Xitan, Inc.
Disk BASIC Version 1.06

Preliminary Update Documentation

Written by Neil J. Colvin
June 16, 1978 :

Copyright 1978 by Xitan, Inc.
Princeton, New Jersey

R—

Xitan Disk Basic Version 1.06
Preliminary Update Documentation

1. Program Text Inputting and Editing

A number of changes and additions have been made to the
facilities provided for the manipulation of the program
text.

1-1. Keyboard Input

The BACKSPACE key is now recognized as a character delete in
addition to the DEL key. The key echos as BS-SPACE-BS.
This facilitates keyboard input on a video device which
allows backspacing and overwriting.

1-2. AUTO Commahnd

The AUTO command has been enhanced to provide better user
control and flexibility. The format of the command is:

AUTO [<starting line>[+]][,<increment>]

The only change in this format is the + option. The use of
the + option specifies that the increment is to be added to
the starting line before the first line number is generated.

If any line number generated by the AUTO command corresponds
to an already existing line in the program, the line number
is preceeded by a "+" when displayed on the terminal. To
avoid overwriting the existing 1line, the entry of JUST the
RETURN key will advance the 1line number to the next line
without changing the exisitng one.

This automatic skipping of 1line numbers while in AUTO mode
may be used at any time. Previously, the entry of just the
RETURN key terminated the AUTO mode. Because of this new
feature, a new AUTO mode termination has been provided. To
terminate AUTO mode, enter CTL-E. This will immediately
return to command mode, regardless of any other text entered
on the same line.

1-3., The "." Line Number

To facilitate program entry and editing, a shorthand
notation for the ‘“current line" 1is provided. From command
mode (ONLY), a period (".") may be substituted anywhere a
line number 1is normally used. This period represents the
last program line accessed by a program editing or execution
command. For example:

10 AS=MIDS(BS.5.6

Xitan Disk Basic Version 1.06 Page 2
Preliminary Update Documentation

Note that the EDIT command references line 10, the last line
accessed.

After any execution error, the period is set to the line the
error occured on, so that a

LIST .
will list the line in error.

When AUTO mode is terminated by a CTL-E, the period is set

to the 1last line entered., To resume input with the next
line, the command:

AUTO .+
may be used (see AUTO command, Section 1-2),

1-4, FIND Command

The FIND command allows those lines within the basic program
which contain a specific text string to be easily located.
The format of the command is:

FIND <delimited text>[,<line range>]

where <delimited text> 1is the desired text string (32
characters maximum) delimited (preceeded and followed) by
any character (except a comma, space, or tab) not contained
within the string, and <line range> 1is a normal line number
range specification. If <line range> is omitted, the entire
program will be searched.

All lines within the specified range <containing the text
will be located and displayed on the terminal.

For example:
FIND /COS(/, 100-300

will find all lines containing "COS(" between lines 100 and
300 inclusive.

1-5. REPLACE Command

The REPLACE command 1is an extension of the FIND command
which not only locates the specified text string, but also
replaces it with another string. The format of the command
is:

REPLACE <delimited text 1><delimited text 2>,<line
range>

Xitan Disk Basic Version 1.06 Page 3
Preliminary Update Documentation

Note that the <line range> is NOT optional on this command.

This command will replace all occurences of <delimited text
1> within the specified range by <delimited text 2>, Each
line in which a substitution occurs 1is displayed in its new
form on the console,

If any replacement would cause the 1line to exceed the
maximum size (254 characters) the command is aborted with a
“String Too Long" error.

For example:
REPLACE /COS(/ \SIN(\, 100-300

will replace all occurences of “COS(" between lines 100 and
300 inclusive with "SIN(". Note that the delimiter need not
be the same for both strings.

1-6, LOAD Command

The LOAD command has been simplified. The ALOAD command no
longer exists. The format of the LOAD command is:

where <file name> is a string value (constant, variable or
expression) which contains a standard CP/M file name. 1If
the CP/M file extension (type) 1is omitted, it defaults to
[1] . BASII .

The specified disk file is located and examined to determine
if it contains an ASCII or internal format BASIC program.
The appropriate LOAD procedure is then automatically
performed. (Note that the internal format of Disk BASIC
Version 1.06 programs is significantly different from
previous internal formats, and completely incompatible. To
transfer from one to another, ASCII format disk files should
be used.)

For example:

LOAD "PROGRAM"
loads a program from the disk file “PROGRAM.BAS".
1-7. SAVE Command

The SAVE command has been simplified. The ASAVE command no
longer exists. The format for the SAVE command is:

Xitan Disk Basic Version 1,06 Page 4
Preliminary Update Documentation

where <file name> is as in the LOAD command. The normal
SAVE command (without the "A" option) saves the current
program on disk in the specified file 1in internal format.
The use of the "A" option causes the program to be saved in
ASCII rather than internal format. :

For example:
SAVE "PROGRAM",A

saves the current program on disk as "PROGRAM.BAS" in ASCII
format.

1-8., RESAVE Command

The RESAVE command has been added to simplify the process of
working with a single program. The format of the RESAVE
command is:

RESAVE <file name>[,A]
where the arguments are the same as in the SAVE command.

The operation of this command is identical to that of the
SAVE command with one exception: the SAVE command gives an

error if the specified file already exists on disk; the
RESAVE command ERASEs the file if it already exists.

1-9. MERGE Command

The MERGE command replaces the AMERGE command. Its format
is:

MERGE <file name>
where <file name is as in the LOAD and SAVE commands.

The file specified must be in ASCII format. It is merged,
line by line, with the current program.

For example:
MERGE "SUB1"

merges the program in the disk file "“SUB1.BAS" with the
current program in memory.

1-10. LOADGO Command

The only change in the LOADGO command is its format. The
new format is:

Xitan Disk Basic Version 1.06 Page 5
Preliminary Update Documentation

LOADGO <file named>[,<start line>]
where <file name> is as in the LOAD and SAVE commands.

The file specified by <file name> must contain a program in
internal format or a "Syntax Error" will occur.

1-11, PRIVACY Statement

To provide for the security of the source for a BASIC
program, the PRIVACY statement has been added. The format
of the statement is:

PRIVACY <password expression>

where <password expression> 1is any string value (constant,
variable or expression).

When this statement is present in a BASIC program, the
source text of the program may only be accessed and modified
with the knowledge of the value of the <password
expression>., The presence of this statement modifies the
syntax of many of the text editing and inputting commands,
requiring the prefacing of a password to the command
arguments. The commands affected are: LIST, EDIT, DELETE,
AUTO, SAVE, RESAVE, COPY, RENUMBER, FIND and REPLACE. 1In
addition, no direct program statement entry or deletion
(<line number> <text>) is allowed at all. The password is a
string value which must be equal to the declared PRIVACY
{password expression> value. It must be followed by a comma
if more arguments are to follow. For example, if the source
program were:

10 A=5

20 B=6

30 D=A*SQR(B)

40 PRINT D

50 PRIVACY "SQUINT"
60 END

then the following command would be required to 1list the
entire program:

LIST "SQUINT"

The PRIVACY statement may be anywhere in the program, but
MUST be the first statement on the line.

Xitan Disk Basic Version 1.06 Page 6
Preliminary Update Documentation

2. Arithmetic and Logical Operators

The set of available arithmetic and logical operators has
been expanded. The complete set, in priority order (the
order in which they are evaluated) is as follows:

a. Expressions in parentheses " ()"

b, " (exponentiation)

Q
L4
|

(unary minus)

jo N
L]
*

and / (multiplication and division)
e. \ (integer division)

f. MOD (modulus)

g. + and - (addition and subtraction)

h. relational operators
= (equal)
<> (not equal)
< (less than)

> (greater than)

<= and =< (less than or equal to)

>= and => (greater than or equal to)
i. NOT (logical bitwise complement)
j. AND (logical bitwise and)

k. OR (logical bitwise or)

1. XOR (logical bitwise exclusive or)
m. EQV (logical bitwise equivalence)
n. IMP (logical bitwise implication)

All operators listed at the same 1level in the table are
evaluated left to right in an expression.

All logical operations convert their operands to sixteen bit
integer values prior to the operation. These operands must
be in the range 0 to 65,535 or -32,768 to 32,767. An
"Illegal Function Call" error will result if the operands
are not within this range.

Xitan Disk Basic Version 1,06 Page 7
Preliminary Update Documentation

3. Intrinsic Functions

A number of new mathematical and string functions have been
added.

3-1. Mathematical Functions

LOG10(X) : returns the base ten logrithm of X
FIX (X) : returns the truncated integer part of x
PI : [no argument] returns the value of pi

EE : [no argument] returns the value of e

RND : [no argument] returns a randominumber, same
as RND(X) when X>0

TIME [no argument] returns the time 1in
milliseconds since midnight (only on systems with
real time clock support, otherwise returns zero)

String Functions

a.

HEXS (X) : returns a string containing the
hexedecimal representation of X converted to a
sixteen bit integer

SPACES$ (X) : returns a string containing X spaces
(X must be less than 256)

STRINGS (S$,X) : returns a string containing the
string S$ repeated X times (X*LEN(S$) must be less
than 256)

FIX$S(S$,X) : returns a string that is X characters
long whose value is S$ either truncated or padded
with spaces to the correct 1length (X must be less
than 256)

DATES : [no argument] returns a string whose value
is the current date in the form MM/DD/YY (only on
systems with real time clock support, otherwise
returns a string of eight spaces)

TIMES : [no arguments] returns a string whose
value is the current time in the form HH:MM:SS
(only on systems with real time <clock support,
otherwise returns a string of eight spaces)

Xitan Disk Basic Version 1,06 Page 8
Preliminary Update Documentation

4., Input/Output Operations

The input/output operations in BASIC are significantly
changed in this version. Prior to detailed descriptions of
each of the various commands, statements, and functions,
some basic concepts should be understood.

4-1. Unit Numbers

Because the BASIC now supports multiple I/0 devices
(console, list, reader, punch, disk), a method is provided
to direct a particular 1I/0 operation to a specific device.
The mechanism for this is the unit number. Each I/0 device,
and each active file on the disk, is assigned a unique unit
number from 0 to 255. The unit numbers associated with
specific devices are fixed as follows:

0 : the console device

1 the LOAD/SAVE device (normally disk)
2 : the list device

3 : the reader device
4
5
1

the punch device
: reserved for future expansion
255 : the disk device

| O oo

0

Note that these devices correspond to the standard CP/M
supported devices.

2ll I/0 operations (except LOAD/SAVE) may be directed to any
I/0 device which is capable of supporting that operation
(eg. a PRINT cannot be done to the reader device). The
default unit number for all 1/0 operations (except
SAVE/LOAD) is 0 (the console).

The format for specifying a unit number is "#<unit>", where
<unit> may be any expression evaluating to a valid unit
number. 1In intrinsic functions which take unit numbers as
arguments, the "#" is optional. If the unit number is to be
followed by additional arguments, it must be followed by a
comma.

For the disk device, any unit number 10 through 255 is
valid. The actual association between a unit number and a
specific disk file is made by the OPEN command described
below.

4-2, Random Addresses
For the disk device, an expanded unit specification is

allowed by many of the 1I/0O operations. This specification
includes not only the unit number (specifying a particular

N ; . .

-

Xitan Disk Basic Version 1.06 Page 9
Preliminary Update Documentation

disk file), but also an optional random address within that
disk file. This random address represents the particular
record within the file at which the I/0 operation will start
(For more information on records, see the OPEN statement).
The format of this expanded unit specification .is:

#<unitd> [@<random address>]

where <random address> is any expression evaluating to a
positive integer value less than 4194304.

If specified, the random address is multiplied by the record
size to generate a "byte pointer". This byte pointer
specifies the particular byte in the disk file at which the
I/0 operation will start (0 is the first byte in the file).
If not specified, the I/0O operation will normally proceed
from the current byte position (the first byte not processed
by the previous 1I/0 operation). The exception to this is
files OPENed in the Update mode (see the OPEN statement).

4-3, OPEN Statement

The OPEN statement initializes the I/0 device for 1I/0
operation. Fach device (and associated unit numbers) has
its own specific actions and format for the OPEN statement.
The general format of the statement is:

OPEN #<unit>,<mode>{,<file name>[,<record size>]}

where <unit> is as described 1in Section 4-1, <mode> 1is a
string value (constant, wvariable or expression) which
contains the single character I, 0, R or U. The arguments
in braces are used for disk units only, and will be
described below.

The mode values are as follows:

I Input mode. Only input operations may be done on
the unit.

0 Output mode. Only output operations may be done
on the unit.

R Random mode., Both input and output operations may
be done on the wunit, Valid only for disk
units.

U Update mode. Both input and output operations may

be done on the unit. Unless otherwise
specified however, each output operation

Xitan Disk Basic Version 1.06 Page 10
Preliminary Update Documentation

input operation begins at the first
unprocessed byte address from the previous
I1/0 operation. Valid only for disk units,

4-3-1. Console (Unit 0)

The console wunit is always open. An OPEN to the console
unit simply causes a form feed (hex 0C) to be output to the
device, and the unit parameters to be reinitialized to the
defaults (see Unit Parameters).

4-3-2, List (Unit 2)

The list unit is always open. An OPEN to the list unit
(must be mode 0) simply causes a form feed (hex 0C) to be
output to the list device, and the device parameters to be
reinitialized to their default values.

4-3-3, Reader (Unit 3)

The reader unit is always open. An OPEN to the reader unit
simply causes the device parameters to be reinitialized to
their default values.

4-3-4. Punch (Unit 4)

The punch unit is always open. An OPEN to the punch unit
outputs sixteen bytes of leader (hex FF) to the device and
reinitializes the device parameters to their default values.

4-3-5, Disk (Unit 10-255)

Disk units are dynamically allocated as requested by OPEN
statements. The maximum number of disk units which may be
OPENed simultaneously by the program is determined by the
units parameter to the CLEAR statement (see the CLEAR
statement below).

Each disk unit is associated with a specific disk file.
This association is established by the <file name> argument
in the OPEN statement. This <file name> is a string value
which contains a standard CP/M disk file name. If omitted,
the extension (type) is assumed to be ".BAS".

The way in which the association is made is determined by
the OPEN <mode> as follows:

I The file is searched for on disk, and if found,
the association is made. If not found, an
“Input File Not Found" error is given.

1%

Xitan Disk Basic Version 1.06 Page 12
Preliminary Update Documentation

where <unit> is an OPENed unit number. If one or more units
are specified in the CLOSE, just those units will be closed.
If no units are specified, ALL disk units which are open
will closed. The specific actions taken for each type of
unit are described below. :

4-4-1, Console (Unit 0)

A CLOSE to the console unit only causes the output of a form
feed to the console device. No other action takes place,
and the unit remains open.

4-4-2. List (Unit 2)

A CLOSE to the 1list unit only causes the output of a form
feed to the list device. No other action takes place, and
the unit remains open,

4-4-3, Reader (Unit 3)

A CLOSE to the reader unit has no effect. The unit remains
open.

4-4-4, Punch (Unit 4)

A CLOSE to the punch unit causes a CTL-Z (hex 1A) followed
by sixteen bytes of leader (hex FF) to be output to the
punch device. No other action takes place, and the unit
remains open.

4-4-5, Disk (Unit 10-255)

A CLOSE to a disk unit causes different actions depending on
the mode in which the unit is open, as follows:

I No specific action takes place.

Xitan Disk Basic Version 1.06 Page 13
Preliminary Update Documentation

4-5,. Device Parameters

Each I/0 unit has associated with it a number of modifiable
parameters:

line width : the number of characters output to a line
on that unit before a carriage return/line
feed is sent automatically

null count and character : the number and value of the
characters sent to the device after each
carriage return/line feed sequence for timing
purposes

quote mode : the character (if any) output to delimit
string values when outputting in. ASCII mode

prompt character : the character (if any) output to
prompt the user that an INPUT statement has
been executed

Each of these parameters has a default value for each unit
type, and is overidable by the wuse of the OPTION statement.
The format of this statement is:

OPTION [#<unit>,]<option>[,<arg 1>[,<arg 2>]]
where <unit> 1is as above, <option> 1is a string value

containing either W, N, 0 or P. These options take
different arguments as follows:

10 width : <arg 1> 1is the width of the line desired
(20-253)
N null : <arg 1> 1is the number of characters to

output (0-255) and <arg 2> is the characters
decimal value (defaults to 0 if omitted)

0 quote : <arg 1> 1is the decimal wvalue of the
character to be used as the outputted string
delimiter (0 means NO delimiter, 34 1is a
quote mark)

P prompt : <arg 1> is the decimal value of the
character to be output as the INPUT statement
prompt (0 means no automatic prompt, 63 is a
question mark)

Each unit has default parameters as follows:

Xitan Disk Basic Version 1.06 Page 14
Preliminary Update Documentation

2 (list) : W[72],N[3,0],0[0]

3 (reader) : not applicable

4 (punch) : W[253],N[0,0],0[34]
10-255 (disk) : W([253],N[0,0],0([34]

Note that the OPTION statement replaces the NULL, WIDTH and
QUOTE statements of previous versions,

4-6,. Dynamic Unit Space

Each disk unit (10-255) requires 181 bytes of memory during
the time that it is OPENed. When BASIC is started, the
default is to allocate space for no disk units. To change
this default allocation, the CLEAR statement is used. The
format of the new CLEAR statement is:

CLEAR [<string space>][,<number of units>]

where <string space> 1is the amount if string area to
allocate, and <number of units> is the number of
simultaneously OPENed disk wunits to allocate. If either
argument is omitted, the corresponding allocation remains
unchanged. The use of the CLEAR statement implicitely
results in the disassociation of all OPENed disk units from
their corresponding disk files WITHOUT any CLOSE actions
being taken.

Note that space is always allocated for the LOAD/SAVE unit
(which is effectively a disk unit).

4-7, Data Input and Qutput
The format of the data input and output commands 1is
unchanged except for the addition of the extended unit
specifier option for disk units. The formats are:
INPUT [LINE] [#<unit>[@<addr>],] [<prompt>;] <i/o list>
PRINT [#<unit>[@<addr>],] [USING <format>;] [<i/o list]
READ #<unit>[@<addr>],<i/o list>
WRITE #<unit>[@<addr>],<i/o list>
MAT READ #<unit>[@<addr>],<i/o 1list>

MAT WRITE #<unit>[@<addr>},<i/o list>

=

- - p

Xitan Disk Basic Version 1.06 Page 15
Preliminary Update Documentation

Note the reversal of INPUT LINE from LINE INPUT in previous
versions., Also, MSAVE has become MAT WRITE and MLOAD has
become MAT READ. The remainder of the statements in each of
these cases is unchanged.

It is also important to note that binary I/0 (READ and
WRITE) operations can only be done to binary devices (not
the console [unit 0]).

4-7-1, OUTBYTE Statement

The OUTBYTE statement has been added to facilitate single
byte output operations to defined units. The format of the
statement is:

OUTBYTE [#<unit>{@<addr>],] <i/o list>

If the <i/o 1list> element 1is a numeric value, it must be
0-255, and is output to the specified unit as a single
eight-bit byte. 1If the element is a string, each character
of the string is output as a single byte, with no formatting
of any sort. The length of the string is not output as it
is with a WRITE statement.

4-7-2,., SETLOC Statement

The SETLOC statement is provided to set the byte address for
a disk unit, independent of any I/0 operation. This allows
the random address to be determined one place in the
program, and all 1I/0 to be done sequentially in another
place. The format of the statement is:

SETLOC #<unit 1>@<addr 1> [,#<unit 2>@<addr 2> ...]
where each unit's byte address is set as specified.
4-7-3. ON EQF Statement
The ON EOF statement has been expanded to allow a seperate
EOF statement for each unit currently opened. The format
is:

ON EOF [#<unit>] [GOTO [<line number>]]

where <line number> is where execution should continue when
an End-of-File is encountered.

If the <unit> is specified, than the EOF branch applies only
to that unit. If no unit is sepcified, than the EOF branch
applies to all units with no EOF branches specified. If the

N PN e I

Xitan Disk Basic Version 1.06 Page 16
Preliminary Update Documentation

An EOF branch may be set for the console unit (0), and will
be taken whenever a CTL-Z (hex 1A) 1is received from the
console. ’

The ON EOF may be executed any number of times, and changed
as desired.

4-7-4, EQF Statement

In a similar fashion to the above, the EOF statement may
cause a software EOF trap on a specific wunit. The new
format is:

EOF [#<unit>]

If executed, the effect is that of an EOF being encountered
on the specified unit.

4-7-5, Intrinsic Functions

A number of new intrinsic functions have been added to
increase the flexibility of the I/0 system within BASIC.
These are as follows:

a. POS(<unitd>) : returns the number of characters
output to the current line of the specified
unit (counted in ASCII mode output only)

b. ERR(<unit>) : returns a logical TRUE (-1) is an
I1/0 error was encountered during the last I/0
operation on the specified wunit (currently
always FALSE [0])

C. EOF (<unit>) : returns a logical TRUE (-1) if an
EOF was encountered during the 1last 1I/0
operation on the specified wunit (reset to
FALSE [0] at the start of every 1I/0

operation)

d. LOC (<unit>) : returns the byte address of the
specified disk wunit, the NEXT byte to be
sequentially processed (this is always
independent of any specified record size)

e. LOF (<unit>) : returns the number of bytes in the
current extant of the disk file associated
with the specified disk unit

£. BYTEPOLL (<unit>) : return a logical TRUE (-1) if a
byte is available from the specified unit
(the only time this will be FALSE [0] is for
the console unit [0] when no character has

Xitan Disk Basic Version 1.06 Page 17
Preliminary Update Documentation

been entered since the last input operation)

g. BYTE (<unit>) : returns the decimal value of the
next Dbyte read sequentially from the
specified unit :

h. BYTE$(<unit>) : returns a string of length one
containing the next byte read sequentially
from the specified unit

In each of these functions, the <unit> specified must be
OPEN.

4-8, Expanded Capabilities for Other I/0
Other commands which perform output have also been enhanced
to utilize the new extended unit specification. The formats

of these enhanced commands are:

LIST [<password>,] [#<unit>[@<addr>],]
[<line number range>]

LVAR [#<unit>[@<addr>]]
TRACE [#<unit>[@<addr>],] <logical value>

Note that the previously provided "L" forms of these
commands are no longer available (LLIST, LTRACE, LLVAR).

Xitan Disk Basic Version 1.06 Page 18
Preliminary Update Documentation

5. Disk File Management

The ERASE and RENAME commands are -unchanged, as 1is the
LOOKUP function, with the following formats:

ERASE <file name>
RENAME <file name 1>,<file name 2>
LOOKUP (<file name>)

In addition, three new file management statements have been
added.

5-1. DIR Command

The DIR command allows the display of the disk directory
from within BASIC. The format of the command is:

DIR [#<unit)>[@<addr>],] [<file named>]

where <file name> is a string value (constant, variable or
expression) containing a valid CP/M disk file name (with ?
and * masking if desired). If omitted, the name defaults to
“* BAS", and if the extension is omitted, it defaults to
“.,BAS". All the files matching the specification are output
to the specified unit.

For example, the following command outputs a list of all of
the files on disk A to the console:

DIR "A:¥* *"
5-2. PROTECT Statement
The PROTECT command 1is only applicable to those systems

which have individual disk file protection, on all others it
does nothing. The format of the command is:

PROTECT <file name>,<protection>

where <file name> is a string value containing a (possibly
masked) CP/M file name, and <protection> is an integer value
between 0 and 7 specifying the new protection key.

5-3. RESET Statement

Under CP/M, the changing of a diskette while BASIC (or any
program) is running requires updating the operating systems
tables. The RESET statement causes that to happen. The

.
gl - o

Xitan Disk Basic Version 1,06 Page 19
Preliminary Update Documentation

RESET

This command should not be issued with any non-Input mode
files OPEN,

Xitan Disk Basic Version 1.06 Page 20
Preliminary Update Documentation

6. Program Controlled Console 1I/0

One of the new I/0 functions provided 1in this version of
BASIC is BYTEPOLL. This function determines .if a byte of
data is ready to be read from an I/0 wunit. The only unit
this really applies to is the console. However, the
usefullnes of this function 1is 1limited by the fact that
BASIC itself constantly tests (and reads) the console input
to determine if a CTL-E or other control function has been
entered. Hence, under normal conditions, BYTEPOLL will
never return a TRUE from the console,

To allow this prgrammed control of console input to work
properly, a special statement has been added to the BASIC,
the INTERRUPT statement. The format of this statement is:

INTERRUPT <interrupt logical>

The function of this statement is to set the internal
console interrupt test to the value of the <interrupt
logical>, 1If that wvalue is TRUE (-1), then BASIC will
continue (or resume) testing for CTL-E and other control
functions, If it is FALSE (0), then the internal testing
will stop. THIS MEANS THAT THE PROGRAM MAY NO LONGER BE
STOPPED BY CTL-E. If a program logic error occurs in this

mode, and some form of loop takes place, the only method for
stopping the program will be resetting the processor.

INTERRUPT is automatically set to TRUE whenver BASIC returns
to command mode.

’ . - ; : : =

]

s

Xitan Disk Basic Version 1.06 Page 21
Preliminary Update Documentation

7. Program Execution Control Statements

Two new execution control statements have been added to
increase program control over the execution environment. 1In
addition, to avoid a keyword conflict, a new statement has
been added.

7-1. Return to Operating System

To leave BASIC and return to the operating system, the BYE
command is used. The format of the command is:

BYE
The execution of the BYE command is TERMINAL. Make sure
that all output files are CLOSEd prior to issuing this
command, or data may be lost,
This command replaces the EXIT command of previous versions.
7-2. RETURN Statement
The RETURN statement has been enhanced to provide a
"non-standard" subroutine return capability. The format of
the RETURN command is:

RETURN [<line number>]

or

ON <8-bit value> RETURN <line 1>[,<line 2>,...]
where <line number> is the line to RETURN to,

If no line number is specified, the operation of the RETURN
command is unchanged. Specifying a line number causes the
RETURN to terminate the <corresponding GOSUB (as would
normally happen), and then continue execution at the
specified statement, NOT the statement following the GOSUB.

10 GOsSUB 40
20 PRINT “LINE 20"
30 sTOP

40 PRINT "LINE 40"
50 RETURN 70

60 STOP

70 PRINT “LINE 70"
80 END

Xitan Disk Basic Version 1.06 Page 22
Preliminary Update Documentation

The RUNning of this program would result in the output:

LINE 40
LINE 70

The ON ... RETURN format is provided for those cases where
the non-standard RETURN is to one of a set of lines
depending on some value,

7-3, EXIT Statement

The EXIT statement has been added to allow the correct early
termination of a FOR-NEXT 1loop. The format of the EXIT
statement is:

EXIT [<line number>][,] [<variable name>]

where <line number> is the line to EXIT to, and <variable
name> is the variable controlling the outermost FOR-NEXT
loop to be terminated. Note that the comma is required only
if both optional arguments are present.

Due to the fact that the BASIC interpreter allows FOR-NEXT
loops to be structured in any fashion (including having the
NEXT preceeding the FOR), a mechanism must be provided to
specify the point at which the 1loop 1is to be considered
terminated (as opposed to the normal completion of the loop
at the NEXT statement). The EXIT statement provides this
capability.

The EXIT statement with no arguments simply terminates the
innermost currently active FOR-NEXT loop, leaving the
controlling variable with its current wvalue. The addition
of a line number causes execution to <continue at the
specified line after the loop is terminated. This mode of
operation is an exact replacement for a GOTO statement in
the same context, and should be used whenever it is desired
to jump out of a FOR-NEXT loop.

If more than one FOR-NEXT loop is currently active, and it
is desired that other than the innermost one be terminated,
the variable name for the controlling FOR-NEXT may be
specified. In this case, all nested loops within the
specified loop are also terminated. Note that the line
number may be optionally specified along with a variable.

For example:

10 FOR I=1 TO 10

20 IF MX(I)=0 THEN EXIT 60
30 NEXT I

40 PRINT "NO ROOM"

Xitan Disk Basic Version 1.06 Page 23
Preliminary Update Documentation

50 I=0
60 FOR J=1 TO 10

70 FOR I=J TO 10

80 MX (I)=MX(J)

90 IF MX(I)=0 THEN EXIT 140,J
100 NEXT I

110 NEXT J

120 PRINT "DONE"

130 STOP

140 ...

illustrates the proper use of the EXIT statement. If a GOTO
were used in 1line 20 rather than an EXIT, a "NEXT without
FOR" error would result at line 110 because the second FOR I
statement would establish a new active 1loop at the same
level as the previous FOR I, 1losing the FOR J entirely.
With the EXIT statements added, the program works properly.

"

1k

"

14

d
lu

"

1o

