THE COMPUTER JOURNAL

For Those Who Interface, Build, and

Vol. It, No. 6 : Issue Mumber 10 $2.50 US

The FORTH Language:
A Learner’s Perspective ..

An Affordable Graphics Tablet
FOf the Apple][page 8

Interfacing Tips and Troubles:
Noise Problems, Part One s

LSTTL Reference .Chart

Multi-user:
Some Generic Components and Techniques v -

Write Your Own Threaded Language:
Part Two: Input-Output Routines and Dictionary
Management page 18

Make a Simple TTL Logic Tester »x

Editor’s Page

We are often asked, “Why do you want to
publish a computer magazine when there are already
too many on the market?” Other frequent questions
are “Why can't I find your magazine on the
newsstand?” and “Why don't you run full color ads
like the other magazines?”

The answers to these questions are not simple, but
I'll attempt to explain our reasons for publishing The
Computer Journal and answer these questions.

Most of the established magazines are now being
run by large corporations who are primarily
interested in the annual profit, and they are engaged
in a battle for the almighty advertising dollar. In
order to attract advertising they must have a huge
circulation base (many are running 400,000 to 700,000)
which requires that they publish general interest
articles that will appeal to the largest possible
audience. Right now, the largest audience is the
people just getting started in using micros for
business aplications.

These large magazines have the advertising
income to use full color, and the wide appeal needed
to appear on the newsstands, but they can’t use much
editorial space for the nuts-and-bolts technical
information we need. Instead, they publish mostly
reviews on their advertisers’ products and
introductory articles for those who will buy their
advertisers’ products.

The purpose of The Computer Journal is to
provide information for people who want to write the
programs and build the hardware needed to interface
their computer to the real world. We are adding some
advertisers with products of specific interest to our
readers, but our primary purpose is service the
reader and not the advertiser. This means that our
reviews will be limited to items which we feel are of
interest to our readers, and not just those which will
bring in advertising dollars. It also means that we
can't afford full color printing at this time because we
don’t have much advertising income.

Our readers are a special kind of people —they're
not the general newsstand audience. For that reason,
you won't find The Computer Journal on the rack in
your local drugstore, but we are interested in
appearing on specialized, technical book and magazine
racks. We'd appreciate your suggestions on people we

should contact.
In order to provide a place where you can trade

- ideas and work with others on common problems, we

are starting a series of reader design projects where
we will present projects for our readers. This will be
a forum where many people can contribute their
knowledge so that everyone doesn't have to try to
reinvent the wheel. We encourage you to suggest
projects for this series, and we hope that you will
take the time to send your ideas in response to
others’ projects.

We would also like to start a discussion on
establishing a technical and scientific program
exchange. These might be in the form of listings,
disks, or possibly a special bulletin board. The
purpose of this exchange would be to provide a base
of public domain specialized programs and sub-
routines developed by our readers. If we establish a
bulletin board, we could also provide some of the
programs from our articles so that you don't have to
key them in. The programs on a bulletin board would
have to be limited to those of special interest to our
readers which are not available on most of the other
bulletin boards. We would appreciate feedback from
you rega'rding the programs you feel we should have,
and what programs you could contribute —no pirated
copies of commercial programs please!

The Computer Journal is published for YOU, and
it will only be as good as YOU make it. Your input in
the form of ideas, suggestions, and articles will be

greatly appreciated a
Editor/Publisher. Art Carlson
Art Director........ Joan Thompson
Technical Editor................................. Lance Rose
Production Assistant......................... Judie Overbeek
Contributing Editor. Ernie Brooner

The Computer Journal® is published 12 times a year. Annual
subscription is $24 in the U.S., $30 in Canada, and $48 airmail in
other countries.

Entire contents copyright € 1984 by The Computer Journal

Postmaster: Send address changes to: The Computer Journal,
P.O. Box 1697. Kalispell MT 59903-1697.

Address all editorial, advertising and subscription inquires to:
The Computer Journal. P.O. Box 1697, Kalispell MT 59903-1697.

2 Tre Computer Lourra

THE FORTH LANGUAGE:

A LEARNER’S PERSPECTIVE
by Mahlon G. Kelly

FORTH is a strange programming language.
Many who have learned conventional languages such as
Pascal, BASIC, Fortran or Cobol find Forth hard to learn.
Yet Forth has ardent, fanatic admirers. Some Forth
programmers almost seem to be members of a cult, arguing
that Forth is the ultimate language, the only one that should
be used, or the first that should be taught to students. Early
versions of Forth were given away, just to encourage use of
the language.

If its admirers are so ardent why hasn't Forth achieved
the popularity of BASIC and Pascal? And why do some find
it so hard to learn? I found it fairly easy to learn but I had
to ignore all of my preconceptions about how a program is
written. I had to forget about subroutines, GOTO
statements, variables as I had known them, and algebraic
notation embedded in program lines. And I had to learn
about such things as stacks, Reverse Polish Notation,
dictionaries and word definitions. Nevertheless, Forth is
logical and simple; the re-learning process was not difficult.

A good Forth program is an elegant and beautiful creation
like a profound mathematical proof. It may even be worth
learning Forth simply for the aesthetic satisfaction. I have
known Forth programmers for several years, but their
missionary zeal was such that I ignored their proselytizing.
A few weeks ago I was waiting in a friend's home and
playing with his TRS-80 Model 1. He had loaded Forth and
left the manual open to the glossary and a program on the
screen.] started looking at the listing and the manual, and 1
had a wonderful “Ahall experience.” I suddenly saw how the
program worked — not the details, but the general idea. And
it was beautiful. I don't know why it was beautiful, but then,
I don't know why an elegant proof of the Pythagorean
theorum is beautiful.

And Forth is efficient. The source code for a Forth
program normally resides on disk, taking virtually no
memory, and is normally very compact in a listing. The
compiled code typically takes a small fraction of the memory
used by a compiled BASIC, Fortran or Pascal program. And
a Forth program will run 20 or more times faster than an
interpreted BASIC program and several times faster than a
compiled one. Using Forth with an 8087 coprocessor in an
IBM can produce more than a hundred-fold speed
improvement. Usually the only way to beat the speed of a
Forth program is to use assembly or machine language (and
assembly language can be easily embedded into most Forth
programs).

I had to learn Forth. I didn’t know if I would use it much
for my application programs (I now use only Forth) but I had
to learn it. I had to find out more about the language that

could be so conceptually simple and yet do so-much with
such elegance. I ordered MMSFORTH (one of the most
powerful and fastest Forths) for my LNW-80, along with the
book Starting Forth by Leo Brodie. But I started with
trepidation —there were so many stories about how hard it
is to learn Forth.

Much to my surprise 1 was comfortable with Forth and
writing meaningful programs within four days. Forth is not
a hard language to learn—you just have to think of
programming in a completely different way. You have to
completely re-learn how to interact with your computer. I
find that it's more of a shock to put the Forth disk into my
computer than it is to move from my LNW or Columbia
with BASIC to our University's CDC with Fortran. But I
found learning to use Forth to be a lot of fun, probably
because I started with an open mind.

A Forth Program

Forth is different in many ways, but probably most
confusing to a neophyte is reading a program. Conventional
programs proceed from top to bottom. Instructions at the
beginning are executed first and execution continues to the
end, perhaps looping and perhaps branching to subroutines.
But unless a conventional program is haphazardly written,
with too many GOTOs and so on, it's read by the computer
in the way that we read a page of text. Forth programs
don’t work that way. Lines in Forth programs define words
that do various things. The words are put together in
phrases to form new words, and at the end there will be a
“punch line” that puts everything together into a single
word that defines the program.

Let's look at an example. (Modified and extended from an
example in the book Starting Forth by Leo Brodie.)

(Things within parentheses are comments.)

(This program will wash a load of clothes.)

(A phrase started by : and ended by ; defines a word.

The first word in the phrase names the word. The

phrase may span several lines.)

(We must assume that some words have been
previously defined in terms that the computer can
understand — those are the words that I've defined in
lower case. You wouldn't do it that way in a real
program.)

: START turns on the power to the washer ;

: LOAD sounds a bell to tell the operator to put in the
ciothes ;

: WATER fills it with water to a high-level switch ;

: SOAP dispenses a slug of soap ;

: AGITATE does what it says for n minutes ;

: SPIN also does what that says for n minutes ;

: DRAIN lowers the water to a low-level switch :

: UNLOAD tells the operator to take the clothes out ;

: WASH SOAP WATER 5 AGITATE DRAIN 2
SPIN i(define WASH: 5 and 2 are the number of
minutes.)

: RINSE WATER 3 AGITATE DRAIN 2 SPIN;
(define RINSE: 3 and 2 are minutes.) .
:WASHER START LOAD WASH RINSE RINSE 38
SPIN UNLOAD;

If the program had been loaded (either from the keyboard
or from a disk) and you type the word WASHER the
machine will do your laundry. WASHER is interpreted and
uses the words surrounded by :-;, which were compiled
when the program was loaded. If you typed RINSE the
clothes would only be rinsed. If you typed WASH the suds
would be left. WASHER uses all of the defined words.
Those words were compiled, or converted, to short machine
language programs when the main program was loaded.
WASHER then jumps from one little machine language
program to another. Forth is called a Threaded Interpretive
Language (or TIL) because programs are composed of
words, each of which represents another program, and each
of which is connected to another by a thread. You can
imagine a Forth program as an intricate spider's web
connecting various routines that are stored in memory.
When the program is run it jumps around in memory,
following the web. That's one of the reasons it's so fast.

It's usually easiest to understand a Forth program by
reading it from the bottom up and then figuring out what
each word does. If the words are chosen to have clear
English meanings and are well commented, a Forth program
is largely self-documenting. It's particularly helpful if each
word has some special purpose and it's especially helpful if
the word can be used several times.

Forth programs may be put into the computer from the
keyboard or from disk, although the disk would normally be
used for anything but the simplest program. Forth programs
are stored on disk in blocks of 1024 bytes. For example, a 40
track, double-sided disk on an IBM, using MMSFORTH, will
store 395 blocks. If I typed “45 LOAD" and the WASHER
program was on block 45, it would be read from disk just as
if I had typed it from the keyboard. That block could then
have loaded another block. If a colon-definition is typed from
the keyboard the word is compiled as soon as the semicolon
is typed and “enter” is hit. Forth doesn't care where the
input comes from. And Forth programs are easy to debug.
Each word can be individually tested by typing it from the
keyboard. This ability to quickly write and debug intricate
programs is one reason Forth is popular for controlling
complex machines such as radio telescopes and robots.

Forth programs may also be precompiled. That means
they may be made part of the Forth system as it is loaded
when the disk is booted. For example, in MMSFORTH, if I
had loaded the WASHER program and then “customized”
the disk (by typing CUSTOMIZE) the washer words would
have been saved to disk as machine code and would be
loaded when the disk was booted; they would become part of

my particular version of Forth, always there when needed.
Forth is a language that grows, and after a few months of
use, my version of Forth will probably be different from
yours, as each of us adds personal features.

Precompilation also allows production of versions of Forth
dedicated to particular tasks. For example, FORTHWRITE
is a text editor written in MMSFORTH for the IBM PC and
TRS-80 machines. The user receives source code {four disks
in the case of the TRS-80 Model 1, two for the IBM) that are
precomplied to machine language and merged with
MMSFORTH to produce a dedicated word-processing
system. When the precompiled FORTHWRITE disk is
booted the user need not even know that Forth is being
used, but the source code is always there to be re-
precompiled with customized changes. FORTHWRITE,
although written in Forth, is similar to, just as fast as, and
much, much more flexible than Radio Shack's widely
acclaimed Scripsit, which was all written in machine
language. FORTHWRITE equals or betters any word-
processing system written for any “normal" operating
system, including such items as the widely used Wordstar.
Precompilation allows the user to produce what are
practically new operating systems. FORTHCOM (a smart-
terminal program) and DATAHANDLER (a data-base
management system) are similar dedicated programs. Forth
has even been used to write a BASIC interpreter, and it was
nearly as fast as the equivalent machine language version.

In summary, Forth programs comprise a group of
predefined functions or subroutines, called words, that are
entered from the keyboard or by loading a disk block.
Words are made from more primitive words that are defined
when you boot and load a disk. For example, I could type in
a word “PLUS” like this:

: PLUS +

What I have done is create a duplicate definition for a word
that's part of the original language. The new word, PLUS,
can now be used interchangeably with the original word,
W

Although there’'s a 1979 standard for Forth, most
implementations have added many non-standard words {and
a 1983 standard has recently come out). For example,
MMSFORTH for the TRS-80 and IBM PCs includes separate
utilities that support such things as high resolution vector
graphics for the IBM PC as well as floating point math with
transcendental functions and imaginary numbers, including
support for the 8087 math co-processor chip (it may be the
only language to support imaginary numbers on a
microcomputer). And you will find yourself adding to your
own version of Forth. Within a week I had written words for
Hex-Binary-Decimal conversion and for a screen-oriented
memory dump.

But you won't start learning Forth by writing whole-block
programs. You'll start at the keyboard by interactively
playing with the machine.

Learning Forth
Because Forth doesn't care if it receives input from a disk
or from the keyboard, it may be the most completely

The Dornoter s om3

MicroMotion

MasterFORTH

It's here — the next generation
of MicroMotion Forth.

e Meets all provisions, extensions and experimentat
proposals of the FORTH-83 intemational Standard

o Uses the host operating system file structure (APPLE
DOS 33 & CP/M 2x).

e Built-in micro-assembiler with numeric local labels.

o Afull screen editor is provided which includes 16 x
64 format. can push & pop more than one line,
user definable controls, upper/lower case key-
board entry, ACOPY utility moves screens within &
between lines, line stack. redefinable control
keys, and search & replace commands

e Includes all file primitives described in Kernigan
and Plauger's Software Tools.

o The input and output streams are fully redirectable.

e The editor, assembler and screen copy utilities are
provided as relocatable object modules. They
are brought into the dictionary on demand and
may be reteased with a single command

e Many key nucleus commands are vectored. Error
handling. number parsing, keyboard transiation
and so on can be redefined as needed by user
programs. They are automatically returned to
their previous definitions when the program is
forgotten

o The string-handiing package is the finest and
most complete available

e Alisting of the nucleus is provided as part of the
documentation.

e The longuage implementation exactly matches

the one described in FORTH TOOLS, by Anderson

& Tracy This 200 page tutonal and reference

manual is included with Master-ORTH

Floating Point & HIRES options available

Available for APPLE I/ 1t+/lle & CP/M 2.x users

MasterFORTH - $100 00. FP & HIRES -540 00 each

Publications

e FORTH TOOLS - 520.00

e 83 intemational Standard - $15.00
o FORTH-83 Source Listing 6502. 8080. 8086 -
$20.00 each

/E;/\A Contact:

MicroMotion
12077 Wilshire Blvd., Ste. 506
Los Angeles, CA 90025
(213) 821-4340

interactive compiled language there is. I learned Forth by
typing very short “programs” directly from the keyboard.
It's fun to learn because the results come out immediately.
But to understand what's happening you have to understand
a peculiar (and very efficient) feature of Forth: the stack.

If you type “55 6 ~ ." the result on the screen is 49. You
have used two words, " - " (“minus”) which says subtract the
two numbers, and “.", (“dot") which says print the result.
But how did “ - " know what to work on? When you typed

55, that number was put on the top of a stack; 6 was then
put on top of the 55, pushing the stack down by one (actually
the cdmputer first looked at 55 to see if it was a word, found
it wasn't, then found it was a legal number, and so put it on
the stack). Picture the stack as several numbers, like plates
stacked on a table. When you typed " - " the computer took
the 6 off, then the 55, then subtracted the 6 from the 55 and
put the result (49) back on the stack. “.” then pulled the 49
off and put it on the screen. Understanding how the stack
works is very important in learning Forth. If you have used
a Hewlett-Packard calculator you'll be used to this stack
procedure, often called Reverse Polish Notation (RPN) or a
FILO (First In Last Out) stack. Most Forth words use the
stack, and that saves memory. Other languages require that
numbers be assigned to variables, and those variables each
require memory. In Forth, memory doesn't have to be
permanently allocated to variables that are little used.
Using the stack does mean you must keep track of what is
pushed on and popped off. Keeping track of the stack can be
confusing, but careful definition of words, so that each does
something very specific and predictable to the stack, helps.
So does practice. Actually, I should mention that there's
another Forth stack that is used internally to keep track of
where a program is in its execution (that stack may also be
carefully used for number storage). Also, if floating point
numbers are being used with an 8087 math co-processor chip
on an IBM PC the 8087's stack actually becomes the main
stack, which is a very, very fast way of doing things and
makes MMSFORTH ideal for fast number crunching.

There are many words that operate on the stack. " -",
“+" "" and “,” do what you would expect, and “MOD"
divides two numbers and puts the remainder (the modulus)
on the stack. There are also words for double precision and
floating point operations, although the latter are not
standard. You can try all of them from the keyboard. Some
words rearrange the stack. For example, suppose the stack
contains 6 with 55 above it and you want to subtract 6 from
55; " - " would give you - 49. But if you typed " SWAP - .
", 6 would be swapped with 55, subtracted, and 49 would be
printed. Other words for manipulating the stack are OVER
(3 2 OVER would leave 3 2 3 on the stack and ROTate
(1 2 3 ROT would produce 2 3 1). (The left-hand number
goes onto the stack first; the right-hand number is on the
top of the stack). The first thing you will learn about Forth
is how the stack works and that's easiest to do by
experimenting at the keyboard. Forth is confusing at first; I
couldn't have learned it without this kind of
experimentation.

Forth allows the use of constants and variables, but the

beginner should beware; they can teach lazy habits and use
more memory and time. Variables and constants are actually
words, but they are special words that do special things. If
you type

2 CONSTANT SPIN-TIME
the following happens: 2 goes onto the stack and
CONSTANT creates a place in memory (in the dictionary)
for the word SPIN-TIME and puts 2 there. Then when you
type SPIN-TIME it is seen as a word that says take 2 and
put it on the stack. If you type “55 SPIN-TIME -." you see
53 on the screen. If SPIN-TIME SPIN had been used in our
washing machine program the washer would have spin-dried
for 2 minutes. Variables are similar but a bit more
complicated. If you type

VARIABLE AGITATE-TIME
space is set aside in the dictionary for the variable
AGITATE-TIME. Typing AGITATE-TIME puts the
memory location (address) for the variable on the top of the
stack, not the value itself. The word “ | " (“store”) says to
take the value that's second on the stack and store it at the
locatiion pointed to by the top of the stack. Thus

5 AGITATE-TIME !
would store 5 in the memory location pointed to by
AGITATE-TIME.

AGITATE-TIME @
would put the value of AGITATE-TIME on the top of the
stack. "@" (“fetch”) is a word that says “take a memory
value from the top-of-stack and fetch its contents onto the
top of the stack.” "AGITATE-TIME @." would print 5 on
the screen; so would “"AGITATE-TIME ?” because “?" is
simply defined as “@.".

In addition to variables and constants, arrays may be
defined. And variables, constants and arrays may be of a
variety of types: single byte, single precision (2 bytes or 16
bits), doubie precision (4 bytes), or strings. In MMSFORTH
there are enhancements to use floating-point real and
imaginary numbers as well, including exponential notation.
MMSFORTH alse supports QUANSs, which combine the
properties of both constants and variables.

You should learn how all of these things work by trying
them interactively while sitting at the keyboard. It's much
easier to understand how Forth works by trying it than by
reading about it. ‘

Forthrightly Simple

At first Forth may seem to be such a simple language that
not much can be done with it. The main things that one does
are define words, manipulate the stack, declare constants,
and change the values of variables. (Actually, we can also do
string manipulation but I've said littie of that.) Forth may
seem simple, but it gives a programmer power over a
microcomputer that's rivalled only by assembler language.

In a sense, it is hard to program in Forth. You have to be
clever and plan ahead. A program must be well thought out
in advance and each word must be defined with care, being
cautious for example, not to unintentionally leave something
on the stack. But Forth's interactive nature and power
makes up for this. And there are some very important

Tre lomouter Lowrma S

words and features that I have not mentioned yet.

Suppose you want to work with strings of lettcrs. Letters
can be represented by numbers. The EMIT --ill put the
letter represented (in ASCII) by the number on the top of
the stack to the screen. Thus 89 EMIT would print a Y (if
you are in DECIMAL; Forth also supports other number
bases). There's also a sequence in memory starting at a
location called PAD where strings can be stored as ASCII
equivalent numbers and manipulated. There are many more
string manipulation words, including “TYPE,” which puts a
string starting at a specified memory location and with a
specified length onto the screen. String manipulation in the
1979 and 1983 standards of Forth is not very good, but
enhancement is fairly easy and is included in many
implementations. MMSFORTH has particularly good string-
handling abilities, mimicking many of the functions of
BASIC.

There are also all kinds of conditional operations that let
you do the equivalent of branching to subroutines. For
example there are comparators such as “<", “>" =",
“<>", and “0=". They each return a value of “true” (1) or
“not-true” (0) to the stack. “5 3 <" would return “not-true”
or 0 while “5 3>" would return “true” or 1. Then there's
the complex word IF, which must be followed later by
THEN. If IF sees a true (non-zero) on the top of the stack it
will execute the words between IF and THEN. If it sees a
not-true (0) it will skip to what follows THEN. Thus the
words in the middle act like subroutines. The construct
“"BEGIN-WHILE—~REPEAT" executes the words in the
first half and loops back as long as a non-zero number
remains on the stack. There are other WHILE constructs in
most Forths. “DO--LOOP” works differently. It makes a
number of loops specified by the top two numbers on the
stack “15 5 DO I . LOOP” would produce “56 78 9 10 11 12
13 14" on the screen. “DO--LOOP" actuslly uses another
stack. 15 5 DO I. LOOP” does the following: it puts 15 and
then 5 from the main (“user”) stack to the top of the second
(“return”) stack, gets the 5 from there to the user stack
{(with the word “I" for increment), then prints the 5.
“LOOP" then adds 1 to the 5 on the return stack, looks to see
if it is less then 15, and if it is, execution goes back to "DO."
If 15 was equaled or exceeded, whatever followed “LOOP"
would be executed.

Most of these more complex words are made up from the
simpler stack manipulation and memory manipulation
words. Even more complex words can be constructed, for
example D+ and D- for adding and subtracting double-
precision numbers, or SIN, TAN, and LOG for doing
transcendental functions. But they're mostly made up by
simple manipulation of the stack, words, memory, variables,
and constants. If, however, a word cannot be defined by
using previous words, or if the definition is too slow (both of
which are uncommon) then a word can be defined by a
sequence of assembler language mnemonics. Assembler
language can easily be written directly within a Forth
program. Forth words may be made up of assembler
instructions. Forth can have several vocabularies; for
example MMSFORTH includes assembler instructions for

6 Tne Computer o oLma
the 8080, Z80, 8088, and 8087 chips.

Learning Forth is really just a matter of becoming
familiar with the way words are used, how the stack works,
how programs are written, stored, and called from disk, and,
perhaps with most difficulty, what the important pre-defined
system words do. There's a sort of knack to learning to use
the stack and defining appropriate words, but once you have
the knack, Forth becomes a very “natural” language. In a
way, Forth asks you to think like you did back when you
were learning addition and subtraction and before you were
corrupted by the terminology and formalisms of algebraic
notation. (If you use a Hewlett-Packard calculator, you'll
understand the attraction of this.) It took me only four days
to become comfortable with Forth, which is more than I can
say for Fortran, Cobol, or Pascal.

But What'’s It Good For?

Forth was originally developed by Charles H. Moore at
the National Radio Astronomy Observatory (Kitt's Peak)
during the early 1970s. The language was used for
controlling radio telescopes. It was intended to rapidly and
efficiently control equipment with a minimal use of memory
and time, but without the programming effort that would
have been needed for a machine language program. Forth's
early applications were for controlling large machines and
equipment.

But the constraints of time and memory make Forth
particularly useful for microcomputers. Is Forth the
“natural” language for microcomputers? Should it be the
first learned by novices? Should it replace other languages?
All of these have been argued convincingly by Forth
enthusiasts.

Without question, Forth writes faster code than any other
“high-level” language. And Forth source code is shorter.
Forth object code is also usually shorter than the compiled
code from other “high-level” languages. Why? Because Forth
is a TIL (Threaded Interpretive Language). Unlike an
interpreted language such as BASIC, the source code need
not remain in memory. And while most compilers pile up
redundant machine language instructions (macros) on top of
each other, duplicating every function each time it's defined,
Forth defines the machine code only once for each word.
Forth is quick because machine language jump instructions
take very little time. And, of course, machine language and
assembly language instructions can be embedded directly in
the definition of Forth words. In some ways Forth isn't
really a higher level language. It combines the advantages
of machine, assembly, compiled and interpreted languages.
Forth can do anything that your hardware allows, and by
using assembler mnemonics it can do it as fast as is
theoretically possible.

Forth's speed, efficient use of memory, and combined
levels of programming make it a “natural” high-level
language for use in microcomputers. Does that mean that
Forth should be used by everyone learning to program
microcomputers? People are oriented towerd a spoken
language, and programming languages like BASIC are
easier for them. For example it's easier to understand

10 A=5

20 PRINT A
than it is

5A1A@.
although both assign a value to a constant and print the
constant. If everyone had to learn Forth it might be that
fewer people would program their own computers.

But there's another side to the argument. BASIC
encourages you to sit down at the keyboard and
interactiverly write a program. That means if you write a
long program you will eventually be tempted to patch it up
by using a lot of GOTOs. Two months later you won't
understand the program, and it will certainly not be
efficient in terms of either time or memory. A Forth
program would have required much more forethought
(Forthought?) and planning. The discipline would have
produced a better program. You would have broken the
problem down into tasks and sub-tasks, each defined by a
word, and the end result would be very carefully designed
and efficient. Forth may be the ultimate structured
language. The problem is that many don't want to bother
with such discipline when they're writing a short program
that will be used a few times arnd forgotten. Forth may be
the best way to teach future programmers, but BASIC may
be preferred by many casual users of personal computers.

There’s a more important problem with Forth. A “pure”
Forth language is a self contained entity. There is no
separate operating system, only an operating
“environment.” “Pure” Forth won't run under CP/M,
MSDOS, Newdos, or whatever. And it won't read disks from
those operating systems. There are Forths that work under
conventional operating systems (MMSFORTH is available in
a PC-DOS version for example) but such versions entail
compromises produced by the speed and memory overhead
of the operating system, and sacrifice some of the
advantages of the language. But is the “stand-alone” nature
of a “pure” Forth really a disadvantage? Forth is very
transportable. I can take a source program written on my
LNW with MMSFORTH and run it on a TRS-80 Model I, III,
or IV, or on an IBM PC or compatible machine (using a
completely different microprocessor).. The probiem isn't
really that Forth doesn't work with other operating
systems, but that few IBM PC owners, for example, have
Forth. If Forth had come first to the microcomputer world
we might find the usual “higher-level” operating systems
and languages written in Forth (it has actually been done,
and quite effectively). If most programmers used Forth we
would be able to use assemblers, applications programs and
other languages as we wished. But they would be written in
Forth and we would be using Forth.

When I'm working with my LNW microcomputer I prefer
to use Newdos 80 Version 2 as the operating system,
LNWBASIC as an interpreted BASIC, either ZBasic or
ENHBAS as my compiled language, and NewScript as a
word processor (although 1 may soon convert to
FORTHWRITE). There are many other programs that
interact with those. In other words I can use a variety of
programs and languages, and because of the operating

system and microcomputer I can let them interact with each
other. That's much more difficult, if not impossible, with
most versions of “pure” Forth. But +f I had started with
Forth and if those other languages and programs had been
written in Forth there would be no problem. It's easy to
understand why Forth users are active missionaries. If more
microcomputers and more programmers worked with Forth,
the lack of compatibility between different machines,
languages and hardware would be greatly reduced.

And I'm pretty sure that we would have better software
if it was all written in Forth. Forth provides so much control
of the machine, requires so little memory, and is so fast that
well written Forth programs have an inherent advantage.

' In Summary

Forth is a very different programming language. Its use
of the stack, words, and Reverse Polish Notation all ask that
you think differently when you write a program. But it is
not hard to learn—not if you're willing to forget your
preconceptions about what a programming language should
be like. And learning Forth can be very exciting and
satisfying. Forth programs are like works of art; they give
an inherent satisfaction that is a reward in itself. But Forth
is not for those who are intentionally lazy. Forth has been
called a language that uses a human as a precompiler. It
requires that you think out very carefully what you want to
do and that you be very careful about what your word-
definitions mean. Writing a program in Forth, even a simple
one, requires brain work. But that doesn’t mean it takes
longer to write a Forth program. Any program should be

COMPUTER
CONTROLLED
ROBOTICS

1.DRIVER BOARD 5005DB $75 %
45 x38 xO5" TIL CMOS COMPATIBLE.
OPTICALLY INSOLATED. FOR 4 PHASE MOTORS 2AMPS 50 VOLIS
2LINEAR ACTUATOR 601 AM § 75
lévmfﬁol&‘ﬁé F%%é: N TaAveL
3. LINEA foa 501 AM $43

12v 3. 5W 1 5 OZ OO2 STEP SIZE
40 OZ HOLDING FORCE, 1.88 IN TRAVEL

4, STEPPER MOTOR 201SM $ 16

2W. 1.0 OZ 15° STEP SIZE
O 8 OZ IN HOLDING TORQUE

5. STEPPER MOTOR 3015M $59
12V. 215 0Z. 1.8° STEP SIZE
80 OZ IN HOLDING TORQUE

6. MOTOR MOUNT FOR 301SM $25
/ MOTOR MOUNT FOR 501 AM $12

8 MOTOR MOUNT FOR 501 AM $13
% EDGE CONNECTOR § 3.50

AMSI core

BOX 651, SMITHTOWN LI, NY. 11787

g
" VISA
T

(516) 361-9499

TERM Cneow Mo, g wr SR
Far oo ovmdor 6 Aeoe Lo

well thought out at the start—it will decrease debugging
time and result in a better piece of software. The time spent
“up front” in planning a Forth program will be regained at
the end by a decrease in debugging effort. And perhaps
most importantly, Forth words can be separately debugged,
preventing long and tedious changes to the whole program.

The greatest disadvantage of efficient and ‘“pure”
implementations of Forth is that they are hard to use with
data and files produced on other operating systems. An
efficient Forth is its own operating system. Somehow the
cart has come before the horse here: Forth probably could
have been used to write most of the presently popular
operating systems, and if it had, I suspect that many of the
incompatibilities between IBMs, TRS-80s, Apples and Ataris
wouldn't exist. But that's wishful thinking.

Forth writes code that is very fast and uses relatively
tiny bits of memory. That fact in itself will allow Forth to
continue as the language of preference for certain
applications.

Who cares what Forth is good for? I don't ask about the
practical use of the Mona Lisa or Blue Boy. I don’t knock the
efforts of those producing computer art. And I don't argue
that pure mathematics should be eliminated from the
university curriculum. Forth is beautiful. It is a very
satisfying creative medium, and it can be used to produce
programs that are works of art (of course, it can be used to
produce rubbish as well). We respect painters, poets and
novelists for the works they produce. We will eventually
respect prgrammers who work in Forth (or some very
similar language) for the same reasons. a

8 The Computer Journa

An Affordable Graphics Tablet for the Apple]|

by James E. Oslislo

Cut, through trace

INQAMAT L0 —uCO
A
[A)
=,

FIGURE 1: INTERFACE BOARD LAYOUT FIGURE 2: ENLARGED CORNER OF INTERFACE BOARD LAYOUT

A relatively low cost graphics tablet can be obtained for
the Apple II computer by converting the Radio Shack Color
Computer graphics tablet with a simple interface card.
Although there is a certain amount of work involved in the
conversion, no modifications need to be made to the graphics
tablet.

As with any project, there are a number of pros and cons
associated with it. A few I have found so far are as follows:
Pros:

1. Ease of use. A graphics tablet allows the fastest and most
accurate inputting of graphical information of any of the
current popular devices such as mice, joysticks and touch
pads.

2. Ease of interface. The interface card is not very difficult
to build, and all of the parts necessary can be purchased at
Radio Shack.

3. The low price. I purchased my tablet during a sale for
$199; I have seen other graphics tablets for the Apple which
cost four times that much.

Cons:

1. The warranty. Although the conversion makes no direct
modifications to the tablet, an error could creep into
construction which could ruin the tablet—it might take
some fancy talking to get it repaired under warranty. Even
though no modifications need be made to the graphics
tablet, the mere use of the tablet with a computer other
than one of Radio Shack's undoubtably voids the warranty.
2. Hardware incompatiblities. My tablet has difficulty
accessing some of the extreme values in its range. Hence,
some points on the edge of the graphics screen are
accessible only after software manipulations.

3. There is no support software. Although the book of
software for the Radio Shack computer that comes with the

tablet could be converted for an Apple, it did not appear
that it would be worth the effort. I preferred to start from
scratch and write my own software.

Interface Operation

To function correctly, the graphics tablet needs thirty
connections to an Apple peripheral slot. Of these
connections, sixteen go to the Apple address bus, eight go to
the Apple data bus and four go to the Apple power supply
(+58v, +12v, -12v and ground. Of the two remaining
connections, one goes to the R/W line and the other to the
phase zero clock. One problem that arises is due to the
difference in system clocks. The Color Computer has a clock
rate of 0.89Mhz while the Apple works at 1.028Mhz. 1
suspect that this slight difference may be the cause of the
difficulty in accessing some areas of the tablet. Another
problem is the difference in memory usage between the two
computers. The tablet is accessed with the addresses $FF60,
$FF61 and $FF62. This would seem to be a problem because
the Apple system monitor requires these addresses. The
solution lies in switching the interface card address lines A4
with Al12 and A7 with A13. This change converts the
previous addresses to $CFF0, $CFF1 and $CFF2, a range of
addresses which falls nicely into the area set aside for the
Apple’s I/O needs.

Interface Construction
The four items required for construction are as follows:

~ A 50 position plug-in interface board (RS# 276-166)

A 40 position card edge connector (RS# 276-1558)
A 40 position dual-row socket jumper (RS# 276-1542)
A 40 position dual-row header (RS# 276-1540)

Due to the transitory nature of Radio Shack parts, these
recently available parts may have to be replaced with other
parts found elsewhere.

If the Radio Shack board is used it must be sawed as
shown in Figure 1 in order to {it into the Apple's enclosure.
The copper traces shown on the sketch must be cut in half
with a thin saw before the dual row header can be soldered
to the board. Care should be taken so as not to accidentally
peel the traces off the board. The purpose of the dual row
header is to remove the strain on the soldered joints that
would occur if the ribbon cable was soldered directly to the
board.

The major task in completing the interface is making sure
that the connections go to the right places. In a connection
that goes first from the Apple's slot, then to the board, then
to the header, then to the ribbon cable, then to the edge
connector, and finally to the graphics tablet board, errors
can easily occur in the assembly if extreme care is not
practiced.

One possible trouble area is the numbering of the card
edge fingers in the black cartridge which contains the
electronics for the graphics tablet. You can see the
numbering scheme etched on the PC board inside if the
cartridge is opened up, but to do so you must break the
warranty seal which covers a screw holding the box
together. If you choose to leave the box closed, the
numbering scheme is as follows:

1. Assume that the top of the cartridge is the side with
NO slots in the case.

2. While looking straight in at the card edge fingers with
the top side of the cartridge up, the odd numbered fingers
labeled one to thirty nine occur from left to right on the top
side of the circuit board.

3. With the cartridge in the same position as in step two,
the even numbered fingers labeled two to forty occur from
left to right on the bottom side of the ciruit board.

4. When numbered correctly, the next even numbered
finger should sit directly underneath the odd numbered
finger which preceded it, i.e.; finger #2 should be directly
beneath finger #1, finger #4 should be directly beneath
finger #3, etc.

Tre Computer soumd 9

5. An observant individual will notice that the card edge
connector to be installed on the ribbon cable has its
connections already numbered on the outside of its case.
This should simplify things immensely, but for some reason
the numbering is NOT the same as per the card edge fingers
and should be disregarded!

On the new interface board, run thin gauge wire (such as
stripped apart ribbon cable) from the card edge connector to
the dual row header according to the wiring arrangement in
Table 1 and the photos in Figures 5 and 6.

Before any testing is done under power, all of the wiring
should be double checked with a continuity tester from the
fingers on the interface card to the contacts inside the card
edge connector. After you are positive that everything is
perfect, plug the interface into your Apple but NOT into the
cartridge of the graphics tablet. Power up the Apple and use
a voltmeter to check for correct power supply voltages at
the card edge connector (+12v, -12v and +5v) with
respect to ground. Recheck all wiring if a problem is found.
Remember never to connect or disconnect any part of the
project while the Apple is turned on; serious electronic
problems could occur in either the Apple or the graphics
tablet. After all the supply voltages check out, turn off the
Apple and connect up the graphics tablet through the
cartridge. Repower the Apple and look for any obvious
problems such as no picture present on the monitor or no
“beep"” from the speaker. If anything out of the ordinary
occurs, immediately switch off the Apple and recheck the
wiring, while keeping a look out for solder bridges.

One possible problem which may occur is due to a conflict
of I/O usage by expansion cards. The easiest solution is to
remove any unnecessary cards when using the graphics
tablet.

If everything seems to be all right, the system can be
checked out with the following Basic program:

1 PRINT PEEK(53232), PEEK(53233), PEEK(53234)
2 GOTO1

After you type RUN to start the program, three columns of
numbers should be printed across the screen. The first

Figure 3

Figure 4

10 Tre Corputer ourra

column should contain a value between 0 and 255
corresponding to the horizontal position of the pen on the
graphics tablet, 0 being far left and 255 being far right. The
second column should contain the vertical position of the
pen, 0 being at the top of the tablet and 191 being at the
bottom. The third column should contain a value of 0, 2 or 3
depending upon the proximity of the pen to the tablet. If the
pen is farther than about an inch from the tablet, a value of
zero is printed. If the per is within an inch but not pressing
down on the tablet, a value of two is printed. Lastly, if the
pen is pressed down on the tablet, a value of three is

TABLE 1
COLOR COMPUTER CARTRIDGE APPLE 11 PERIPHERAL
CONNECTOR SIGMNALS CONNECTOR SIGNALS
Pin # Descrip. Pin ® Descrapt.
1 -12v 33 -12v
2 +12v 50 +12v
3 unused
4 unused
3 unused
& E. cpu clock .B9 Mhz 40 Phase Zero clock 1.03 Mhz
7 unused
-] unused
b4 +3V 25 +35Vv
10 Data. DO 49 Do
11 Data, Di 48 D1
12 Data, D2 47 D2
13 Data, D3 46 D3
14 Data, D4 45 D4
15 Data, DS as s
16 Data, D& 43 D&
17 Data, D7 42 D7
1e R/W 18 R/w
19 Address, AOC 2 AO
20 Address, Al 3 Al
21 Address, A2 4 A2
22 Address, A3 5 A3
23 Address, A4 14 8888 Al2
24 Address, AS 7 AS
25 Address, A& 8 Ab
26 Address, A? 15 s838 All
27 Address, A8 10 A8
28 Address., A9 11 A9
29 Address, A10 12 A10
3o Address, All 13 ALl
31 Address, A12 & s888 A4
32 unused
33 &GND 26 GND
34 unused
35 unused
36 unused
37 Address, A1l G st A7
38 Address, Al4 16 Als
39 Address, ALS 17 AlS
40 unused
85833 denotes different address than expected

i S /4 o ; ,
5 S g 5o A iy
> ::n?é’;fiarw

c . e % s « .

': .ifﬂiiu—?ztxmm““*f‘d*~

Figure §

printed. As discussed before, the vertical and horizontal
values may not reach the extreme values in their ranges. Il
should be noted that the horizontal range of the graphics
tablet is from 0 to 255, while the high resolution screen of
the Apple contains 279 horizontal points. Therefore. a direct
point to point relationship is not possible between the tablet
and the screen. When you tire of the string of numbers, type
< CTRL» <C) to exit the program.

A trivial Basic program to see a graphical representation
of the tablet in action is as follows:

HGR: HCOLOR = 1
X = PEEK(53232)
Y = PEEK(53233)
Z - PEEK(53234)
IFZ< > 3 THEN 2
HPLOT X,Y

GOTO 2

N DU W N =

When you run this program, dots should be printed on the
computer's screen corresponding to whatever is drawn on
the tablet. Nothing will happen unless the pen is in contact
with the tablet. To exit the program < CTRLY { C)> must
be used.

I found that when the graphics tablet is repeatedly
accessed at high speed, a glitch will occasionally occur in the
outputted pen coordinates. It is therefore necessary to
generate a software timing delay of about seventeen
milliseconds between accesses to maintain data integrity.

Applications and Software Considerations

As the name implies, a graphics tablet is used primarily in
graphics applications. Some frequent uses are in computer
art and computer aided engineering design. My software
was directed along the lines of developing a package which
would allow for the rapid creation of a high resolution
picture for an unspecified end use. Figures 1 and 2 were
created with my program as a demonstration of the
practical use of the graphics tablet. Figure 2 shows the
enlarging feature of the program which permits fine

i,
P

S

!‘Q"V”?“.f.ﬁn,. NG
Morterre

i

modifications to the screen image. Some of the features
which I found could be easily incorporated in the software
are as follows:

1. Direct display of image on Apple hi-res screen.

2. Non disturbing cursor showing current pen position on
screen.

3. Use of only two colors, white and black for monochrome
monitor use.

4. Plotting only while pen is in contact with tablet.

5. Reversal of pen color to “unplot” unwanted areas or the
entire screen image.

6. Enlarging desired screen areas to allow for easier dot by
dot manipulation of the image.

7. Labeling coordinates around the enlarged screen area so
exact dot locations may be verified.

8. Point to point drawing of lines.

9. Saving of current screen to disk or loading of previously
created screens.

10. A separate program is used to dump screen images to a
printer for hard copies.

Many of the above features could probably be acceptably
accomplished with a BASIC program, but to make drawing
on the tablet as painless as possible, I wrote an assembly
language program to do all the dirty work. Unfortunately,
the source code listing is too long (about twenty pages) for
publication in this article. However, for a nominal charge, a
floppy disk containing the program and listing can be sent to
anyone who wishes to see it.

Conclusions
In my opinion, the Radio Shack graphics tablet conversion
is a reasonable alternative to the high cost of an Apple
tablet and the heartache of using a joystick for developing
computer graphics. For a small investment in time and
money you can experiment with the same type of device
used in state-of-the-art computer aided design equipment. B

References

1. Apple Computer Inc. Apple Il Reference Manual, 1978
2. Radio Shack Inc. Color Computer Technical Reference
Manual, 1981

AUTHORS WANTED!

The Computer Journal is
interested in technical articles.

Query with SASE or send for
our Author’s Guide.
PO Box 1697, Kalispell, MT 59903

The Computer Journa 11

IBM PC OWNERS
DON'T WASTE YOUR TIME. . . |

prototyping the same cirguitry
when you €an quickly and easly
‘mplement your onginal gesign
with Real Tume Devices PD1
Hardware Development %
voard

With the PD100. we've done most of the difficult work for you The PD100 contamns
a bultered data bus. switchable address decoder, prototyping area anag easily
avaiable wire wrap posts. Ali that needs to be done 1S to make stmple connections
to the wire wrap posts and you have a unique design impiemented in minutes
rather than days. Not familiar with interfacing? Our comprehensive, 116-page
manuai “interface Projects for the IBM PC™ includes an introduction to inter-
tacing and detais implementing and programming A/D. D/A converters. 1/C
ports. connection of transducers and dozens of usetul circuits

The board and manual are invaluable atds to engineers, hobbyists students
and anyone seriously interested in expanding the power of the 18M PC The
PD100 will make your prototyping a lot easier. .we guarantee it!'

MANUAL TOPICS BOARD FEATURES

* Introduction to Interfacing ¢ 160C-hole on board wire wrap

 Prototype Construction area accommodates up to 40

Techniques DIP sockets
o Simplest 1/0 Devices o Easily accessible butfered
data bus, control signais,
* I(:/O(:“%:;t'masre Example power supply, wire wrap posts
i * Four switch selectable

: :“' wlo ”: Ipto:f acing addresses; no contention with
xample rolec.s existing IBM PC peripherals

* Analog Interfacing and

Analog Signal Conditioning * Gold plated edge connector

¢ PD100 Schematic and
Specifications

ORDERING INFORMATION
PD100 WITH MANUAL - $99.00 PLUS $3.50 P&H
MANUAL ONLY - §20.00 POSTPAID
PENNSYLVANIA RESIDENTS ADD 6% SALES TAX
MASTERCARD AND VISA ACCEPTED; SEND CHECK OR MONEY QRDER TO
REAL TIME DEVICES
1930 PARK FOREST AVENUE
P.0. BOX 906
STATE COLLEGE, PA 16801
PHONE. (814) 234-8087
DEALER INQUIRES WELCOME

12 Trelomputer o oma

Interfacing Tips and Troubles
A Column by Neil Bungard

Noise Problems, Part One

As I have stressed in previous articles on interfacing,
there is more to completing a circuit design than generating
the logic diagrams, wire wrapping the circuit, and applying
power. Many times you will encounter problems which
cannot be solved by studying the logic diagrams or by
checking your wiring. The next couple of installments of
“Interfacing Tips and Troubles” are going to address an
area of hidden but nonetheless real (and frustrating)
problems; the area of noise problems. Noise is any undesired
signal which interferes with a signal purposely generated.
An undesirable signal can be anything from voltage
fluctuations in a power supply to electromagnetic
interference in the atmosphere. In this article we will look
at noise problems which frequently cause trouble in the
development of interfacing circuits. For the purpose of our
discussion, we will consider noise as being generated in one
of three broad categories. (1) Noise associated with the
power supply. (2) Noise associated with the interface. (3
Noise associated with outside sources. I will use actual
examples of construction and noise reduction techniques
which I have used to eliminate noise problems in my own
designs, and explain symptoms which were encountered
when constructing interface circuits. Finally, we will
investigate how and why the solutions to the noise problems
were implemented.

A project that I have been working on recently
incorporates the use of counters, flip flops, and latches as do
most interface projects. These particular devices operate at
logic transitions, so they can be considered “edge triggered”
devices. The problem with edge triggered devices is that
théy are not particular about the source of the “edge” which
triggers them. In addition to normal triggering by the
desired signal, the device can be triggered by fluctuations in
the power supply's output voltage, signals induced by a
nearby oscillator, current deficits resulting from gate
transitions on the board, etc. In addition, the edge triggered
devices are fast. This means that they will respond to
signals as short as a few nanoseconds. When we consider
that the frequency spectrum which effects these devices
extends from DC to hundreds of megahertz, it becomes clear
that noise can be (and is) a real problem. Unfortunately, it is
not easy to determine whether or not noise is the problem in
a circuit that is misbehaving. Furthermore, if noise can be
identified as the culprit in your circuit, the solution to the
noise problem may not be obvious. It is my hope that this
article will help you gain some insight on identifying and

eliminating various noise related problems.

Noise Problem Prevention

In interfacing, as in many other endeavors, an ounce of
prevention is worth a pound of correction. Therefore, there
is no substitute for sound circuit construction techniques.
When wire wrapping interfacing projects it is best to take a
modular approach to constructing the circuit. This means
that the circuit is wired and tested a section at a time
instead of constructing the complete circuit and attempting
to test it in its entirety.This allows you to more easily
pinpoint problems within a particular section of your
design.There is nothing more frustrating than wire
wrapping 25 ICs on a piece of vectorboard, powering up the
board, and having nothing happen. If you are constructing
the circuit a section at a time, you will know exactly where
to start looking for a particular problem.

The first step in constructing a wire wrap circuit is
running power to all of the ICs. Even though you are not
going to wire wrap the logic on all of the ICs, you will want
to fully load the power supply to determine that it will not
give you problems as you add more ICs to the circuit. You
can ensure this by running power to all of the IC sockets
and inserting the ICs from the very beginning. Doing this
also impels you to formalize the logic diagrams so that you
know exactly which ICs you are going to use in vour design.
and completes (except for design changes) the board layout
When running power lines to the ICs, some very important
rules should be followed:

1. Make all power supply lines as short as possible.

2. Do not route power supply lines through oscillator
sections on the board.

3. Never "daisy chain” power supply lines.

There are three reasons for keeping the power supply
lines short. First, even a piece of wire has some resistance.
The resistance of the wire is associated with a voltage drop
along its length: (V=IxR). If the wire is 8 power supply
line, a small percentage of the actual supply voltage will be
lost. The longer the supply line, the greater the resistance
and the higher the voltage losses. Since wire has a very low
resistance, you might be inclined to think that the losses
would be negligible. Under normal circumstances this is
true, but in a situation where supply voltages are low,
supply currents are high, and power supply noise is

marginal, the length of the supply lines can make a
difference. So keep the power supply lines as short as
possible.

Secondly. a power supply line can act as an antenna,
picking up noise from any source that is emitting an
electromagnetic wave. As a matter of fact, I have even seen
local radio station signals imposed on a power supply
voltage. Typically though, problems occur from signals
induced by local oscillators on the wire wrap board or on an
adjacent board. For this reason you should attempt to route
supply lines around oscillator sections on the board. Also, if
possible, always run supply lines perpendicular to wires
containing oscillator signals. It is much easier for parallel
lines to induce signals into one another than lines which run
perpendicular. Wire wrap boards that have grounding
planes also help to reduce induction of oscillator signals into
supply lines. These boards can be purchased from most
electronic distributors that sell regular vector board, but
are considerably more expensive. Thirdly, we come to the
major reason for keeping power supply lines short. As
devices on our wire wrap board go through logic transitions
they will draw varying amounts of current. As the current
through a wire varies, it creates a condition known as self
inductance. Self inductance generates a counter current
which opposes the original driving current in a wire. This
can cause current deficits which will starve the ICs and
create all manner of problems on your board. This self
inductance problem may not strike you as being that
important, but I can assure you that it is a major
consideration in interface and digital circuits. I am not
finished with the problems related to self inductance —you
will be hearing more on this subject in the discussion on
decoupling capacitors. But remember, keep your power
supply lines short to reduce the possibility of self
inductance.

Daisy chaining is the practice of running power supply
lines from IC to IC. The preferred method is to connect each
IC to a central power supply point {see Figure 1). Daisy
chaining is a cardinal sin in circuit construction and should
be avoided at all cost. There are a number of reasons why
this practice is particularly bad. Daisy chaining effectively
extends the length of power supply lines.Even worse, the
supbly lines are long pieces of 30 gauge wire wrap wire, and
the lines may have several wrap junctions between the
power supply and an IC. Each wire wrap junction
constitutes an added resistance which can be responsible for
losses in the supply voltage. But more importantly, each
wire wrap junction is a noise generator and can be a major
source of power supply noise problems. There should be
only two wire wrap junctions between any IC and the power
supply; one at the power supply bus and one at the IC.

Power Supply Noise
So far we've talked about techniques for applying power
supply voltages to your circuit which will help reduce power
supply noise problems. But what are the symptoms of power
supply noise, and, assuming that you have taken all of the
precautions mentioned above, what could the problems be?

-

Tne {orouter souwma 13

Some of the common problems generated by power supply
noise are flip flops that change states without being
instructed, counters which increment or decrement without
being given count pulses, latches which lose information, and
even computer crash situations caused by tristate devices
malfunctioning. A number of other conditions can cause this
same set of symptomatic malfunctions but the power supply
is probably the quickest circuit element to check, therefore I
always look for problems there first. Two tests can usually
verify the condition of the power supply. First, with the
power supply fully loaded, use a DC voltmeter and check the
power supply’s output voltage. Ideally (for TTL ecircuitry)
this value should be 5 volts, but I have operated between
the ranges of 4.5 and 6 volts without any problems. Once
you are satisfied that the power supply has sufficient
output, check the noise component on top of the DC voltage
level. This noise component will be AC, so you won't be able
to see it when you make the output voltage measurement
with a DC voltmeter. Ideally, you would like to use an
oscilloscope to make the noise component measurement so
you can see the amplitude and the frequency of the supply
noise. If the amplitude (peak to peak) of the noise component
is 0.2 volts I would consider using a different power supply
or correcting the problem in the supply that you are
currently using. If the frequency of the noise component is
120Hz the problem could easily be insufficient power supply
filtering and may be corrected by adding additional filtering
to the power supply output. If the frequency is higher (in the
kHz range) I would suspect that the voltage regulator is
oscillating. Monolithic voltage regulators (LM78XX series)
have a tendency to oscillate, but this problem can sometimes
be corrected by placing 0.22F capacitors on the input and
the output of the regulator. If the regulator aiready has
these capacitors installed, try replacing the voltage

Power Supply Connections Power Supply Connsctions

+ 5V GND + 5V GND

Ic1 iIC
1c2 €2
IC3 1Ic3

Point Wired Power Connections
CORRECT

Daisy Chainec Power Connections
INCORRECT

Figute 1

continued on page 26

LEARN MICROCOMPUTERINTERFACING

VISUALIZE SCIENCE PRINCIPLES

Using GROUP TECHNOLOGY BREADBOARDS with your
APPLE® ...COMMODORE 64® ...TRS-80% ...TIMEX-SINCLAIR® ...VIC-20®

Versatile breadboards and clearly written texts with detailed experiments provide basic instruction in interfacing mi-
crocomputers to external devices for control and information exchange. They can be used to provide vivid illustrations of
science principles or to design interface circuits for specific applications. Fully buffered address, data, and control buses
assure safe access to decoded addresses. Signals brought out to the breadboards let you see how microcomputer signals
flow and how they can be used under BASIC program control to accomplish many useful tasks.

Texts for these breadboards have been written by experienced scientists and instructors well-versed in conveying
ideas clearly and simply. They proceed step-by-step from initial concepts to advanced constructions and are equally
useful for classroom or individual instruction. No previous knowledge of electronics is assumed, but the ability to program
in BASIC is important.

The breadboards are available as kits or assembied. Experiment component packages include most of the parts
needed to do the experiments in the books. Connecting cables and other accessory and design aids available make for
additional convenience in applying the boards for classroom and circuit design objectives. Breadboard prices range from

$34.95 to $350.00
" NN
! ' \ .
! :
\

-

The INNOVATOR® BG-Boards designed by the pro-
ducers of the highly acclaimed Biacksburg Series of books
have gained wide acceptance for teaching microcomputer
interfacing as well as for industrial and personal applica-
tions. Detailed, step-by-step instructions guide the user
from the construction of device address decoders and
input/output ports to the generation of voltage and current
signais for controlling servo motors and driving high-
current, high-voltage loads. BG-Boards are available for the
Appie ll, Il +, lie; Commodore 64 and VIC-20; TRS-80 Model
1 with Level Il BASIC and at least 4K read/write memory,
Models 1il and 4. The books, Apple Interfacing (No. 21862)
and TRS-80 Interfacing Books 1 and 2 (21633, 21739) are
availabie separately.

The FD-ZX1 /O board provides access to the Timex-
Sinclair microcomputer for use in automated measure-
ment, data acquisition, and instrument contro! applica-
tions. A number of science experiments have been
developed to aid teachers in illustrating scientific
principles. The operating manual contains instructions for
constructing input and output ports. A complete text of the
experiments will be available later in 1984. The FD-ZX1 can
be used with Models 1000, 1500, 2068, ZX81, and Spectrum.

The Color Computer Expansion Connector Breadboard (not shown) for the TRS-80 Color Computer makes it possible
to connect external devices to the expansion connector signals of the computer. Combined with a solderless bread-
board and the book TRS-80 Color Computer Interfacing, With Experiments (No. 21893), it forms our Model CoCo-100 In-
terface Breadboard providing basic interfacing instructions for this versatile computer. Experiments in the book show
how to construct and use a peripherai interface adapter interface, how to input and output data; and how digital-to-analog
and analog-to-digital conversion is performed.

Our new Spring Catalog describes the interface breadboards, dozens of books on microcomputer interfacing. pro-
gramming, and related topics including the famous Blacksburg Continuing Education Series, a resource handbook for
microcomputers in education, and a comprehensive guide to educational software; utility software for the TRS-80,
scientific software for the Apple Il, and other topics. We give special discounts to educational institutions and instructors.

Write for the catalog today.

Apple II. i1+, and lte are registered

trademarks of Apple Computer Inc.:

Commodore 64 and VIC-20 are PUTT,NG
registered trademarks of Commodore HA NDS

Business Machines, TRS-80 is a
registered trademark of Radio Shack. AND

a Tandy Corporation; Timex/Sinclair
is a registered trademark of Timex M’NDS
TOGETHER

Computer Corporation.

Group Technology, Ltd.
P.O. Box 87N

Check, VA 24072
703-651-3153

LSTTL Reference Chart

7418132 74L5241
OCTAL BUFFER/LINE DRIVER WITH 3-STATE QUTPUTS

QUAD 2-INPUT SCHMITT TRIGGER NAND GATE
Veo

Anioinininlx cinicicicicicicioio

e)i LW%F’M

o
_JUUUUUM”

74LS133 7415242
— 13-INPUT NAND GATE QUAD BUS TRANSCEIVER

13

74LS136 7415243
_ ; QUAD 2-INPUT EXCLUSIVE-OR GATE QUAD BUS TRANSCEIVER

12[111

- _Jd

0PN COLLECTOR GUTPUTS

N N

; 7415240 : 7415244
_ OCTAL BUFFER/LINE DRIVER WITH 3-STATE QUTPUTS OCTAL BUFFER/LINE DRIVER WiTH 3-STATE OUTPUTS

piciniciciciioicin m§wmmwmmn§
EUsEGERINI PiEee

A SPSREP SN RESH Y-S
U[_ZJbMS ¢ 7um|ﬂgnd umwuuwdmub_{gnd

T4L5245
OCTAL BUS TRANSCEIV

ER

7418366
HEX 3-STATE INVERTER BUFFER WITH COMMON
2-INPUT NOR ENABLE

74LS260
DUAL 5-INPUT NOR GAT

E

pinininioininka
ng e L LI
1 1 e L)
74L8367

HEX 3-STATE BUFFER: SEPARATE 2-BiT AND 4-BiT SECTIONS [7
v((

Ibl l 15 14 13 12 n 10 9

SRR

74L5266
QUAD 2-INPUT EXCLUSIVE NO

R GATE

nioinic

[o 1]

OR JUTPUTS

P“v

;U a;z&_

7418365

HEX 3-STATE BUFFER WITH COMMON 2-INPUT NOR ENABLE
v‘(

16 l I 15 t4 13 12 'n

9

o

7418368 B
HEX 3-STATE INVERTER BUFFER WITH SEPARATE 2-BIT

v AND 4-BIT SECTIONS
({34

16 15 14 13 12 n 10

=SSR
g.‘

7415386
QUAD 2-INPUT EXCLUSIVE-OR GATE

13 12 n

)

S]

SR

Multi-user

A Column by E.G. Brooner

Some Generic Components and Techniques

In previous columns we discussed various kinds of multi-
user systems such as time sharing, multi-processing and
networks, and we described some particular systems.

This month's column seems like & good place to talk about
some individual components that are not part of any
particular, complete, integrated multi-user or network
system. This category includes various items of hardware
and software that can be used as “building blocks” to
construct customized multi-user systems or functions. These
building blocks permit what might be called “the poor man's
multi-user” to be hacked together. They also have value in
some kinds of interfacing, which is one of the main thrusts of
this magazine.

Some Generic Products

Probably the simplest multi-user device, one with which
almost everyone is familiar, is the printer switch. A lot of
small instaliations have two microcomputers and only one
printer. A good printer costs as much as a computer, and it
seems foolish to buy one that will only be used part time.

The most commonly encountered printer switch is a two-
user RS-232 switch. This is a small box with one cable to the
printer and one to each computer. The change-over is
accomplished by simply turning a knob.

The prospective user is shocked by the price, typically
around $150 plus the cost of the cables. What we forget is
that RS-232 fully implemented uses 23 lines of the cable, and
that's a pretty big switch. The parallel switch for Centronics
type printers is available, but less necessary because
paralle]l printers are less costly. Again, parallel interfaces
can use up to 30 or more lines, so the switch may cost even
more than the RS-232 type. Switches are available for four
userg if you have such a need, but they cost even more.
Gender-changers, which permit the mating of otherwise
“wrong-ended” cables, are another generic product.

Protocol converters form another class of equipment.
There are RS-232-to-parallel converters and vice-versa.
“"Modem eliminators” or “null-modems” are sometimes
necessary to mate two pieces of equipment, one of which
must seem to be DTE and the other DCE. This involves
merely reversing some of the transmit/receive lines. Some
protocol converters are -dedicated computers that translate
between ASCII, for example, and another code such as
IBM's EBCDIC. When vastly dissimilar equipment has to be
run together. such items are an absolute necessity. Another
conversion sometimes needed is from synchronous to
asynchronous transmission, or from one baud rate to
another.

Actually, a modem can be considered a protocol converter,
as it converts between two dissimilar communication
formats, audio and digital. Several users can share a single
phone line by means of a modem-sharer, while “port
expanders” provide a similar service for other input/output
devices.

Some of the conversion and other interfacing tasks are
performed by hardware, some by software, and some by a
combination of both. It is typical for the more complicated
devices to be dedicated computers with the functions
performed by built-in software. The software for such a
device may be programmable or it may be in the form of a
plug-in PROM that can be replaced for different functions.

A great many of the devices just mentioned can be
obtained fron a single source, Expandor Incorporated, 400
Sainte Claire Plaza, Pittsburgh, PA 15241. Their “Black
Box" catalog is worth asking for.

Complexx StationMate and Xlan Products

Complexx Systems, Inc. makes products to convert a
variety of different computer equipment into a local area
network. Although somewhat lacking in technical detail,
their brochure does indicate that the products are quite
versatile in their interfacing abilities. Complexx was good
enough to send us photos of their major products, which are
reproduced here with their permisssion.

Xlan appears to be a standalone multi-user device which
can interconnect three RS-232 devices. It contains

StanonMant

COMPLDE

ooa 8
acranry

Crms———

continued on page 22

18 Tne Computer _ourna:

WRITE YOUR OWN THREADED LANGUAGE

Part Two: Input-Output Routines and Dictionary Managerment

by Douglas Davidson

In the first part of this article, the basic elements of
threaded languages were introduced, along with the
simplest words. The reader was introduced to the main
stack and the R-stack. Pointers were assigned to the stacks,
and words used to manipulate the pointers were written.
From now on, the two bytes starting at S will be called TOS
(top-of-stack) and the two bytes starting at S+2 will be
called NOS (next-on-stack). By convention each word must
destroy its operands but nothing else; thus, if a routine
takes its input from TOS it is understood that the stack
counter is later incremented to drop this value, and if a
routine leaves its result in TOS, it is understood that the
stack pointer is first decremented. Now the important
problems of input and output, as well as more of the
dictionary, must be dealt with.

Input in general will be taken in lines; a line will consist of
sequences of characters separated by spaces. A line must be
stored somewhere in memory, and the place used here will
be above the main stack; two bytes are needed, to be called
S0, to store the location of the start of the main stack. Each
line will be followed by several termination characters to
denote the end. Each sequence of characters in the input
line will usually be either the name of a word or a number.
Sequences of characters separated by spaces will be taken
off the input line one at a time, with the current relative
position in the input line stored in two bytes to be called
> IN. A single sequence of characters must be stored
somewhere; for reasons that will be clearer later, the place
will be just above the dictionary. Two bytes, to be called H,
will point to the first byte above the dictionary.

One further note before proceeding—what is presented
here was developed on an Apple II, and Apple’s use of

ASCII code is somewhat peculiar in that each byte
representing a normal character has its high bit set. This
fact is used in several places in this presentation.

EXPECT This word gets an input line and places it in
memory starting at the location referred to by the TOS.
This routine will, in general, be implementation-dependent,
but it must put several (three to be safe) termination
characters ($8D = carriage return, in this version) at the end
of the input line.

CR outputs a carriage return (and linefeed, no doubt, if the
distinction is important). This will be implementation-
dependent.

SPACE outputs a single space.

WORD This word takes a sequence of characters off of the
input stream and places it at the location pointed to by H.
The TOS is used as the separation character (usually
$A0 = space); this means that WORD starts at SO+ IN and
searches memory for the first character which is not the
separation character. It then takes the section which starts

there and ends at the next separation character or -

termination character and piaces this block, preceded by its
{(one-byte) length, at the location pointed to by H. >IN is

modified accordingly, and the value of H is returned as the

TOS. (See Figure 1.)

One thing more is needed to complete the dictionary
management: two bytes, to be called CURRENT, are
required to store the NFA of the last and highest word o
the dictionary. Also, a note is needed here about the thir
and final stack to be used. The 6502, and no doubt man:

other processors as well, keeps its own stack, on which i _

stores return addresses from subroutine calls. These retur:
addresses will be used directly in several ways; here the:

j\/
J\/

] SO _ ... >IN
\/\ 'y ¥
A 06 | 00 | B6 | AO | B2 | B4 | A0 | AB | ADO | AE | 8D | 8D | 8D
A 6 2 4 + . CR CR CR
H
VA : A,
B ‘ 18 | 60] 02 | B2 | B4 A0
v 2 2 4 v
(length}

Decreasing Memory

Figure 1: Memory map for input line. B is the state of memory after the second operation of WORD on an input line intenced to

add 6 and 24.

will be assumed to be stored as two bytes, low byte on top,
pointing to the byte before the one to which they are to
return control.

~’ This word searches the dictionary for the word
named by the next sequence of characters in the input line.
It first calls WORD, giving a space as the separation
character, and from then on deals with the sequence of
characters stored, preceded by its length, at the location
pointed to by H. The value of H left on the stack by WORD
is destroyed. The search starts with the word pointed to by
CURRENT and proceeds down link by link until it reaches a
zero link. Up to the first three characters of each word are
compared with the characters at H for length (ignoring the
high bit; the high bit of the length byte is reserved for a
special purpose). If a match is found, a false flag is returned
as TOS and the PFA of the matching word as NOS. If no
match is found, a true flag is returned as TOS and the value
of H as NOS.

?STACK compares the value of S with that of S0; if the
former is greater than or equal to the latter, a true flag is
returned as TOS, otherwise a false flag. This word will be
used every so often to check for stack underflow.

HERE returns the value of H as TOS.

CLEAR clears both the R-stack and the microprocessor
stack; it sets R and the microprocessor stack pointer to their
initial values. This routine will be called before each input
line is processed.

SMUDGE toggles the sixth bit of the length byte of the
word on top of the dictionary. This will later be used when a
word is being created, to make sure that a word cannot be
used while it is still half-finished.

?FORGET checks the sixth bit of the length byte of the
word on top of the dictionary. If the bit is low, it does
" nothing. If the bit is high, that word is “forgotten™;
CURRENT is set to the link of the word, and H is set to
CURRENT. This effectively cuts the word out of the
dictionary and frees the space it took up.

POP, when called by another word, allows that other
word, when it is done, to return control not to the word that
called it but to the word that called that word. That is, it
removes from the microprocessor stack not the top two
“bytes (since those refer to the word that called POP), but
the next two bytes.

Number output is a special process unto itself. At least
one byte, to be called BASE, will be needed to store the
base in which number input and output is to be conducted.
In number output the main stack will be used to store each
digit to be output. Routines are needed to supply each digit;
essentially, the number will be repeatedly divided by BASE,

with the remainders being the digits. The word /MOD is (not
entirely accidentally) ideal for this; it leaves the remainder
as NOS and what is left of the number as TOS. The digits
may be interspersed as desired with ASCII characters to be
output. A routine is finally needed to output all the digits
and characters.

< ¥ This word starts the process of converting a number
to be output. It requires that the sign to be used be in NOS,
and that the absolute value to be output be in TOS. It takes

Tme Comouter ourra 19

the sign of NOS and places it in a special location, then
replaces NOS by $FFFF (note that this violates the usual
stack conventions). From the time this word is called until
the time # >is called, the stack will contain a $FFFF, then a
sequence of digits and ASCII characters, rightmost digit
deepest in the stack, with whatever is left of the number to
be output remaining on top of the stack.

converts one digit (moving from right to left). It places
the value of BASE on the stack and then jumps to /MOD;
/MOD leaves the remainder of the division, which is the
digit, as NOS, and keeps what is left of the number being
output on top of the stack.

#S converts digits until there are no more left to convert.
It calls # (at least once) until TOS is zero.

> ends the number output process by printing the
number. It drops the TOS, then prints the new TOS: it takes
the lower byte of TOS; if its high bit is set, the byte is
printed as ASCIL if the high bit is low, the byte is
considered as a digit and is converted into ASCII, then
printed. The process is repeated until the $FFFF entry left
by <# is reached: this $FFFF is dropped.

SIGN places a negative sign into the output conversion
stream if the number being converted is negative. It takes
the sign from where # left it; if it is positive, nothing is
done. If it is negative, a negative sign ($AD) is put on the
stack, then swapped into NOS.

HOLD takes a given single byte from TOS, considers it as
an ASCII code, and places it into the output conversion
stream. It simply jumps to SWAP; SWAP will leave the
ASCII byte (from TOS) in NOS, and what is left of the
number being output (pushed into NOS by the ASCII byte)
back on top of the stack.

These routines may be combined as desired to produce
various forms of number output; perhaps it will clarify
matters to note that the sequence used for standard output
is DUP ABS <# #S SIGN #> SPACE. The sequence
between the { # and the #> may be regarded as a reversed
picture of the output. Thus, for example, the sequence DUP
<##3 $AE HOLD #S $A4 HOLD #> would print a number
in dollars and cents format: # # gives two digits after the
decimal point, $AE HOLD gives a decimal point, #S gives
the rest of the digits. and $A4 HOLD gives a dollar sign.

Number input is somewhat less complicated, but it does
involve a single complex routine. A sequence of characters,
when taken off an input line, will first be checked to see if it
is the name of a word; > BINARY will then be used to try to
convert it into a number.

> BINARY takes a string of characters stored, preceded
by its length, at the location given as TOS, and tries to
convert it to a number. This number is then accumulated
with the number, usually zero, given in NOS. It first places a
space, which can never be taken for a digit, at the end of the
string of characters. It then checks to see if the first
character is a negative sign; if it is, it is saved. Each
character is checked in turn; if it is not a digit in the BASE
system, conversion is stopped. If it is a digit, the previously
accumulated total is multiplied by BASE and the digit is

added on. When conversion is done, the accumulated total is eE14: 18 SEC ; at beginming
. . . PELIS: A5 16 A ACC. H
given the proper sign and returned in NOS; the address of ge17: £o on on Gg C2v P correct V1N o
. . v . ‘
the first unconvertable character is returned in TOS. Be19: BS 06 STA o IN |
K @E1B: AS 17 LDA ACC.C2H |
The use of some of these routines may seem unclear now, @€1D: €5 @D SBEC SBH |
b . h Idb l BEIF: B85 @7 STA JINH
ut it shou ecome clear when the secondary words that oe21: e ot LDY #s@1 3 return H
s B#E2I: A5 65 LDA HH —
use all of the above are presented. Again, each of these 5. 51 as STA (81, v |
words can be tested in isolation to make sure that it handles #€27: @e DEv
N o . PE28: A5 B84 LDA HL
its inputs and outputs as specified. The next installment of eeza: 91 o8 STA (S),¥
. PE2C: 60 RTS
this article will deal with the words required to implement . -

‘e -’ s

some of the special functions used in secondary words.
PE2D: 82 AD A7 AP C2Z @D

» BE3IZ: RS 08 LDA SL i we must return
*% EXPECT #a PE35: 38 SEC i twao stack i1tems
- PE36: ET 84 SBC #3694 —
P#DB82: @846 CS D8 D@ &8 OD PE38: BS 20 STA SL
#D88: AP B1 LDY #s01 5 put TOS 1n SCR BE3A: BB B2 BCS OK1
@DBA: B1 90 LDA (S),Y @E3IC: Co 81 DEC SH
éDpac: 85 19 STA SCRH BE3E: A9 AG oK1 LDA 88AO $ use space for
éDBE: 8B DEY Pcad: AP 88 LDY #s020 ; separation character
P#DEBF: Bi P9 LDA (S),Y 9E42: 20 CC 8D JSR WORD2 i and get next string -
#D?1: 85 18 STA SCRL B#E4S: Bl 04 LDA (H),Y 3 take min(length, 3}
8D93: 20 09 98 JSR DROP @EA7: C9 @4 CMP #s94
B#D96: 28 &F FD JSR GETLN!I ; get an 1nput line PEAT. 90 62 BCC OK2
#D99: 8A TXA 3 starting at $209 #EAB: A% &3 LDA #s03
PDFA: AB TAY : with length in X #EAD: B85 18 o2 STA SCRL
#D9B: C8B INY BEAF: AS BA LDA CURRENTL 7
@8DeC: A% 8D LDA #s$8D 3 put carriage returns BESL: 85 tb6 STA ACC.C2L ;3 start at CURRENT
#D9E: 91 18 STA (SCR),Y 3 at the end PES3: AS OB LDA CURRENTH
#DA@: C8 INY 3 (one already there PESS: 85 17 STA ACC.C2H
#DA1: 91 18 STA (SCR),Y 3 plus two more) BPES7: AS 17 MAIN LDA ACC.C2H
@DA3: 88 DEY PEST: FO 38 BEQ@ NOFE i 1s link zero?
@oDA4: B8 LooP DEY PESB: A4 1B LDY SCRL 3 caompare at most -
S#DAS: BY 80 82 LDA $2200,Y ; move i1nput line #ESD: B1 16 L 0O0F LDA ACC.C2Y,Y
#DA8: 91 18 STA (SCR),Y ; to where SCR points BESF: D1 64 CHMP (H), Y $ three characters
P#DAA: 98 TYA BESLI: DO 21 BNE NEXT
@DAB: De F7 BNE LOOF BE63: 88 DEY
@DAD: 60 RTS oEHA: DS F7 BNE LOOF
- PELE: BY 16 LDA (ACC.C2),Y -
#% CR sa aE68: 29 7F AND #$7F i 1gnore high bait
- P#ELA: D1 24 CH (M), Y 5 when comparing
@DAE: @2 C3 D2 AP B2 @D BEGC: DV 16 BNE NEXT i length
@#DBA: 4AC BE FD JMP CROUT sELE: 98 TYA 3 we have a match
- GELF: 91 60 STA (S),Y 3 return a false flag _
#® SPACE e+« @eE71: C8 INY
»* @FE72. 91 60 STA (S),Y
#DB7: @5 D3 DV C1 AE @D #E74: CB INY
8DBD: A9 AG LDA 8#s%Ad 3 output space PETS: AS 16 DA ACC.C2L ;3 and the FFA
@DBF: 4C ED FD JMP COUT BET77: 18 cLC
- BETB: &9 86 ADC #%86 _
*o WORD #« AtE7A: 1 B8O STA (S),Y
- @#E7C: C8 INY
#DC2: 84 D7 CF D2 B7 6D GE7D: AS 17 LDA ACC.C2H
#DC8: AP 096 LDY #$8¢& BETF: &9 090 ADC #so0 ‘
8DCA: Bl 8@ LDA (S),VY 5 get separation #E81: 91 8@ STA (S),VY ‘
#DCC: 85 18 WORD?Z STA SCRL 3 character aE83: b0 RTS i
@#DCE: 18 cLC #EB4: AS 94 NEXT LDY #s@4 { no match here
@DCF: AS 6C LDA SéL ;3 start at PEBSL: BI 16 LDA (ACC.C2) .Y
@#DD1: &5 86 ADC >INL i S@+ 1IN aEB8B: AA TAX 3 so take link
obD3: B85 1& STA ACC.C2L #E89: C8 INY 3 as new address
#DDS5: A5 @D LDA SéL #EBA: Bl 16 LDA (ACC.C2),Y
#DD7: &5 @7 ADC > INH #EBC: 85 17 STA ACC.C2H -
éDD9: B85 17 8TA ACC.C2H BEBE: B& 16 STX ACC.C2L
#DDB: 18 cLC @EFS: 18 cLC
@DDC: AS @4 LDA HL i move the GEF1: 90 C4 BCC MAIN 1
QPDE: 69 21 ADC 9991 5 string to H+t BEF3: Ad 02 NOFE LDY #s$déd i no match anywhere |
@DEP: 85 14 STA ACC.CIL AEIS: A9 B1 LDA ssat 3 return a true flag
@DE2: A5 85 ‘LDA MM VEFT: 91 B0 STA (S),Y —
BDEA: 69 90 ADC #$3@ BE99: 98 TYA |
oDEL: @5 1S STA ACC.C1H BEFA: C8 INY
@DEY: A2 99 LDX ®ws9d BPETB: 1 B0 STA (S),Y
@DEA: Al 16 LOOP LDA (ACC.C2,X) VESD: (8 INY
@DEC: CS5 18 CHMP SCRL 5 15 1t not a QEFE: AD A4 LDA HL 3 and H
B#DEE: D@ oC BNE NOSFACE : separ ation character”™ aEnd: 91 dé STA (S),VY -
VDF@: C9 8D CMP wsBD i 15 1t a termination @EA2: C8B INY
ODF2: FO 1D BEQ END i character” PEAT: AS 85 LDA HH |
ADF4: E6 16 INC ACC.C2L 5 1t 15 a separation BEAS: 91 69 STa (Sr.y |
#DF6: DO F2 BNE L OOP 3 character, proceed BEA7: &4 RTS 1
ADFB: E& 17 INC ACC.C2+H . ‘
BDFA: DB F2 BNE L OOF *a “STACK ee o |
ODFC: 9t 14 NOSFACE STA (ACC.Ct1),Y o
@DFE: C8 INY 5 we hit a non- P#EAGQ: @6 BF D3 D4 2D &t o
S@DFF: F@ 18 BEG END 3 separation character #EAE: 18 SEC i compare S
GEB1: E& 16 INC ACC.C2L : start transfer BEAF: AL ¥ LDA SL 3 with S8
@€E83: De 82 BNE Ok 1 @EB1: ES 8C SBC SéL o
PEDBS: E6 17 INC ACC.C2H S@EB3. AS 01 LDA SH
BPEA7: Al 16 oK1 LDA (ACC.C2,X) OEBS: ES 8D SBC S@H
PEG?: C9 8D CMP #$8D 5 18 1t a termination @EB7: Eo 90 INC SL
GEDB: FO 04 BEQ END 5 character” PEBY: Co 8 DEC SL
@EBD: CS 18 CMP SCRL i loop 1§ not a GEBB: D@ 82 BNE Ok 1
S€EOF. D® EB BNE NOSPACE ; separation character GEBD: Co 01 DEC SH =
PEL11: 98 END TYA ; we're done OtRF: C6 A Ort DEC SL
9E12: 81 B4 STA (H,X) 3 store length OEC1: Do 82 BNE Ok 2

e LomoLter

BEC3: Cé @1 DEC SH oFSF: Be DEY
PECS: Co 90 oK 2 DEC SL PHed: 91 00 STA (S),VY
PEC7: AP 09 LDY es@a i return appropriate BF&D: 68 RTS
PECT: 98 TYA 3 flag .
—_— PECA: 2A ROL 5 (true=stack e & =e
under flow) .
PECB: 91 00 STA (S),Y BF63: 81 AT AQ AP 4F oF
BECD: 98 TYA OFL9: E&H 0O INC SUL
OECE: C8 INY #F6B: Co 29 DEC SL
PECF: 9t @00 STAa (S),¥ @F&6D: DO 92 BNE Ok {
— GEDL: 68 RTS PF&F: Co 81 DEC SH
- BF71: Cé& 00 oK1 DEC sSL
*¢ HERE o+ OF73: Do 82 BNE OK2
‘ - P 75: Co6 o1 DEC SH
BPED2: 984 CB CS D2 A8 @E OF77: Co 20 oK 2 DEC S
PEDS: E6 09 INC SU PF79: AQO 00 LDY #s@e
—_ BEDA: Cé& o2 DEC SL PF78: AS 88 LbA BASEL i perform the
#EDC: DO @2 BNE OK1 @F7D: 91 oe STA (S),v¥ i eguivalent of
OEDE: C&6 91 DEC SH BF7F;: 98 TYA ;3 BASE @ /MOD
OEED: CbH 09 Ok 1 DEC SL oFge: C8 INY
OEE2: D@ @2 BNE OKk2 OF81: 91 @e STA (S),vY
. GEE4: Cé6 o1 DEC SH #F83: AC 186 6C JP /M0D
_ PEEL: Co 80 OK2 DEC SL -
OEEB: AP 20 LDY #s@@ e BG we
' @EEA: AS B4 LDA HL } return H .
PEEC: 91 o0 8TA (5),Y i as TOS PFB6: B2 A3 D3I AP 63 BF
PEEE: C8 INY BFBC: 20 69 #F LOOP JSR & i perform &
GEEF: A5 05 LDA HH #FaF: Ad 00 LDY ®sv9
— PEF1: 91 @d STA (S),vY éF91: Bl 20 LDA (S),Y 3 unti1l zero
GEF3: 60 RTS #FI3: DB F7 BNE LOOF
* #F95: C8 INY
#¢ CLEAR #=» OF946: Bl 8@ LDA (S), v
* #F98: DO F2 BNE L OOF
PEF4: 5 C3 CC CS D2 oE OF9A: &9 RTS
- BEFA: A9 FE LDA #$FE .
BEFC: 85 @82 STA RL 5 restore R *4 %> we
PEFE: A9 91 LDA #s$91 -
#FP8: 85 83 STA RH PFIB: 82 Al BE AG 86 OF
OFP2: 68 PLA 3 preserve FAL: AP P9 LDY s%09@
. OF93: A8 TAay 5 return to PFAS: 20 89 68 LOOF JSR DROP 3 drop TOS
POFB8A: 68 FLA 5 whatever called this OFAL: Bl 80 LDA (S),v¥ ;i have we it
['~H 2 FF LDX @S$FF 3 otherwise restore #FAB: C? FF CMP 8S$FF 5 the $FFFF?
oFP7: 9A TXS 3 microprocessar stack BFAA: FP 13 BEQ DONE
oF9a: 48 PHA SFAC: C9 8 CMF 8300 3 no, output
oF99: 98 TYA OFAE: 30 99 BMI Ok 3 15 high bit set?
— oFoA: 48 PHA @FBa: 18 cLC i no, convert to ASCII
OF9B: 60 RTS OFB1: CY BO ADC #$B@
- OFB3: C9 BA CMFP asBA
SMUDGE e+ @FBS: 99 82 BCC Ok
- OFB7: 69 B6 ADC #sds
@FOC: 86 D3 CD DS F4 OE OFB9: 26 ED FD JSR COuT 3 output
f— BF12: A 99 LDY #$9290 #FBC: 18 CLC
oF14: Bl BA LDA (CURRENT),Y OFBD: 9¢ EA BCC LOOF
OF16: 49 a0 EOR #$49 3 toggle sixth bat SFBF: 4C 69 08 DONE JMF DROP ;5 done, drop $FFFF
aF18: 91 6A STA (CURRENT),Y *
OFLIA: 66 RTS 4 SIGN s=a
- *
— 3 % OFORGET # @FC2: 84 DI C9 C7 9B &F
* BFC8: A5 FF LDA SIGN 3 1s 1t negative®
@F1B: 67 BF Co6 CF oC oF #FCaA: 18 1D BPL NOPE
OF21: AG 098 LDY #s0¢ OFCC: Eb6 PO INC SUL 5 yes, HOLD a "-*
#F23: Bl @A LDA (CURRENT),Y OFCE: Cé6 09 DEC SL
SF25: 29 a9 AND #$40 3 check sixth bit OFD9: Do 82 BNE OK1
- BF27: F@ 14 BEQ NOFE #FD2: Co 81 DEC SH
PF29: AS oa LDA CURRENTL GFD4: Co 99 oK1 DEC SuL
PF2B: 85 94 STA HL 3 1t’s high oFDS6: DO 02 BNE Ok2
GF2D: A5 2B LDA CURRENTH oFD8: Cb& Bt DEC SH
@F2F: B85 85 STA HH 3 CURRENT- >H OFDA: Co6 88 -+ DK2 DEC SL
GF31: AD B4 LDY #s@4 3 link- >CURKENT OFDC: AP 00 LDY #s08
- @F33: B1 4A LDA (CURRENT),Y #FDE: A9 AD LDA 8sAD 35 SAD="-*~
OF3I5: AR TAX OFED: 91 49 STA (S),VY
oF36: CB INY oFE2: 98 TYA
BF37: Bl A LDA (CURRENT),Y PFE3: CB INY
#F39:: 85 68 STA CURRENTH OFE4: 91 00 STA (S),Y
PF3IB: B6 PA STX CURRENTL PFEL: AC &9 @8 JMF SWAP § swap i1nta NOS
- BF3D: &8 RS OFED: 40 NOPE RIS
- .
s POP sa &% HOLD =«
. -
OF3E: 63 DO CF DS 1B oF @FEA: P4 C8 CF CC C2 @F
__ PF4a4: 48 PLA i preserve OFF@: AC &9 o8 JMP SWAF 3 HOLD=SwWAF
OF45: AA TAX § return to *
oFAs: 68 PLA i whatever called *¢ >BINARY as
oF47: AB TAY 3 thas, o
OF48: &8 PLA i destroy next SFF3: 87 BE C2 C9 EA OF
BF49: 68 PLA i reference OFFI: A V1 LDY es®!
— oF4a: 98 TYA @FFB: Bl 80 LbA (S),Y 3 location at TOS
OF4B: 48 FPHA OFFD: 85 17 STa ACC.C2H
OFAC: BA TXA OFFF: 886 DEY
BF4D: 48 FHA 19906: Bl 00 LDA (S),Y
OFAE: 69 RTS 1802: BS 14 STAa ACC.C2L
- 1964: Bl 16 LDAR (ACC.C2),Y
— " () ws 1966: A8 TAY
- 1847: C8 INY
OFAF: 82 BC A3 AB 3E BF 1998: AT A LDA #sAd 3 put space at end
PF55: AG B3 LDY #$@83 7 get sign 180A: 91 16 STA (ACC.C2),Y
OF57: B1 @9 LDA (S),Y ; of NOS 188C: E6 & INC ACC.C2L
OFS9: 85 FF STA SIGN I98E: DS 62 BNE 0K 1
- OFSB: A9 FF LDA @$FF repiace NOS 18108: E&6 17 INC ACC.C2H

H
#FSD: 91 89 STA (S),Y 3 with SFFFF 1912: A® 00 oK1 LDY 6sé6

22 Tre Computer snurra

COMPUTER®

-
T TRADER
MAGAZINE

% % %LIMITED TIME OFFER + % *
BAKER’S DOZEN SPECIAL!
$12.00 for 13 Issues '

Regular Subscription $15.00 Year

Foreign Subscription: $55.00 (air mail)
$35.00 (surface)

Articles on MOST Home Computers,
HAM Radio, hardware & software reviews,
programs, computer languages and construc-
tion, plus much more!!!

Classified Ads for Computer & Ham Radio Equipment

FREE CLASSIFIED ADS
for subscribers
Excellent Display and Classified Ad Rates
Full National Coverage

CHET LAMBERT, WAWDR
1704 Sam Drive * Birmingham, AL 35235
(205) 854-0271
Sample Copy $2.50

Multi-user, continued from page 17
“intelligence” which is user configurable for different
purposes from the keyboard. The configuration is stored in
non-volatile RAM and remains in effect until changed by the
user. StationMate is essentially the same product with a
built in modem. Complexx will provide brochures which list
prices and illustrate several of the possible uses of the
products. Contact Complexx Systems, Inc., 4930 Research
Drive, Huntsville, AL 35805.
Multi-user Software

In an earlier issue we mentioned CP/NET, Digital
Research’s “software network.” At another time we talked
about North Star's multi-processor system. Both of these
products utilize what might be called multi-user operating
systems.

North Star uses TurboDos, a product by Software 2000,
Inc, of Arroyo Grande CA. TurboDos is compatible with
CP/M applications software, and is said to be more
compatible with such programs than is the multi-user
version of CP/M itself. In any event, it is an enhanced
system which bears a strong resemblance to CP/M insofar as
commands are concerned.

Software 2000 states that the product will work with Z-80
based systens as well as with the 8086/8088 family of CPUs.
It supports bank-switching and up to 128K of memory in an
8-bit environment (proportionately larger in 16-bit
memories). It was specifically designed for multi-user
applications and the enhanced commands permit such
features as record locking and linking with peripherals

1814: Bl 14 LDA (ACC.C2),Y

1816: C? AD CMF #$AD i do we have a
1a18: Do @7 BNE PLUS! 3 negative sign”
181A: E6 16 INC ACC.C2L ; yes, push a zero
101E: E6 17 INC ACC.C2H

1828: 98 Ok 2 TYA

1821: 48 PLUS! PHA { push something anyway
1622: AG 90 MAIN LDY #$2&

1024: B1 16 LDA (ACC.C2),Y

1826: 38 SEC

1827: E9 BO SBC #sbBo i convert from ASCII
1629: C9 /A CMP #%8A

182B: 9@ @a° BCC OKZ

1€2D: E9 @7 SHC #8837

182F: C5 @8 Ok3 CMF BASEL 3 18 1t a digit®
1031: B 32 BCS DONE

1833: 48 FHA 3 vyes, multiply
1834: AS 086 LDA BASEL i the accumulated
1936: 91 8@ STA (S),Y 5 number by BASE
18638: 98 TYA

18639: C8 INY

183A: 91 80 STA (S),Y

1863C: 20 F2 @b JSH =

183F: &8 PLA ; and add the digit
1949: 18 cLc

1841: AQ 0@ LDY eso@

1643: 71 8@ ADC Sy ,Y

1245: 91 90 STA (S),Y

1947: 98 Tya

1848: C8 INY

1849: 71 @@ ADC (S»,VY

144B: 91 00 sTa (S ,Y

184D: E& €90 INC SL

184F: Cé& 090 DEC SL

1851: D@ 02 BNE Ow 4

1953: C& 01 DEC SH

1855: Cé6 00 Ok 4 DEC St

1857: DO €62 BNE O3S

1859: C6 @1 DEC SH

185B: Cé6 00 oKS DEC SL

185D: E6 16 INC ACC.C2L

185F: D@ C1 BNE MAIN i and loop

1861: E6 17 INC ACC.C2H

1863: D8 BD BNE MAIN

1665: 68 DONE FLA $ no more digits
1966 DB 19 BNE PLUS2 5 was 1t negative?
1868: AG 63 LDY #s33 i yes, negate 1t
1806A: Bl @9 LDA (S, VY

186C: 49 FF EOR #SFF

186E: 91 80 STA (S),Y

1876: 88 DEY

1871: Bl 890 LDA (8),V

1873: 49 FF EOR #sSFF

187S: 18 cLC

1876: 69 o1 ADC #8@i

1678: 9t 66 STA (5),Y

1867A: C8 INY

187B: Bt 09 LDA (S),Y

187D: &9 29 ADC #e99

187F: 91 04 STA (S),Y

1681: AS 81 FLUS2 LDY #$@1 3 return address
18683: AS 17 LDA ACC.C2H : of first

STA § unconvertible

3 character

1885: 91 89 (81, ¥

located elsewhere in the network.

Software 2000 does not sell directly to end users, but
markets TurboDos through OEMs and distributors (you can
obtain a list of distributors by writing the company). One of
their distributors is North Star, who customized a special ver-
sion for their own use with their new Horizon 8/16 system.

We've noticed an increase in advertisements for software
packages that connect micros (such as Apples) to large main-
frame computers (such as the IBM 370). Programs of this
kind would necessarily be fairly complex, as they must
involve protocol conversion as well as conversion of file
formats. So far there has been no opportunity to review any
of these products, which certainly fall into the multi-user
category.

We are interested in hearing from readers who have had
experience, either good or bad, with commercial or “home-
brew” multi-user applications. We also welcome your
questions, and will attempt to research and report on any
systems about which you are curious. | |

FLOPPY DRIVE
~ EXERCISER!

Sty

ALIGN DRIVE IN 10 MINUTES!
Use with scope and alignment disk (SS $49, DS $75)

— SINGLE KEYSTROKE FOR — SHOWS SPEED AND SPEED
ALL ALIGNMENT TRACKS AVERAGE!

— JOG KEYS-MOVE TO ANY — HYSTERESIS CHECK BUILT IN
TRACK — SELECT 5" 48, 96, 100 TPI, OR

— INCLUDES “"OSBORNE" 8" 48, TPI
TYPE POWER HOOKUP — POWER "“Y" CABLE=$10

— RUNS ANY STANDARD 34 DRIVE DATA CABLE=520

PIN (5”) OR 50 PIN (8") DRIVE
USED BY: IBM, ARMY, NAVY, RCA, ETC..

EX 2000 $299

FREE Air Freight on Prepaid Orders. COD: Add $5 Plus Shipping

'PROTO PC inc. CALL NOW! (15 4444660
2439 Franklin, St. Paul, MN 55114

MAKE A SIMPLE TTL LOGIC TESTER

by E. G. Brooner

In the “old days” we all knew that although a tube or
transistor tester was no substitute for good troubleshooting,
it could at least narrow the job down a bit. Strangely
enough, a similar treatment of silicon chips has seldom
gotten beyond the factory level; we all tend to check these
devices by substitution. On many occasions I had wished for
some kind of chip tester, and when I dropped 110 volts AC
across my data lines one day I decided the time had come to
build one. All of my boards are buffered, and I knew that a
great many support chips had been damaged, if not
completely destroyed. The little tester described in the
following paragraphs is the result of that series of events.

Theory

A brief review of simple TTL gates will help to explain
how the tester works. The discusssion ignores the more
complex TTL chips and is confined to one-input gates (AND,
OR, NAND, NOT, and XOR) and tristate buffers. These
logic blocks make up a large majority of the chips we use,
and are usually the interfaces between boards and buses. As
a result, they are the ones that are most often questionable.

The one-input driver or inverter is the easiest block to
understand and to test. The output is either a duplicate of
the input (driver) or the inverse of the input {inverter).
These gates usually come six to a chip. Two-input gates are
slightly harder to understand, mainly because there are so
many different kinds. The so-called “"AND" cirecuit requires
that both inputs be “true” to yield a “true” output. The
“OR" circuit will give the proper output if either of the
inputs is “true." Not-and (abreviated NAND) and not-or
(NOR) are in effect the same devices with an inversion
added. Exclusive-or (XOR) is only a little more
complicated —it yields a true output if either of the inputs is
true, but not if they are both true.

Tristate buffers/inverters are in effect single input gates
which have a very high impedance if not “enabled.” The
enable pulse can be thought of as another input, whose
absence essentially disconnects the gate(s) from the cireuit.
This third state prevents any input, either true or not-true,
from affecting the output, and accounts for the name
“tristate.”

It can be seen that to test any of these logic blocks, we
need a socket into which the chip can be plugged, a source of
voltage, some means of applying input signals and “enable”
signals, and a way of telling what state is present at the
output. This is a simple concept, and the only real
complications come from the fact that the socket connections
differ from chip to chip.

Figure 1 shows what is commonly referred to as a “truth

table.” This particular table

is for a 7400 NAND gate. A A B X _
and B are the inputs and X 1 1 | 0
represents the output. It can |

be readily seen (top row) that

a 1 on both A and B will yield o

a 0 on X. All other combi-

nations of inputs result in a 1 0] 1
on the X output. Had this

two-input gate been an AND o 0 1
gate, the output would not be

reversed, and two 1s would Figure 1: 7400 Truth Tabie

have resulted in a 1 output.

Similar tables can be drawn
for all multi-input gates, and are often found in data
handbooks. The truth table is the basis for logic design and,
in our case, for the construction of the tester.

The Basic Circuit
Figure 2 is the complete schematic of the tester. Before

trying to trace the wiring, look for a moment at Figure 3. —

This is a simplified drawing which shows the connections
that exist when the instrument is set up for the 7400 NAND

gate described in the preceding section. The A inputs for all __

four of the gates, contained in one 7400 chip. are connected
together. All of the Bs are likewise connected. The pull-up
resistors cause a high or logic 1 to be applied to the inputs
Looking at the truth table, we see that this should result ir
a low, or 0, on each output. The outputs can be connected
one at a time, to the logic probe circuitry which will light

one light (LED 3) if high and the other if low; by switching -

the outputs (with SW C) we can test row one of the truth
table for each gate.

Now if we depress either the A or the B pushbutton
switch, we can put a low, or O, on the associated inputs. In
this way we test the performance for the other three
possible states. as they are listed in rows two, three, and
four of the table.

Simple, isn't it? Single input gates are even simpler — you
just plug the chip into the correct socket, and alternately
press and release the A button while switching from one
output to the next. Other two-input gates, as listed earlier,
test in exactly the same manner as did our example 7400,
always using the truth table until you have them all
memorized.

There remain the tristate buffersiinverters. They test as
do any of the other single input gates, with one exception:
there is an enable switch (SW 2) provided so that we can
test them in both the enabled mode and in the tristate

Socxe: * Socxet 2

Socxe! 3 Socxet 4

Swo1

2000 < 2l
o

=r=p

!
J
op e
]

<L Figure 2: Schematic

§D\‘ LED 2

F

E swoeT
— T S

C
LED 3
1
—
‘wj‘lﬂm'

L

—

A_L =
1

Figure 3: Equivalent Test of 7400.

3 each 14 pin wire wrap DIP sockets

1 each. 16 pin wire wrap DIP socket

3 each. low current LED. LED 1, 2. and 3

2 each’ SPST miniature toggle switch

2 each SPST pushbutton. normaily open

1 each single pole. 6 or 8 position rotary switch
4 each 1000 ohm “awatt resistors

1 each. 2000 ohm “awatt resistor

Box. panel. power source. and wirewrap materials

Figure 4: Parts list

mode. In the latter, of course, changing the inputs should
have no effect on the outputs.

Now you can return to Figure 2 and see that the various
sockets are all interconnected in some manner. The reason
for this is that, unfortunately, manufacturers do not use the
same base connections for all chips. Socket #1 fits all of the
-common tristates, and #2 fits all hex drivers and inverters.
The two remaining sockets are for various two-input bases.
The correlation between chips and sockets is shown by
Figure 5.

Some Additional Comments

We have noted the variances between the “pinout” of
various chips, and another caution is in order. The military
54XX series chips are usually compatible with the
equivalent 74XX number. A data handbook should be
consulted when there is any doubt.

Since the time that the photos were taken and the
diagram drawn, a start has been made toward adding a test
for the 8212 latch that is commonly used for interfacing. The
photo shows a vacant space in the center of the panel which
was reserved for this purpose. Since the heart of the 8212 is
a group of eight tristate buffers, that part of the test is

easily accomplished by following the technique used for hex
buffer/inverters. The task of testing all of the many enable
options that go with this chip is not quite so simple; for this
reason, the 8212 test will not be further elaborated and the
prospective builder is encouraged to work that part out to
his own satisfaction.

Construction

This prototype model was built in the easiest possible
way, by wire-wrapping on a small piece of perfboard (see
photos). The perfboard, in turn, had been cut to fit as the lid
or panel on a small plastic box left over from another
project. Construction could have taken almost any form, as
size and layout are not critical. ,

There is also room for innovation in the power
department. Three pen size batteries were used, simply
because the holder was available and they fit the space in
the box. Stability is more important than voltage, and the
resulting 4.5 volts has proven adequate to test 5 volt chips.
If desired, a builder could use an external, regulated AC
supply, or take 5 volts from some existing piece of
equipment. The current drain is negligible, though with
small batteries it is not advisable to leave the tester turned
on, with a chip inserted, any longer than necessary.

The photos are included to show the placement of the chip
sockets and switches in this model; it should be understood
that any layout that suits the builder is satisfactory. The
construction parts are few and simple, and are listed in
Figure 4.

Photo 1: Front view of the tester Some of the resistors shown
here are not used n the working mode!.

pin 16 pin 14

AR

Ll L
OrM

Socket 1 Socket 2

8797 - Tristate Buffers 7404 - Inverter
74367 - Tristate Butters 7405 - inverter
74368 - Tristate Inverter 7407 - Driver

ETC ETC

ARETE
O 7]

pin 1i pin 14
L LY

Socket 3 Socket 4
7400 - NAND 7401 - NAND
7408 - AND 7402 - NOR
7432 - OR 74136 - X-OR
ETC ETC

Figure 5: Chip Pinouts.

 — e AN
) N 3 - -
s “"i’-ﬁ Fat o Tty 4
[RN " ‘ -t T ‘V@
h v . F2Y f -
B R %"
¢ ~sapwere e, W

Photo 2: Inside view of the tester. showing the placement of
major parts

Operation

Rather than list all the chips that could conceivably be
tested, we have duplicated in Figure 5 the “pinout”
diagrams that go with the four sockets shown in the
diagram, and listed “typical” chips that will fit that layout.

Notice that the chip diagrams differ from the actual
layout that you will find in a data handbook. They have been
drawn this way on purpose, and indicate only the base
connection rather than the gates’ purpose. To test a chip,
look it up in a data handbook or working diagram, and
match it to the proper socket. It does not matter, with the
two-input gates, whether they are AND, NAND, OR, NOR
or XOR. Remember, it is your interpretation of the logic
states, from the truth table, that tests the chip. The tester
is simply a convenient way of “getting it all together.” If
you know someone who is a bit hazy about how computer
logic works (and that includes most of us), this device can
provide an enlightening demonstration of the basic
principles.]

“

Interfacing Tips and Troubles. continued from page 13

regulator itself.

' Summary

To summarize our discussion on power supply noise:
always use proper construction techniques as a first attempt
to reduce noise problems. 1) Make all power supply lines as
short as possible, 2) route supply lines around oscillator
sections in the circuit, and 3) never “daisy chain” power
supply lines. If noise problems persist, conduct two
measurements: output voltage and noise component. The
output voltage should be between 4.5 and 6 voits. The

amplitude of the noise component should be no more than
0.2 volts peak to peak. If the noise component is excessive,
the problem may be alleviated by adding filtering
capacitors, 0.22F capacitors on the regulator, or replacing
the regulator. If all else fails, use a different power supply
altogether.

In the next installment of “Interfacing Tips and
Troubles,” we will look at noise generated by, or because of,
the interface and/or computer circuitry. We will also discuss
noise problems created by outside sources. In addition, I will
tell the story of a strange and unusual noise experience [
had that I am sure you will find amusing. a

SUBMIT YOUR IDEAS FOR A READER DESIGN PROJECT
The Computer Journal will be publishing design projects so that our readers can cooperate to
' solve common problems. We welcome your project suggestions.
Watch the next issue for the first Reader Design Project!

e lxmoler oLz 27

STAFF PRODUCT REVIEW: MicroSolutions’ “UniForm”

With the proliferation of different 5% " diskette formats
nowadays, moving information from one machine to another
can be quite a problem, even if they both use 5% " soft-
sectored floppy diskettes. UniForm is one of several
programs that have appeared recently which attempt to
ease the problem. It is designed to run on a specific
computer (the particular version we reviewed was for the
Morrow Micro Decision! and can format, read, and write a
couple of dozen different CP/M machines' diskettes. When
using the MD2 only single-sided diskettes can be
manipulated, but if you have the MD3, UniForm supports
double-sided versions of most of the formats.

As an added bonus, UniForm can format, read and write
IBM PC diskettes in both single-sided and double-sided
versions, both DOS 1.x and 2.x. This feature in itself is
almost worth the price of the package if you need to move
software on and off a PC or compatible.

UniForm consists of three programs—the main program,
an overlay file, and an installation program that customizes
the program for your particular terminal. The programs are

menu-driven and the user should find them very easy to use,
as we did.

The manual that comes with this is small but complete. It
is also realistic in listing some of the different formats that,
because of their uniqueness, may not work completely
correctly with Uniform.

There is only one minor annoyance in an otherwise good
sofware package. In copying files between drives, the copy
is apparently made on a sector-by-sector basis, resulting in
an continuous clicking as the disk drives are alternately
selected. Our feeling is that UniForm would present a more
professional appearance if it were to buffer a larger portion
of the file being transferred in memory, resulting in quieter
operation and less wear and tear on the drives.

Other than this minor point, we found the program to be
easy to use and effective. If you are having problems moving
between diskettes, UniForm should help overcome them.
Versions are available for a number of different hardware
environments. UniForm is $69.95 from MicroSolutions, 125 S.
Fourth Street, DeKalb, IL 60115.]

New Products

Multi-Function RS232 Breakout Box

Optronics Technology has announced their Serial Support:
a cable interface, a diagnostic tool and a port expansion in
one new product.

Serial Support adapts output lines to any configuration
with the unique “Versa-Matrix” system. Shunts are used
instead of confusing and unreliable wires. Common jumper
configurations are displayed on the front panel.

Tristate displays are used for true EIA RS232C signal
voltage level validation, with green for greater than +3
volts and red for less than - 3 volts.

The shared port feature allows two peripheral devices to
share one port. A passive signal splitting design overcomes
the need to manually switch from one peripheral to another.

Serial Support comes with a ribbon cable and is housed in
a rugged case. It uses a low load terminal-powered design to
eliminate the need for batteries. In stock for $133, including
shipping, from Optronies Technology, 2990 Atlantic Ave.,
Penfield, NY 14526.]

Measurement and Control with the IBM PC

MetraByte's 24 channel DPDT relay output accessory
board for the IBM PC/XT offers the programmer 24
electromechanical, double-pole-double-throw relays for
efficient switching of loads by programmed control. Each
relay contains two N.C. and N.O. contacts for controlling up
to a 3 amp resistive load at 120 Vrms per contact. Designed
to be operated with MetraByte's 24 bit parallel digital 'O
board, model PIO-12 (§97), it can also be operated on any
digital output device providing TTL logic levels.

The relays offer the user zero leakage output currents,
compared to the solid state relay alternative. There are 24
LEDs, one for each relay, which light when their associated
relay is activated. The board contains its own power supply
for relay driving and operates on 120/240Vac +15% at
50'260Hz. Operating temperature is 0 to 70°C (32 to 158°F).

Single piece price, $395, in stock for immediate delivery
from MetraByte Corporation, 254 Tosca Drive, Stoughton,
MA 02072. a

28 The Computer Jourra

Searching for Useful Information?

The Computer Journal is for those who interface, build, and apply micros. No
other magazine gives you the fact filled, how-to, technical articles that you need to
use micros for real world applications. Here is a list of recent articles.

Volume 1, Number I

® The RS-2380)Serial Igterface, Part One

* Tele » ng MQ“ Apple]l: Transferring Binary Files
. B%Qr's Col . Part One: Getting Started

® Build an “"Epram”

Volume 1, Number 2:

¢ File Transfer Programs for CP/'M

* The RS-232.C Serial Interface, Part Two

* Build a Hardware Print Spooler, Part One: Background and
Design

* A Review of Floppy Disk Formats

* Sending Morse Code With an Apple]|

* Beginner's Column, Part Two: Basic Concepts and Formulas in
Electronics

Volume 1, Number 3

* Add an 8087 Math Chip to Your Dual Processor Board

* Build an A/D Converter for the Apple]

* ASCII Reference Chart

* Modems for Micros

¢ The CP/M Operating System

¢ Build a Hardware Print Spooler, Part Two: Construction

Volume 1, Number 4:

¢ Optoelectronics, Part One: Detecting. Generating. and Using
Light in Electronics

* Multi-user: An Introduction

* Making the CP/M User Function More Useful

* Build a Hardware Print Spooler, Part Three: Enhancements

* Beginner's Column, Part Three: Power Supply Design

Volume 2. Number 1:

* Optoelectronics, Part Two: Practical Applications

¢ Multi-user: Multi-Processor Systems

¢ True RMS Measurements

* Gemini-10X: Modifications to Allow both Serial and Parallel
Operation

Volume 2, Number 2:

* Build a High Resolution $-100 Graphics Board, Part One: Video
Displays

¢ System Integration, Part One: Selecting System Components

* Optoelectronics, Part Three: Fiber Optics

* Controlling DC Motors

* Multi-User: Local Area Networks

* DC Motor Applications

Volume 2, Number 3:

* Heuristic Search in Hi-Q

¢ Build a High-Resolution S-100 Graphics Board, Part Two:
Theory of Operation

® Multi-user: Etherseries

* System Integration, Part Two: Disk Controllers and CP M 2.2
System Generation

Volume 2, Number §:

* Build a VIC-20 EPROM Programmer

* Multi-user: CP/Net

¢ Build a High-Resolution S-100 Graphics Board. Part Three:
Construction

» System Integration, Part Three: CP/M 3.0

* Linear Optimization with Micros

* LSTTL Reference Chart

Volume 2, Number 5:

® Threaded Interpretive Language. Part One: Introduction and
Elementary Routines

* Interfacing Tips and Troubles: DC to DC Converters

* Multi-user: C-NET

* Reading PCDOS Diskettes with the Morrow Micro Decision
*LSTTL Reference Chart

*DOS Wars

*Build a Code Photoreader

Back issues: $3.25 in the U.S and Canada, $5.50 in other countries (air mail postage
included). Send payment along with your complete name and address to The
Computer Journal, PO Box 1697, Kalispell, MT 59903. Allow 3 to 4 weeks for delivery.

