Finding the Crash Site:
A Simple Tracer for the 8080

Sometimes an unorthodox hardware mod can greatly simplify a complex programming task.

Albert S. Woodhull
33 Enfield Road, RFD 2
Amherst MA 01002

Our college has a large
Imsai system with a disk-
based CP/M software package.
We also have an Altair 8800
with Teletype and cassette in-
terfaces, which we use for proj-
ects requiring portability, such
as laboratory work, theatre
lighting and electronic music.

One of the nice things about
the big system is the Trace
command in the DDT debug-
ging package. This program
takes control over the program
being debugged and displays
the program counter and
register contents after every
program step. |1 found myself
wanting this capability on the
smaller Altair system.

1t really came to a head when
| couldn't get the Mits BASIC
tape to run on the Altair be-
cause the non-Mits serial /O
boards used different conven-
tions than were provided for on

the tape. To patch the program
was more practical than chang-
ing the /0 hardware; it seemed
the answer was a tracer to find
the endless loops that were try-
ing to read the wrong status
bits.

Writing a tracing routine
looked as though It would be
quite a job, but then | recalled
other occasions when doing
something a little unorthodox
with the hardware greatly sim-
plified a software problem.
How about using an interrupt to
call the tracer routine after
every step in the program being
debugged? That way the tracer
itself would not control execu-
tion of the object program; in-
stead, control would alternate
between the object program
and the tracer.

| thought it was a pretty
clever idea until | realized that
when the tracer routine reen-
abled the interrupt on the 8080,
the first thing it would trace
would be its own RET instruc-
tion. Everything considered, it

{00 LINE
BUS

~—— 73 PINT

- —— 98 SSTACK

AUX SWITCH
ON ALTAIR
FRONT PANEL

L&

Fig. 1. The drastic modifications needed to implement the tracer

scheme.

44 Microcomputing, December 1979

didn't seem very useful.

Hardware Solution

The solution to the probiem
came from my looking at the
specifications for the 8080 and
realizing that some of the
status signals could help.
Since the Altair bus uses an ac-
tive low interrupt signal, PINT,
what | needed was a line that

would be low most of the time
but would be high immediately
after the return from the tracer
subroutine. The stack status
signal, SSTACK, was just right.
There couldn’t be a simpler
hardware modification.

Wires from bus lines 73
(PINT) and 98 (SSTACK) were
run to the unused AUX switch
on the front panel of the Altair.

[1
[(1Y
[|
| r !
| |
! I |
| 3 $a3k@® |
I R Y U D G) PR |
0o ¢ l W —
9
USUAL o P —1 —
INTERRUPT 02
SOURCE v .
8080 03 —*
ceu os B2 o
[sL] 4 ¥
D6 S —
r' _'“_"'; o7 |2 —
1
] \———:—-——1 INT
! fTRACE |
Lof-eca
g g2
22208 e |9 (7 15 13
5TST
8224 o
— DS2 8212
CLOCK 52
vee G STATUS
me LATCH

wo
STACK
HLTA
ouT

M
INP
MEMR

Fig. 2. Many home-brew or non-Altair-compatible 8080 systems
will have a CPU interface resembling this circuit. To implement a
tracer, pull-up resistors must be added to the unbuffered CPU data
bus, and a switch should be installed to allow the M1 status signal

to control the 8080 interrupt line.

B ————EEEEEEE——]

JMP OBY

(See Program B.)

TRACE SHLD HSTORE stow the contents of the H and L registers
POPH get the return address {program counter when in-
terrupted) off the stack
PUSH PSW stow accumulator and flags
MOV A H
CALL OCTPRINT print high byte ot address
MOV AL
CALL OCTPRINT print jow byte of address
MVI A,040g
CALL ASCPRINT print an extra space for clarity
POP PSW restore accumulator and fiags
PUSH H put return address back onto stack
LHLD HSTORE restore H and L registers
El enable interrupt
RET
HSTORE 0B two bytes reserved for storing con-
DB tents of H and L registers
START El to start tracing, load the address of

the start of the object program here

Program A. A TRACE program for the 8080. A jump to the start
of the TRACE routine must be stored at location 0-070g. Two
additional subroutines are needed. ASCPRINT interprets the
contents of the accumulator as an ASCIl character and prints
or displays it. This subroutine should also take care of book-
keeping and insert carriage returns and line feeds as needed.
OCTPRINT unpacks the contents of the accumuiator and calls
ASCPRINT to show the octal value of the accumulator byte.

OCTPRINT PUSH PSW
PUSH B

MVI B,003g
ORA A

PUSH PSW
RAR

RAR

RAR

DCR B

JNZ UNPACK
MvVI B,003g
POP PSW
AN 007g

ADI 060g
CALL ASCPRINT
DCRB

JNZ ASCGEN
MVI A,040g
CALL ASCPRINT
POP B

POP PSW
RET

UNPACK

ASCGEN

Program B. The OCTPRINT routine for unpacking a byte. If you
prefer hexadecimal notation, a similar technigque can be used.

preserve registers

set up character counter

clear the carry flag

put shifted versions of accumulator on
stack from right to left

rotate three bits right

decrement character counter
do this three times

reload character counter

get last data first

mask off all but low three bits
convert to ASCII for numbers Oto 7
print it

decrement the counter

do another until done

load code for space

print a space

restore registers

With the momentary action
switch in its normal open posi-
tion, the computer runs exactly
as it always did. When the
switch is pressed, if the com-
puter has executed an enable
interrupt (El) instruction, an in-
terrupt is generated on the be-
ginning of any instruction ex-
cept those instructions imme-
diately following an instruction
that accesses the stack, such
as a CALL, RET, PUSH, POP,
RST or XTHL instruction.

The pull-up resistors on the
data bus ensure the 8080 reads

a RST 7(377g) when interrupted.
This instruction calls the sub-
routine at location 0-070g. Pro-
gram A shows a simple tracer
routine that will print out the
program counter.

Anything so cheap and easy
can’t be entirely perfect, of
course. The major limitation of
this scheme is that it doesn't
trace every step. | haven't
found that a great disadvan-
tage, however. Even though
steps following a stack opera-
tion are not traced, there is no
problem following the flow of a

program. It is also not very diffi-
cult to write more sophisticated
versions of the software—the
routine of Program A is shown
here because of its simplicity.
It doesn’t take much more pro-
gramming to display all the
registers or to restrict the print-
out to particular regions of
memory.

Although the particular
scheme suggested is very easy
to implement on an S$-100 bus,
other systems will usually
allow similar approaches,
perhaps using different status
signals. For example, on my
home-brew 8080 system | have
not defined an active low PINT
signal. { could have used an ex-

REAL GRAPHICS FOR PET

tra inverter section to invert the
STACK status signal to drive
the 8080 INT line, but | didn't
have a single extra gate or in-
verter on my CPU board. In-
stead | used the M1 status
signal to drive the INT line.

In this implementation an in-
terrupt and a calil to the tracer
are generated immediately
after any instruction that
makes only a single memory
reference. This avoids the prob-
lem of calling the tracer im-
mediately after its own RET in-
struction; yet, as with the ver-
sion described for the Altair,
enough steps in the object pro-
gram are traced to clearly show
what is happening.l

SHOWN WITH:
K-1007-1 INTERFACE
K-1008-P VISIBLE MEMORY
K1005-P 5 SLOT CARD FILE

EXPANSION PRODUCTS.

K-1008-3C DRIVER SOFTWARE
CALL OR WRITE FOR QUR FULL LINE CATALOG OF PET

e THE FLEXIBILITY YOU HAVE DREAMED ABOUT 1S NOW AVAILABLE!

* 320 WIDE X 200 HIGH RESOLUTION

e EACH DOT INDIVIDUALLY ADDRESSABLE

o SOFTWARE SUPPORT — LEVEL 1 GIVES GRAPHICS & TEXT CONTROL AT MACHINE
LANGUAGE SPEED BUT ACCESSABLE FROM BASIC BY GOSUB AND VARIABLE
STATEMENTS.

e DUAL PORT 8K BYTE MEMORY ON BOARD ALLOWS FULL USE OF MEMORY FOR
OTHER TASKS (SEE YOUR PROGRAMS IN THEIR DIGITAL FORM IF YOU LIKE!)

¢ DOUBLES THE MEMORY SIZE OF AN 8K PET

o COMPLETELY TRANSPARENT SCREEN REFRESH - NO SNOW OR BLINKING EVER -

THE PROPER WAY TO DO IT!

$99.00
$243.00
$80.00
$20.00

MICRO TECHNOLOGY UNLIMITED
841 GALAXY WAY

PO BOX 4536

MANCHESTER, NH 03108

(603) 627-1464

» M4a

v Reader Service—see page 227

Microcomputing, December 1979 45

