THE COMPUTER JOURNAL"

For Those Who Interface, Build, and Apply Micros

ssssssssss 2 Vol. 1,M0.2 $2.50

File Transfer Programs for CP/M......

Part Two of a Series:

The RS-232-C Serial Interface

Part One:

Build a Hardware Print Spooler
A Review of Floppy Disk Formats ...

Sending Morse Code With an Apple][

page 16

Beginner’s Column, Part Two’:

Anyone For a Little “‘KISS’’ Electronics?

age 19

WHAT IS A HACKER?”?

The September fifth issue of Newsweek contains a
six page article “Beware: Hackers at Play,” with a
cover picture and the headline “Computer Capers.”
Several months ago, Wall Street Journal also ran a
front page article about how Hackers break into
computer systems.

I consider myself a Hacker, but I have no interest in
breaking into computers (it takes more time than I
have available to try to figure out what’s going on in
my own computer). I object to the fact that the press
has defined hacking as breaking into computer
systems. The press is giving all hackers a bad name
because of the trespasses of a very few who call
themselves Hackers. When I mention computer
hacking, people ask ‘How many computers have you
broken into today?' I tell them that this is not hacking;
but when they ask what hacking is, I have a hard time
trying to explain it.

And so I put the question to our readers, ‘What is
Hacking?' What is it that Hackers do? We at The
Computer Hacker would like to generate some good
press about hacking, and need ideas and information
from our readers. We will use this information to
prepare press releases and an information packet for
the press.

In order to get the information needed,The
Computer Hacker is announcing a contest for Hackers.
We'll award some prizes (perhaps logic probes or
breadboarding kits) for the responses which are most
useful. There will be two categories:

1) What is a Hacker?

2) A description of a useful hacker project, such as
interfacing a micro so that a disabled person can
control their world.

The final result, which will be submitted to the
press, will probably be a blending of many responses.
WE NEED YOUR INPUT!!

THE “HACKER STANDARD INTERFACE”

In this issue, we continue the series on the RS-232-C
interface. The first part explained the standard's
definitions. Part two covers the standart
configurations and describes real world examples of
the RS-232-C interface as used with microcomputers,
and recommenations for hacker standards. A future
article will cover the use of UART and USART
integrated circuits with the RS-232-C serial interface.
It may seem that we are spending a lot of time on the
RE-232.C interface, but many hacker projects (at least

The Computer Hacker 1

- B T LY R e U DI T 7w A B K m 7 DA 3 o Y YO P N, oo
e o B
L F R T p ey
- * e i - : % .)
A i 4 & ¢ T)
N i P . Pt 4
g b P g v P :] x;

the ones I get involved with) require the transfer of
data, and a good understanding of the standard
interfaces is vital. We suggest that most hacker
projects be built as separate stand-alone devices using
a standard interface instead of being built to operate
only with a specific computer.

The problem with a computer specific peripheral is
that the device will probably not work with another
computer. Computer technology is changing very
rapidly, and most of us will eventually get a different
{or an additional) computer which will not be able to
use the same computer specific peripherals. There is
also the possibility that you will want to lend (or sell)
your project to someone with a different computer.
The decision to use either a computer specific or a
standard interface design is not always clear-cut.
There are advantages and disadvantages to both
approaches, and you'll have to decide on a case-by-case
basis. When you do design something which is not
meant to be computer specific, you should use a
standard interface if at all possible.

In future issues we will continue coverage of the RS-
232-C interface, and will also cover other standard
interfaces suitable for the hacker. We are interested in
feedback from the field, so please tell us about your
experiences with interfaces (both the good and the
bad). If you would like to write an article, perhaps
something on A/D and D/A or the factors to conside:
when deciding between using a computer specifi:
versus a standard interface design, send us an outline.B

Editor/Publisher........................ Art Carlson
Art Director.........ooooviiiin.., Joan Thompson
Production Assistant Judie Overbeek
Technical Editor Lance Rose
Technical Editor.ccccvvenvenann. Phil Wells

The Computer Hacker® s published 12 times
a year. Annual subscription is $24 in the US.

$30 tn Canada, and $39 in other countries.

copyright © 1988 by The

Entire contents
Computer Hacker.
Postmaster: Send address changes to: The

Computer Hacker, P.O. Box 1697, Kalispell

MT 59908-1697.

Address all editorial, advertising and subscription
inquiries to: The Computer Hacker, P.0. Box

1697, Kalispell, MT 59903-1697.

2 The Computer Hacker

FILE TRANSFER PROGRAMS FOR CP/M

by Lance Rose, Technical Editor

Bypassing Incompatible Diskette Formats

Although CP/M has by now established itself as the‘

“standard”8-bit microprocessor operating system, this

doesn’t mean by a long shot that programs are easily

transferrable from one computer running CP/M to another.
The CF/M operating system includes within it a section
known as the Basic I/O System or “BIOS" for short. This part
of the system is very machine-dependent and is what adapts
the other (standars) parts of CP/M to the particular hardware
it is being used on. These machine-dependent parameters
include things like the port addresses for keyboard and
printer, the disk controller type and the size and format of the
particular disk system involved. For this reason a version of
CP/M with a BIOS written for, say, the North Star Horizon
would be of no use on a Morrow Micro Decision or other
system with even a slightly different hardware configuration.

Since it is often necessary and desirable to move a program
from one system to another, a way must be found to overcome
the differences in all these versions of what is the “standard”
operating system. One way that allows a speedy transfer is to
simply have a version of CP/M with a custom BIOS written
for multiple disk systems. This would be used in a machine
with two or more disk controllers operating at the same time.
Each controller could have a drive connected to it and
assigned a logical drive name, for exampie an 8-inch single
density floppy might be Drive A, a North Star minidisk drive
might be Drive B, a TRS-80 CP/M format disk drive might be
Drive C, and so on. I think you can see right away that this
isn't a very practical setup. One would have to have all these
types of disk controller active in the same machine at the
same time {(a near impossibility considering the various
schemes used for addressing disk controllers). Also, it's
questionable whether any machine has enough slots for all the
different types of hardware required, and the BIOS would be
quite long and involved.

Another way of moving files around which, while slower, is
at least more practical, is to simply transmit the file from one
computer to another via some sort of interface. This method
has the advantage of not requiring the same disk system, in
fact it doesn't require the same anything except the interface
convention (i.e. RS-232, Centronics, Etc) and that both
machines have CP/M running on them. The connection
between the two systems may be a simple interface cable or it
may have a pair of modems and a telephone line between
them, thus allowing remote transfer of files. The modem
method is, of course, much slower since it is no problem at all
to send files from one machine to another on an RS-232 cable
at 9600 baud (some 32 times faster than most modems are
capable ofl) Still, it is sometimes impossible to place the
computers physically side-by-side and modems may have to
be used.

Transfer Conventions

With transfers between machines using a hardwired cable,
it isn't usually necessary to add a checksum to insure data
integrity (it doesn’t hurt, however), since interface reliability
in the absence of a phone line should be quite good. However
the case of transfer via modems is much different. Telephone
line quality can vary from good to atrocious (more often the
latter than the former) and some means must be adopted to
make sure that what arrives at the receiving end is the same
information that started out at the sending end. This is where
the checksum comes in. For each block of data sent the sum of
the bytes transmitted is calculated and at the end of
transmission of the block, this “checksum” is also
transmitted. At the receiving end the computer is adding up
the values of the bytes received one by one as they come in.

~ When the final data byte has been received, the checksum is

transmitted and examined by the receiving machine. It then
compares the checksum received with the one it has been
calculating and, if these are the same, it is assumed that the
block has been transferred correctly.

While an in-depth explanation of error-detecting and error-
correcting codes is not appropriate here, suffice it to say that
the probability that there will be two errors in transmission
which cause equal and opposite results is so minute as to not
be worth worrying about. In a case where something like
national security is involved, more elaborate error-detecting
and correcting codes are available to cover this possibility but
for our use they are not needed. In addition they would slow
down what is already a painfully slow method of moving data
between computers.

Choices of Data Format

There are basically two ways that data can be represented
during transmission from one computer to another. The first
of these is simple ASCII coding. This works fine for text files
but runs into a bit of a snag for machine-language or
executable programs. ASCII is defined as a 7-bit code with a
parity bit added as the 8th bit. However, binary files may
have any combination of bit patterns making up the byte and
can't afford to waste the 8th bit as a parity bit. In the case of
some existing file transfer programs, a binary file must first
be converted into a form that is representable by ASCII
characters (a HEX file) before transmission. It is then
transmitted and reconverted into a binary file at the
receiving end. While this works, it forces the transmission of
two bytes of data for each byte of binary information that
must be transmitted, thus in effect cutting the transmission
speed in half. Using this method would limit the effective data
transfer rate on a modem to around 15 bytes/second. As I
mentioned above, even 30 bytes/second is irritatingly slow
especially when transferring long programs, not to mention

the expense if this is happening iong distance. The alternative
to this, which I am using here, is to make sure the serial port
used is configured for 8-bit words and no parity bit. Most any
serial port can be configured this way with a little snooping in
the user’s manual. In fact I have found that most hardware
manufacturers use this is the default configuration for their
serial data ports. With this accomplished, a binary byte can be
transmitted as is, and any error-detecting can be left to the
checksum rather than the parity bit.

The Programs

The programs presented here are designed to work with
each other in moving files between CP/M machines. The basic
method of transfer is to have the receiving machine in control
of the situation. The transmitting machine waits until the
receiving machine is ready before sending anything. This
allows for the case where the receiving machine may have a
slow disk system and a large file is being transferred that
can't be buffered in memory in its entirety. The receiving
machine must pause to dump its buffer to the disk, and during
this period the transmitting machine must wait to insure that
it will not be transmitting when the receiving machine is busy
with its disk work. Upon dumping the buffer, the receiving
machine can signal that it is ready to begin accepting data
again and the transmitting machine can start sending at that
time.

An additional feature present is a certain amount of error-
correcting. The term “correcting” is a bit of a misnomer
because it is accomplished here by simply retransmitting a
garbled record until it is received correctly. There is a two-
way communication between the machines (full duplex) so
that they can decide when a record has been correctly
received. The number of retries for a badly-transmitted
record is 4 here but can be altered to any other value to suit
the user's purpose. Aborting a transfer is also possible since
the program polls the console device using a BDOS call, and if
the operator types a control-C, the transfer is terminated and
a message so stating is printed on the screen. As each record
is transmitted and received, a message is printed on the
screen so that the operator can monitor the process. If a
record must be transmitted, the word “again” is appended
to the message. When the entire file has been finally
transferred, the message “Transfer Complete” is printed and
the program reboots.

Procedure for Transferring a File

The procedure to follow in using these programs, once they
have been entered into the machine, is quite simple. First of
all, the user must identify the port numbers and input and
output flag bits for the serial port concerned. This
information is almost always available as part of the user
documentation for the system. These values must then be
inserted into the source listing for the programs and the
programs assembied.

If the connection is a hardwired cable it must connect the
serial interface on the first machine to the serial interface on
the second. In most cases a cable may be needed that reverses

The Computer Hacker 3

pins 2 and 3 of the DB25 connector on one end since it will
probably be the case that both machines are wired to connect
directly to printers and will use pin #2 for received data.
If the connection is being made via a phone line and
modems, each machine should have a cable suitable for
connecting it to a modem. Most computers are wired as DCE
{Data Communications Equipment, i.e. they emulate a
modem) and will probably need a crossover cable to connect to
an actual modem, but this is not universal so consult your user
manual on this.
. Since the receiving program is in control of the process, the
transmitting computer should begin first with the operator
typing ‘TX (drive:filenamel.filetype) where the items in
parentheses, the drive and filetype, are optional. The quotes
are not entered. If the filename is omitted, an error message
results and the program reboots. After waiting a few seconds
for the computer to open the file and load the buffer, the
receiving operator types 'RX (drive:)filenamel.filetype)’. His
computer then erases any old file by that name, opens a new
file and signals the transmitting computer to begin. At this
point the computers may be left alone until the process is
complete barring any unrecoverable error conditions.
In practice, even though the receiving computer is calling
the shots, I have found that it doesn’t seem to matter who
actually types his carriage return first, the sending or the
receiving party. The handshake link is established
satisfactorily either way and the transfer proceeds normally.
So don't worry too much about counting to five or whatever
before hitting return.

Multiple File Transfers

In order to keep the complexity of the programs down, it
was necessary to limit the transfer to a single file for each
execution of the program. This is not really a problem in the
case of long files since one would want to check on the
progress of the transfer periodically and re-executing the
program for the next long file wouldn't be a burden. In the
case of a large number of small files, I have found that the
best procedure to accomplish this is the SUBMIT utility of
CP/M. Making up a submit file such as:

TX PROG1.TY1

TX PROG2.TY2

TX PROG3.TY3

TX PROG4.TY4
and calling it SEND.SUB allows the whole thing to operate by
typing in SUBMIT SEND. The SUBMIT program then
executes each line in turn until all files have been transferred.
The receiving end computer must of course have a similar file
but with the letters RX in place of TX on each line. Our
procedure here is to first send the submit file with a manual
command, then have the receiving end operator edit it and
replace the TX's with RX’s. This helps insure that the order
of the programs being transferred will be the same on both
ends. The receiving computer operator can then type
SUBMIT RECEIVE (assuming he has named the file
RECEIVE.SUB). We have used this procedure to transfer
series of files that take an hour or more via modems and,

4 The Computer Hucker

Lusting |, continued
. . .
except for checking the machine every ten minutes or so, both Wi C.9
. . CALL BCOS iPrint EOF message
operators can work on something else during the transfer W L8N g
CALL XMTBYT iSend LOF byte
process. MP BOOT Y
RLADFL: LXI H, DATBUF
SHLD DATPTR sPoint at beginning of dats butter
s 3 U e Initialg 8 count ¢
: alise recor. unt to sero
“mmmg p READ: PUSH B
Th ffer the hacker a good ST
ese programs offer the hacker a WVl .26
p gr . g way tO move ﬁ]es CALL 8DOS :Bet DMA address
between CP/M machines, even with toatlly different disk i
Iy . N CALL BDOS Read next record
systems. The only requirement is that each have a serial port. PP D
: . . . POP B
Transfer can be made with either a direct interface cable or a ORA A Rt 2OF aetected
H etecte
i is i Lx1 H. 0088H
p'lr Of mOdems' (Why 18 lt I nlwnys w‘nt to make the plural Of DAD 2] sPoant at next record in buffer
. . XCHG
modems moda?) The programs are very tolerant of timing and R ‘Inerease record count
. h f sy waae . . 123 A,BUFREC
contain the facility for retransmitting records containing or
. “ . . . JNZ REAL :Btop at end ot extent
transmission errors. We have been using them in this area for wowore: wi
i i : 8TA EOFFLG 1Bet BOF {1
quite some time now and found them to be very satisfactory P TR -
IS . XMTRC2: LDA RPTFLG
for our purposes. The listings are included here for those who ™R A
R . nov E.A
want to key them in. If you would rather avoid the effort and CALL XMTBYT 18end response to request for record
err . l ed th k bo d h d d LHLD DATPTR tPoint at next record to tranemit
Or's InvVolv w1 e nvl B, BoH iCharacter count for record
y ar lng t € ata' sen 315 "o The L3 c.o 1Checksum tor record
: 3 M : XMTRCI: MOV Am :Get next ¢ to send
Computer Hacker for an 8-inch single-density floppy disk N H [Update posnter
e . ! Ll E. M sSave in £
containing a CP/M copy of the source files. ADE D
MCV B.A 1Update checksum
DCR B
Li‘tiﬂgl Nz XMTRC) :More ir record
MoV E, T
1 1 LL XMTBYT :6end checksum
Program to transmit a CP/M file Q3 end chec
A% C,4
MV] E,00H
Program to transmit & CP/M file througl a serial port XMTRCA: Sé:" ’g’ﬂ“ i6end 4 NULs to replace any missed bytes
: Accesses port directly, bypassing the BICS wz XMTRCA
: - d L] 2
: Assumes an 8-bit word length and Re parity SHLE DATPTR iBave pointer to next record
: Version of 9/2/83 Lx1 T, RECMSG
mv3 <, 9
i CALL BDOS 1Print record message
BCOT EQU 8e20H :CP/m reboct address LDA RPTFLG
BDOS EQU 005K :CP/M BIXS entry point ORA A
TFCB EQU SOSCH :FCB for file to be transmaitted J2 MEXTLN 18kip ‘again’ if successful tirst time
SIOSTA EQU o ;S1C status port LX1 D, AGAIN
SIOCAT EQU O6H 1817 data port L12¢ c.9
IFLAG EQU 22H :1rz.t flag for serial port CALL BDOS 1Print ‘sgain’ if record repeated
OFLAG EQU 8iM :Output flag for serial port NEXTLN: LXI1 C.CRLF
BUFREC EQU 128 :Bufter size (CP/M records) nvl c,9
H CALL 8008 1Print CRLF
PopP »
ORC 190K Jup READY 1Go wait for next prompt to send
7 COUNT: LX1 #, RECCHT +4
: 1f required, place serial port initialization code here COUNT1: IRR
: nvl1 A9
TX: LDA TFCB«1 np L] 1Over 97
CPl1 vt :Check for filename RRC
JNZ OPEN vl n s’
Lx1 C.FNMER :Print error message and reboot DCX
ABORT: MmVv1 c.9 nov AN
CALL BDCS CP1 ‘o
MV1 E,@4H IRz
CALL XMTBYT :Send ECT character nvi LTSN
JMP BOOT :Return to CP, M IHP COUNT1 1Put § in message
OPEN: x1 C.TFCB XMTBYT: 1IN S108TA 1Tranemit character through serisl port
A2 c,15 AN] OFLAG
CALL BLCS ;Oper file J2 XMTBYT
INR A mov AE
JIN2 FOUNL :File present our SIODAT
Lx1 L,FNFER ;POint at errot message RET
JmMP ABCRT :Print and reboot :
FOUNL: XRA A FMMER: DB ‘File name missing',®DH,BAH, ‘'S"
STA TFCB+3Z :Set next record byte to rerc PNFER: DB ‘File not tound',BDH,BAH, 'S’
MOV C.A :Set record count in tutfer to zero CLOFMSG: DB ‘Transfer compl ‘', 8DH H, 8TH, '§"
REACY: PUSh B ;Save reccro count ECTMSG: DB ‘Transfer terminated +BAH,B7H, '$"
421 c,il RECHMSG: D8 Record
CALL BDOS :Get console status RECCNT: DO ! " tRecord ¢ tranamitted
POP B B ' transmitted$’
ORA A AGAIN: DB ‘ sgain$’ tAepeated record
Jz REALY] iNO key pressed CRLF: o ODH, BAH, 'S " 1CRLF sequence
PUSH] DATPTR: Dvw DATBLF :Pointer to next . Aata byte to send
MVI [EOFFLG: DB L] 1Flaq tor EOF read
CALL BLOS RPTFLG: DB [] 17lag for repeated record
PCP B DATBUF EQU $:Data dbuffer
CP1 [X1.] H
JNZ REACY] ENC
ENDMMT: LXI L., EOTMEC :Praint EC1 message anc abort
Bl ABCRT
READY1: IN SIOSTA sResd serial status port um.‘z
ot b £ h t to be received : /M ﬁl
J2z REALY :Wait for character to be
IN S10CAT :Get rece:ved character Prozram to receive a CP e
AN1 TFH :Mask of! bit 7 for ASCIl codes
CP1 84H 1 143
3 : Program to receive a CP/M file through s serial po
gil :snﬂ FERG trangmistien H Ac::llol port directly, bypassing the BDOS
Jz XMTRLC :Transrit next record Assumes an B-lit word length and no parity
CcPl 2K :
JINZ REALY ;lgnore other characters Version of 9/17/8)
LHLC CATPYF :
LxI r,-0068H :
3 T [laal :CP/M rebcot address
DAL C ;Poant st Jest record :ggs m’ 2005H :CP/M BDOS entry point
SHLL CATPTR TFCH ZoU SB5CH ;FCB for file to be tranmmitted
INR [:Go back one record SI1OSTA EQU oM™ 1810 status port
XMTREC: DCR A SIODAT ECU o6H :$10 dats port
STA RPTELG iSave repest flaa IFLAC EQU o tinput fleg for serial port
€z CCULNT iincrease record message 1! new recoro OFLAC fou oliH ;Output flag for serial port
XMTRC1: DCR C tDecrease record count BUFRIC EQU 120 ;Butfer sise (CP/M records)
P XMTRC2 iMore an bulter RETRY EQU . iMumber Of retries before quitting
LDA ECFFLG A
ORA A " " N
Jz REACFL More 1n file . H
Lx1 L ECPMSS continued onG 106w contrned

The Computer Hacker 5

Lesting 2 contemued _
. nv1
. 1f required, place serial port initialiestion code here 3114- 1Print CRLF
~x: Lca TFCB+1 bCR iDecrement repeat counter
Pl c :Check for filename ror
In2 OPEN Jnz rUnsuccessful reasd
LX1 [, FNMER :Print error message and reboot nv3
ABCRT: MVl c.9 B1A 1heset counter for next record
CALL BLOS Lx1
L3} E, 04K INR
CALL XMTBYT 15end EOT character fotos
Imp BOOT 1Return to CP/M onp 10ver 97
OPEN: ix1 T,TFCB INC
mv1 c,19 nvl1
CALL 8DOS :Delete old file if present BCX
Lx1 L.TFCB nev
M1 C.22 CP1
CALL BLOS 1Make new file INZ T
IKR A (a2} n's
Lx1 C, DCFER iPoint at error message INP COUNT jPut 9 in message
Jz ABCRT tPrint and reboot BUFCHR: LHLC DATPTR
START: MVl c.3e i5end same NULs farst Lx1 C.-(DATBUF+BUFREC*128)
mV1 E,B8H Cac 4]
ALLS: CALL XMTBYT cc FLUSH :Flush bufter if full
LCR [Jmp RLALCY 160 look tor next record
JNZ NULS BLUSH: Lal C.DATBUF :btart ot beginning ot buffer
N S10DAT iClear serial data port FLUSHI: AMLD DATPTR
REACY: LDA RPTCTR NOV A, D ;Compare to see 1f empty
CPl RETRY (o} 4 L]
MVl L,B1H JNZ FLUSH2 More to go
Jz REALY] ;First taime for this record MOV AL
INR E ;Change request character to B2H onp L
ORA A :Test repest counter K1%3 FLUSH2
Jug READY) :Try again i$ not zero . Lx) M, CATBUF
ENDXMT: LXI D, EOTMSG ;Print EOT message and exit SHLD DATPTR 1Reset datas pointer
JImp ABCRT RET
REACY]1: CALL XMTRYT 18end prompting byte FLUSH2: PUSH c
READYZ: MV1 C, 11 . (123 c,26
CALL Bros :Get console status CALL BLOS iBet DMA address
ORA A A Y] C,'TFCB
Jz READY 3 . :No key pressed vl c, 21
nv1 (9] CALL BOCS i¥rite record
CALL BDOS POP t
<Pl B3H ORA A
J2 ENDXMT :Terminate if control-C pressed Jz FLUSH) 1Go0d write
READY3: 1B SIOSTA 1head serisl status port LXx1 D,DLPER :Disk error
ANl IFLAG Jmp ABCRT
Jz READY2 1wait for character to be received FLUSH3: LXI H, 0086H
1N SI0OCAT iGet received character CAL D 1Point to mext record
ANI TFH iMask off bit 7 for ASCl! codes XCMG
(931 83H pL1d FLUSH] GO write it 1f present
J2z CLOSE :Flush buffer and ciose file CLOSL: CALL FLUSH 1Flush butfer of data
CP1 [23] LX1 L, TFCB
Jz ENDXMT :End transmission 12} C.16
CPI1 OlH CALL BLOS :Close file
Jz RCVREC :Receive next record X1 L, EOFMSG
crl ozH 191 c,9
JINZ REALY2 1Ignore other characters CALL BLOS :Print EOF message
RCVREC: M\1 B.boh :Byte count for receord Inp BOOT : Redoot
mvI D,8 slnatialize checksum RCVBY1: 1IN S10STA iReceive byte from serial port
LHLL DATPTR ;Prepare tc store data AN1 1FLAG
RCVRC1: CALL RCVBYT :Get & byte Jz MCVBYT
MOV MA ;8tore in data buffer IN SIODAT
Imx] RET
ADD D
oV LA :Update checksum XITBYT: ::1 ggzl 1Tranemit byte to serial port
bcr B J2 neTRYT
JIRZ RCVRC1 :Continve for 128 bytes nov ALK
CALL RCVBYT :Get checksum ouT S10DAT
P [RET
PUSH PSw :Save status s
JINz RCVRC2 :Bad read FNMER: DB ‘Tile name missing' ,80H,8AH,'§’
SHLD DATPTR :5ave new record pointer DDFER: DB ‘Disk or directory full',BDH,SAH, '§'
RCVRC2: LX1 B, RECHSG EOFMSG: DB ‘Transfer complete’ 0DH,BAH,87H,'S
nvI c.9 EOTMSG: DB ‘Transter terminated’, D, BAH,87H, ‘$’
CALL BDOS sPrint received record m RECMSG: DB ‘Record ¢°
LDA RPTCTR RECCNT: 08 N 1 1hecord § received
CPl RETRY e ' receiveds
Jz RCVRC3 iFirst try AGAIN: DB ' againg’ 1hepeeted record
ix1 L, AGAIN CRLF: De SOH. BAN, '§ 1CRLF sequence
(131 c.9 X . CATPTR: Dw DATBUF ;Pointer to next storage location in buffer
CALL BDCS ;Print ‘again’ RPTCTR: DB RETRY 1Counter for repeated record
RCVRC3: LXI D, CRLF DATRUF EQU $ 1Data butfer .
continued o

A Challenge to FORTH Advocates...

Our readers are involved with interfacing and control, and are interested in hearing more about
FORTH. Here is your chance to convince them of the advantages of FORTH. .
Submit your outline or articles (SASE appreciated) for prompt consideration. Author’s guide
available. Write to:
The Computer Hacker
P.O. Box 1697, Kalispell, MT 59903-1697

6 The Computer Hacker

THE RS-232-C SERIAL INTERFACE

by Phil Wells—Technical Editor

Introduction
The first part of this article discussed the electrical,
mechanical and functional specifications of the EIA RS-232-C
serial interface standard. Part two will briefly discuss the
“standard configurations” defined in RS-232-C, then describe
some real-world configurations and present
suggested “hacker” standards.

several

Standard Configurations
The RS-232-C standard defines 13 “Standard Interfaces,”
called “Interface Type" A through M, with a fourteenth
catagory called Interface Type Z for specials defined by the
manufacturer. I think every “RS-232-C compatible” interface
I've ever seen in microcomputer equipment has been “Type
Z,” including those found on typical low-cost modems.

The standard interface types are defined in terms of which
interchange circuits are implemented. All standard
configurations include a number of circuits required for that
type, plus possibly some circuits required for switched
service, some required for synchronous service, and some
optional circuits.

Keep in mind that the standard defines a serial interface
between a computer or terminal (Data Terminal
Equipment—DTE) and a MODEM or Data Set (Data
Communications Equipment—DCE). RS-232-C was not
intended to define an interface between a computer and
printer, or directly between two computers.

Some often-misused terms apply to the interface type
descriptions:

Simplex: One-way-only transmission. Not reversible.

Half Duplex: Two-way transmission, but only one way at a
time.

Full-Duplex: Two-way simultaneous transmission. Often
mistaken for “Echo” or “Echoplex”. An echo is when the
characters you type on your keyboard are not immediately
displayed on your screen; instead they are sent to the remote
computer which echoes or returns them to your terminal
which then displays them. This is a simple but very good
means of error checking for character-at-a-time transmissions.
If your terminal sends your typed characters directly to
your screen and the remote system is echoing, you will
see a double of every character you type. If your terminal
software requires a remote echo but the remote computer is
not set up to provide an echo, you will see nothing on your
screen when you type; in this case your modem may provide a
local echo if you switch it to Half Duplex.

Switched Service: Additional control circuits are required
if the link includes switched communication circuits.
Generally, this means that if you have a dedicated (non-

Part Two

switched) set of wires connecting the two Data Sets, you do
not need complete handshaking between the DTE and DCE.
However, if you are connected to the PSTN (Public Switched
Telephone Network) or to some other arrangement where the
data sets might not always be connected, you are required to
include the additional control interchange circuits.

The simplest standard type requires four wires (figure 1):
Signal Ground, Transmitted Data, Clear To Send, and Data
Set Ready. Data Terminal Ready and Ring Indicator are
required for switched service. This configuration, Type A, is a
transmit-only Simplex (meaning one-way only) type interface.

DTE DCE
(terminat) {modem)
SIGGND 7 7 SIGGND
TxD 2 > 2 TxD
CTs 5 - 5 CTs
DSR 6 < 6 DSR
Figure 1: Standard interface type A. Simplex transmit-only

The handshaking here is strictly one-way. Before
transmitting, the DTE must check for an “on” (high) level on
the CTS and DSR lines. DSR “on” means the DCE is
connected to a communication channel, is not in test, talk or
dial modes, and has completed any answer tone and timing
functions. CTS “on” means the data set (DCE) is ready to
transmit data to the communication channel.

Interface type B (figure 2) is the same as type A with the
addition of the Request to Send line, by which the DTE can
tell the DCE that it wants to transmit. This allows the DCE to
disconnect from the channel between transmissions. Ring
Indicator is required for switched service.

DTE DCE
SIGGND 7 7 SIGGND
TxD 2 > 2 TxD
RTS 4 4 RTS
c1s 5 -t 5 CTS
DSR 6 < 6 DSR

Figure 2: Interface type B includes RTS handshake line

The other four-wire interface is Type C, a Simplex receive-
only interface using Signal Ground, Received Data, Data Set
Ready, and Received Line Signal Detector {Data Carrier

Detector). See figure 3. There is no handshaking involved
here, except that if either DSR or DCD is false, the DTE
knows the DCE will not transmit data.

Interface types A-E define primary channel only
interfaces; the rest include a secondary channel.

OTE DCE
(terminat) (modem)
SIGGND 7 7 SIGGND
RxD 3 <— 3 RxD
DSR 6 < 5 DSR
Dch 8 < 8 Dco
Figure 3: Standard interface type C. Simplex receive-anly

The simplest full-duplex (two-way simultaneously)
configuration is interface type E (figure 4). This requires six
wires: Signal Ground, Transmitted Data, Received Data, Clear to
Send, Data Set Ready, and Received Line Signal Detector.

DTE DCE
SIGGND 7 7 SIGGND
TxD 2 S 2 TxD
RxD 3 ~& 3 RxD
CTs 5 - 5 CTS
DSR 6 — 6 DSR
DCD 8 — 8 DCD
Figure 4: Standard interface type £. Full duplex.

The remaining standard configurations are much more
complex than needed for most simple tasks. In the real world
of low-cost microcomputer equipment we seldom see any of
these “standard” types.

The Real (Micro) World.

The remaining discussion concerns communication
between a computer and printer or between two computers,
etc.; not between a computer and a modem.

The purpose of the control lines is to ensure that nobody tries
to send data unless someone is ready to receive. If the control lines
are not used, things go all right until the receiving device's
input buffer overflows. Figure 5 shows a very common three-
wire interface between a computer and a printer. Note that
the leads between pins 2 and 3 “cross over” since both the
computer and printer are set up internally as DTE. THis works
if the printer can print faster than the computer sends data.
For example, a Tally 1805 printer printing at 200 characters
per second can stay ahead of a computer sending at 1200
BAUD (about 120 characters per second). But if an 80-character
per second printer (or a higher BAUD rate) is used, large chunks
of text will not be printed; when the printer’s input buffer
overflows, data is simply lost. Some printers will sound a warning
buzzer, turn on an indicator light and stop printing when an
input buffer overflow occurs.

The Computer Hacker 7

Computer Printer
(DTE) (DTE)
SigGna 7 7 Sig Gnao
X0 2 > 3 RXC
RXD 3 — 2 X0

Figure 5: Simple 3-wire printer cable. where the cdmpuler 1s DTE

Notice in Table 1 there are two circuits for the DTE
(printer) to send control signals to the DCE: RTS and DTR.
The Request to Send line, when high, tells the DCE that
the DTE wants to send data; the DCE usually responds with a

Pin RS-232-C CCITT Mneumonic Description
1 AA 101 GND Protective Ground

2 BA 103 TxD Transmitted Data

3 BB - 104 RxD Recewved Data

4 CA 105 RTS Request to Send

5 cB 106 CT1s Clear to Send

6 cC 107 DSR Data Set Ready

7 AB 102 GND Signal Ground

8 CF 109 DCD Rcvd Line Signal Det.
19 SCA 120 SRTS Secondary RTS

20 cD 108.2 OTR Data Terminal Ready
22 CE 125 Ri Ring Indicator

Table 1

Clear to Send. When the DTE is ready to receive data (printer's
buffer is empty, paper and ribbon are O.K.) it raises the Data
Terminal Ready line high. The simples: and most common way
to add a hardware handshake line to the three wire interface
shown in figure 5 is to add a DTR/DSR line, as in figure 6.

Notice also that the DCE uses five control lines to signa!
conditions to the DTE (primary channel only). These are Clea
to Send, Data Set Ready, Data Carrier Detect, Signal Qualit
Detector, and Ring Indicator. The last three only make sens
in the context of a modem, but you'll find that many RS-232-
DTE ports will not send unless CTS, DSR and DCD are a
high (which is actually what the standard says).

Given these sets of control lines, we find some common config
urations which are different designer’s attempts to find a reasonahly
cost-effective simplification of the formal standard.

We find that the Data Terminal Ready/Data Set Ready and

the Request To Send/Clear To Send pairs are the most often
implemented lines, with Data Carrier Detect appearing less

Computer Printer
(BTE) (DTE)
SIGGND 7 7 SIGGND
TxD 2 > 3 RxD
RxD 3 < 2 TxD
DSR 6 < 20 DTR

Figure 6: Handshake line added to 3-wire cable

b [h¢ (u/l[/rql: r /l!l".l‘t '

frequently. The remaining lines are very rare on low-cost (and
some not-so-low cost) equipment.

When the DTR/DSR pair is used, the procedure is for a
DTE to set DTR high when it is prepared to listen, and to
check that DSR (from the DCE) is high before talking.

When the RTS/CTS pair is used, the procedure is for a
DTE to set RTS high when it wants to send and to make sure
the DCE has responded with CTS high before sending.

The Data Carrier Detect (Data Carrier Detected) control
line often causes complications when a DTE computer is connect-
ed to a DTE printer, since there is no “complimentary” line
as there is with the DTR/DSR and RTS/CTS pairs. Comput-
er or terminal serial ports often include a DCD input because
most MODEMs use a DCD output to signal that they are
receiving a carrier — essential to rommunication between
MODEMs. Again, when you want to connect two computers,
both DTE, using a "MODEM eliminator™ or “null MODEM”
cable as shown in figure 6. E

Several printers use the Secondary Request to Send
(SCA —also called Reverse Channel Request to Send) line to
signal the host computer that the printer wants to transmit a
message — usually status or an error message —back to the
computer. Although SCA is officially pin 19, at least one
device calls pin 11 SCA (pin 11 is officially unassigned).

NOTATION INTERCHANGE VOLTAGE
Binary State -3t0-15 +3to +15
1 0
Signat Condition Mark Space
Control Function 0off On

Table 2

Some Real Examples .

Let's start with an example of what passes for a
“complete” set of leads in the micro-world. Figure 7 shows the
signal leads implemented in the IBM Asynchronous
Communications Adapter for the IBM PC and XT models.
This is about as complete as you are likely to find in personal
computers. Machines designed for use in master-slave multi-
station systems will have more control leads, but that is a
different world. This is an “RS-232-C-like” interface
permanently configured as Data Terminal Equipment.
Connecting this to a Hayes SmartModem 300 is simplicity
itself; a straight-thru cable works fine —but watch out! IBM
put a current loop interface on pins 9, 11, 18 and 25 of its DB-
25P connector. You need to be sure the device you're
connecting to doesn’t use these pins if you use a 25-wire cable.
I just used a 9-wire cable.

Note that IBM is one of the few to actually use a male
connector on the DTE, as specified by RS-232-C. Now, if only
they hadn't stuck on that current loop, and if only they had
used a Centronics-style connector on their parallel printer
port instead of a DB-258.

It is not possible to know exactly how the control lines on
this port behave just by examining the documentation
accompanying the adapter card, since this card is highly
software-controlled. To know which lines are used for

“handshaking”, which lines generate interrupts, and which
lines are ignored, you need to examine both the hardware and
the software. Since you rarely have access to be-h (on both

equipments, remember), there can be a lot of c.. 4nd-try in
the cabling.

DB25P

Output —_— 2 Transmitted Data
Inpul ———————3 3 Received Data
Qutput ———ﬁ 4 Requestto Send
Inpyt =————— 5 Ciearto Send
Inpyt —————— 6 Data Set Reacy

——— 7 Signai Ground
input ———-ﬁ 8 Carner Detect
Output ——————> 20 Data Termina! Reacy
Input ——————> 22 Ring indicator

Figure 7: iIBM PC and XT Asynchronous Communications Acapter —
"'RS-232-C-like’ interface

Figure 8 shows the cable recommended by Apple to
connect a Qume Sprint 5 or DEC LA120 printer to an Apple
III computer. This illustrates several common problems. The
Apple III's built-in serial port is hard-wired as DTE; so is the
printer. The “MODEM eliminator™ or “null MODEM" cable
crosses some leads so that each device appears to the other as
a DCE. Note that DTR and DSR are paired, but crossed over.
Also note that the DCD inputs are driven by RTS, and that
each device's CTS input is driven by its own RTS output.

Apple IHi Qume Sprint 5. DEC LA120
Chassis Gnd 1 =o' ChassisGnd
Signal Gnd 7 &—————e 7 SignalGnd
Trans. Data 2 &—p———e 3 RcvdData
Revd Data 3 ¢e——<«——e 2 Trans Data
RTS 4 m eg DCD
C18 5 5 (TS
DCD 8 o—-——4——§ 4 RIS
DSR 6 ¢——ae——e20 DIR
DTR 20 ¢———p———8 6 DSR
Figure 8. *"Modem eliminator ~ cable between Apple Hl and Qume Sprint
5. where both devices are DTE

Figure 9 shows Apple’s recommended cable for connecting
an Apple III to the IDS 440, 445, 460 and 560 line of printers.
These printers do not provide software handshaking. Their
serial interfaces are receive-only. They are also unusual in

Apple 11! IDS 440.445,460.560
ChassisGnd 1 @=——————o Not Used
Trans. Data 2 @we—ep————e3 Rcvd Data

DSR 65—4—020 DTR
DCO 8

Signal Gnd 7 &—————e 7 Signal Gnd

Figure 9: Cabie between the Apple [ii's built-in seral interface and IDS
printers. Data goes one way only. so the handshake is one-way only The
IDS DB-25P includes a paraltel intertace

that the circuit-board mounted connector is a male DB-25, and
contains a parallel interface as well as the “RS-232-C" pins.
These printers signal an input buffer-full condition with the
Data Terminal Ready line; this is the most commonly used
line for this purpose.

Figure 10 shows an Apple III to Okidata 82A printer
connection. The Okidata printer manual calls pin 11 “SCA", or
“BUFFER BUSY/FULL". This pin is offically unassigned in
the RS-232-C standard, which calls pin 19 SCA or “Secondary
Request to Send”. The excellent Mannesmann-Tally 1805
printer also provides a READY/BUSY signal on pin 11, but
covers the spec by providing the same signal on pin 19. Notice
that the Okidata printer is using its own DTR output to drive
its DSR input. This satisfies the printer's requirement for an
external pull-up on its DSR line.

The Computer Hacker 9

Apple Ii Serial Card Printer
Frame Gnd 1 &——— e 1 FrameGnd
Trans. Data 2 &——p———9 3 RcvdData
Rcvd Data 3 &=——e—@ 2 Trans Data
E 4 e—> 9 4 (IS
5 ¢——weg——o 5 RTS
6 6——>»———e 6 DSR
Sngnathd[7 &————— 7 SignalGna
§ ¢—>»——o g QCD
Lo e——e—e20 OIR

" Figure 12: Reat-world nearly usefess interface. Notice the control lines

on the Apple Serial Interface Card are simply jumped together There (s

no handshaking capability [f the printer's input butfer fills. data will be

lost. The BAUD rate must be set so Siow that the printer can always

stay ahead.

Apple 111 Okidata 82A
Frame Gnd 1 @e—e————¢ 1 frame Gnd
TXData 2 ¢&——>———o 3 RXData
Signal Gnd 7 @e——-—— 7 Signat Gnd
DSR 6 @~——e———@11 Buffer Busy/Full

T o
20 DOTR

Figure 10: Both ends are DTE. Note use of pin 11 (unassigned by the

standard) as Buffer Busy/Fuli signal from printer

Figure 11 shows Okidata's suggested connecting cable
between an 82A printer and a Radio Shack Model II's built-in
serial port. Notice that the printer’s busy signal (11} is
connected to the computer’s CTS (5) input, with the DTR/DSR
pair crossed over. Compare this with figure 9.

Figure 13 is from the NEC 7700 series Spinwriter printers.
It illustrates the implementation of a complete DTE RS-232-C
interface designed to connect to a modem with additional
printer control functions on the two test lines and three
unassigned lines. The five additional functions are provided
for use in direct-connect (no modem) situations to provide

‘more complete control of the printer. A “standard” computer

serial port would not be able to take advantage of these lines,
but they would be very useful in an OEM (custom) design.

Radio Shack Model I Okidata 82A
Frame Gnd 1 &————9 1 FrameGnd
TX Data 206—>———e 3 RXData
CT1S 5 &——<———o 11 Butfer Busy/Full
Signal Gnd 70—————e 7 SignalGnd
DSR 6 &—<———e20 DIR

DTR 20 ¢&——>»——e 6 DSR

Figure 11: Two-way handshake for one-way data? Not really; the printer's

DSR requires external puli-up.

Figure 12 is from an Apple Serial Interface card manual,
purporting to show how to connect this card to a printer.
Notice that the printer’s control outputs are fed back to its
inputs. This is because the Apple serial card contains no
driver circuitry (or receivers, either). No handshaking is going
on here; the jumpers are needed to satisfy the printer’s
control input requirements. If the printer’s input buffer fills,
data will be lost, so the BAUD rate must be set low enough
that the printer can stay ahead of the computer. Apple has
replaced this older card with the Super Serial Card, probably
the best example of a universal (in terms of flexibility) serial
interface card I've ever seen. Far superior to the Apple III's
built-in serial port.

Transmitted Data —»—o 2 XD BA
Received Data «——e 3 RXD 88
Request to Send —»—e 4 RTS CA
Clear To Send «—e 5 C1s c8
Data Set Ready «———e 6 DSR cC
Signal Gng ————e 7 Signal Gnd AB

Carrier Detect «——o 8 0CcoD CF
*Rese! «—e 11
*Keyboard Inhibit «——e 18

Reverse Channel ——»—ae 19 SCA
Data Terminal Ready —»—e 20 DTR
*Print Inhibit «———e 21
*Buzzer «——-o 22 CE

*Paper out/ Ribbon eng ——»—=e 23
*Interrupt/ Break ——w——e 25

Figure 13: NEC 7700 series Spinwriter. “Only used with keyboard version

Figure 14, the Qume Sprint 5 serial port, illustrates what 1
think is an excellent idea. This looks like a fairly typical RS-
232-C port, but it has a useful twist. A switch just behind the
front panel of the printer but accessible without removing
screws can be set to MODEM or NO MODEM. In the NO
MODEM position, the CTS and DSR (and presumably DCD)
inputs are ignored and cither the RTS or DTR output line
can be used for “hardware nanasnaking In a uirect
connection to a computer. These lines will be turned off
(negative) when the input buffer is within two characters of
being full and will be turned back on only when the input

10 The Camputer Hacker

buffer drops to within ten characters of empty. If the printer
is connected to a modem, the switch is set to the MODEM

position and RTS, DTR, CTS, DSR and DCD become standard
RS-232-C control lines.

shown in parentheses. Data is received on pin three; the RS-
232-C line receiver (inverting) meets the termination

requirements. The interface signals that it is busy by putting
a negative voltage on the DTR line.

(Rcvd line signal detector)
Data Terminat Ready ——< 20 Qutput. High = Reagy.

Low = Busy

Figure 14: Qume Sprint 5. Inputs 5.6 and 8 are 1gnored when the Sprint 5
1s switched 1o ~"No Mogem

DTE DB825S
Looks Like DTE(DCE,
1 Frame Gnd ————=< 1 Reva Data R %)———————kl 3 AxD Data 1n
Trans. Data ~—~—<¢ 2 QOutput Software Handshake [@ XD
Revd Data =—————< 3 Input. Data to Print {RS-232-C Line Recever MC14881
Request to Send =————< 4 Qutput ;
Clearto Send =————=< 5 Input. Must be High Busy/Ready j>0 _ g w0 Reacs Busr -
Data Set Ready =——= 6 Input’ Must be High | (6 DA
S;gnal Gnd < 7 (RS-232-C Line Drn:ev MC14834;
Data Carrier Detect ——— 8 Input: Must be High |

Recommendations for Hacker Projects

We will find three and possibly four serial interface
situations in our construction projects: simplex send-only,
simplex receive-only, full duplex and possibly half-duplex.
Recall that half-duplex means two-way communication, but
only one direction at a time. Full-duplex means two ways at
the same time.

Most serial interfaces today use an integrated circuit
called a UART or USART. This device provides most of the
circuit functions needed to convert a microprocessor’'s
parallel data to serial, to buffer the received and transmitted
data, and to control at least a few of the interface iines
(USARTsS). These devices will be covered in detail in a future
article. For now, be confident that one of these devices, a few
support chips and a little software makes it easy for us to
implement any of the three or four configurations needed.
The limitation is that these chips usually provide at most
three or four of the RS-232-C Control Interchange functions,
so we need to decide which ones to use and keep these to a
minimum.

We need signal ground, transmit data or receive data or
both, and some way for a receiving device to indicate a busy
eady status. For a design where we don't know what will be
on the other end of the cable, we should provide more of the
control lines. We can save effort by using a jumper
arrangement to “configure” the port.

To avoid confusion over lead names, Table 1 gives the RS-
232-C names, the common-use mnemonic names, the CCITT
names, and the descriptive names of the interchange circuits
we will be using. Table 2 should remind you that an ON
condition on a control line is a positive voltage.

A simple receive-only design recommendation is shown in
figure 15a. I'm going to assume we are making Data Terminal
Equipment; if your design is for a DCE, connect the pins

Logic Gna

Figure 158" Pn numbers .~ 11 are ‘or OCE

Figure 15b is a suggestion for making this receive-only
design more flexible. The jumper blocks can be the dual rows
of pins spaced 0.1 inch apart, available from Radio Shack and
many mail order firms. These are conveniently jumpered with
small, two-pin female blocks, or with wire-wrap wire. These
jumper blocks allow you to configure the hardware as either
DTE or DCE. The dashed lines indicate the “most standard”
connections. Note that you can get away with driving more
than one line (e.g., CTS, DSR and DCD) from one MC1489A,
even though this might not exactly meet the RS-232-C specs.

DTE (DCE)

’f‘ \\
.]
Roctts — om0 O——& 3 PXD
N I !

Data in
O—————'(21 TXD
[}
|
|
. - Logic Gna i
Reagy - Busy

/7 v
i 7
Busy/Ready = ———— o———*\’ 20 DTA
O——K 4 AT
O——— (5 €78
O———+ (6) DSR
< 0—~7———t\ 8 DCO

Figurs 15b: Simplex receive only with OTR Ready Busy Pin numbe’s in (, are tor OCE

Figure 16 is a suggestion for a transmit-only interface.
Eliminate the jumpering if you have a dedicated situation:
this arrangement makes it possible to accidentally short
multiple line driver outputs together (e.g., CTS, DSR and
DCD outputs from a DCE). The DTR and SCA ready/busy-
lines are provided in case this port must be configured as
DCE to drive a printer which signals buffer full on pin 20 or
19. Unfortunately, a fair number of printers use the SCA
{Secondary Request to Send) as a “handshake” line.

The full or half duplex (controlled by software) general-

Looks Like DTE (DCE)

Transmitted Data ———DO-—————————{(2 XD
Data Out

] (3) RXxD

Request to Send

G———< 4 RIS

O——— 20 01R
é—D-uo OTR o———K @ oo
(s)

c1s

(6) DSR

7 Signat Gno
|
|

o——K 5 18
O & 0sh

O 8 DCD

O (19) SCA

o——4 (20) OTR
1

Ready/Busy -

~(P<sosn

Figure 16: Simpiex send-only Preferred connection = dashed line It would be a good idea to
provide a separate driver and recewver for the DTR and DSR iines

The Computer Hacker 11

available to you. The most commonly omitted input is the
Ring Indicator, since this is only used with a direct-connect
modem. Figure 18 is a suggested layout for use with USARTs
having only two control inputs and two control outputs.

Given the variety of configurations of both DCE and DTE
with which your general-purpose DTE interface may have to
work, it may be simpler to forget the jumpering and
build custom cables such as those shown earlier in this article.

purpose DTE interface in figure 17 assumes you are using a
USART which provides two output and four input control
signals. These are inexpensive and readily available today.
For most applications, one output and one input control will
work; which ones you select depends on what parts are

2 TXD

3 RXD

20 DTR

N |
Al —-C}J—b —1< 2w

Figure 17: Full duplex general ourpose DTE. can be umperad to a DCE contiguration

XD

3 RxD

RXD

’
DTR _,_4‘ »-—i

14
ATS %

o]

20 DTR

(6) DSR

|
PR
|
\

-] 4 RIS
o————-—L—< {5) €T
|
O——T—((8) DCD

O—————=(20) OTR

25——1——-(5 CTS
o—IL> <

|
O—————) #TS

Figure 18: Full dupiex generat purpase jumperabie as esther DTE or (OCE) for use with USARTs
with Only two control Inputs

Parts one and two of this series have examined the
RS-232-C standard from the viewpoint of the microcomputer
user. The standard was written long before the invention o:
the micro, so it takes a bit of shoe-horning to make it fit our
needs. It is often mistakenly thought that this standard
describes methods of encoding data to be transmitted. Not
s0; several other standards cover the ASCII code, start bits,
stop bits, parity, synchronous and asynchronous techniques
and handshaking protocols.

Part three of this series will describe methods for actually
transmitting information over the TxD and RxD interchange
circuits, and part four will present some of the integrated
circuit chips needed to build a working serial interface.l

12 The Computer Hacker

BUILD A HARDWARE PRINT SPOOLER

Part One: Background and Design

by Lance Rose, Technical Editor

Most users of microcomputer systems would probably
agree that printing hard copy is the slowest process occurring
in their systems. Due to its highly mechanical nature, the
printer simply can't keep up with the flow of data coming
from electronic circuitry where processes occur in milli or
microseconds. If you're like me, you've probably spent hours
Jjust watching your printer chug through a long program
listing or print an endless series of statements or reports.
With few exceptions, there simply isn't anything to do except
watch the printer during these long outputs.

Since this isn't by any means a new or unique problem with
computer systems, ways have been devised to keep the
printer busy but still allow the user-operater to continue to do
something useful with the computer while the printing
process is going on. This is done by a method known as
“spooling”

There are two general types of spooling used which 1 will
call “software spooling”and “hardware spooling” . In the
software version, instead of the computer sending each
individual character to the printer, a slow process that occurs
at printer speeds, the entire output to be printed is sent to a
disk file known as the “spool file”. Since writing to even a
floppy disk is much faster than writing to a printer, this
happens quite fast and the CPU is then free to perform some
other task. But wait a minute. How does the output get from
the disk file to the printer? This is done with some special
software built into the operating system. This software
knows when the spool file has something in it that needs to be
sent to the printer. When this condition exists the software
allows interrupts from the printer to occur whenever the
printer is ready to accept a character. When each interrupt

occurs, the interrupt handling routine retrieves one character
from the spool file (actually from a buffer containing perhaps
a sector at a time of the spool file) and sends it out to the
printer. This takes very little time since the printer is already
known to be ready and the CPU doesn't have to sit around
waiting for this to happen. The result is that the time used for
printing can overlap with useful time for doing another job
with the system.

This method of spooling is widely used on mainframes and
minicomputers where there is usually ample disk space (more
often than not a hard disk or two) and where the operating
systems include the necessary software to handle the
spooling process. There is even a program available for
CP/M?® which will perform this process, albeit in a somewhat
simplified manner, called DESPOOL® , available from Digital
Research. Its use in microcomputers has been limited by the
lack of true interrupt-driven operating systems as well as a
lack of disk space in many systems thus denying the user a
place to temporarily store large files to print.

The hardware spooling method is something that has
become popular only in the last year or so in the
microcomputer area. In this method the output is sent to a
separate hardware print spooler which is most often simply a
box containing a chunk of memory and a microprocessor. The
communication to this device is performed at very high serial
data transfer speeds (9600 or 19200 baud). The spooler
performs two simultaneous functions. First, whenever a
character is received from the computer it is input and stored
temporarily in the spooler's RAM for later printing. Second,
whenever the printer is ready and there is something in the
RAM that should be printed, the spooler outputs this to the

printer. In addition, due to the fact that the memory of the
spooler may be exceeded by the size of the printing job, the
spooler must handshake with the computer and let it know
when to stop sending characters. Similarly the spooler must
be able to handshake in the other direction with the printer to
keep from overflowing the printer's buffer in the case where
the data transmission rate to the printer exceeds the actual
physical printing speed. Since a number of handshaking
conventions are in existence, the program used to run the
spooler {contained in a ROM} must be able to determine or be
preset to use a particular handshake convention. In the case
of printers using the RS-232 serial interface standard, many
use the DTR line (pin 20) to indicate a printer busy condition.

The main advantage of hardware spooling is that no
changes to the software or operating system are necessary.
As far as the computer is concerned, it is simply sending data
to a very fast printer with a very large storage buffer. All
that needs to be done is to reconfigure the serial port
hardware for a faster baud rate than if it were communicating
with the printer directly. Another advantage is that the
method is not limited to any particular hardware or operating
system. Any computer that has, for example, an RS-232
interface can output to a hardware spooler instead of a
printer. The same would hold true if a Centronics interface
were being used.

Of course there are some minor disadvantages to this
spooling method. The only serious one is that there may be
printing jobs that exceed the spooler memory size. If this
happens then there is no appreciable speedup in printing
since the computer must wait for the spooler to send some of
the text to the printer before filling up its (the spooler’s)
memory again. This may occur a number of times before the
last portion of the data to be printed is finally sent to the
spooler. During the time that the spooler is emptying its
memory to the printer, the computer is still waiting to send
more output to the spooler and is thus prevented from
beginning another task. Of course, since it is simple to provide
a hardware spooler with up to 64K of RAM this should not be
too much of a limiting factor except in the case of enormous
printouts! In fact, in most applications much less than 64K of
RAM can be used with a savings in expense. Most commercial
spoolers on the market today start at 16K versions and go up
to 64K in 16K steps. With a suitable design, a spooler can be
built with as little as 1K or 2K RAM at a much lower cost.

So in fact, the main disadvantage of a hardware spooler,
namely the limited RAM, can actually be an advantage if most
printing jobs are relatively small allowing the construction of
a smaller, less expensive piece of hardware. If it were
absolutely necessary to design a hardware spooler with a
capability of more than 64K, it would be possible to base it on
one of the new 16-bit microprocessors that can address at
least a megabyte of RAM. The cost of the microprocessor
would not be too much more than that of say a Z80, but the
additional cost of RAM would be substantial.

With all this in mind, I will present a design for a hardware
print spooler that should be adequate to handle most printing
jobs and allow simultaneous printing and computer use by the

The Computer Hacker 13

operator. Let me address each major point of the design
separately:

(1) Microprocessor:

Although the program executed by whatever
microprocessor is chesen will be relatively simple, in order to
allow for upgrades the microprocessor should have a capable
architecture. It should also be a low cost device and be in wide
use. The Z80 fulfills these criteria and is widely available in
different versions for as little as $5.

(2) Memory:

Here we have the choice of static vs. dynamic RAM. Each
has its advantages. Dynamic memories are less expensive for
the same storage capability and take up less board space for a
full 64K. They are, however, more sensitive to noise on the
power supply lines, require in most cases 3 supply voltages
and are somewhat less reliable than their static counterparts.
Static memories are easier to design with, more immune to
noise and operate from a single supply. One other factor is
that most inexpensive dynamic RAMs are available in a 16K
or 64K x 1-bit architecture whereas static RAMs are available
in 1-bit, 4-bit and 8-bit widths. The choice I have made here is
the 6116 2K x 8-bit CMOS static RAM chip. Its architecture
allows any size spooler to be built from 2K up to 62K (I'm
allowing 2K for the program ROM). It has a low power
consumption, is quite reliable and is easy to design with. Cost
is somewhat more than dynamic RAM for a full 64K version
but due to the fact that the dynamic RAMs need all the timing
and control circuitry even for a small amount of actual
memory, & spooler with a small or moderate amount of
memory should cost the same or less to build with static RAM
than with dynamic. I have estimated the crossover point at
about 32K both in cost and in board layout space so that is the
size] have chosen to present in this series of articles.

Although the EPROM type is not too important, the 271
has virtually the same pinout as the 6116 RAM chip so th:
chip select logic is simplified if it is used.

(3) Interface:

There are a number of interface standards in use today
RS-232, Centronics, IEEE-488 to name just a few. I chose the
RS-232 interface to use in this design simply because most of
the letter quality printers I work with use it and I'm more
familiar with it than any other. It may be the most widely
used standard but I'm not aware of any statistics to that
effect. I'm assuming a DTR handshaking protocol here, that
is, pin 20 is used to signal a printer busy condition by going to
8 logic low state (approximately -12 volts). This will be used
both by the printer to tell the spooler to stop sending, and by
the spooler to tell the computer likewise. In the last part of
this series of articles I will show how to modify the spooler to
use a Centronics interface or software handshaking
(ETX/ACK or X-on/X-off). That will also allow interface
conversion to occur during the spooling process. For example
a computer with only a parallel Centronics interface could
still send output to an RS-232 printer via a spooler with a

continuedonp. 15

14 The Computer Hacker

A REVIEW OF FLOPPY DISK FORMATS

by M. Mosher

W henever the subject of software exchange comes up, as it
often does, the question arises of “Why can't I just take my
diskette from system A and put it into a drive on system B
and have it work?” To answer this question a discussion of
the differences in floppy disk format “standards” is in order.
What I'll do here is take the characteristics of a floppy disk
one at a time and point out the similarities and differences.

, Size

This one is pretty obvious. If you try to put a 5.25-inch
diskette into an 8-inch slot it's going to just flop around in
there (no pun intended). Conversely you just aren't going to fit
an 8-inch diskette into a 5.25-inch slot at all unless you use a
pair of scissors and I'm not even going to begin to address
that issue. To add to the variation, Sony has recently
introduced a 3-inch “mierofloppy” drive which should be
entering production very soon.

Number of Tracks

Most manufacturers have pretty much standardized on this
parameter though there are some variations. Full-size (8-inch)
floppies almost always have 77 tracks to the diskette,
minifloppies (5.25-inch) have mostly had 35 tracks in the past
but many are showing up now with 40 tracks. Of course a
floppy that has 40 tracks of data on it can't be read on a
system whose hardware can only read 35 tracks from the
diskette. Yet another variation are floppy drives whose
tracks are packed twice as closely on the diskette allowing 80
tracks on a minifloppy.

Number of Sides

Early floppies used only one side of the diskette to record
data on, leaving the second side blank. Many hobbyists saw
this as a waste and took to punching another hole and write-
protect notch in the diskette jacket to be able to use the
second side of the diskette as well (most diskettes have a
magnetic coating on the second side as well as the first). To
get at the second side, however, you have to remove the
diskette from the drive, turn it over and re-insert it into the
slot. More recent drives have a second head to read the
second side, making it unnecessary to modify the diskette
itself or turn it over to get at the data on the second side.
Something to watch out for here — a double-sided diskette
made on a true double-sided drive won't work on a single-
sided drive by just turning the diskette over and trying to
read the second side. The sense of rotation is opposite in each
case. Think about it for a while.

Sectoring

This takes a little explanation. Within each track the data
is subdivided into “sectors”, a sector being simply a fraction
of the total track. One obvious variable is simply the number
of sectors a track is divided into. Various disk formats have
anywhere from 8 to 32 sectors per track. Since the sectors
may be different sizes (anywhere from 128 to 1024 bytes per
sector) this introduces incompatibilities.

A second aspect of this is in the form the sectoring may
take — either “hard” or “soft.” In hard sectoring the
beginning of each sector on the diskette is marked by a small
hole punched in the diskette near the large center hole. As
the disk rotates, these small holes pass under a light source
with a photodetector on the opposite side of the diskette. A
short electrical pulse is generated by the photodetector as
each hole exposes the light source. This indicates to the
computer that the beginning of a sector is present. One
additional hole called the index hole is punched midway
between two of the sectors. A pulse coming halfway between
two sectors tells the computer that the next sector pulse will
be the first one on the track.

In soft sectoring quite a different method is used. Only a
single hole is punched in the diskette — the index hole. It
tells the disk controller that the track begins immediately.
Here, however the beginning of each sector and the
boundaries between them are actually written onto the track
as information. The computer finds a sector by reading the
track continuously until it comes to a “header”(a short piece of
coded information) that indicates the start of the desired
sector. It can then begin to read the actual data contained in
that sector.

Both types of sectoring have their advantages and
disadvantages. In hard sectoring the diskettes can usually be
taken and used immediately without the need for preparing or
“formatting” them. Hard sectoring also is usually a little
simpler than soft sectoring since all the circuitry has to do is
detect a pulse rather than decode header information. This is
really a minor difference though. A more important
advantage is that without the need for sector headers, more
space on the track can be allocated to storing actual data.

Although soft sectoring has the additional overhead of
sector headers with the need to format a diskette before
using it (formatting simply writes the sector headers onto
each track), it does have some advantages. By detecting
sectors by reading the header which contains, among other
things, the track number and sector number, the computer
can verify that it is on the correct track and reading the correct
sector. This usually isn't done with hard sectoring and

provides an additional protection against errors. Also, since
the sector boundaries (and thus sizes) are recorded in the
same way as data on the track, the boundaries can be almost
anywhere, thus allowing a variety of sector sizes and number
of sectors per track. This flexibility can sometimes be useful.

Density -

This has to do with the amount of data that can be packed
onto a given space on the diskette. Originally all floppies used
single-density encoding methods (also known as FM
encoding). In this the data pulses and clock pulses are
combined and both recorded onto the diskette surface. When
read back, the clock and data are separated by appropriate
circuity and the latter passed on to the CPU. To keep up
nwith the demand for larger databases and such, ather
encoding methods have been developed to pack more
information into the same space on the diskette. In double-
density encoding (known also by the term MFM), the data is
written onto the diskette without any clock pulses. This in
effect allows each pulse on the track to be a data bit rather
than alternating data with clock. The only problem here is
that when the data is read back in, the clock pulses must be

The Computer Hucker 15

resurrected from the data. How this is done is beyond the
scope of this article but suffice it to say it can be done, but
with some difficulty relative to single-density encoding. This
makes the timing requirements and disk rotational stability
more critical in double density, but with development it has
become quite reliable and many disk systems sold today are
capable of recording in both single and double density.

In Summary

I think you can see by now that there are a lot of variables
involved in diskette formats. If we take the three possible
sizes, three different values of tracks-per-diskette,
two possibilities for number of sides, two values for type of
sectoring, perhaps five different values for number of sectors
per track and two different densities, we have something like
3x3x2x2x5x2=360 different formats that are possible.
Although in practice the situation isn’t this bad there are at
present maybe a dozen different diskette formats in popular
use. So the next time you wonder why your Apple diskette
won't work in a Radio Shack or S-100 machine, just realize
that it only has one chance in 360 of doing so: something like
Ysof one percent. n

“Build a Print Spooler,” continued from p. 13

Centronics input and an RS-232 output. Other conversions
would be possible, too.

4) Serial Communications IC:

Having chosen the Z80 for a microprocessor, there are
several choices for a serial I/O chip. One is the Z80 SIO.
However, it is an expensive chip and is so flexible as to be
confusing to the average user. The Intel 8251 is cheaper and
not as complicated but still requires some understanding. The
variety of UARTs available are the least expensive, require
no software initialization and are adequate for the task here.
They are readily available from a number of sources for $4
and up. Needless to say, the UART was chosen here.

(5) Support Circuitry:

The choices here may not be so clear-cut. Since I live in an
area where it's not possible to walk or drive down to the
corner chip shop for something I may need, I tend to design
most circuits around common, easily available chips. Most
chips used in this circuit are available, if absolutely necessary,
at Radio Shack. In addition I believe simplicity to be a virtue
and try to design accordingly.

I think you can see some of the reasons for my design here.
Not all would necessarily agree with everything I've said but
I can say that this design approach leads to a circuit that is

fairly easy to build and troubleshoot and works well when
complete.

In Part 2 I will present the hardware construction layout
and schematics for the spooler along with some suggestions
for a power supply and case to put it in. Also I'll give a
flowchart and listing for the spooler’s operating program
along with some additional comments on the software. a

. Correction

The September Computer Hacker
contained an error in the RS-232-C article.
On page 4, in the section titled “Hacker's
View of the Mechanical Requirements,”
the first requirement reads “The DTE
must provide a female connector..” The
sentence should read “The DTE must
provide a male connector...”

We regret any inconvenience this error
may have caused. Please don't hesitate to
write if you find something which you
believe to be an error.

16 1he Computer Hucker

SENDING MORSE CODE WITH AN APPLE][

by Marvin L. De Jong

Introductien

Using a computer to send Morse code is a clean, well-defined
programming problem, and it has always been one of my
favorite real-time control applications. Receiving Morse code
with the aid of a computer is a more difficult task, especially if
any serious attempt is made to approach the capability of a
human being using a modern communications receiver. The
latter problem is not associated with the computer or the
program, but rather with the analog circuitry that converts
the tones into logic levels. In this article we will confine
ourselves to the problem of sending Morse code, a task for
which a machine can easily outperform a human being.

Program Features

1. Morse code can be sent from the Apple keyboard at
rates, selected from the keyboard, from 8 to 100 wpm (words
per minute.)

2. A ring buffer allows the typist to type up to 225
characters ahead of the one being sent.

3. Three messages, totalling 256 characters, may be stored
and sent with commands from the keyboard. Characters from
the keyboard may be inserted in these messages as they are
being sent, a desirable feature for contest operation.

4. The computer can also be operated as an electronic keyer
that operates at the speed eatered on the keyboard.

5. In its keyer mode the program reads what is sent and
prints it on the video monitor. You can use this feature to
monitor what you are sending, provided you send it correctly.

6. The Apple] speaker provides a sidetone, making the
program useful for code practice.

7. The game i/o connector is used to interface the computer
to the transmitter with simple components.

Hardware

The hardware required to use the program consists of a
simple interface between the game i/o connector and the
transmitter, a 1500 Hz source of interrupts, and a simple
keyer interface if you wish to use the program in the keyer
mode. The circuit to key the transmitter is shown in figure 1.
The optional keyer circuitry is shown in Figure 2. As far as a
source of interrupts is concerned, we used a John Bell
Engineering 6522 board in slot seven.

The interrupts occur at a 1500 Hz rate. For those who are
inclined to build circuits, a less expensive source of interrupts
is a 555 timer, multivibrating at 1500 Hz, and connected to a
74LS121 one-shot wired to produce a 10 microsecond logic-
zero pulse on the IRQ line. The IRQ line can be accessed on a
peripheral card connector. The program initializes the John
Bell 6522 card for proper operation, but the program is
transparent to the source of interrupts. It is important that

they occur at a 1500 Hz rate. The program assumes the John
Bell card is in slot seven, the 6522 labelled U1 is used, and a
jumper is added to the eard to connect the IRQ on the 6522 to

the IRQ line in the Apple. Holes on the card are provided for
this jumper.

Magaecrat 107 DIP Relay tor squvabamt)
il) Y\
whe L \ p———
5 }
L
Figure 1
A circuit to key a transmitter from the game i/o connector.

Program Operation

Load all the programs in the listings. Type in RUN and
press the RETURN key. The computer responds by
requesting the code speed. Enter this and then press return.
The screen will go blank and you can start typing. Type some
letters, numbers, and punctuation marks. You should hear
Morse code coming from the speaker. If there is a problem,
check your disassembled version of the program against the
listings. Also make sure that the MORSE TABLE and the
ASCII TABLE are loaded. Asssuming that everything is
running correctly, you can practice sending at the keyboard.
The reverse arrow key allows you to delete characters
entered in the buffer provided they have not yet been sent.
Try typing ahead, then delete some characters with the
reverse arrow key.

To change code speeds simply press the ESC key and the
program will return to the BASIC routine to allow you to
enter a new speed.

To load messages press CTRL L. Type in message A. For
example, message A might be CQ CQ CQ DE KOEI KOEI K.
When message A is complete type RETURN. Now enter
message B {ollowed by RETURN, and then enter message C
followed by RETURN. Now you are back in the code sending
mode.

To send message A,B, OR C, simply type CTRL A, CTRL B,
or CTRL C. ANy message may be interrupted from the
keyboard, but you must be alert. It will help to insert an extra
space or two in the message where you with to interrupt it.

To use the program as a keyer you must construct the

circuit in Figure 2 and make the connections to the game ijo
connector. Try this and see how you like the keyer operation.
Note that what you send is what you see. The program
converts your characters from Morse to alphanumeric
characters on the video monitor.

The Computer Heckos i

+5V (pin 1)

PB1 (pin 3)

GND (pin 8)

Figure 2
Circuit diagram of the keyer. Pin numbers refer to the
Apple] game ilo connector. My circuit worked very well
without the more or less standard pull-up resistors (22 kohm.)

The listings have extensive comments, enough to make the
program understandable. During each interrupt the keyboard
is tested to see if a character has been entered. If a dot or
dash is being sent the speaker is togged to produce a 750 Hz
tone. Two counters are incremented or decremented to keep
track of the number of 1500 Hz pulses that have occured. The
pushbutton inputs, PB0 and PB1, are tested to see if the keyer
is being used. Various bits in a register called FLAG are set
or cleared depending on which events occur: key down, PB1 at
logic zero, speaker to be toggled, ete. This memory location is
then analyzed by the main program so that it can take the
appropriate action. Once the flow of the action is appreciated,
the comments, labels and subroutine names should make the
operation understandable.

Listing 1. The BASIC Driver Routine.

wis?

S REM MORSE DRIVER ROUTINE

18 POKE 10,76 POKE 11,80: POKE 12,17

20 PRINT “AT WHAT SPEED WOWLD YOU LIKE TO SEND™"

3p PRINT “TYPE A NUMBERK BETWEEN 8 AND 188, THEN PRESS RETURN. "
A¢ INPUT SPEED

Se¢ DOT = 188¢ / SPEED

&8 POKE &,DQ7

78 Y « USR (®

B# BGOTO 20

*e END

Listing 2. The MAIN PROGRAM.

IASH
1 T EQU 8C784
2 TILH €QU sC78S
3 ACR €QU sC78P
L) 1ER €0U SC7SE
s SNDKEY EQU 81809
6 FIFQ EQU eEB
7 PNTR EQU SED
8 FLAG €U 87
? SPCFLE EQU 986
19 TIMOUT EQU %86
1t cout EQU $FDFs
12 ascI1 EQU sPERY
- 13 CcHaR EQU SEF
14 pot EQu s102B
15 DASH EQU $184E continued

1ted; '8

1@ =D 59
1104: 38

1194S: a9 FF
1187: 8D da
118A4: A9 82
118C: 8D @5
1196 : a9 4@
tti1: @b @B
1114: a9 C@
1116 80 #€
1119: 29 58
1110 A9 89
111E: 8D FE
1101 A9 12
11221 8D FF
11361 A9 @
1128: BS b
112A: 85 ED
112C: 85 89
117€: @5 CE
1130: B8S @7
1172: 85 e8
1134: A9 81
11361 8% EF
1118: A9 oA
113a: 85 EE
113C: 8% EC
113E: Ae 8@
1148: S8

1141: AS EB
1143: €3 €D
1145; Fo 95

1147: 20 89
114a: B8

114B: 50 Fa
114D: 24 87

1164F:

1151: a9 7F
1153: 235 @7
1155: @85 87

1157: AD se
1154: 80 18
113D: C9 9B
115F: D8 @2
1161: 78

1162: 68

1163; C9 s
1165: Be #€
1167: 29 7F
1169: 20 94
116C: B8

116D: S D2
116F: C9 BC
1t171: D® CE
1173: 78

1174: 280 34
1177: %8

1178: B8

1179: 5@ Cs
117B: A% @1
117D: 24 07
117F: Fe@ t1
1181: 28 2B
1184: 86 EF
1186: Cs 87
1168: A7 060
118A: 85 CE
118C: A9 #1
118€: 95 86
1198: D@ AF
1192: a9 62
1194; 24 &7

1196: F@ oF
1198: 29 4€

119B: A

119D: 28 87
119F: 85 A7
1181: @6 EF
11A3: E¢ EF
11A5: De® EI
1187: A5 0@
11A9: F@ 96
11AB: AS CE

11AD: CS S6
1167: 98 99
11B1: AS 08
11B3: C9 81
11B5: D@ l&
11B7: €6 06
11B9: A6 EF
1188: BD B8
118€: 09 88
11C8: 28 Fo
11C3: A9 08
11CS: 85 CE
11C7: A9 81
11C9: 83 EF
11CB: DO C3
11ED: AS 06
11CF: C9 o4
1101: Fo 08
1103: A9 98
11D5: 85 CE
11D7: €& 08
1109: D@ BS
1108: A9 AS
11DD: 28 Fe&
1IES: A9 90
11£2: 85 08
11E4: F® EL

~~End assembly--

238 byt

Errore:

19

ce
ce

Fo

CNTRZ
CNTR1

SNDABC
L OADMS

mAiK

STEP
PAST

aUTPUT

HERE

ouTPUT2

sCE

L g
1094
1054
si100

s’ces?

0SFF
Tiet
99027
TN
asag
ACR

(e
1ER

"sod
SEIFE
LI
S@IFF

F1fC
PNTR
CNTRY
CNTF)
FLAG
SPCFLG
L2}

"nsa
PNTR+ |
FIFO+1
FiFQ
PNTR
SNDREY

BRe
FLAG

o8 7F
FLAG
FLAG
*Co18

489B
BRe

884

2% 7F

ASCIL, X

CNTR1
o1

STEP
SPCFLE

ouTPUTR
L.
CNTR1
SPCFLE
STEP
cout

SPCFLE
HERE

IPREVENT INTERRUFTS
ITURN RELAY OFF

TENABLE INTERKUFTS “ROM T1
iCLEAR SCREEN
iSET UF THE INTERRUFPT VECTOR

JCLEAR VARIOUS REGISTERS

TALLOW INTERFAPTS

ICOMTROL CHMARAC TER™
MO

iCLEAR CONTROL FLAG
$READ KEYBOARD AGAIN
JCLEAR STROBE
FESCAPE™

IPREVENTS INTERRUPTS wiLE
IN BASIC

3CONTROL A.B,0r C°

ISEND THE MESSAGE

PPREVENT INTERRUPTS wILE
$LOADING MESSAGES

FALLOWS [NTERRUPTYS AGRIN
iCHECK DOT FLAG

$NO DOT

iSEND A DOT AND A SFACE
iSHIFT THE CHARACTER REGISTER
1CLEAR THE DOY FLAG
;CLEAR THE COUNTEFR

ISET SPACE FLAG

3FORCE A JUMP BACK TO BRE
ICHECR THE DASH FLAG

ISEND A DASH
$CLEAR DASH FLAG

tJUME UP, THEN BACK TD BRE
iCHECK ON SPACES
INOT TIME FOR A CHARACTER

iMAS ONE DOT TIME FASSED™

iND
IYES, OUTPUT CHMARACTER OF SFACE™

3IGET CHARACTER

$LOOK UP ASCII KEPRESENTATION
ISET BIT SEVEN

POUTPUT IT

IMESEYT CHARACTER REGISTER

ICHECKR SPACE FLAE AGAIN

JCLEAR CNTR)

10UTPUT A SPACE
$CLEAR SPACE FLAG

$CLOSE THE LOOP

I8 [The Compater Hacker

Listing 3. The SUBROUTINES.

Listing 4. The INTERRUPT Routine.

186 bytes

Errors: #

——€nd assesbly--

oCF8-

g9

a¢

a0

Ao

1ASH
1ASH
1 MU EQU eee T RuAe ou ser
2 FLAS EQU se7 2 Tice EQU eCT84
3 CNTR2 EQU se9 3 roe EQU $CSe!
4 E::Inox E: SCE] rB EQU sC®e2
3 € b s FIFO EQU S£B
6 PNTR EQ0U 8D s PNTR €QU *£D
; :g::lf :: :::“ 7 Coutz EQU ®FDFe
] CNTR1 EQU eCE
? START EQU $F9 9 CONTR2 EQU se9
16 END E:JJ ‘Fg‘ 19 ORG sti20e
11 cout SFOFs t1 IRGRTN Tva
12 RDKEY EQU SFDEC 12 2™
13 CObDE EQU secss s C7 13 wa T1a SCLEAR T INTERRUPT FLAG
14 ORG 1088 o7 14 BIT FLAG ITEST THE FLAG
15 [A 15 VC BRL {9PEAKER FLAS OFF
1000: AS 86 16 TIMER LDA TIMOUT $START COUNTING DOWN 3 ce s LDa sCos $TOBGLE SPEAKER
1862 B85 99 17 STA CNTRZ §IN INTERRUPT ROUTINE CE 17 Ry INC CWTRI § INCREMENT COUNTER OME
1604: a5 09 18 WAt LDA CNTR2 Ll 18 DEC CNTRZ + DECREMENT COUNTER Twn
193s: D@ FC 19 B WALT ® Cco 19 LDA sCoos SREAD KEYBOARD
1006: &8 2: RYS b 28 BPL BRZ INO KEY
2 a8 21 o esas 11S IT A CONTROL OCHMARACTER®
s oo 22 SMDKEY LDY 8see tv=8 TO READ RING BUFFER 1B 22 BCC BR3 1vES
B1 ED 23 LDA (PNTR),Y §6ET A CHARACTER oo 23 LDY ese
€6 ED 24 INC PNTR JUPDATE POINTER TO RING BUFFER [1:3 24 STA (FIFO),Y §STORE THME CHARACTER IN THE
: AR 25 ENTRY TAx TASCII TO X REGISTER : EB 25 N FIFQ IRING DUFFER
BD 98 OC 26 LDA CODE.X iTD LOO UP MORSE CODE : 20 F6 FD 28 BACK JSR COUTZ SOUTPUT THE CHARACTER
T F8 41 27 BEQ WDSPCE JZERD 1S A WORD SPACE : 8D 18 €S 27 HERE sTa eCote 10LEAR STROBE
: 80 69 oC 28 STA CODE $STORE CHARACTER A4 24 28 LDY $24 FADVANCE THE CLRSOR
I SE 99 #C 29 REST ASL CODE ISHIFT IT INTO CARRY Bl 28 29 LDa (828 ,Y
: Fe 3% le BEQ CHSPCE + ZERD MEANS CHORACTER IS SENT 29 3F e AND @#33F
1 B e £ 8CS DaM ICARRY SET IMPLIES DASH T 09 40 3t GRA §848
: 20 28 18 32 JSk DOT 1OTHERWISE SEND A DOT 9 28 32 STA (s28),¥
: 8 33 cLv $FORCE A BRANCH BACKX TO 8ET 8 33 aur PLA SGET Y FROM THE STACK
: S8 F3 34 BVC REST sTHME REST DF THE CHARACTER a8 34 TaY
: 28 4E 18 35 DAM JSK DASH ISEND A DASH AS 45 33 LDa s45 JEET A FROM MEMORY
: B 36 av $FORCE A BRANCH BACK : 49 36 RTI L RE TURN
: S8 ED 37 BVC REST™ co a8 37 BR3 oe esoe IDELETE KEY>
38 D® SE 38 BNE NEXT3
: Az e 3¢ por LDX w91 $X IS NUMBER OF DOTS 28 Fo FD 39 JSR COUTZ
: BE 58 C# 4@ HERE STX sCese sTURN RELAY ON as EB 40 LDA FIFD
: A9 48 at LDA #e40 5SET UP MASK FDR FLAG cs €D 41 ow PNTR
: o5 87 a2 ORA FLAG F® E3 a2 BEC HERE
: as 87 a3 STA FLAG iSET SPEAKER BIT IN FLAG cs EB 43 DEC FIFO
: 20 86 19 44 BACK JSK TIMER sWAIT FOR ONE DOT TIME : B 4 cv
: CA 45 DEX : 3¢ DC a3 BVC HERE
: Dd Fa 46 BNE BACK : €9 8 4 wEIT) ow esap 1CARRIAGE RETURN
T BE 59 CO 47 STX . sCO%9 ITURN RELAY OFF : De 82 7 BNE NEXT2
: A% BF Y] [T SCLEAR SPEAKER BIT IN FLAG Fo D3 49 BEQ BACK
25 87 a9 AND FLAG : a9 86 49 NEXT2 LDA esas
85 a7 se STA FLAG ” 07 e ORA FLAG
: az #1 S SPACE LDX ese1 1aDD A SPACE 83 87 st STA FLAG
20 8@ 18 32 MORE JSR TIMER : 08 0B 52 N OUT
: ca 33 DEX As 87 = w2 LDa FLAE ICHMECK THE DOT AMD DASH FLAGS
: D@ FA 54 BNE MORE 29 83 54 ~o 093 18ET OUT IF THEY ARE SET
: 68 S5 RTS $SPACE COMPLETE D DS 5 BE OuT
: az 63 56 DasH LDX e$93 1DASH IS THREE DOTS 2C 61 C8 34 B1T PHe SREAD TME PUSH BUTTON
: D@ DB s7 BNE HERE 36 04 57 ™1 MNEXTI + INPUTS
: A2 02 58 CHSPCE LDX 882 L CHARACTER SPACE s 07 L] INC FLAG ISET THE DOT FLAS
: D F1 59 BNE MORE D CC 39 »E OUT
;A2 84 68 WOSPCE LDx wee | WORD SFACE 2C 62C8 o8 MNEXTS [2R 11 JOHECK FOR A DASH
: D8 ED 61 BNE MORE 38 C7 a1 | Ty
62 a9 92 62 Lpa o2
A2 81 63 LOADWS LDX el s 97 &3 ORa FLAG SSET THE DASM FLAG
: A 08 64 LOY eee 8s o7 o4 STa FLoE
: 94 Fg &S ~EXT STY START-1.X $STARTING INDEX FOR MESSABES D8 BF o5 N OuT
1 98 66 OVER Tva
: 48 67 Pra iSAVE Y ON THE STACH
1 28 OC FO 68 ISR RDKEY $GET A CODE FROM THE KEYBOARD -~End assembly--
: 28 F& FD 49 ISR couT $OUTPUT IT TO THE MONITOR
1 €9 88 70 CF esae SWAS 1T A BACKSFACE 112 bytes
: DE #a 71 BNE LRI §ND.
: 68 72 PLA SYES, SET v BACK Errors: @
: A8 73 TaY
: 88 74 DEY SDELETE THE CHARACTER BY LOADING
: A9 C# 73 LDA esCe $THE BUFFER WITH A SPACE
99 o6 89 76 STA ABCBUF.Y
b® Ea 77 BNE OVER IFORCE A JUMP TD GET A NEW kEY
cv &p 7 BRI cwe asap iwaS 1T A "RETURN™"
: Fe oC 9 PEQ PAST IVES. END THE MESSAGE
: a5 FF a0 sta TEMP $STORE CHARACTER FOR A MOMENT
;68 a1 PLA SGEY ¥ BACH
P8 8t P Morse Table
! AS FF a3 LDA TEMP 1BET CMAKACTER BACH
199 90 89 64 STA ABCBUF.Y iSTORE IT IN THE MESSAGE BUFFER
: c8 a5 1Ny
: De DA 86 BNE OVER 1680 BACX FOR ANGTHER CHARACTER
;o8 @7 Pasi PLA
: A8 86 TaY - - -
: 88 ae DEY {STORE INDEX FOR THE END OF ”CB“?— @H’ Eiﬁ Q,E Q’Q’ @Q gg Q’@ CE
: 94 FB L] STY END~t.X 1EACH MESSAGE P E 8 54 94
ce 91 INY r -— i) 7
F8 25 92 BEQ OUT 16ET OUT IF Y=@ Q’CBS o¢ ¢ 98 o9 C c
€e @3 N 1GET ANOTHER MESSAGE UNLESS = - - -
: E6 B4 94 CPX e84 SWE HAVE THREE ALREADY uwCog—- FC 7€ = 1C ¢C @4 84 C4
: 98 CB 95 BCC MEXT S IMPUT THE NEXT MESSAGE e .
Y] 9 OuT RTS 1ALL THE MESSOGES ARE IN MEMORY ;:’C‘?a— E4 F4 16 32 gfk’ BC QQ’ 32
97
1094: AR 98 SMDABC TAX 1CONTROL KEY CODE TO X ; 34— ¢ 2)
1995: B4 8 99 LDY START-1,X 3PICk UP THE STAKTING INDEX BCAY g 64 88 AB g 4@ “~ DE
1997: 8a 198 LOOP XA 18AVE X - - -m
1098: 48 191) §ON THE STACK oCA8—- #8 28 16 32 CE 8C 5S4 94
1099: B9 o0 99 182 LDA ABCBUF .Y (FETCH THE MESSAGE .
109C: 26 oF 18 183 JER ENTRY ISEND A CHARACTER @CRw— FC 7C 3IC 1C @C 94 84 C4
109F. 98 194 Tva IBAWE ¥ @ 8C 20 -~
1000: 48 193 PHa 35—~ 3,
18a1: AS EB 186 BRI Lba FIFO SMEED 70 SEND A CHARACTER FROM oCh8 E4 F4 16 32 2 “~ e
18A3: CS €D 107 OF PNTR i1THE RING BUFFER"] - 7] Q4d 40 2 D@
e Se iy oe e i FCCH- 63 6@ 88 A8
1847 20 89 18 (89 JSR E -
e i wower v @CC8- @8 20 78 BG 48 E@ AP FO
18AB: 58 F& 111 BUC BR9 -
18AD: 68 112 BRie® PLA IGET Y BACK Q’CDQ’_ 68 DB S@ 1@ CZ 3@ 18 76
194E: A8 113 Tay
10 o ma ot x #CD8- 98 B8 C8 96 60 60 00 OO
1890 AA 51 TAX IFROM THE STACK
18Bt: 98 118 Tva SEND OF MESSRBE" -— A
1882: 03 FB 117 cw EnD-1x SCEG— 09 Jd¢ 60 8¢ a3 @6 00 060
18B4: B 83 118 B5CS FINISH 1YES.S0 QuUITY A
10Bs: C8 119 INY IND.GET ANDTHER CHARACTER @CEB— 217} 66 715] Gg 06 99 89 @9
1887: 90 DE 128 8CC LOOP
19B9: &8 121 FINISM RTS Q’CF ﬁ“ ﬂ@ @Q’ ﬁg QQ @!3 @!3 Q’g E’Q’

00 03 B0 OO0

continued on p.22

Beginner’s Column, Part Two:

The Computer Hacker 19

ANYONE FOR A LITTLE *‘KISS’’ ELECTRONICS?

by Phil Wells, Technical Editor

How much electronics theory do you have to know to be .

able to design your own computer-related projects? A dozen
or so basic concepts and formulas will get you started.
Beyond that, one of the great things about this hobby is that
you can dig into theory just as far (or as little) as you want.
It just helps a lot to be able to learn it “hands-on.” That's
what this column is for.

As discussed in last month's KISS, you will need at least
a VOM (Volt-Ohm-Milliammeter) and some small tools and
parts. I'm using a Radio Shack #22-204 multitester and a
Radio Shack #22-191 digital multimeter. These are not the
best but are widely available, very low cost, and have
worked well for me for several years.

Electronies at our level is all about what happens when
we push electrons through circuits.

We will talk about simplifications of the real world, make
calculations based on idealized components, then construct
real circuits and make measurements to test our simplified
models. What we care about is being able to put together a
project that does something useful or interesting. You
should understand from the beginning that real components
won't always match our simplified models, that real
measuring devices have built-in sources of errors and that
most of the time a measured value that comes close to our
calculated value is a success. Don't expect a 4700 Ohm
resistor to measure exactly 4700 Ohms, and don't waste
time trying to get 5.000 volts when we need 4.8 to 5.2 volts.

Getting Started: Ohm’s Law

We can easily measure current, voltage and resistance.
These are most beautifully related by Ohm's Law (figure 1).
This formula says that if we connegt a one ohm resistor
across an ideal one volt battery, one ampere of current will
flow through the resistor (figure 2).

The battery supplies electrons, each carrying one
negative electrical charge. A battery is a chemical device
which produces a potential difference, or voltage. The

potential difference represents an ability to do work. The
work is performed by moving charges from one side of the
battery to the other, through a conductor connecting the
two terminals. If there is no conductor, no work is
performed, but the potential remains. When the battery
runs out of charged particles, there will be no more
potential difference, and no more work. The battery's
voltage will be zero and it is said to be discharged. We've all
seen this kind of action, if only by forgetting to turn off our
car’'s headlights.

To understand figure one, we need to define some terms.

Charge is one of the basic properties of matter. It is a
measure of one of the ways in which two pieces of matter
exert forces on each other (gravity is a similar property). A
quantity of electric charge is measured in “coulombs.” One
coulomb of charge is about 6.24E18 (6.24 times 10 to the
eighteenth power) electrons. The charge on a single electron
is -1.60E-19 coulomb.

The number of charges which flow between our battery
terminals in one second is the “current”, measured in
amperes or milliamperes (thousandths of an ampere). One
ampere of current is one coulomb of charge flowing in one
second, or about 6,240,000,000,000,000,000 electrons per
second.

The amount of current which flows through our resistor
depends on the electrical force supplied by the battery.
There must be an imbalance of charge or a potentia
difference between two points to sustain a current betweer
them. The potential of the battery is called it:
“electromotive force”, or emf. Electrical potential is definec
in terms of work. Two points are at a potential difference o:
one volt if one joule of work is required to move one
coulomb of charge between them. A joule is the amount oi
work performed when a force of one newton moves a point
one meter (one joule = one newton-meter of work or
energy).

The resistor in our circuit is not a perfect conductor; it

Voitage = Current times Resistance

VeilRor E=IR

|=V/R LERY

i | o 1 ampare

current
+ avmm— = constant
v ——— R=10hm current
T resistor
1 volt battery
V/laR -y onm
1 amp

Figure 1. 0hm's Law Use the diagram as a memory aw i you don't like aigebra

Fgure 2: Ohm's Law circut (sn't it convement that ohms. amps and voits all equal one’
Resistance 15 defined as the ratio of voitage 10 current

20 The Cusnpuier Hacker

resists the flow of electrons to some degree. The amount of
opposition to electron flow is the measure of the resistor's
“resistance”, measured in ohms. You can also look at a
resistor as a conductor; its “conductance” is the reciprocal of
its resistance. Conductance is measured in Mhos (yes, that's
Ohms spelled backwords).

What George Simon Ohm (1787-1854) discovered was that
if he connected the terminals of a battery (actually a
chemical wet-cell) together wusing various kinds of

conductors, the ratio of the voltage across the conductor to-

current through it was constant. That is, more voltage
caused more current to flow. The ratio of voltage to current
is a measure of the electrical resistance of the conducting
material. One ohm is the electrical resistance when a
potential difference of one volt causes a current flow of one
ampere. This is what we now know as Ohm's Law.

Getting Practical

How much resistance does a resistor or other conducter
offer? Connect the resistor to a battery, measure the
voltage across the resistor and the current through it (see
figure 3), then calculate the resistance through it with Ohm’s
Law: R = V +1 Then measure the resistor’s resistance with
your ohmmeter. You will find some error because the
milliammeter itself has some resistance, so less current
flows when the meter is in the circuit in series with the
resistor. Additional error stems from the meter’s limited
accuracy and from less-than-perfect measuring technique.
Try different resistors but don't try resistor values much
lower than 500 ohms; they’ll get too hot, and a 9-volt
transistor-radio type battery can’t supply enough current.

| = "009 amperes
+ 2 -
Ammeter
+ +
i
g vott battery _—_ R 9 volis
-T 1000 ohms voltmeter
V=I/R

Figure 3. Try out Ohm's Law If you have different batteries or a variable-output
power supply. try ditferent voitages Keep R greater than 500 onms

Ohm's Law says that if we increase the voltage, more
current will flow. If we increase the resistance, less current
will flow. Usually, we have a fixed voltage source and we
control the current flow by varying the resistance.

Figures 4 and 5 illustrate the use of Ohm's Law. Knowing
any two of the three parameters, we can calculate the
unknown one. Give it a try.

Voltage Drops
Another way of looking at Ohm's Law shows that if we
apply a voltage to a complex circuit, the current which flows
through each resistance produces a “voltage drop” across

What 1S the current? .
I« V/Ru5/2000= 00254 a2 Sma
| = 10MA
what is the voitage?
* R
ver = 4000 ohms V= 1R = 01 x 4000 = 40V
! = 5mA
What 1s the resistance?
N
L Ra?

R=V/l =5/ 005= 1000 ohms

Figure 4: Using Onm's Law . the textbook way

P J What s the current in

Part of compiex !
| the curtut?
et o Ot A Vasy this part of the
:) voltmeter
y 00omsS - {=V/R = 5/2000 = 0025A = 2.5 MA
1
' t
-------- -
R N ’—: What is the voitage”
| Circut) He10mA
! Z | Ammetet VelR= 01 x 4000 « 40V
l R :
y AD00oNMs > |
]
i '

Qoo T What is the resistance’

Gircutt Measure | and V

Rw V/1=5/ 055« 1000 ohms

Figere 5: Using Ohm's Law on the workbench Since resistors are iabeled. you usually only
neec a voltmeter 1o measure V and caiculate |

the resistance equal to the product of current and resistance
(see figure 6). More current produces a larger voltage drop.
This may make more sense if we measure the voltage across
each of two resistors connected in series (figure 7).

This figure contains a wealth of information. The total
resistance of two resistors in series is the sum of the two
resistance values. The same current flows through both
resistors. The voltage drop across each resistor equals the
current through it times its resistance. We have only one

current
source

Fgurs §: Ohm's Law says a current flowing through a resistor produces 4 voltage orop
aCT0Ss the resistor equa: o | imes R

Am + 9V I'm ¥/ Ry

Rey= Ry + Ry

VR, = (R,
B vBY
VA= (R,
2000 ohms Ry = 1000 + 2000 = 3000 ofims
Ca0v 1w V/ gy = 973000 « 0034

ER,= 003x 1000=3V ER,= 003 x 2000 = 6V

s
Figure 7: Voitage drops across resistors in senes

current value (three milliamperes) but two voltages. If we
take the most negative point in the circuit as a “reference”
from which to make all voltage measurements (usually called
“ground”) then point A =9 volts and point B=6 volts. Do
you see the reason for the expression “There is a three volt
drop across R1 and a six volt drop across R2."?

A common convention is to use the most negative point in
a complex circuit as a reference; then the most positive
point has the “highest” potential or voltage. The voltage
“drops” across series resistances until we reach zero or
“ground.”

While we're on the subject of conventions, there is
sometimes confusion about the direction of current flow
through a circuit. There are both negative and positive
charges, and carriers of these charges. The two types of
charges move in opposite directions when forced through a
conductor by a voltage. In figure 8, electrons move from the
battery’'s negative terminal, through the resistor and into
the positive terminal. This is called electron flow. We will
indicate the direction of current flow as “conventional
current”, in which current flows from a more positive to a
less positive potential. It doesn’t really matter which is used
as long as we are consistent.

Power

To avoid having resistors go up in flame, you need to
know how to calculate power dissipation. When a source of
voltage pushes a current through a resistor, work is done,
energy is used and heat is produced. How hot a resistor gets
depends on its size and composition, but is proportional to

the rate at which work is done moving charges through it
. One joule of work is done moving one coulomb of charge
through a potential difference of one volt. Power is defined
as the rate of doing work, in joules per second. We more
commonly express electrical power in “watts”. One watt of
power (rate of doing work) is defined as one joule of work
per second. Power in watts is calculated as volts times
amperes:

Power (watts) = joules/second =
voits x coulombs/second = volts x amps.

P=VxI

Figure 9 shows various ways of calculating power, found by
using Ohm's Law and substition. Use these formulas on the
earlier examples to find out the power in the resistors.

The Computer Hacker 21

Resistors are manufactured in a wide variety of types
and sizes. Their specifications are in ohms (resistance),
accuracy or tolerance {%), temperature stability (ohms per
degree Celcius), and power dissipation rating. The last
parameter indicates how fast the resistor can get rid of the
heat caused by a current moving through it. A one-watt
resistor, for example, can safely handle the heat from one
joule per second (one watt) if it is in open air at about room
temperature. Unfortunately, some types of resistors suffer
permanent changes in resistance if you get them too hot,
even within their wattage ratings. Most resistors run at
their rated wattage get hot enough to burn your fingers
(especially high-power ceramic resistors). Carbon
composition and some carbon film resistors can literally go
up in flames if their wattage rating is exceeded.

Before you install a resistor in a circuit and turn on the
power, you must calculate the expected power in the
resistor, with any of the three formulas in figure 9. Then
select a Y4 watt, 4 watt, or larger size resistor. Most
microcomputer circuits use a five volt power supply and
very low currents; since the wattage needed is the product
of voltage and current, you can usually use a ' watt
resistor.

+ e e

Conventiona! current

Eiectron current

Figure 8: We will use conventional current flow . from positive 10 negative

Power in Watls = voitage times current

PeVlor PmEl

|
P=VI/R [P=ViaVx V/R=VI/A]
R v

Figure 9. Formulas for caiculating power in a resistor

PR [P=Via(IR) x| =R}

Resistors In Series And Parallel

You often won't have exactly the right value of resistor
called for by your calculations. You can “dummy-up” an
equivalent resistance by combining resistors in combination
as shown in figure 10.

Adding a series resistor increases the total resistance.
Adding a resistor in parallel decreases the total resisance.
Notice that putting two equal resistors in parallel gives you
an equivalent resistor of /2 of each resistor. Putting three in
parallel divides by three.

22 The Computer Hacker

100 ohms

Resistors in Seres

ADD
- i
R, Ry 00 ohms 300 ohms
R

et R+ Ryt Ry

Ry 100 ohms

Figurs 10a: Series resistances sum to an equivalent resistance

: !
' Riw= —_—
Ry o 1/R,+ /Ry« /R,
Resistors 1n Parattel
33'/3 ohms DIVIDE
100 D

three 100 ohm resistors

Figure 10b: Paraile! resistances divide eguivaient parallel resistance (s the reciprocal of the sum

of the reciprocals

2nd 19 higure
18t sig hgure

muitipier
folerance

Resistor Color Coae

Color Signiicant Multipuer Tolerance
hgure

Silver - 02 10%

Goid - 01 5%

Black 0 1

Brown 1 10

Red 2 100

Orange 3 1000

Yeliow 4 10000

Green] 100000

Biue 6 1000000

Violet 7

Grey 8

White 9

No Color - 20%
Figure 11

Remember that the power dissipated in each resistor is
the product of current through it times the voltage across it.
When you make up an equivalent resistor, the power is
spread among the individual resistors. You can make a high-
wattage equivalent resistor out of a number of lower
wattage ones by putting many higher-valued resistors in
parallel, or lower-valued ones in series. For example, 10
resistors of 100 ohms, '» watt each in parallel is the
equivalent of one resistor of 10 ohms with a power rating of
five watts. A series string of ten 10 ohm Y: watt resistors
can handle 5 watts of power, but will have a resistance of
100 ohms.

Resistor Color Code
Carbon composition and carbon film resistors are marked
with color bands as shown in figure 10. The four color bands

are offset towards one end of the body of the resistor. To
read the resistance value, hold the resistor end nearest the
bands toward your left, then read the colors from left to
right. The first two colors are the more significant digit and
less significant digit of the resistance value. The third band
is the multiplier, or number of zeros to tack on after the two
significant digits. The fourth band indicates tolerance, or
how far from the indicated resistance the specific resistor
might be. Gold is 5%, silver 10%, and no band is 20%. A
1000 ohm, 5% tolerance resistor’'s real resistance can be
anywhere from 950 to 1050 ohms.

Next Time
Next month we'll design a power supply. We'll go into
how to select the components and calculate the required
values for a five volt, 1.5 amp experimeter’s bench supply. B

continued fromp.18 4 o1y Paple

oEBd- 20 20 45 54 49 41 4k 4D
¢#EBB8—- 53 55 52 57 44 4B 47 4AF
GEPE— 48 56 46 20 4C 206 56 4A
PAEF8- 42 S8 43 59 S5A S51 20 2¢
PEAS— 35 T4 20 33T 20 20 20 32
BEAB- 28 2¢ 20 20 20 28 20 31
GEBY—~ 36 3D 2F 2¢ 20 20 28 20
GERG~- 37 20 24 20 38 24 39 30
YECE— 20 20 20 20 20 20 2¢ 208
GEC8- 280 20 20 200 3F 20 20 2@
PEDg— 26 20 20 2d 20 2E 20 20
gEDB- 20 26 20 26 20 20 20 20
GEEG— 20 20 20 20 20 20 20 20
GEEB- 20 20 20 20 20 20 20 20
lﬁ BEFS— 28 20 20 2C FF FF 00 60

GEF8—- FF FF 08 00 FF FF 00 00 |g

Any Computer Hacker Machinists
Out There?

We want to contact
anyone interested in
using micros to con-
trol machine tools
for personal use, or
on a small business
level. Contact us if
you are using a micro
for measurement or
control with a lathe,
milling machine, or
other machine tool.
We need to know what you are doing, how you are
doing it, what problems you have, and what additional
information would help you.

The Computer Hacker 23

— e . e g A oy
ATRIERN - AR

" ; N T e e 5 . v P o -
[N s Sopey S PRSI FRP) - - O) .

Size 23 Stepper Motors from Clifton

Clifton Precision, Litton Systems, Inc., has expanded its line
of size 23 1.8° stepper motors to include models with up to 170
oz-in holding torque and 120 oz-in dynamic torque. The
motors operate with 200 steps per revolution.

The Clifton motors are compact; they are available in
lengths as short as 1.5", excluding shaft. In addition, they are
quiet operating, making them ideal for office environments.
They are well suited to applications such as carriage wheels
for matrix and daisy wheel printers, paper-feed drives,
machine tool controls, disk drive head positioners, tape
readers, plotters, robotic systems -~ wherever precise
positioning is required in an open-loop system.

These size 23 stepper motors offer standard accuracy of + 5
percent; accuracies of up to +3 percent are available. High
reliability is an advantage of the Clifton motors, achieved requirements.

through close-tolerance construction. For additional information on the Clifton size 23 stepper
Special winding configurations, mounting, and other motors, contact Clifton Precision, P.O. Box 160, Murphy, NC
modifications can be produced to meet specific customer 28906; (704) 837-5115, TWX 510-935-1068.]

Ma Bell Hits Modems With Tariff

The September issue of The Computer Shopper (P.O. Box F, Titusville, FL 32796), reported that
Southwestern Bell Telephone Company's Oklahoma taritfs call for the charging of an ‘Information
Terminal Service’ rate for anyone connecting a computer to the telephone lines via a modem.

This rate is approximately 500% higher than the standard residential base rate. Obviously, this tarift
dramatically affects the entire industry, as it practically prohibits noncommercial modem use.

The Computer Hacker considers easy access of communication lines thru modems to be very
important for micro users, and we would like to publish a report of how this access is handled in different
parts of the country.

If you have had an experience with modem connections that would be heipful to others in similar
situations, please write and describe your experience and the solutions you arrived at. Include anything
that you feel would be helpful to someone faced with a similar problem. For your protection, no names
will be published, only the State will be given.

24 The Computer Hacker

Sl

A Ay -t s v 3 e
i RN T

Rct_e:S.SO.per word, minimum charge $7.50. All classified ads must be paid in advance, and will be published in the next
available issue. No checking copies or proofs are supplied.

WANTED: Teletype KSR-35 manuals nesded to
restore oid teletype machine. Also need manuals
for paper tape punch and reader. The Computer
Hacker, P.0. Box 1697, Kalispeli, MT 59903-1697.

FOR SALE: SSM 10/4 baard for S-100 bus. Two
serial, two parallel ports. $100. DEC LSI-11
minicomputer. Rack mount. KD11-F processor
with KEV11 harware math chip, DLV11 serial
card, DRV11 parallel card. Total of 48K RAM.
Paper Tape 0.S. $995. Write Lance Rose, c/0 The
Computer MHacker, Box 1697, Kalispell, MT
59903-1697.

Authors Wanted! We are interested in publishing
specialized, well written, bookiets for the serious
computer user. There is often need for information
which is too long or too specialized for a magazine,
and too short for a major book. In order to publish
this information in a magazine it is shortened and
re-written for a broad general audience. Or, it is
putfed up to fill a book. Neither of these

approaches filis the need of the hacker.
We will publish booklets of approx. 10,000 to
60,000 words, in addition to oyr magazine. f you
have a manuscript which is too long for a
magazine and too short for a major book contact
The Computer Hacker. Please query by letter

with an outline and a self-addressed stamped

enveiope before sending your manuscript.

Advertise Where The Action Is

The Computer Hacker is THE place to advertise products for those who build, interface, and

control with microprocessors. Send for our advertising media kit.

P.0. Box 1697, Kalispell, Mt 59903-1697

Advertising Department
The Computer Hacker

-

