] THE COMPUTER JOURNAL’

For Those Who Interface, Build, and Apply Micros

Vol i, Mo 7 Issue Mumber 11 $2 S0 US

- Putting the CP/M IOBYTE To Work ..:

- Write Your Own Threaded Language:
Part Three: Secondary Words s

Puild A 68008 CPU Board For
the S-105 BUS s

Writing and Evaluating
Documentation o

- Electronic Dial Indicator:
A Reader Design Project ez

Editor’s Page

Where Do You Get Support When
The Supplier Goes Bankrupt?

This week we received information about two more
software companies which are closing their doors. This
makes the problem of support hit close to home, since we
had just acquired an accounting package from one of these
companies. We have not paid too much attention to the
forecasts of an impending shake-out in the microcomputer
industry. We felt safe because the problems caused by these
failures always happened to someone else, but now we
wonder what is in store for the users during the next six to
twelve months.

The industry has grown too large too quickly, and can not
continue to support the me-too companies with look-alike
products. There have already been some problems in the
hardware market (Osbhorne and Franklin), and there are
reports that several more manufacturers are about ready to
file for Chapter 11. The problems are even more severe in
the software field, where we expect a large number of
failures by next spring. Other high risk areas are
peripherals (drives, printers, boards, etc.) and IBM clones.
There will be screaming and gnashing of teeth (and lawsuits)
by users who can not get support for products which they
have purchased.

Our readers will not be affected as severely as other
microcomputer users because we are interested in knowing
how our computers work and are able to solve many of our
own problems—but we are in the minority. The largest
growth area in the past two years has been in the area of
business, where micros have been marketed as appliances
which are as easy to use as a typewriter or a telephone. The
businessperson uses the computer as a tool, and is not at all
interested in understanding how it works. Such a user is
attracted by the marketing image of a one-piece, plug-it-in
and turn-it-on “appliance.” Unfortunately, micros as they are
sold today are not simple, one-piece packages. They are an
assembly of boards, drives, interfaces, and software from
many different vendors, any one of which could close their
doors tomorrow, leaving the user without support.

The most notable exception to this is IBM. I do not feel
that their machine is the best {and I do not like the fact that
it is becoming the defacto standard because this curtails
new developments), but at least a business user can get a
complete package, including the software, from one source
which is likely to remain in business. Another choice would
be the Apple Il because there are so many in use that the
hardware would be supported by third parties, and the more

popular software programs for the Apple would either have
user support groups or could be replaced.

We are concerned about the problems faced by users of
other systems, and are attempting to acquire documentation
from hardware and peripheral manufacturers in order to
establish a permanent reference file for out-of-production
equipment. The useful life of micros greatly exceeds the
marketing life, so this file will include older models from
companies still in business as well as information from
companies which have gone out of business. If you have
documentation from equipment which you no longer use, we
would appreciate this literature as a donation to start our
library.

The forthcoming shake-out will provide a number of
opportunities for those of our readers who are able to
interface, integrate systems, do some software patching, and
perform minor hardware repairs or modifications. These
readers will be able to start a business {(either part time or
full time) supporting the orphans, or pick up some real
bargains because other people are not able to work with
these unsupported systems.

The Computer Journal will help you cope with the
support problems caused by bankruptcies by establishing a
library of documentation and acting as a clearinghouse for
information. Your input as letters, notes, sources, and

articles is needed to make this successful.]
Editor/Publisher. Artt Carlson
Art Director. Joan Thompson
Technical Editor............ Lance Rose
Production Assistant......................... Judie Overbeek
Contrmbuting Editor. Ernie Brooner

The Computer Journal® 1s published 12 times a year. Annual
subscription is $24 in the U.S., $30 in Canada. and $48 airmail in
other countries.

Entire contents copyright © 1984 by The Computer Journal

Postmaster: Send address changes to: The Computer Journal,
P.O. Box 1697, Kalispell MT 59903-1697.

Address all editorial, advertising and subscrption inquires to:
The Computer Journal P.O. Box 1697, Kalispell, MT 59903-1697.

2 The Compute _7urna

PUTTING THE CP/M IOBYTE TO WORK

by E. Brooner

Among the other marvels of CP/M is a single byte, 8
bits, located at address 3 in the standard version. This is
known as the “1OBYTE.” You may not have given this much
thought if you have a rather straightforward, factory-
configured system; if you do your own interfacing, though, it
can be very useful. It is the means by which you can
reconfigure your system from the keyboard. You might
want someone at the other end of your modem to operate
your system, for example, or you may want to be able to
switch printers without any hassie.

CP/M assumes that you have four logical peripherals
called Console, Tape punch, Tape reader, and List device.
Control normally takes place from the console (CON) and
printing is automatically routed to the list device (LST). In
the good old days everyone had a paper tape punch and
reader, we are lead to believe. Nowadays it is more common
to find a video terminal and a single printer of some kind.

But what if you have more than two peripherals or even
more than those four basic devices? Or what if you have two
printers? Or two terminals? (Some people do.) Perhaps, too,
you have a modem or some other device for input and/or
output. You can have these extras by various means; the
IOBYTE is one way to go about it. The other methods are
hard-wiring, changing cables, or wusing an expensive
switching arrangement.

What the IOBYTE Does
Let's assume that you have a CP/M based computer at
hand. You're probably familiar with the use of the STAT
command to check disk space and file lengths. You may not
have tried the STAT DEV: command. If you will enter that
one you will get something like the following:

CONis TTY
‘RDR is TTY
PUN is TTY
LSTis TTY

All this really says is that there is a 0 in the IOBYTE.
This is the default value in a completely naked CP/M. The
system simply read address three and, finding each bit a
zero, concluded that all peripherals were TTY. It didn't care
what they actually were, it simply described the
configuration in its own terms. Looking back a few years
this makes sense, because not too long ago a TTY (Teletype)
was about the only I/O device available to hackers. All of
your peripherals (if you had more than one) were probably
TTYs. Actually many teletypes did have a built in punch
and reader as well as the printer and keyboard, so they
could be any of the four logical 1/0 devices.

8T HEX
T T j T N
! e | e o o o @ 1
LST - LPT PUN = TTY RDR - 7Y CoN w227
Figure 1

Many CP/M systems default to a 95 hex in the IOBYTE,
which will yield:

CON is CRT
RDR is PTR
PUN is PTP
LST is LPT

By entering the commend STAT VAL: you get something
like this:

CON:TTY: CRT: BAT: UC1:
RDR:TTY: PTR: UR1: UR2:
PUN:TTY: PTP: UP1: UP2:
LST:TTY: CRT: LPT: UL1:

Which means that the CONi(sole) could have any of the
four assignments listed on the same line; any of four devices
could be the RDR, and so on. Notice that some of the
possible device names are input devices, some are output,
and some (like the TTY) are capable of both. Thus there are
some limits to the reassigning you can do: you can’t, for
example, ‘read’ input from a printer! The BAT (batch)
function is really not a device as such; it is a way of routing
continous input from one device to another and has to be
handled a bit differently than would a more conventional
peripheral operation. So although it looks like 16 devices can
be accomodated, this is not really true.

Now try the command STAT CON:UC1:

Entering STAT DEV: will now tell you that CON is UC1
rather than the CRT or TTY that was its previous
designation. It does this because the previous command
changed the value of the IOBYTE. If you change the
assignment of the LST: device by means of another STAT
command, the number changes again and the result of STAT
DEV: changes accordingly.

But unless the IOBYTE has been implemented in your
system nothing else will happen. The only ‘real’ connection
between the logical I/0 devices and the actual peripheralis
has to take place in software. This is sometimes referred to
as linking the logical and physical devices, and the IOBYTE
is the way it happens.

How It Works

To follow the rest of this article you should have some
familiarity with assembly language programming and CP/M;
not a great deal, but just enough to find and modify your
driver routines, which are a part of the BIOS.

If you have ever modified or customized your CP/M
system you will be familiar with how these steps are
performed. If not, it's a good exercise for learning about
your operating system and the details are very likely buried
somewhere in your documentation.

First, take the IOBYTE apart. If you'd like, you can use
DDT to examine the contents of address 3 which will be the
hex number stored in the IOBYTE. The 8 bits are divided
into 4 2-bit groups, one group for each logical device. It
really makes more sense to consider the byte as four
separate ‘2-bit bytes.’

Ones and zeros in a 2-bit format can represent four
values—0 through 3. A zero in any group means that device
has been assigned as a TTY for purposes of the STAT
commands. A zero in the CON group (the two least bits in
the byte) means TTY, a one means CRT, and so on. In the
highest bits, taken separately, zero again means TTY and
one means CRT, two means LPT, and three some other
device.

Figure 1 shows how the byte is divided in four portions
for this purpose.

If we put a two in the high group and a one in the low
group and then read the byte as one number, it will be 81
hex, and it will tell us {(via STAT) that we have a CRT as
console and an LPT as the list device. The other two devices
are TTY because their groups contain all zeroes.

If this is not clear to you, read the last few paragraphs
again and (as a last resort) consult your CP/M documentaion.

But still, nothing happens unless our driver routines can
read the IOBYTE and find out where to go for input or
output, as the case may be.

Actually, most CP/M systems will default (unless they've
been modified) to either a zero or 95 hex in the IOBYTE.
Zero says everything is TTY; 95 makes some other
assignment. If you want something else, there are ways to
change it: the method we prefer is to make the byte you
want load as part of your initialization routine, on cold boot.
It should load with a value that configures your system as
you normally use it; you can then make other assignments
with the STAT commands. Another fairly practical way of
manipulating the byte—reading it and/or changing it—is
from a running program in BASIC or whatever language
you have, that can “peek and poke.”

At this point we might want to refer to a flowchart or
two. Figure 2 is the flowchart of a driver routine which
ignores the IOBYTE and simply routes console calls to the
terminal and print calls to a single printer. Figure 3 shows a
driver which will consider the IOBYTE and route the I/O
accordingly. We'll assume that your initialization routine
(another jump in the jump table) has also been written to
insert some significant number in the IOBYTE or that you
have arranged to live with what your system already
defaults to. In this case we'll assume that we are dealing

Tne Jomrouter Louma 3

only with the print output.

At the beginning of the so-called “user area” in the BIOS
there is a jump table. A call to the printer, for example, is
routed to the LST vector, which in turn is a jump to the
routine that actually outputs the character. In Figure 2 we
have shown the call going straight from the jump table to
the driver routine.

In Figure 3, we show the printer call being routed
through another logic block, which reads the IOBYTE and,
based on what it finds there, re-routes the information to
any of two or more printers. Once this routine is in place, we
can choose our printer simply by changing the IOBYTE from
the keyboard. We would do this by STAT LST:TTY:, or
STAT LST:LPT;, or whatever.

The same sort of thing has to be done for each logical
device (LST, CON, RDR, or PUN) to which we want to add
this versatility. RDR and PUN, incidentally, don't have to be
paper tape devices. The punch might be another printer, or
RDR and PUN might be the input and output to and from a
modem.

Our publisher, who is interested in using things other
than terminals and printers with a computer, has pointed
out that some of the possible devices might be sensors or
control systems of some kind. That's entirely possible and
practical. You might want to boot up in the normal
operating mode and at some point switch your system to
monitor or control some kind of external process.

Another good purpose could be accomplished by putting
your equipment in the basement or closet, with an extension
terminal in the living room that you could move to once the
system is running.

In a business the first printer might be a high speed dot
matrix and the second a daisy wheel for word processing.
The first console might be on the secretary’s desk, and the
second in the boss’s office. Note that this would constitute a

18A LPT
DRIVER DRIVER

T ,

RET RE”

Figure 2
Figure 3

JME
I con
CON :
JMP
JME BiCS JUMF 87
(87 TaBLE l
8105 LN
CON DRIVERS DAVE
DRIVER T
.oRET 7
RET J
— TTEST 0BVTE
LSt

4 The Computer Jourral

very cheap, simple multi-user system for two users. It
actually only allows for one user at a time, but still does
accomodate two users in some fashion.

The Hardware/Software Changes

In order to do the things just discussed you need a port
(serial or parallel as the case(s) might be) for each device to
be connected. With an S-100 system you can plug in
additional I/O boards until you run out of slots; some other
computers might be more limited as to the number and type
of available ports. That's the hardware, and of course each
port has to be configured according to the documentation of
the port itself and the device to be connected. This means
setting the baud rate (for serial ports) and the status bits,
and all that good stuff.

Once those things are established you will have to
{carefully) modify or rewrite the driver routines in your
BIOS. That's the software or fun part of the job, and the
part we'll discuss next. Assume that we are dealing only
with the printer or LST output for now and that you have a
copy of the source listing for the user portion of the BIOS.

1. Locate the jump table. There will be a jump instruction
which directs printed output to the print driver routine.
This instruction will contain the address of the present
printer driver.

2. Insert, in place of the driver, a routine to read and test
the JOBYTE. One way to do this is to use the logical AND
function to mask and look at only the appropriate portion of
the byte; there are other ways that you might rather use.
There are styles in programming and yours might be to
rotate the byte through the accumulator or “line up” the
bits you're checking.

3. Depending on the value of bits 7 and 6 in the IOBYTE,
redirect the print output to one of (up to 4) new print
routines.

4. At those addresses, put in the appropriate code for the
port that will be used for each. To do this you will have to
know the port address, ready bits, and so on, for each. They
might all be the same or they might differ, depending on
your hardware.

5. Reassemble the user portion of the BIOS and reinsert
it into the CP/M system.

Perform the same steps for console or other devices that
you might want to be able to reassign by use of the STAT
commands. Always go directly from the jump table to a test
routine, and from there to the appropriate driver.

Needless to say, when CP/M is implemented on a machine
for which it was not designed, such as Apple or TRS-80,
there will be some subtle differences. The object, of course,
is to make the machine look the same as any other to CP/M
application programs; to accomodate the foreign system,
though, some compromises are usually made.

For example the Apple has no ports per se. The logical
device drivers, then, must be caused to address expansion
slots, or more likely, the memory addresses assigned to
them. The peripheral cards are geared to 6502 conventions,
i.e., input and output are by means of the load and store
instructions rather than the IN and OUT instructions we

8080/Z80 people are used to. The nominal console (the
keyboard and screen), have to be taken into account; some of
the slots are dedicated and others should be available for
reassignment. I am no Apple expert and welcome
correction from readers if the following is in error.

As nearly as [can tell the Apple defaults to the “normal”
console configuration unless an 80 column card is plugged
into slot three. Slot three is nominally the “alternate
console” and some magic in the system causes the machine
to detect this addition and make the necessary patches to
the drivers. This takes place automatically and does not
change the IOBYTE.

Slot 1 is normally considered the LST device, or printer.
An apparent difference here is that the Apple LST
assignment seems able to handle both input and output
rather than just output as is the normal case. There is also a
persistent rumor that some of the available peripheral cards
make direct calls to the 6502 ROM routines, as well as
making other adjustments that are card-dependent. In other
words Apple CP/M is based on the original version, but has
some peculiar differences.

An unaltered Apple CP/M system (at least the one I
looked at) has the IOBYTE filled with 95 hex, which
presumably makes slot 1 the printer. Since there is an 80
column card occupying slot 3 it should be possible, somehow,
to assign slot 2 to be another external device, and perhaps
also one or more slots at 4 and above. The IOBYTE does not
appear to be implemented in the one I examined, and I
expect that some new driver routines would have to be
written before it could be put to use.

Without any more knowledge of the subject I can only
advise care in re-assigning values to the Apple IOBYTE. It
appears that the Microsoft documentation does go into some
detail as to just what alterations you can and cannot make
including the addresses for making alterations to the
drivers. Have fun.

For some reason I have the feeling that the TRS-8(
versions of CP/M are even stranger than the Apple's. Nufi
said about that.

Listing my own setup would serve no purpose. I have, as
do many hackers, a weird mixture of mis-matched
equipment (basically vintage S-100) that suits me just fine,
and will until I decide something has to be changed or
added. I will say that I have two console options, two printer
options, a modem, and one each parallel and printer ports
that are as yet not assigned to any practical purpose. These
will no doubt be my “reader and punch” someday.

I feel that being able to change these assignments from
the keyboard is a worthwhile feature. Regardless of what is
available to you, it can all be put to work by the proper
juggling of the IOBYTE — and in the process you get a little
closer to the heart and soul of CP/M. []

FLOPPY DRIVE
_ EXERCISER!

ALIGN DRIVE IN 10 MINUTES!
Use with scope and alignment disk (SS $49, DS $75)

— SINGLE KEYSTROKE FOR — SHOWS SPEED AND SPEED
ALL ALIGNMENT TRACKS AVERAGE!

— JOG KEYS-MOVE TO ANY — HYSTERESIS CHECK BUILT IN
TRACK — SELECT 5" 48, 96, 100 TPI, OR

— INCLUDES “"OSBORNE" 8" 48, TPI
TYPE POWER HOOKUP — POWER "Y' CABLE=$10

— RUNS ANY STANDARD 34 DRIVE DATA CABLE-=520

PIN (5”) OR 50 PIN (8”) DRIVE
USED BY: IBM, ARMY, NAVY, RCA, ETC...

EX 2000 $299

FREE Air Freight on Prepaid Orders. COD: Add $5 Plus Shipping

PROTO PC inc. CALL NOW! 15 444.4660
2439 Franklin, St. Pqul, MN 55114

6 The Cornn e uourma

WRITE YOUR OWN THREADED LANGUAGE

Part Three: Secondary Words
by Douglas Davidson

T he last article presented the main features of input and
output, as well as something of dictionary management. The
time has come to explore the structures of secondary words,
arid to present the routines needed to maintain these
structures. As has been mentioned before, a secondary word
will consist mainly of a sequence of calis to other words, and
thus will be mostly pure machine language: however, there
are a number of features for which special provision must be
made. Many of these features will actuaily appear in the
code of a secondary word in a somewhat different form from
that which the user will see. Most commonly, they will be
represented in code by a call to a supporting word, generally
given a name with parentheses—e.g.. (IF. For now only the
embodiment in code needs to be dealt with, so that is what
wili be presented here. How this code comes to be
constructed will be covered in the next article. The first
area to cover now is that of control structures.

In order for this language to be useful. there must be
provision for secondaries to empioy a full variety of contre!
structures. Some structuring is already provided by the
device of threading. as distinct functions can be made into
distinct words, but this in itself is not enough. Both
branches and loops are needed within a secondary, and it is
useful to have both indexed and non-indexed loops. Here all
of these will make use of the microprocessor's branch
instructions, but these need a little help to serve the
language's purposes. Conditionals will be handled by
constructions of the following form:

(condition! IF (true part) ELSE (false part) THEN.
The ELSE and false part are optional; true to the language’s
RPN base, the instructions follow their operands. An ELSE
will be represented in the actual code by an unconditional
branch instruction to the point represented by the THEN;

the THEN itself will leave no trace in the code (see Figure 1).

The IF is the tricky part, for it must make a decision based
on a flag in TOS, but the microprocessor's branch
instructions can judge only microprocessor status flags.
Therefore a routine is needed to change a stack flag into a
microprocessor flag, in this case the 6502 carry flag. The IF
will be represented by a call to (IF) followed by a BCS
{branch on carry set) instruction branching to beyond the
ELSE or (if there is no ELSE) to the THEN.

{IF) This word takes a flag off the stack and sets or resets
the carry flag accordingly. It calls 0, then loads the lower
byte of TOS, drops TOS, and shifts the low bit of the byte
into the carry flag: note that a false flag will set the carry
and a true flag will reset it.

Non-indexed loops will be handled very much like

conditionals (see Figure 1); they will take one of these two
forms:

BEGIN ... (condition! UNTIL .. . END

BEGIN ... {condition! WHILE . .. END.
BEGIN, like THEN, serves only to mark a location in
memory: END is represented in code by an unconditional
branch to the point marked by BEGIN. The UNTIL and
WHILE are much like IF, and indeed they will use (IF),
followed by a conditional branch branching to just bevond
the END: for UNTIL a BCC (branch on carry clear'. for
WHILE a BCS (branch on carry set).

Indexed loops require a somewhat different approach, as
they involve more than a simple testing of a conditior (see
Figure 1). They aiso will take two different forms:

(parameters) DO ... LOOP
(parameters) DO . . . (increment! « LOOP

(Parameters) refers to the initial and final values of the
index. and lincrement) to the amount by which the index
should be incremented each time. Note that as + LOOP is
presented here, the increment may well vary, for it is taken
from the stack at each pass through the loop. The indexed
loops will make use of the R-stack: the value of the index
will be placed on top of the R-stack, and the index’'s final
value will be second. This ailows for the nesting of loops
quite simply; note also that the word I brings the value of
the most recent loop's index to the main stack. DO will be
represented in code by calls to routines transferring the
parameters from the main stack to the R-stack; we already
have the > R routine for this. LOOP and + LOOP will be
represented by calls to their respective supporting routines.
followed by conditional branches back to the start of the
loop, followed by a call to a routine dropping two values
from the R-stack (see below).

(LOOP) This word handles an indexed loop with constant
increment. It increments the top value on the R-stack, then
compares the top value with the second value. If the top
value is greater, the carry flag is set; otherwise the carry
flag is reset.

{(+LOOP) This word handles an indexed loop with
variable increment. It takes the TOS and adds it to the top
value on the R-stack. If the sign of the TOS is positive, the
carry flag is returned as with (LOOP); if the sign is negative,
the carry flag is set if the top value is less than the second
value.

Secondary words may have occasion to print out character
strings; these will be represented in code by a call to a
printing routine, followed by the string to be printed, in the
familiar length-first format.

{.) This word prints a string of characters. It first pulls

the location from which it was called off of the
microprocessor stack; since the 6502 JSR instruction stores
the location of the byte before the location to be returned
to, the index register pointing from that address will always
be one greater than might be expected. The routine gets the
one-byte length, adds one to it to compensate for the last-
mentioned difficulty, then prints characters in order, as
many as the length specifies; the length plus one is added to
the initial location and this value is pushed back on the
stack.

There will also be a need for secondaries to have
immediate numerical values available; these will appear in
code as a call to the routine that loads them, followed by the
two-byte value.

(LIT} This word gets a numerical value imbedded in the
secondary code. It pulls the calling location off the
microprocessor stack, loads two bytes from just beyond it,
pushes them into TOS, increments the location by two, and
pushes it back onto the microprocessor stack.

Some secondaries will also need to recognize error
conditions, and to abort back to the main executive when
such conditions occur. ABORT" takes a condition flag from
the stack. If it is true, an error is recognized and the last
recognized command is printed, followed by the string
stored with the ABORT". The instruction is skipped
entirely if the flag is false. ABORT" is embodied in code by
a call to (ABORT") followed by the error message in the
same format as that of ().

(ABORT"} This word conditionally executes an error
abort. It first pulls the calling location off the
microprocessor stack, then takes a flag from TOS; if the flag
is true, the string of characters preceded by its length

Tre Computer Jouma 7

starting at H is printed. Then the length byte is loaded from
the calling address, as in (), and that many characters are
printed. ?FORGET is then called to destroy any word that is
in the process of being created; finally a jump is made to the
main executive (which will be covered in the -next article: it
is useful, for debugging purposes, to make this particular
jump initially a jump out of the language, perhaps to a
monitor). If the flag is false, then the length byte plus one at
the calling address plus one is added to that address, and
the address is pushed back onto the microprocessor stack.

Variables will require special handling. With a stack-
oriented system, there is less need for variables, but they
still can be very useful. Variables in this language will be
semi-permanent; that is, each variable will actually be a
word with its own name and place in the dictionary.
Variables will actually be executable words; each will
consist of a header, a call to a special routine, and some
storage space. What the special routine will do is place the
address of the storage space on the stack; then @ and ! can be
used to call up or store the value of the variable. Akin to
variables are constants; a constant will have the same form
as a variable, but it will call a different routine. The
constant routine will bring the value of the constant, not its
address, to the stack; thus constants will be unalterable.
Facilities will also be provided for the high-level definition
of routines such as the ones implementing variables and
constants, for use in special-purpose applications; the use of
these requires concepts not yet covered, and will be
discussed more fully in the next installment, but the words
(DOES >) and DODOES are needed to implement them.

(DOES>) This word is the embodiment in code of
DOES>; a call to it marks the end of the compile-time
portion of a defining word. Essentially it replaces the call
that CREATE put into the word

IF...THEN (condition) IF (true part) THEN
........... JSR (IF) BCS j
(condition) IF (true part) ELSE (false part) THEN
............. JSR (IF) BCSCLC BCC?..A 1
BEGIN...END BEGIN ..._(condition) UNTIL ...END
......... JSR (IF
* SR (IF) 8010 CLC B(;‘Cj
i
BEGIN (condition) WHILE END
......... JSR (IF) BCSCLC BCC *
* L L
—T
DO...LOOP (parameters) DO LOOP

initial tinat JSR»R JSR>R ? ... JSR (LOOP) BCC JSR 2RDROP
J

{parameters) DO (increment) + LOOP
initial final JSROR JSRXR T

...increment JSR(+ LOOP) BCC JSR 2RORO

being defined with a call to the
location just after the call to
(DOES >). The routine pulls the
calling location off of the micro-
processor stack and places it at
CURRENT +7 and CURRENT
+8.

DODOES This word is the
beginning of the run-time portion
of a defining word; the call to it
immediately follows that to
(DOES>). The routine pulls off
the microprocessor stack and
preserves the location (in the
defining word) from which it was
called. It then pulls off the micro-
processor stack the location (in
the defined word) from which the
defining word was called: this
address it increments and pushes

— onto the main stack. The first

Figure 1

return address is then returned
to the stack.

8 The lormpuler Louira

(CONSTANT) This word is called by every constant to
load the value of that constant. It pulls off the
microprocessor stack the location in the constant from which
it was called, and then pushes the value at that address plus
one onto the main stack.(YARIABLE) This word is called by
every variable to load the address of the storage area of
that variable. It pulls off the microprocessor stack the
location in the variable from which it was called; this
address is incremented and then pushed onto the main
stack.

Certain words may need to call other, unspecified words,
or perhaps machine-language subroutines.

EXECUTE This word calls another word or an address; it
expects the PFA of another word to be in TOS. It takes the
TOS, puts it in a particular location, then executes an
indirect jump to that location; it thus jumps to the address
given in TOS.

A certain class of words, called defining words, will be
needed; these words are distinguished by the fact that they
create other words. They all have CREATE in common, for
CREATE creates a header, using the next string of
characters in the input line as the name of the word.

CREATE This word creates a dictionary header. It calls
WORD, giving a space as the separation character; this puts
the name for the header, in the proper form, at the proper
place—at H. It stores the value of CURRENT for the link at
H+4 and H+5, then places a call to (VARIABLE) at H + 6,
H+7, and H+8. H is then moved to CURRENT, and H is
incremented by 9.

It will be remembered that every input line was required
to end with several termination characters, in this
implementation, return characters. This is chiefly so that
the termination character may be recognized as the name of
&8 word, the word referred to for convenience as NULL,
which is used to exit from several endless loops that
interpret input lines. NULL is not the name of the word; the
name of the word is simply the termination character.

NULL This word escapes from words with endless loops.
It simply pulls one return address off the microprocessor
stack and discards it.

2RDROP This word, used after the completion of each
indexed loop, discards two values from the R-stack. It
simply increments R by four.

Various storage locations have been presented as
necessary to the operation of the primary words. It is also
desirable that secondaries should have access to these
words; therefore they are made into variables. They are not,
however, ordinary variables, for their actual locations will
most likely be in some privileged place; in this
implementation they are stored in page zero. What will be
placed in the dictionary will actually be constants, with
values equal to the addresses of these storage locations. S,
R, H, >IN, BASE, CURRENT, and SO should be treated
this way.

Finally, all the information has been presented that is
necessary to write an initialization routine. The above-
mentioned storage locations—S, R, H, > IN. BASE,
CURRENT, and SO—are those that need to be ir.:iialized.
The initial value of >IN should be zero, that of BASE
probably ten or sixteen, and that of S should be two less
than whatever SO is. The values of H and CURRENT will be
dictated by the state of the dictionary, and those of S0 and
R by the memory map.

STARTUP This headerless routine initializes all of the
above-mentioned storage locations with values stored just
above it; it then jumps to the main executive.

This completes the list of necessary primary routines. The
words should be tested in isolation as far as is possible, to
make sure that each works properly before they are
combined. The next article will present the kernel of
secondary words and wrap everything up. For those not
exactly following the machine code presented. the following
optional primary words may prove useful; they are not
necessary for anything presented here, but coding them may
be a good exercise.

0 A constant with name 0 and value zero.

1 A constant with name 1 and value one.

—1 A constant with name -1 and value $FFFF = - 1.

14+ This word increments TOS by one.

2+ This word increments TOS by two.

1— This word decrements TOS by one.

2— This word decrements TOS by two.

2* This word multiplies TOS, taken as a signed integer
quantity, by two.

2/ This word divides TOS, taken as a signed integer
quantity, by two.

RDROP This word drops one stack element from the R-
stack; it increments R by two.

KEY This word waits for a key to be pressed, then returns
the (one-byte) ASCII value of the key pressed in TOS.

?DUP This word duplicates TOS only if TOS is non-zero.

I' This word copies the second value on the R-stack and
pushes it onto the main stack; it gets the limit of the current
loop.

J This word copies the third value on the R-stack and
pushes it onto the main stack; it gets the index of the loop
exterior to the current loop.

LEAVE This word permits a premature exit from an
indexed loop; it sets the second value on the R-stack equal to
the first value.

PAGE This word clears the screen; it will be
implementation-dependent.

MAX This word returns the maximum of TOS and NOS,
considered as signed integer quantities.

MIN This word returns the minimum of TOS and NOS,
considered as signed integer quantities.

MONITOR This word exits the language and returns
control to a monitor routine; it will be implementation-
dependent.

MOVE This word moves a string of bytes. It takes the
length from TOS, the destination address from NOS, and the

source address from the third entry on the main stack. Note
that it can make a difference whether the bytes are moved
from the beginning of the string first or from the end first;

it may be wise to have two

words, MOVE and < MOVE, of

which the first starts from the beginning and the second

from the end.

-
. +a (1IF) #e

-
198D: #4 AB C9 C6 F3 oF
1893: 20 39 09 JSR
19596: RO 99 LDY
1998: Bl 99 tDA
1869A: 20 @9 08 JSR
199D: 4A LSR
199E: 60 RTS

. -«

s= (LOOP) seo
. *
199F: 86 A8 CC CF 8D 10
18AS: A® 20 LDY
18A7: Bl 82 LDA
1849; 18 cLc
16AA: 69 1 ADC
16ALC: 91 82 STA
19AE: B85 18 STA
18B@: C8 INY
19B1: Bl @2 LDA
18B3: &9 00 ADC
10BS: 91 @2 sTA
10B7: 65 19 5TA
16B9: C8 COMPARE INY
16BA: 38 SEC
16BB: B1 82 LDA
16BD: ES 18 SBC
18BF: CB INY
16CP: B! 82 LDA
18C2: ES 19 SBC
108C4: S50 82 BVC
18C6: A9 8@ EOR
16C8: fA OK ASL
18C9: 68 RTS

-

a% (H OOP) =«

*
18CA: 07 AB AB CC 9F 18
18D9: AS 90 LDY
186D2: 18 cLc
16D3: B1 60 Lba
19D5: 71 é2 ADC
18D7: 91 92 sTA
16D9: B35 18 STA
18DB: C8 INY
18DC: B1 @€ LDA
16DE: 71 &2 ADC
10E06: 91 02 sTa
16€2: 85 19 STA
19E4: Bl 90 Lba
1P€E4L: 38 06 BMI
16€8: 20 BS 10 JSR
19EB: AC 09 €8 Jme
19€EE: C8 NEG INY
10€EF: 38 SEC
10F3: AS 18 LDA
18F2: F1 82 SBC
19F4: C6 INY
19F5: AS 19 LDA
19F7: F1 82 SBC
16F9: S@-92 BVC
19FB: 49 8@ EOR
19FD: B8A ASL
16FE: 4C 99 08 JMP

-

e (") as

-
1161: #4 AB AE A2 CA 19
1167: 68 PLA
1168: B85 18 sTa
119A: &8 PLA
$116B: 8% 19 STA
116D: A9 81 LDY
1106F: 98 TYA
1111: 71 18 ADC
1113: 85 16 STa
1115: C8 LO0P INY
1116: Bi 18 LDA
1118: 28 ED FD JSR
111B: C4 16 CPY
111D: D® Fé BNE
111F: 18 cLC
1128: 98 TYA
1121: &5 18 ADC
1123: AA TAax
1124: AS 19 LDA
1124: 69 60 ADC

#=
#9090
(S),Y $ gqet zero or one
DROP
3 shift 1nto carry
; false=carry set
#8090
(R),Y 3 1ncrement
3 loop 1ndex
831
(R),Y
SCRL 5 and store it
3 1n zZero page
(R),Y
"$909
(R), Y
SCRH
3 is 1ndex
3 greater than
{R),Y 5 lamit?
SCRL
(R),Y
SCRH
oK
#4380 { shift answer
3 1nto carry,
; set=greater
2800 ;3 add TOS
$ to loop index
(S),Y
(R),Y
(R),Y
SCRL
S),Y¥
(R), Y
(R}, Y
SCRH
(S),vy 3 is 1ncrement
NEG ; negative?
COMPARE 3 no, do as {in
DROP 3 (LOOP)
; yes, sake
$ reverse comspar)son
SCRL
(R}, Y
SCRH
(R), ¥
oK
#e80
3 and shift 1nto carry
DROP 3 set=index 15 less
$ pull calling location
SCRL
SCRH
L1221 3 get length
3 plus one
(SCR), Y
ACC.C2L
(SCR),Y ; get each character
couT 3 and prant 1t
ACC.C2L § unti]l done
LOOP
3 adjust calling
SCRL 5 location
SCRH
ss00

11286:
1129:
112A:
112B:

112C:
1132:
1133:
1135:
11368
1138:
113A:
113C:
113F:
1140:
1142:
1144:
114862
1148:
114A:
114C:
114D:
114F:
1151:
1152:
1154:;
1156:
1157:
1159:
115A:
115C:
115€:
115F:
1160:
1161:

1162:
1168:
1169:
1146B:
116C:
116E:
11712
11732
1175:
1178:
1179
117B:
117C:
117€:
117F:
1181:
1182:
1184:
1186:
1187:
1188:
1189:
118A:
118C:
118€:
116F:
11912
1194
1196:
1198:
119A:
11982
119C:
119€:
11A8:
11A1:
11A3:
11A6:
11A8:
11AA
11AD:

1188
11B6&:
1188:
1189:
11BA:
11BC
11BE
11BF:
11Ce:
11C2:
11C4:

11CS:
11CB:

48

48
-1

AS

3

BRZZRBERER

om
0%

B1

[4

18
&9
1
ce

69
1

PHA H
XA
PHA
RTS
-
&% (LIT) ==
»
A8 CC C9 &1 11
PLA 3
18 STA SCRL
PLA
19 STA SCRH
20 INC SL '
(] DEC SL
82 BNE OK1
81 DEC SH
(.4 oK1 DEC SL
22 \ BNE OK2
o1 DEC SH
o0 oK2 DEC St
o2 LDY #8822 1
1B LDA (SCR),Y ;
DEY
[STA (S),Y
18 LDA (SCR),Y
DEY
[STA (S),Y
18 LDA SCRL H
cLc H
é2 ADC #%922
TAX
19 LDA SCRH
20 ADC 8309
PHA $
™A
PHA
RTS
-
*% (ABORT") &«
»
AB C1 C2 2C 11
PLA 3
18 STA SCRL
PLA
19 STA SCRH
39 09 JSR o= 3
290 LDY @8e0¢2
o9 LDA (5),Y
99 28 JSR DROP
TAX 3
oF DEQ ABORT
INY 3
18 LDA (SCR),Y 3
SEC H
18 ADC SCRL
TAX
19 LDA SCRH
[ADC #4300
PHA H
TXA
PHA
RTS
24 ABORT LDA (H),Y 5
16 STR ACC.C2L 3
LOOP { INY
24 LDA (H),Y 3
ED FD JSR COUT s
16 CPY ACC.C2L 3
Fé& BNE L O0OP1
o1 LDY es@1]
TvA 3
cc s
18 ADC (SCR),Y
16 STA ACC.C2L
LOOP2 INY
18 LDA (SCR),Y 3
ED FD JSR COUT H
16 CPY ACC.C2L ;
Fé& BNE LOOP2
21 oF JSR FOROGET 3
73 14 JMP QUIT H
-
+& (DOES>) es
-
A8 CA CF 62 11
87 LDY #%07 L)
PLA]
cLc 3
o1 ADC #ed! H
[STA (CURRENT)
INY
PLA
o ADC #%d@ 3
[) STA (CURRENT)
RYS H
-
+o DODOES es
-
CA CF Ca4 BO® 11
[INC SL H

Tre Jomouter Jouma

and push 1t back

pull calling location

decresent S

get two bytes
and store i1n TOS

adjust calling
location

and push 1t back

pull calling location

qget +tlag

was 1t true”

no, continue
s:mply ad)ust
calling location

and push 1t back

ves, abort
print string at H

get each byte
and print 1t
until done

print string
at calling location
get length plus one

get esach byte
and praint 1t
until done

kill any stray word
and restart

replace the call
that CREATE made
with whatever called
thas routine

and skip rest of
» Y
whatever called this

decresent S

10 “ne Computer Lourna

11CD: Cés #0 DEC SL 1278: D@ 82 BNE OK3 5 WORD left on stack
11CF: DS 02 BNE 0K} 127a4: E6 o1 INC SH
11D1: Cé o1 DEC SMH 127C: E& ®8 ox3 INC SL
11D3: Cé& o8 ox1 DEC SL 127€: D@ ®2 BNE OK 4
11D5: De €2 BNE OK2 1280: E6 Ot INC SH
11D7: Cé @18 DEC SH 1282: @ B4 ox 4 LDY ®se4 i store CURRENT as link
11D9: C& o@ oK2 DEC SL 1284: AS 8A LDA CURRENTL
11DB: &8 PLA 3 pull calling location 1286: 91 @4 STA (H), ¥
11DC: 85 18 STA SCRL i and save 1t 1288: C8 INY
11DE: 68 PLA 1289: AS @B LDA CURRENTH
11DF: AA Tax 128B: 91 64 STA (H),Y
11ES: AP 00 LDY #3886 128D: C8 INY t store cali
11E2: &8 PLA $ pull whatever called 128BE: A9 289 LDA €820
11E3; 18 cac 3 that and incremsent 1299: 91 04 STA (H),Y
11E4: 69 &1 ADC @831 5 it, then store 1t 1292: C8 INY
11E6: 91 o9 STA (S),Vv $ 1nto TOS 1293: A9 23 LDA #$23 i to (VARIABLE)=%1223
11E8: C8 INY 1295: 91 o4 STA (H),Y
11E9: 68 PLA 1297: C8 INY
11EAR: 69 B8 ADC #%09 1298: A% 12 LDA #8122
1LEC: 91 @@ STA (S),Y 129A4: 91 84 STA (H),Y
11EE: 8A TXA i and restore 129C: AS o4 LDA HL § H ~> CURRENT
J11EF: 48 PHA $ calling location 129€: B85 8A STA CURRENTL
11F86: AS 18 LDA SCRL 12A0: 18 cLC } and 1ncresent H by 9
11F2: 48 PHA 12Aa1: 69 ©9 ADC #3079
" 11F3: 60 RTS 12A3: 85 04 STA HL
- 12AS: AS P25 LDA HH
*# (CONSTANT) == 12a7: 685 #B STA CURRENTH
- 12A9: 69 08 ADC w02
11F4: #A AB C3 CF CS 11 12AB: 85 05 STA HH
11FA: E&6 00 INC St i decrement S 12AD: 68 RTS
11FC: Cé6 o0 DEC SL £
11FE: D@ @2 BNE OKk1 2 NULL #«
1200: Cé6 ©1 DEC SH .
1282: Cé6 00 oK1 DEC SUL 12AE: #1 8D ARG AG 59 12
1204: DO 02 BNE 0OK2 12B4: 68 PLA § discard address
1286: Co6 O} DEC SH 12B5: 68 PLA 3 of whatever
1288: Cé& 0@ 0oK2 DEC St 12B6: &0 RTS i called this
120A: &8 PLA $ pull calling address s
120B: 85 18 STA SCRL *% 2RDROF #+
1280D: 68 PLA .
120€: B85 19 STA SCRH 12B7: 86 B2 "2 C4 AE 12
1210: AG 82 LDY #s@2 5 get value stored 12BD: 18 cLe } increment R by 4
there 12BE: AS @2 LDA RL 3 to drop used
1212: B1 18 LDA (SCR), Y 12CO: 69 84 ADC 6s@4 5 loop 1ndex and limit
1214: 88 DEY i and put 1t 1n TOS t2C2: 85 #2 STA RL
1215: 91 o 8TA (S),Y 12C4: 92 @2 BCC 0K
1217: Bt 18 LDA (SCR),Y 12C6: Eé& @3 INC RH
1219: 68 el 12c8: 68 oK RTS
121A: 91 90 STA (S),Y e G e
121C: o8 RTS 3 don’t return to it 12€9: 81 D3 AD A B7 12 20 FA 11 99 8¢
- 48 R «e&
#% (VARIABLE) #+# 12D4: 61 D2 A® AB C9 12 26 FA 11 62 0@
- 4 H #e
121D: A AB D& C1 F4 11 12DF: 81 CB A@ A® D4 12 20 FA 1]l 04 08
1223: Eb 80 INC SL ;i decrement S % >IN se
1225: Cé o9 DEC SUL 12EA: @3 BE C9 CE DF 12 208 FA 11 64 08
1227: DO &2 BNE 0Kt +# BASE e
.1229: Cé o1 DEC SH 12FS: 04 C2 C1 D3 EA 12 280 FA 11 08 00
122B: C6 09 oK1 DEC St #% CURRENT ¢+»
122D: D@ 92 BNE OK2 1380: #7 C3 D5 D2 F5 12 20 FA 11 A 60
122F: Cé& 01 DEC SH e S@ =«
1231: C& 09 oK2 DEC SL 136B: 62 D3 B8 AG 00 13 20 FA 11 OC 99
1233: AR 08 LDY #s00 -
1235: 48 PLA 3 pull calling address *e STARTUP e+
1236: 18 cLC § tncrement 1t -
1237: 69 @01 ADC #sd1 No Header
1239: 91 o8 S5TA (S),Y $ and store it i1n TOS 1316: A® 6D LDY @s@D
123B: C8 INY 1318: B9 24 13 LODP LDA STARTUP+$8E,Y
123C: 68 PLA 131B: 99 #9 P90 STA SL,Y § move image to
123D: &9 o0 ADC #sPd 131E: 88 DEY L}
123F: 91 00 STA (S),Y 131F: 10 F7 BPL LOOP $ storage locations
1241: 68 RTS $ don’t return to 1t 1321: 4C 73 14 JMP QUIT $ and start
* 1324: FE BB FE 91 4B 18 00 96 A 02 18 18 09 BC .

. «e EXECUTE e#
-
1242: 7 CS D8 CS 1D 12

i 5 e Byt e AUTHORS WANTED!

124E: C8 INY
124F: B1 &¢ LDA (S),Y
1251: 83 (9 STA SCRH

1253: 28 09 96 JSR DROP

1235: 20 07 08 I o tnen som to 1t The Computer Journal is
t» cREaTE o0 interested in technical articles.

1259: 86 CI D2 CS 42 12

125F: AG o8 LDY 6so9 3 call WORD +

jze1: o7 o0 e inawees . B Query with SASE or send for
1265: co ue CEC S, leaving room sor , -

12¢7: s 82 EQ oo our Author’'s Guide.

124B: Cé6 o8 oK1 DEC SL

1260: Do o2 e Oz -

1271 o8 o2 DeC s PO Box 1697, Kalispell, MT 59903
1273: 28 CC o0 JBR WORD2

1276: €4 o8 INC SU

discard H that

Trne Computer sour~a 11

Interfacing Tips and Troubles
A Column by Neil Bungard

Noise Problems, Part Two

T his month I will present part two of a three part series
on noise problems associated with interfacing. In part one
we discussed the problems created by power supply noise.
We looked at symptoms associated with power supply noise,
and reviewed some possible methods for minimizing it. In
parts two and three we will look at noise problems
associated specifically with the interface circuit. For the
purpose of discussion I have divided interface noise into
three categories. We will look at each category in terms of
what symptoms you might expect to encounter, and the
possible solutions for reducing or eliminating the noise
problems. In addition, a section on noise reduction using
ferrite beads has been included. Finally, we will create a
troubleshooting chart which can be used as a quick
reference when approaching troubled interfacing projects.
This month we will discuss noise associated with data
transmission lines. In part three of this series we will cover
noise generated within the interface circuit, and noise
induced from outside sources.

Before we begin our discussion on specific noise problems
encountered in interfacing circuits, let's look at the basic
elements which are required for noise interference to exist
(See Figure 1). The “noise source” can be a logic transition, a
local oscillator, a wire vibrating in a magnetic field, a relay
or solenoid deactivating, etc. The “noise coupler” can be a
common impedance, a stray capacitance, a mutual
inductance, or a magnetic field. The "noise receiver” can be
an op amp input, a TTL input, an IC power supply input, a
voltage reference, etc.

In order to solve any given noise problem, one or more of
the three basic elements must be reduced or eliminated. As
we look at specific noise problems, think about how the
situations correspond to the model in Figure 1. Hopefully
this will be helpful in understanding the purpose behind the
solutions used in the noise reduction problems.

Noise Associated With Data Transmission Lines
IR Drop

Unless an interface is connected directly to a computer
via an edgecard connector, it will be connected to the
computer through a cable. The cable can be a ribbon cable or
simply a bundle of wires, but regardless of the cable
configuration there are considerations which must be taken
into account when sending logic signals over transmission
lines.

Always limit the length of cables carrying TTL level

signals to one meter or less if possible. There are several
reasons for this. To begin with, signal deterioration occurs
as a result of driving logic signals over long pieces of wire.
This is because there is a resistance associated with the
wire which increases with an increase in length. As the
resistance increases, the resulting voltage drop along the
wire increases. This is known as IR drop. The relationship
between resistance and voltage drop can be expressed using
Ohms law:

V=IxR

According to the above expression, relatively high current
situations (e.g., when logic transitions occur) can create
voltage drops along the transmission line, which can become
large enough to cause false triggering on logic inputs. The
solution to these particular noise problems is simple; just
keep the cables as short as possible.

Line Inductance

In addition to resistance increase, there is an inductance
increase associated with increases in line length
(approximately 0.8 micro-henry per meter). The inductance
associated with a length of wire can cause noise voltage
spikes in a line where current values are suddenly changing.
This condition can exist whenever a logic transition occurs.
Typical values that might be observed in a logic transition
are changes in current of 30 to 50 milliamps with signal rise
times of 10 to 30 nanoseconds. The following equation
expresses the relationship between variables in an inductive
noise problem:

dV=Lxdl/dT

where: dV = magnitude of noise voltage spike
L = inductance of signal carrying conductor
dI = sudden change in current

dT = rise time associated with a logic transition

For example, If you had a gate signal with a varying current
of 30 milliamps, and a rise time of 10 nanoseconds, the
magnitude of a noise voltage spike which could be generated
in a one meter line would be:

dV=08x10 x 30x10 / 10x10
dV =2, 4 volts

12 The Cormouter Journa

This value would be slightly decreased because of capacitive
effects and other loading in the circuit, but in general this
sort of noise can cause real problems if your connecting
cables become too long.

—
NCISE NO'SE NO:SE
SCURCE COUFLER RECE via

Log:ic Transten Comme- mpesance Jg Amo

Loca Oso awgr Stray Cacac ‘arce -

Vibrat-ng Wire M.t ~gutanze Powe: Sycoy Lne

Reay Magaen: Fec

Votage Aeleterie

Figure 1: Basic Elements Requirec for Noise Interference

Line Capacitance

Another problem which can arise in a transmission cable
is capacitive coupling. Capacitive coupling occurs when
conductors containing signals with fast rise times (like a
device code pulse) or signals with a high frequency content
(like a local oscillator) are in close proximity to other signal
lines. Stray capacitance between lines in the cable couples
the fast edges of a signal from a source line to adjacent
lines. Making the transmission lines as short as possible
reduces stray capacitance and thus decreases the chance for
coupling problems, but short lines alone may not ensure
trouble free operation. Figure 2 shows the characteristic
waveform associated with capacitively coupled noise. If the
frequency of the noise waveform can be determined, the
source of the noise can probably be located. This is possible
because in a capacitively coupled circuit the noise source
operates at the same frequency as the noise itself. If the
noise appears to be noncyclic however, the source of the
noise may be difficult to locate.

We have just talked about three possible causes of
transmission line noise: IR drop, mutual inductance, and
stray capacitance. But how do we know when the noise
problem is related to the transmission lines, and assuming
that we do know, how do we eliminate the problems?

Signal [_] —‘

Noise JW 9
r

Figure 2. Waveform of Capacitively Coupled Noise

Finding and Solving
Transmission Line Noise Problems
Symptoms associated with cable injected noise vary. In
some cases data seems to disappear. The signals transmitted
simply do not end up at the proper locations on the interface
board. In addition, data integrity may be poor. This means
that the information sent by the computer is not always the

same as the information received by the interface circuit.
Other symptoms include incorrect or multiple device code
generation within the interface circuit, data reception
latches dropping bits, control flip flops toggling
uninstructed, bus “lock-ups” resulting from false triggering
of tristate devices, etc.

One indication that a problem is directly related to the
transmission lines is that the problem is occuring in an IC
directly connected to a line. However, this is not always the
case because noise can pass through ICs (like buffers' and
effect other components deeper in the circuit. If this
happens, there should be a logical path from the
malfunctioning IC back to the noisy transmission line.

In the case of noise resulting from an IR drop in a
transmission line, the solution was to keep the connection
between the computer and the interface as short as possible.
A cable length of one meter or less is recommended. In
cases where noise results from mutual inductance or stray
capacitance, the problem becomes a little stickier.

One noise reduction technique that can be accomplished
with no added expense and with little effort is physical
separation. The rule is to separate all lines into groups
according to the type of signals they are transmitting. In
other words, do not run AC power lines with digital data
lines, do not run DC power lines with lines that carry
current for switching relays and solenoids, etc. At the very
minimum, AC power lines, high current control lines (for
relays, solenoids, heater elements, etc.), and DC power lines
should be run in separate cables from the computer to the
interface circuit. Physical separation is an effective noise
reduction technique, but interference can occur even
between lines of similar signal types. One very effective
method for reducing interference due to capacitance and
inductive coupling is to place lines physically close to a
ground plane. In the case of a transmission cable, special
ribbon cable can be purchased which has a ground plane
molded into the cable assembly. These cables are less
flexible than the cables without the ground plane. They are
also considerably more expensive, and are harder to find.
However, there is a trick which will allow you to use non-
ground-plane cable and still reduce coupling effects in the
cable. First, buy a ribbon cable with twice the number of
lines which are required by the interface circuit. Alternately
space the signal lines so that you have an unused line
between each signal line. Ground all of the unused lines to a
centra) ground point on the computer end of the cable (see
Figure 3). This technique appreciably reduces noise because
of two separate effects. First of all, by alternating signal and
ground lines the physical separation between signal lines
has actually been increased, which reduces coupling effects.
Secondly, by placing a grounded line close to a signal line,
you are effectively coupling the noise to ground. If the noise
is being coupled to ground, it will not be available to
interfere with other signal lines. The combination of these
two effects makes this a very efficient method of reducing
cable noise — personally, it is my favorite method.

There may be times when you cannot alternate signal and
ground lines, or there may be times when this method alone

—
+ mete” COMTUNICaLON Cabie
—

. Sgre * Signa .
) GND .
. Sigra ? Signa’ 2 .
- GNE .
. Sgna 3 Signa- 3 .

GND .
. Signa 4 Signa: & .
. GND .
[Comzuter Enc 2 2 Intertace Enc

GAD §7
Figure 3

will not be sufficient to reduce noise below acceptable levels.
In cases like these you can employ termination techniques to
reduce noise. In fact, it is good practice to incorporate
termination into the initial design of your interface project.
Termination techniques reduce noise by changing line
impedance andor adding an element of filtering to the
transmission lines.] have looked at a number of schematics
of popular computers and have noticed specific similarities
in the termination technigques used by many manufacturers.

To begin with, ICs that drive the signals between a
computer and the interface circuit come in two flavors;
regular TTL level output, and TTL open collector output.
You will need to consult a technical manual for your
particular computer to determine which configuration it
uses. For lines driven by open collector ICs, the termination
scheme ir Figure 4a can be used to reduce noise. The idea is
to match the driver impedance to the impedance of the
connecting cable, thereby transmitting maximum signal
strength with minimum distortion. In addition, terminating
a signal line with a low resistance actually decreases the
capacitive coupling which is the primary culprit in cable
induced noise. The circuit in Figure 4b is also used on open
collector driven lines. This circuit will decrease ringing
caused by fast rise time signals, and will help filter high
frequency and fast transient noise problems. The resistor
and capacitor in Figure 4b act as a low pass filter and, in
effect, short high frequency AC signals to ground. The 7414
is a Schmidt trigger and ensures that voltage fluctuations

() TS

Figure 4: Open Coliector Cable Termination

L

The Computer Journal 13

below its threshold are not passed on. IBM uses this circuit
in their PC products.

For regular TTL driven lines, I have found that the
termination networks in Figure 6 work very well. Both
circuits act as low pass filters, shorting high frequency noise
and fast transients to ground. The steady state DC drive of
the lines terminated by these circuits is not affected, so that
signal deterioration due to loading is not a problem.

Probably the simplest, most effective, and (in my opinion)
most elegant solution to cable noise problems is the use of
74L series ICs as a buffer between the interface circuit and
the transmission cable. The signal lines must come into the
interface circuit through ICs anyway, so using the 74L
series does not add additional hardware. The 74L series ICs
are more expensive, but well worth the cost. I was sold on
this particular noise reduction technique when 1 was
working on an interface project for the Commodore 64. 1
was having terrible noise problems in an address decoder. I
tried grounding lines, grounding planes, and termination.
but the interface -circuit

would not behave. Finally, Sigra e
out of desperation, I was
looking through a TTL 100 1w 470 ¥
design manual and noticed .
a

the specifications on the
74L. series ICs. Propagation GND
delay time through the 74L
series is terrible —just
what I needed! I replaced an
the 74L.S154 with a T4L154
as the address decoder
and my problems disap- a5y
peared. The low speed of
the 74L series is the
characteristic that makes it well suited for noise reduction
applications. High frequency noise and fast transients
simply do not get past the 74L series ICs. Unfortunately
their speed is also their limitation. If your interface is
“timing critical,” the 74L series may slow the signals down
enough io cause problems. Consult a TTL design manual for
delay times if you suspect that your circuit is timing critical.

This concludes our discussion on noise associated with
data transmission lines. Next month we will look at noise
problems associated with the interface circuit itself, and
noise problems created by outside sources. Also, the
“strange” noise reduction story that I promised this month
has been added as a conclusion to next month's “Interfacing
Tips and Troubles.” If you have any personal questions
concerning the information that I have covered up to this
point, drop me a line, care of The Computer Journal 1 will
be glad to address any questions that you may have. a

Signal Line

Figure 5: TTL Signa' Termination

Dear Neil Bungard;

I would like to adapt the circuit from your article “Build a
VIC-20 EPROM Programmer™(TCJ Vol II No. 4) for a Timex
TS2068. It has 48K RAM from 4000h to FFFFh and the
BASIC is somewhat different from the VIC-20. Where
should I start, and how should I go about it? Is the circuit in

continued on page 27

14 The Computer Journa:

BUILD A 68008 CPU FOR THE S$-100 BUS

by Lance Rose, Technical Editor

One of the nicer features of the S-100 bus, or any bus for
that matter, is the ease with which the system can be
gradually upgraded. Any one of the new 16-bit

_ microprocessors which are coming into focus today can be
adapted to the S-100 bus. The Motorola 68000 series has
been largely ignored in this regard, even though it is
probably the most powerful microprocessor chip available on
the market today. In this article, I will describe how to buiid
a CPU board for the S-100 bus using the 68008.

The 68008 is a version of the 68000 with an 8-bit external
data bus; otherwise, it has the same instruction set as the
16-bit data bus 68000 chip. The relationship of the 68008 to
the 68000 is the same as that of the 8088 to the 8086. The
advantage in using the 8-bit data bus version is that it can
be easily integrated into a system that has 8-bit wide
memory boards, which includes my own system.

Before proceeding with the details of the design and
construction, let's look at why the 68008 might be a good
choice of processor as opposed to some others:

1. Large linear addressing space. The 68008 has 20
address lines (as opposed to 24 for the 68000! thus allowing a
megabyte of memory to be directly addressed. This should
be enough for almost anybody’s use in the near to moderate
future. In addition to this, the addressing is treated as one
long string of addresses with no segmentation or segment
registers to manage. This makes it easier to write programs
that require more than 64K of either program or data
without the need to be constantly worrying about what
segment you're currently in.

2. Large number of registers. The 68008 has 8 address
registers and 8 data registers, all of them 32 bits wide. This
permits many of the results of intermediate calculations to
be held ,in registers without the need for storing them in
memory or on the stack, a slower process than register to
register operations.

3. Complete instruction set. In addition to the usual
complement of ADD, AND, MOVE and so forth, the 68008
has a variety of bit manipulation instructions, hardware
multiply and divide (both signed and unsigned), multiple
register MOVES and so forth. Most instructions give you a
choice in operand size of either byte (8 bits), word (16 bits).
or long word (32 bits).

4. Variety of addressing modes. Operands can be
addressed in many ways. Besides the usual direct
addressing method, there are also address register indirect.
indirect with either postincrement or predecrement,
indexed with offset, base plus index plus offset, PC relative,
and PC relative with index. Enough to make it easy to
access operands once you master the principles of all these

various modes.

5. Symmetrical register set. As opposed to some
processors, notably the 8086 family, there are no dedicated
registers save the program counter and status flags. For
example, any address register can be used for indirect
addressing and any data register used for multiply and
divide. This saves the programmer from having to do a lot
of data shuffling to get at the single register that has to be
used for, say, base addressing.

6. Speed. The 68008 runs at 8 MHz in the slowest version.
10 MHz and 12.5 MHz versions are available, though more
costly and a bit harder to get. This increases throughput
and, especially with the generous number of on-chip
registers, makes the external 8-bit data bus less of a
handicap than it might be.

With all these pluses, it might seem surprising that the
68000 family is not used more. Hopefully this article will
help remedy that situation.

Circuit Description
Figure 1 (pp. 16-17) shows a schematic diagram of the 68008
circuit, and Figure 2 gives a list of parts which can also be
used to cross-reference the IC numbers with the part tvpes
in the discussion below. I will go through the circuit one
section at a time, explaining how it all works.

Clock circuitry. Ula and Ulb form a conventional crystal
oscillator with X1, C1, R1 and R2. The output is buffered by
Ule to prevent loading from affecting the oscillation of the
circuit. One thing to note here is that you must use a 7404.
A T4LS04 is okay for slower clocks but it's hard to get it to
oscillate at 8 MHz or above due to the saturation
characteristics, input loading, output drive, etc. of the
Schottky version as opposed to the ordinary TTL 7404.

The clock signal is fed directly to the 68008 and to several
other ICs. Its phase is inverted before being placed on the S-
100 bus line, the reason being that most important state
transitions of the 68008 occur on a falling clock signal, while
most of the S-100 bus state transitions occur on a rising
clock edge. U25b inverts the on-board signal to help the
compatibility.

U9a and U9b form a divide-by-4 counter to reduce the
clock to 2 MHz which is then buffered through U25b onto
the S-100 CLOCK line for use as a reference frequency for
UARTS, timers and so forth.

Control bus. Ulla and Ul1b act as a delay circuit to cause
pSYNC to be generated at the proper CPU state for the
68008. The output is fed through noninverting buffer Ul8a
to the S-100 pSYNC line. U2a combines this signal with the

proper phase of the clock to generate pSTVAL®. U8a is held
in the reset state until a combination of read and data
strobe from the 68008 releases it. On the falling edge of
pSYNC, it then clocks high, beginning the pDBIN signal.
The reason for delaying the start of pDBIN is to conform
more closely to the IEEE-696 standard.

For pWR®*, a straightforward combination of the write
and data strobe from the 68008 through U7a is used, since
the write signal is already sufficiently delayed to meet the
specification. UTb combines pWR* and sOUT which is
buffered through part of U26b to generate the MWRITE
signal. This is switch selectable by SW1-4 in case you have a
system with a front panel which generates MWRITE
already.

"The S-100 HOLD signal is fed directly to the 68008 bus
request pin. The bus grant signal is inverted by Uld and
driven onto the S-100 pHLDA line by Ul2a.

All control output signals are disabled when CDSB* goes
low and, after inversion through UbSa, turns off all the bus
drivers Ul8a and Ul2a.

Wait state circuitry. Ul0a and Ul0b are set up as a
generator of one or two wait states. Both are cleared by
pSYNC; U10a is clocked high on the next clock pulse after
pSYNC goes low, and U10b one clock cycle after that. The
output of this flip-flop goes to three pairs of DIP switches,
SW5. U15 is a multiplexer whose output is a function of
whether the bus cycle accesses RAM, the on-board ROM, or
an /O device (addresses $FFF00-$FFFFF). Depending on
which is selected, the output of the multiplexer corresponds
to the number of wait states selected for each of the above
conditions. Note here that for the pairs of switches, only one
of each pair should be on at a time, thus selecting either one
of two wait states but not both at once. If no wait states are
desired, both switches of the pair should be left off.

The output of the multiplexer is connected to one input of
Uda. Other inputs to U4a come from both the RDY and
XRDY bus lines, thus allowing external boards to generate
any number of wait states. The output of U4a is connected
to DTACK®* on the 68008 so that either external devices or
the on-board wait state generator can force the processor to
wait for slow memory or the like.

Interrupt circuitry. Since the 68008 handles interrupts on
a priority basis, some means must be found to prioritize
both INT* and NMI*. Since NMI* is supposed to be non-
maskable, its assertion causes both interrupt inputs of the
68008 to be pulled low. This is accomplished directly for
IPL2/0* and indirectly through U2b and U5b for IPL1*. This
generates a level 7 interrupt which is non-maskable. For
INT*, only IPL1* is pulled low, generating a level 2
interrupt. In order to enable ordinary interrupts, the
interrupt mask should be set at less than 2 (say 1). To
disable interrupts, the mask value should be 2 or greater
(say 6).

Reset and halt circuitry. The fact that the halt and reset
pins of the 68008 are bidirectional requires some special

considerations in ul 7404
th ¢ circuit u2 74LS88
e reset circuit so u3 74L562
that the 68008 will u4 74LS18
b . us 74LS14
not be trying to U6 74L538
drive the pins low u7 74L832
UB-U18 74LS74
when the external ull 74LS76
circuitry is trying gig ;:iigg
to drive them high. Ul4 74LS138
uls 74LS151
R16 and C2 genex:ate vle,ul? 7415241
a power-on time uls-u23 7415244
u24 74LS367
'constant of approx- U25,U26 7418368
imately 400 msec. u27 25152521
. v28 2732
This allows plenty u29 68098
of time for the u3e data socket
processor to initial- R1-R39 2.2k 1/4 watt
ize itself before
bei I d Cl -1 ceramic
eing allowed to c2 220 electrolytic
run. USc is a Schmidt €3-Cé 4.7 tantalum
. . C7-Cn -1 ceramic
trigger input hex
inverter so that the X1 8 Mhz
68008 run signal SW1,SwW3 4-position DIP
will be a fast—rising SW2,SW4,SWS 8-position DIP
edge. Its output is VR1,VR2 7885
driven through U26b Figure 2: Parts List

onto the bus as
POC*. The same sig-
nal activates tri-state buffer U12b whose output is the actual
RESET* bus signal. This is also applied to the control pin
of U24b causing both the RESET* and HALT* pins to
be driven low, a necessary condition for a complete
68008 reset. Note that a RESET instruction of the
68008 will also generate a low on the 68008 RESET®* line.
This has the effect of driving the output of Ul2c low,
which is connected to the S-100 SLAVE CLR* line. This line
is thus driven low on both external and internal resets,
while the RESET®* line is driven low on external resets only.

Data bus. On an output cycle, the data lines from the
68008 are buffered onto the S-100 data out lines by U22. For
external device TMA accesses, U22 can be disabled by
asserting DODSB* through USe and turning off the tri-
states. For input cycles, U21 drives the 68008 data lines
with data from the S-100 data in lines. Its disabling is
somewhat more complicated than the data out buffers. Since
I use this board in an IMSAI with a front panel, it was
necessary to stay as compatible as possible with its
operation. The IEEE-696 standard assigns bus line 53 to
ground. However, the front panel uses the same line to
disable the data bus in buffers in the case of data coming
from the front panel instead of the bus proper. To allow for
both cases, SW1-3 selects SSWDSB*® as an input for front
panel machines, or allows it to be ignored for systems that
have no front panel. The SS (single step) line has been left
undefined by the IEE-696 standard and may be left as is. It
is pulled up so that in the case of front panel-less machines,
it will be ignored. The third input to U4b is from the 68008
read and data strobe lines combined through U3a. This
turns on the input buffers during read cycles only. At all

16

The Computer journa:

a5 5 B
‘42) n&
i S I3] L] 3 "
—l CLOCK s
_3lU%a il U9 njvass
¢ 5
l? ,W -
+5 -5
e [
pY 'A‘Z
+S5 5
b, = i
s v 2
'!_"_ X 9 1 _ — 1 4 @FfY”C ¢ /
Fe2 P
uila Huilh d 1] Y2a 2 - Ebrsrvu.‘ RS 3 el b
4 4 = ! TR Fea
+5 == ¢ l ,5U Ja s @rDBIN " + T
= 5 o=
c 3 ? +S5 1y 3 . BERR
i v L @rar | T
_ qu_ e~z
s, . r
SN
/ = '
2 —'@pHLDA v2 ‘7
I ——— J—
5 JU3a 10@9 3 7z o b
7 by
1 29} == i 0
+s o8 e
.5 +5 s ’ ,,'_;_—
: R O
ri .,!j o - e) 33 N
* t HoL v *(Qi g3 R
2 k1 2 9 " a
S las @4, P
3| e —— : -
Moica Hures x2:7(3 ; Ve PE L EFacx s
o N ¥
! 5 % :
7 i N s
L —— 5 17 2 Db
L — vis /o IO /o i Z
~ sws 5 l :‘J
Ry 3 7 M% gm i
= J£S 1 3¢ -H_A—T -
r9|b2nl 3 e
+5 - B
17
*
de-@ roct Ll e e (Dresere
i -
L4 —I:
\sw.- A SLAVE
@sm ! éLR’ L) -
MWRITE = o
N 3 P:r l\ o
i5d w2 2
——1 R .—'rq o= | Py
» ! 13 3 85
Sswosg @—szfs + " . B 5 I E
ss @ Swi=i ok ¥ ‘D'—
’ U .
—H g aH Y pl £ e
1 22
“ B — R1,
A L] ol Re |
L ¢ 3 -u—-’— —
u__+ A® pleH— - 3
| V24 P T L/ Doosa -

copyrght by the author, 1984

The Computer Journar 17

_ b 4
10
J)UJC | ¥5) souVT
[2
. U.L%.—@SWO.
/ ¢
—_ n jU3d ‘ L‘@SINP
X
@ sMi
'%‘J‘_ 7
—_— +5
I
Ra12
v
Sosp*(s Us3
— 9 1
8
Jo 1o U2de 1 \3_.@ SMEME
9 4 s
Ve =G0 sINT A
—_ ’ ¢ |UiSa7 C
AL A3 A AT AL A A2 AY AID AL AL A A ALS Al AN AP A ALD Al A2 A1} SHLTA
PROOOOO POOOOBOE OGO @ || (1_J"® srear
— o vl oaal 9] 7l st o3 '/gu;w:qv.s‘g L/alt.'vu. LJI79)
!]
vi9 vao Uigh /2¢ ¢
9
4 oel 8l | 3} st o2 2] ¢] ¢l ¢ 1 3] o 1A :.v»&v[2| [o] 7o .
— -*>,
2] i ¢ g 3]st a2
9 /
- r9 vaz
3 Tl ol 2] ol o
Swi
— L R
Swi-2
- T MS OTY W3 m: X/ p2D DC7 DOE DS Dow ps3 P2 bS! r£oO J—
R13
9 @ ® Q) @@@@ afiglaalasl sl 2l sl el s]elalel T
"0
— el gl ol oS 3] 51 2 9l nal wj g 2 <
' % _EQ vag P4 R2¢4-R3
19
JoMf 9 7| 513 Dpoast3f 0 Bl 6| M 2 17| 16| & sef 23y] 10l 9 R32-R27

— w3 Wil gl 9 | 5] H 3] 2
1= * sl 219 0] /) 1¢] 12l 19 M\l)‘k '7\/‘\1‘1\12\3\!\7\?\ laumuf:u‘;z

I}

Py

)
Hea Vila ~ g vieh Vite

_ 1/31 1 nl 151 .»31 ul zi *i ‘l 71 11 vl Ll Ql !

& A

-»
»
[
t
[)
[S
N
[
5| S
N
0—: e
Y
=)
P

18 “re Comzater Jouna

other times they are turned off. A data socket, U30, is
provided for the actual connection to the front panel should
one be present.

As an aside, I should mention that the design here is
compatible enough with the IMSAI front panel (as modified
to decode the lower 8 address lines instead of the upper)
that almost all the features of the panel are still usable.
Run/stop, single step, examine next, deposit and deposit
next all will function. Only examine, which depends on the
processor recognizing $C3 as a jump instruction, will not
work.

~ Address bus. The 20 address lines, A0-A19 of the 68008,

are buffered through U19, U20 and U18b before driving the
S-100 address lines. Since the 68008 does not implement
A20-A23 as the 68000 does, these four lines are heid at
ground by U26a. All address buffers can be disabled by the
ADSB* bus signal through Ubd.

Status bus. Many of the status signals for the bus are
derived from the processor status lines FCO0-FC2. When
these are all high. an interrupt acknowledge cycle is being
executed and U4dc will respond to this. The sHLTA signal is
simply a copy of the 68008 HALT* line. Sixteen bit transfer
signal sXTRQ* is held high since the 68008 performs only 8-
bit transfers.

Since the S-100 1/0 space is reserved at memory locations
$FFF00-$FFFFF (in this design, the 68008 itself makes no
distinction), bus read cycles that access this space must not
activate SMEMR. U13 is a NAND gate whose output goes
low only when the 1/O space is accessed. It is combined with
the 68008 R/W* line via U2c to generate sMEMR. All the
status lines up to this point are driven onto the bus through
U25a.

To generate the closest thing to M1, SMEMR is combined
with the processor status outputs that indicate either a user
program or supervisor program access. This is accomplished
with Ule, U7d and U3b. User data or supervisor data
accesses do not cause M1 to become active.

The 68008 R W* line itself is used for the sWO®* output.
Both sOUT and sINP are the logical combination of the
output «of U13 with either the R/W* line or its inverse,
generated by U1f. These are combined through U3c and U3d
and fed to the bus through U24a. All status signals can be
disconnected from the bus by asserting SDSB®, thus turning
off U24a and U25a.

Power-on jump circuit. This part of the design is optional.
If you are content to allow the 68008 processor to always
fetch its initial stack pointer and program counter from
location $00000, you don't need this.

The output from U8b is used as a reset status bit. During
power-on or reset, it is cleared. Its output is optionally fed
through SW1-1 to one of the enable inputs of decoder Ul4.
Another enable input of U14 comes from AS, of the 68008 to
prevent false selection. For the first eight read cycles after
a power-on or reset, the data read by the 68008 will come
from tri-states U16, U17 and U23 if the power-on jump

switch is on. The output of U8b is fed through U2d and UTc
to prevent the bus data in buffers from turning on during
this period and causing a conflict.

Since the address inputs of the decoder Ul4 come from
the lowest three address lines, each output in turn of Ul4 is
enabled during the first eight read cycles. For the first five
cycles, all that happens is that the output of U6 goes high.
enabling U16a and Ul7a to drive a zero onto all the data
lines. This corresponds to all four bytes of the initial stack
pointer and the most significant byte of the initial program
counter. For the sixth cycle, Ul6b and Ul7b are enabled,
which drives a zero onto the high nybble of the byte and a
value onto the low nybble that is a function of SW3 switch
settings. This is the second byte of the initial PC. For the
seventh cycle, a similar operation occurs with U23, all of
whose outputs are switch selectable. Finally, for the eighth
and last byte, another zero is placed on the data bus. This
procedure allows a jump to any 256-byte boundary in the
address space.

One last thing which occurs at the end of the POJ cycle is
that pin 7 of Ul4, after going low to generate the last byte.
returns high, which clocks the POJ flip-flop high and
deselects the reset state. At this point, execution continues
normally.

On-board ROM. This too is optional. If you have a ROM
somewhere else in the system, you don't have to add it to
your CPU board. However, it is handy to have a small
monitor in ROM on the board to use for debugging purposes,
something I found quite useful when trying to bring up
CP/M-68K. See below for a source listing of such a monitor.

U28 is a 2732 4K x8 EPROM. Address lines A0-All
connect directly to the EPROM, while A12-A19 go to U27,
an 8-bit comparator. When the highest eight address lines
match the pattern set with EPROM address switches SW4,
the comparator output goes low and selects the ROM whose
data outputs connect directly to the on-board data bus. As
with the power-on jump circuit, the bus data-in buffers are
disabled through U2d and U7¢ during ROM read cycles. The
ROM feature can be disabled by SW1-2 if desired. SW4 can
be used to set the ROM address at any 4K boundary.

Construction

Most of my general construction philosophy is available
elsewhere (see "Build a High Resolution 8-100 Graphics
Board, Part 3" in Volume 2, No. 4 of The Computer Journal
so I won't repeat it here. There are just a couple of things I
would add to that. For power supply and ground lines. I
used 22 gauge solid wire set up in a bus structure. Each
individual chip socket then has a short piece of wire wrap
wire soldered to the bus lines on one end and wrapped
around the appropriate pins on the other end. See Figure 3
for a view of the back side of the board and Figure 4 for
close-up detail of power supply and ground connections. The
above-described method provides for a lower impedance
from power supply to ground, and better noise immunity
than using wire-wrap wire daisy chained from one socket to
another. I have had no trouble whatsoever with improper

Figure 3

board operation using this technique and 1 would
recommend it, even though it's a little more tedious than
using all wire wrap connections. All signal connections, of
course, are still made with wire wrapping.

Using two 7805 regulators, I split the power supply load
roughly in half. In my own version, I supply the 68008,
power-on jump circuit and on-board ROM from one regulator
and everything else from the other. Both regulators run
only moderately warm to the touch and you should have no
problem there.

Figure 5 shows a front view of the board. I won't show a
detailed parts layout for the board since a lot depends on
whether or not you decide to include the power-on jump
and/or on-board ROM options. The exact layout will be a
function of this. Some general suggestions are just to keep
the bus interface tri-states down at the bottom of the board
near the S-100 fingers and the front panel data socket and
DIP switches near the top where they're easy to get at.

Software
The weak link once again. One thing that I'm sure has
slowed down acceptance of the 68000 series is the lack of
software. For operating system choices, you have either the
UCSD p-system or Digital Research’'s CP/M-68K. I prefer
the latter since I'm already running CP/M-80 and CP/M-86

P N - T &« S . &L} W e o Y™
Ve 0 IS WST AT &
[A . aAw. B Ub BT 4
o 0 ® ‘..‘, I Se A o P Sl
":o . J"U‘A ‘o‘?’J;"
e e, i"..‘..i't.-.
o‘pooo 'oh~'oos: '0..~a'o
Il & BN 2 Bn ad e TV o.o.«rv
P o090 00 00 08 0 & st a0 0 0
—e hﬁ\‘-‘wr

» 0 6 6 0600 00 0100 ¢ 0606 0 2 . ¢ s

-ooooooo~-o"poooocoo-

&,\« Add. 4;9”.\\“5\‘«—

v Se e - @.*-~‘ooo- e

q,. L= 8 0je . - - -/'_/'“','.’

Figure 4

“re lomouter Sour~a 19

with a dual processor board. If you're fortunate enough to
have a hardware configuration for which a CP/M-68K BIOS
has already been written, you should have no problem other
than the financial one. If you have a custom hardware
configuration with homebrew boards and the like, your job
will be much harder. The first step in getting some kind of
disk-based system running is to have some kind of ROM
monitor on the CPU board, first to verify that the hardware
is functioning properly, and secondly, to use as a debugging
tool for a disk-based system using a gradual bootstrapping
process.

Figure 6 is a program listing of a ROM monitor I wrote to
get started in this. Its basic commands emulate a subset of
the DDT debugger, so those familiar with that wiil have no
trouble using the monitor. One difference is that the “go”
command to execute a program returns to the monitor with
an RTS instruction so that you have to use the monitor's
stack for your programs and avoid resetting the stack
pointer (A7). The listing was made by one of two versions of
a 68000 cross-assembler I wrote in order to bootstrap up to
the 68008 from my 8085/8088 system. One cross-assembler
runs under CP/M-80, the other under CP/M-86.

Figure 5

Comments

The 68008 is definitely a high-performance processor. At 8
Mhz you can do a lot of operations in a short time. [also like
the comprehensive instruction set, lots of registers, and
built-in multiply and divide. Even with CP/M-68K running,
there aren't a lot of languages or applications programs
available for the 68000, although I expect this to change in
the next year or two. If you really want to do a lot of things
with it, you'll have to be prepared to do a lot of your own
programming. The way I look at it though, that's really part
of the fun of computing.

I would encourage you to build this CPU board. The
power of the 68008 belies the simplicity with which it can be
added to an S-100 system. Operation is speedy and reliable
and the cost is quite nominal (about $100 for parts). Once
built, you'll probably not want to go back to your older CPU
except to run application programs you don't have yet for
the 68K.]

Listing 6 follows. References for this article are found on page 23.

20 Tre Computer Luume

002000029
2P0
oepooepe
P2p000020
20000200
00000000
20000020
20800009
00000000

00020000
. 90020006
2002000C
20020210
00020016
08020018
0002021C
90020020
00020022
02020026
00020028
90082082C
00020032
80020034
00020038
poe2803C
poe2e040
90020044
20220048
P0C2004E
80220052
20220254
29020258
PBB2085A
0002085E
00020060
90020062
29020066
900200 6E
pee2ee7e
£0€20272
0002887¢€
0902007A
8822007C
98220000
00029062
280200884
8P2200EE
8oL 20EES
292200881
PO Z00EE
0022009¢
20020094
802 2009¢
8002009A
00022009C
80P 2009E
000209AR
80020024
008208226
2002¢2A8
BPO2COAL
9PP20PAE
000202B0
20020084
P80200B6
20820088
980208BC
90200RE
pPB200CE
888200C2
0080200C6
£80200C8
2808200CE
#00202C2
000202004
0020008
P00200ES
900200E4
#82200EA
©60200EE

20840000
9OOFFFP0
PPOFFFO0
PP0FFFO0
OPRFFFO1
0PP08P01
200000200
09200007
0020040

20020000

2E7Ce0040000
207CP003F 000
610002C2
2E7CR0040009
702D
6100030E
610008224
67EE
2CRO0R 44
672¢C
@CoeePos3
6700C0DE
oCoooe €
67000114
2CcoRoe 4r
6702014A
eceoec4”
€7982186
207CROE3FR12
61000290
60BC
6100€C18¢€
2241
pcleeeer
6612

2009
geseRaepoeCe
Q2BRFFFEFFFQ
2442

621¢€
€lecelce
6l1g0@lcs
2441
6100Q15E
B5CY

6402

2449

528A

2FP¢

€EL2PCZ7

1819
610e027E
e
6loge29e
B5CS

6708

22@9
0200002F
6€ES

22%F

1919
ecogere2e
6586
9CPPRe7F
6502

722E
6100026E
B5C9

670¢

2009
020080 0rF
66ED
207CO0OC3FQOF
619920210
B5C9
6790FF 3A

@839¢0010080RFFFO1

67PRFFAG
1039000FFF00
oceeesl 3
670C

2001
2002
2003
2084
PROS
2006
2007
9908
2009
p010
8011
2812
2013
2014
8015
0016
6017
8018
8019
0920
0821
0022
9023
2024
9025
Po2¢
ge27
2028
Pe29
8030
pe:l
9032
9033
0034
2035
2236
2037
2038
peae
2040
2041
8042
8043
PO44
204:
geae
0047
PR4E
8e43
g
ees:
P05z
epca
8054
epss
BeoSe
0057
pese
0059
eree
LTI
0962
8063
0064
2065
P06€
gee’
PAEE
PeES
ge7e
0071
8872
2073
8274
075
pe7e
8077
pe78
0@79
pose
2081
0052
9083
2084
PP8Ss
P086

STACK
I0OSPC
S1O0ADR
DATA®
STAT®
IBIT
OBIT
DTRBIT
LINLEN

MONG68BK :

MON:

ERROR:

DUMF :

LUMPC:

TUMPR@:
DUME .

DUMFZ:

DUMF3:
DUMF4:

DUMPES
CUMP6:

DUMF7:

Monitor for 68028 (emulates DDT)

Version of 6/21/84

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG

MOVE.L
MOVE.L
BSR

CMP.B
BEC
MOVE.L
BSR
BRA. §
BSR
MOVE.L
CMF. B
BNE.S
MOVE.L
ADD.L
ANL.L
MOVE.L
BR* .S
BSk
BEF
MC\: . L
BEF
CMF.L
BHS.S
MOVE.L
ADIC.L
MOVE. L
BSR
MCVE.E
BSK
MCVES
BSF
CMP. L
BEC.S
MOVE. L
ANC.E
BNE. S
MCVE.L
MOVE. B
CMP.B
BLC.S
CMP. B
BLO.S
MGVEQ
BSK
CMP.L
BEC.S
MOVE.L
AND.B
BNE.S
MOVE.L
BSR
CMP.L
BEC
BTST
BEQ
MOVE.B
CMP. B
BEQ.S

$40000
SFFFB0@
IOSPC+500
SIOADR+$09
SIOACR+$01
1

[}

7

64

$20000

#STACK, SP
#$SGNMSG, AD
DSPLY
#STACK, SP
$'-',D0
couT
GETLIN

MON
#'D',D@
DUMP
$'s',D8
SET
$'F',DP
FILL

$'M', D@
MOV
+'G',D@
GO
$ERRMSG, AD
DSPLY

MON

GETARG
D1,Al
#$SeL, (AR)
DUMP®
Al,DO
#5C8, D@

$SFFEYFFFC, DE

D9, A2
DUMF
GETCOM
GETARG
Dl,Az
GETENL
Al,AZ
CUMPEE
Al,AZ
#1,A2
Al,-(SF)
L SPADR
(Al)+,D0
HOUT

¢ ', Ce
cout
Al,R2
DUMP3
Al,re@
$$0F , DO
DUMP2
(SP)+,Al
(Al)+,D0
s' ',D@
DUMPS
$S7F,D@
DUMPE
£'.',CQ
couT
Al,A2
DUMP7
Al, D€
$SOF,DP
DUMF4
$CRLF, AD
DSPLY
Al,A2
MON
$1BRIT, STATO
DUMP1
DATA®Q, DO
4$13,D0
pumps

256K RAM

;1/0 space

1810 base address .

;SI0Q data port -
;SI102 status port

;810 input flag bit number

1810 output flag bit number

;DTR flag bit

sMaximum input line length —

;Clear screen and display message —

1Reset stack pointer
;Display prompt

:Get command line
sEmpty line

;Dump memory

;Set memory

:F1l11 memory

;Move memory

;Go command

:Display '?' for errors

;Get first argument

:More than one argument .

;Check for separator
;Get second argument

;Check for enéd of line

;Second argument is same cr greater
;Only disrlay one byte

;Save address or stack
:Display address

;Display hex value
;Insert a space

;Last value

:Not an even 16 yet

iNon-printing —

:Printing
;Substitute

for non-printinc

;Last value

;Do a CRLF

;Last value

;See 1f key pressed |
:No |
:Get the character l

;8

009200Fr0
P00200F4
P20280F8
BPR200FC
00020100
09020104
op201e8
8002010C
20020110
00020112
00020116
0202011A
0082011C
00020120
00020122
99020126
020201 2A
0eP20812C
' 99020130
00020134

' 00020136

0202013A
PP02013E
090202144
00020148
0802014C
00020150
00020154
02820156
000201 5A
PP02015E
20020160
09020164
98029168
pov2@elec
PoP20172
00022176
29020178
9902017C
0PR2017E
00020180
90020182
00020184
00020188
2802018C
@002018E
00020192
090208196
. PPB20198
8002019C
000201A2
PO0201A2
P00201A6
0992021Aa8
9B0201AC
PPP2Q1AE
990928180
99028182
PBO221B6
20022188
000221BA
" 880201BC
900201CO
200201T4
0008201C6
000201CA
Q09281CE
080620104
290620108
P00201DA
902201DC
@02201DE
P90201EQ
P0020P1E4
900201ES8
POB201EC
POO201EE
PP0201F0O
P0P201F4
990201F8
9082081FC
09020200
90020202
00020206
00020208
20820220C

PCRO00L3
6700FFPA
60P0OFF16
618001EE
2CPeoRe3
6700FEFA
6009FF7E
610900CE
2241
61000122
610001E6
1019
610001F2
7028
61000204
6100011A
67EA
0CP0002E
670PFEDE
5348
619000n4
618000FA
0CB8190000100
6400FF02
1341FFFF
6@POFFC8
6120008A
2241
612000D2
61000080
2441
610000C8
610200276
619800CC
6C8100080100
6400FED4
BS5C9
6500FE96
528A
1281
B5C9
66FA
60BPFESBA
61690852
2241
6100009A
61000048
2441
61900090
61062020 3E
2641
€10000°92
B5C9
6500FE66
220A
9289
B7C9
63000010
picl
B78A
1722
51C9FFFC
6800FE4E
16D9
S1C9FFFC
60BOFE44
2F3C00020019
61020006
2F01
685A
4281
1218
04010030
65SPOFE62
BC210080A
6512
SF@1
PCO1000A
6500FES2
PCol0e19
64PBFE4A
ig1ls8
04000030
651E
PCO0B2PA
6512

2087
0088
0989
9999
0891
0092
0993
2094
8095
2096
0897
0098
0099
2109
9191
0102
9193
2104
9105
2106
0107
0198
2109
2110
2111
2112
P113
2114
g115
0116
0117
g118
0119
Q120
0121
p122
0123
0124
8125
pl26
0127
2128
0129
2130
2131
9132
0133
0134
9135
2136
0137
@138
2139
2140
2141
9142
8143
6144
0145
2146
0147
9148
9149
0150
2151
9152
8153
2154
8155
0156
0157
2158
9159
eleo
gl€l
8162
0163
0164
9165
2166
gle67
oles8
8169
2170
9171
8172

DUMP8:

SET:

SET1:

FILL:

FILL1:

MOV:

MOV1:

MOV2:

GETARG:

GETAR1:

CMP.B
BEQ
BRA
BSR

BEQ
BRA
BSR
MOVE.L
BSR
BSR
MOVE.B
BSR
MOVEQ
BSR
BSR
BEQ.S
CMP.B
BEQ
SUBQ.W

$503,D0
MONG6BK
MON

CIN
$503,D0
MON68K
DUMP1
GETARG
D1,Al
GETEND
DSPADR
(Al)+,D0
HOUT

¢ ',DO
couT
GETLIN
SETI1
$'.',D0
MON
$1,A0
GETARG
GETEND
#5100, D1
ERRCR
D1,-1(Al)
SET1
GETARG
D1,Al
GETCOM
GETARG
D1,A2
GETCOM
GETARG
GETEND
#5100, D1
ERROR
Al,A2
MON
#1,A2
D1, (Al)+
Al,A2
FILL1
MON
GETARG
Dl,Al
GETCOM
GETARG
D1,A2
GETCOM
GETARG
D1,A3
GETEND
Al,A2
MON
A2,D1
Al,D}
Al,A3
MOV2
D1,A3
(A2)+,(A3)+
-(A2),-(A3)
D1,MOV1
MON
(Al)+, (A3)+
D1,MOV2
MON
$MON, - (SP)
GETARG
Dl,-(SP)
GETEND
D1
(A@)}+,Dl
$'0',D1
ERROR
$106,D1
GETAR1
$7,D1
$18,D1
ERROR
$16,D1
ERROR
(AD)+,D0
$'6',D0
GETAR3
$10,00
GETAR2

Tre Cormouter Louwrme 21

:Break
:Go back to monitor on all others
:Wait for another character

:Continue with display
:Get address

;Make sure EOL is next
;Display current address

;Display current contents

; Space

;Fetch new value if any

;Skip to next location

;End with '.°

;Point at beginning of line again
;Get the value

;Make sure no more

;Out of bounds
iModify value
:See if more

;First address in Al

;Second address in A2

;Byte in D1

;Byte must be <=255
;First address is greater
;Fill the byte

;More to fill

;Starting address in Al

;Ending address in A2

sDestination address in A3

;Ending address must be greater
;Byte count in D1
;Destination is lower or same

;Increment both pointers

;Put return address on stack
;Get go address

;Put on stack

;Make sure EOL is next

;Use D1 as accumulator

:We need at least one real digit

;Digit is ©0-9

;1l1legal character

;Doesn’'t qualify for hex digit

;Delimiter

;Digit is 0-9

22 The Computer Journal

9902020E
09020210
909020214
99020218
#902021C
00020220
99020222
00020224
99028226
99020228
90820227
eeo2822C
98020230
00020234
0920236
90020238
9902823C
90020240
00020242
00020248
0002024A
9902024E
00028252
90020256
P002025A
9002025E
29020260
90020264
90220266
0002026A
0002026C
90820270
09020272
00028276
22820278
9082027C
P092027E
90020282
09020284
200208288
9002928C
9892828E
09928292
09020294
90228298
0002029A
2002029C
9902029E
00020242
00822224
8022022¢€
PPO202A8
P20202AC
0902 2AE
POP202B2
090202B4
2PB202E8
00220 2BA
990202ERC
PBP202BE
00B202C0E
800202C2
P00202C4
290202CE
002202CA
00220209
90020202
goe2ezpe
20222202
000202DE
POO202ED
090202E2
POP202E4
000202E6
PP0202EB
POR202EA
00020 2EC
8PO202F4
P80202F6
@20202FC
PP0202FE
00020300
goo203082
00020304
00020306
eoR20308

SFo0o
2COPODOA
65000010
oCceRen1e
64000008
E981
D2eg
6@DA
5348
4E75S
1918
#coeov2C
66PPFEL6
4E75
1818
8Ce0000eD
660BFERA
4E75
207CO003F016
4201
610800A0
020000 7F
2CPRP0Y 3
6709FDAS
oceeools
6762
2CcesesoD
6760
2COPRR0A
675A
BCoP0008
672C
OCPPOCTF
67D2
ocoeooe2o
65CC
9CP108040
64C6
61900012
BCPOePR 61
650A
2CBOOL2 7A
6204
02000€5F
18ce
5291
68AC
143C2001
4A01
6724
788¢c
61e0Qe7E
782¢
6leeece
7008
61000272
5348
5321
5302
66E6
6288
1401
68DC
19BCOOED
207CORE3FBRF
6€10E
207CP00Y3FRl6
1018
eceeoesr
4E75
1818
4A00
6704
6140
60F6
4E75
PB8390001000FFFO1
67F6
1@39000FFFO0
4E75
2009
48490
€12C
El198
6108
3209

8173
9174
8175
8176
9177
2178
2179
9180
0181
2182
6183
o184
8185
2186
0187
g188
8189
2198
6191
8192
9193
2194
2195
8196
0197
@198
9199
2200
0291
9282
0203
0204
2205
0206
2207
0208
9209
021¢
8211
0212
0213
0214
8215
0216
g217
8218
0219
0222
022.
0222
8223
2224
8225
B22¢
8227
0228
0229
023¢
6231
0232
8233
8234
0235
0236
8237
02386
02239
024¢
2241
0242
0243
0244
8245
0246
0247
0248
8249
g25@
0251
0252
8253
0254
9255
0256
8257
0258

GETAR2:

GETAR3:

GETCOM:

GETEND:

GETLIN:

GETL1:

STORE:

BS:
BS1:

BS2:

CANCL:

EQL:

DSPLY:

DSPLY1:
CIN:

DSPADR:

SUBQ.B
CMP.
BLO
CMP.
BHS
ASL.
ADD.
BRA.
SUBQ.W
RTS
MOVE.B
CMP.B
BNE
RTS
MOVE.B
CMP.B
BNE
RTS
MOVE.L
CLR.B
BSR
AND.B
CMP.B
BEQ
CMP.B
BEQ.S
CMP.B
BEQ.S
CMP.B
BEQ.S
CMP.B
BEQ.S
CMP.B
BEC.S
CMP.B
BLO.S
CMP.B
BHS.S
BSR
CMP.B
BLO.S
CMP.B
BHI.S
AND.B
MOVE.B
ADDQ.B
BRA.S
MOVE.B
TST.B
BEC.S
MCVEC
BSk
MOVEC
BSR
MCOVEQ
BSK
SUBC.W
SUBQ.B
SUBC.B
BNE. S
BRA.S
MOVE.B
BRA.S
MOVE.B
MOVE.L
BSR. S
MOVE.L
MOVE.B
CMP.B
RTS
MOVE.B
TST.B
BEQ.S
BSR. S
BRA.S
RTS
BTST
BEQ.S
MOVE .B
RTS
MOVE.L
SWAP
BSR.S
ROL.L
BSR.S
MOVE.W

nwer w w

47,00
410,00
GETAR3
416,00
GETAR3
44,D1
D@, Dl
GETAR1
$1,A0

(AB)+,D0
¢',',DR
ERROR

(A)+,D0
$50D,D0
ERROR

$LINBUF, AQ
Dl

CIN
$$7F, DO
45903,D00
MONEBK
$#518,D0
CANCL
$$0D, DO
EOL
$$S0A, D0
EOL
$508,D0
BS
$$7F,DO
GETL1

$' ',DO
GETL1
$LINLEN, D1
GETL1
couT
t'a’',D@
STORE
4'z',D0
STORE
$S5F, D@
DR, (AB)+
41,D1
GETL1
$41,D2

Dl

GETL1
+508,00
CouT

$' ',DO
couT
$S08, D0
CouT
1,70
$1,D1
$1,C2
BS2
GETL1
D1,D2
BS1
$500, (AR)
$CRLF,AQ
DSPLY

$LINBUF, AD

(AQ)+,D0
$50D, DO

(AD)+,D0
Do
DSPLY1
couT
DSPLY

$1IBIT,STATO

CIN
DATAQ, DO

Al,DP
D@
HOUT
#8,D0
HOUT
Al,D?

;Delimiter

;Delimiter

7Multiply accumulator by 16
;Add in digit

:Go look for more digits
1Back up pointer

;Check for ',' next
:Check for CR next

;Storage pointer
;Length counter

s Input a character
:Mask out parity

;Cancel the line

iCR is end of line

;LF can also end line

BS is allowable

; Ignore DEL

:1gnore non-printing characters

;No more room in line
;Echo the character

;Not lower case
;Not lower case

;Store character
;Increase byte count

;Already at beginning
1Move cursor back one

;Overwrite with

:Go back again

;Court 1is in D2
:Back up Ll spaces

;Store CR at end of line
sEcho a CRLF

;Point at beginning of line
;Get first character

;See i1f CR

;Display string

;2ero terminates string

;Send the character

;Test status bit

;Wait for data received
;Read the byte

:Display current address
;Do highest of 3 bytes

;Next byte

Tne Computer sourna 23

Low Cost, Modular Encoders
| COMPUTER® : from a priori let
- l you easily build
TRADER and control:
MAGAZINE ¢ ROBOTS
- e XY TABLES
% % LIMITED TIME OFFER « %« % e VEHICLES
BAKER’S DOZEN SPECIAL! * MOTORS
- $12.00 for 13 Issues e CONVEYORS
Regular Subscription $15.00 Year and more.
i iption: H Thi dul oach to position and direction sensing of rotary mot
— Forelgq Subscnptlon. 355'00 (8" ma") Iet:trr?:olé;roarpr%rbotm deslgn;rlcf,irt‘ thne enégge:??o the 1|onbg, instead of htt:g;
$35.00 (surface) the job to the encoder. PU-2/DISC and IM-1/UNI-DISC form a flexible. low
cost, precision duai-track encoder. Both packages output a 50 cycleirev
Articles on MOST Home Computers, quadrature TTL square wave signal. OSPB processes these signals and
HAM Radio, hardware & software reviews, v URCu pules 11,2 & s wncene eseuton & e cole
- programs, computer languages and construc- 375" and .500".
tion, plus much more!!! 1. DISC-{shaft size) 2.25" encoder used with PU-2 $29.95
Classified Ads for Computer m Radi - 2. UNIDISC-(shaft size) 1.85" encoder used with IM-1 $24.95
Comp & Ham Radio Equipment 3. PU-2 Retroretflective IR pick-up electronics for DISC. $29.95
— FREE CLASS'F'ED ADS Includes 4-pin connector. 2" by 2" pc board.
for subscribers 4. IM-1 Through-beam IR pick-up electronics for UNIDISC. $24.95
X HI= H HH includes 4-pin connector. 2" by 2" pc board.
Excellent Display and Classified Ad Rates 5. OSPB-1X, -2X Of -4X Use with PU.2, IM-1 or $29.95
u ationa Coverage any dual track encoder. Outputs: UP/DOWN and PULSE, or
- CH ET LAMBERT, w4WDR UP and DOWN (add DC). inctudes 4 and S pin connectors.
i H H Call ite for brochure. It describes the above parts, plus linear encoders,
1704 Sam Dnve ° B"mlngham' AL 35235 aner w,s’perozze(’s antg thin, Ilexl’ble metal beits for drive sytems.
(205) 854'0271 Terms: Purchase Order or check. Add $3 00 shipping and handling Wash. residents add
— sample Copy $2.50 7.9% sales tax
a priori
21318 125th S.E. Kent. WA 98031 (206) 630-2144

o002030A 6104 2259 BSR.S HOUT ;Last byte
0002030C 7020 8260 MOVEQ ¢ ',D@
PPO2030E 6018 @261 BRA.S COouT ;Follow with a space
90020310 1FO0 0262 HOUT: MOVE.B D@,~(sP) ;Output ASCII for hex byte
— 90020312 E808 0263 LSR.B #4,D0 ;Get high nybble
00020314 6102 0264 BSR.S HOUT1
090820316 101F 0265 MOVE.B (SP)+,D®
00020318 0200000F 2266 HOUT1: AND.B #$$0F, DO ;Mask nybble
PP22031C 06020230 2267 ADD.B +'9',D0 ;Add offset
—_— 00020320 ©CO892039 0268 CMP.B $'9',D0
90020324 6302 9269 BLS.S couT ;@-9
99020326 5SEQ0 9270 ADDQ.B #7,D0 :A-F
00020328 PB390P0YPOOFFFO1 8271 COUT: BTST $0BIT, STATO ;Test status bit
90020830 67F6 9272 BEQ.S couTt ;Wait for holding register empty
— 00020332 ©839000700CFFFO1 8273 BTST $DTRBIT, STAT®
0982033A 67EC 9274 BEQ.S COUT ;Wait for DTR high
9802033C 13CPQOOBFFFO0 8275 MOVE.B D@,DATA® ;Write the byte
00820342 4E75 0276 RTS
0277 :
— PP020344 0QOP3F000 0278 ORG STACK~$1008
0279 :
QP03F0P0 1B2A3638393038284D4F 0280 SGNMSG: DC.B $1B, '*68008 MONITOR’
PP03FCOF ©@DOADO 9281 CRLF: DC.B $0D, $0OA, 0
PRO3F@12 3FODOALR 0282 ERRMSG: DC.B '?',$00,530A,0
J— PBO3FCl6 P00POBO42 0283 LINBUF: DS.B LINLEN+2
9284 s
POR3FO58 POVOVOOL 9285 END
References:

MC68008 16-bit Processor with 8-bit Data Bus by Motorola Semiconductor (#ADI-939).
68000 Microprocessor Handbook by Gerry Kane (Osborne #41-1).

68000 Assembly Language Programming by Kane, Hawkins and Leventhal (Osborne #62-4).

24 Tre Computer souma

WRITING AND EVALUATING DOCUMENTATION

by Bill Kibler

Over the last several months, my series of articles on
computer integration had a lot to say about documentation;
most of it was not flattering. This is due to the common
misconceptions about what documentation is and does. I
recently took a course on software documentation which
dealt with how to write good supporting documentation, and
which brought many other topics to my mind. Criticizing
without providing help is not a good way to write, so I have
decided that this follow-up article would provide just such
help. This discussion will also give users some idea of how to
tell good documentation from bad.

Documentation

In writing support documentation the first step is
understanding the user. In the computer industry this has
meant deciding whether your user is a beginner, an
intermediate, or an expert. The inexperienced writer will
assume one type of user and write for that audience. Even
in my class that was the preferred method. I differ from that
idea only in its implementation. Personally, I feel that all
users pass through all levels of ability when using
documentation. With any new equipment or software the
first time use is that of a beginner. An expert will approach
the information and scan the beginner section for important
facts. However, the expert may take only ten or fifteen
minutes to become familiar with it, whereas the beginner
may take several days.

Because all users pass through different levels of
experience when using documentation, it should contain
many levels of help. The beginner is “lead by the hand”
through the needed operations. Fear is still a problem and
sample procedures are used to eliminate it. Pictures and
drawings provide the most help for beginners and will point
out the important bits or facts that even the experts should
know. Intermediates will read the beginner section much
like a beginner but more quickly, looking for warning
statements. At the intermediate level what is needed is
tutorial information. The tutorials provide an in-depth
understanding of the product. This understanding is
achieved through instructional examples and learning
projects. The only difference between users is how long and
how much they use the tutorial. A beginner may spend a
year, an intermediate two to four months, and the expert a
few days to a couple of weeks.

When people start feeling confident about their abilities,
they will then start using the documentation only for
reference. At this point such items as glossaries and indexes
become important. In software the use of sections in which

the topics are listed and then broken out by funtion or use,
seem to work the best. Short explanations with a sample of
the routine procedures, all limited to one page, are ideal.
This advice on understanding how people use their
documentation is important to keep in mind when writing
documentation, whether it be for software or hardware.

Organization

The organization of a document should be the same
throughout a company's product line. This advice is also
good for both hardware and software. Technical readers
expect to find the information in standard formats, and may
be unable to use the product properly if the format is
unusual. An organization that fits the levels of experience
and at the same time meets the normal user’s expectation is:

-Table of contents, both for the book and for each
chapter.

-An overview or introduction section.

-The beginner section

-The intermediate or tutorial section

-The expert or reference information

-Apppendixes

-Glossary

-Indexes (by as many ways as possible)

Tables of Contents give the user a quick overview of what
to expect, and are a help in finding a certain topic. Tables at
the start of each chapter can be expanded to show subtopics
that would otherwise make main tables too large. Bleeding
the index location to the edge of the page improves the
documents much in the same way that index tabs help
separate the chapters.

An Overview of the entire document’s objective, intended
users, and scope is needed at the beginning. Overviews at
the start of each chapter further help explain what is going
on and can help set the user's level of expectation for the
next chapter.

The Beginner Section is not only for beginners, but for all
first time users. This should have the ‘how to turn it on'
information as well as any warnings and dangerous
situations to watch out for. When used by more advanced
users this will be skimmed over, so large drawings and
highlighted information should be used here.

The Intermediate Section starts the in-depth explanation
of the product. This is generally done by starting out with
simple topics and progressing to more advanced subjects as
the user’s skill level advances. A hardware document will
have the theory of operation in this area, and the software
document will provide information here about the structure

of the program. In either case, this section explains how

everything fits together.

The Expert Section contains all the previous information
arranged alphabetically, by topic or by use. Only one topic is
covered per page (one topic per heading, if more than one
page is needed). A typical format here would be a
description of the topic first, some details, and then an
example. The information will be used in a random method
and therefore should be self-supporting.

Appendixes contain item-specific information or reprints.
For hardware documentation, reprints of hard to get

. information are excellent, and diagrams of any custom ICs

are necessary. For software users a step-by-step guide of
' some special or one-time-only procedures are found here. A
good example would be the install routines of software
programs and the hardware specific routines for system
generation.

Glossaries are very important, as they can list words
beginners have not yet fully understood. All levels of users
can get confused at times, and glossaries will be the quick
answer to their needs.

Indexes are very important for the more advanced users,
as they can speed up their search for help while sitting at
the terminal. Poorly designed indexes can be almost useless,
so subtopics or descriptions should be used where possible.

Content

When writing the document, the content of each section is
actually more important than its layout. If the index makes
it possible to find the information rapidly, but the
information is not accurate, who cares about the index? This
fact was recently brought home to a computer maker whose
. systems were being returned for failures at a rather large
rate. The problem, however, was caused by incorrect
instructions in the documentation, and not by component
failures.

There are many styles of document writing currently
vying for prominence. Simply, the best style will be the one
that conveys the needed information clearly and quickly. I
personally feel that locking into a certain style for an entire
book doesn’t work. An example is the Epson Graftrax
manual. Except for a few appendixes, the writing style is
intended for beginners and will insult anyone else. Although
this tone may be appropriate at the beginning, it grows old
quickly. Changing the slant of the writing as the skill level
of the user increases would be a much better approach.

When changing the slant, it is important not to change the
usage. This common problem is caused by the use of a
thesaurus in technical writing. Whatever term is used to
describe an action or function should be used ever more.
You may have noticed that I have used the word ‘document’
consistently, even though ‘manual’ would mean the same for
most readers. The careful avoidance of synonyms is
absolutely necessary to prevent disastrous results as the
level of complexity increases, and is especially important if
the user is new to computers. This consistency works not
only for text but for graphics as well.

Tne Computer souma 25

The use of graphics cannot be overstressed. We all know
the saying about one picture being worth a thousand words.
but in documentation, it's worth time and money t¢ . Speed
in using the document can be gained by using ‘key’ symbols
to denote functions or topics. Flowcharts are graphics and
can be used in many ways other than just program
organization.

Updating and Management

A major problem with most manuals is their inability to
be updated. As quickly as things change in our industry, this
can be an important aspect that some companies overlook.
Those documents that have pages that can be replaced make
it easier. A recent style is the bound book in which all
information is done in an overview method, with specific
information contained in other pamphlets. Updating is
simplified by replacement of the smaller pamphlet.

Updating and support go hand in hand: both are
uitimately a result of management decisions. Technical
support is most often a division of sales, and as such,
updates may be aimed more at selling you the latest than at
fixing the bugs. Management is probably the largest
stumbling block to effective documentation. We have all
heard the saying that documents are a necessary evil. This
attitude is changing, but so slowly that it could cause the
downfall of some companies before it gets corrected.

I believe that a good company is a lot like our country — it
needs a balance of power to operate efficiently. In the
industry we have three groups; a manufacturing group, a
sales group, and a management group. The relationship is
something like this:

-sales finds out what clients want

-sales tells manufacturing what to make

-manufacturing designs it and makes it

-sales sells it

-sales supports it when it fails

-management checks and

manufacturing relationships

-management controls funds and thus quality of product

-when product sells well sales gets glory

-when product fails manufacturing gets funds cut by
management
These are some of the many different cross paths of a
typical business with a lot of unequal relationships. I feel
that the relationship should be more like our own
government (see Figure 1). Sales is a lot like the president,
and should be telling manufacturing (congress) what it
needs. “Congress” produces products to sell, but the
“supreme court” controls whether it passes inspection or
not. For me, the support organization is much like the
supreme court and should be able to tell manufacturing
when something needs to be changed. As with our
goverment, the hub of this wheel is the people, or
management, who have the final say in all mattters.

The reason for this division is the ever-increasing needs of
the user. As the systems increase in number and
complexity, so too will

watches sales and

the need for good support

26 Tre Computer Jnurra

documentation. The current problem is the lack of support
for maintenance, the next boom industry.

Maintenance Support

As more and more units are bought, more and more
failures will occur. Warranties will handle some problems at
first, but later on it will be repair sites and users that will
handle the problems. For this to be possible, the documents
will have to provide all the necessary support. Currently the
information needed by independent repair people is not
supplied in most users’ manuals. It is not clear whether this
is the sales department’'s way of getting you to buy, or just
a result of the lack of knowledge about what users need and
do. I personally feel that the fear of losing trade secrets may
have the largest bearing on the subject. This may become a
moot point as more sources for support start appearing,
such as SAMS photofacts for computers.

What It All Means

In the case of maintenance support, the user should check
his documents at the time of purchase to see whether they
contain enough information for him to do his own
maintenance. For programs, this means that enough
information should be supplied so that you can use the
program for what you want it to do. I check the Table of
Contents to make sure the topics I am interested in are
there. Quite often I start from the back and go forward,
checking the indexes, glossary, and reference sections. My
quickest rule of thumb is to look at the appendixes—they
give me a pretty good idea of how thorough those preparing

NOW

3
Take %
it!

N >
> a
® ¥
“ ®

o
o°
e
You need
ﬂuy these
this
SALES

Support

wl‘?ot 1 mo‘e

sell sell

SUPPORT

MANUFACTURING)%°

the document were. Lastly, however, there is still nothing to
compare with an educated buyer. This statement holds true
whether you are buying a system, a book, or a document.

Conclusion
By no means have I covered all there is to preparing
documents. If you are involved in writing documents, I hope
that this article will get you to reflect on what you write. A
considerable number of people who got their training in
other disciplines are now finding themselves writing. They
got their training by reading very dry and hard to read
documents. This is reflected in their own dry and boring
writing style. Those who start out as writers often try to
write technical material in fancy prose, only to lose their
audience through absolute confusion. What this means is
that there is a need for special training in technical writing.
As | said at the beginning, I just completed such a course,
and can clearly see now how this is true. Most managers
know how important proper skills are for managing a
company. The use of management seminars is becoming
very commonplace, but writing seminars are not yet as
common. If you write, take my advice and try one of the
many writing courses available —they are well worth it. For
those who only write in-house, or have penny pinching
managers, join one of the technical writing organizations,
and get into the habit of trading your work with others for
comments. Nothing surpasses the field testing of documents
for finding out if you did a good job or not. The end user is
still the best test of a document's usability.
For us end users who get the written work inside the
continued on puge 29

IDEAL

MANAGEMENT
Are we supplying an
supporting tl:e)?"

s1yl P,o“

SUPPORT

ol
We buily i\

Figure 1: Manufacturing Management Structure.

- - '_:?:; ¢
L L

Interfacing Tips, Continued from page 13

Figure 1 on page 3 directly couplable to the TS2068, or is
some modification needed? What software modifications
~would I need to make, such as PEEK and POKE statements
" and RAM memory allocation? Also, what data on the
TS2068 would you need to know to advise me on how to
adapt the circuit for the VIC-20 EPROM Programmer to the
Timex TS2068 in both software and hardware
considerations?

Enclosed is an addressed, stamped envelope. Any advice
would be helpful.

Bryan Lepkowski, New York
Dear Bryan;

Your question about interfacing the TS2068 to the VIC-20
EPROM Programmer ts an interesting one. The hardware
changes which are required are not extensive, but the
software differences are rather tnvolved

The Commodore machines (VIC-20 and Commodore 64
use memory mapped input/output IMMIO) for interfacing.
but the Sinclair machines (ZX81, TS1500, TS2068/ cannot
use MMIO because of ideosyncrasies in ther address
decoding scheme. This leaves accumulator input/output (1/O)
as the Sinclair's means of interfacing, which requries a
different software approach than the Commodore's MMIO.
To make matters worse, there s no way to execute the
accumulator I/O 1instructions from the Sinclair’'s BASIC
language. You must write the interface “drivers” in machine
code and execute them as "USR" subroutines from BASIC.

COMPUTER
CONTROLLED
ROBOTICS

1. DRIVER BOARD 5005D8B $75 *
45 x38 xO5 TILCMOS OMPATBLE
OPTICALLY INSOLATED FOR 4 PHASE MOTORT 2AMFL 52 Y

ZI.INEAR AgTUAT(?RD 601 AM $75

FoLb
3 uNﬁR ACTUA[OR 501AM $43
12V 35w 1802 Oz SitF SizZt
40 OZ HOLDING FOPCE 1RE IN TRAY

4. STEPPER MOTOR 201 SM 5 16
vaw 100 I TS
0 8 OF N HOLDING T ORG.

5 STEPPER MOTOR 3 3015M §59
80 OZ IN HOLDING ‘OQT:‘E

0. MOTOR MOUNT FOR 3015M $25
7 MOTOR MOUNT FOR 501 AM $12

& MOTOR MOUNT FOR 501 AM $13
% EDGE CONNECTOR §3.50

AMSI core

BOX 651, SMITHTO\.NN LI NY. 11787

(516) 361-9439

The answer to your question is interesting enough that I
am goitng to address it directly tn my column with an
installment on interfacing the Sinclair machines. It will be
November before this information will appear in The
Computer Journal, so I will send you enough information tu
interface the EPROM programmer to the TS2068 as soon as
I have all the details worked out.

I have enclosed the required hardware changes in case
you want to attempt the software for the interface yourself.
If not, I will be sending you additional information shortly.

Thank you for your interest,

Neil Bungard |
' I
752068 Cornecio” Adctong =arCware | v{2TEPRCM oL
Pin no t i
258 ™ | : 4
138 Ay t n o] rce
128 Ay 10

20A

18a L8367

194
4A
10a
1A
13A
124
9a
A
TA [S

€10

(V3 DR PN (V3 1") AV P #

— == |=l==l= = = - = 4 4 4

7415245

28 The Computer Jourra

Reader Design Project:

AN ELECTRONIC DIAL INDICATOR

by Art Carlson, Editor/Publisher

Now that microcomputers are well established in the
business word. the next area of rapid growth will be that of
using micros to control the real world—and many of these
applications will require measuring and controlling the
position of a mechanical device. There is a problem,
however, in that much of the technology needed for these
applications does not exist on an affordable level.

Computer machinists and robotics experimenters need to
convert the mechanical position of an object to electric
signals for the purpose of measurement or control. For
several years I have thought that 1 would like to use a
computer to control my lathe. I am sure there are thousands
of applications for the electronic equivalent of the dial
indicator commonly used in machine shops, but I have not
been able to locate a low-priced, hacker oriented transducer,
nor have I been able to come up with a good design myself.
These devices do exist for companies such as General
Motors who have large budgets, but they are too expensive
for the amateur machinist or the educational experimenter.

Since one of the purposes of The Computer Journal is to
encourage the sharing of knowledge and ideas for solving
common problems, we are presenting the electronic dial
indicator as a reader design project. I'm sure that our
inventive readers can come up with some good design ideas.

There are so many possible applications that no one
design will be suitable for all of them. Our goal is to design
electronic indicators for several of the most frequent uses.
This information will be placed in the public domain for use
by all, and should include sufficient background information
so that others can customize the designs for their individual

B l? .
\‘ 0

Figure 1

applications.

The purpose of this project is to design a transducer to
convert the position of an object to an electric signal which
can be displayed on a digital readout and/or used by a
computer for control purposes. The device should interface
through standard parallel or series interfaces so that it is
not computer-specific. For convenience in writing, and to use
a consistent term, we will refer to the device as the
indicator and define this to mean the portion which converts
mechanical position to an electric signal. There will be
several classes of indicators for different combinations of
range and sensitivity, as most devices either measure
extremely small variations over a small range, or large
variations over a large range. Perhaps our readers will
surprise us with an indicator which can respond to small
variations over a large range (and still be affordable by a
hardware hacker).

A frequent application for a dial indicator in the machine
shop is to measure the runout when setting up a piece in the
lathe (see Figure 1), or to sense the position of a cutting tool
for making cuts or holes to an exact depth (see Figure 2). An
electronic indicator which could be coupled to either a
digital readout or a computer would be very useful in the
machine shop and for other mechanical positioning
applications.

Design Requirements
1) Resolution: The indicator must be able to resolve a
displacement of 0.001 inch (one-thousandth); a resolution of
0.0001 (one-tenthousandth) would be better.

A\ Y

T Ty

Figure 2

2) Range: The indicator must be able to respond over a
range of at least 0.030 (thirty thousandths) of an inch; a
range of 0.060 (sixty thousanths) or more would be better.

3) Overtravel Protection: The indicator must include a
mechanical stop to avoid damage caused by displacement in
excess of the range, or must be capable of mechanical
displacement in excess of the useful range without damage
to the indicator.

4) The indicator must work with any type of test piece
(steel, brass, aluminum, plastic, etc), and should not depend
on the characteristics of the test piece. It should also work
with a test piece having a surface which may be smooth,

- rough, or dirty (covered with cutting oil).

5) Safety: The probe portion of the indicator should
operate with low voltages of limited current in order to
avoid the possibility of electrical shock or damaging high
currents if the cable should be cut.

6) Output: The electrical output from the indicator should
be suitable for input to popular computers. The reading
should be stable and consistent.

7) Direction: The indicator must respond to the direction
of travel, and indicate the absolute position if it is
fluctuating above and below a certain value. 8) Interface:
The indicator should interface to the computer through a
standard interface such as the parallel Centronies® or
series RS-232 interfaces so that it can be used with most
common computers.

These are the minimum requirements for an indicator,
and can be expanded for other applications.

One Approach
As an example of a simple, but workable approach to this
~ design problem, I'll outline some thoughts I have developed.
" This is not necessarily a good approach, but it is easy to do
with readily available materials. I believe in using “cheap
and dirty” methods for one-of-a-kind devices when the
primary objective is to accomplish some other task. In this
case,] want to make a useful indicator so that I can proceed

Tre{zmolter Louma 29

with the job of automating my lathe, rather than spending
months developing an elegant indicator to be produced in
large quantities.

The indicator shown in Figures 1 and 2 con:ains the
mechanism to change a small motion of the tip to a large
rotation of the pointer. One approach would be to fasten a
fiber optic pickup on the pointer to sense the black
gradations on the dial as the pointer rotates. It is likely that
there would be a problem with the amount of force required
of the pointer to move the fiber, so I thought of letting the
pickup remain stationary while the marks rotate. One could
draw the gradations on a thin piece of clear plastic, remove
the pointer from the shaft on the dial indicator, and then
fasten the plastic disk on the shaft so that the disk rotated
in place of the pointer. The optoelectronic pickup would
detect the lines on the rotating disk, and this signal would
be used by the computer or the digital display. In practice,
the pattern on the disk would have to consist of a simple
pattern viewed by two detectors in order to determine the
direction of motion. Otherwise a small back-and-forth motion
around a fixed point would be shown as a large
displacement.

Conclusions

The use of an indicator on the lathe is a very simple
example used here merely to illustrate the principles. There
are many more involved applications for the indicator in
robotics and computer controlled machining where there is a
need to determine where something is located or measure
how much something is moving under load. A good example
would be measuring how far an internal part in a robotic
device bends under load. Another example would be
upgrading a robotic parts placement device for greater
precision by using the signal from an indicator to control the
final position of the part.

We encourage our readers to share their knowledge in
this area with others, and to submit additional ideas for
reader projects.]

PRI e e e s

Documentation, continued from page 26

packing box, there is not much we can do about bad
documentation except not buy. The lack of funds will stop
many companies from producing poor documents. A more
helpful way, however, is constructive criticism. Good
documents will have a postage-free return card for your
comments; use them when you see ways to change things for
the better. Comments like “the document is terrible” help
no one. Be precise and informative, and let them know that
you would be willing to review their next version for free.
When buying equipment or books, you should keep in
mind the points I covered above. Remember to check for
indexes, glossaries, tutorials, and appendixes. Ask yourself
first, “what do I really need from this document,” “how do I
plan on using the material,” and “are my needs going to
change?’ Getting these points clear in your mind before
checking out what is available will make things much easier.
Above all else, become an educated buyer. B

Recommended Reading:

“Why Johnny Can't Document,” Sandra Pakin &
Associates Folio, 6007 N. Sheridan Road, Chicago, IL.

“Method For Designing Computer Support Documenta-
tion,” Master's Thesis, Sept. 1983, Report no. LSSR 54-83,
Department of Communications, AFIT/LSH, WPAFB,
Ohio 45433.

“The New Playscript Procedure, Management Tool For
Action,” by Leslie H. Matthies.

Software Psychology by Ben Schneiderman. Wintrop
Publishers, New York, 1980.

The Elements of Friendly Software Design, by Heckel.

Join the “Society for Technical Communications,” 815
15th Street NW, Washington D.C. 20005.

30 The Computer Journai

Letters From Our Readers

~Dear Friends:

Here is my subscription renewal. I just want you to know
that your magazine is one of the most interesting and useful
to which I subscribe. I have subscribed to more than two
dozen magazines over the past years, and some I have let
drop, while others have ceased publication. But for my
purposes the best three are yours, Microsystems, and
Computer Skopper. 1 would have to put Byte fourth; I would
drop it except for what I learn from reading the ads (they
should give it away as a throwaway instead of charging for
subscriptions).

An article (or series) I would like to see very much would
be on uninterruptible power supplies. There is so much hype
about UPS that I just can't sort any of it out. I think I need
one, yet some have square-wave output and others have
sine-wave or “sinusoidal” output (sounds like a respiratory
disease, but I guess it means “almost sine-wave, but not
quite”). One ad says “Not For Use With Linear Power
Supplies,” and another says “Note: do not use with
refrigerators, capacitor-start or split phase motors,
inductive reactive capacitive loads.” That seems to let me
out, with the big capacitors on my hefty Integrand linear
power supplies. And why should they COST so MUCH?
Why do they come with batteries included so that they
weigh over the 70lb. shipping limit and so have to come by
common carrier motor freight, when I can buy perfectly
good batteries right here in town? If the square-wave output
type will not work with (or will damage} my linear power
supplies, could I still hook my terminal up to a square-wave
UPS, plus maybe the AC motor drive line to my 8-inch
drives? 1 had the idea of using a battery charger, a deep-
cycle battery, to a DC-to-AC power inverter, then cleaning
up the inverter output with one of the powerline regulators.
That would be modular and much cheaper to buy and repair
than the ready-made UPS units, but it is still too much
money to buy the pieces just to see if they work together.
At this point, I am totally bogged down.

I want to pass on a positive experience with Wyse
Technology in San Jose, the makers of the Wyse-50 terminal
I am using with my S-100 system. The keyboard layout and
feel, the 16 x 2 user-programmable function keys (arranged
in groups of four keys, so that four fingers fit right on top of
them), and the easy-toread 14" screen, give this terminal
the best price/performance ratio for me that [have yet seen.
One week after the three-month warranty expired, the
terminal died. I called the dealer I bought it from (a “full-
service full-price” store, not a mail-order outfit), and he tried
to pretend he didn’t know me. So I called Wyse directly, and
they offered to repair the terminal in San Jose, and since it
was an early serial number, they would fix it free and pay
the shipping both ways, even though it was out of warranty.

I thought I would have the terminal running faster if a tech
friend fixed it right here. Wyse said that would void the free
repair offer. I replied that if I could get schematics and
maybe a repair manual, I was willing to waive the free
repair. They said the repair documentation was only for
dealers and OEMs. I answered that everyone in Wyoming is
an OEM, because out here we have to fix things ourselves
when they break down, or else send them to some city and
do without for a month. So Wyse got the schematics and
manuals to me FOUR days after the phone call. In a field
where there are so many broken promises, this impressed
me greatly. It took us about an hour to troubleshoot the
terminal and replace a dead diode, and now it works
perfectly.

On the other hand, I recently bought a floppy drive from
Priority One Electronics in Chatsworth. It arrived with
configuration jumpers on the PCB, and the drive door open
(although the manual says clearly that the drive door should
be closed during shipment). The foam container had the
name of a large computer manufacturer on the sealing tape.
I called Priority One, and they tried to tell me that the drive
had been “checked out” prior to shipment. How I was
supposed to tell the difference between a “checked out”
drive and a “‘used” drive, he was not able to explain. It does
have some minor problems, and so appears to be a guality-
control reject from the large California OEM. So, no more
drives for me from Priority one. I know what a factory-
sealed drive looks like, because I have bought other drives
from other vendors. When I pay good money for a new
drive, I doggone well want to be sold a brand spanking new
drive!

Keep up the good work. Your magazine sure is needed. |
am sick and tired of reading reviews of both hardware and
software which are nothing but promotional hype. The
InfoWorld reviews have gotten worthless: maybe they
always were. If a review doesn't find anything wrong with
the product, I figure there is something wrong with the
review, because I have never seen a computer product yet
that didn't have problems or bugs. Besides, to make an
informed buying decision, the consumer needs to know how
a product compares in features and performance with other
substitutable items.

P.L.G.

Wyoming
Ed. note: Uninterruptible power supples are something
which many people are interested in. Perhaps some readers
with experience in this area could provide some helpful
advice. Readers?

Dear Sirs:
Your advertising literature for The Computer Journal

makes it clear that this is the magazine for me.

I am an assembly language programmer on micros and
minis. I program in several higher level languages: C, Cobol,
Basic, Pascal, etc.

My interests are in assembly languages. real world
interfacing, hardware, peripherals, trouble shooting and
servicing, and robotics. I feel that your magazine will hit the
spot for me no matter which way you go, as long as it
doesn’'t become yet another consumer oriented
hardware/software review magazine. If I read one more
review of Lotus 1-2-3 or of dBase II, I shall scream!

~ T'would like to order all of the available back issues along
with a one-year subscription. I look forward to receiving the

" first issue.

M.B.
California

Dear Sirs:

Since subscribing recently, The Computer Journal has

become my favorite magazine. Keep up the good work.
GK.
New York

Dear Friends:

Thank you so much for your series on Threaded
Languages. I am having a ball with this one. Please keep the
series coming —I can’t wait for the next issue!

D.T.
Washington

Dear Bill Kibler,
I enjoyed reading your articles on integrating systems,
and paricularly the one called “Dos Wars.” It is long since

- time that someone wrote some true technical facts about

some of the “hype” that is being put out about computers
nowadays.

While all of us have personal prejudices regarding both
hardware and software, it is refreshing to read an article
that examines things in enough depth to point out some true
facts.

I recently retired my TRS-80 Model I, but not before 1
spent many hours programming in Z-80 assembly language.
If one examines the Z-80 instruction set it is a wonder to me
that the “hypesters” didn't call it a 16 bit processor. As you
know, it does have 16 bit move and load instructions as well
as 16 bit arithmetic instructions. (One minor pet peeve I
have with guys like you is that I never learned to speak
8080 and resent all the code I see still kicking around
written in 8080. Come now, an 8080 hasn’t been used in a
computer since MITS and Altair went out of business.)

My present machine is an Altos Model 5-15, and I have
both MP/M 11 and CP/M 2.2. I needed the MP/M II for some
multiuser consulting programming I have been doing, but as
you pointed out in your article, try and get some technical
information on it!! I was not particularly impressed with this
machine when I first got it because the client required
MP/M 1I running a version of Business Basic called B1280.
Once that stuff was out of the way I got CP/M 2.2 and some
good programming tools like Microsoft's Basic compiler,

continued

The Computer Journai 31

IBM PC OWNERS
DON'T WASTE YOUR TIME. . .

£rototyping the same CifCurtry
~TEN yOu Can QuiCkly and easily
mpiement your 0nigina! gesign
»1th Rea: Time Devices me
Hardware Developmen! ;
noard

With the PD100. we've done most of the difficutt work for you. The PD100 contains
a buffered data bus. swilchable address decoder. prototyping area and easily
available wire wrap posts All that needs to be done is to make simple connections
to the wire wrap posts anc you have a unmique design implemented in minutes
rather than days Not famiiiar with interfacing? Qur comprehensive. 116-page
manual “intertace Projects for the IBM PC™ includes an introduction to inter-
facing and details implementing and programming A/D. D/A converters. i-0
ports. connection of transducers and dozens of usefut circuits

The board and manual are invaluable aids to engmeers. hobDyists students
and anyone seriousty interested 1n expanding the power of the IBM PC The
PD100 will make your prototyping a lot easier. . we guarantee it"’

MANUAL TOPICS BOARD FEATURES
 Introduction to Interfacing * 1600-hole on board wire wrap
« Prototype Construction area accommodates up to 40
Techniques DIP sockets
o Simplest 1/0 Devices -« Easily accessible buftered
data bus, controi signals.
* E/(?msnt‘);trmasre Example power supply, wire wrap posts
« Real World Interfacing * Four switch selectable .
o Example Projects addresses. no contention with
Anal P Int r: . d existing IBM PC peripherals
o
A::,gg S"igenaalcc':gdai?ioning * Gold plated edge connector

¢ PD100 Schematic and
Soecifications

ORDERING INFORMATION
PD100 WITH MANUAL - $39 00 PLUS $3 50 P&H
MANUAL ONLY - $20 00 POSTPAID
PENNSYLVANIA RESIDENTS ADD 6% SALES TAX
MASTERCARD AND VISA ACCEPTED SEND CHECK OR MONEY ORDER TO
REAL TIME DEVICES
1930 PARK FOREST AVENUE
P.0. BOX 906
STATE COLLEGE. PA 16801
PHONE (814} 234-8087
DEALER INQUIRES WELCOME

32 Tne Computer Jjourna

Microsoft’'s macro-assembler, and very recently Borland
International’s TURBO-PASCAL. (Another aside — TURBO-
PASCAL is one of the best software packages I have had
the good fortune to use, BAR NONE!!) I am just now
begining to appreciate what a really good Z-80 based

- machine can do. My terminal is a Televideo 950, and is truly
a “professional” device.

I do have one small problem though. You spoke of public
domain software on 8" disks. The Altos gives me a great
disk capacity of over 1.5 megabytes on two 5% " floppies,
but unfortunately that requires 80 track double sided,
double density formats. The logical block length in this
version of CP/M 2.2 is 4K and the physical sector length is
512 bytes. Could you guide me to a source of public domain
software in this format? As you may also know, the Altos is
a single board machine and there are no provisions for
adding another drive, otherwise I would simply add an 8~
drive and be on my way.

Write some more fine articles. Next time why don't you
take on the people promoting those stupid “mice” and cute
little pictures! I think that to run a computer a person ought
to be able to read and write!

L.S.P.
California

Dear L.S.P.,

Thanks for your comments on my articles. Your question
on “why 8080" programming should have been answered
somewhat tn my article on documentation, and in the
upcoming one on programming tricks. To summarize, the
makers of CP/M provide only an 8080 assembler, so to keep
our readers from buying more software, I do it in 8080.
Also, 8080s are not dead: my Z100 uses an 8085 and will not
run 2-80 code. This problem will change soon, as National
Semiconductor s making a “plug compatible”™ NSC800 to
replace the 8085. The NSC800 is an 8085-looking device with
the insides of a Z-80, all done in CMOS.

For public domain software on odd formats, try the
Computer Shopper—several advertisers sell the disks in
non 8" formats. Other than that, using a modem between
other’s systems or local nets is your only choice. I also have
bought the TURBO-PASCAL and have yet to find fault
with it. Not only is it a good product, but they have learned
how to support the users’ needs. Look for even better things
from them in the future. And from us. Keep watching The
Journal, as I am working as fast as I can on lots of needed
topics. Got one I haven't covered yet?

Bill Kibler

Dear Computer Journal:

Please renew my subscription. Very good
magazine —almost like Byte in the early years before it got
too commercial and software based.

wW.W.
Illinois a

Searching for
Useful Information?

Back issues of The Computer Journal make excellent
reference material. Back issues: $3.25 in the US and Canada.
$5.50 in other countries (air mail postage included). Send
payment with complete name and address to PO Box 1697,
Kalispell, MT 59903. Aliow 3 to 4 weeks for delivery. Issues 1 and —
2 of Vol. 1 have been sold out. The following back issues are still
available:

Volume 1, Number 3:

Add an 8087 Math Chip to Your Dual Processor Board

Buiid an A/D Converter for the Appie]

ASCI Refarence Chart

Modems for Micros -
The CP/M Operating System

Build a Hardware Print Spooler Part Two Constructicr

Volume 1, Number 4:

* Optoelectronics, Part One Detecting. Generating. and Using Lignt i~ Eiectronics
¢ Muylti-user. An Introduction

* Making the CP/M User Function More Useful

¢ Build a Hargware Print Spooter. Part Three Enhancements

e Beginner's Coiumn, Part Three: Power Supply Design

Volume 2, Number t:

* Optoeiectronics, Part Two. Practical Applications

¢ Muiti-user Multi-Processor Systems

¢ True RMS Measurements -
e Gemini-10X. Modifications to Allow both Serial ang Paralie! Operation

Volume 2, Number 2:

* Buiid a High Resolutior S-100 Graphics Board. Part One Video Dispiays
System integration, Parid@re Selecting System Components
Optoele% D’Me Fiber Optics

Controlli C Motors

Multi-User. Local Area Networks

DC Motor Applications

Volume 2, Number 3:

* Heuristic Search n Hi-Q

¢ Build a High-Resotution S-100 Graphics Board. Part Twc. Theory of Operation

* Muiti-user: Etherseries

« System Integration, Part Two' Disk Controllers and CP/M 2.2 System Generation

Volume 2, Numbaer 4:
* Build a VIC-20 EPROM Programmer —
* Multiuser: CP'Net
Build a High-Resolut:on S-100 Graphics Board. Part Three Constructior
System Integration, Part Thrae CP'M 3.0
- Linear Optimization with Micros
LSTTL Reterence Chart

Volume 2, Number 5.

o Threaded Interpretive Language. Part One Introduction and Elementary Routines

* intertacing Tips and Troubies. OC to DC Converters —
* Multi-user C-NET

* Reading PCDOS Diskettes with the Morrow Micro Decision

oLSTTL Reference Chart

*DOS wars

*Buiid a Code Photoreader

Volume 2, Number 8:

*The FORTH Language; A Learner's Perspective

*Build an Attordable Graphics Tablet for the Appie]| -
sMuiti-user: Some Generic Components and Techniques

eMake a Simpie TTL Logic Tester

eintertacing Tips and Troubles: Noise Problems. Part One

eWrite Your Own Threaded Language, Part Two. Input-Output Routines and Dictionary
Management

*TTL Referance Chart

