639 PCL 00EF Program Counter - low
PCHR A65A PCH 00F0 Program Counter - high
FR AB5C PREG 0OF1 Status Register
SR A65B SPUSER| 00F2 Stack Peinter
AR A65D ACC 00F3 Accumulator
YR A65F YREG 00F4 Y - Register
XR ABSE XREG 00F5 X - Register
SCRé A636 CHKHI 00F6 Checksum - low
SCR7 AB37 CHKSUM 00F7 Checksum - high
P2L A&uC SAL L7F5 Start Addr Low - audio/paper tape
P2H Ab4D SAH I7F6 Start Addr High - audio/paper tape
P3L AGUA EAL 17F7 End Addr+l Low - audio/paper tape
P3H ABUB EAH 17F8 End Addr+l High - audio/paper tape
PIL ABGLE D 17F9 I Byte audio Tape
NMIVEC A67A-B | NMIV 17ZFA-B | NMI Vector
FFFA-B FFFA-B
RSTVEC FFFC-D | RSTV 17FC-D | Reset Vector
FFFC-D
IRQVEC A67E-F [IRQV L7FE-F IRQ Vector
FFFE-F FFFE-F
DUMPT| ZE&7 DUMPT 1300 Dump memory to audio tape
LOADT 28C738 LOADT 1873 Load memory from audio tape
CHKT 8E73 CHKT 194C Compute checksum for audio tape
QUTBTC 8F4A QUTBTC 195E Qutput one KIM byte
HEXOQUT 8F32 HEXOUT 196F Convert LSD of A to ASCII AND write to
| audio tape

E-2

Table E-3. SYM-KIM SOFTWARE COMPATABILITY (Continued)
SYM KIM FUNCTION
Label |Address(es)| Label |Address{es)
QUTCHT 8F5D QUTCHT 197A Write one ASCII character to audio tape
RDBYT 8E2C RDBYT 19F3 Read one byte from audio tape
PACKT S8E3E PACKT 1A00 Pack ASCII to nibble
RDCHT| 2&Es6l RDCHT 1A24 Read one character from audio tape
RDBITK| 8EOF RDBIT 1A41 Read one bit from tape
SVNMI 809B SAVE 1Ccoo Monitor NMI entry
RESET BB4A RST icaz2 Monitor RESET entry
QUTPC 82EE PCCMD| I1CDC Display PC
INCHR 8ALB READ LCeA Get character
LP2B+7 341E LOAD ECE7 Load paper tape
SP2B+4 869C DUMP 1D42 Save paper tape
QUTSZ 8319 PRTPNT IELE Print pointer
OUTBYT 82FA PRTBYT LE3B Print 1 byte as 2 ASCII character
INCHR 8AILB GETCH LE5A Get character
DLYF 8AE6 DELAY LED4 Delay [bit time
DLYH SAES DEHALF 1EEB Delay % bit time
INSTAT 8386 AK LEFE Determine if key is down
QUTDSE, 89Cl SCAND 1F19 Qutput toe LED display
SCAND 8906 SCANDS IFIF Scan LED display
INCCMP 32B2 INCPT | 1F63 Increment pointer
GETKEY &BAF GETKEY IF6A Get key
CHKSAD 82DD CHK IF91 Compute checksum
[NBYTE[81D9 GETBYT 1F9D Get 2 Hex characters and pack

E-3

APPENDIX F
CREATING AND USING A SYNC TAPE

To read serial data from tape, the SYM-1 makes use of a stream of SYNC characters
which form the leader of every tape record, For a complete description of audio tape
record formats, refer to Appendix C.

The audio signal appears on the T and A connectors in two forms: Audio Qut (HI)
and Audio Out (LO). The only difference between these signals is their magnitude.
It is usually best to connect Audio Out (LO) to the MIC input of your recorder,

When the SYM-! searches for a record, an 'S' and a decimal point are displayed until
the SYNC characters are recognized. However, if the volume and tone controls on
the recorder are not set correctly, the SYNC characters will not be recognized, the
'S' on the display will not go out, and no data will be loaded into memory.

Before attempting to save and load data for the first time, it will be helpful to
generate a SYNC tape to use for adjusting the controls.

To generate a SYNC tape, meodify memory location TAPDEL, A630 to FF:

M A630)
A630, 04, FF
A631, 2¢, T

Place a blank tape in the recorder, depress RECORD and PLAY on the recorder, and
enter a SAVE command;

.52 200-201)

The length of the tape leader, determined by TAPDEL will be over 6 minutes.

When the recording is finished (the display re-lights), rewind the tape. Enter the load
command:

L2)

The 'S' and decimal point should light. Start the tape with the PLAY button on the
recorder and adjust the volume and tone controls on the recorder until the 'S' goes

out and stays out.

You can now remove the SYNC tape and proceed to save and load actual programs
and data.

APPENDIX G
MONITOR ADDENDA

The DBOFF routine does not debounce the DEBUG-QN switch; therefore, user
programs should not be interrupted by depressing DEBUG-ON while using a user
trace routine or while OUTVEC points to a user routine. (This will cause
recursive interrupts.)

The audio cassette software will not read or write location $FFFF, Use SA67F
($A600 thru 3AG7F is echoed at SFF8Q thru SFFFF).

The DEBUG-ON switch bounces, therefore it should not be used to interrupt
user programs while using a user trace routine or while OUTVEC points to a
user routine. {This will cause recursive interrupts.)

APPENDIX H

SUPPLEMENTARY INFORMATION

Changing Automatic Log-On

After power is applied to the SYM, SUPERMON waits for the keyboard or the device
connected to PB7 on the 6532 (normally the RS$232 device) to become active. PB6
{the current loop device) is ignored because a disconnected current loop always looks
active,

If you expect always to log-on a current-loop device, the following jumper change will
eliminate the necessity of entering (SHIFT) (JUMP) (1):

Change CC-32 and BB-3}
to CC-31 and BB-32

Now the log-on for your current loop device is simply a "Q", entered at the device.
{Note that you cannot now log-on automatically to the keyboard unless the current
loop device is connected, and powered-up.)

Using On-Board LED Display

Because of the extensive use of transfer vectors in SUPERMON, the same monitor
calls can be used to activate the LED display as for terminal devices. The major
difference is that you must call ACCESS (address 8B86) before outputting the first
character in order to remove write-protection from the display buffer (DISBUF, address
A640 thru A6%5).

If the 5YM-1 was logged-on to from the HKB, each call to OUTCHR {address $A47)
will examine the ASCII character in the Accumulator, look up its segment code, shift
everything in the display buffer of segment codes left one digit, place the new code
in the rightmost digit, and scan the display once,

If the SYM-1 was logged-on to the HKB, each call to INCHR (address 8AIB} will scan
the display from the codes in DISBUF continuously until a key is depressed {2 keys in
the case of SHIFT keys, & in the case of SHIFT ASCII keys). The key will be fully
debounced, the beeper beeped, the ASCIl or HASHED ASCH code taken from a table,
and passed back to the caller in the Accumulator. The Flags will reflect a compare
with carriage-return.

Other useful routines are:

GETKEY Same as description of INCHR above, but disregard log-on and no compare
(88AF) performed., .

OUTDSP Same as description of QUTCHR above, but disregard log-on.
(89C1)

KEYQ Test for key depressed on HKB. On return, Z Flag = | if key down,
(8923)

SCAND Scan display once from segment codes in DISBUF. On return, Flags
(8506) reflect call to KEYQ.

H-1

INSTAT If logged-on to HKB, check for key down {else check for BREAK key).
(3386) On return, carry set if key down (or BREAK key). Leading edge of key
debounced.

See also chapter 9 for discussion of monitor calls.

Adding DEBUG Indicator

While using trace routines which turn DEBUG on and off, it is often desirable t0 have
an external indication of the DEBUG state. The addition of an LED and a resistor
as follows will achieve this.

uUs

Piné

3300

+5V

U8 is a I4 pin package located above the beeper.

The LED will remain on while DEBUG is on.

