o

DAV

]
e i
g
.
L)
"
.
.
L
L

Make your next project “intelligent.” Use a single-chip microcomputer to control it.

TOM FOX

ARE YOU FASCINATED BY MICRO-
processor-controlled, semi-intelligent
gadgets like robots that avoid obstacles,
microwave ovens that monitor the food as
it cooks, and cars that adjust the engine so
that it’s working as efficiently as possible?
Have you come up with hundreds of con-
trol-computer applications that you'd like
to try? (But you can’t picture tying up your
powerful personal computer for control
applications?)

There is a way to design computer-con-
trolled “*smart™ devices without tying up
your expensive personal computer, It’s
easy if you use a device called a microin-
terpreter.

In this article, we'll show you how to
design almost any computer-controlled
device your imagination can dream up—
even if you've never worked with micro-
processors before! That's because you
don’t have to learn machine or assembly
language and you don’t have to invest
gobs of money in expensive and complex
development systems in order to design a
computer-controlled machine. As long as
you have some knowledge of electricity

and digital logic circuits you should be on
your way. But some familiarity with the
BASIC programming language, as well
as binary and hexadecimal numbers will
come in handy too.

To get you on your way toward design-
ing practical, semi-intelligent machines,
we will describe, in detail, the design of a
such a device: a “burglar outwitter.” As
its name implies, the purpose of the out-
witter is to fool a potential burglar into
thinking someone (or something) is home
when actually no one is there.

What’s a microinterpreter?

If you have ever used today's micro-
computers, you probably realize that
they 're fairly easy to use. However, micro-
processors—the brains of the microcom-
puter—have a notorious confusing nature
about them. What is it that turns a com-
plex, often mind boggling, micro-
processor into an easy-to-use microcom-
puter? Software! Although it seems at
times you can do magic with it, there is
nothing magical about software. It’s
merely a list of detailed instructions that

tell the microprocessor exactly what to
do.

That's the same thing that makes a mi-
crointerpreter easier to use than a micro-
processor. A microinterpreter is basically
a single IC that contains both a micro-
processor and software. The software in
microinterpreters is contained in ROM
(Read-Only Memory).

Before we go any further, we should
point out that microprocessors with a built
in high-level language are not universally
called “microinterpreters.” A few semi-
conductor companies refer to those IC’s as
single-chip microcomputers. However,
that name is not only clumsy, it is un-
necessarily vague since many of those
same companies call microprocessors
that have no built in high-level language
“*single-chip microcomputers.” National
Semiconductor refers to their INS8073—
the device that we’ll examine in detail—
as a microinterpreter. This seems to be the
best name available, and we will stick to
1t.

You might be thinking that there must
be a catch somewhere. Microinterpreters

G861 NHdV

;]
[

.

BUFFER ADDRESS A15-A8
BUS

{8-18, 21-26)

(HIGH ORDER BYTE)

' R

INCREMENT/ TEMPORARY PROGRAM ADDRESS
DECREMENTER REGISTER g COUNTER REGISTER

(LOW ORDER BYTE}

] } e : ! '

UNIT SP

AUXIL JARY STATUS EXTN PROGRAM ADDRESS
REGISTER REGISTER REGISTER | |ACCUMULATOR 2 COUNTER REGISTER

REGISTER

12

. [- g1
CONTROL |- = NWDS (6) v
LOGIC l«—— NHOLD (5) > £1AG 3(36)
l«—— NRST (37) SENSE/INT A (37)
T T -SENSE/INT B " (38)
INSTRUCTION
DECODER |—»
CTL PLA e—— XIN (8)
OSCILLATOR
AND CLOCK
Q 3 GENERATOR
: > XOUT (7)
INSTRUCTION
REGISTER le—> MBREQ (3)
BUS
. ACCESS
% CONTROL |&—— MENIN (2)
; - L LOGIC
BUFFER > mEMOUT (1)

FIG. +—BLOCK DIAGRAM OF THE INS8073 from National Semiconductor. Note that the microin-

terpreter contains 2.5K of ROM and 64 bytes-of RAM. SOINOHLOTTI3-0IavH &

e Sl

seem almost too good; they must have a
few bad points. Well in certain applica-
tions, they do. For example, if you're
planning to design a revolutionary new
personal computer that will take the peel
right off the Apple, you probably should
look past microinterpreters—they are rel-
atively slow. That’s because the inter-
preter (located in ROM) must convert the
simple English-like commands into com-
plicated machine language. And it must
do that line by line as the program is
running. That process takes a bit of time.

The good news is that the micro-
processors in microinterpreters are so fast
that for most control or monitor applica-
tions. they’re much faster than the situa-
tion requires. But in those applications
where a jiffy is several microseconds too
long, you can program the time-consum-
ing subroutines in assembly language.
But that’s enough talking in gener-
alities—let’s look at a specific device: the
INS8073. It’s block diagram is shown in
Fig. 1.

The INS8073 microinterpreter

As we mentioned earlier, a microin-
terpreter is basically a microprocessor
that understands a high-level language.
Such microinterpreters fall into two gener-
al categories: ones that understand Tiny
BASIC and ones that understand a form of
stripped-down Forth.

Forth was developed in the early 1970's
for real-time contro] of astronomy equip-
ment. Because of that, it is an excellent
language for microinterpreters since one
of their primary uses is in control applica-
tions. Forth’s main advantage, compared
to Tiny BASIC, is that it is faster.
However, unless you have already pro-
grammed in Forth, you’ll have to spend a
considerable amount of time learning the
language. While Forth enthusiasts might
write some letters to the contrary, most
people would agree that Tiny BASIC is
easier to learn than Forth.

Even if you have never programmed a
computer before, you’ll be able to write a
program that works using BASIC in less
time than with just about any computer
language there is. It’s true that many
BASIC programs might not be very ele-
gant. Nonetheless, if the program does
what we want it to, then it’s just fine. After
all, that’s what were after—to get the job
done.

Another advantage of BASIC is that it
is the most widely used language among
microcomputer users. (Apple 1, Timex,
Sinclair 1000, Commodore 64 and many
other popular computers all have a form of
BASIC built-in.) So there is an excellent
chance that you are at least mildly ac-
quainted with BASIC. And if you are,
your job in learning how to design smart
machines with microinterpreters is nearly
half done.

In our quest for simplicity, we will ex-
amine only one microinterpreter: the

INS8073. However, you will be able to
apply much of what we say to other de-
vices. That IC, though relatively simple in
architecture, has noteworthy features like
16-bit hardware multiply and divide.
However, the best thing about the 8073 is
that its language (National Semiconduc-
tor’s Tiny BASIC) is a true gem. While we
will describe that language in more detail
later in this article, a few highlights will
be given here.

National Semiconductor’s Tiny BASIC
includes DO-UNTIL commands. That
type of loop control was borrowed from
PASCAL and is unusual for Tiny
BASICS. The ON command simplifies
the handling of interrupts, which is impor-
tant when designing smart machines. An-
other convenient instruction is DELAY,
which can be used to pause program ex-
ecution for a user-determined length of
time. This BASIC includes a RND func-
tion, which we will use extensively when
we design our burglar outwitter.

National Semiconductor’s Tiny BASIC
handles strings and uses the operator
(which simplifies transferring data back
and forth between the program and mem-
ory locations or input/output ports). There
are other unusual features of a Tiny
BASIC, which we’ll discuss in more de-
tail later. Actually, if it were not for its
restriction to integer numbers and 26 vari-
able names, National Semiconductor
could leave out the adjective *‘tiny’ from
the language’s name and hear few com-
plaints.

The 8073 has already been chosen by
designers for a number of commercial ap-
plications. For instance, it is the “‘brain™
of RB Robot Corp’s RB5X robot and has
been used for precision measurement of
conditions in oil wells and testing the fea-
sibility of the digital design of FM tuners.

Inside the INS8073

The INS8073 microinterpreter is an
INS8072 8-bit microprocessor that con-
tains Tiny BASIC in its 2.5K on-chip
ROM. It has a 16-bit address bus and
requires a single S-volt supply voltage.
Other features of interest to us include an
on-board clock, TTL compatibility and
64 bytes of on-board RAM. (Yes, more
RAM would be nice.)

There are some attributes of the 8070
series of microprocessor that affect us
only indirectly. Those include 8 and 16-bit
arithmetic, logic and stack-manipulation
instructions, hardware multiply and di-
vide, and single-instruction ASCII-to-
decimal conversion. The 8072/8073’s
multiprocessing feature will not be used.

A feature of the IC that simplifies its
use as a stand-alone, real-time controller,
is the provision for automatic execution of
ROM (or EPROM) at power-up or on re-
set. The 8073 also contains firmware that
allows easy interfacing to a RS-232 termi-
nal.

The INS8073 ‘*‘understands” ASCII

(the American Sandard Code for /nforma-
tion /nterchange) so programs can be sim-
ply and quickly modified without the need
for costly and awkward assemblers, text
editors, debuggers and development sys-
tems—all you really require is a terminal
(or a computer and terminal software) to
enter a program into the microin-
terpreter’s RAM.

Figure 1 is a block diagram that shows
the architecture of the INS8070. Since
this article is primarily concerned with the
design of microprocessor-controlled
equipment using only Tiny BASIC, we
will ignore the fact that the 8073 has a
machine level instruction set. However, if
we are to design real working circuits, we
must examine the IC’s pin configuration
as well as the function of each pin in some
detail.

Pin functions of the 8073

Figure 2 shows the pinout of the
INS8073. While we could go through the
pins, starting at pin 1 and explaining each
pin’s function in sequential order, we will
start at the easy part first—the power sup-
ply connections.

1C]NEnOUT ™ Ve 240
2 NENIN SB[39
3 NBREQ SAL] 38
4| NRDS NAST[] 37
5 C_|NHOLD F3[1 36
8 CInwos F21 35
7 Xour F1[] 34
8 XN Dd[] 33
9 A15 D1 32
10 Al4) D2{ 31
1" A13 Nl 031 30
12 A12 D41 29
13 Al D5 28
14 Alf D6 27
15 A9 D7(1 28
16 A8 A 25
17 A7 Al 24
18 AB A2[1 23
19 A5 A3 22
20 GND mMEan

FIG. 2—PIN CONFIGURATION of the INS8073.

Pin 20 is the GrRounD pin. It should
always be connected to the logic power
supply’s ground. Pin 40 must be con-
nected to a well-regulated voltage source
(+5 volts with respect to pin 20). That
voltage shouldn’t vary by more than +
5% (so you have a permissible range from
4.75 to 5.25 volts). The power supply
should be able to supply a minimum of
250 ma.

Pins 26-33 are the connections for the
bidirectional 8-bit data bus. (The most
significant bit, D7, is connected to pin
26.) The data bus is three-state, which in
this case means that it is basically discon-
nected from the circuit except for external
write operations. The data bus can drive
one standard TTL load or several LS-TTL
loads. Pins 9-19 and 21-25 are the ad-
dress-bus pins. That is also a three-state
bus.

G861 lddv

RADIO-ELECTRONICS

Tg

In order to use the on-board oscillator,
an external crystal must be connected to
pins 7 and 8. Figure 3 shows how. If you
prefer to drive the IC with an external
clock (it must be TTL compatible), con-
nect the signal to pin 8. Pin 7 provides a
buffered clock output with either an exter-
nal or internal clock.

Pin 37 is the RESET pin, It is simple in
concept, but extremely important. When
it is brought low (below 1 volt) several
things happen. Any in-process operations

OPTIONAL
SYSTEM
CLOCK

{ 7

fp &
100K $

Xout

XTAL
{4MH2) 1=

O

INS 8073

¢RI
1K

C1
27pF

AAA
¥

XN

FIG. 3—A INTERNAL OSCILLATOR is contained
in the INS8073. Here it is shown configured for a
4-MHz clock rate. A TTL-compatible external
clock may be used instead.

are aborted, the data and address bus are
disconnected, the program counter, stack
pointer, and status register are cleared. As
far as we're concerned, however, the most
important thing that happens upon the re-
setting of the microinterpreter is that the
program we stored in EPROM will start
automatically. (Provided the program in
EPROM starts at hex address 8000.)
Since that pin is buffered by a TTL com-
patible Schmitt trigger, we do not have to
be overly concerned about rise and fall
times. Figure 4 shows one way of con-
necting this pin so that the device auto-
matically resets when we turn on the
power.

Pin 4 is the READ DATA STROBE output.
It is a three-state output that goes low
when the microinterpreter is reading from
external memory.

Other than those times, the output is
effectively disconnected from the rest of
the circuit. In some circuits, a 10K pull-up
resistor should be connected from +35V
to pin 4. The READ DATA STROBE output is
connected to some address-decoding cir-
cuits so that input data is present on the
data bus only during an external read oper-
ation.

Pin 6, the WRITE DATA STROBE, IS Sim-
ilar in function to pin 4. The primary
difference is that this pin goes low during
external-memory write operations. Like
pin 4, a 10K pull-up resistor is sometimes
connected to this pin. That output is re-
quired so that external memory (or out-
put) devices know when the information
on the data bus is valid.

Pins 38 and 39 are the INS8070’s two

+

+5V
¢
33 uF

R
100K
INS 8073
% 571 NRsT
FIG. 4—POWER-ON RESET. If pin 37 of the
INS8073 is connected as shown, it will automat-

ically execute a program stored in EPROM
(starting at address 8000) at power-up.

interrupt pins. Both act as interrupt-re-
quest pins. (The 8073 does not have the
equivalent of a non-maskable interrupt.)
In order for an interrupt to be serviced,
first the input to one of those pins must go
from high to low. (It is edge, not level
triggered). Also, the least-significant bit

MICROINTERPRETER
MANUFACTURERS

Fairchild Camera and Instrument Corp.
Semiconductor Groups

464 Ellis Street

Mountain View, CA 94042

Fujitsu America
910 Sherwood, Suite 23
Lake Biuff, IL 60044

Hitachi America, Ltd.
1800 Bering Drive
San Jose, CA 95131

National Semiconductor Corp.
2900 Semiconductor Drive
Santa Clara, CA 95051

NEC Electronics USA inc.
Microcomputer Division
One Natick Executive Park
Natick, MA 01760

OKI Semiconductor, Inc.
1333 Lawrence Expressway, Suite 401
Santa Clara, CA 95051

Panasonic

Matsushita Electric Corp., Industrial Division
1 Panasonic Way

Secaucus, NJ 07094

Rockwell International
Microelectronic Device Division

PO Box 3669, 3310 Miraloma Avenue
Anaheim, CA 92803

Texas Instruments
Semiconductor Group
PO Box 225012, M/S 308
Dallas, TX 75265

Zilog, Inc
1315 Dell Ave
Campbell, CA 95008

in the status register must be 1. (The status
register is accessible through the NSC
Tiny Basic STAT function.) Pin 38 has
priority over pin 39 if both interrupts oc-
cur at roughly the same time.

In addition to acting as inputs for inter-
rupts, both pins serve as sense inputs.
Here we are mainly concerned with pin
38, which will accept serial ASCII input
data. The input data must first be convert-
ed to TTL levels.

The remaining pins will be briefly de-
scribed in sequential order. Don’t worry if
the description is a bit confusing, the
functions these pins provide will not be
implemented in our project. Nonetheless,
some of these pins must be connected to
ground or + 5V for proper operation of
the microinterpreter. Refer to the notes
given in the description of each pin for
their proper use in our project.

Pin 1: EnaBLE ouTpuT. The 8073 con-
trols that output as follows. 1) If pin 3 (Bus
REQUEST) is low, but the 8073 is not hold-
ing it low, then pin 1 is brought to the same
logic leve] as pin 2, the ENABLE INPUT. 2)
If pin 3 is low because the 8073 is holding
it low, pin I goes high. 3) Pin | is always
high if pin 3 is high. Note: Pin 1 can be left
unconnected.

Pin 2: ENABLE iNpuUT. 1) If this pin is
high, the 8073 sets pin 1 high and is de-
nied access to the bus. 2) If pin 2 is low
and the 8073 is holding pin 3 low, pin 1
goes (or stays) high and the 8073 has
access to the bus. 3) If pins 2 and 3 are
both low and the 8073 is not holding pin 3
low, pin | is set low and the 8073 is denied
access to the bus. Note: Pin 2 should be
connected to ground.

Pin 3: Bus rReQuEST. This is the bi-
directional bus request input/output. It al-
ready has been referred to. Like pins | and
2, pin 3 is used in direct memory access
(DMA) and multiprocessing applica-
tions. This pin should be connected to a
+ 5V power supply through a 10K pull-up
resistor.

Pin 5: HoLD iNpUT. The primary ap-
plication of pin 5 is to allow the use of
slow memories and peripherals. It is also
used for single memory cycle extension.
Setting that pin low causes the 8073 to
extend an external read or write cycle.
Note: In the burglar outwitter that we’ll
describe, pin 5 is connected to +5 volts
through a 10K pull-up resistor.

Pins 34, 35 and 36: Flags 1, 2, and 3
outputs. These flag outputs can be set by
writing into the appropriate flag bits lo-
cated in the status register. These pins can
be left unconnected.

Next month, we’ll describe, in some
detail, the language of the 8073 microin-
terpreter—National Semiconductor’s
Tiny BASIC. We will also take a look at a
commercially available demo/develop-
ment board, which greatly simplifies de-
signing with this exciting microin-
terpreter. R-E

