High-Resolution
Sprite-Oriented Color Graphics

You don't need Logo to use
for animation with the illusion of depth.

A funny thing happened on my
way to writing this article. Very rare-
ly do I ever know what BYTE's
monthly theme is when I am planning
a project. The editors tell me, but I
am always working on so many hard-
ware projects simultaneously that I
can't keep track. And I sometimes
juggle my project schedule at the last
minute.

This time, three weeks before my
deadline, I told Senior Editor Gregg
Williams that I was designing a sprite-
graphics interface for August. He re-
minded me that the theme of the issue
was Logo and that my project was a
perfect enhancement to a Logo pack-
age produced by Terrapin Inc. of
Cambridge, Massachusetts.

“What's Logo?” I thought to my-
self, but not wishing to appear com-
pletely ignorant, I took his word for it
and sent my wire-wrapped prototype
board to Leigh Klotz Jr. and Patrick
Sobalvarro at Terrapin. It took them
less than a week to devise ways to

Copyright © 1982 by Steven A. Ciarcia.
All rights reserved.

Certain figures and diagrams pertaining to the
TMS9918A are reprinted courtesy of Texas In-
struments Inc.

Steve Ciarcia
POB 582
Glastonbury, CT 06033

control my sprite-graphics interface
using the Logo language.

Their help came just at the right
time. Since I was struggling with us-
ing assembly language to draw the
pictures necessary for this article, I
gratefully accepted a copy of the Ter-
rapin MIT Logo language from them,
along with the Logo routines they
wrote to manipulate sprites. Using
Terrapin’s software, I quickly came
to understand why Logo and a sprite-
graphics interface are a natural com-
bination.

The key component is
the TMS9918A
Video Display

Processor.

But you don't have to have Logo to
use the sprite-graphics board. You
can approach this project either as a
versatile color graphics interface that
you can mold to fit your require-
ments or as a sprite-graphics system
for use with Terrapin MIT Logo. In
either case, you will not be dis-
appointed.

The TMS9918A VDP

The key component in this month'’s
project is an integrated circuit from
Texas Instruments, the TMS9918A

sprites

Video Display Processor (VDP). This
chip offers features that are not, to
my knowledge, found in any other
graphics system. A summary of its
capabilities is shown in table 1.

The TMS9918A VDP is intended to
be interfaced to a host microproces-
sor through an 8-bit bidirectional
data bus and three control lines. The
VDP’s output is a composite color
video signal, which can be fed direct-
ly into a video monitor or, with the
addition of an RF (radio-frequency)
modulator, to the antenna terminals
of a television set.

Up to 16K bytes of dynamic RAM
(random-access read/write memory)
can be attached directly to the VDP.
This VRAM (video RAM), which
contains the data that defines the
graphics image to be displayed, is
automatically refreshed by the VDP.
The VRAM needs no direct connec-
tion to the host computer.

The host processor interacts with
the 9918A by reading from or writing
to its registers or the VRAM. The in-
terpretation of the data flow is con-
trolled by the states of the three con-
trol lines. The timing of register and
VRAM updates is asynchronous with
the video output; thus the host pro-
cessor can communicate with the
VDP at any time.

August 1982 © BYTE Publications Inc 57

composite video output
. four display modes:

N OO A WM =

cessor integrated circuit.

. display resolution of 256 by 192 pixels

. 16 colors, including black and transparent

. supports 16K bytes of separate video memory

. real-time interrupt capability

. 32 sprites for simulation of three-dimensional effects

a. graphics | (256 by 192 dots—Ilimited color)
b. graphics Il (256 by 192 dots—extended color)
c. text mode (24 lines of 40 user-defined characters)
d. multicolor mode (64 by 48 low-resolution positions)
8. external video and sync inputs
9. automatic, transparent dynamic RAM refresh

Table 1: Characteristics of the Texas Instruments TMS9918A Video Display Pro-

—=

—
—
T

o

-

SPRITES

(OBJECT-ORIENTED)

|'BLACK

— \\EXTERNAL VDP INPUT

— BACKDROP (SOLID COLOR)

‘—PATTERNS (CHARACTER-ORIENTED)

Figure 1: The TMS9918A's screen image can be envisioned as a set of overlapping dis-
play planes sandwiched together. Image objects in planes figuratively closer to the
viewer (the top layers of the sandwich) seem to be in front of objects on planes further
away (the bottom layers of the sandwich). The top 32 sprite planes are in front of the
pattern plane, the backdrop plane, and the external VDP (video) plane, which can con-
tain a video image from almost any compatible external source. The 9918A combines
the multiple image sources to form a single composite image.

Distinctive Architecture

The TMS9918A VDP displays an
image on the screen that can be best
envisioned as a set of overlapping dis-
play planes sandwiched together, as
shown in figure 1. This distinctive
graphics architecture makes possible

58 August 1982 © BYTE Publications Inc

the simulation of depth relationships
between animated objects in the dis-
play without the use of complex
hidden-line algorithms.

Image objects in planes figuratively
closer to the viewer (the top layers of
the sandwich) have higher priorities

of visibility than the planes further
away (the bottom layers of the sand-
wich). When the objects on two dif-
ferent planes attempt to occupy the
same spot on the screen, the object on
the higher-priority plane will be seen
by the viewer, For an object on one of
the lower-priority planes to be visi-
ble, all planes in front of the object’s
plane (the higher-priority planes)
must be transparent at that point.

The top 32 planes are designated
for the display of special graphics ob-
jects called sprites, which I'll explain
shortly. Behind the sprite planes is the
pattern plane. The pattern plane’ is
used for text and graphics generéted
in one of four color-display modes.
This pattern plane works like a con-
ventional single-plane, spriteless
graphics system. The resolution
varies depending on the display mode
selected.

Behind the pattern plane is the
backdrop plane. Its area is larger than
the other planes so that it can form a
border around them. The backdrop is
always either 1 of 15 solid colors or
transparent.

The last, rearmost plane is called
the external VDP plane, which can
allow one 9918A chip to overlay its
display over the output of a second
9918A. But the external VDP plane
could contain a video image from
almost any compatible external
source such as a TV camera, a video-
tape recorder, or another computer
display, as long as the external source
is synchronized to the 9918A’s Clock
and Reset/Sync inputs. It might also
be necessary to adjust the signal
voltage levels.

The four image sources (sprites,
pattern plane, backdrop, and external
input) can be combined to create a
single composite image in the 9918A.
In most applications, however, the
9918A’s external VDP input is not
used, and the image is formed from
the pattern, backdrop, and sprite
planes.

What Are Sprites?

A sprite is a graphics object of a
specified pattern appearing on its
plane in a position determined by a
single coordinate pair specifying the

(2a)

EXTERNAL VIDEO (VDP)
INPUT

BACKDROP PLANE

sprite’s location on the screen in the
horizontal and vertical axes. By
changing this one set of coordinates,
the sprite can be moved easily and
quickly across the screen.

Sprites come in two sizes: 8 by 8
pixels (picture elements) and 16 by 16
pixels; they can be expanded to 32 by
32 pixels by using the magnification
feature. Their resolution of move-
ment is one pixel on the 192- by
256-pixel viewing area. Each sprite
plane contains exactly one sprite; all
the plane’s area outside the sprite pat-
tern is transparent. The sprite plane
with the highest priority is identified
as sprite 0, and the one with the
lowest priority is sprite 31.

The ease of programming complex
graphic displays through the use of
sprites is the most significant feature
of the TMS9918A.

PATTERN OR
MULTICOLOR
PLANE
SPRITE 31 e
SPRITE 8
SPRITE 7
SPRITE 6 2
SPRITE 5 —=
SPRITE 4 o
(2b)
SPRITE 3
SPRITE 2
SPRITE 1 o
SPRITE 0 ‘

Example of Sprite Use

Let’s consider a possible applica-
tion: displaying a graphics image of
an automobile driving along a road
through hilly country, past a field
containing grass and a single tree,
under a sky populated by clouds (see
figure 2). Starting from the fore-
ground, we see that there is a tree be-
tween our point of view and the road-
way. Naturally we expect the car to
be obscured by the tree when passing
behind it. And the car should obscure
the background hills wherever it
goes.

This scene is set up on the 9918A as
follows. The background, comprising
the hills, grass, road, and sky, is
“painted” on the pattern plane in a
way similar to the use of any conven-
tional display.

Since the size of the sprites is

Figure 2: A possible application for sprites: displaying a graphics image of an automobile driving along a road through hilly country,
past a field containing grass and a single tree, under a sky populated by clouds.
The background, comprising the hills, grass, road, and sky, is "painted” on the pattern plane. Sprites 0 and 1 are set up with pat-
terns representing the tree's foliage and trunk. The sections of the car are drawn using sprites 2 through 5. Finally, three clouds.are
drawn using sprites 6 through 8. Each of the sprites can be made to move smoothly across the screen by continuously changing a
2-byte address pointer in the sprite-attribute table.
As sprites 2 through 5 (the car sprites) are moved past the position occupied by sprites 0 and 1 (the two tree sprites), the VDP selects
the displayed pixel values at each point from the highest-priority plane that is not transparent at that point; therefore our view of the
car is automatically blocked out as it passes behind the tree.

limited and each sprite can be only
one color, it sometimes becomes nec-
essary to use multiple sprites to define
a single entity in the picture. (When
the entity is to be moved across the
screen, all the sprites that form it
must be moved at the same time.) So,
following this plan, sprites 0 and 1 are
set up with patterns representing the
tree’s foliage and trunk. The sections
of the car (front and rear of the body
plus the two visible tires) are drawn
using sprites 2 through 5. Finally,
three clouds (of slightly different
colors) are drawn using sprites 6
through 8. Sprite planes 9 through 31
are left transparent.

Animation Comes Easy

Once the static display has been
established, we can see why sprites
are so useful in animating the display,

August 1982 © BYTE Publications Inc 59

aa)

il

Y

E |
Photo 1; A step-by-step illustration of the use of sprites and the concept of plane priority. The yellow turtle (sﬁ(ite 3) is
programmed to pass from left to right past the green box (sprite 0), the blue box (sprite 1), and the red box (sprite'2). The
transparent pattern plane and backdrop cause the background to be black.

that is, causing parts of it to move.
What would ordinarily be an exten-
sive programming task is handled
almost entirely in hardware by the
9918A.

Unlike spriteless systems, moving
the car does not require that the soft-
ware repaint the entire display pat-
tern. Simply by continuously chang-
ing a 2-byte address pointer in the
sprite-attribute table in VRAM, each
of the sprites can be made to move

smoothly across the screen.

In addition, as sprites 2 through 5
(the car sprites) are moved past the
position occupied by sprites 0 and 1
(the two tree sprites), the VDP selects
the displayed pixel values at each
point from the highest-priority plane
that is not transparent at that point;
therefore our view of the car is auto-
matically blocked out as it passes
behind the tree. Similarly, if the
clouds are different colors (perhaps

white and gray) and made to pass
each other, they will also appear to
pass in front or behind in a pseudo-
three-dimensional view. This hidden-
view capability is provided in hard-
ware and requires no special soft-
ware, unlike conventional graphics
systems.

Additional Examples
Photo sequences 1 and 2 are step-
by-step illustrations of the use of

(2a)

(2b)

=

|
:i

Photo 2: Some priorities have been exchanged from photo 1: the shapes have been set up on a new permutation of planes.
The green and red boxes remain sprites 0 and 2, respectively, but the turtle is now sprite 1 and the blue box is sprite 3. The
boxes now overlap in a different order; instead of the sequence green, blue, red, we now have green, red, blue.

| TIREpe———

60 August 1982 © BYTE Publications Inc

The turtle is obscured from view as it passes from left to right past the three boxes, beginning in photo 1b. It is not fully
visible until it emerges again on the right in photo 1d. Since the three boxes reside on sprite planes of higher priority than
the turtle’s plane, the pixel values of the boxes take precedence in being displayed wherever the sprite shapes intersect.

Also, the three boxes overlap according to their planes’ priorities,

SS sprites and the concept of plane prior- turtle is sprite 3. No other sprites are sprite shapes intersect. Observe also

o} ity. Both examples use four sprites, involved, and the pattern plane and that the three boxes overlap accord-

D~ but the priorities of the planes used backdrop are transparent, resultingin ing to their planes’ priorities. The

- for each sprite shape are changed to a black background. green covers the blue, and the blue

1- demonstrate different effects. Three You'll notice that the turtle is covers the red. As for the turtle, it has

t- of the sprites are solid-color boxes, obscured from view as it passes from the lowest priority and is not fully

'S and one is a shape described as a tur- left to right past the three boxes, be- visible until it emerges again on the
tle. The turtle is programmed to pass ginning in photo 1b. Since the three right in photo 1d.

from left to right past the boxes. boxes reside on sprite planes of higher In photos 2a through 2d, some pri-

In photos 1a through 1d, the green priority than the turtle’s plane, the orities are exchanged: the shapes have

- box is sprite 0, the blue box is sprite 1, pixel values of the boxes take prece- been set up on a new permutation of

f and the red box is sprite 2. The yellow dence in being displayed wherever the planes. The green and red boxes re-

(2c)

As the turtle (now sprite 1) passes from left to right, it passes in front of the red box (sprite 2) and the blue box (sprite 3),

as shown in photo 2b, but it goes behind the green box (sprite 0), in photo 2c.

August 1982 © BYTE Publications Inc 61

SCREEN IMAGE

BIT
0 1 2 3 4 5 6 7 _—/

0 VERTICAL POSITION (Y COORDINATE)
1 HORIZONTAL POSITION (X COORDINATE)
2 NAME

EARLY
alcLock| o 0 0 COLOR CODE

BIT

SPRITE-ATTRIBUTE TABLE

ojl1j1jojoj1]0}]o0O
ojoj1jojoj1]0}|o0
ofoj1|1f{1f1]0]0
o111)1 |1(1]{|1
oO|1 1|1 |1 1(1]1
ojoj1j1f{1|1]01]0O
ojof1|j0jo0of1]0]0
of1j1|0]O0f1]|]0]O

SPRITE-GENERATOR TABLE

8-BY-8-PIXEL SPRITE

*

Figure 3: The binary coding for an 8-by-8-pixel sprite pattern is stored in VRAM in the sprite-generator table in 8 bytes. Each bit in
the pattern coding corresponds to one pixel in the displayed pattern. Wherever a 1 is stored in a pixel’s pattern bit, the sprite will be
colored; where the bit is a 0, the sprite will be transparent. Each sprite can be only a single color.

Each sprite’s attributes are stored in the 128-byte sprite-attribute table. Each set of attributes takes up 4 bytes. In each set of at-
tributes, the first two bytes set the x,y coordinates of the sprite on the screen, referenced from the screen’s upper left corner. The third
attribute byte contains the sprite's “name”’ (actually the low-order bits of the address of its segment of the sprite-generator table), and
the fourth byte defines the sprite’s color, according to the 4-bit color values given in table 2.

Hexadecimal
Value

Color

transparent
black
medium green

light green
dark blue
light blue

dark red
cyan
medium red

light red
dark yellow
light yellow

dark green
magenta
gray

white

M MO WPO© O~ND bW N=O

Table 2: Four-bit binary codes used by
the 9918A to specify the color of a pic-
ture element or color pattern.

62 August 1982 © BYTE Publications Inc

main sprites 0 and 2, respectively, but
the turtle is now sprite 1 and the blue
box is sprite 3. The first feature of
note is the reordering of the overlap-
ping boxes. Instead of the sequence
green, blue, red, we now have green,
red, blue.

As the turtle (now sprite 1) passes
from left to right, it passes in front of
the red box (sprite 2) and the blue box
(sprite 3), as shown in photo 2b, but
it goes behind the green box (sprite 0),
as we see in photo 2c. The appearance
is that it is passing among rather than
behind the boxes.

Boxes and turtles may not impress
you very much in themselves, but re-
member that no complicated hidden-
line algorithms are needed to deter-
mine pixel precedence. Everything
I've demonstrated is done completely
in hardware on the 9918A. The only

software computation (other than in-
itially generating the sprites) is to
change a 2-byte x,y coordinate pair to
move the turtle.

There is a restriction, however, on
the number of sprites that may oc-
cupy a single horizontal scan line in
the video display raster: only four
may do so simultaneously. If a fifth
sprite is moved into a position such
that part of its pattern is on the same
line with parts of four other sprites,
the conflicting parts of the lowest pri-
ority sprite of the five will be made
transparent on the display. Also, the
number of the fifth sprite will appear
in the 9918A’s status register.

Structure of Sprites

There are two basic sizes of sprites:
8 by 8 pixels and 16 by 16 pixels. The
8- by 8-pixel sprite is more often used;

ary coding for its pattern is
in VRAM in the sprite-genera-
le (SGT) in 8 bytes, as shown
ire 3. The larger 16- by 16-pixel
ires 32 bytes for storage of
coding.

it in the SGT pattern coding
ponds to one pixel in the dis-
pattern. Wherever a 1 is
in a pixel's pattern bit, the
e will be colored; where the bit is
, the sprite will be transparent.
sprite can be only a single color.
size sprite may be enlarged
ied) by a factor of 2 under
are control; the magnification
r (1 or 2) is global, affecting all
rites. The display produced for the
dority demonstration of photo se-
uences 1 and 2 consisted of 16- by
-pixel sprite shapes made from 8-
y 8-pixel sprites magnified to be
wice as big as normal.

Each sprite’s attributes (values that
determine the characteristics of color,
coordinate position, and SGT pattern
location) are stored in the sprite-attri-
bute table, or SAT, in VRAM. Each
set of attributes takes up 4 bytes; to
support 32 sprites, the table must be
128 bytes long. To find the storage
location of a particular sprite’s at-
tributes, we merely take the sprite’s
" number, multiply it by 4, and add the
result to the base address of the
 sprite-attribute table, which is stored
in the 9918A’s register 5.

In each set of attributes, the first
two bytes set the x,y coordinates of
the sprite on the screen, referenced
~ from the screen’s upper left corner.
- The third attribute byte contains the
~ sprite’s “name” (actually the low-
- order bits of the address of the sprite’s
- SGT segment), and the fourth byte
defines the sprite’s color, according to
the 4-bit color values given in table 2.

Not Only Sprites

In addition to sprites, the
TMS9918A VDP is capable of consid-
erable graphic feats using only the
pattern plane, which operates in any
of four display modes. Not all modes
use the full 16K-byte memory capaci-
ty that the 9918A is capable of sup-
porting. The display mode and mem-
ory allocation are selected by setting

Photo 3: A Graphics-II-mode display combined with sprites, showing a
simulation of some analog sensor meters. The pattern plane contains the meter
scales and alphanumeric labeling, while the pointers within the meter scales
are sprites, which are easily moved to represent changes in the measured quan-
tities.

bits in the VDP's registers. Let’s look
at some of these other methods of
display.

Graphics I Mode

In the Graphics I mode, the screen
isdivided up into a grid of pattern
positions arranged in 24 rows of 32
columns: a total of 768 positions.
Each pattern position contains 64 pix-

The ease of
programming complex
graphic displays
through use of the
sprites is the most
significant feature of
the TMS9918A.

els arranged in 8 rows of 8 columns.
The contents of the pattern-generator
table (PGT) in VRAM determine
what is displayed in these pattern
positions, and the pattern-color table
(PCT) defines the colors associated
with them.

In Graphics I mode, up to 256 dif-
ferent patterns can be stored; any one
of these can be used in any of the 768
pattern positions, and each pattern

can contain two of fifteen possible
colors. The patterns can be alphanu-
meric characters or small sections of a
large display picture, disassembled as
if it were a jigsaw puzzle.

The pattern definition in the pat-
tern-generator table consists of an
8-byte segment of memory; each bit
in the segment corresponds to one
pixel in the 8 by 8 matrix; the first
byte is the top row of the matrix, and
the second byte is the second row,
etc. The colors to be used in a given
pattern are determined by the two
4-bit values stored in the pattern’s
color byte in the pattern-color table;
binary 1s and Os are set in the pattern-
generator table to turn on one color
or the other for each pixel in the pat-
tern.

Graphics II Mode

The Graphics II mode is similar to
the Graphics I mode except that it
allows 768 separate pattern defini-
tions instead of only 256. In addition,
instead of only two colors within
each 8- by 8-pixel pattern block,
Graphics II mode allows two colors
to be defined separately for each byte
in the pattern block, so potentially
sixteen colors could appear in a single

August 1982 © BYTE Publications Inc 63

7 _lci c2 T c3 ca Lcs cé
+12v A~ 0.1uF 0.1uF 1-\ ,To.l,m 0.1pF AN A~0.1puF 0.1uF T
gv 1 s 16 Tl 8 |16 1 |8 16 1 s |is 1 |8 |16 T1 8 |16
Ves Yop Vss Veg Voo Vss Veg Voo Vss Ves Vop Vss Ves Voo Vss Ves Vpp Vss
3
we P— we P— we P— we P— wsi— we —
RAS A— RAS F— RAS |2— RAS FA— RAS |2 Ras |1
CAS -;5— cAS -;5— CAS ;i- CcAS -;5— CAS ;—5— N
Vee[g— Vee [5— Veels— Vee [5— Vee [5— Vee [
AO 7 AO —7—— AO —7—- A0 7—' AO —7—' A0 "'7—
Al Al Al — AlbE— Al f— Al —
IC10 6 Ic9 6 Ic8 6 Ic7 6 Ic6 Az L€ Ic5 e
4116 A2re a116 A2 7 4116 A2 a116 A2 o 416 12 | 4116 12
7 A3 |- 6 A3 [5 A3 | 4 A3 - 3 A3 - 2 ng ==
A4 A4 A4 A4 A4 4 A4 F—
10 10 10 10 10 10
As A5 |2 A5 |2 A5 o A5 |2 A5
A6 A6 A6 A6 A6 A6
Q D Q D Q D Q D Q D Q D
14 |z 14 Iz 14 |2 14 2 14 |2 1 |2

Number Type +5V GND

IC1 TMS9918A 33 12
IC2 74LS00 14 7

IC3 4116 9 16
IC4 4116 9 16
IC5 4116 9 16
IC6 4116 9 16
IC7 4116 9 16
IC8 4116 9 16
IC9 4116 9 16
IC10 4116 9 16

—

-5V +12v

[P N O S A N S
0 M 0 W

POWER
CONNECTIONS

-5V (34>
+12 [50 >
GND [26 >

+5V

Figure 4: A schematic diagram of the E-Z Color Graphics Interface. Very few components are needed to connect the TMS9918A to
the computer’s electrical bus; most of the integrated circuits are simply memory components used as the 9918A’s VRAM.

block. As you might expect, this
mode uses more memory, potentially
as much as 12K bytes of VRAM.

By allowing 768 distinct patterns
for the 768 available pattern loca-
tions, the Graphics II mode equals the
image capacity of the widely used
conventional 256- by 192-pixel dis-
plays. Virtually any scene pictured in
the Apple II high-resolution graphics
mode, for example, can be recreated
on the pattern plane of the 9918A.
With a little additional application
programming to set register pointers
and load the pattern and color tables,
the Graphics II mode can exactly syn-

64 August 1982 © BYTE Publications Inc

thesize the point- and line-plotting
functions of conventional graphics in-
terfaces. And you still can use the
sprites.

Photo 3 is an example of a Graph-
ics-II-mode display combined with
sprites, showing a simulation of some
analog sensor meters, The pattern
plane contains the meter scales and
alphanumeric labeling, while the
pointers within the meter scales are
sprites, which are easily moved to
represent changes in the measured
quantities. Since there is no screen re-
writing required to move the dial
pointers, there is absolutely no

flicker, and the pointer placement is
an easily calculated x displacement.

Multicolor Mode

The Multicolor mode is essentially
a low-resolution graphics mode. In it,
the screen is divided into 3072 blocks,
each measuring 4 by 4 pixels, in a
48-line by 64-column format. The
color of each block can be any of the
fifteen colors or transparent.

Text Mode

In the Text mode, the screen is
divided into a grid measuring 24 lines
by 40 columns of pattern positions,

* + +5V
R c8 | c9 J_
AN0.pF 0.1uF AN \LIOF.F +] clo c13
: ¥ 10uF 33 33pF
vee S8 10 s0pF
* cla +5V IC1 & P
1 Js |is i s |ie S TMS9918A 39 N
XT2 A
| Vas Vop Vss v Vop Vss ﬁh—-ﬂ l“
e W n i =t
RAs P— Ras | | 7as T Gz
CAS 195— CcAS 195 21¢as xri 142 . }l i.
vee Vee [3 +5V 7
A0 o— Ao | o] 07
= ME—1 w0 AL 5] AP6 Q1
e mpP—| e a2 ADS 2N2222
3 12 12 3
B Y| o A3 7] A%
A f— As Fo =1 A03 R1
A5 [13— AS I3 5] AP2 comvip 12 10K
A6 A6 AD1 I
Q D Q D $330
. \ 5) COMPOSITE
|2 14]2 10 tes VIDEO OUTPUT
ADO 12 $330Q
32 RDO Vss /J7
31
RD1 35 gEXTERNAL
304 b2 EXTV) VIDEO (VOP) INPUT
231 pp3 24
s o
4 26] "0° DDZ 2e
i 25 RD6 54 21
— RD7 20
] A D4
[l ¢ et | o os 12
! 10 A 3 : 14| csw £6 i:
1 | ‘ ! 134 mope D7
{ 4, | INT RESET/SYNC
13 6 |
| b ; 16 34
| d 11 5 |
[[12 i
| IC2 |
Ul 78800)ap2 up1
3 1= o = -
|Q ; . = z 3 ©O - N oM < Ww O N
: Qa o o o o o o ©
J
APPLE I BUS

The circuit shown is intended for use with an Apple Il computer, with the circuit board plugged into a slot on the motherboard
(usually slot 4), but other versions of the circuit for 5-100-bus computers and the IBM Personal Computer are under development.
The E-Z Color Graphics Interface may also be adapted for use with other computers.

each of which measures 6 by 8 pixels.
The Text mode is intended for display
of alphanumeric characters rather
than graphics patterns. There can be
up to 256 unique character patterns
defined at a single time to fill the 960
pattern positions. The sprite planes
are not available in Text mode. (If
you need both sprites and text simul-
taneously, you can generate character
patterns in the Graphics I mode if you
don't mind a slightly shorter line
length than in the Text mode.)

The character set is stored in the
pattern table in VRAM. Since the
cells measure 6 by 8 pixels, the char-

acters should occupy a 5- by 7-pixel
format to allow some space between
characters. By properly setting the
register pointers, it is possible to have
the table addresses for the character
patterns equal the characters’” ASCII
(American Standard Code for Infor-
mation Interchange) values, which
makes character generation easy.

Use of Memory

While the 9918A project I built has
16K bytes of VRAM, not all modes
use that much. A typical application
that uses only two colors with 256
unique 8- by 8-pixel patterns and 32

sprites would take less than 4K bytes
of VRAM. By providing 16K bytes of
VRAM with the 9918A, I found that I
often had room to store four com-
plete displays; the VDP can switch
between them by simply changing
pointers in the registers.

E-Z Color Graphics Interface
Figure 4 is the schematic diagram of
my project for this month, which I
call the Circuit Cellar E-Z Color
Graphics Interface. The design is a
typical 9918A color graphics interface
in that it is interfaced to a microcom-
puter bus with a minimum of compo-

August 1982 © BYTE Publications Inc 65

by THS 991 BANH
e

DAS 8122
30123 SINGAPORE

Photo 4: The Circuit Cellar E-Z Color Graphics Interface; a prototype printed-circuit board is shown. This typical
TMS9918A color graphics interface is interfaced to the Apple Il microcomputer bus with a minimum of components.

nents. A prototype printed-circuit
board is shown in photo 4.

This particular design has been
configured for use with an Apple II,
yet its signals are compatible with
those used in many other computer
systems. If you are willing to add a
40-pin connector and do some hand-
wiring, you can use this board ‘with
some other kind of microcomputer.

The circuit requires an 8-bit bi-
directional data bus, one address line
(typically AO), and the two control
signals Read Enable (CSR) and Write
Enable (CSW). For operation with the
Apple II, these signals are formed by
logically combining the Apple’s DS
(Device Select) and R/W (Read/
Wrrite) lines. The two control signals
are known by different names in
other computer systems, but their
functions are generally compatible.
Two additional lines, INT (Interrupt)

66 August 1982 © BYTE Publications Inc

and Reset/Sync, are shown as
jumper connections. They are avail-
able for various optional enhance-
ments, such as interrupt-driven
animation or synchronization with
external video sources.

By the time you read this article, I
shall have completed the designs for
S-100-bus and IBM Personal Com-
puter versions of the E-Z Color inter-
face. Check with the parts source
given at the end of the article for
availability.

Assembly-Language Sprite Use

As I alluded before, the 9918A is
initialized by loading values into con-
trol bits and address pointers in eight
write-only registers. Drawing and
moving sprites across the screen is
simply a matter of choosing the prop-
er register parameters and changing
the pointers.

Listing 1 on page 68 is a program
that demonstrates the routines needed
to display and move sprites. The pro-
gram is written in 6502 assembly lan-
guage to run on an Apple Il computer
equipped with the E-Z Color Graph-
ics Interface, installed in mother-
board slot 4 at hexadecimal address
CocCo.

The first requirement is to initialize
the eight registers and clear the
VRAM. In this example the 9918A is
set to the following operating specifi-
cations: Graphics II mode, external
video input disabled, and 16- by
16-pixel sprites, with selectable mag-
nification to twice the normal size (32
by 32 pixels) under keyboard control.

When the program starts, four dif-
ferent sprites are displayed, as shown
in photo 5. You can change the dis-
play as follows. When you press the
M key, the sprites’ position coor-

dinates are incremented and the
es move. Pressing the O key and
then a hexadecimal digit 1 through F
jill set one of the fifteen background
golors or transparency (shown).
ressing the left- or right-arrow keys
vary the sprites’ size between 16

If you are ambitious, one possible
exercise is to add more sprites to this
Sprogram. Photo 6 shows how compli-
‘cated things get when we have 24
sprites.

Logo Sprite Use

If you don't care to concern your-
self with the intricacies of assembly
language, you may choose to use rou-
" tines written in Terrapin’s version of
MIT Logo to control the E-Z Color
graphics.

Terrapin Logo normally uses a sin-
gle video monitor for all its display
functions: text listings and line draw-
ing. The colors available are limited
to the six supported by the Apple’s
high-resolution graphics mode. When
the E-Z Color Graphics Interface is
installed, the regular display screen is
still used for text display and the
regular turtle graphics; the E-Z Color
board must be connected to a second
color video monitor for its display to
be simultaneously visible. Photo 7 on

e

¥
1

SSAESatAE a0 ook i

page 68 shows the two-monitor set-
up. (If you don't need to see both dis-
n plays at once, you could set up a

d switch to select the video output of
one source or the other for display on
a single monitor.)

The Logo procedures developed by
Leigh and Pat implement user com-
i mands to specify the characteristics of
each sprite; these commands include

P SETSHAPE, SETCOLOR, and SXY
k (for “set x,y position”). If you like,
B you can map out your own sprite
E shapes and incorporate them into the

A routines, but some predefined pat-
1 terns, shown in photo 8, are pro-
b vided. (People from Terrapin seem to
like turtle shapes.)

) The photo sequences 1 and 2 used
earlier to demonstrate sprite planes
were done using a Logo program. For
example, the three boxes (shown in
photo 9) are drawn in Logo using the
; following groups of simple state-

ments:
Text continued on page 80

HEss
]
o o

o

)
L)

e
o s EE

)

s

!'I’ﬂ.
)
7
LA A AR

:
-

&

Il

Photo 5: Display of four sprites produced by the 6502 assembly-language pro-
gram of listing 1. The user can change the display in the following ways. Press-
ing the M key causes the sprites to move. Pressing the O key and then a hexa-
decimal digit 1 through F sets one of the fifteen background colors or
transparency (shown). Pressing the left- or right-arrow keys varies the sprites’

size between 16 by 16 and 32 by 32 pixels.

Photo 6: The display can get complicated when 24 sprites are visible.

August 1982

BYTE Publications Inc

67

Photo 7: When the E-Z Color Graphics Interface is installed in the Apple I, the regular display screen is still used for Ter-
rapin MIT Logo's text display and turtle graphics; the E-Z Color board must be connected to a second color video monitor
for its display to be simultaneously visible.

»

Listing 1: Program written in 6502 assembly language to run on an Apple 1l computer equipped with an E-Z Color Graphics Interface
installed in motherboard slot 4.

LINE# LOC CODE LINE

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1000
1000
1000
1000
1002
1004

68 August 1982 €

;***
; **%* YVIDEO DEMO **%
SLOT = $40 ;SLOT = NO. X 10 HEX
KBD = $C000 ;APPLE KEYBOARD DATA
KSTRB = $C010 ; KEYBOARD DATA CLEAR
VREG = $C081+SLOT ;VDP REGISTER
VDATA = $C080+SLOT ;VDP RAM
*= $1000 ; PROGRAM STARTING ADDRESS
;**************** INITIALIZE VDG **kkkkkkkkkkkkhkhhkhhhkks
A087 LDY #887 ;REGISTER SELECT
A207 LDX #$07 ;INITIALIZE COUNTER
BDC610 INIT1 LDA ITAB,X ;LOAD INIT TABLE

BYTE Publications Inc

Photo 8: The Logo procedures developed at
Terrapin Inc. provide you with commands
such as SETSHAPE, SETCOLOR, and SXY.
You can map ‘out your own sprite shapes
and incorporate them into the routines, but
some predefined patterns are provided, in-
cluding a box, a rocket, a turtle, and a blocle.

Photo 9: Each of the three boxes is drawn and placed in position with
only four Logo statements.

o e
e e . o -

e e ~

0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044

1007
100A
100B
100C
100E
100E
100E
100E
1010
1012
1015
1017
1019
101C
101D
101F
1020
1022
1022
1022
1022
1024
1026
1029

Listing 1 continued:

209F10 JSR SREG
88 DEY
(072 DEX
DOF6 BNE INIT1

i
skkkkkkkkkkkkkk

.
4

A040 LDY #$40
A900 LDA #S00
209F10 JSR SREG
A2CO LDX #SCO

A000 NEXF LDY #S00
8DCOCO0 FILL STA VDATA

C8 INY
DOFA BNE FILL
E8 INX
DOF5 BNE NEXF

’
;******** LOAD

A047 LOOP LDY #S47

A900 LDA #$00
209F10 JSR SREG
A200 LDX #500

_——————— -

;sWRITE TO VDP
;DECREMENT REGISTER
;DECREMENT COUNTER
;DONE?

CLEAR ALL MEMORY khkkkkhkhkhkhkhkkhhhkhkhkhkkhkkhkkhkkhkkkkx

;BYTE2 ADDRESS SET UP
;BYTE1 ADDRESS SET UP
;WRITE TO VDP

; COUNTER HIGH BYTE

; COUNTER LOW BYTE
;WRITE TO VDP RAM

; INCREMENT LOW COUNTER
;LOW COUNTER FULL?

; INCREMENT HIGH COUNTER
;HIGH COUNTER FULL?

SPRITE ATTRIBUTES khkkkkkhkkkhhkkkhkkkhkkhkhkkhkkkkhkkk%x

;BYTE2 AT 0700 HEX
;BYTE1 ADDRESS SET UP
;WRITE TO VDP
;INITIALIZE COUNTER

Listing 1 continued on page 70

August 1982 © BYTE Publications Inc 69

Listing 1 continued:

LINE# LOC

0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103

102B
102E
1031
1032
1033
1035
1037
1037
1037
1037
1039
103B
103E
1040
1043
1046
1047
1048
104A
104cC
104cC
104C
104cC
104F
1051
1053
1056
1058
105B
105B
105B
105B
105E
1060
1062
1065
1067
1069
106C
106E
1070
1073
1075
1077
107A
107A
107A
107A
107D
107F
1081
1084
1087
108a
108D
1090
1093
1096
1099

CODE

BDCE10
8DCOCO
E8

8A
C910
DOF4

A040
A900
209F10
A200
BDDE10
8DCOCO
E8

8A
C980
DOF4

AD0OOCO
COCF
D008
20A610
A087
209F10

ADOOCO
Cc988
DOOA
ADC710
29FE
A081
209F10
C995
DOOA
ADC710
0901
A081
209F10

ADOOCO
C9CD

D018

EECE10
CECF10
EED210
EED310
CED610
CED710
CEDALO
EEDB10
2C10cC0

LINE

NEXA LDA ATAB,X ;LOAD ATTRIBUTE
STA VDATA ; STORE TO VDP RAM
INX ; INCREMENT COUNTER
TXA
CMP #S510 ; TEST COUNTER
BNE NEXA ;DONE?

kkkkkkkx*x* [OAD SPRITE PATTERNS **kkxkkkkkkkkkkkkxhkkrkhkk

~e ~o ~o

LDY #S$40 ;BYTE2 AT 0000 HEX

LDA #3500 ;:BYTE1l ADDRESS SET UP

JSR SREG ;WRITE TO VDP

LDX #S00 ;INITIALIZE COUNTER
NEXTS LDA PTAB,X ;:LOAD PATTERN BYTE

STA VDATA :STORE TO VDP RAM

INX : INCREMENT COUNTER

TXA

CMP #$80 ;s TEST COUNTER

BNE NEXTS ;DONE?
;************* CHANGE BACKGROUND kkkhkkhkhkdkhkhkkhkhkkhhkhkhkxhkkkhxkx
CBACK LDA KBD ;s TEST FOR

CMP #SCF ;:"O" KEY INPUT

BNE CSIZE ;TO SET BACKGROUND COLOR

JSR LOADN ;READ KEYBOARD

LDY #3587 ;BYTE1 REGISTER 7

JSR SREG ;STORE TO VDP
;******************* CHANGE SIZE khkkkkkkhkhkkhkkkkkxhxhkkxkkxkkkx*k
CSIZE LDA KBD ;TEST FOR LEFT ARROW

CMP #5$88 sMAGNIFICATION X 1

BNE ONE

LDA ITAB+1 ;:LOAD REGISTER 1

AND #SFE ;MASK 0 ON LSB

LDY #$81 :BYTE1l REGISTER 1

JSR SREG :STORE TO VDP
ONE CMP #$95 ;:TEST FOR RIGHT ARROW

BNE MOVE :MAGNIFICATION X 2

LDA ITAB+1 :LOAD REGISTER 1

ORA #S$01 sMASK 1 ON LSB

LDY #$81 ;:BYTE1 REGISTER 1

JSR SREG :STORE TO VDP

kkkkkkkkkkkkhkkkkkx MOVE SPRITES khkkkkkkkkhkkkhkxkkhkkkkkkkk%k

.
4
.
{
-
’

MOVE LDA KBD ;MOVE?
CMP #SCD ;: TEST FOR "M" KEY
BNE JUMP
INC ATAB ;SPRITE0 UP
DEC ATAB+1 ;s SPRITEO LEFT
INC ATAB+4 :SPRITE1 UP
INC ATAB+5 s SPRITE1 RIGHT
DEC ATAB+8 ; SPRITE2 DOWN
DEC ATAB+9 :SPRITE2 LEFT
DEC ATAB+S$C ; SPRITE3 DOWN
INC ATAB+SD :SPRITE3 RIGHT
JUMP BIT KSTRB :CLEAR KEYBOARD

Listing 1 continued on page 72

70 August 1982 © BYTE Publications Inc Circle 416 on inquiry card. e==p

Listing 1 continued:

LINE# LOC CODE

0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0133
0133
0133
0134
0134
0134
0134
0135
0136
0136
0136
0136
0137
0137
0137
0137
0138
0138
0138
0138
0139
0139
0139
0139
0140
0141
0141
0141
0141

109C
109F
109F
109F
109F
109F
10A2
10A5
10A6
10A6
10A6
10A6
10A9
10AC
10AE
10B1
10B3
10B5
10B7
10BA
10BC
10BD
10CO
10C1
10C3
10C5
10C6
10C6
10C6
16C6
10C7
10C8
10C9
l10ca
10CB
10CC
10CD
10CE
10CE
10CF
10D0
10D1
10D2
10D3
10D4
10D5
10D6
10D7
10D8
10D9
10DA
10DB
10DC
10DD
10DE
10DE
10E0Q
10E2
10E4

4C2210

8DC1CO
8CC1cCO
60

2C10cCo0
2C00CO
10FB
ADOOCO
29F0
C9Co
F006
ADOOCO
290F

02
c2
01
80
01
OE
00
01

40
60
00
03
60
60
04
07
40
80
08
0B
60
80
0cC
OF

FF80
8080
8080
8080

LINE

JMP LOOP ;JUMP TO START
i
;********* STORE VIDEO REGISTERS ***kkkkkkkkkkkkkkkkkkkkk*

4

SREG STA VREG ; STORE BYTE1l
STY VREG ; STORE BYTE2
RTS ; RETURN

;************* LOAD KEYBOARD INPUT khkkkhkkhkhkkhkrhhkhkhkkhhkhkhkhkkkkx

LOADN BIT KSTRB ;CLEAR KEYBOARD

WAIT BIT KBD ;TEST KEYBOARD
BPL WAIT IS KEY PRESSED ?
LDA KBD
AND #SF0 ;TEST IF NUMERICAL INPUT
CMP #$CO
BEQ LETER
LDA KBD
AND #SOF ;MASK OFF HIGH NIBBLE
RTS ;RETURN

LETER LDA KBD
CLC
ADC #$09 ; CQNVERT INPUT TO HEX VALUE
AND #SOF ;MASK OFF EIGH NIBBLE
RTS ;s RETURN

.
’
;************************ TABLES * %k %

ITAB .BYT $02,$C2,501,$80 s INITIALIZE TABLE

.BYT $01,$0E,$00,501

ATAB .BYT $40,$60,S00,S03 ;SPRITE 0 ATTRIBUTE
.BYT $60,$60,$04,S807 ;SPRITE 1 ATTRIBUTE
.BYT $40,$80,S08,S0B ;SPRITE 2 ATTRIBUTE
.BYT $60,$80,S$0C, SOF ;SPRITE 3 ATTRIBUTE
PTAB .DBY S$FF80,$8080,5$8080,3$8080 ;SPRITE 0 PATTERN

Listing 1 continued on page 76

72 August 1982 © BYTE Publications Inc

|
i
i

Listing 1 continued:

LINE# LOC CODE LINE

0159 1156 AAAA

0159 1158 AAAA

0159 115A AAAA

0159 115C AAAA

0160 115E 7

0161 115E .END
ERRORS = 0000 <0000>

SYMBOL TABLE

SYMBOL VALUE

ATAB 10CE CBACK 104C CSIZE
FILL 1019 1INIT1 1004 1ITAB
JUMP 1099 KBD C000 KSTRB
LETER 10BD LOADN 10A6 LOOP
MOVE 107A NEXA 102B NEXF
NEXTS 1040 ONE 106C PTAB
SLOT 0040 SREG 109F VDATA
VREG CO0C1 WAIT 10A9

END OF ASSEMBLY

105B
10C6
C010
1022
1017
10DE
C0Co

.DBY SAAAA,SAAAA,SAAAA,SAAAA

Compare our price and performance.
Le Monitor is second to none!

ILE HOWITOR'
=

LENT RELIABILITY
~ATTRACTIVELY STYLED

R HIGH-END MONITOR AT LOW-END PRICES
AND HITH

INMEDIATE DELIVERY !
=

78 August 1982 < BYTE Publications Inc

A complete line of monitors with

Pi-Tech Limited

2 Douglas Pike
Smithfield, RI 02917
(401) 231-2080

TWX 710-381-8788

Circle 329 on inquiry card.

these outstanding features.

¢ 9” and 12” models
e Green or white

phosphor

® 80x24 character
display

e High resolution-800
lines, non-glare CRT

e 1 year warranty!

Dealer Inquiries
Invited

Q.1 Distributors
18720 Oxnard
Tarzana, CA 91356
(800) 423-5886

in CA (213) 996-2252

Circle 268 on inquiry card. s

Text continued from page 67:

TELL O

SETSHAPE :BOX
SETCOLOR :GREEN
SXY 20 20

The first command specifies that
sprite 0 is being addressed. The sec-
ond tells Logo to use the predefined
box pattern, while the third says that
the sprite is to be colored green (re-
member, the rest of the sprite plane
will be transparent). Then the fourth
command states that the sprite is to
be drawn at coordinate 20,20.

Now, to add the blue box as sprite
1 at x,y coordinates 12,12.

TELL 1
SETSHAPE :BOX
SETCOLOR :BLUE
SXY 1212

Finally, to draw the red box as
sprite 2 at position 5,5.

TELL 2
SETSHAPE :BOX
SETCOLOR :RED
SXY 55

A turtle can be drawn simply by
using a similar procedure substituting
the command SETSHAPE :TURTLE.

At this writing, Terrapin MIT Logo
does not support turtle velocity
(automatic constant movement ac-
tuated by the commands SETSPEED
and SETHEADING) as does the Logo
package available for the Texas In-
struments TI 99/4A microcomputer,

but a future version of Terrapin’s
product may do so.

In Conclusion

The TMS9918A Video Display
Processor has many more capabilities
than I have room to write about here,
and my examples of a few boxes and
turtles are an inadequate demonstra-
tion of the powerful combination of
the E-Z Color Graphics Interface and
Terrapin MIT Logo. I am certain that
you can fully appreciate them only by
observing a dynamic display and see-
ing how few commands are needed to
create it.

I don't usually get excited over
mega-bit-width processors or super-
high-level languages. What does ex-
cite me, however, is taking one of my
projects hot off the soldering iron and
seeing it operate so easily in
synergism with someone else’s work.
After seeing the graceful mating of
the E-Z Color Graphics Interface with
Terrapin MIT Logo, I can't help but
be excited about other sprite-graphics
applications.

Next Month:
Build the MicroVox text-to-speech
voice synthesizer. B

References

1. Guttag, Karl and John Hayn. ‘'Video Dis-
play Processor Simulates Three Dimen-
sions,"” Electronics, November 20, 1980,
page 123.

2. Nelson, Harold. ‘‘Logo for Personal Com-
puters,” BYTE, June 1981, page 36.

3. TMS9918A Video Display Processor.
Houston, TX: Texas Instruments Semicon-
ductor Group, 1981.

Editor’s Note: Steve often refers to previous
Circuit Cellar articles as reference material for
each month’s current article. Most of these past
articles are available in reprint books from
BYTE Books, 70 Main St., Peterborough, NH
03458. Ciarcia’s Circuit Cellar, Volume I,
covers articles that appeared in BYTE from
September 1977 through November 1978. Ciar-
cia’s Circuit Cellar, Volume II, contains articles
from December 1978 through June 1980. Ciar-
cia’s Circuit Cellar, Volume I1I, contains the ar-
ticles that were published from July 1980
through December 1981.

To receive a complete list of Ciarcia’s
Circuit Cellar project kits available from.the

Micromint, circle 100 on the reader service
inquiry card at the back of the magazine.

| Parta Source

The following products are available from

The Micromint Inc.

917 Midway

Woodmere, NY 11598

telephone (516) 374-6793

. . (for techmcal data)
(800) 645-3479
(orders only)

»Apple Il plug-compatible E-Z Color Graph-
ics Interface, provided with user manual,
sample programs, and TMS9918A refer-
ence manual.

Assembled and tested. $175

Terrapin MIT Logo for the Apple II; re-
quires 48K-byte user memory am:l one

floppy-disk drive. '
On DOS version 3.3 disk. . Cull for ptice

5-100-bus and IBM Personal Computer ver-
sions of the E-Z Color Graphics Interface
are planned. Call for price and availability.

Prices include shipping in the U.S. Foreign
orders add $8 for shipping. Residents of the
state of New York please add 7% sales tax.

TEXAS INSTRUMENTS

INCORPORATED

80 August 1982 © BYTE Publications Inc

New! Tl LCD Programmer.

Hexadecimal and Octal Calculator/Converter.

The brand new tilt-top TI LCD Programmer can save you
hours of work. It was designed specifically for the
problems you do, and has features that make it ideally
suited for applications in computer programming,
debugging, repair and digital logic design.

e Performs arithmetic in any of three number bases — OCT,

. Integer two's complement arithmetic in OCT and HEX.

e One’s complement capability in OCT and HEX.

e Converts numbers between OCT, DEC and HEX.

e Fifteen sets of parentheses available at each of four
processing levels.

e Logical functions AND, OR, EXCLUSIVE OR and SHIFT
operate bit by bit on OCT or HEX numbers.

Unisource Electronics has committed to buy TI’s initial
production of this unique product.
limited! Order now.

Availability is

15-Day Free Trial.

The best way to evaluate the TI LCD
Programmer is to try it yourself — on the
job — for 15 days. If you're not 100%
satisfied, simply return it for a full refund.
Order now by calling toll-free:

1-800-858-4580
In Texas call 1-806-745-8835
Lines open 8 am to 6 pm CST

and Visa or MasterCard number and we
will charge the tax deductible* $75.00
purchase price, plus $2.00 shipping and
handling (Texas residents also add 5%
sales tax) to your account. Or send your
check or money order to:

Unisource Electronics, Inc.
P.O. Box 64240 e Lubbock, Tx. 79464

* When used for business.

|
i
|
|
|
|
|
|
|
: Just give us your name, shipping address
|
|
|
|
|
|
|

Circle 414 on inquiry card.

Co|

