 Build your own KIM-1 (preliminary)

 by Ruud Baltissen

DISCLAIMER

All names with a copyright are acknowledged.

Some information is derived from deduction after reading a lot of documents and can be unreliable due to the lack of real proof.

If the reader uses information from this document to write software or build hardware, then it is on his own account. I cannot be held responsible for blowing up your computer, mother-in-law or whatever; it will always be your own fault.

I'm not a sexist, with 'he' and 'him' I also mean 'she' and 'her'.

Copyrights

This page may contain material which is not mine. But as Commodore doesn't exist anymore and nobody knows anymore who owns the rights of what, I simply provide it to anyone who is interested. If there is anybody who thinks he owns the rights of the provided material, please inform me and I obey his wishes regarding this material.

So you may copy every bit on this page for NON-commercial use but, regarding the above, I won't take any responsibility. I hope you enjoy it. If you use it, just give me at least some credit like "Stolen from Ruud" :-)

What is the KIM-1?

If you don't know that by now then read this document first:

 <URL:http://www.funet.fi/pub/cbm/documents/schematics/kim-1/kim.txt>

The troubleshooter: 6530

Anybody who is a little bit familiar with the hardware market can tell you that you cannot buy the 6530 anymore. Happily enough there is another IC available which you could call its brother: the 6532.

The 6532 has 16 I/O-lines, an internal timer and 128 bytes of RAM onboard. And no ROM. But we know by now that the internal ROM of the 6530 could be selected independently from the I/O. So for this project we'll use an external EPROM. The pinout is completely different but that should be no problem. The next difference is the fact that the 6532 has a separate IRQ and PB7 line. As we will see, is the functionality of both lines the same as with the 6530. To create the same circumstances we only have to connect them together. The third difference is the availability of PB6. See it as a bonus, I haven't found any reason how it could harm us. The fourth difference is that it is possible to generate an interrupt depending the behavior of PA7. But this is an option which default is out of function after a reset. But the major difference lays in the way the registers are selected:

�
funtion: RS: A6: A5: A4: A3: A2: A1: A0: R/W:

RAM 0 x x x x x x x x

DRA 1 x x x x 0 0 0 x A

DDRA 1 x x x x 0 0 1 x B

DRB 1 x x x x 0 1 0 x C

DDRB 1 x x x x 0 1 1 x D

PA7, IRQ off,

 neg edge 1 x x 0 x 1 0 0 0 F

PA7, IRQ off,

 pos edge 1 x x 0 x 1 0 1 0 G

PA7, IRQ on,

 neg edge 1 x x 0 x 1 1 0 0 H

PA7, IRQ on,

 pos edge 1 x x 0 x 1 1 1 0 I

read interrupt

 flag 1 x x x x 1 x 1 1 E

read timer,

 IRQ off 1 x x x 0 1 x 0 1 J

read timer,

 IRQ on 1 x x x 1 1 x 0 1 K

Clock / 1,

 IRQ off 1 x x 1 0 1 0 0 0 L

Clock / 8,

 IRQ off 1 x x 1 0 1 0 1 0 M

Clock / 64,

 IRQ off 1 x x 1 0 1 1 0 0 N

Clock / 1024,

 IRQ off 1 x x 1 0 1 1 1 0 O

Clock / 1,

 IRQ on 1 x x 1 1 1 0 0 0 P

Clock / 8,

 IRQ on 1 x x 1 1 1 0 1 0 R

Clock / 64,

 IRQ on 1 x x 1 1 1 1 0 0 S

Clock / 1024,

 IRQ on 1 x x 1 1 1 1 1 0 T

In total 5 address lines are used, meaning 32 registers. But as we can see 11 of the 19 registers have one or more mirrors.

Read: J E J E K E K E J E J E K E K E

Write: F G H I F G H I L M N O P R S T

R/W: A B C D A B C D A B C D A B C D

As we can see, the last 16 registers equal the 16 of the 6530. So now we have to develop some logic which wil do the following:

The 6532 is only visible within a range of 128 bytes

The first 16 bytes represent register 16 to 31

The next 48 byte are free

The last 64 bytes apear as RAM

Conclusion:

Input A6 won't be used and is tied to GND

RS is connected to addressline A6 of the 6502 via an invertor.

Input A4 is connected to addressline A4 of the 6502 via an invertor.

An 74145 or equivalent enables the CS-line at the right moment within the 128 bytes.

ROM and RAM

Here we have a luxury problem. We need 2K of ROM like the 2716. The problem is that the 2716 is hard to find and more expansive then the 2764 or his bigger brothers. When we use a bigger EPROM we only have to tie the unused address lines to GND. The same problem occurs with the RAM. If we have to use bigger RAMs or EPROMs anyway, it is quite easy to use other parts of that chip by OR-wiring the CS-line with more Kx-outputs of the main 74154. (Don't forget the address lines!) In case of the EPROM we can use switches and have the advantage of a multi-KERNEL system.

Sourcecodes of the ROM

Available, but not completely checked yet:

 <URL:http://www.funet.fi/pub/cbm/documents/schematics/kim-1/kim.asm>

Schematics of the new KIM-1

Haven't even started to draw them yet. But the originals are available at:

 <URL:http://www.funet.fi/pub/cbm/documents/schematics/kim-1>

and if you are even a little bit familiar with designing.....

 You can reach me at:

 rbaltiss@worldaccess.nl

 <URL:http://www.worldaccess.nl/~rbaltiss/cbm.htm>

