THE COMPUTER JOURNAL"

For Those Who Interface, Build, and Apply Micros

— SRS

voi 1. No. 5 ssue Number 9 $2.50 US

Reading PCDOS Diskettes
with the Morrow Micro Decision s:

Write Your Own Threaded Language v«
COLUN\N:

\N . .
" Interfacing Tips and Troubles:
Build a DC-to-DC Converter page 12

Multi-user:
C'N ET page 14

LSTTL Reference Chart »u.v
DOS Wars page 20

Building a Code Photoreader s.»

The Computer Journar 1

Editor’s Page

Formulating Our Product Review Policy

Recently we received a letter that said:

“I don't think you should do reviews for
new products. This is what has hurt all the
other magazines —their need to be current,
trendy, with-it. The Computer Journal
should be behind the times by supporting
the end user after he or she has bought
their system and then says “What Now?"

It was a thought-provoking letter with some good
points, and it made the staff here at The Computer
Journal think a lot about our then-unstated product
review policy.

We feel that one of the purposes of a journal is to
bring information on new product developments to
the attention of the readers, but it is true that some
magazines have reached the point where new product
releases and product reviews take up the majority of
the space.

There is a difference between a product
announcement, which is usually written from the
vendor's literature, and a product review, which
requires working with the product in an actual
application long enough to find out how it really
performs. A so-called “review” written from the
manual with a quick run on the computer is useless.

Our product information should follow in the same

vein as the majority of our articles by providing
specific technical information that will be of use to
those who “build, interface, and apply micros.” As a
general rule, if it is covered in Byte and InfoWorld,
we do not need to rehash the same information by
covering it in The Computer Journal.

The areas we intend to cover in our product
reviews are utilities, languages, sensors, boards,
interfaces, peripherals, etc. We may occasionally
report on products which have been covered
elsewhere, but we will concentrate on the technical
aspects of the products and not just repeat what you
have already read.

A good review involves a lot of work, and we don't
have the time to spend on products which do not
interest our readers. We would appreciate your
feedback on the subject of product reviews. Some of

the products we have for review are: Conix (a CP
enhancement) ACNAP (an AC circuit analysis
program), PLOTPRO (a plotting program which
works with ACNAP), SPP (a signal processing
program), FORTH-83, and Condor-3.

Tell us which ones we should eliminate, and
suggest items that you think we should add to our
list. We would also like to incorporate your
experience with the product into the reviews, or use
them as added comments in a future issue.

Our policy henceforth will be to review technical
products which are of interest to our readers, but to
avoid reviewing systems and general interest items
which are covered in other publications. We don't
want to use an excessive amount of space for new
product announcements and product reviews, but
since other publications are not presenting the
detailed technical reviews our readers demand, we
will concentrate on presenting needed information. l

Editor/Publisher................... Art Carlson
Art Director................... Joan Thompson
Technical Editor. Lance Rose

The Computer Journal® s published 12 times
¢ year. Annual subscription is $24 in the U.S,
$30 in Canada, and $48 airmail in other
countries.

Entire contents copynight © 1984 by The
Computer Journal

Postmaster: Send address changes to: The
Computer Journal P.O. Box 1697, Kalispell MT
59908-1697.

Address all

editorial, advertising and
subscription inquires to: The Computer Journal
P.O. Bozx 1697, Kalispell MT 59903-1697.

2 The Computer Journal

READING PCDOS DISKETTES
WITH THE MORROW MICRO DECISION

by Lance Rose, Technical Editor

With all the different 5% inch diskette formats around
today, it's not surprising that there is little compatibility
from one manufacturer’s equipment to another, even within

the realm of CPM systems. Add to this the fact that aside
from CP/M systems there is the IBM PC and its lookalikes
with their own operating system known as PCDOS, and you
have a real mess.

Here at The Computer Journal we are constantly faced
with the problem of potential articles being submitted on a
variety of diskette formats and not always having the right
machine around to read them on. Fortunately, we do have
an 8inch CP/M system and an Apple which helps quite a bit.
Nevertheless, until recently we have been dependent on
other facilities to read any diskette that came in written on
a PC.

Recently we acquired a Morrow Micro Decision with
double-sided minifloppy drives. Morrow has thoughtfully
provided several utility programs with the system that can
enable the machine to read diskettes made on the Osborne,
Xerox and IBM disk systems. The catch is that only the
CP/M-86 format is supported for the PC. Unfortunately for
us, PCDOS is the de-facto standard for the PC and almost no
one uses CP/M-86 on it. The question was, how do we use
this utility to read files from a PCDOS diskette?

Luckily, it turns out that PCDOS and CP/M-86 for the
IBM PC both use the same type of physical diskette
formatting, namely 512-byte sectors. Depending on which
version of PCDOS we're talking about, there are eight
(Version 1) or nine (Version 2) sectors per track. In addition,
for the double-sided formats of PCDOS, the diskette is
organized in cylinders. This means that track 0 side 0 is
used first, then track 0 side 1, followed by track 1 side 0, etc.
Fortunately, this is the same arrangement used in the Micro
Decision double-sided format. By simply running the
IBM.COM utility to set drive B to an IBM drive and
changing a byte in the drive description table we can also
read double sided PCDOS diskettes.

With the physical format compatibility problems handied
by IBM.COM, we can turn our attention to the logical layout
of PCDOS diskettes and how they differ from CP/M
diskettes. In CP/M, each directory entry is 32 bytes long and
contains the user number, file name and type, number of
128-byte records in the file, and a list of up to 8 “allocation
block numbers” which point to the areas of the diskette
where the file is to be found. Since in many systems these
blocks are 2K bytes each, the directory entry can represent
files up to 16K in size. The problem here is that if the file is
over 16K bytes long, we need a second directory entry to
hold the additional allocation block numbers for the file. For
example, a file that was 87K long would require 6 entries

(192 bytes) in the directory to represent it.
This isn't a very efficient use of directory space and it
may be one reason that Microsoft chose a different directory

format for their MSDOS/PCDOS operating system. In this
system, there is a file allocation table (FAT) on track 0 of
each diskette. This table contains linked lists of the sectors
allocated to each file. The directory, which is located on
track 0 immediately following the FAT, consists of 32-byte
entries, like CP/M. Each entry contains the file name and
type, file size in bytes, and a pointer into the file allocation
table. This pointer identifies the first sector allocated to a
file. The succeeding pointers are in the FAT itself, of course.
The advantage here is that only two bytes are necessary in
the directory entry itself to point to the linked list as
opposed to 16 bytes for each CP/M entry. There are two
immediate advantages to this. First, the additional bytes in
the 32-byte directory entry can be used for time and date
stamping which PCDOS supports. Secondly, only one entry
is required no matter how large the file.

With this in mind, and the PCDOS manual in hand, one
can read the FAT and directory into memory, display the
contents of the directory, and/or read a file from the
diskette by following the linked list of allocated sectors
using the mapping algorithm described in the PCDOS
manual.

Listing 1 is an assembly listing of a program that will
read a PCDOS directory and display its contents in a format
similar to the CP/M DIR command. In addition, the size of
each file is also displayed, rounded up to the nearest 1k
bytes. This allows the user to examine the PCDOS diskette
in drive B and see what files, if any, he wants to transfer to
the CP/M diskette in drive A. The program is run by typing:
DIRPC (return).

Listing 2 is an assembly listing of a program that searches
the PCDOS directory for a given file and then, if found,
copies it to the CP/M diskette in drive A. For example, if
the user wants to copy a file named LETTER.TXT, he
would type: READPC LETTER.TXT (return). A message is
displayed if the file isn't found: otherwise the copy is made.
When finished reading PCDOS diskettes, the program
MORROW.COM can be run to set drive B back to a Morrow
drive.

These programs will work on both the Micro Decision MD-
2 (single sided drives) and MD-3 (double sided drives) as long
as the PCDOS diskette is single sided. In addition, if you
have an MD-3, the program will detect double-sided PCDOS
diskettes and read them as well. We plan to make good use
of it here at The Computer Journal office.

Although not our immediate goal, it would also be
possible to go the other way, i.e. transfer CP/M files to a

PCDOS diskette. To do this, one wouid have to search the
FAT for empty sectors and build the linked list as the file is
transferred. Should any of our ambitious readers come up
with such a program, we would very much like to hear about
t. (Listings 1 and 2 follow.)

—-

Listing 1

: DIRPC.ASM

H Program to display directory and file mize of an

d IBM PCDOS diskette in Drive B ot a Morrow Micro

H Decimion, assuming IBM.COM has already been run
to set Drive B to an IBM type diskette

H Version of 4/24/84
BOOT EQU #8080 iCP/M reboot address
BDOS EQU #8058 ;BDOS entry point
TBUFP EQU 80888 :Transient disk buffer

ORG 1888

LX1 SP, STACK ;Set up local stack

LDA BOOT+2

STA SELDSK+2 ;Patch for BI1OS calls

STA SETTRK+2

STA SETSEC+2

STA SETDMA+2

STA READ+2

MVl c, !

CALL SELDSK iSelect B drive

MV1 c,8

CALL SETTRK ;S5et track @

MVl c,5

CALL SETSEC :5et logical sector 5

CALL READ ;Read first part of PAT

ORA A

JNZ 800T :Read error

LHLD BOOT+1 Locate drive table (MTAB)

LXI D, 418

DAD D

mov E.M

INX H

MoV D.M

LXI H,9

DAD D sHL points to drive B entry

LXI D, PMTERR :In case unresdable

LDA TBUFF Get first byte of FAT

LXI B, 1CODH :Sector count & first sector

INR A

Jz DOUBLE ;DOS 1.8 double sided

MVI B, 188

INR A

Jz SINGLE ;DOS 1.8 single sided

LX1 B, 1C15H

INR A

Jz DOUBLE :DOS 2.8 double sided

MVI B, 18H

INR A

JINZ EXIT iBot DOS 2.9 single sided
SINGLE: INX :

MoV AM

ANI AFBH :Set media bit to single sided

HOV A

JMP RDDIR
DOUBLE: MOV AM

AN1 28H :Test couble sided drive bit

Jz EXIT :Single sided drive, no read

INX H

MoV AM

ORI B4R :Mark media double sided

MOV ", A
RDDIR: LXI H, DIRBUFP ;Point at directory buffer
RDDIRl: PUSH B ;Save sector

PUSBR H :Save DMA address

CALL SETSEC

POP B

PUSH B

CALL SETDMA

CALL

POP 8

POP B

ORA A

JNz BooT :Bxit if disk error

PUSH B

LX1 H, -8928H

DAD B -

MOV AH

ORA L

Jz RDDIR2 1Go to next side

LX1 H.-8D248

DAD B

MOV A8

CRA L

JNZ RDDIR] ;Btay on same side
RDD1R2: PUSH B

MVI Cc,1 1Go to track 1

CALL SETTRK

poP B

MV1 c.e :15tart with sector 1
RDDIR): POP]

LX1 D,128

DAD D :Go to next DMA address

1NR [;Next sector

DCR B ;Decrease sector count

Juz RDD1R]

MOV AH ;Calculate directory size

LXI 8, DIRBUP

BUB H

ADD A ;8 entries per page

ADD A

ADD A

Mov C.A ;Mazimum entries in C
WXTENT: MOV AN

CPI v

Jc EXPTY 1Mot printing ASCII

cPI Ira

JeC EMPTY ;Same, assume ampty

PUSH 8 ;Bave count

PUSH H iSave pointer

MIDLIN:

DSPENT:

SHIFTR:

EXIT:
DSPLY:

SPACE:
WRTCON :

DIGIT:
DIGIT]:

D1G1T2:

SELDSK:
SETTRK:
BETSEC:
SETDMA:
READ:

7
PHTERR:
BOFILE:
BONZRO:

BTACK
?

]
DIRBUP:
H

The Computer Journal 3

A.B

83R

MIDLIN

D, CRLP

DSPLY ;Do s CRLF at beginning
DSPENT :8kip separator

el ;iDisplay sepsrator between
WRTCON

BPACE (Add a space

H iRestore entry pointer
H

c.8 iFilename characters
NAME :Display filen

SPACE :Separate with space
c.3

RAME :Display filetype
SPACE iTrasiling space

L,17

D :Point at file size
Z.M iGet size in reqgisters
H

D,M

H

AN

H, IJFFH ;Round up to nearest 1k
D

[

L.H iEhift right 18 bits
g.a

c.2

A

AH

H,A

AL

L.A

c

SEHIFPTR

A

NONZRO idon-zero flag
D,~188

DIGIT :Diaplay hundreds

D, -18

DIGIT :Display tens

AL

Y

E,A

WRTCON :Display ones

£, 'k’ iAMdd 'K’ to mize
WRTCON

SPACE :Add a trailing space
B

B

B

D,32

b :Go to next entry

c

NXTENT jMOre entries to check
A,B

A

D,NOFILE

EXIT ;Mo entries

D, CRLF ;At least one entry
DSPLY

BOOT

c.9 implay atring function
BDOS

E.' ;Display space

B

H

c,2 iWrite console function
BDOS

H

B

E.M

WRTCON

B

[

NANE

A, 8 -1 :Initialize digit

D ;Divisor in DE

A :ASCII digit in A
DIGIT]

PSW ;Save digit

AL

E :Correct for overflow
L.A

AH

o

H. A

PEW

E.A :Digit in E

Y

DI1GIT2 :%ero in this place
A,0PFR

BONMZIRO 16et flag

WRTCOB

NONZRO

A

WRTCON :Display embedded zero
| P ;Suppress leading seros
WRTCON

981BH :Values are filied in
001KH

#6218

9824H

90278

'e%% WRFADABLE PCDOS FORMAT *¢¢°
ODH, 8AH, 97H, '§’
ODH, BAH, 'MO PILR'

#DH,8AH, '§ "’

1 :?lag for non-sero value
48 15tack area

$

($+8FYE) AND SYPOSH

72908 :PCDOS directory

4 The Computer Journa!

Listing 2

READPC . ASM

Program to copy » file from an IBM PCDOS diakette
in Drive B to a CP/M file On Drive A of a Morrow
Micro Deciwion, assusing IBM.COM has already

been run to set Drive B to an IBM type diskette

H Version of 4/24/84

BOOT ZQU L]
BDOS EQU 8885H
DSTFCB EQU B85CH

ORG 1884

LXI 5P, ETACK

LDA BOOT+2

§TA SELDEK+2

5TA SETTRK+2

STA BETSEC+2

STA BETDMA+2

§TA READ+2

Ww! c1

CALL SELDSK

L2 c.s

CALL SETTRK

LX1 B,B4B5H

Lx1 H, FAT
RDFAT: PUSH B

PUSH H

CALL SETSEC

POP B

PUSH 8

CALL SETDMA

CALL READ

POF H

POP B

ORA A

JNZ BOOT

1 D, 128

DAD D

IBR c

DCR B

JNZ RDFPAT

LRLD BOOT+1

X1 D,41H

DAD D

MoV M

INX H

MoV D.m

Lx1 H,9

DAD b

XCHG

LDA FPAT

Lx1 B, 1C8DH

LX1 H,9688H

INR A

JZ DOUBLE

MVl B, 18K

LX1 H,8A10H

INR A

Jz SINGLE

1x1 B,1C15H

L1 H, 2889H

INR A

Jz DOUBLE

VI 8,164

LXI1 H,PE12H

INR A

Jz SINGLE
NOREAD: LXI D, FMTERR

JMP EXIT
SINGLE: INX D

LDAX 3]

ANI @FBH

STAX o]

VI A, 83K

Jmp RDDIR
DOUBLE: LDAX D

AN 2BH

Jz NOREAD

INX D

LDAX o

OR}1 64H

STAX]

VI A,B7TH
RDDIR: STA CLMASK

SHLD SPT

LX1 H, DIRBUF
RDDIRI: PUSH B

PUSH H

CALL SETSEC

POP B

B
CALL SETDMA

POP H

POP 8

ORA A

JNT BOOT

PUSH B

Lx1 H, -0928H

DAD B

nov AH

ORA L

Jz RDDIR2

LX1 H,-8D24RB

Dap B

mov AH

ORA L

Jnz RDDIR]
RDDIR2: PUSH B

MVI <,

CALL SETTRK

poP B

MVI c,e
RDDIR3: POP B

X1 D, 128

DAD D

INR [

DCR B

Jez RDDIR]1

nov AH

LX1 §, DIRBUF

suUB .}

ADD A

ADD A

iCP/M reboot address
:BDOS entry point
:Destination FCEB

;Set up local stack

:Patch for BIOS calls

;Select B drive

:Set track @
;Read PAT

iS5ave sector
:Save DMA address

:Reboot 1f disk error
iGo to next DMA address
:Next sector

:Decreasge sector count

ilocate drive table (MTAR)

:DE points to drive B entry
;Get first byte of FAT
;Sector count & first sector
:CLOFF and SPT

;DOS 1.8 double sided

;DOS 1.8 single sided

:DOS 2.8 double sided

;DOS 2.8 single sided
;Unreadable

:Set media bit to single sided

:Mask

:Test double sided drive bt
;Single sided drive, no read

iMark media double sided

;Double sided mask

;Save format info

:Point at directory buffer
;Save sector

:8ave DMA address

:Exit if disk error

3Go to nest side

iStay on same side

;GO to track 1

;Start with sector 1

1Go to next DMA address
1hest sector
;Decresse sector count

tCalculate directory size

;18 antries per page

SEARCH:

COMPAR :

DIFFER:

LOOP:

opD:

UPDATE:

DIVIDR:

ADD
Mov

PUSE

1y
3

NIVUXRUNIDO ® >

EXIT

~
=

H, 0

tMazimus entries 1n B
;Point at filename
:5ave pointers

tLength of filename/type

Mot the same

;Entry matched

:Go to next entry

Mot found

;Balance stack

:Save pointer to entry

;Destination 1e always A
;Delete 0ld file i1f present
Make new file

:Diak full

:Restore pointer

:Point to 1st cluster

:Save next cluster

:Get file size

:Convert to logical records

:Record count 1in HL
iBuffer pointer in DE
;Buffer records in C

;More records in file
:¥lush data buffer,

iClose file
iDone
;Save parameters

iGet mask

iDisk and track current

i5ave odd/even status
sHL point at next cluster

:DE have next cluster number

:Bit count
:Previous cluster was odd

:Keep only lowest 12 bits

:Clear carry
:Keep highest 12 bits

;Get current Cluster

iReplace with next cluster

Cluster*?
;Compute track/sector from BL

;Divide HL by spt
:track in C

continued

The Computer Journat S

Listing 2, continued M lcrOMOTlon
2 M
MoV B,A
MOV A,L
sUB E .-lluni.nder in A G Ste r FO RT H
NULT: ADD A :Multiply by mask+l
MoV E.A
MOV AB ’ R
B It's here — the next generation
MO .
Jec MULT . .
wmA iricet ector s 1 of MicroMotion Forth.
:‘gi ;iicx :Update track
L TR 78t new track e Meets all provisions, extensions and expermental
CURRNT : EQ:L ::xc.’ng: ;Select next sector proposals of the FORTH-83 Intemational Standard.
37
3 woove Mo track overflov e Uses the host operating system file structure (APPLE
oA DOS 3.3 & CP/M 2.x).
v v
el Sevare vith sector 1 e Built-in micro-assembier with numeric local labels.
oo gE EE;OR e Afull screen editor is provided which includes 16 x
oA semsec 64 format, can push & pop more than one line,
posu B et next Don address user definable controls, upper/lower case key-
CALL READ ' board entry, ACOPY utility moves screens within &
Mz Boor ‘Rend error between lines, line stack, redefinable control
i a2 keys, and search & replace commands.
DAD D :Go to next buffer area
X \Restore record counter e Includes all file primitives described in Kemigan
e and Plauger's Software Tools.
o lgox{.yls,a ;#lush data buffer if 128 e The input and output streams are fully redirectable.
JMP
FLusE: INR € iFlush data buffer e The editor, assembler and screen copy utilities are
M s iBuffer empty provided as relocatable object modules. They
puse B are brought into the dictionary on demand and
oA shibex may be released with a single command.
e o e Many key nucleus commands are vectored. Emor
Fos: TUsh o handling. number parsing, keyboard transiation
L miee .St DA address and so on can be redefined as needed by user
oo programs. They are automatically retumed to
L BooeEse iWrite the record their previous definitions when the program is
3:: ;XIT :Disk full forgOﬁen
POP D
PP B e e The sting-handling package is the finest and
oA o 160 to next record most complete availabie.
e CiLusm e A listing of the nucleus is provided as part of the
O documentation.
—_— ﬁ c.o . e The language implementation exactly matches
P mooT tReboor. o the one described in FORTH TOOLS, by Anderson
Sertax. b e#lEm Fualves are filled in & Tracy. This 200 page futorial and reference
Srea. P D824n manual is included with MasterFORTH
READ: JMP #927H
haTERR: DB ‘e DNREADABLE PCDOS FPORMAT %*°° e Foating Point & HIRES options available.
. .878,"§"*
ParERR: DB |eei PILE WOT POUND *v°".gD8.@AR.O7H,"S" e Available for APPLE I/ li+/!e & CP/M 2.x users.
DDFERR: DB **e DIEK OI.DI'I!G'OIY PULL ®%*’
s b 1T eceors/erac o MasterFORTH - $100.00. FP & HIRES -$40.00 each
CLOPF: DS 1 72*Cluster offset
CLoSTR: D : Thart cluster e Publications
secToR: s Iy ',:.::::?;i‘:ﬂf:lc:::“ e FORTH TOOLS - $20.00
t5tack area
sTack 2ou s e 83 intemational Standard - $15.00
, ¢ (seeTTR] M Srrees e FORTH-83 Source Listing 6502, 8080, 8086 -
OixsUP: D6 7+seem Ivepos directory $20.00 each.
DATBUFP: DS 40008 ;Dats buffer
’ oo [|
Customer Support Survey
In order to improve customer support in the
microcomputer industry, TCJ will publish user Contact:
experiences with vendors. Send us your MicroMotion
candidates for the best and worst vendor, along 12077 Wilshire Biva.. Ste. 506
with your supporting information. Los Angeles, CA 90025
(213) 821-4340

6 The Computer Journal

WRITE YOUR OWN THREADED LANGUAGE

by Douglas Davidson

T he FORTH language presents a method remarkable for
its simplicity, economy, and power: it should be
remembered, however, that FORTH proper is but one
example of the method referred to as threaded language.
The characteristics of threaded languages make them
particularly useful to hobbyists and all those who like to get
close to the machine they are working with; it is my
contention that the project of writing such a language is
useful, educational, very much in the spirit of the language,
and at the same time not very difficuit. I will present in
these articles a practical guide to the writing of one
particular threaded language with the intention that it be
customized and altered at will. This language is very similar
to FORTH, but varies from it in a number of ways for the
purposes of simplification.

A threaded language consists essentially of a collection of
tools and some facilities for using and adding to these tools.
The basic tools are simple routines to do things such as
simple arithmetic operations, input and output, etc. The
tools communicate by means of a LIFO (last in, first out)
stack which forms the heart of the apparatus; most routines
are defined in terms of their effects on the stack, and
arithmetic operations are presented in RPN form (for an ex-
planation of RPN, see the tint box on page 30.) The power of
the language comes from its extensibility: new routines are
defined in terms of old ones, and then become part of the
tool collection, and can in turn be used in the definition of
still more routines. This is the origin of the term “threaded:”
routines are stored essentially as lists of references to other
routines, which are “threaded” together. Before introducing
specifics, I would like to present a list of definitions.

e Word: A named routine, consisting of a header followed
by machine language code or data of some sort. See Figure
1.

¢ Primary: A word written in machine language; more
generally, a word without a higher-level definition.

¢ Secondary: A word defined in higher-level terms—that is,
in terms of other words. In this presentation the distinction
between primary and secondary will be somewhat blurred
by the fact that secondaries will actually consist of machine
code, but this is not always the case, and the difference will

still be clear.

¢ Dictionary: The linked list of words. Words will be stored
one after the other in memory; each one will contain a link
to the previous one, and a record will be kept of the location
of the last one.

¢ Header: The housekeeping information at the head of a
word, here consisting only of the word's name and a link to
the previous word in the dictionary. The name will be stored
as its first three characters in ASCII form, preceded by its
length—this is somewhat standard, and should be sufficient.
The link follows the name and is two bytes, the NFA of the
previous word.

¢ NFA: The name field address of a word—the address of
the first byte of the header.

¢ LFA: The link field address of a word—the address of the
fifth byte of the header, equal to NFA + 4.

¢ PFA: The parameter field address of a word —the address
of the first byte following the header, equal to NFA + 6.

I wish to present the language from the bottom up; I will
start with the simplest routines, the ones that must be
coded first, and proceed through the more complex,
developing details as needed. The routines will be presented
in several ways—a functional description will be given in
the text, and the 65602 assembly and machine code for an
Apple II implementation will follow. The presentation here
may be conformed to on at least four different levels: the
machine code level, preserving all memory locations, and
using an Apple; the assembly level, for another 6502
computer; the logic of the routines, translated into a
different assembly language; or the functional descriptions
of the routines. Obviously, it will be more of a personal
language and easier to customize if it conforms less strictly
to what is presented here, but the choice is yours. What is
presented here is a bare-bones version, with all of the
interfaces specified and the bugs ironed out. The memory
map, at least for now, will be relatively simple. The
dictionary will start near the bottom of memory and grow
up; the stack will start near the top of memory (some room
will be needed above it) and grow down; see Figure 2. Some
space will also be needed for system variables. We will need
a two-byte variable, S, to point to the head of the stack; as

each stack entry will

consist of two bytes, S

NFA LFA P NFA LFA PFA will be incremented or

LEN | NAME LINK CODE LEN | NAME LINK CODE decremented in multiples

I R U D R A e - - - S of two. I now postpone
4 .

03 {c4 D5 DO| 03 08 |E6 00 ... 04 [CF D6 C5/ 16 08 | E6 00 details of more complex

things to get right to

Figure 1: Section of the Dictionary.

some basic routines.
The first necessity is a

start-up routine, but since nigh
we do not yet know all that
. R-$TACK l
needs to be done, it would [e—-
INPUT BUFFER

be best to simply put a jump J..
instruction at the start of |, STACK }
the program and leave its SECOND BUFFER
destination for later. Im-
mediately after that we
start adding words to the
dictionary; each consists of a
header —one byte of name
length, three bytes of name,
and two bytes of link—
followed by the machine code, ended with a return
instruction. The link of the first word should be zero.

Hee

DICTIONARY

iow

Figure 2: Memory Map.

Stack Manipulation:
DROP removes the top
increments S by two.

DUP duplicates the top stack element; it decrements S by
two, then moves the two bytes starting at S +2 to the two
bytes starting at S.

OVER places a copy of the second stack entry on top of
the stack; it decrements S by two, then moves the two bytes
starting at S + 4 to the two bytes starting at S.

SWAP exchanges the top two stack elements; it
exchanges the two bytes starting at S with the two bytes
starting at S + 2.

ROT cyclically exchanges the top three stack elements; it
exchanges the two bytes starting at S + 2 with the two at
S +4, then the two at S with the two at S + 2.

> R It will be useful for several reasons to maintain a
second stack, the “return” stack, similar to but smaller than
the first, and starting at the top of available memory and
growing down. A two-byte variable, R, will point to the head
of the return stack. The word > R moves the head of the
main stack to the return stack; it decrements R by two,
moves the two bytes at S to the two at R, and increments S
by two.

R> This word is the opposite of > R; it decrements S
by two, moves the two bytes at R to the two at S, then
increments R by two.

I copies the head of the return stack to the main stack; it
decrements S by two, then moves the two bytes at R to the
two at S.

stack element; it simply

Comparison:

0= We will use a “flag" to indicate logical values;
$0001 = true, $0000 = false. All comparison operators will
return these values, but for other purposes any non-zero
value will be considered true. Also, it is conventional for
words to destroy their operands; thus, the word 0 checks the
value at the head of the stack and replaces it with a true
flag if it is zero, or a false flag otherwise.

0< Stack values will be considered for different purposes
as logical values, as two's complement values, as ASCII
values, or as unsigned binary values. The word 0< takes
the top stack value as a two's complement signed integer; it

The Computer Journal 7

replaces the top stack entry with a true flag if its most
significant bit is high, otherwise with a false flag.

= Words, as I have said, destroy their operands; the =
word determines a flag, a true flag if the top two stack
entries (i.e., the two bytes at S and the two bytes at S +2)
are equal and a false flag otherwise, then increments S by
two and replaces the two bytes starting at S by the flag
previously determined.

< considers the two top stack entries as two's
complement signed binary integers and determines a flag,
true if the first one (the two bytes starting at S+ 2) is less
than the second (the two bytes starting at S) and false
otherwise, then increments S and replaces the two bytes
starting at S with the flag previously determined. > s
similar to < , if “less than" is replaced by “greater than".

Logical:

AND forms this bitwise logical AND of the two bytes
starting at S with the two bytes starting at S+2,
increments S by two, then replaces the two bytes starting at
S with the result of the logical operation.

OR is similar to AND, but the operation is an OR.

XOR is similar to AND, but the operation is an exclusive-
or.

NOT replaces the two bytes starting at S with their logical
complement.

Arithmetic:
4+ finds the sum of the two top stack entries, increments S
by two, and replaces the two bytes starting at S with the
sum.
— is similar to +, but the difference rather than the sum
is calculated; note that no overflow checking is performed.
NEGATE replaces the top stack entry by its two's
complement additive inverse; essentially it exclusive-ors the
two bytes with $SFFFF and then increments them by one.
ABS replaces the top stack entry by its absolute value; if
the MSB is high, it calls NEGATE, otherwise it does
nothing.
* It is wise, for the mulitiplication and division words, to
reserve about ten bytes for accumulators, and to have
headerless routines (a) to move stack values into these
accumulators, taking their absolute values first and saving
the final sign elsewhere, (b} to move a value from the
accumulator to the stack, giving it the saved sign, and (c) to
perform operations on the accumulators. The * word takes
the two top stack entries, considered as two's complement
binary integers, removes them from the stack, forms their
product, and places it on the stack.

is similar to ®, but it forms the quotient (of the first value
divided by the second) rather than the product.
/MOD considers the two top stack values as unsigned
binary integers, takes them off the stack, forms their
quotient and remainder, and puts first the remainder, then
the quotient on the stack.
MOD is similar to /MOD, but it discards the quotient and
returns just the remainder.
*/ takes the three top stack entries, considered as two's

8 The Computer Journal

complement binary integers, off the stack, forms the 32-bit
product of the first two, and divides this 32-bit product by
the third. It then places the resulting 16-bit value back on
the stack.

*/MOD is similar to */, but it considers the entries as
unsigned binary values, and it returns first a remainder and
then a quotient.

Memory:

! takes the value in the two bytes starting at S+2 and
stores it in the two-byte location pointed to by the two bytes
starting at S; it then increments S by four.

+! takes the value in the two bytes starting at S +2 and
adds it to the two-byte value pointed to by the two bytes
starting at S, then stores the sum in the location pointed to
by the two bytes starting at S; it then increments S by four.
C! takes the value in the one byte starting at S+2 and
stores it in the one byte pointed to by the two bytes
starting at S; it then increments S by four.

@ replaces the two bytes starting at S with the two bytes
they point to.

C@ replaces the two bytes starting at S with the one byte
they point to and a $00 for the upper byte.

The next installment will present more complex routines,
including most of the input-output and dictionary
management. For now, test each of these simple routines
independently, and perhaps add some more—anyone
familiar with FORTH will know several more. The purpose
of some of these routines will become clearer as things
progress.

*» CODE FOR SAMPLE THREADED LANGUAGE ¢+
- APPLE /116502 e

#B8OO: 4c 14 13
-
«s DROP ¢o
.

9683: 04 C4 D2 CF po 80

JMP STARTUP

8899: E£6 08 INC SL i increment S by 2
S698: De 82 BNE OK§
0689D: Es 81 INC SH
#O8F: E6 PO O 1 INC SL
#81i: DO 62 BNE OK2
8813 EbH 1 INC SH
#815: &8 ox2 RTS
N
*+ DUP ae
.

®#816: 83 C4 05 D8 63 08

®81C: Es SO INC SL t decrement 5 by 2
$61E: Co 00 DEC SL
062¢8: DO 02 PNE OK1
#822: Cé 91 DEC SH
0a24: Co 00 oK1 DEC SL
#625: DO 92 BNE OK2
#6828: Co 91 DEC SH
oaza: Co o9 oK2 DEC SL
#62C: AS 3 LDY #3083 i @ove the two bytes
#62£: Bi 08 LDA (S),Y § at Se2
9638: A8 61 LDY ese1 i to the two bytes
oa32: 91 o8 STA (S),Y | at §
ee34: C8 INY
#633: B1 90 LDa (S),¥
2837: AB 90 LDY wsee
0839: 91 88 STA (S),v
0636: o8 RTS
.
s DVER o
.
#a3C: #4 CF D6 CS 16 06
#642: E6 00 INC SL i decrement S by 2
0644: Co 98 DEC SL
#846: DS #2 BNE 0K 1
#e40: Co 01 DEC SH
#84a: Co 60 ox1 DEC SL
#84C: DO 92 BNE OK2
#B4E: Co 91 DEC SH
®85e: Co 90 o2 DEC SL
#632: A8 03 LDY eves ; move the two bytes
8e54: Bi 08 LDA (S),Y & at S+4
0834: A9 01 LDY ese1 f to the two bytes
sesa: 71 o STA (5),Y 1 at 8
203A: A 84 Loy
#65C: B1 9€ Lba (S),¥
oasE: As o0 LDY wsee
s8se: 91 09 S8TA (5),Y
0a62: 68 RTS

2

EERIRER

[7M

2t 3ttt

.

ae SHAF o

.
D7 C1 3C e8

.
vs ROT oo
.

CF Da &3 08

ow1

D2 A@ 8D #6

oxe
e R> ae

BE A8 BS 00

oxe
ss | os

AD A8 E3 00

LDa
Tax
LDy
LDA
LDy
sTa
LDY
Txa
STA
INY
LDA
Tax
Loy
LDA
LOY
s5TA
LOY
TXa
sTa
RTS

INC

INC
NG

INC
ISk

DEC

DEC
DEC

DEC

Jre

Ny
LDA

TYA

[TV} t exchange the r=
bytes

(5),v¥ i at S+2 wmith
i the two bytes at S

L2 131

5,y

[LY 31

S), v

esa1

(S),¥
5),v

"o
S, ¥
[1¥-F
iSr,v
4800

Sy, ¥

SL i Swap the two bytes
o i at S+4 with the
SH i two bytes at Se2

St i then swap the twe
St i bytes at S+2

i with the two bytes
SH ;3 at §

£

RL i decremsent R by 2

ose § move the two bytes
at S to the
two bytes at R

3a
<<

2

incremsent S by 2

2

decresant S by 2

move the two bytes
at R to the
two bytes at S

Giz
<"

2

1ncrement R by 2

Su t decresent § by 2

i

move the two bDytes
at R to the
two bytes at S

Ry, ¥
51,y

R, Y
S),Y

s are the two bytes
s,y 1 at S both zero”
NI

(5), ¥
N2
1 yos, f1ages®es)

continued

The Computer Journal 9

9945: DO #2 BNE ZERD #a1D: €6 09 I i incresent 8§ by 2
9947 A% 00 NZ LDA esee i no, flag=seeee GAIF: DO 02 NE Ox)
9947 A0 08 ZERD LDY #3060 #a21: E& 01 NC 84
8948: 91 09 8TA (S),Y #a23: E6 09 ox1 INC 8L
#54D: 98 Tva SAZ3: DO 62 ™E Ox2
#94E: CB INY ®A27: E& 91 INC 9
PF4F: 91 09 8TA (S),Y SA29: &8 o2 RTS
0”51 68 RTS .
. = OR e
ae @< oo .
. CF D2 A 64 8A
#952: $2 DO BC A 33 99 [LDY eses 4 OR the two bytes
0938: A0 81 LDY 9801 § 18 the MSB high” [4 LDA (8),Y | starting at S
#9541 B1 o8 LDA (S),¥ 2 LDY #%€2 } with the two at S+2
8I5C: 38 61 BMI HINUS [ORA (S),Y
#95E: B8 DEY 3 no, flag=e0e6e [] 8TA (S),Y
#9SF: 98 MINUS Tva i oves, flagesesel DEY
0950: 6 00 LDY asee [LDA (S),¥
#952: 91 68 STA (S),Y 3 LDY 0e83
#964: 98 TYA o0 ORA (S},Y
0565 C8 INY (44 8TA (S) .Y
09661 71 S0 STA (5),Y [INC St 1 increeent S by 2
@968: L8 RTS [g BNE OK1
. o1 INC SH
. = se L7 [: 3 INC SL
. L3 BNE O%2
#969: @1 BD A9 A 52 89 21 INC SH
B36F: AD 00 LDY #so® i ave the two bytes o2 RYS
8371: Bl 98 LDA (S),Y § at S wqual to the .
8973: A6 82 LDY w802 I two bytes at S+27 ¢ XOR se
#575: D1 68 CrP (S),V -
®977: D@ 8D BNE NEQ D8 CF 02 24 #A
8979: 88 DEY [4 LDY #epd i XOR the two bytes
#S7A: Bl 89 LDA (S}, [LDR (S),Y 5 starting at S with
#97C: A8 @3 LDY &e83 82 LDY we@2 i the two at 542
#97E: D1 90 CcoP (51,Y [EOR (S),Y
@980: DS 64 BNE NEQ L4 STA (S),Y
#7982 AT 81 LDA asdl 3 yes, flag=e8691 DEY
@384 DO 82 BNE EQ ot LDA (S),Y
@986: A9 B0 NEQ LDA esde i no, ‘lag~sdese 83 LDY #%83
2988: A@ 62 EQ LDY #8802 o EOR (S),Y
2984: 91 00 STA (S),¥Y [] sTa 18),Y
e98C: CB INY [INC SL § increment S by 2
#98D: A9 08 LDA 0300 92 BNE OK1
878F: 91 08 STA (S),Y 8asD: E6 01 INC SM
#991: E6 89 INC SL I increment S by 2 oa6F: €6 86 oK ™ SL
8993: DS 82 BNE OK1 sa7i: DS €2 BNE OK2
8995: E6 81 INC SH #a73: €6 01 INC SH
8997: €6 99 oK1 INC SL 8a75: o8 ox2 RTS
6999: DO 62 BNE OK2 .
8998: E6 81 INC SH s NOT oo
#99D: 68 ox2 RTS .
. CE CF Ds 50 #a
. < we 81 LDY 6s@: § take the compleeent
. o LDA (5),Y } of the two bytes
B899E: 81 BC AD A8 &9 89 FF EOR @8FF i starting at §
29A4: A® 02 LDy es62 i compare the two bytes o0 STA (S), V¥
89a6: 38 SEC 5 at S+2 with the DEY
#9a7: Bl 99 LDA (S),Y § two bytes at § Lo Lba (S),v
69RY: RS OO LDY 080 FF EOR @SFF
#9aB: F1 @9 SBC (S),Y o0 STA (S),Y
#3aD: A 93 LDY #8083 .
@9aF: BL 88 LDA (S),Y . we
#961: AG 81 LDY es@1 .
8983: F1 08 SBC (S),¥ AB A8 A9 76 BA
#985: S50 92 BVC OK1 ac i add the two bytes
@987: 49 86 EOR @880 o8 LDY sese 5 starting at S with
#9B9: 29 88 oK1 AND #3880 [od LDA (S),Y | the two at Se2
#9BB: BA asL o2 LDY #s82
#9BC: 2A ROL i and produce a flag [4 ADC (S),Y
#9BD: C8 INY os STA (S),Y
89BE: 91 09 STA (S),Y DEY
#9C8: A9 09 LDA 888 L LDA (S),Y
89C2: C8 INY o3 LDY @se3
89C3: 91 08 STA (S),Y [[aDc (S),Y
P9CS: E6 00 INC SL i incresent S by 2 A4 91 98 STA (S),Y
#9C7: DB 82 BNE OK2 #ans: E6 08 INC SL 3 incresent S by 2
89C9: E6 61 INC SH sana: DO 02 WNE OK1
#9CB: Eo 09 ox2 INC SL sana: DS 82 INC SH
#9CD: DP 82 BNE OK3 #nAC: E6 80 oxi INC SL
#9CF: E6 91 INC SH SRAE: DO 82 BNE OK2
#9D1: 68 K3 RTS sabe: E6 01 NG SH
. #aB2: 68 ox2 RTS
s) as .
. s - oo
#9D2: #1 BE AP AP VE 99 »
#908: AP LDY ose@e I compare the two bytes #aB3: 81 AS A BC #A
8AB?: 38 SEC $ subtract the two bvtes
#9DA: 38 SEC $ at 8 wath the two SABA: A9 02 LDY 9s@2 i starting at S from
P9DB: B1 08 LDA (S),Y § bytws at S+2 #aBC: B 09 LDA (S).Y | the two at 52
o70D: e 92 LDV #se2 OABE: AS 00 LDv esss
#9DF: Fi 0 88C (8),Y 8ACe: F1 09 SBC (S),Y
o9El: 88 oEY oAC2: A8 92 LDY 0802
99€2: B1 99 LDA (8),Y SAC4: 91 o0 8TA (S), ¥
99E4: AP €3 LDy aCs: CB INY
99EL: F1 98 s8¢ (8),Y SAC7: B1 00 LDa (B),Y
99€0: 58 02 BVC OX1 SAC9: A 81 LDY %!
$9EA: 49 @9 EOR 9888 SACE: F1 08 8BC (S),Y
#9EC: 29 B8 Ox1 N 9380 GACD: A8 03 LDY o883
09EE: #A oy SACF: Y1 99 8TA (S),¥
O9EF: A9 00 LDA s SADL: E6 09 INC S } i1ncrement S by 2
o9F1: 91 08 STA (8),Y SAD3: DO 02 »E 0}
#9F3: 88 DEY SADS: E& 01 INC SH
owa: 28 ROL 1 and produce a flag 8AD7: E& 88 OX1 INC SU
09FS: 91 99 8Ta (8),Y SADY: DO 02 NE OK2
99F7: Eb 00 INC 8L § increment § by 2 OADB: Eo 61 INC SM
99F9: DS 02 MNE OK2 GADD: &8 K2 RTS8
99FB: Eb #1 INC 8H .
#9FD: E6 00 o2 INC S o+ NEGATE oo
O9FF: DO #2 E OK3 hd
sAS1: E& 8t INC M SADE: 86 CE CS C7 B3I &
SAS3: &0 o3 RTS8 SAEA: 20 7C 84 JER NOT § first take the coaplewent
- SAET: AB 89 LDY oo 5 them increment the
o AND » GAET: Bl 99 LDA (3),Y i two bytws starting at S
. SPED: 18 ac
#3 C1 CE C4 D2 09 SAEC: 69 S1 ADC 080!
Ao o0 LDY 6960 | M@ the two bytes SAEE: 91 09 8TA (),
b1 % LDA (81, 1§ starting at 8 with 04F0: 99 07 BCC DONE
- 02 LDY ose2 § the two at 8+2 SAF2: CB Ny
31 o® ~D (B),Y 8AF3: Bi 00 LDA (S),¥
91 o9 sTA (8),Y SAFS: 49 08 ADC Se08
o8 DEY SF7: 91 09 8TA (8),Y
b1 o oA (B),Y SOFY: &8 DONE RTS
e 63 LDY @8
31 s8 ~O (8),Y .
21 50 g M continued

10

The Computer Journal

e ABS ee

#4FA: €3 C1 C2 D3I DE #4

D00: A 01 LDY as@L $ 1s the MSB high?
obs2: B1 o9 LDa (S),Y

b4 18 83 BPL DONE

#B8s: AC E4 #A JMP NEGATE 1 ves, negate
wory: 69 DONE. RTS I no, do nothing

»
se 16014=32 e
.

No Header
PBSA: A% PO LDA 8se® $ clear actusulators
#BPC: BD 12 STA ACC.B2L
#BeE: 85 13 STAa ACC.B2H
#B18: B85 14 SYA ACC.CIL
#B12: 85 1S STA ACC.CIH
6B14: 85 16 STA ACC.C2L
@#pis: 85 17 STA ACC.C2H
8B18: 46 OF PASS LSR ACC.AH § check a bat
B#BlA: 66 BE ROR ACC.AL
#BIC: 98 19 BCC SHIFT } branch 1{ not saet
@BlE: 18 cLe } add 14 set
BHIF: AT 18 LDA ACC.BiL t B+C -> C
@B21: 65 14 ADC ACC.CIL
#823: BS 14 STA ACC.CIL
#B25: AS 1t LDA ACC.BIH
#B27: 6% 15 ADC ACC.CIH
@#B29: 85 15 STA ACC.CIH
#B2B: A5 12 LDA ACC.B2L
@BID: &5 le& ADC ACC.C2L
#B2F: B85 16 STA ACC.C2L
@BI1: AS 13 iLba acC.B2H
PBI3: &5 17 ADC ACC.C2H
@BIS: 85 17 STA ACC.C2H
SE3I7: 86 10 SHIFT ASL ACC.BIL ; and shift B left
#B39: 26 11 ROL ACC.BIH
8B3B: 26 12 ROL ACC.B2L
@B3D: 26 13 ROL ACC.B2H
#B3IF: AS #E LDA ACC.AL ; unti] done
#Ba): D@ D5 BNE PASS
#B43: AS &F LDA ACC.AH
@Bas5: DO DI BNE PASS
#B47: &0 RTS
*
e 32/16=16 ww
.
No Header
#B48: A7 00 LDA eep0 j clear accumulators
#B4a: B85 14 STA ACC.CIL
#BaC: 85 15 STA ACC.CIH
SBAE: A2 18 LDx #s10 i 8 of passes
#B50: 64 IS PASS ASL ACC.BIL §; shaét B lett
o852 26 11 ROL ACC.BtH
#Bsa: 26 12 ROL ACC.B2L
#BS6: 26 13 ROL ACC.B24
eBS8: 96 6C BCC NORMAL § have we ei1ssed & b1t?
#BSA: AS 12 LDA ACC.B2L 5 yes, we must subtract
885C: ES #E SBC ACC.AL ; no satter what
OBSE: 48 PHA
#BSF: AS 13 LDA ACC. B2H
#Bs1: ES oF SBC ACC.aM
#BSA: AS 12 LDA ACC.BIL i yes, we must Subtract
#BSC: ES 6€ SBC ACC.AL i no matter what
SB5E: 48 PHA
#BSF: AS 13 LDA ACC.B2H
®Bot: €5 oF SRC ACC.AH
@8B63; 38 SEC
#Bs4: PO oC BCS SUB
8Bss: 38 NORMAL SEC i normally we subtract
#B67: AS 12 LDA ACC.B2L i only 1f the
diféerence
#Bs9: €5 OE SBC ACC.AL 3 1% positive
#86B: 48 PHA
#B6C: AS 13 LDA ACC.B2H
#B&E: ES OF SBC ACC.AH
#B7¢: 96 62 BCC NOSUB)
#B72: 85 13 suB STa ACC.B2H
oB74: &8 NOSUBI PLA
#B75: 99 67 BCC NOSUBT
#B77: BS 12 STA ACC.B2L
B8B79: 2& 14 NOSUB2 ROL ACC.CIL 5 shift the bit 1nto
#B78: 26 15 ROL ACC.CI1H i the quotient
@B7D: CA DEX
@B7E: DO D@ BNE PASS
#B8€; 4O RTS
-
e 16816216 we
.
No Header
0B81: A9 09 LDA 8ee@ i clear accumul stor
#B83: 85 14 STA ACC.CIL
oBas: 85 15 STA ACC.CIH
BT 446 OF PASS LIR ACC.AM | check D1t
oBOeS: &5 OE RfR ACC.AL
#B868B: 98 éD ®CC NDADD
oB8D: 168 cac iat’s set
SBOE: A5 18 LDA ACC.BIL i therefore B+C - C
PBIF. 65 14 ADC ACC.CIL
#B92: 85 14 STA AaCC.CiL
#B94; AS 11 LPA ACC.BIM
B 65 15 ADC ACC.CIH
#B98: 85 15 S§TA ACC.CIH
#BIA: 86 1S NOADD ASL ACC.BIL t shiét 8 leét
#B9C: 26 11 ROL ACC.BiH
#B9E: A5 PE LDA ACC.AL i 1f either A or B
#Bas: DO 64 BNE NOPE 3 1% rero. we're done
#BA2: AS BF LDAa ACC.AH
FBAA: FO 08 BEQ DONE
#BAs: AS 11 NOPE LDA ACC.B1H
sBA8: D# DD BNE PASS
#BAA: AS 18 LDA ACC.B1L
#BaC: D& D9 BNE PASS
OBAE: &0 DONE RTS
.
s ->ACC e
.
~o Header
WBAF: AS 93 LDY @883 1 first save the
SBB1: Bt 99 LbA (S),Y 5 final sign
SBBE3: A8 01 LDY os@1
#8B3: 51 96 EOR (8),Y
#BB7: B85 18 STA SCRL
oBBY: 28 98 0B JSR ABS i1 get the absolute
#BBC: AS 91 LDY #e8t i value of the
#BBE: B1 o8 LDA (S2,Y 3 first nuaber

OBCS:

#BC3:
#BCS:
eBCT:
#BCA:
8BCD:
@BCF:
#BD1:
#BD3:
#B0A:
#8D6:
oBD8:

#BD9:
@BDB:
#B8DD:
8BOF:
#BES:
#BE2:
#BE4:
@BES:
#BES:
BBEB:

@BEC:
aBfF2:
#BFS:
oBF8:

@BFB:
Bace:r:
9Co4:
[o 13
#Ce8:
BCOhA:
#CeD:

8C18:

8C3D:

ZRFTBIUIZRY

%]

91
ce
as
2}

aC
o8

[}

$3385-88385

283283352k ¢

o8

[

11

10

14
[]

15
o¢

o3
E4

AF
AF
[
12
13

D9

2B
[:]
[):]

co

2

23R

sTA
DEY
LpA
sTA
JSR

LDY
LDA
sTA
DEY

sTA
RTS

.
ss ACC-> &8
-

No Header

as & oe

AB FA Ba

.
MA@ EC 8B

LDY
LDA
sTa
INY
LDA
STA

JHP
RTS

JSR
JSR
I

ACC. AN

(S),Y
acc.aL

ABS i ang that of
"o} $ the second
S, ¥
ACC.BtH

(S),Y
ACC.BIL

asde i put beck
ACC.CIL 5 the result
5y, v

ACC.C1H

S, v

SCRL. $ with the
DONE. i proper sign
NEGATE

= »ACC
16#16=16
ACC- >

JSR - >acC

(X}
sTA
sTA
JSR
Jre

*8 /MOD ae

CF FB #5

LOOP

MOD1SH

ee MOD o+

ca4 18 oC

L0OP

oK1

ae o/ we

A® 3E OC

LooP

LDy

574
DEY
BPL
INY
STY
STY

LDY
LDA
STA
INY
LDA
sTA
INY

sTa
INY
LDA
s1A
RTS

LDY

sTA
DEY

INY
STY
STY
JSR
INC

INC
INC

INC
LDY

STA
INY
Lpa
STA
RTS

P9 § zero out the
ACC.B2L 1 rest of B
ACC.B2H

32/14=16

ACC-)>

1101 i get the two
S8y, Y i unsigned numbers
ACC.AL, Y

LOOP
; clear out the
ACC.B2L : rest of B
ACC.B2H
32/1b=164
00 ;i store the guotient
ACC.CIL
(S),v

ACC.C1H
S,y
i and the rewainder
ACC.B2L
15y,

ACC.B2H
S),¥

.ol ;i get the two
Sy, Y ;3 unsigned nusbers
ACC.AL,Y

Loor

3 clear out the
ACC.B2L i rest of B
ACC.B2H
32/16=16
SL i drop a value
o1
SH
St
oK2
S
1T i and return just
ACC.B2L i the ressinder
8y, ¥

ACC. B2H
S),v

DROP i first sultiply
->ACC & the ¢irst two
16€16%32 i nuabers

983 ; then move C -> B
ACC.CI1L.Y

ACC.BIL,Y

LooP
SL i and get the thard
i number

0se1 i with 1ts sign

abs i put 1ts absolute
s i velue 1n A

S),v

ACC. AN

Sy, v

ACC. AL

32/18«16 1 and divide by 1t
3 drop the two

continued on page 22

8

Global Specialties

QT-59S Socket

e 590 Tie Points

e 8-1.C. Capacity

® No Grid Labeling

e Horizontal Expansion only
e Screw-Down Mounting £

f you have two similar products, both

designed for the same function...and
one offers you MORE features for LESS
money...which would YOU buy? The
answer is obvious!

Just look at all these EXTRAS builtinto
every HANDY test socket and buss strip...
o Total contact labeling...
simplifies circuit design/layout
¢ Self-adhesive backing...for one-step
simpiified alignment and mounting
o Full 9 14-Pin |.C. Capacity
e Expands both horizontally and
vertically...interfocks can't break
or twist oft
¢ High temperature plastic housing...
to 80° C...no warping or melting ever!
® Prices always up to 25% less than
other leading brands

To allthese add: Long Life, low resistance
and wide range contacts that accept
combinations of resistors, capacitors,
diodes, transistors, |.C.s, etc. with leads
from .012 - .032" or 20 - 29 AWG. Clear,
easy-to-read-and-identify contact mark-
ings simplify layout, wiring and docu-
mentation. Socket rows are labeled 1-to-
64, and columns are marked A-to-E and
F-to-J. Mating buss strip rows are labeled

U.S. and Canadian Distributor inquiries welcomed.

HB-1000 Socket

® 640 Tie Points

® 9-[.C. Capacity

e Alphanumeric Grid

Labeling

e Both Horizontal and
Vertical Expansion

e Self-Adhesive
Mounting

A-to-D and consist of 25 contacts each.
Bold red and blue lines show where
contact strips begin and end.

Finally, we have a fuli line of breadboard-
ing equipment, from discrete sockets and
buss strips to multi-board assemblies,
available at comparable lower-than-low
prices.

Let's face it. If you get all this...and
the prices are ALWAYS to 25% less. ..
there's no doubt which you'll buy.
HANDY. It's our name...and it telis you
what we do.

What are you waiting for? Order your
HANDY breadboarding products today.
A toli-free call is all it takes!

Here's how to order...
HANDY Sockets and Buss Strips

Part Socket Buss Ground Tie 14 pin
Number Strips Strips Plate Points 1C Capty. Price
HB-0100 N/A 1 no 100 N/A 2.25
HB-1000 1 N/A no 640 9 9.95
HB-1110 1 1 yes 740 9 11.95
HB-1210 1 2 yes 840 9 13.95

HANDY Breadboard Assembiies

Part Socket Buss Binding Tle 14 pin
Number Strips Strips Posts Points IC Capty. Price
HB-2112 2 1 2 1380 18 2595
HB-2313 2 3 3 1980 18 31.00
HB-3514 3 5 4 2420 27 47.95
HB-4714 4 7 4 3260 36 6395

Mall Orders: Please add $3 (Canada & Int’| add $5) to cover cost of shipping/handiing

Sorry! No C O D. orders

Charge Cards: {Min. $15) Please include Acct. No., Exp. Date. Bank No. {M/C onty) and your signature
Checks: Drawn in U.S. Dollars on U.S. banks only. Connecticut Residents: Add 7% Sales Tax

(4

To order...call 1-800-34-HANDY

' ...charge with VISA, MasterCard or American Express.
All items off-the-shetf for immediate Shipment!

a8 division of RSP Electronics Corp.

7 Business Park Drive o P.O. Box 699 e Branford, CT 06405 ® (203) 488-6603 ® TWX: (910) 997-0684
Easy Link Mail Box: 62537580 ¢ CompuServe: 71346, 1070

12 The Computer Journa

Interfacing Tips and Troubles
A Column by Neil Bungard

Introduction
Every new column begins with a particular theme in
mind. Perhaps an appropriate theme for “Interfacing Tips
and Troubles” would be “get down to brass tacks and make

the interface work." This column will take a practical and
workable approach to connecting computers to the real
world. We will look at the troubles which you will likely
encounter when attempting to connect interface circuits to
your computer, and we will review some handy tips which
will make your interfacing tasks a little less work. As you
may have already discovered, conceptualizing a circuit,
creating a logic diagram, and wiring the circuit are only part
of an interfacing task. Once all of these things have been
done, you've still got to make the interface work. Sometimes
you can connect your interface to the computer and it works
the first time, but in many cases it does not. You may trace
your circuit and find that it has been wired correctly, so you
go back to the schematic diagram to see if you've made a
logic error. Upon discovering :hat your logic was correct
you disconnect the interface from the computer, connect
wires to the buses and the control signal inputs of your
circuit, and check the interface under static conditions.
Surprisingly, it works! Where to next? That's part of what
this column is all about—determining the source of
problems which don't appear on the logic diagrams. Such
problems can be caused by power supply noise, lack of
sufficient (or proper) decoupling, improper cable
termination, mismatched transfer timing, and a number of
other conditions which are rarely discussed in interfacing
literature. I will address a number of these issues myself
and I hope to solicit help from you, the readers, who have
encountered and solved such problems in your interfacing
experiences.

Although the interfacing techniques are straightforward,
each personal computer has its own unique idiosyncrasies
which may add a “twist” to the interfacing process. As you
interface your computer and discover its particular quirks,
drop us a letter; we would like to share the benefits of your
experience with others who own similar machines.

“Interfacing Tips and Troubles” also hopes to provide a
number of helpful tips that will assist you in your
interfacing tasks. These “tips” will range from software
suggestions to trick circuits which will hopefully help you as
you connect your computer to the real world. Here again,
your experience can be of benefit to us. Everybody has a
trick which has made interfacing a little easier for you. Drop
us a line; we would like to share your trick with others.

DC to DC Converter
We will begin this column with a handy little circuit which

eliminates the need for multiple output power supplies in
applications where the supply current requirements are low.
Some of the applications for such a circuit include: voltage
levels for the RS 232 serial interface, programming voltages

for EPROMs and CPUs, voltage references for analog to
digital converters, etc. Typically, if a circuit requires more
than one voltage, a multiple output power supply is used. A
few disadvantages of the multiple output power supply are
that it is physically large, relatively expensive, and in many
cases is hard to find for the specific voltages that you are
interested in. Another problem is adding ICs that require
voltages other than five volts to & circuit with only a five
volt power supply. At this point, if you are going to use a
multiple output power supply, you must replace the existing
supply. Of course, you would like to avoid that if possible.

I have managed to avoid multiple output power supplies
in many applications by using a little circuit shown to me by
Cam “Cannonball” Reid. Cam is always good for a trick
circuit when I need one. This circuit is a DC to DC converter
that you can build and place right on the board to generate
needed voltage levels. A general circuit diagram of the DC
to DC converter is shown in Figure 1. NPN transistors Q1

RECT

Figure 1: General DC to DC Converter.

and Q2, resistors R1 and R2, and the primary of transformer
T1 form an astable multivibrator. The frequency of the
multivibrator is somewhat dependent upon the physical
characteristics of T1, but in general it will oscillate at about
1000hz. As the multivibrator oscillates, it induces a voltage
into the secondary of T1. The voltage in the secondary
winding is stepped up according to the relationship:

V, = Voltage Secondary

NS V, = Voltage Primary
[
Vs = —— xVp N= Turns Secondary
P Np= Turns Primary

A bridge rectifier converts the secondary oscillation to an
unfiltered direct current and capacitor C1 smooths the
waveform. Since the frequency of the unfiltered DC is
relatively high (compared to 120hz for a conventional power
supply), capacitor C1 can be small (about 100mf). As shown
in the photograph in Figure 2, the DC to DC converter can
be made very small so that little board space will be
dedicated to accomplishing your voltage conversion.

— - This DC to DC con-
AR ARAD (FT e
t...-..r“, N verter can be used to
oLy { N generate either a
re e g N A positive or a negative
v / o voltage by simply
v e connecting the ap-
. e propriate leg of the
s s bridge rectifier to
80 ‘. o
ves . ground. Development
Crrrererp Qe ees of the DC to DC con-
.- (L) .
: , L mses verter can be carried
e further to incorporate
Figure 1 a three terminz}l volt-
age regulator (like the

7905) to ensure a stable voltage level. A plus and minus
output is also possible from the DC to DC converter.
By center tapping the secondary winding and connecting the
center tap to ground, a positive voltage can be obtained
from one leg of the bridge rectifier and a negative voltage
can be obtained from the other leg. Circuits representing
these applications will be presented in the following
discussions.

The following circuits represent a couple of applications
for which I have personaily found the DC to DC converter
useful. In the first circuit (Figure 3), the DC to DC converter
was used to generate the programming voltage for a 2716
EPROM. It was very important that the programming
voltage did not exceed 25 volts, so the output of the supply
was regulated with a zener diode. The circuit in Figure 3
works exactly like the general DC to DC converter circuit in
Figure 1. T1, a toroidal core transformer, can be purchased
from Mouser Electronics for about a dollar, and they can be
ordered in various sizes. The size {in inches) used in the
converter above was: 0.60 (outside diameter) by 0.30 (inside
diameter) by 0.19 (height). The primary winding consists of
about 20 turns of number 26 enameled copper wire. The
number of turns on the secondary winding was calculated
according to the equation:

Ns = —VS— X NP
Ve

These windings were then placed on the core and T1 was
wired into the converter circuit. The converter circuit was
to be regulated at 26 volts under a loaded condition so that
the unregulated voltage was adjusted to about 26.6 volts. To
adjust the unregulated output, remove the zener diode from
the circuit, place a voltmeter on the secondary of T1 until
the desired voltage is obtained. Once the 26.6 volts is
obtained, place the zener diode back into the circuit—the
DC to DC converter is now ready for service.

The Computer Journal 13

Figure 3: DC to DC Converter with Zener Reguiation

The circuit in Figure 4 is an example of generating a
negative 12 volt reference using the DC to DC converter
and a standard three terminal voltage regulator {(7912).
Before adjusting the secondary voltage, consult the
specifications for the particular regulator that you are using.
These three terminal regulators require a minimum input to
output voltage difference to operate properly. Also keep in
mind that the voltage difference between the input and the
output will be dropped across the voltage regulator and
dissipated as heat, so stay as close to the minimum
difference specification as possible. The capacitors, C2 and
C3, on either side of the voltage regulator in Figure 4
ensure that oscillations do not occur within the voltage
regulator itself.

AGND

Figure 4: DC to DC Converter with — 12V Regulated Qutput.

My favorite application for the DC to DC converter circuit
is shown in Figure 5. This circuit configuration generates
the plus and minus voltages required for an RS 232 serial
interface. As you can see, the secondary is center tapped.
With the center tap grounded, a negative voltage is
obtained from one leg of the bridge rectifier and a positive
voltage is obtained from the other. The RS 232 voltage

GNO

Figure 5: DC to DC Converter with + 12V Qutputs.

continued on page 22

14 The Computer Journa!

Multi-user

A Column by E.G. Brooner

While talking about networks and other multi-user
systems, we should keep in mind that most of the concepts
originated with large mainframe or minicomputer
companies, and are just now being adapted to micros. This is
for the same reason that micros themselves are popular,
namely that they are more cost effective in the instances
where they are adequate—as they indeed are for a great
many applications.

As one of the pioneer microcomputer makers, Cromemco
is in a position to take advantage of the current multi-user
boom ~they have done this with C-NET. C-NET is a true
network, and exhibits most of the finer features that
distinguish such systems from lesser lookalikes.

This system features a relatively high-speed data rate of
0.5 megabytes per second, true collision detection, and
packet message construction. It uses the “bus” topology (in
which all stations are effectively in parallel across a common
transmission medium) and permits up to 255 users to be
connected at any one time. It generally follows the OSI 7-
level protocol system; the three lower, or network levels are
hardware on a plug-in S-100 board and the transport
(routing, etc.) is handled by associated software. Levels five,
six, and seven of the OSI model are necessarily machine-
dependent in any network operation and are not considered
a function of the network itself.

Figure 1 is a photo (courtesy Cromemco) of their plug-in
network board, which is most of what you need to adapt a
Cromemco computer for network use. This is & standard S-
100 (IEEE-696) board and although it was designed with
their computers in mind, there is no fundamental reason it
could not be used in any other S-100 bus computer. Figure 2
is Cromemco's illustration of a typical C-NET configuration.

.

The functions they depict here are perhaps atypical of the
installation that would be made by most small users; one of
the interesting features they show is a gateway to a distant
point. We have not previously discussed gateways in this
column.

Earlier discussions described LANs as being very local in
nature and confined, generally, to a building or relatively
small complex. These limitations are imposed by the high
speed at which networks usually operate. Long-distance
communication is inherently at a slower rate. A gateway is a
means of connecting a network, or some of its users, to a
distant point. It may also connect two similar networks
which, for some reason, cannot be totally combined.
Communication with the distant point does not take place at
high network speeds. The medium associated with a
gateway may be telephone, satellite, or any other means of
connecting two digital devices. Essentially, the gateway is
an external connection, at which translations of speed and/or
protocol may have to take place.

To understand gateways, we will have to discuss network
protocols in a little more detail than we have in previous
columns.

The International Standards Organization (ISO) has
developed a plan known as the OSI, or Open Systems
Interconnection model. This plan attempts to define all
interactions between digital equipment, and between
equipment and applications, as seven families of standards
and protocols. The term “7-level protocols” is often used to
describe this scheme. The RS-232 standard, the Centronics
parallel standard, and the IEEE-488 bus are all level one
protocols when viewed in this context —in other words, they
are means of connecting equipment at the lowest level.

All methods of formatting data for transmission, such as
SDLC, HDLC, and the various “packet” configurations, are
level two protocols. It is important to note that the OSI
model does not attempt to standardize any single protocol at
any level, but only defines the functions that will be
performed.

Needless to say, manufacturers do not always (as yet)
follow this scheme. Ethernet, as an example, lumps levels
one and two together and calls it “Ethernet;” this poses no
problems unless one would try to interface something into
an Ethernet between levels one and two. IBM and other
mainframe makers usually have some kind of “network
architecture” (such as IBM's SNA) that combine all of the
low-level protocols in an inseparable manner.

Using the OSI concept, each level provides a transition to
the next higher and next lower layers. It is apparent that if
one network uses a certain type of level three or network
control protocol, and another uses a different protocol for

the same purpose, they are not compatible.

Finally, we get back to the concept of a “gateway.” If at
any point in a communication system it is necessary to
translate from one protocol to another, at an equal level, a
gateway is necessary. The gateway might change a format,
a code, the speed of transmission, or the type of medium
that is being used.

Cromemco does not advertise the details of the gateway
shown in their functional diagram and, in fact, they may

The Computer Journa 15

COMPUTER
CONTROLLED
ROBOTICS

1. DRIVER BOARD 5005DB $75 *
45" x 38 x05", TILCMOS COMPATIBLE,
OPTICALLY INSOLATED. FOR 4 PHASE MOTORS 2AMPS 50 VOLTS

2.LINEAR ACTUATOR 601 AM $75

2w, 16 OZ 001" STEP

D
‘° L“ ARACT ‘X:‘FOR 501 AM $43
V 5W 502 .002" STE

40 O HOLDING, FORCE. 1 86 I TRAVEL
4, STEPPER MOTOR 201 SM $16
O OZ 15° STEP S
08 0f IN HOLDING TORGUR
5. STEPPER MOTOR 3015M $ 59
72V, 215 O 1.8° STEP SIZE
80 OZ N HOLDING TORQUE

6. MOTOR MOUNT FOR 301SM $ 25

7 MOTOR MOUNT FOR 501AM $12

8. MOTOR MOUNT FOR 501 AM $13
% EDGE CONNECTOR § 3.50

'AMS| core

BOX 651, SMITHTOWN, L1, N.Y. 11787
YERV:AS:%C:“MD' € OA?f- Cc HC)J!)mvv‘sx\ ar MasterCar ﬂ@ ?

(516) 361-9499

have several different configurations for different purposes.
Now that we are on the subject of the protocol model, we
should go ahead and define the rest of them as well as the
state of the art permits. As explained earlier, level one is
the direct connection of equipment, level two is the format
of the transmission, and level three is the network control.
There is no general agreement on the distinction between
three and four—both are concerned with “transporting”

data between points after it is continued on page 22

Word Processing Dept.

User A l User B User C

Office Computer Operations Production Floor Stock Room Engineering
President Vice- Remote Process Inventory Director
of President, Disk Storage, C Dt i Control of
Company Finance Batch Jobs ontroher System Manufacturing
L]
— , _
TAP [————] C-NET Bus Cable
W Remote Link]
Accounts Cost Network ~./ to Plant Time Clock,
Receivable Accounting Gateway 3000 Miles Away Plant Access
Accounting Empioyees

Figurs 2

16 The Computer Journa

Searching for Useful Information?

The Computer Journal is for those who interface, build, and apply micros. No
other magazine gives you the fact filled, how-to, technical articles that you need to
use micros for real world applications. Here is a list of recent articles.

Volume 1, Number 1:
* The RS-232-C Serial Interface, Part Ore

* Teleco @ng the Apple)l; Transferring
SR

Binar;ﬁ@
e Begiriner's Column, Part One: Getting Started
* Build an “Epram”

Volume 1, Number 2:

¢ File Transfer Programs for CP/M

¢ The RS-232-C Serial Interface, Part Two

¢ Build a Hardware Print Spooler, Part One:
Background and Design

¢ A Review of Floppy Disk Formats

¢ Sending Morse Code With an Apple][

s Beginner's Column, Part Two: Basic Concepts
and Formulas in Electronics

Volume 1, Number 3:

¢ Add an 8087 Math Chip to Your Dual Processor
Board

¢ Build an A/D Converter for the Apple]

e ASCI| Reference Chart

e Modems for Micros

* The CP/M Operating System

e Build a Hardware Print Spooler, Part Two:
Construction

Volume 1, Number 4:

e Optoelectronics, Part One: Detecting,
Generating, and Using Light in Electronics

¢ Multi-user: An Introduction

* Making the CP/M User Function More Useful

e Build a Hardware Print Spooler, Part Three:
Enhancements

¢ Beginner's Column, Part Three:. Power Supply
Design

Volume 2, Number 1:
* Optoelectronics, Part Two

Applications

* Multi-user: Multi-Processor Systems

* True RMS Measurements

¢ Gemini-10X: Modifications to Allow both Serial
and Parallel Operation

Practical

Volume 2, Number 2:

¢ Buiid a High Resolution S-100 Graphics Board,
Part One: Video Displays
¢ System (Integration,
System Components

¢ Optoelectronics, Part Three: Fiber Optics
¢ Controlling DC Maotors

e Multi-User: Local Area Networks

¢ DC Motor Applications

Part One: Selecting

Volume 2, Number 3:

e Heuristic Search in Hi-Q

¢ Build a High-Resolution S-100 Graphics Board,
Part Two: Theory of Operation

e Multi-user: Etherseries

o System Integration, Part Two: Disk Controllers
and CP/M 2.2 System Generation

Volume 2, Number 4:

¢ Build a ViC-20 EPROM Programmer

e Multi-user: CP/Net

e Build a High-Resolution S-100 Graphics Board,
Part Three: Construction

¢ System Integration, Part Three: CP/M 3.0

» Linear Optimization with Micros

o LSTTL Reference Chart

Back issues: $3.25 in the U.S and Canada, $5.50 in other countries (air mail postage
included). Send payment along with your complete name and address to The
Computer Journal, PO Box 1697, Kalispell, MT 59903. Allow 3 to 4 weeks for delivery.

The Computer Journa! 17

LSTTL Reference Chart

14L822 T4LS30

DUAL 4-INPUT NAND GATE 8-INPUT NAND GATE
NC NC

12 n 12 n 10

741826 T4LS832
QUAD 2-INPUT NAND BUFFER y QUAD 2-INPUT OR GATE

1 13 H |

T
)

[} 9 8
—LD'J

*OPEN COLLECTOR QUTPUTS

2 n 8
3 4 5] 7

BN
[e

T4L827 T4L833
TRIPLE 3-INPUT NOR GATE QUAD 2-INPUT NOR BUFFER

1 1

13 12 1 [¢] 9 8
PN I

*OPEN COLLECTOR OUTPUTS

e

12 n 10 9 8
[

3 4 5 7

740828 T4L837
QUAD 2-INPUT NOR BUFFER o QUAD 2-INPUT NAND BUFFER

n 10 9 12 n 10

e
<7

18 The Computer Journai

740838
QUAD 2-INPUT NAND BUFFER

1 10

3 12 1
JL’‘)?

*OPEN COLLECTOR QUTPUTS

74L855
2-WIDE 4-INPUT AND-OR-INVERT GATE

Yoo

w!olas

-
LT

74L840
DUAL 4-INPUT NAND BUFFER

12 "

L]

74LS86
QUAD EXCLUSIVE-OR GATE

12 | 10

74L851
DUAL 2-WIDE 2-INPUT/3-INPUT AND-OR-INVERT GATE

vC(

14 n

QUAD 3-STATE BUFFER WITH ACTIVE HIGH ENABLES

Vee

4 12 n 10

741854
3-2-2-3-INPUT AND-OR-INVERT GATE

VCC

12 n 10 9

74L5126
QUAD 3-STATE BUFFER WITH ACTIVE HIGH ENABLES

vCC

14 12 n 10

LEARN MICROCOMPUTERINTERFACING

VISUALIZE SCIENCE PRINCIPLES

Using GROUP TECHNOLOGY BREADBOARDS with your
APPLE® ..COMMODORE 64® .. TRS-80%® ..TIMEX-SINCLAIR® ...VIC-20®

Versatile breadboards and clearly written texts with detailed experiments provide basic instruction in interfacing mi-
crocomputers to external devices for control and information exchange. They can be used to provide vivid illustrations of
science principles or to design interface circuits for specific applications. Fully buffered address, data, and control buses
assure safe access to decoded addresses. Signals brought out to the breadboards let you see how microcomputer signals
flow and how they can be used under BASIC program control to accomplish many usefui tasks.

Texts for these breadboards have been written by experienced scientists and instructors weli-versed in conveying
ideas clearly and simply. They proceed step-by-step from initial concepts to advanced constructions and are equally
useful for classroom or individual instruction. No previous knowledge of electronics is assumed, but the ability to program
in BASIC is important.

The breadboards are available as kits or assembled. Experiment component packages include most of the parts
needed to do the experiments in the books. Connecting cables and other accessory and design aids available make for
additional convenience in applying the boards for classroom and circuit design objectives. Breadboard prices range from
$34.95 to $350.00

The INNOVATOR® BG-Boards designed by the pro- The FD-ZX1 1/O board provides access to the Timex-

ducers of the highly acclaimed Blacksburg Series of books
have gained wide acceptance for teaching microcomputer
interfacing as well as for industrial and personal applica-
tions. Detailed, step-by-step instructions guide the user
from the construction of device address decoders and
input/output ports to the generation of voitage and current
signals for controlling servo motors and driving high-

Sinclair microcomputer for use in automated measure-
ment, data acquisition, and instrument control applica-
tions. A number of science experiments have been
developed to aid teachers in illustrating scientific
principles. The operating manual contains instructions for
constructing input and output ports. A complete text of the
experiments will be available later in 1984. The FD-ZX1 can

current, high-voltage loads. BG-Boards are available for the be used with Models 1000, 1500, 2068, ZX81, and Spectrum.
Apple I, 1l +, ile; Commodore 64 and VIC-20; TRS-80 Model
1 with Level || BASIC and at least 4K read/write memory,
Models il and 4. The books, Apple Interfacing (No. 21862)
and TRS-80 Interfacing Books 1 and 2 (21633, 21739) are

available separately.

The Color Computer Expansion Connector Breadboard (not shown) for the TRS-80 Color Computer makes it possible
to connect external devices to the expansion connector signals of the computer. Combined with a solderless bread-
board and the book TRS-80 Color Computer interfacing, With Experiments (No. 21893), it forms our Model CoCo-100 in-
terface Breadboard providing basic interfacing instructions for this versatile computer. Experiments in the book show
how to construct and use a peripheral interface adapter interface, how to input and output data; and how digital-to-analog
and analog-to-digital conversion is performed.

Our new Spring Catalog describes the interface breadboards, dozens of books on microcomputer interfacing, pro-
gramming, and related topics including the famous Blacksburg Continuing Education Series, a resource handbook for
microcomputers in education, and a comprehensive guide to educational software; utility software for the TRS-80,
scientific software for the Apple Ii, and other topics. We give special discounts to educational institutions and instructors.
Write for the catalog today.

Apple Ui, il +, an re registere

lr::::m:ml; of ;:plteczmpu?ertlenc? PUTTING Group Tec"r‘o'ogy’ Ltd'
rogatorod wadamanksof Commodrs P.0. Box 87N

registered trademarks of Commodore

Betjgginess Machines; TRS~§0 is a HANDS ChQCk, VA 24072

S Taney copenaton, Tmencmeny AND 703-651-3153

Is a registered trademark of Timex M'NDS

Computer Corporation.

TOGETHER

20 The Computer Journal

DOS WARS
by Bill Kibler

In the three-part series on integrating systems (Vol. II,
nos. 2,3, and 4), I discussed operating systems in general.
Recently I was involved in a discussion at my computer
club about the different types of operating systems and
their merits. Many wusers, I am sure, still have
some questions about which operating systems to use and
why. It occurred to me that I should explain more about
DOSs (disk operating systems) both for beginners and for
those who work with them but sometimes forget what
they're for. Understanding DOSs is becoming more
important as a larger variety of systems is pushed by the
manufacturers.

DOS Designs

Digitial Research Inc. made its name on the CP/M
operating system. This system is the interface between the
user and his computer. There are many different types of
interfaces around. Some were even out before CP/M, but
none provided such an open form of interface for
independent writers of programs to use. Most interfaces
before CP/M were company specific —that is, only software
written by the company could run on their system. CP/M is
an open standard which allows programs to move from
system to system and is, for all practical purposes,
independent of hardware considerations. This design opened
up the microcomputer market and set the stage for the
current DOS war.

CP/M was designed around the Intel 8080 device. This
means that the machine code which comprises the program
will run only on the 8080. The Zilog Z80 is & superset of the
8080 (contains the same machine instructions plus more
special high speed functions) and will also run almost all
CP/M programs unchanged. When used with an 8080 or Z80,
CP/M is refered to as CP/M-80, as many newer versions of
CP/M now exist. CP/M-86 is for the Intel 8086088, CP/M-88K
for the Motorola 68000, CP/M-8K for Zilog's Z8000, and soon
CP/M-16K for National's 18000 series of CPUs. All of these
CPUs (central processing units) have 16 bit accumulators,
whereas the 8080/Z80's is 8 bits. The other CPU
enhancements concern the number of internal registers
{temporary storage and pointers), the number of bits in each
register, special register functions (indirect memory
addressing), and how many address lines each can
manipulate. Computers using the 18 bit CPUs can use more
memory, perform larger calculations, and are supposed to be
faster.

Before IBM, microcomputers were considered by many to
be just hobby items. Although a lot of people were doing
very meaningful things with their computers, if IBM didn’t

do it, large business considered it a toy. When IBM entered
the market, micros stopped being toys and many people
bought their first computer (made by IBM). Due to financial
considerations, IBM chose their operating system based on
Microsoft's MSDOS. This program was originally written by
Seattle Computers, and was adapted by Microsoft for the
8086088 system. It has the same open interface (CP/M-like)
that allows programs to run independently of hardware.
With IBM behind the system, MSDOS is now becoming the
18 bit standard, like it or not.

The War Starts

As one can probably guess, war between lovers of CP/M
and MSDOS has been raging in many publications. The
companies have countered with updated versions and even
newer systems (concurrent CP/M). AT&T recently jumped
into the fray with their UNIX operating system (originally
for CPUs with a 32 bit design) and many 16 bit versions of
it. The hour-long discussion at my computer club was on
which one of these systems is best, and which one should be
bought and learned. The general feeling was that none of
the new systems merit buying now, but that they should be
watched closely. This position is based on the current
capabilities and prices of these products.

In my articles on system integration I tried to stress the
need for defining clearly in your mind why you are getting a
computer. The same is true when dealing with operating
systems. Choosing the wrong system will limit the number
of off-the-shelf programs you can run. I use mostly public
domain software and pay about $5.00 per 8" disk of
programs. However, if I didn't use a CP/M system many of
these programs would have cost me several hundred dollars
per disk (my library has about 40 user group disks). There
are currently several 18 bit programs in the normally 8 bit
public domain, and separate MSDOS user groups are being
formed (one group already has 135 IBM PCDOS disks). This
wealth of programs has almost eliminated program
availablity as a deciding factor in purchasing systems.

In part three of System Integration, I tried to point out
why I felt CP/M 3.0 was not necessarily a good buy. I still
feel that users of a 2.2 system are better off installing a
RAM DRIVE than upgrading to 3.0. This also holds for
upgrading to MSDOS or CP/M-88 even if the hardware is
cheap. My personal home computer is a new Heath Z-100,
bought so that I would have access to all possible worlds (S-
100 bus, CP/M-80, MSDOS, and CP/M-86). Since writing
articles is 80% of its use, CP/M-80 gets used 80% of the
time. This has also given me a chance to test system speeds,
and again CP/M-80 wins.

System Design

When the IBM PC first appeared in the trade journals, I
studied the articles closely, and decided that it was a poorly
designed machine. Since then, several articles have
appeared showing how slow and cumbersome its design is.
These facts have not stopped first time users from spending
$4000 on the name. I would guess that many users are
unaware of the system's poor features. Dedicated 2.2 users
who use IBM usually become frustrated with its slow speed,
and return to their favorite system. Why? CP/M 2.2 is a
straightforward design, the DOS is located at high memory,
and programs run from low memory just above a fixed entry
jump table (8080 interrupt vectors set this design condition).
When writing programs, little variation occurs between
different systems to cause problems, and a lot of reference
material is present to answer questions at non-technical
levels. With 3.0, things start to get complex. Despite the
fact that the same interface to the user is maintained, the
operating system is in several parts, and data is moved into
unknown parts using unknown algorithms.

MSDOS starts right out differently, with the DOS in low
memory and the user program area after the DOS. Large
memory is now necessary, offsets are used to determine
which bank of memory is active, and 64K is still the largest
continuous segment of program space usable. What this
means to the user is a more complex system to understand,
forcing the user to purchase programs. True, more complex
programs can be run, but writing your own programs in
anything other than BASIC is almost impossible. This fact is
borne out by the IBM user disks which contain about 60-
70% BASIC programs (including the disk utilities).

Not only should an operating system let you use programs
(and be able to modify or understand them easily) but it
must allow you to back them up (make copies), check
density, catalog them, sort files, and many other disk utility
functions. This is really where the battle is being
fought —over utility functions. CP/M 2.2 has several built-in
functions, and the open design allows for many utilities to
support non-resident functions. The full operating system
usually resides in less than 16K and can be used with only
10K of utilities beyond the system tracks. Approximately
170K is the normal free space on an 8” disk after I load my
word processor and support utilities (250K after formatting).
CP/M 3.0 uses a 32K system file plus system tracks (banked
system) and may require up to 20K of support utilities. The
same word processor and support programs would leave
approximately 120K of 260K free. My favorite RAM DRIVE
program only requires 4K of disk space and improves the
speed to more than that of CP/M 3.0.

When looking at speed, the 16 bit systems have a major
drawback; they do 16 bit moves on an 8 bit wide system.
IBM uses the Intel 8088, a 16 bit wide device that talks to
the system 8 bits at a time. This equates to two accesses for
each full accumulator function. Since most PC programs are
only conversions of 8 bit programs, optimization to use the 8
bit word moves is not always implemented. This means that
two read or write functions must happen to load the
accumulator. In true 8 bit systems only one read is needed

The Computer Journal 21

for many of the same operations, or the 8 bit systems will do
it in half the number of program steps. Consider again that
text is in ASCII code (my 80% word processing) which is 7
bits. and if 16 bit words are moved around, that wastes time.
The only true test of speed is to try the system, since design
is not the only thing to consider when comparing CPU
capability.

Dos Usage

Having taken a diversion to discuss the different types of
CPUs, let's get back to the main problem —that of which
operating system to use. When 2.2 came out, most
programmers were new at writing DOSs, and users heiped
upgrade the system as much as did the manufacturer.
Things are different now. Competition is fierce, and
professional programmmers abound. Like some doctors,
many programmers want all the work for themselves with
as little intervention from the user as possible.
TURBODOS® , a high speed version of CP/M 2.2 and MP/M,
is a good example of some programmmers’ positions. The
authors are not available, and hide out somewhere unknown
to all but their agents. Very tight registration procedures
are used (to prevent freebee systems), and little how-to
information is given. Although this program works fine, I
would rather use one of the look-alikes of CP/M that
provides the source listing. Although I don't plan or
recommend changes in DOSs for anyone but experts, my
experience has shown that such lack of information will only
cause problems in the long run.

In order to make comparisons, you, the user, need to
define the system’'s use. Unix is a programmer’s operating
system, best suited to professional programmers who use
the operating system more than they do canned programs.
When I make changes in a BIOS, the steps go something like
this: 1) make change in BIOS, 2) ASM BIOS, 3) find errors, 4)
change errors, 5) run program and find errors, 8) go back to
1. Doing that 20 to 30 times in an afternoon can get pretty
frustrating with slow, cumbersome systems. My Z-100 takes
about a minute to boot, and if testing the system involves
booting, that makes the loop about 10 to 15 minutes long.
Small, short BIOSs that can be loaded quickly are great for
developing new systems, as are programs that provide outer
and inter rings for programs to run in. In the 32 bit
versions, UNIX takes 260k of memory and several
megabytes of disk space, which is definitly not a home
system. Although this system provides a lot of tools
{(programs for special functions) for the programmmer, and
has those rings that help develop new programs more
quickly, these functions are all at the operating system
level. Once inside a running program, most of the extra bells
and whistles are lost.

Not Getting Lost
What I have been attempting to do in this article is to
give enough background on operating systems to keep you,
the user, from buying useless programs. Most of these
programs are not useless in the right hands, but advertising
agencies can make you believe a child could run their

22 The Computer Journal

program. For all those fathers who bought toys that said
“any child can assemble this,” only to find that the child
would have to be a prodigy—have no fear; these same
people are now selling computers! One of the reasons I am
glad to be writing for The Computer Journal is its lack of
irrelevant product reviews. The big, glossy computer
magazines spend more time selling systems than supporting
those products already sold and running. This is usually
known as selling out to big business, which I believe they
have done. There are some fairly honest reviews in these
publications, but they are intended to sell. When it comes to
computers (and life too), the biggest, newest, and most
expensive are not always the best. There are several good
2.2 systems for about $1500 that are better than the PC's
which sell for $3800. Nothing surpasses an educated buyer
when it comes to operating systems, but education must be
tempered with a good understanding of your own limits,
desires, and needs.

A Parting Word

This article was intended to arouse your curiosity, make
you think about computing, help you start understanding
DOSs, and show that the industry has a lot of room for
improvement. Articles never appear as the writer had
originally intended, nor as the reader would like them, but
magazines are also forums for discussion and can start new
and important changes when people take an active part.
Remember, the first 8080 computer started as a how-to
article... so start using your computer and write in with your
discoveries and opinions. a

Multi-user, continued

formatted and after the devices have been connected in
some manner. Sometimes we see references to “3A" and
“3B" for these purposes. Levels five, six, and seven exist
only within the computer and involve the way data is
represented and its application, hence they are not really
part of a network or communication system as such.

In any multi-user system we will find level one protocols
of some kind, usually level two, sometimes three, and
perhaps four. We note in Cromemco’'s literature that they do
consider all of these protocols as separate entities and
that is good engineering practice where networks are
concerned. []

Cromemco and C-NET are trademarks of Cromemco, Inc. For
additional snformation contact their marketing division at 280
Bernardo Avenue, Mountain View, CA 94043.

Interfacing TNps, continued

specifications require that a logic 0 be between a + 3 volts
and 8 + 16 volts, and a logic 1 be between a -3 and a -15
volts. Since there is such an allowable variation in voltages
for each logic level, there was no need for regulation in this
circuit. For this circuit I adjusted the converter output to
generate a +12 voits and a - 12 volts for the two logic
levels. 1 have driven cables up to 26 feet using this
configuration without any errors on the serial interface.

Threaded Language, continued

LDa SL § unneeded values

OCAF: 69 84 ADC #se4
oCBL: 85 80 S§TA SL
oCB3: 98 2 BCC Ox2
oCBS: E6 @1 INC SH
Jree ACC-» i and return the answer

@CB7: 4C D9 8B Or2
.
ss #/MOD s«

-
$CBA: 85 AA AF CD &E #C

OCCe: Ad 82 LDY #8382 I get the 4irst two
#CC2: B 90 LOOP1 LDA (S).Y i uns:igned nusbers
S8CCA: 99 oC 08 STA ACC.AL-2,Y

#CC7: c8 INY

8cca: o 96 CPY #8086

OCCA: DO Fo BNE LOOP |

OCCC: 20 8A &8 ISR 16#16=32 5 aultiply them
SCCF: A@ 87 LDY #e@2 i move C -> B
#CD1: B9 14 88 LOOP2 Lba ACC.CIL,Y

#CDA: 99 10 P9 STA ACC.BIL,Y

#CcD7: a8 DEY

#CcDB: 18 F7 BPL LOOP2

#cDA: CB INY 1 get the third
9CDB: Bl 29 LDA (S}, ¥ { unsiged number
0OCDD: B85 6E STA ACC. AL

OCDF: CB INY

BCES: Bl 08 LbR (S, ¥

#CE2: B85 OF STA ACC.AH

OCE4: 20 48 9B JSR 32/16=%16 i divide by 1t
#CE7: 20 29 88 JSR DROP ; and go to the
OCEA: 4C 28 oC JMP MODISH i end of¢ /mMOD

4e ' as

-
SCED: 81! Al Ad A8 BA BC

OCF3: AB 91 LDY @sa1 i put the address
OCFS: Bl 80 LDA (S),Y 3 1n SCR

OCF7: 8% 19 S§TA SCRH

OCF9: 88 DEY

OCFA: Bi 0@ LDA (S) .Y

#CFC: 85 18 STA SCRL

BLrE: 28 89 90 JSR DROFP

sDei: Bi 60 LDAR (S),Y i and store the
spe3: 1 18 STA (SCR}),Y ; value i1n (SCR}
#DO5: C8 INY

B8D#s: Bi 60 LDa (S),Y

#D#8: 91 18 STA (SCR), Y

eDSA: 4AC @ 08 JP DROP

s o+ e

SDSD: 82 AR Al A8 ED 6C

8D12: A 01 LDY #%81 i put the address
®D15: B! 06 LDA (S),¥ 3 10 SCR

oD17: BS 19 STA SCRH

#Dt9: B8 DEY

SD1A: B1 89 LDA (S),Y

#DIC: 85 18 STA SCRL

O#DI1E: 29 &9 08 JSR DROP

#D21: 18 cLe ;i and add the vaiue
on22: B: 69 LDA (Si,¥ 3 to (SCR»

#D24: 71 18 ADC (SCR) .Y

#026: 91 18 STA (SCR),Y

#D28: C8 INY

o029: B1 S8 LDA (S),v

#02B: 71 18 ADC (SCR),Y

#D2D: 91 18 STA (SCR},vY

@D2F: 4C @9 #8 JMP DROP

e C' oo

#D32: #2 C3 Al A® S0 @D

o038: A# 91 LDY 8@ i put the address
#D3A: Bi 89 LDA (5),Y i 1n SCR
#03C: 8BS 19 STA SCRH
OD3IE: 88 DEY
SD3IF: BiI 06 LDA (S).,Y
#D41: 85 18 STA SCRL
#DAS: 28 69 86 JSR DROP
D46 B PO LDA (S),Y ; and put the
#048: 91 18 STA (SCR),Y ; one-byte value
#D4A: 4AC 99 88 JMP DROP 3 1n (SCR)
-
. @ oo
OD4AD: 81 CO A AS 32 &D
DS3: A 91 LDY #e81 3 put the address
sU335 BL S8 LDA (S),Y § 1n SCR
o037: 65 19 STA SCRM
#D3%: 68 DEY
"Sa: b1 o9 LA (S),Y
oUSC: B85 18 STA SCRL
SD3E: B1 18 LDA (SCR),Y § and get the value
Do8: 91 00 8TA (S),Y 3 from (SCR)
ohe2: CB INY
oDs3: B 18 LDA (SCR),v
LS. 91 08 STA (S),Y
M067: &8 RYS
.
*s CQ oo

SD6B: 62 C3I CO AP 4D #0

PDOE: AD 91 LDY e8! 1 put the address
#D70: b1 99 LDA (S),V 3 in SCR

#D72: 83 19 8TA SCRM

o074; 88 DEY

Q7S: B1 99 LDA (S),¥

#077: @5 18 STA SCRL

|®7Y: By 18 LDa (9CR),Y ;| and get the
|7e: 91 o8 8TA (8),Y i one-byte value
o07D: 98 TYA s from (SCR)

In conclusion, I hope you find this DC to DC converter
circuit useful. I am interested in hearing about any unique
applications that you might develop for it. Drop us a line and
let us hear your ideas. "

The Computer Journal 23

BUILDING A CODE PHOTOREADER

by R.O. Whitaker

Figure 1: Reading the code into the computer.

Figure 2: The reader. Electronics mounted beneath forward edge of
platen. Seven zerging pots shown in photo.

Introduction

I don't key programs into my computer any more. Instead,
I put the code sheets in my photoreader, pull the scanner
down the code column, and in goes the code. But it is really
not all that easy, because the code has to be written in
“Computer Compatible Digits” (CCD). First, I had to learn to
read and write them. What is a "Computer Compatible
Digit?" Look at Figure 3. The elements of the code are
binary weighted. Since each element corresponds to a
respective bit of a computer word, the digit is “Computer
Compatible,” and no encoding is required for going to or
coming from the computer. The digit is inherently
hexadecimal, as indicated at the bottom of Figure 8.

The first CCD was proposed by a gentleman over in
Prague about 1956. Since then, several others have proposed
digits of various configurations. The one I use was discussed
in a paper published in an electronics magazine several
years ago. All of the digits except six and seven can be
written without lifting the pencil from the paper. All
elements are equally conspicuous, and the elements of each

ZEROM
TWO

COMPUTER COMPATIBLE DIGITS E!GHTY NE

“FOUR

NI N
I 2 3

0

_sl_é_.h/ ANANLAAAN

4 7 8 9 10 11 12 13 14 15
Figure 3: The composite digit at upper right consists of
elements which are binary weighted. Each digit (bottom) is the

sum of the elements represented.

digit are mutually contiguous.

Figure 4 is a coding sheet with the code column on the
left. The CCDs are formed by connecting the appropriate
dots with a dull #2 pencil.

Figure 5 shows the basic structure of the photoreader
with a Code Sheet on the platen. The left edge of the sheet
is placed against the stop to assure proper horizontal
registry. The scanner slides on the guide rod. The optical
fibers pass through holes in the faceplate (which slides over
the code column).

The scanner has a carrier associated with it which moves
under the platen and keeps a pair of pilot lamps opposite the
fiber ends. Light shines up through the transparent plastic
platen and through the paper. Consequently, each fiber
receives light except when it passes over a line of one of the
digits. The other ends of the fibers feed to a series of
photodetectors which are mounted on top of the scanner.
The signals are then led by the ribbon ecable to the
electronics mounted under the forward edge of the platen
(see Figure 2).

To operate the photoreader, insert the code sheet and
move the scanner to the top of the column. Lift sense switch
80 on the computer. Draw the scanner down the page. Drop
SSW 80, remove the code sheet, and insert the next one.

The fiber optic sensors scan along the dotted lines of
Figure 6. Note that the ID (indicium) sensor senses the
presence of indicia in the column at the right. The action is
as follows:

1. When the ID sensor leaves an indicium, it causes the “B”
register of the computer to be nulled. The word being
scanned will be assembled in this register.

2. While the ID sensor is in the “A" region of Figure 6, the
other six sensors look for their respective lines. Each one

24 The Computer Journal

that sees its line sets its respective bit in register B.

8. While the ID sensor is in region B, the 8-sensor looks for
the 4-line. If it sees the 4-line, it sets the 4-bit in register B.
Similarly, the 80-sensor looks for the 40-line and sets the 40-bit.

TITLE o - Thbloader PAGE _! OF 2
DATE Mar'\A, /- AUTHOR A& I Alher
ADDR. MNEM. LAB. BK COMMENT
N NI T o Lt [ke fuaker
.o .. \ Bt Londing addrtu o W
|
‘%‘%: Y[1/4 Coram” cheka A it of o 12 ia o
. —| pun? Yo Gonm A0 Wak wnkldof reiis cass [°.
. . . 2
Aé\: Liom } '/«/1’— M,JMMW shibe
. . Al ol “cqring JW.
A4 . . /] ek for prissoat of Vmdiciuirm
. A :
.o .. ol
L Nal < ‘, .
LN Ale N DA Y./
N B. 4| run?
. CaN\s . ‘ ,]
- \ Ua apd | _ [Bufop * amdicisim ~firasnS-Lsep
. . \| e
P S S 7
A
;\'/\L/’.‘\————"_,__-/ A

Figure 4: Coding sheet.

4. When the ID sensor drops from the indicium of region B.

the word in register B is delivered to memory and to the

display. Register B is reset before scanning the next word.
The “2-lines” were not included in Figure 6, but appear in

Figure 4. Note that each 2-line bears a
crossbar, which causes the 2-sensor to
see the line even if the paper is off a
millimeter or so in horizontal registry
or if I was too sloppy in writing it.

The Flowchart

Refer to the flowchart in Figure 7.

Blocks one to four initialize the system.

Blocks five to end constitute the RUN
loop in which the computer operates
while characters are being read.

Blocks six to nine constitute the A
loop, where the computer operates as
long as the ID sensor is in region A.

Blocks ten to thirteen are the B loop
where the computer operates while the
ID sensor is in the B region.

Blocks fourteen to end terminate the
reading of a pair of digits.

The blocks will now be discussed in order.

Figure 5

CODE SHEET

RIBBON CABLE

SCANNING PATHS OF SENSORS

L T I [

'
PALNAVAINN
AXNA }A
~+ + I‘ B
|

%

-— -, -,

i

.

]
iy
/ 1\ LINDICIUM

-
.
-
.

Figure 8: Scanning paths of the sensors. Paths are verticai
dotted lines. The ‘‘two'" lines of several digits are shown.

1. The computer twiddles until SSW 80 is lifted. This
prevents anything from being read until I have zeroed the
pots, given the computer a loading address, have the code
sheet in place, and am ready to read.

2. As soon as SSW 80 is raised, the computer drops to here.
If the first indicium is not yet seen by the ID sensor, the
computer continues to twiddle.

3. As soon as the top indicium (see Figure 3) is sensed by
the ID sensor, the computer drops to here. If the first
indicium is not yet seen by the ID sensor, the computer
continues to twiddle.

4. If SSW 80 is still up, the computer drops to here. It
checks to see if the indicium is still visible. Yes. It twiddles
in a new loop.

5. As soon as the ID sensor drops off the top indicium, the
computer drops to here. This block nulls the B register
before the word being read is assembled into that register.
The “PWD” stands for “Processor Word." The word is
assembled in register B and moved to memory.

6. Checks to see if SSW 80 is still up. No. It aborts the scan.
7, 8, and 9. Checks to see if the SSW 80 is still up. Yes.
Brings in the “Read Word” (RWD) sensed by the reader at
any particular instant and dependent upon where the
scanner happens to be in relation to the digit pair. Merges it
into B. Repeats Steps six through nine until the ID sensor
senses the presence of the second indicium. Note from
Figure 6 that this loop will operate for region A. It will
cause the 1, 2, 8, 10, 20, and 80 lines to be read. For each line
present, it will cause its respective bit in register B to be
set. Note from Figure 6 that a 1 or 8 line can hardly be
mistaken for a 2-line.

10. Once the ID sensor sees the second indicium, the
computer drops to here.

11, 12, and 13. This is the B loop. The computer stays here
as long as the ID sensor sees the second indicium —as long
as the sensors are in region B of Figure 6. The 80 and 8
sensors look for the 40-line and the 4-line respectively. The
other sensors do nothing. If the 80-sensor sees the 40-line,

The Computer Journa: 25

the 40-bit is set in register B. If the 8-sensor sees a 4-line,
the 4-bit is set.

14, 15, and last. When ID drops off the second indicium, the
word stored in register B is sent to memory and to the
display. The memory pointer is incremented.

At the completion of scanning, I drop SSW 80 to prevent
any more reading. A copy of the program (written for an
8080 computer) will be forwarded upon request. Send three
20 cent stamps to the author.

Electronics

Study Figure 8 for a moment. The transistors and
associated components were mounted on a piece of
perfboard under the platen, as shown in Figure 2. Pots were
mounted so that they could be easily adjusted from the
front. The LEDs were placed beside their respective pots.
Since there is no 4-sensor, the ID sensor occupies the 4 slot.

The Schmitt trigger (7413) was installed on the output of
the ID sensor to eliminate multiple readings associated with
noise signals when the sensor moved over the edge of an
indicium. The pots permit the channels to be “zeroed.” G.E.
specifies three volts for proper operation of the
photodarlingtons. Zener Z-1 drops the five volt supply to
this level.

Construction

I used scrap plastic obtained from a local plastics dealer
for the frame parts and the platen. It seems that plastic is
transparent to infared radiation of the wavelength to which
the sensors are sensitive. Hot glue was used to hold minor
components in place. The guide rod on which the scanner
slides was an iron rod taken from an old Selectric
typewriter. It was already ground smooth, permitting the
scanner to slide easily upon it. Any smooth steel rod about
4mm in diameter should do. Plastic Crofon optical fibers
1mm in diameter were used. The General Electric GFOD-1B
photodarlington was designed to work with these fibers.

FLOWCHART
N\ ssw /e up? ROR

STARTUP | INDICIUM PRESENT?

™ N ssw /e yp? nL

__ INDICIUM PRESENT ?
Nee4p L

(A LOOP
L ssw /e yupe AL
D sming v mwo

(*wD)

/ INDICIUM PRESENT? Iy
/\ mERSE AWOD WNTO B g
w1 ssw s+ upp BL

N BRiNG N RWD

L INDICIUM PRESENT?

k]

c

z
.

[\ PERFORM FORTY-FOUR ROUTINE

A rwpeuew eno

A nC MEM POINTER
3|\ Pwo s isPLAY

Figure 7: Flowchart. Requires a dedicated computer. Stores
code in successive memory locations. The program listing is
about 80 (hex) lines of code.

26 The Computer Journai

The open ends were polished with jeweler's rouge, and fit

flush with the bottom surface of the faceplate. A piece of
Scotch tape protected the exposed ends from abrasion. The
holes for the fibers were drilled with a Unimat lathe, which
permitted them to be positioned very precisely. However,
that should not be necessary. If the digits are about 1.5¢m in
width, then a scale and centerpunch should allow the holes
to be positioned with sufficient accuracy.

I used two six volt, 200ma pilot lamps for the light source,
and surounded them with a reflector made from a beer can.
The two bulbs are powered by five. volts regulated. I used a
five volt bench supply to power the reader. Power could also
be drawn from the host computer, or a supply could be
mounted on the reader.

Zeroing the System

To aid in zeroing the system, I put two horizontal lines
across the top of the code column (see Figure 4). The first is
so thin that the sensors do not trip on it. The second is just
barely dark enough to trip the sensors. The pots were then
adjusted so that their respective LEDs did not light for the
first line and did light for the second. The only requirement
for proper reading is that the lines of each digit be darker
than the second line.

Paper

At first I used a pad of dime store paper that was cross-
hatched into 5Smm squares. Any paper used should be free of
clay —clay is opaque to infrared. I now use preprinted forms.
They are more expensive and don't work a bit better, but
they do make & more favorable impression upon the
impressionable. Dots on the form are positioned so that the
procedure of writing the code is reduced to connecting the
appropriate dots with fairly straight lines.

Future Models

Small diameter sensors are now available which can be
mounted in the read head, eliminating the optical fibers.
Should I build another reader, I will go that route. It would
probably be better to replace the lamps with infrared
emitters of the semiconductor type designed to work with
the detectors. The two ordinary bulbs I used worked fine,
but ideally, an emitter with a lens would focus radiation
upon the paper directly opposite its respective sensor.

Where to Get the Parts
The detectors should be procurable from your local GE
distributor. The transistors and Schmitt triggers can be
purchased from any Radio Shack or .electronic parts store,
or from a mail order company such as Jameco. I got my

N 8Pon-18
- ' 1K
8IT A 2N2222 ®
)
3 ~ 330n DB-2%
N} . CONNECTOR

[

—h R O

SCHMITT
TRIGGER

T P
—— ®

TTSh | by
5 T
i @

N
Laﬁi O

{(D+s v
®+

Figure 8: Electronics.

Crofon optical fibers from Edmund Scientific. Crofon is
made by DuPont, and you can probably obtain it from a local
plastics distributor. Check with GE. The matching
connectors for the GFOD-1B were the most difficult parts to
obtain. My source made me buy far more than I needed, and
at an astronomical price. Check with your GE distributor
regarding matching connectors, or check with me. If there is
enough interest, I'll stock parts for resale at a nominal price.
Hot glue or cement are viable alternatives to the
connectors, but are not as fancy looking. The connectors are
also considerably more convenient if you have to take the
rig apart.

I have applied for a patent on the reader, and will sell you
a non-exclusive license to build one unit for your own use.
The cost to you will be one stamped, self-addressed
envelope. The stamp should be of the 20 cent variety. And
uncancelled. If you don't have one, let it go. Maybe I can find
one around here.]

R.O. Whitaker
4719 Squire Drive !
Indianapolis, IN 46241

Customer Support Survey
In order to improve customer support and aid users in thier shopping within the microcomputer
industry, TCJ will publish user experiences with vendors. Send us your candidate for the best and
worst vendor, along with your supporting information.

Tne Computer Journal 27

HELP!

The Readers’ Column

Readers, this is your column! We encourage you to communicate with other readers by using this space to ask
for their help with your problems, and to reply to the problems presented here. Where possible, the editors
will respond to specific questions regarding TCJ articles. Otherwise, you can provide the “"HELP" by sending
your solutions for publication to PO Box 1697, Kalispell, MT 59908. We will try to keep the lead time short for

a rapid exchange of information. Let us hear from you!

Dear Computer Journal,
I need information on interfacing a TI 99YA with a
Teletype mode] 28.
Wilbur Kespert
Florida

Ed: Readers, can you help?

Dear Computer Journal,

Do you know how I could upgrade a TRS-80 MC-10 micro
color computer to 64K using 4164 chips? Radio Shack makes
a 16K plug-in module, but no 64K module.

Bryan Lepkowski
New York

Ed: Readers, can you help?

Dear Mr. Rose,

I have read your three part article on building a print
spooler with great interest. I am seriously considering the
project. I do have one question. I have an Apple II + and

geve ¢l 90 06 11 08 @8 21
P8l E6 P1 CA 29 P9 DB 01
P20 13 7A FE 80 C2 29 69
p8306 DB 60 77 83 23 7C FE
PB4® C2 09 06 79 FE FO C2
9950 ©1 CA 75 090 DB 61 E6
9966 7A FE 8P C2 68 09 16
9976 D3 @21 C3 09 00 DB @1
PP80 92 00 DB 99 77 83 23
9099 4D 8¢ 76

some experience programming the 2718. I would like to
know how I can handle the 280 op codes with my “Big Mac”
assembler. Could I enter the machine code directly into
memory and then into the 2716? If so, could you provide me
(and perhaps other readers) with a memory dump for the
operating program?

Thanks,

Hugh McEntire

California

Ed: Although I don't have an Apple II + myself, I asked
someone local here about the “Big Mac” assembler and he
informs me that it can only handle the 6502 op codes and
will not assemble those for the Z80. However, the program
18 not a long one, and your wdea of enterming it directly in
machine language should be quite feasible. I made a hex
dump of the operating program and am sncluding it for you
here.

Thanks for writing and good luck with your project.
Regards,
Lance Rose
Technical Editor

1%}
E6
16
8o
29
80
28
E6
7C

o8
806
08
Cc2
00
CA
79
B2
FE

78
CA
LB
3D
3E
75
FE
CA
80

Bl
29
g1
1%
00
o0
EQ
4D
c2

29
1A
B2
98
21
D3
75
79
00

0o
C3
CA
78
DB
o
20
FE
26

21
2B
0o
77
E6
13
02
CA
Cc3

CA
9] %)
E6
26
D3
1A
Cc2
1%}
4D

DB
1]
29
FE
g1
B
3E
FF
08

Classified

The Computer Journal will carry Classified Ads. The rate is $.50 per word, minimum charge
$7.50. All Classified Ads must be paid in advance, and will be published in the next available
issue. No checking copies or proofs are supplied, so please type your ad or print legibly.

28 The Computer Journai

The Bookshelf

CP/M Primer
Helps microcomputer veterans and novices alike find the answers about CP/M in a
complete, one-stop sourcebook that's a Sams best-seller! Gives you compiete CP/M
terminology, hardware and software concepts, startup details, and more for this popular
8080/8085/Z-80 operating system. Helps you begin using and working with CPM
diately, and includes s list of compatible software, too. By Stephen Murtha and
Mitchell Waite. 96 pages, 8'ax11, comb. ©1980...............coiivinriiininniin $16.95

Soul of CP/M: Using and Modifying CP/M’'s Internal
Features

Teaches you how to modify BIOS, use CP/M system calls in your own programs. and
more! Excellent for those who have read CP/M Primer or who otherwise understand
CP/M’s outer-layer utilities. By Mitchell Waite. Approximately 160pages. 8x9'1, comb.

The §-100 and Other Micro Buses (2nd Edition)
mier P bus sy in general and 21 of the most popular systems
in particular, ineluding the S-100. Helps you expand your computer system through a
better understanding of what each bus includes and how you ean interface one bus with
another. By Elmer C. Poe and James C. Goodwin, II. 208 pages. 51 x8'%. soft. ©1981%$9.95

Interfacing & Scientitic
Experiments

This book introduces you to the principles involved in transferring data using the
asynchronous serial data-transfer technique. It focuses or using the universal
asynchronous receiver/transmitter (UART) chip in order to help your understanding of
communication chips. Explores operation of teletype-writer interfaces and serial
transmission circuits. With experiments and circuit details. By Peter R. Rony. 160 pages,
BYaxBY1, 80t © 1070 .. . i e e e ity $7.95

Active-Filter Cookbook

A practical discussion of the many active-filter types and uses, written by one of Sams’
most popuiar authors. Teaches you how to construct filters of all types, including high-
pass, low-pass, and bandpass having Beasel, Chebyshev, or Butterworth response. Easy to
understand — no advanced math or obscure theory. Can also be used as a reference book
for analysis and synthesis techniques for active-filter specialists. By Don Lancaster. 240
pages, 5'axB, soft. ©1975. ittt i e $14.95

Reguiated Power Supplies (3rd Edition)

Newest, most comprebensive discussios you'll find of regulated power supplies,
including their internal architecture and operation. Thoroughly explains how to use
regulation in your designs and projects when the need arises, and discusses practical
cireuitry and components. A valuable book for any technician or engineer invoived in
servicing or design. By irving M. Gottlieb. 424 pages, 54 x84, soft. ©1981......... $19.95

TTL Cookbook

Popular Sams author Dan Lancaster gives you a complete look at TTL logic circuits. the

Data Communications

IC Converter Cookbook

Discusses and explains data conversion fundamentals, bardware, and peripherals. A
valuable guide to help you understand and use d/a and a/d converter applications. Includes
manufacturers’ data sheets. By Waiter G. Jung. 576 pages, 514184, soft. ©1978....814.95

IC Timer Cookbook {Second Edition)

Learn more ways to use the IC timer in this easy to use second edition that inciudes
many new IC devices with ready to use applications in practical. working circuits. All
circuits and component relationships are fully defined and discussed for clarity. By Walter
C. Jung. 384 pages. 5AxB8', s0ft. ©1983......... $17.95

The Programmer’s CP/M Handbook

An exhaustive coversge of CP/M-80® , its internsl structure and major components is
presented. Written for the programmer, this volume includes subroutine examples for
each of the CP/M system calls and information on how to cust CP/M — complete with
detailed source codes for all examples. A dozen utility programs are shown with heavily
annotated C-language source codes. An invaluable and comprehensive tool for the serious
programmer. By Andy Johnson-Laird, 750 pages, 714 x9%, softbound.............. $21.95

Interfacing to $-100 (IEEE 696) Microcomputers
This book is a must if you want to design s custom interface between an 5-100
microcomputer and almost any type of peripheral device. Mecbanical and electrical design
is covered, along with logical and electrical reistionships, bus interconnections and more.
By Sol Libes and Mark Garetz, 322 pages, 8'2x9', softbound. $16.95

Microprocessors for Measurement and Control

You'll iearn to design mechanical and process equipment using microprocessor-based
“real time” computer systems. This book presents plans for prototype systems which
sllow even those unfamiliar with machine or assembly language to initiate projects. By
D.M. Ausiander and P. Sagues, 310 pages. 7 3/8x9 1/4, softbound. $16.99

Osborne CP/M® User Guide (Second Edition)
A new revised edition which inciudes expanded sections on CP/M® 86 and CP/M® 80, as
well as CP/M® 's relationship to sssembly language programming, MP/M® and CP/NET®

operating environments. By Thom Hogan, 292 pages, 8'4x9%. softbound. $15.96.
Discover FORTH _
Whether you are & begi king infor ion on this multi-faceted programming

language or s serious programmer already using FORTH, this book is a reference that
should not be overlovked. Long idered a p language of building blocks.
FORTH bas been optimized for speed and requires little computer support. By Thom
Hogan, 146 pages. 8% xf%. . softhound.iiiiiiiiiiiiiiin $10.95

68000 Assembly Language Programming

Each of the 68000's instructions is individually pr d and fully explained in this
assembly language tutorial. For experienced programmers. this book is also a complete
reference to the 68000 instruction set and programming techniques. By Lancs A

most inexpensive, most widely applicable form of electronic logic. In no
ianguage. be spells out just what TTL is, how it works, and how you csn use it. Many
practical TTL applicati are ined. ineluding digital counters, electronic
stopwatches, digital voitmeters, and digital tachometers. By Don Lancaster. 336 pages,
BYaxB8ih, moft. ©18T4. .. e et $12.95

IC Op-Amp Cookbook

An informal, easy-to-read guide coveriag basic op-amp theory in detail. with 200
practical, illustrated circuit applications to refiect the most recent technology. JFET and
MOSFET units are shown in both single and multipie formats. Includes manufacturers’
data shests, and lists saddresses of the companies whose products are featured. By Walter
G Jung. 480 pages, 5:/4x8%, 80ft. ©1980.cvuiiniiiiiiii i $15.95

Leventhal, 616 pages, 6% X9% , 80RbOUBG.ovnernamennenrnieaannannes $18.96
Z8000® Assembly Language Pro‘nnuning
This book is filled with resl-world programming p ple probl and

troubleshooting hints that will guide the reader to mastery of this powerful new 16-bit
“super chip”. The entire Z8000® instruction set is described in detail. By Lance A
Leventbal, Adam Osborae, and Chuck Collins. 928 pages. 8'4x9'%. softbound. ... $19.99

The 8086 Book

Anyote using, desiguing, or simply interested in an 8086-besed system will be delighted
by this book's scope and autharity. As the 16-bit microprocessor guins wider inelusion in
small computers, this book becomes invaluable as s referencs tool which covers the

timing. architecture and design of the 8086, as well as optimal programming techniques,
interfaeing. specia! features, and more. By Russeli Rector and George Alexy, 824 pages.
GO, 0ftbound. e e e $16.99.

280® Assembly Language Programming

Programming examples illustrate software development concepts and actuai assembly
language usage. More than 80 progr ing pr with solutioas and a
complete Z80® instruction set reference table. By Lance A. Leventbal, 640 pages,
GiAxPiu.softbound. $18.965.

Bl

8080A/8085 Assembly Language Programming

More quality programming examples and instruction sets than can be found in any
other book on the subject. Information on assembiers, program loops, code conversion and
more. A muat for 8080A/80805 programmers. By Lance A Leventhal, 448 pages, 8'1x9%,

Microprocessor-Based Robotics

Introduces you to robotics~a dynamic new field of science that uses your computing
and electronic talents as well as your mechanical and electrical knowledge. First, you'll
iearn the mechapics of robot hands, arms, and legs: then, tactile sensing, motion and
attitude sensing, After that, you learn controlling with
microprocessors and BASIC programs. and finally, you learn to eontrol the entire robot
system with voice commands! Fascinating and not machine specific. By Mark J. Robillard.
224 pages, B'axll, softbound.o it $16.95

TV Typewritter Cookbook

Shows you how to quickly and easily project words and pictures from s ecommon,
microprocessor-based system onto an ordinary TV set. You'll be introduced to TVT
ecommunications by best-selling author Don Lancaster, who discusses basic TVT system
design, memory types, interface circuitry, hard-copy output, and color graphics. By Don
Lancaster, 256 pages, 6'2x8', softbound.o $12.96

snd vision systems.

Microcomputer Math

A step-by-step introduction to binary, octal, and hexidecimsl numbers, and arithmetic
operations on all types of microcomputers. Excelient for serious BASIC beginners as well
as assembly-language programmers. Treats addition and subtraction of binary, muitiple-
precision and floating-point operations, fractions and scaling, flag bits, and more. Many
practical examples and seif-tests. By William Barden, 160 pages, 5'/4x8Y4, softbound$11.95

Understanding Digital Logic Circuits

A working handbook for service technicians and others who need to know more about
digital electronics in radio, television, audio, or reiated areas of electronic troubleshooting
and repair. You're given an overview of the anatomy of digital-logic diagrams and
introduced to the many commercial IC packages on the market. By Robert G. Middleton,
392 pages, 54x8Ys, moftbound. $18.95.

CMOS Cookbook

One of the best-selling technical books on the market, this cookbook gives you & solid
understanding of CMOS technology and its application to real-world circuitry. Explains
how CMOS differs from other MOS designs, how it's powered, and what its advantages
are over other constructions. The final chapter shows you how to put all preceding
information to work constructing several large-scale, working instruments. Includes a
mini-catalog of more than 100 devices, with pinouts and application potes. By Don
Lancaster, 416 pages, 5/4x8%, 90ftbound.ovviriiiiiiiiiiiiii i $13.95

The Computer Journar 29

Real Time Programming: Neglected Topics

This book presents an original approach to the terms, skills, and standard bardware
devices needed to [p to numerous peripberal devices. It distills technical
koowledge used by hobbyists and computer scientists alike to useable. comprehensible
methods. It explains such computer and electronics concepts as simple and hierarchical
interrupts, ports, PIAs, timers, converiers. the sampling theorem, digital filters. ciosed
loop control systems, multiplexing, buses, communication, and distributed computer
systems. By Caxton C. Foster, 190 pages. 8% x9'%, softbound. $9.96

Interfacing Microeompnterl to the Rell World

Here is a complete guide for using & micr erize the home, office, or

laboratory. It shows how to design snd build the mur{nm necessary to connect 3
microcomputer to real-world devices. With this book. microcomputers ean be programmed
to provide fast, accurate monitoring and control of virtually all electronic functions — from
controlling bouselights, thermostats, sensors, and switches, to opersting motors.
keyboards, and displays. This book is based on both the hardware and software principles
of the 280 microprocessor (found in severa! minicomputers, Tandy Corporstion’s famous
TRS-80. and others). By Murray Sargent III and Richard Shoemaker, 288 pages, 6'4x9'4,
B0RbOURd. ... e $15.55

Mastering CP/M

Now you can use CP/M to do more than just copy files. For CP/M users or systems
programmers —this book takes up where our CP/M handbook leaves off. It will give you
an in-depth understanding of the CP/M modules such as. CCP (Coasole Command
Processor). BIOS (Basic Input/Output System), and BDOS (Basic Disk Opersting System).
Find out bow to: incorporate additional peripherals with your system, use console 1/0, use
the file control block and much more. This book inciudes a specs! feature —s library of
useful macros. A comprehensive set of appendices is included as a practical reference tool.
Take advantage of the versatility of your operating system! By Alan R. Miller. 398 pages.
6°x8°, moftbound.l e $16.95

Designing With the 8088 Microprocessor

If you're searching for an introduction to software and hardware design using the 8088,
you will find this book to be indispensable. After describing the 3088, the author leads you
step-by-step through the complete system design of s powerful, yet inexpensivs, single-
board cootroller. This single-board controller design illustrates a typical application of the
8088, using 84K-bit dynamic RAMs, the 8203 VLSI dyneamic RAM controller, and state-of-
the-art peripherals such as the 8254 programmable interval timer and the 8274 multi-
protocoi serial controller. Controlier software design is also described in detail — from the
basic sssembly lsnguage test programs to high-level language interrupt control
procedures. In addition, the 80188 software and hardware ephancements are briefly
described. By John Zarrells, 304 pages, 6'x9", softbound. $19.95

FORTH Tools, Volume One

FORTH Tools is a compreheasive introduction to the new internstionsl FORTH-83
Standard and all its extensions. It gives careful treatment to the CREATE-DOES
construct, which is used to extend the language through new ciasses of intelligent data
structures. FORTH Tools gives the reader an in-depth view of input and output, from
reading the input stream to writing s simple mailing list program. Each topic is presented
with practical examples and aumerous illustrations. Problems (and solutions) are provided
at the end of each chapter. FORTH Tools is the required textbook for the UCLA and IC
Berkeley extension courses on FORTH. By Anita Anderson and Martin Tracy, 218 pages.
BUxBl%, BOMBOBDA.ottt $20.00

at Title Price Total

The Computer Journal '
PO Box 1697 Kalispell, MT 59903
Order Date:
Print Name
Address,
City State Zip

) Shipping charges are: $1.00 for the first Book Total

CiCheck CMastercard Dvisa book, and $.50 for ail subsequent books. o
Card No. Expires Please allow 4 weeks for delivery. Shipping
TOTAL

Signature for Charge

80 The Computer Journal

Books of Interest

Interfacing Microcomputers to the Real World.
by Murray Sargent III and Richard L. Shoemaker.
Published by Addison-Wesley, Inc.

288 pages, 6% x 9%, softbound, $16.55.

This book covers interfacing using the Z80
microprocessor. It starts with the elementary principles of
microelectronics and then uses them to explain more com-
plex interfacing concepts. The examples are useful, practical
applications including interrupts, real time clocks, stepper
motors, A/D and D/A conversion, an interface board, tran-
smitter and receiver circuits (garage door opener), and BSR
carrier wave control circuits.

The contents are as follows:

*Chapter 1 Introduction to Digital Logic. The
Diode, TTL Gates—AND, NAND, OR, NOR,
XOR, The transistor as a Switch, TTL In-
put/Output Characteristics, Flip-flops, Clocks,
Counters, and One shots and Shift Registers.
*Chapter 2 Programming the 780
Microprocessor. Machine and Assembly
Languages, Moving Data in 8-bit Registers and
Memory, Manipulating Data—INC, SET, ADD,
AND, 18-bit Registers and Memory Pointers,
Jumps, Conditional Jumps and Subroutines,
Shifty Registers, Input/Output, The Stack and A
Tiny Operating System.

oChapter 3 Processor-Input/Qutput Inter-
facing. The Forty Pins, Input/Qutput Ports, In-
put/Output Address Decoding, Interrupts, Real
Time Clock Interrupt Scheme, Direct Memory
Access (DMA), and /0 Example: Multiplexed
Keypad/Display.

sChapter 4 Controlling/Monitoring Various Real
World Devices. Switch Closures, Input and Out-
put, Digital to Analog Conversion, Analog to
Digital Conversion, Signal Averaging and Lock-

in Detection, Waveform Generation and
Recognition, Motor Control, and Raster
Displays.

oChapter 5 Serial Input/Output. Parallel/Serial
Conversion: the USART, RS232 and Current-
loop Conventions, Modems, Computer-Computer
Communication Methods, and Rf, Fiber Optics,
and Power-line Carriers.

oChapter 6 Microcomputer Systems. RAM,
EPROM, Hard and Floppy Disks, Small Con-
troller Systems, Z80 Computer Busses, and
Examples of Larger Microcomputers.

oChapter 7 Software. Editors, Assemblers,
Linkers, Debuggers, Interpreters and Compilers,
Disk Operating Systems, and Computer Hierar-
chies.
*Chapter 8 Hands-On Experience. TTL Logic,
Assembly Language Programming, Building an
Interface Board, Looking at CPU Signals, In-
terrupts and Real-time Clocks, Using 1/0 Ports
as Device Controllers, Experiments with DACs
and ADCs, Stepper Motors, and Serial and Com-
puter-computer Communications.
sAppendices include the following: Z80
Buses—S-100 Bus Definition, TRS-80 Bus
Definition, STD Bus Definition; Computer-Com-
puter Communications— TRSCOM; The
DEMON Monitor; Tiny Operating System;
Keyboard/Display Routines; and Z80 Instruction
Codes.
The entire book is very good, but I found the chapter on
hands-on experience especially helpful. This chapter starts
with two quotations, “Experiments should be reproducible;
they should all fail in the same way,” and “Experience is
directly proportional to the amount of equipment ruined.”
These are attributed to Murphy, but anyone who has spent
much time at the bench should agree. An example of the
practical advice is found on page 190, where they say
“Always wire up your circuits with the power OFF. When
you are finished wiring, double check that the circuit is
wired correctly BEFORE you turn the power on. The alter-
native is to check the circuit after the power is on and to ob-
serve which components have smoke rising from them.”

This book is a good blend of theory and practical ap-
plications for anyone who wants to interface their Z80
microcemputer to the real world. []

Art Carlson

RPN (Reverse Polish Notation)

RPN (also known as postfix notation) is commonly used on
stack oriented machines, and makes complicated algebraic
expressions easier to enter. Using RPN, the operator is
listed after the operands instead of between them. For

example: RPN

32 x
45 +
73/
24 + 3/

Std. notation

3 x 2

4 + 5

7/3
2 + 4/3

The Computer Journat 31

New Products

Programmable 4K RAM Robot

A new, low cost, programmable 4K RAM robot introduced
by Stock Model Parts is controlled through its seven
function teach pendant. The robot includes an on-board
CMOS static RAM 256x4 sequencer. Applications include
school science projects, robotics courses or personal
enjoyment. Of special significance is the fact that the robot
is programmable through any of the popular
microcomputers (with parallel interface) to gain experience
about how real robots are controlled. Buttons on the teach
pendant can be used to program the robot to go forward,
right, left, pause, sound a buzzer, light a LED lamp, or
repeat a program continuously.

The three wheeled robot, called the Memcon Crawler, is
offered in kit form. Included are four pages of easy to follow
instructions which make it possible to complete the
mechanical assembly in about two hours. All electronic
elements are contained in two pre-soldered and pre-tested
printed circuit boards. The 52" diameter, 22" high robot
consists of 51 major components plus over 140 fasteners.
Among the major parts are two DC motors, rugged blue
tinted molded body parts, plus two geartrain assemblies. It
is powered by one nine volt and two AA batteries.

The kit is available for $79.97 postpaid from Stock Model
Parts, Division of Designatronics, Inc.,, 54 South Denton
Ave, New Hyde Park, New York 11040. a

MicroSolutions’ New UniForm

MicroSolutions has developed a product called UniForm,
which makes it possible to read and write 54 ° CP/M disks
in a number of popular formats. UniForm is a program that
allows the user to redefine the operating format of the “B”
drive of their CP/M computer, opening up a whole new
avenue of communication between systems with varying
disk formats.

With UniForm, the user has the ability to take a blank

5% " disk and initialize it to any of the supported formats.
For example, you could initialize a disk on your KayPro Il in
the Morrow MD2 format, set your operating format to MD2,
write a letter using WordStar, and mail it to someone with
an MD2 who could use WordStar on their machine to read
it. UniForm works with any files, text, data, or machine
code. It does nothing to alter the files at all, and is
transparent to the user or program while in operation.
Programs with no video attribute or hardware dependent
routines can be transferred between machines and run (such
as PIP, or MBASIC programs if properly written).

UniForm is completely menu driven and self prompting,
with English mesaages in response to invalid entries. The
program was written with a heavy emphasis on ease of use,
and as a result, is so straightforward that a manual is
practically unnecessary. A manual - is provided with
UniForm. It explains the program simply and accurately,
and provides a complete walk-through of all functions for
those who desire it.

UniForm is able to support almost all 48 track per inch
soft sectored CP/M formats. Since it is hardware dependent,
versions are available for several of the most popular
computers. Currently, there are eleven versions of
UniForm: Actrix; Epson QX-10, KayPro II, 4, 4-84, and 10;
Morrow Micro Decision; NEC PC-8801; Osborne I (DD);
Televideo TS 803/TPC-1; and Zenith Z-100 CP/M-85. Some
computers can support more formats than others because of
internal hardware characteristics; for example, the Morrow
MD UniForm supports 20 single sided formats, 18 double
sided formats, and one non-CP/M format (the
MSDOS/PCDOS). For a complete list of the formats
available with any of these versions, write to
MicroSolutions, 125 South Fourth St, DeKalb, IL 80115.
UniForm is available from MicroSolutions for $69.95. |

AUTHORS WANTED!

The Computer Journal is
interested in technical articles.

Query with SASE or send for
our Author’s Guide.
PO Box 1697, Kalispell, MT 59903

FLOPPY DRIVE
_ EXERCISER!

ALIGN DRIVE IN 10 MINUTES!
Use with scope and alignment disk (SS $49, DS $75)

— SINGLE KEYSTROKE FOR — SHOWS SPEED AND SPEED
ALL ALIGNMENT TRACKS AVERAGE!

— JOG KEYS-MOVE TO ANY — HYSTERESIS CHECK BUILT IN
TRACK — SELECT 5" 48, 96, 100 TPI, OR

— INCLUDES "OSBORNE” 8" 48, TPI
TYPE POWER HOOKUP — POWER “Y" CABLE=$10

— RUNS ANY STANDARD 34 DRIVE DATA CABLE=5$20

PIN (5”) OR 50 PIN (8") DRIVE
USED BY: IBM, ARMY, NAVY, RCA, ETC..

EX 2000 $299

FREE Air Freight on Prepaid Orders. COD: Add $5 Plus Shipping

PROTO PC inc. CALL NOW! 2 644-4660
2439 Franklin, St. Paqul, MN 55114

