I88N 1 07489331

THE COMPUTER JOURNAL’

For Those Who Interface, Build, and Apply Micros

Issue Number 20 September—October, 1985 $2.50US

Build the Circuit Designer 1 MPB

Part 1: Designing a Single Board Computer pag:

Using Apple 1l Graphics from CP/M
Turbo Pascal Controls Apple Graphics rse o

Soldering and Other Strange Tales

First in a Series rage s

Build a S-100 Floppy Disk Controller
WD2797 Controller for CP/M 68 K page

The Computer Corner -«

The Computer Journal/Issue 320

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, Montana'
59912

406-257-9119

Editor/Publisher
Art Carlson

Production Assistant
Judie Overbeek

Circulation
Donna Carlson

Technical Editor
Lance Rose

Contributing Editor
Ernie Brooner

Contributing Editor
Neil Bungard

Contributing Editor
Bill Kibler

The Computer Journal® is a bimon-
thly magazine for those who interface,
build, and apply microcomputers.

The subscription rate is $14 for one
year (6 issues), or $24 for two years (12
issues)in the U.S. Foreign rates on
request.

Entire contents copyright © 1985 by
The Computer Journal.

Advertising rates available upon
request.

To indicate a change of address,
please send your old label and new ad-
dress.

Postmaster: Send address changes
to: The Computer Journal, 190 Sullivan
Crossroad, Columbis Falls, Montana,
599712,

Address all editorial, advertising and
subscription inquiries to: The Com-
puter Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912,

Eight Bit Systems are NOT Dead!

Various publications have carried
death notices for CP/M and S-100, but
despite these announcements there is
still a lot of life in these old systems.
It's true that the selection of new har-
dware has been limited and the number
of new systems sold is small compared
with the IBM-PC, but the CP/M
systems serve their purpose and many
people will continue to use them until
there is something with significant
operating improvements available.

Some people in the industry have lost
track of CP/M because they don't see
flashy multi-million dollar advertising
for new CP/M hardware and software.
Those integrated do-everything
program and appliance computer ads
are for the non-technical business com-
puter users who aren't sure what har-
dware or software they really need.
The CP/M and other eight bit users are
quietly using the thousands of available
programs to do what they want without
a lot of fuss and excitement.

The new eight bit products are for
the programmer or developer who per-
sonally works with the computer and is
interested in what they can do with
computers, while the IBM-PC type
products are for business users who are
interested in what the computer can do
for their business. A recent survey
disclosed the interesting fact that a
large percentage of computerists who
were supplied with an IBM-PC at their
work place chose a CP/M or Apple II
system for their personal computer at
home for non-employment related use.
Business users who wanted to continue
word processing, spreadsheet, or other
business related work at home of cour-
se chose a computer compatible with
the one at work.

It appears that the IBM-PC is firmly
established as the first choice for ap-
pliance type business applications
(mainly because of the large number of
business software programs). The IBM-
PC market is primarily for business use
software and hardware enhancements,
and there is also a large market for
programming utilities for the people
developing products for this market.
The new products for the CP/M market

Editor’s Page

are for multiuser and industrial har-
dware, programming languages and
utilities, system enhancements; and
peripherial devices, SBC microcon-
trollers, and sensors for interfacing to -
the real world.

Some of the companies supplying
new CP/M software are BV
Engineering (Engineering programs),
Softaid (MTBASIC), Echelon (Z-System
enhanced operating system), Softad-
vances (DSD 80 debugger), Barnes
Research & Development (BMON sof-
tware In-Circuit Emulator), Poor Per-
son Software (utility programs),
Dynacomp (Engineering programs),
Public Domain Software Center {rents
public domain software), Hayden
(Structured Assembly Language
Programming for the Z-80), SLR
Systems (Z80 assemblers and linkers),
and Afterthought Engineering
(Wiremaster wire wrap and PC layout).
There are others, but these are ones
with which [am currently working.
You'll notice that these are all tools or
Engineering programs, not general
purpose business programs for the un-
sophisticated user.

The 8-bit systems that we are using
are not the final answer, and we will be
changing to 16-bit or 32-bit systems in
the near future, but it is not necessary
to abandon what we are now using (if it
is doing the job) to replace it with other
hardware currently being offered. By
incorporating new chips and enhanced
operating systems we can continue to
use what we have with little or no
disadvantage until we upgrade to
equipment with improvements which
are not ready at this time.

Hitachi HD64180 Superchip

One of the developments which will
enable us to greatly improve the per-
formance of our CP/M systems is the
new HD64180 CPU which is upward
compatible with the Z-80 and 8080 in-
struction sets. I am still waiting for
more information, but it has MMU
{Memory Management Unit) control of
512K byte physical address space: two
channel DMAC with memory-memory,
memory-I/0, and memory-memory

fcontinued un page 36)

The Computer Journal/Issue #20

Build the Circuit Designer 1 MPB

Part 1: Designing a Single Board Computer

by Neil Bungard

Introduction

Since the microcomputer revealed it-
self to the public in the early 70's its
applications have branched into two
distinct catagories:

1. Computer systems
2. Controllers

Computer systems are primarily
used to do iterative numerical
calculations and store relatively large
retrievable data bases. They typically
use higher level languages, and the
system electronics is complicated.

A microprocessor used as a con-
troller typically does not spend much
time doing numerical calculations. Its
time is spent making decisions, input-
ting and outputting, and the majority of
the programming on these systems is
done in assembly language.

Circuit Designer-1, MPB is a single
board computer which is specifically
suited for control applications. It
utilizes an Intel 8035 CPU and has the
following “on board” capabilities.

4K of external program memory.

64 bytes of data memory on the CPU.

YK of external data memory.

Ability to generate 256 [/O device
and/or control bytes.

8 decoded input device pulses.

8 decoded output device pulses.

12 bit address bus interface.

8 bit bi-directional data bus interface.

8 bit parallel I/0 port interface.

CPU control signal interface.

Software controlled event counter.

Software controlled interval timer.

Single step capability.

Power up reset.

The circuit Designer-1 MPB s truely
a smart, single board control device and
with a simple memory circuit, which
will be presented in this article, CD-1
becomes an affordable dynamic
training tool for understanding and
using chip level microprocessor
techniques. Alternatively, one can use
EPROMs or EEPROMSs, an inexpensive
personal computer, and a commercially
available 8048 assembler to utilize the
CD-1 as a cost effective development
system. This configuration will be
discussed in a subsequent article.

Circuit Description

The simplest method of understan-
ding any system is to break the system
into its component parts, gain an un-
derstanding of their operations, then
determine the interaction of the com-
ponent parts within the system. CD-1is
divided into nine component parts
which should complete a functional
description of its “on board”
capabilities. A complete schematic
diagram is shown in Figure 10,

The CPU. The heart of CD-1, MPBis
the CPU. The CD-1 utilizes Intel’s 8035
CPU which is a member of the 8048
family. The 8035, 8048, and 8748 are pin
compatible microprocessors with dif-
ferences only in the type and amount of
resident program memory. The 8048
has 1K of masked read only memory
which is programmed at the factory.
The 8748 has 1K of electrically
programmable read only memory, and
the 8035 has no internal program
memory. A pin diagram of the 8035 is
shown in Figure 1. Available on the
CPU is an 8-bit bi-directional data bus,
two 8-bit parallel I/O ports, five input
control signals, five output control
signals, two crystal connection inputs,
and four power connection pins. The
function of these individual pins will be
discussed in detail as they are used in
the periphial circuits of the CD-1.

Also resident on the 8035 is an 8-bit
accumulator, a 12-bit program counter,
and 64 bytes of scratch pad memory.
The scratch pad memory is internal
read/write memory and consists of 16 8-
bit general purpose registers, a 16 byte
stack, and 32 bytes of general storage
memory.

The Multiplexed Address Bus. You
may have noticed the absence of ad-
dress pins on the CPU. The 8035 uses
bus multiplexing to derive its address
lines, which reduces the number of pins
required on the CPU. Refer to Figure 2
for the address multiplexing circuit.
For each external memory operation
the CPU must latch the address of the
current memory read, or memory
write, operation. The eight lower order
bits of the address are made available

on Dg through D7, and the four higher
order bits are placed on P2(through
P23. When the address information is
stable, the CPU sends out a negative
going pulse (ALE) which latches the
address into two 74L.S373's. Once lat-
ched, the CPU uses this address to ac-
cess either program or data memory.
Program Memory. The program
memory is the only memory space that
can contain program instructions. The
8035 multiplexes 12 program memory
address lines (Ag through A11). This
means that the CPU is capable of ad-

. dressing 4096 (212) memory locations.

Refering to Figure 3, A(through A9
are obtained directly from the 74L.8373
address latches. Address bit A1y is
decoded via a T4L.S32 and a T4LS86 to
determine which 2K program memory
block (which 2716) is to be addressed.
PSEN is the pulse which strobes the in-
struction into the CPU. When PSEN
goes low it will be “ORed” with A1 and
A11. The result of this “ORing" will
output a low pulse to the CS on the ap-
propriate program memory. The active
memory will then supply an 8-bit word
which is strobed into the instruction
register via the data bus.

There is a subtle characteristic con-
cerning the program memory which
you should be aware of. The CPU can-
not write into program memory.
Program memory is read only memory
(ROM). This means that if you wish to
write dynamic programs into the CD-
1's program memory that it must be
done via direct memory access (DMA).
This will be explained in detail later in
this article.

As] have mentioned before, program
memory is used to store CPU instruc-
tions. The 8035 retrieves the instrue-
tions from program memory by the
following sequence of events:

1. The 8035’s internal program coun-
ter contains the address of the next in-
struction to be fetched.

2. The CPU makes available the con-
tents of the program counter to the ad-
dress bus multiplexer (two 74LS373's}
via Dg through D7 and P2q through

The Computer Journal/Issue 320

P23, and latches this address infor-

mation into the 74LS373's by pulsing
ALE low.

3. With the address latched into the
74L.8373's, it is available on the address
inputs of the program memory. The
CPU then pulses PSEN low and the in-
struction contained in the applied ad-
dress is strobed into the CPU’s instrue-
tion register and executed.

External Data Memory. External
data memory is read/write memory. It
has its own set of read/write control
signals generated by the CPU, RD and

R respectively, and it has a unique
set of instructions for its operation. The
CPU’s program counter cannot be set in
this memory space so that the data
placed in this space cannot be used as
program instructions by the CPU. This
memory is used primarily for data
storage. Refer to Figure 4 for the cir-
cuit diagram of the data memory. When
the CPU wants to read data from, or
write data to, the data memory it must
first output a memory address, as it did
for the program memory. The extermal
data memory uses only the eight lower
order address lines so that a maximum
of 256 (28) memory locations can be ac-
cessed. Once the address is latched into
the T4L.S373 it goes directly to the two
2112’s (256 x 4 random access
memories). If the CPU wishes todo a
memory read it will pull RD low which
will pull CS on the 2112's low, causing
the 2112's to be activated. With RD ae-
tive low, WR will be high causing the
memories to be in the read mode. Since
the 2112’s are 256 x 4 bit memories, two
2112's are required to create 8-bit wor-
ds. The 2112’s place their 4 bits each on
the data bus, and the CPU strobes this
data into its accumulator. If the CPU
wishes to do a memory write it will
place the data on the data bus and pull
WR low. With WR low the memories
are in the write mode. A WR low also
pulls CS on the 2112's low activating
the memories and writing the data into
them. On the CD-1 only the upper 248 of
the 256 external data memory locations
can be utilized as memory. The eight
lower locations are used for I/0 device
code generation. This is explained in
detail below.

The I/O Device Codes. Com-
munication with external input and
output devices are accomplished by two
methods on the CD-1. The 8035 can
communicate with external devices
throueh its narallel I/0 narts. ar it can

RESET ——)

1) S—

+
39
38
37
36
35
34 Pl 7
33
32
31
30
29 Pl:
28 P1,
27 Plo

O —

To
XTAL1

XTAL2 ——{

SV

_S_S
INT

iy
PSEN é——
WR =i
ALE ey
DB, é——a'
DB, <—3

DB.

-
DB; &—3 15 26] +5V
DB, é&—)16 25 N/A
DB g;aﬂ 24 P2,
DBs 18 23 P2,
DB; ¢~——3}19 22 P2,

GND 20 21 P2,

= © 00 ~1 D A e N
—
w O

g
PR Y

Figure 1: Pinout of the 8035/8048/8748 C.P.U.

A"._z. % 3 24 P2,

+5V A3 § 4 23 o2

A= 7 K 2] p,,

A, —4 . 8 21} o,

D- T — G
External 9]]:.E 8 19

o » o %%

As — 7 DB,

as—3 p B 17} bs,

a3 R 11 o,

A2 7 LB 151 s,

Az-]i‘ 14 14 0B,

AL, 17 13 g,

A1 8 124 os,

8035

Figure 2: Address Multiplexing Circuit.

=g imi

QC/1

THE AUTONOMOUS ROBOT

IS NOW PRICED FOR
EVERYONE!

Buy each subassembly as a kit
or factory assembled and create
your own GEMINI Robot.

Or, for

i . convenience
, ,\W% start with
< % ~- oB" GEMINEX
our starter
kit, and
expand to
GEMIN!
later with
upgrade Kits.

EETTYY Yoy

~SEE——

ik

)

R ‘”"’a
Either way, L
Buy a piece of tomorrow
TODAY!

CALL or WRITE For Qur FREE
Brochure.

arc CECTEQSCEI’I‘!S

9104 Red Branch Roac
Columbia. Marylang 21045
(301)730-1237
Telex 87-78"

The Computer Journal/Issue #20

use memory mapped I/O (MMIO). When
using MMIO the 8035 must use its ex-
ternal data memory space. This means
that the external data memory must
share its 256 possible memory locations
with the I/O devices. The circuit for ac-
complishing MMIO on the CD-1is
shown in Figure 5. When performing
MMIQ, the CPU is actually doing a
memory read or a memory write
operation to external data memory.
Address lines Ag through A2 of the
external data memory are decoded by
two "3 to 8line” decoders (74L.S138's).
WR from the CPU is connected to the
enable of one of the 74LS138’s and RE
is connected to the enable of the other
T4LS138. The remaining address lines
are decoded through the 74LS260 and if
any of these address lines are high,
both 74L.S138's are disabled. This
allows memory locations 000H through
007H to be uniquely decoded on the
outputs of the 74LS138's. If a memory
read is being performed RE will be ac-
tive enabling the “input device code”
7418138 and one of the eight input
device code lines will then go low. This
negative going pulse will be used to
strobe information onto the data bus
from an external device. If the CPU is

tsv +3v
2||—I4 1 f2a
97 12 8 Ao 8 Z 2 19 Do
10 7 Ay 7 10 D;
n 6 Ay 6 H_o,
13| 2716 5 Aj 5 2716 13__p,
14] 2Kx8 4 As 4| 2KX8 14_p,
15 3 As 3 s _p,
A
1o ower P — A ypper pHo—Ds
17 2K 1 7 | 2K 17 D,
23 Ag 23
18 22 Ag 22 ' 18
12 — 19 A 9 -— 12
s 10 ' s J-@
20 20
|
3 [}
741532 PSEN 741532
21 | I 4 |5
D
4 =
Ay
741586
a
Ay +3V
Figure 3: Program Memory.
.

performing a memory write, WR will
be active and the “output device code”
T4LS138 will be enabled, generating a
unique device code pulse which is used
to strobe the data being output by the
CPU into an external device.

One important characteristic must be
considered when performing MMIO
operations with the CD-1. The CPU will
perform external data memory
operations and generate device code
pulses simutaneously. This will cause
bit conflicts on the data bus when input
device operations are performed for all
but the eight “on board” device codes
(the externa) data memory is
automatically disabled for these eight).
For the remaining 248 possibilities it is
the responsibility of the external
devices to disable the external data
memory’s output while the devices are
writing to the CPU. This is done by
placing a logic “1” on the input control
pin “Memory Disable” of the external
memory (Figure 4).

Eight input and eight output device
code pulses are generated “on board™
by the CD-1, and with additional cir-
cuitry as many as 256 /O devices may
be controlled directly.

The Computer Journal/Issue 220

8-Bit Parallet /O Port. The 8035 has
two 8-bit parallel I/O ports (see Figure
1). /O port 1 is divided into two 4-bit
words. The four lower order bits P1g
through P13, are used to output the
four higher order address bits, Ag
through A11. These bits are output to
the address bus multiplexing circuit
{see Figure 2). The four higher order
bits of port 1, P14 through P17 are used
by the priority interrupting circuit
which will be discussed later. Since I/O
port 1 is used for “on board” operations
it is not available for interfacing on the
CD-1. Parallel I/O port 2, however, isan
interfacing option. The eight pins of I/O
port 2 on the CPU go directly to an in-
terface socket on CD-1, and I/O port 2
has a unique set of inputting and out-
putting instructions to control its
operation. The major characteristic to
consider when using I/O ports 1 or 2 is
that they are quasi-bidirectional. This
implies the following characteristics:

1. When parailel data is output on I/O
port 1 or 2 the data is automatically lat-
ched and held on the port by the CPU
until the next operation.

2. When using an I/O port for input
you must first set the inputting bits to a
logic 1 via an output instruction. The
only way external logic can input data
to I/O port 1 or 2 is by pulling individual
pins from a logic 1 to a logic 0. External
logic cannot create a high level on any
pin of I/O port 1 or 2 once it has been set
low via an output instruction.

Eight Level Priority Interrupt. The
interrupt function is typically one of the
most interesting circuits in control
computer application. The CD-1is no
exception, as it contains an eight level
priority interrupt capability. The
priority interrupt scheme of the CD-1 is
both software and hardware depen-
dent. The circuit for the priority in-
terrupt scheme is shown in Figure 6,
and the software flow chart is shown in
Figure 7.

Requesting an interrupt is accom-
plished by first executing an external
interrupt enable instruction (the in-
terrupts on the 8035 are always
disabled when the CPU is reset). Next
the interrupting device must place a
logic 0 on one of the CD-1's interrupt
request inputs (INTg through INT7).
The interrupt request lines are "AN-
Ded” through a 74L.S30, and when any
interrupt 1in_e_§’tr>es low, a logic 0 is ap-

mltnd ¢n ¢+ ha TAT T) i b MDTT

L.

741532

I #5v
N\
_>741586
T3 '12
VVR)\ RD

[~ <]

“MD (Input)
Memory Disable
1K “0" Enables

"1 Dxubxes

IN9]6

IN916

Memory Disable
generated by
1/O circuit

Figure 4: External Data Memory.

MODEL 100 C COMPILER

Now you can write efficient programs for your
TRS-80 model 100 with ease. Or, learn the
essentials of C programming while traveling!

C/100 - THE “PORTABLE” C COMPILER
Qassette version $49.00

Model Il version {run on mod Il, then
download object code to model 100) .. $79.00
Modet I1l version (as above for Mod HI) . $79.00

Write or call for information on other
TRS-80 software.

MODELS 1, 12, 16
MODELS Ili, 4

TRS/C C COMPILER

Full K&R with source to the

function library. UNIX

compatible $85.00

ZSPF EDITOR

SPF, the choice of most
mainframe programmers, is
now available for 280 machines.
And it's panel dnven SO you

business utility software

109 minna ste 423 san

(415) 397-

francisco ca 34105

2000

Figure 6: 8 Level Priority Interrupt.

6
_ J| 74038 ps
RE El 14 !
1 B__,
- 12, NPUT DEVICE
INPUT CODES
TP
-] | : 6
2l 3 7
5 {2 115 0
6 14
E3 e |
3 13 2
Az " 12 OUTPUT DEVICE
OUTPUT |11 CODES
:;-—i ! 10) v
. ‘ . 5
WR El 7 5
JALS138
)s
741526
1 (2 1323
Az ALAs AL A,
Figure 5: Memory Mapped I/0.
TACK (PIN 38 ONCPU) P27
4 €1 3 3] 8
Z 3 Gs e 1y) 9 7
s 2 2 le3 10 :
— 4 ! v 1 IACK
m:':rrs 3 7415138 7415138 n__;ouwuvs
12 13
T n Az ;’ ; A, 14 f
10, A A 15
0 '[o ! A; 5 o
11203]a 6 |5 2 nn
741530 INPUTS TO CPU
P24 (PIN37)
8 P25 (PIN 36)
P26 (PIN 35)
2
) 3 INT (PIN 6)
£5V 741586

The Computer Journal/Issue #20

If the CPU sees a logic 0 on its INT in-
put, and the external interrupts have
been enabled via a program instruction,
it will react in the following manner:

1. The 8035 will complete the instruc-
tion it is currently executing.

2. The 8035 will execute a call in-
struction to program memory location
003H.

The software routine for deter-
mining interrupt priorities can be
placed at location 003H or it can be

placed elsewhere in program memory
and a jump instruction placed at 003H
directing the CPU to the priority in-
terrupt routine.

Referring to Figure 6, the interrupt
request lines are tied to the inputs of a
74148. The 74148 is an 8 line to 3 line oc-
tal priority encoder, and its truth table
is shown in Table 1. Referring to Table
1, pins Aq through A on the 74148 out-
put a binary number which represents
the highest priority input which is set
to a logic 0. Ag through A2 are also
connected to the four highest order bits
of I/O port 2 on the 8035, and upon
being interrupted the CPU is instruc-
ted to immediately input I/O port 2 to
the accumulator. All bits except bits 4,
5, and 6 are then masked out, and com-
parisions are executed in order to bran-
ch to the appropriate service routine. A
program listing of the procedure is
shown in Figure 8. Immediately after
the branch is accomplished the service
routine should acknowledge that the in-
terrupt has been received. This is done
via a negative going pulse on the ap-
propriate interrupt acknowledge
(IACK) output of the CD-1 (see Figure
6). The IACK is generated in the
following manner:

A 3-bit binary word representing the
service routine being executed is out-
put on Ag through Ao of the 74148, and
is also present on A through Agofa
74LS138 (2 3 line to 8 line muiltiplexer).
The truth table of the 74LS138 is shown
in Table 2. With a 3-bit binary word on
Ag through Ag of the 74LS138, the
CPU can pull TACK low by outputting a
logic 0 on P7 of 1/0 port 2. P7 of I/O port
2is tied to the enable pin of the
T74LS138 and when this line goes low,
the interrupt is acknowledged. The ap-
propriate JACK (mo through
1‘1‘61‘(7 is tied to the interrupting
device and signals the device to remove

P U G Y

The Computer Journal/Issue #20

:Do the same for all 8 possible

interrupting devices
2E F9 MOV A,RL :Reclaim interrupt identification
2F D3 XRL A,#Data :Is Interrupt identification 074?
30 07 (Data)
31 Cé JZ :If so jump to service

:If not

32 Co (Address)
a3 93 Retr ‘Return

I';igure 8: Program listing of Branch To Service Routine.

r
Enabie
Externai
Iaterrupts
Main
Task
—
Moni::;r{‘g:ﬂon —> 003 I;g:\'n
2
Maskall
unused bits
g
Compare and branch to
P
& —
& 4 T
0 = B ﬂ ﬂ gﬂ il
| Acknowledge
|] {aterrupt
Service
Routine
Figure 7: Priority Interrupt Software
Block Diagram.
RETR
Address Machine Assembly Comments
Language Language
03 23 MOV A, #Data :Set INTA Lo
04 70 (Data)
05 3A OUTL P2, A :Set P2 for input
06 0A INA,P2 i :Input P2 (interrupt identification)
07 A9 MOVRL A :Save interrupt identification
08 23 MOV A, #Data
09 Fo (Data) :Set INTA Hi
0A 3A OUTLPZ2, A
0B F9 MOV A,R1 :Reclaim interrupt identification
to accumulator
oC D3 ° XRLA,#DATA
0D 00 (Data) :Is interrupt identification 00h?
0E ceé JZ :If so jump to service
:If not
OF 50 (Address) :Reclaim interrupt identification, if so

7
74148 Truth Table

- INPUTS DUTPUTS
E1|@d 1 23456 7}A2 A1l A
HIX X X X X X X XfH H HIH H
LIHHHHHHHH]|H H HIH L
Llix x x x x x x LjL L LiL H
Lix X X X X XL HjL L HIL H
LiX X X X X L HHIL H LIL H
LIx x X X LHHH|IL H HIL H
LIX X X LHHHH|H L LJL H
LIx X LHHHHHIH L HJL H
LI X LHHHHHH]|IH H L]JL H
LILHHHHHHHIH H HIL H

Table 1
74L5138 Truth Table
INPUTS OUTPUTS

ENeRLE [e

G1 62 cCBA Y# Y1 Y2 Y3 Y& Y35 Y&
X H XXX H HH H HHNHMH
L X X XX H H HH HHHMH
H L [S T L M H H H H H H
H L LLH H L H H H R HH
H L LHL H H L HH H HH
H L LHH H H H L H HHH
H U HLL H H H H L H H H
H L HLH HNV_‘NHLNN
H L HHL H H H H H HL H
H L HHH H H HH H H H L

NOTES: (1) G2=G2A + 62B
(2) HeMigh level, L=Low level,
X=Ilrrelevant

Table 2

Typically the advantages of in-
terrupts are:

1. The Computer can execute its main
task and not be concerned with polling
its servicable devices.

2. Interrupts should have a speed ad-
vantage over polling devices. This ad-
vantage may or may not occur using the
CD-1 since the priorities of the in-
terrupting devices are determined viaa
software routine. However if a single
interrupt is to be handled by the CD-1,
then the service routine for that single
device may be placed at memory
locations 003H and the speed advantage
over polling a particular device can be
realized.

Programmable Event Counter & In-
terval Timer. A programmable event
counter and interval timer are resident
on the CPU of the CD-1, which means
that no external circuitry is required to
support these functions on the CD-1.
The 8035 contains a counter/timer
register which is accessed via the ac-
cumulator and initial values are loaded
into this register with specific program
instructions. The counter/timer is also
started and halted using program in-
structions and a summary of the coun-
ter/timer instructions and their fun-
ctions are shown in Table 3.

High-to-low logic transitions on pin
39 of the CPU increment the coun-
ter/timer register. Furthermore, when
the counter/timer register is incremen-
ted from FFH to 00H, two events occur
simultaneously:

1. A counter/timer interrupt request
is generated which initiatesa callto i
program memory address 007H.

2. A “time-out” flag is set, which may
be tested by executing a JTF branch-
on-condition instruction.

The counter/timer may be operated
as a timer by executing a STRT T in-
struction. In this case the internal
system clock increments the timer
register every 80 microseconds,
assuming a 6 MHz crystal. The coun-
ter/timer may also be operated asa
counter by executing the STRT CNT
instruction, and when this is done, high-
to-low transitions on the signal input at
T1 (pin 39 on the 8035) increments the
counter. The minimum time interval
between high-to-low transitions on T1
is 7.2 microseconds, and there is no
maximum time restriction between the
high-to-low transitions. Once T1 goes
high it must remain high for at least 100
nanoseconds.

JFT ~Jump on current page if timer
has timed out, that is, if timer flag is
1. The timer flag is reset to zero
by this instruction.

MOV A,T — Read timer/counter.

MOV T,A — Load timer/counter.

STOP TCNT — Stop timer/counter.

STRT CNT —Start counter.

STRT T — Start timer.

Table 3: Summary of Counter/Timer
instructions and functions.

The Single Step Circuit. A single
step circuit has been included on the
CD-1 so that the processor can execute
a single program instruction at a time.

MICROCOMPUTERS
AND
INTERFACES

We have six singl
video boards

automated
, irrigation

For catalog call

JOHN BELL ENGINEERING, INC.
400 OXFORD WAY
BELMONT, CA 94002
(415) 592-8411

) +5v
Smglo Step 9
Advance

10K 741500

Debounce
Cireuit

The Computer Journal/Issue #20

+ 5V
10K Single Ste
A
o]
4
PRESET 5 -
Qp—————p> SS onCPU
741574
CLOCK |
CLEAR {}——a—q ALE on CPU
D
lz
+5V

Figure 9: Single Step Circuit.

The single step circuit is shown in
Figure 9.

If you do not want the processor to
single step, the “preset” input must be
grounded via the SS select switch. This
forces the “Q" output of the 74LS74
high, and instructions will execute at
normal operating speeds. If you wish to
single step through the program, you
must unground the “preset” input of
the single step circuit, which will allow
the “clear” input on pin 1 of the 74LS74
to become active. ALE from the CPU is
connected to the “clear” input of the
single step circuit, and consequently,
when ALE goes low the output “Q” is
also driven low; thus the SS input on
the CPU goes low. Now when ALE
next goes high, the CPU will maintain
it high until the SS advance is
depressed, and instruction execution is
halted. Depressing SS advance creates
a low-to-high transition on the “clock™
input of the 74L.S74 which forces the SS
input on the CPU high, thus allowing
the processor to advance one program
instruction. It should be noted that
while the CPU is stopped between in-
structions in a single step mode, the
current program counter contents are
output via the data bus (Dg - D7) and
P2y-P23.

Single stepping is a valuable
program debugging aid, and allows the
user to cease the CPU’s execution after
each instruction and test conditions
within the circuit under investigation.

Conclusion

In conclusion, the material presented
in this article will enable the reader to
construct, and understand, the CD-1
single board computer. In addition, I

IC Nuaber Type Power Connection Pins
+3v BND
(o) as35 A8 20
1cz2 7415373 29 18
c3 TALS3I7I 28 19
ICa 2116 24 12
ple-] 2116 24 12
ics TALS268 14 7
IC7 74LS138 16 8
1ce 74,5138 16]
1ce 74LS32 14 7
1C10 2112 16 a
c1 2112 16 8
1C12 741886 14 7
IC13 NA NA
IC14 74L500 14 7
I1C1S 74LS74 4 11
1C16 74148 16 e
1c17 741538 14 7
1c1e 74,8138 16 [:]

would like to emphasize that although
this article presents the 8035 CPUina
single board configuration (CPU and
several support IC's), the real virtues of
the 8035/8748 lie in its minimum com-
ponent configuration. The minimum
componenent configuration for the 8035
would be the 8035 itself, and one ad-
dress latachabie memory IC. The
minimum component configuration for
the 8748 would be the 8748!

These “minimum systems” would not
be extremely versatile, of course, but
the point is that with no additional har-
dware, switches and light emitting
diodes could be connected to the CPU, a
program entered, and the system could
perform a useful function. Most CPUs
are not designed to be used in this
fashion, and consequently require a
greater number of support ICs. '

In the next issue of The Computer
Journal we will look at the instruction
set of the 8035, and explain how to use
the CD-1. In addition, we will discuss
the idea of using read/write memory in
the 8035's program memory space to
enable you to write and execute simple
programs using the CD-1 single board
controller. W

Interface Interface Interface Socket B

Interrupt Interrupt Socket F Socket E / Interface Address Bus
Request Acknowledge _I/O_PO”' 1 D‘m‘ Bus gocket ' aaanaAnarnraa
y }]_’45 5 E ﬂ RES REAW Tl 16543210 Oy 234547 Vs ;r“lﬂ‘u.sqlll? Interface
ITH ~ AT FACE - § & H] eREEL) ﬁ EF" hoH (el i“l'flﬂ“-lﬂ Socket A
[
¢ R L
GND 4§ GND 1S o2
0 s
W
6 Tus(i -
) L +SvY
- 3 il 2
k! N 7 |24

X ——
2
L] ! AT - e—
I Re P’ IR S :
5V 4K AU G N
RS . _Y) — |1y]
i D3 %6 . 0'-. Pt Wy At
Nae B
. GND g‘Ll‘,F
-
MD (8} et G
7 o S L e _“Egr.. I
Interface Socket E -8 3 @ * 1T T = .
~ SO AU PR —) 1Y A — —
Rb [} L. J
wR {2}
— N Y O A & G R s
_____ - - T _ o1
RS S . - . SN o & §
-] H
T - _ I SOV 11—
i | -

T
Lyl -
I Tcioft v
it
s
Tcq
1N 4001 G LG
DI ki 3zon L 3

Power to Circuits _
} T -~ b - L 26

e

~ Interface Socket D — JHHEHEN I !

Figure 10. 70s83210 R
Bur Output Device Codes Input Device Codes

A

02# enssp/[eulnop Jandwor ay L,

10

The Computer Journal/Issue #20

Using Apple Il Graphics from CP/M
Turbo Pascal Controls Apple Graphics

by Ted Carnevale

O ne of the most important features
of the Apple II* family of microcom-
puters is their built-in graphics
capability. Programs that run under
DOS, PRODOS, or the p-System can be
enhanced by using the built-in graphics
commands of Applesoft BASIC or p-
System Pascal.

However, graphics commands are
generally lacking in high-level
languages under CP/M® . This lack is
ironic since Apples with Z80 cards ac-
count for a major portion of the
microcomputers that run CP/M. Fur-
thermore, many of the CP/M cards have
fast Z80s and extra RAM that make
them more powerful than other CP/M
microcomputers. A few Apple versions
of some languages (e.g. MBASIC and
Microsoft's FORTRAN) do include
some graphics commands, but these
implementations are incomplete and
work only with the older, slower Z80
boards.

This article tells how I wrote a han-
dful of routines that allow me to use the
Apple’s graphics features. These
routines work on an Apple or (pre-
lawsuit) Franklin with a PCP1 Ap-
pliCard or Franklin Z80 board. The
number of changes needed to make
them work with other hardware is
restricted to a few sections that tran-
sfer data and commands between the
Z80 and the 6502. The hardware-
specific code is small, clearly identified,
and easily replaced. Other
modifications could be added to use the
extended high-resolution mode of the
IIe and Ilc.

The Dilemma: Graphics or CP/M?

We use CP/M on an S-100 bus
microcomputer at the lab, but I was
satisfied with DOS and the p-System at
home for a long time. When I started to
use the Apple to work on programs for
the lab, I ran into trouble.

Many of our data analysis programs
are written in Turbo Pascal, which is
just different enough from Apple's p-
System Pascal to cause problems with
program portability. Also, I had grown
used to Turbo Pascal’s compiler, which

is much faster than the p-System com-
piler. Finally, moving back and forth
between different operating systems
and editors was a nuisance.

So I bought a Z80 card. The PCPI
AppliCard seemed like a good choice.
The Z80 on this board has its own 64K
of RAM so it can run at 6mHz, 50 to
300% faster than most dedicated CP/M
micros! With an optional 128K RAM
expansion used as a disk emulator, the
AppliCard turns the Apple intoa
machine that can run circles around
most other 8-bit micros.

Before long, I was running WordStar
and Turbo Pascal at home. It was great
to be able to transfer files to the lab via
modem, without having to worry about
incompatibilities between DOS and
CP/M!

Then it came time to work on graphics
programs. We were developing
routines for our bitmapped graphics
display in the lab, and I wanted to try
out some ideas at home. However,
there wasn't any commercially
available software that would let me
use the Apple graphics routines from
CP/M. Boriand International was
unaware of any graphics extensions to
Turbo Pascal, and PCPI didn’t know of
any high-level language that ran under
CP/M which would do what I wanted.

The Clues

The first step toward solving my
problem was suggested by the Apple
Reference Manual. This manual tells
what addresses in the 6502's RAM
correspond to the high- and low-
resolution graphics pages, and where
the soft switches are that activate
graphics- or text- mode display.
Machine language and Applesoft
BASIC programs select among text,
low-, and high-resolution display modes

by activating one of these soft switches.

Drawing on one of the graphics screens
is accomplished by writing bytes to the
proper addresses in one of the memory
areas set aside for graphics display
(graphics memory).

The second step was to find out how
to activate the soft switches and write

to the graphics memory from CP/M.
Some Z80 boards share the RAM on the
Apple’s motherboard with the 6502.
With these boards, the Z80 might be
able to write directly into the graphics
memory and toggle the soft switches
without the cooperation of the 6502.

However, the AppliCard is actually a
separate microcomputer with its own
RAM. As far as its Z80 is concerned,
the Apple is just a peripheral device
that it communicates with through a
parallel port. The details of this com-
munication are described in PCPI's
AppliCard OEM Manual This manual
gives examples of how the Z80 can tell
the 6502 to write one or more bytes to
any address in the motherboard's
RAM.

Based on this information, I wrote
some simple procedures in Turbo
Pascal that passed data back and forth
between the 6502 and the Z80, and
combined them with other procedures
that selected the display modes. Then I
added a routine that was supposed to
write a series of horizontal lines across
the graphics screen of my choice. This
was a crude, ‘brute force’ procedure
that calculated the address of each byte
in the Apple’s display memory.

The resulting program could draw
lines across low resolution page 1 or
high resolution page 2. Trying to write
over low resolution page 2 or high
resolution page 1 made the computer
hang, so that it had to be turned off and
rebooted. Apparently these locations
were needed by the drivers that PCPI
used for the 6502 to communicate with
its peripherals.

As limited as it was, this program
was a success because it showed that
what I wanted to do was possible.
However, a lot more work lay ahead if I
had to use this crude approach to draw
lines and set colors.

A Refinement: Tapping the ROMS

The PCPI OEM manual also told how

to make the 6502 execute a routine
starting at a specified address. If I only
knew where the routines to set colors
and draw points and lines were located

The Computer Journai/Issue %20

in ROM and what parameters they
needed, I could save a lot of program-
ming effort.

This information came from a Book
by Jeffrey Stanton entitled Apple
Graphics and Arcade Game Design
(The Book Co., LA, Calif. 1982). This is
probably the single most complete
reference on Apple graphics. The
descriptions of the firmware graphics
routines are actually only a very small
part of the useful and fascinating
material in this book.

The Appie’s ROMs contain machine
language routines to draw points and
lines and to select the colors used for
drawing on the low and high resolution
screens. These routines are used by
Applesoft, and probably by p-System
Pascal as well.

In an Apple running CP/M with a Z80
card, they are still in ROM waiting to
be called by the 6502. All that has to be
done is to load the correct parameters
into the 6502's registers and RAM, and
then make the 6502 call the graphics
routine with a JSR instruction. For
example, the ‘hlin’ routine that draws a
horizontal line on a low resolution
screen at row v between columns hl
and h2 (where h1 «h2) starts at location
$F819. It is called with the value of v in
the A register, hl in the Y register, and
h2 in location $2C. The other graphics
routines are accessed in a similar man-
ner.

Calling the Graphics Routines
From CP/M With Pascal

The listings give the Turbo Pascal
routines that [use to draw on the
graphics screens from CP/M. I have
grouped them into several include files
according to function. This helps keep
program size and compilation time toa
minimum.

However, it has the undesirable side
effect of making the scope of some iden-
tifiers (names for constants, variables,
procedures or functions) global. Since a
global identifier is defined outside of all
procedures or function definitions, it
may be referenced by any procedure or
function. As a result, naming conflicts
and other side effects may occur. To
avoid these, identifiers which probably
should be ‘hidden’ from most ap-
plication programs start with an under-
score, which Turbo Pascal allows as the
first character of an identifier.

The first of the include files is
PCP.INC, which contains all of the
elementary routines needed for the Z80

to communicate with the 6502. These
access the special functions that the
AppliCard uses to transfer data back
and forth between the 6502's RAM on
the motherboard and the Z80’s RAM on
the AppliCard. Further details about
these functions are contained in PCPI's
AppliCard OEM Manual. Since the
hardware and software supplied by
other Z80 board manufacturers are dif-
ferent, these routines would have to be
changed before they are used with
other Z80 boards.

Most of the routines in PCP.INC
write or read one or more bytes to or
from the 6502’s address space, and are
used to set the 6502 up for graphics
operations. They can also be used to
write or read data directly to or from
the graphics screens. The last
procedure in this file is “callapl,” which
makes the 6502 performa JSRtoa
specified location.

Some constants and routines are
common to both low and high resolution
graphics. These include the addresses
of the soft switches used to select
among text, graphics, full screen or
mixed graphics and text modes, and the
routines that set these switches. These
are gathered into APLGR/G.INC,
which should be included after
PCP.INC and before either APLGR/L
or APLGR/H.

The registers of the 6502 must be
loaded with the appropriate
parameters before it executes a JSR to
one of the ROM graphics routines. Sin-
ce PCP! didn't provide any way to load
the registers, I decided to create my
own routines for this purpose.

These register-loading routines are
written into an otherwise unused area
in the 6502's RAM by special
initialization procedures in two
separate Turbo Pascal include
files —lorespatch in APLGR/L.INC for
low resolution graphics, and hirespatch
in APLGR/H.INC for high resolution
graphics. These include files also con-
tain other procedures such as those
needed to clear a screen, position the
cursor, plot a point or line, choose the
drawing color, or switch from text to
graphics display. These other routines
are self-explanatory, but lorespatch,
hirespatch, and the 6502 register-
loading routines require some ex-
planation.

Before a register-loading routine is
called, the AppliCard puts the drawing
parameters in a common data area in
the Apple's RAM. Next, the AppliCard

FOR TRS-80 MODELS 1,3&4
IBM PC, XT, AND COMPAQ

The MMSFORTH
System.

Compare.

® The speed, compactness and
extensibility of the
MMSFORTH totai software
environment, optimized for
the popuilar 1BM PC and
TRS-80 Models 1, 3 and 4.

® An integrated system of
sophisticated application
programs: word processing,
database management,

communications, general
ledger and more, all with
powerful capabilities, sur-
prising speed and ease of use.

e With source code, for custom
modifications by you or MMS,

o The famous MMS support,
including detailed manuals
and examples, telephone tips,
additional programs and
inexpensive program updates,
User Groups worldwide, the
MMSFORTH Newsletter,
Forth-related books, work-
shops and professional
consulting.

A World of
Difference!

Tl';e total software environment for
IBM PC, TRS-80 Model 1, 3, 4 and
close friends.

o Personal License (required):
MMSFORTH System Disk (IBMPC) $249.98
MISSFORTH System Disk (TRS-801,Jor4) 129096

ePersonal License (optional modules):

FORTHCOM communications module $ 39.98
UTILITIES 39.95
GAMES 39.98
EXPERT-2&xportaystom 80.98
DATAMANOLEW 59.96
DATAHANDLER-PLUS (PC only, 128K req.) 99.95
FORTHWRITE word processor 175.00
e Corporate Site License
Extensions from $1,000
eSome recommended Forth books:
UNDERSTANDING FORTH (overview) . . . § 2.95
STARTING FORTH (programming) 18.95
THINKING FORTH (technique) 15.95
BEGINNING FORTH (re MMSFORTH) . . . 16.96

Shipping/handiing & tax extra. No returns on software. -
Ask your dealer to show you the world of
MMSFORTH, or request our free brochure.

MILLER MICROCOMPUTER SERVICES
81 Lake Shore Road, Natick, MA 01760
(617) 853-6138

12

tells the 6502 to JSR to one of the
register-loading routines,

The LORES.AGB85 file is the source for ¢
the routines used to load the registers
for low resolution graphics calls. A
similar file generated the 6602 code
needed to set up for high resolution
calls. The code areas used to set up the
6502 for low and high resolution
graphics calls are separate, so that
parameters may be passed to both the
low and high resolution ROM routines
without having to rewrite the register-
loading routines into the 6502's RAM. I
wrote these register-loading routines in
6502 assembly language and assembied
them with the 6502 cross-assembler
that was part of the PCP1 OEM
package, but any 6502 assembler could
have been used.

The instructions in each register-
loading routine set up the 6502 for the
graphics call, and then make it JSR to
the proper graphics routine in the Ap-
ple’s ROM. These short code segments
for passing parameters to the Apple .
ROM’s low and high resolution routines
were designed to share a common data
area—three bytes starting at $9000.
Data written by the AppliCard to $3000
and $9001 are destined for the A and Y
registers, respectively. Location $9002
is used to hold a byte that will be loaded
into the X register or location $2C or
$2D, depending on which graphics
routine is being called.

I incorporated the hex opcodes and
addresses from these assembly listings
into the procedures lorespatch and
hirespatch using a nonstandard but
convenient feature of Turbo Pascal
called a typed constant (the arrays
LORESTUFF and HIRESTUFF) that
allows variables to be initialized. Users
of other Pascals may have touse a
series of standard constants and
assignment statements to enter the
patches.

Sample Programs

The program LOWRES.PAS demon-
strates how the low resolution routines
are called from a Pascal program. The
files PCP.INC, APLGR/G.INC, and
APLGR/L.INC are included into the
source to make the low resolution
routines available. The main program
block begins by calling lorespatch to in-
stall the register-loading routines into
the Apple’s RAM. After printing a
signon message, the main program
selects and clears low resolution
graphics page 1, and then returns to the

TEXT mode to display the next
message. Next it runs through the low-
resolution colors as it draws a series of
horizontal and then vertical lines across
the screen.

Low resolution graphics may be
useful for games and pattern
generation, but high resolution is bet-
ter suited for plotting data. The
program SINES.PAS draws a cycle ofa
sine wave repeatedly in different colors
on the high resolution screen. It shows
that the high resolution procedures are
installed and called in a manner similar

to that used for low resolution graphies.

It also illustrates a crude but effec-
tive general approach to plotting real
world data (data in world coordinates)
on a display screen, which is patterned
after the more extensive SIGGRAPH
and GKS approaches. The basic idea is
that measurements along the real
world X and Y axes are scaled and shif-
ted so that points in a rectangular
region on the X,Y plane will be mapped
into a corresponding rectanguiar area
on the display.

The lower left and upper right cor-
ners of the rectangular area in world
coordinates are described by variables
of the data type

realdata = RECORD
x:real; {horizontal “real world”
coordinate}
y:real; {vertical “real world”
coordinate}
END;

The variables “lowerleft” and “up-
perright,” which are diagonally op-
posite corners of this rectangular area,
specify its location and size.

The area on the display that is to
correspond to points in this rectangle is
described by variables of the type

screendata = RECORD

x:integer; {horizontal coordinate of a

point on the display}
y:integer; { vertical coordinate of a
point on the display}
END;
This implementation emulates only a
tiny fraction of the SIGGRAPH and
GKS standards. Therefore I decided to
call the area of the screen to which the
real world data are mapped a “frame”
rather than a “window.” The variable
“frameloc” is the position of the left up-
per corner of the frame, and
“framesize” is the width and height of
the frame.
The variables “lowerleft,” “up-

perright,” “frameloc” and “framesize”
are used to set up the X and Y scale fac-

The Computer Journal/Issue #20

tors and offsets that will be needed
later to map the world coordinates onto
the display. Procedure “setframe” in
PLOTTER.INC calculates these scale
factors, which are returned in the
variable “frame.” Because these scale
factors and offsets are calculated by a
procedure that is different from the
procedures that use them, the variable
“frame” is declared in the main
program heading so that it is global.

PLOTTER.INC also contains two
other procedures. The cursor is moved
to a point on the display at a location
that corresponds to its world coor-
dinates, and a point is drawn there, by
the procedure “point.” To draw a line
from the last location of the cursortoa
specified point, the procedure
“plotline” is used.

The high resolution screen is easily
dumped to a dot matrix printer with a
program like DUMPSCRN.PAS. This
program was written for use with a
Grappler parallel interface card and an
Epson MX-80 printer, but it could be
modified to run with other interface
cards and other printers. Alternatively,
data could be read from the high
resolution screen one line at a time and
used to drive some other output device
if necessary. If this were done, the high
order bit of every byte should be omit-
ted, since this bit selects color and does
not represent a point on the screen.

The programs SAVSCRN.PAS and
GETSCRN.PAS perform a simple
screen save and restore. SAVSCRN
reads the high resolution screen one
line at a time and writes it to disk in a
file that occupies 8K bytes. GETSCRN
reads such a file and writes its contents
into the high resolution display,
obliterating anything that was there
before. These two programs couid be
modified for data compression,
reducing the disk space required.
GETSCRN could also be changed to
allow ORing the file contents with the
data already on the screen, so that the
contents of several files could be
superimposed on one another.

Conclusions

These routines will run as-is with the
PCPI AppliCard on an Apple II + /Ile or
Franklin (with old-style, Apple-copy
ROMs). They should require little
modification to run with other high
level languages.

Users with different Z80 boards will
probably need to change the routines
that communicate between the Z80 and

The Computer Journal/Issue 320

the 6502. In different CP/M implemen-
tations, portions of the graphics
memory may be allocated to vital
systems routines so that writing
anything to them may cause a crash.
Some experimentation may be needed
to find which of the low- and high-
resolution screens can be safely used.
In writing these routines, I
deliberately chose a syntax that was

similar to Applesoft BASIC's graphics
commands. The command names can be
changed to suit any preference.

Although these routines provide only
a few commands, I have found them to
be quite useful. I have incorporated
them in programs that test random
number generators, generate fractal
images, and solve differential equations
that simuiate nerve signals. These

13

routines could easily be expanded to in-
ciude additional commands, like
relative cursor move and draw, and
curve- and circle-drawing algorithms.
In particular, PLOTTER.INC could be
replaced by a set of procedures and
functions that implement SIGGRAPH
or GKS routines, such as clipping
algorithms. B

INDEX OF LISTINGS

File Purpose Listing

PCP. INC Data transfer betwesen I88 and 6342 Listing

-

APLGR/G. INC Constants, types and routines shared
by iow~ and high-resolutian griphics Listing 2

APLGR/L. INC Register-loading routines for low—

resolution graphics Listing 3
APLGR/H. INC Register—loading routines for high—

resolution graphics Listing 4
LORES. A4S 6382 assembly language source for low—

resolution regastar-loading routines Listing S
LOWRES . PAS Demonutration of low-vesolution

Qraphics functions Listing &
SINES.PAS Demonstration of hagh-resclution

Qraphics functions tisting 7

PLOTTER. INC Routines for sapping “world coordinates®
onto the high-res display-—used by
SINES and other high-resolution

pPrograms Listing 8
DUMPSCRN. PAS Dumps high-resolution screen to dot-

satrix printer Listing 9
SAVSCRN. PAS Saves contents of a high-resolution

screen 1n a file on disk Listang 10
BETSCRN.PAS Fills a high-resolution screen with

the contents of a file produced by

SAVSCRM Listing 11

LISTING 1. PCP.INC

(PCP. INC contains priaitive routines to communicates betwsen
the PCPI I0¢ card (Applicard) and the Franklin or Apple.
Caopyright 1984 by N.T.Carnevale.

Peraission granted for nonprofit use.)}

({Include before any APLER file.
Variables and constants which are to be hidden ¢rom the
user’s prograse start with an underscore) .

CONST
(ports)
_HOSTOUT=83
“HOSTIN=e284
_HOSTSTAT=8488
{commands to transfer aowe than ane byte)
_RDHOBT=13 (1808 -> 6562)
_WRHOBT=2) (6562 -> 188)
(commands for singis byte transfers——vers.? of PCP1 ROM}
RDBYTE=&)
_WRBYTE=7 .
{command for 6382 to execute a procedcwe)
_CALL=33

[$
Thess tiwee routines are low level "priaitives” that should
probably never be called froa procedures ocutside this file)

FUNCTION _recvbyteibytel (get a byte from the 43623

CONST READY=488%

BESIN
WHILE (READY AND port(HOSTSTAT]I) = 8 DO 4 (wait til ready)
_recvbyte:=part{_HOSTIN]§ (get byte)

END3

PROCEDURE _sendbyte(datusibyte)} (send a bytw to 4562)

CONST BUBYw=1}

BEGIN
WHILE (BUSY AMD port{ HOSTSTAT]) <> # DO 5 <{(wait til ready)
portl _NOSTOUTI:=datusi (send byte)

ENDY

PROCEDURE _seandword (datainteger)s
{(send & word (low byte first) to the &362)
VAR a:RECORD CASE booleen OF
TRUE: (izinteger)y
FALSE: (biarray (1..21 of byte)t
END3
BEGIN
a.i:=datas
seandbyte(a.dbl11})] _senddytete.bli21)s
ENDY

«
Now the blocks that say be reterenced by other ones)

FUNCTION rdhostbyte(apiaddr:integer) bytes
{get a byte from the 4502's RAM at address apladdr}
BEGIN
.sendbyte(RDBYTE):{ _sendword(apladdr)s
_rdhostbyte:= recvbyte; (get data)
END;

PROCEDURE _wrhostbytelapladdr:inteqer; datum:byte)l
(s@end a byte to address aspladdr 1n the 4362°s RAM)

BEGIN
_sendbyte(WRBYTE); _sendword{apladdr}s
“sendbyte (datus)§

END;

PROCEDURE _rdhostdata (sourceaddr,destaddr ,bufsizesinteger)t

(transfers bufsize bytes fros the 4502°s RAM to the I86°s RAN.

Arguments are the starting addresses of the source and

destination, and length of the buffer area which 1s to

recetve the data. Cail thusiy:
_rdhostdata(apl addr,ADDR (buf fer) ,SIZEOF (buffer})

}

VAR
1linteqgers
b: byte:

BEGIN

_sendbyte(_RDHOST){

_sendword (sourceaddr)§

_sendword (bufsize) s

bi=PTR(destaddr)}

FOR ::=bufsize DOWNTO | DO BEBIN
b :s_recvbytei
B:=PTR(ORD(b)+1)}

ENDs

END3

PROCEDURE _wrhostdata(sourceaddr ,destaddr ,bufsize: integer)s
(transfers bufsize bytes from the 186's RAM to the 435602's RARM,
Arquasnts are the starting addresses of the source and
destination, and length of the buffer area whach is to
receive the data. Call thuslty:
_wrhostdata(ADDR(buéfer) , apl addr,S1ZEOF (buffer))
b
vaR
ilinteger}
b: bytes
BEGIN
_sendbyte(_WRHOST)j
_sendword (destaddr) §
_sendword (bufsize)
b3 =PTR (sourceaddr) §
FOR 1:=bufsize DOMNTO 1| DO BEGIN
_sendbyte(b~)y
b:=PTR(ORD(b)+1)}g
EMD3§
END}

PROCEDURE _callapl (apladdr:integer)s
{(executes routine in the 4562°s RAM starting at apladdr.
This routine sust end with a “return® comasnd.
NOTE: for locations > I2K, either use negative integers
or hex constants)
BEBIN
_sendbyte(CALL)S
_sendword (apl addr) §
END3

{end of PCP.INC)
LISTING 2. APLBR/G.INC

(APLBR/G. INC enables calling graphics routines in Apple’s
ROMs from Turbo Pascal prograss.

Requires the PCPL 188 card (Applicerd).

Copyright 1984 by N.T.Carnevale.

Peraission granted for nonprofit use.)

(Include after PCP and befarw APLOR/L or APLGR/H)

{(contains these routines used by both hi~ & lores graphics:
PROCEDURE _setpartition(partipartition)}

PROCEDURE _selectpage (pagenus:integer)s

PROCEDURE taxtscresn (pagenus:integwr)]

}

CONST
_BPL=4@y (® bytas/line of hi or lo res display)

(software switches for control of graphics features

_ORFX=8C 58§ TXT=eCo33 s .
_FULSCRM=$C8523- _MXD=eCE33IE
_PE1=9COS4s _PE2=eCETSs
_LRS=8Ce#3&s _HRO=CE373

(teaporary storage far perasawters)
0015 _LOCXX=99982; _XRED=s7982;

TYPE
partitions (FULLSCREEN, N1 XED) §
_screenacde= (TEXT, GRAPHICS)

fcontinued on page 29/

14

The Computer Journal/Issue #20

Soldering and Other Strange Tales

First in a Series on Soldering, Unsoldering, and PC Board Repair

by James O’Connor

E dison discovers electron flowina
vacuum. Lee DeForest perfects the
vacuum tube. Bardeen, Brattain and
Shockley of Bell Labs invent the tran-
sistor. Jack Kilby of Texas Instruments
builds the first integrated circuit. Intel
produces the microprocessor. Who first
used solder for electronics? Does
anyone know the name of this genius?
All those great advances of electronics,
literally held together by a common
thread of solder. Would modern elec-
tronics even be possible without
soldering?

Recently, I reorganized my scattered
collection of magazines and books on
electronics, and it took me almost
forever since I kept reading them. A
recurring theme was ‘How to Solder’
but as I read one article after another
two trends became obvious. Either ar-
ticles were very brief, basic even and
omitted things I now know can be per-
plexing to anyone who solders; or they
were very technical, discussing things
like the eutectic point (I won'’t even
elaborate on this) providing in-
teresting, but not very practical data
for actual soldering.

Thus a more comprehensive article
devoted to soldering for the occasional
kit builder is needed. It should cover all
sorts of techniques and answer
questions like “Whats that brown
scrunge around all the solder joints?”
Strikingly the most missing infor-
mation was how to do things like un-
soldering, or how to fix a damaged cir-
cuit trace. Most articles seem to
assume that everybody just starts
soldering with perfect precision and
never solders a part in the wrong place.
I certainly have done that. And
sometimes parts even fail, yet more
reason for unsoldering them.

So this series really developed inside
out since it didn't seem fair to write
about these unheard of topics without
also describing the basic soldering
process. Just note that we're limiting
the scope to the problems and methods
of soldering for electronics kit builders
and those who occasionally need to
repair a unit. Soldering small parts to

printed circuit boards (PC boards),
wires to lugs (metal loops on switches
or terminal strips) ete. Certainly very
familiar to many but perhaps not to all
readers, maybe this series will provide
the impetus for a software fanatic to
turn into a hardware hacker, stranger
things have happened before.

The Theory

This series is meant to be alittle off-
beat so let’s start by talking about
welding because that is what soldering
is NOT. Due to some minor similarities
some people think the two are related,
but they are really quite different and
it will help to realize this. In welding
two pieces of identical or compatible
metal are brought together and heated
very hot, until they become molten or
liquid, and in this state they mix
together. After cooling, the result is a
single piece formed by welding. A close
analogy would be to take two ice cubes,
let them melt a little, press them
together and pop 'em back in the
freezer, take them out later and there
is one piece of ice. ,

Journey now to the realm of the
microscopic surface of a printed circuit
board. At the level of an electron
microscope we would see that the cir-
cuit traces are not smooth shiny sur-
faces, rather they are pitted and
cratered like a giant moonscape. Most
surfaces that appear smooth at our
human level of experience are very
rough at the level of individual
molecules. Think what would happen if
a liquid were spilled onto such a sur-
face, it would flow into and through the
various pores and crevices. Most com-
mon glues are liquids, and when put on-
to a surface they seep into it, and then
the solvents in the glue evaporate and
it hardens. Once hard it is stuck into the
surface and if another surface is nearby
the two are stuck together. This is
precisely how wood and paper glues
work. Long ago people discovered that
some metals would act like glue on
other metals if they could be made to
flow like a liquid. How did they make
these metals flow? They heated them!!

The trick was to find a metal or an
alloy of two metals that would turn
liquid at a low temperature. Low
enough to make the process practical
with simple tools, and avoid the danger
of melting the two metals to be joined.
This is just the opposite of what you
want when welding. There was another
problem to be overcome, there are con-
taminants in the form of corrosion and
tiny particles of dirt on the surface of
any metal. To allow the melted glue-
metal to flow into the surface these
must be removed. They can be scraped
and polished off, but to get them out of
the crevices below the top surface some
chemical must be used. This chemical
acts to clean away the interfering
corrosion.

Thus the basic scenario of
soldering — metal-glue heated till it
flows as a liquid over a well eleaned
surface of another metal, remove the
heat, the glue-metal hardens, and the
joint is completed.

Let’s follow the steps to make a
solder connection, such as attaching the
lead from a resistor to a printed circuit
board. The lead is pushed thru the hole
in the board and is surrounded by the
printed trace. Both appear shiny so
there is no need to scrape or clean
them. Apply the soldering iron for
about three seconds, then feed in solder
on the opposite side of the iron. If both
the lead and the trace have been heated
correctly, they will be hot enough to
turn the solder to liquid. It will flow
around them both, like any liquid it will
‘wet’ them. Remove the iron and keep
everything motionless for a couple of
seconds and the solder hardens.

Sounds simple doesn't it. Then why
do so many have so much trouble with
so simple a task? There are probably
many reasons, but if I had to chose just
one I would chose, heat! The whole key
to soldering is the right amount of heat
in the right place at the right time.
Without heat, soldering just won't
work; with too much heat, damage oc-
curs. Applying heat properly is really
easy with the right tools, so lets talk
about the tools next.

The Computer Journal/Issue 320

Soldering Tools
There are only three really impor-
tant rules about soldering tools:
1. Use the right tool.
2. Use the right tool.
3. Use the right tool.

To put it more succinctly, the easiest
way to get into trouble is with the
wrong tool. But what is the wrong tool,
what's the right tool? To answer that
question we're going to list some bran-
ds and specifications but more impor-
tantly we'll first talk about the function
of the soldering tool, an understanding
of which should allow us to always
select the right tool for any task.

Some soldering iron parts have
descriptive names like screwdriver tip,
chisel tip, conical tip ete. and you might
be excused for thinking the job of the
soldering iron is similiar to a
screwdriver or a chisel. Not at all, the
purpose of the soldering iron is to
deliver heat, precisely the right amount
in the right place. The names only
describe the shape and not the real fun-
ction of these parts.

A good solder joint occurs when the

two parts being soldered are hot
enough to melt the solder, to make it
liquid. Simple enough? In theory it is
but in real practice there are some
problems and the right soldering iron
solves those problems, the wrong one
causes them.

Consider again the simple task of
soldering a resistor onto a printed cir-
cuit board. All we have to do is to heat
both thee resistor lead and circuit trace
to about 750 degress Fahrenheit right
where they abut each other, apply some
solder and let it cool. First problem;
both the resistor lead and trace being
made of metal are good conductors of
heat. When the soldering iron is applied
to the junction both will heat up and at
the same time the heat will start
flowing away thru both.

If the soldering iron is too small then
the amount of heat flowing away will
prevent the joint from getting hot
enough. Even worse the joint may
eventually heat up enough but by then
the resistor body has absorbed a great
deal of heat and due to that may change
value, the circuit trace may also have
absorbed too much heat and
delaminated (lifted off the board). So,

15

we may make the solder connection
while destroying the resistor and
damaging the trace. And do you know
what that means? We will have to un-
solder the whole thing, repair the
board, get a new resistor and try again.
The follow-on parts of this series will
discuss those topics, unsoldering and
circuit board repair, because soldering
is part knowledge and part art so even
the best soldering artist may need to
make such repairs.

Many newcomers to soldering are
rightly fearful of the damaging effects
of heat so they tend to chose the
smallest soldering iron available, unfor-
tunately as we've seen this can cause
damage. The real ‘trick’ is to over-
whelm the the joint with enough heat
that it quickly reaches the required
temperature, make the connection,
remove the iron and let the heat
dissipate.

It would seem that you should use
the biggest soldering iron available,
and occasionally [have observed some
very skilled, experienced technicians
use an oversized tool to make a connec-
tion but they only did so lacking a more
appropriate tool. Circuit boards can be

16

crowded places, with very fine closely
spaced traces, an oversize tool can
cause a problem called 'bridging’ which
is accidently joining two parts when
they aren’t supposed to be. Plus ultra
precise timing is needed since too large
a tool can supply heat too fast.

Look at almost any selection of
soldering irons, in a store or catalog,
and you'll notice the great variety. In-
deed, some large catalogs are devoted
entirely to soldering irons and ac-
cessories, and many have several pages
of tools. We won't delve into all this
since these are all instances of
soldering tools for a specific job in in-
dustry such as soldering very small
items, or very large etc. For simple kit
building, all you really need is a basic
soldering iron preferably with inter-
changeable tips.

Soldering irons are rated in watts,
the more watts the more heat the iron
can supply. They all reach a tem-
perature between 700 to 800 degrees
Fahrenheit. Thus the wattage is not
related to temperature, but really to
the physical size of the parts to be
soldered. For very small parts there
are 12 watt irons, for most circuit board
work there are 25 and 30 watt irons, for
circuit boards with large wide traces
and for large switch lugs and terminal
strips there are 40 and 60 watt irons.

Let’s digress for just a moment. With
basic soldering irons you control the ac-
tual temperature of the joint by how
long you apply the iron toit, thisisa
matter of acquired experience. It's easy
to learn and the solder itself acts as a
temperature gauge. For industrial
work there are soldering stations that
self-regulate their temperature. These
are more elaborate and expensive,
they're fine if you'll be doing frequent
soldering and are very convenient but
hardly necessary for kit building.

For most circuit board and wire to
lug soldering, a 25 to 30 watt soldering
iron is just right. If you don’t have such
an iron then get one. It will pay for it-
self even if you use it to build just one
kit, and the entire package should cost
less than $25 dollars. There are literally
dozens of suitable irons availble so if we
don't mention some chalk it up to lack
of space. The most inexpensive type of
iron would be the Radio Shack #64-2067
which is a 30 watt pencil type iron, list
price is only $3.49. This a good tool ex-
cept that the tip is built in, that is you
can’t change it and once it wears out
you replace the whole iron. Some tips

cost more than this iron, for one kit this
tool will do an adequate job.

Radio Shack also sells two packages
that include a 30 watt soldering iron,
#64-2802 includes soldering accessories
only and sells for $4.95 while #64-2801
which sells for $14.95 also includes a
diagonal cutter, needle-nose pliers, and
three screwdrivers. If you don't have
any pliers the 2801 package is a good
choice, while the smaller 2802 package
is not my first choice. I think you would
do better to purchase those items in-
dividually, you'll be able to chose better
items and buy them in bulk.

Next up the scale would be Radio
Shack #64-2070, a 25 watt model with a
replaceable tip, but there is only one
style and size of tip, list price $5.49, tips
are $1.29. There is also a gun handle
mode] #64-2065, list price $3.99, tips
$.89. Most people find the straight iron
type easier to control but a few prefer
the gun style, the choice is up to you.
Moving up, Radio Shack also sells
model #64-2055 which features a switch
to select either 15 or 30 watts, list price
$6.95, tips are $.89 but again only one
style is available.

Top of the line is the modular unit,
This consists of a handle #64-2080, list
price $4.99, to which you add a heating
element in this case the 27 watt unit
#64-2081, price $4.79, and a set of tips
such as #64-2084, price $3.69. These are
three different style of tips, broad,
medium, and fine point. Grand total
cost, $13.47.

We've skipped the Radio Shack 42
Watt iron as that is too much wattage
for most kit building. The 75-Watt
Soldering Gun #64-2191, is also too
powerful. It's a different device
because it heats its tip by sending low
voltage current through it. Resistance
to the current flow causes it to heat up
just like the element in a light bulb.
These gun type tools are very good for
heavy soldering tasks especially since
they heat up almost instantly and you
might want to have one if you plan to
really get involved in soldering. The
torch type tools in the Radio Shack
catalog are not suited to any electronics
assembly that I know of.

What about other manufacturers?
There are at least two that deserve
mention, but you'll have to scout up
sources for their products. The tool
use is a Weller WP25 soldering iron (25
Watts, of course) which costs about
$17.00, I paid less but then I have had it
for over ten years now. This unit can be

The Computer Journal/Issue #20

used with eight different style tips, my
favorites are the so-called screwdriver
tips, these are really more oval shaped
with smoothiy rounded edges. Not good
for driving screws at all, but great for
soldering as the rounded shape easily
butts up against the lead and circuit
trace while still allowing a channel for
the solder to flow around the joint. The
three I employ are the ST1a 1/16” tip,
the ST2 3/32" and the ST3 1/8”, these
cost about $3.00 each. The ST2 is used
for almost 90% of my work, switching
to the ST1 for very small work or the
ST3 for larger items.

Heathkit sells a package of tools
(Model GGP-1270) for kit builders that
includes the Weller WP25, it sells for
$39.95 and again if you don't have any
tools this is a quality assortment to
begin with. They also sell the WP25
seperately as Model GDP-207A, price
$14.95. But they don't offer the inter-
changeable tips thru their catalog.

The other big name is Ungar. They
have a very extensive line of soldering
irons and tips, in fact so extensive that
Ithink the hardest task is selecting the
right tool from the variety. Ungar of-
fers a Hobbyist iron Model CM-25 for
about $8.00 that is a simple inexpensive
unit. Then they have the Modular
Standard Line wich includes a handle
such as the 777 or 776 both about $7.00.
These handles accept heaters in either
the Ungar S or HP series. One type
such as the 533-S, 536-S, or 539-S in-
cludes both heater and tip, for about
$9.00 each. While the 537-S, cost about
$8.00, accepts thread-on tips such as the
PL-151 serewdriver tip which cost
about $3.00. And there are even more
available, including some special ac-
cessories. At the end of this article I list
some sources for catalogs that include
both the Weller and Ungar line, you
may wish to obtain these catalogs just
to see the great variety of soldering
tools available.

The Radio Shack Modular line and
the Ungar Modular are so similiar that
it is fair to conjecture that Ungar
makes the Radio Shack units but this
doesn’t guarantee compatability bet-
ween the various accessories.

We'll need one more item to com-
plete the package and that is the most
important of all, a suitable stand for the
iron. Why is it so vital? Because it
provides safety. Hot soldering irons can
burn people, char things, melt them, set
some things afire, and just plain wreck
havoc. The soldering iron holder over-

The Computer Journal/Issue 320

comes most of these dangers. You'll
still need to exercise care when using a
hot iron but it's much safer with a
holder. Some kits come with a holder
that consists of a bent piece of wireon a
small plastic disc, these are still better
than nothing at all but just barely. Do
purchase a real holder, Radio Shack
#64-2079 is a satisfactory unit, list price
$5.79. The Weller PH25 cost about
$8.00 or PH60 cost about $10.00 are also
good. Don't fail to buy a holder because
of the cost, it’s worth it, you'll save the
price if it prevents just one accident.

There are only two things to keep in
mind when selecting a holder, first be
sure that your iron fits the holder, some
units are made for specific irons and
won't hold other brands or types. For
instance, Ungar makes one holder for
their Standard irons and another for
the Princess irons. Secondly, some
holders are made to be free standing
while others work best only if screwed
to the workbench, just be sure to get
the type that fits your situation.

The holder will include a sponge, use
this to keep the iron properly ‘tinned’.
When you first heat the iron, stroke it
across the dampened sponge on each
edge and then melt just enough solder
onto the tip to coat it. As you work,
heat will cause a layer of ‘crud’ to build
up on the tip, this stuff is an insulator
that can block heat transfer. Clean it off
by stroking the tip over the sponge, if
the tip comes away with a bluish color,
re-tin it with solder to keep it working
at maximum efficiency.

One final precautionary hint —none
of the irons we've mentioned glow
when hot, nor do they have any in-
dicating lights to show that they are on.
This can be a real hazard since you may
go off and leave the iron on, if you have
a stand this won’t hurt anything but
your electric bill (no worse than leaving
a 25-Watt bulb on). Without a stand this
can cause a fire, yet more reason for
having a stand. A good idea is to use
one of those barrier type outlets with a
built in power-on light, with this you
can always be sure that everything is
off when you finish.

To summarize, all you'll need is a 25
or 30-Watt soldering iron, ideally with
changeable tips, and a good holder for it
and you're all set for 99% of all the
soldering required for most kits.

Using The Tool
If you do get one with changeable
tips, then how to do you select the right

tip for a given task? [t's really quite
simple but it does involve a little
judgement. Take a look at the circuit
board you'll be working on, estimate
the average size of the circuit pads
where the joints will be, and chose a tip
that is approximately 60 to 80% as
wide as an average sized pad. This is all
very approximate, precise measurmen-
ts are not required. Try to avoid using a
tip that is wider than most pads as that
can induce bridging.

Of course some pads may be much
smaller while others are much larger,
this is where you need to switch tips
especially for the larger ones. Pads that
connect to the ground plane of a circuit
board are often very large, indeed they
may blend into wide expanses of trace.
These 'big game’ pads often gather in
the vicinty of the electronic equivalent
of a waterhole, namely voltage
regulators. The sheer size of them
draws away heat too quickly, thus swit-
ching to a larger tip can make the dif-
ference when soldering these big pads.

This leads to a pet peeve of mine,
most kit instructions blithely ignore
the problems that occur when soldering
different size items. That is the instruc-
tions will often have you solder things
foillowing some pattern totally
unrelated to the requirements of
soldering, such as working in only one
area. This is one instance where it may
be wise to skip some steps because you
can see that you have the wrong size tip
on your iron. Just be sure to mark the
steps you've skiped so that later you
can go back and re-do them.

Instructions that have you install
things by size, that is starting with the
smaller items and ending with the
larger ones are usually just fine for
soldering, start with a small tip if
needed, switch to a medium size, ending
with the large size. Do be methodical,
as this type of instruction predisposes
you to installing parts in the wrong
location or forgeting a part. Perhaps in
a future article we can discuss the fine
art of interpreting instructions.

Flux

What an odd sounding word, look it
up in the dictionary and you find that it
means: flow, state of change, a
discharge of liquid, and an aid to
soldering. The other meanings are
rarely used anymore, so clearly we are
interested in its association with
soldering.

Let’s start at the beginning. The first

17

(5

NGS FORTH

A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

679 STANDARD
®DIRECT I/O ACCESS

oFULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

SENVIRONMENT SAVE
& IOAD

SMULTI-SEGMENTED FOR
LARGE APPLICATIONS

®EXTENDED ADDRESSING

OMEMORY ALLOCATION
CONFIGURABLE ON-LINE

@AUTO LOAD SCREEN BOOT
OLINE & SCREEN EDITORS

eDECOMPILER AND
DEBUGGING AIDS

#8088 ASSEMBLER
eGRAPHICS & SOUND
eNGS ENHANCEMENTS
eDETAILED MANUAL
SINEXPENSIVE UPGRADES
eNGS USER NEWSLETTER

A COMPLETE FORTH
DEVELOPMENT SYSTEM.

PRICES START AT §70

NEWe-HP-150 & HP-110
VERSIONS AVAILABLE

A
D
|

MEXT GENERATION SYSTEMS

P.0.BOX 2987

BANTA CLARA, CA. 95055
(408) 241-5909

18 '

people to solder must have used
something as a flux but didn't call it
that, we don't know if they called it
anything. Eventually some onlooker
must have asked "What do you call that
stuff?” and the ancient solderer may
have mumbled, “I call it the stuff that
helps me to solder, it changes the
metals so they bond.” Immediately,
they went to their Funk & Wagnalls or
whatever they had then and looked for
a word that meant change, or helps to
change, preferably a catchy little four
letter word, and lo they found ‘flux’.

So flux helps change the metals, but
what does it change? One property of
metals is that they tarnish and corrode.
Some more rapidly and obviously than
others but they all do it. Corrosion is
the tendancy of metals to combine with
oxygen which forms a metallic oxide,
steel is the prime culprit —there is even
a word to describe the process, rust.
Steel corrodes quite slowly and the
resulting oxide, rust is crumbly and un-
stable. Most other metals corrode so
rapidly that the resulting oxide forms a
skin or coating that seals off the surface
of the metal preventing further
corrosion. Zinc does this which is why
steel is often coated with zinc, in order
to protect the steel, in the process
called galvanizing. Copper, nickel and
other metals used on leads and traces
also tarnish and corrode and that can
block the molten solder from bonding to
them.

One way to clean the metal would be
to sand it, plumbers do this when
soldering copper pipe. The sanding
breaks the surface coating but more
tarnish extends down into the metal
and this must be removed by some
chemical action that can flow into the
minute pores of the surface. The pium-
ber uses a mild acid mixture to accom-
plish this.

Electronics technicians could also use
acid, and in the early days actually did,
but the acid remains after soldering
and can continue to eat away at the
metal. The pipes that a plumber solders
are massive enough that only a minute
amount of metal is destroyed before the
acid is used up, but electronic joints are
tiny in comparison. Early users of acid
fluxes for electronic work soon
discovered that the connections would
fail after a few months, literally eaten
away by the residue of acid flux. This is
why there are so many dire warnings
about using acid fluxes for building kits
or any other electronic work. It is also

why you shouldn’t buy flux at a har-
dware store. They carry flux meant for
plumbing work and the salespeople of-
ten don’t know that such fluxes should
never be used for electronics.

So what can be used for electronics,
clearly early users had to find
something other than acid. They found
the right product in the form of rosin.
Rosin (sometimes also spelled resin) is a
material that occurs in pine trees and is
obtained along with the distillation of
turpentine. It is virtually inert, that is
harmless to most substances when
solid, but when heated it becomes a
liquid solvent. In its liquid state it does
a fairly good job of dissolving the tar-
nish layer on metals used in electronics.
Rosin is easy to work with, early users
ground it into a powder and applied it
prior to soldering, combining it with
some liquid solvent to form a paste.
This worked fine but then someone had
the idea of combining solder and rosin,
they developed a way of extruding the
solder as a hollow wire with the rosin
inside, what is today called ‘rosin-core
solder’. Purchase solder at an elec-
tronics store and you can't help but ob-
tain flux in this, its most convenient
form.

If this were any old article about
soldering and fluxes this would be the
end of the story but there is more, even
a minor mystery of sorts, that is still to
come.

As you use rosin-core solder it melts
and part of the rosin also melts flowing
out to clean away the tarnish. Some of
the rosin also goes up in a little puff of
smoke. Nowhere in any tutorial have I
ever seen the smoke mentioned,
needless to say many a first time
solderer has been puzzied and even
alarmed by this phenomena, after all
smoke is associated with fire and bur-
ning. The smoke is supposedly har-
mless, at least I don’t know of any
studies indicating that is an oc-
cupational hazard. I do know that many
people, myself included, find it an
irritant to the eyes and nose. Invariably
just when you're straining to see what
you're doing, the smoke makes you
want to sneeze. This effect seems to
wear off quickly and everyone is affec-
ted differently, so if soldering makes
you sneeze perhaps now you know that
it’s really the ‘flux’.

What about the rosin that doesn’t go
up in smoke? It usually forms a coating
around the completed solder joint.
When still molten it will be clear in

The Computer Journal/Issue #20

color and as it quickly hardens {one or
two seconds) turns a brownish shade.
Here comes yet another pet peeve of
mine. In any tutorial on soldering there
always appears the picture of the ideal
solder joint, AFTER the rosin has been
cleaned away. The trouble is that with
rosin core solder, you always get excess
flux on the joint which will partly ob-
scure it. The experienced solderer
learns to peer through this coating to
check the joint, but the newcomer is of-
ten confounded by the appearance of
what is probably a perfectly good con-
nection. Later we'll talk about cleaning
away flux and you can do this to verify
that a solder joint is good or bad until
such time as you can tell from ex-
perience.

There is yet one more phenomena
that occurs. When the flux melts it also
tends to bubble like any hot liquid,
these bubbles will literally pop out of
the joint and land anywhere from a
quarter inch to a half inch away where
they then harden. This same thing hap-
pens in welding, except that the bub-
bling liquid is molten metal as are the
solidifed bubbles. Again many novice
solderers may think the rosin bubbles
are soldified solder, they can look very
metallic and de pop out of the solder
joint. Just poke these bubbles and
you'll find that they crumble into dust.

By now experienced readers may
think we've exhasuted everything
there is to say about flux, but wait
remember we promised a mystery,
here it is.

Rosin is considered inert, that is it
doesn’t corrode anything and won't
conduct electricity, and for a long time
everyone seemed to agree on this. In-
structions with any electronic kit never
mentioned any potential problems with
the rosin left on the circuit boards—in-
deed they rarely mentioned it all. But
then a few years ago articles began to
appear that instructed us to clean away
the flux after the soldering was com-
pletely finished. Indeed some of these
warned of dire results if the flux was
not fully purged from the board.

As a firm believer in following in-
structions, I like many others dutifully
complied. And then I discovered
something never mentioned in the in-
structions (so what’s new), it's really
hard to clean away rosin flux. You need
to use strong vaporous solvent to
disolve the stuff and flush it away.
Some of these solvents can damage the
parts mounted on the board. Parts that

The Computer Journal/Issue #20

have plastic are very susceptible, relay
housings, connectors etec., and since you
have to invert the board to clean it you
can't prevent the solvent from reaching
such parts. Rosin is also very sticky
when it is dissolved, recall that it is also
called resin. You have to flush the
board in solvent several times to
remove most of the flux, and even then
there is a thin sticky residue left
behind.

The mystery arises because not all
kit makers recommended this step,
examining circuit boards in commercial
products also showed some that had
been cleaned others not. Who's right
and why had supposedly harmiess inert
flux suddenly turned into an insidious
destroyer of circuits? Gradually, I
pieced together a possible explanation.
I have no way of knowing if it is factual
but I will present the hypothesis and
you can be the judge.

Soldering by hand is a labor intensive
step, American electronics makers in
an effort to compete with the low cost
labor of the Far East have long sought
to eliminate it. Two ways to do this are
dip soldering or wave soldering. In
these two techniques all the parts are
simply mounted (stuffed is the technical
term, and yes it is inelegant) on a board
which is then conveyed to a large
heated tank containing molten solder.
Dip soldering is just what the name im-
plies, the lower surface of the board is
dipped into the solder, in wave
soldering the board is suspended just
above the surface of the tank while a
wave is formed in the solder which
sweeps past the bottom of the board.
Both methods allow all the connections
to be made in one step.

In either of these techniques flux
must be used, but obviously rosin core
is impractical. In fact rosin isn't quite
up to the job, since it has to melt it
couldn’t work fast enough to
thoroughly clean. So in wave or dip
soldering the flux is applied just before
the soldering station (the whole process
is usually automated) and is an mild
acid flux.

To recap, the boards are stuffed with
parts, they move to a station where an
acidic flux is applied, then to a wave
soldering tank. Guess what has to come
next? If you guessed a station where
any remaining flux is cleaned off you're
right. This flux has to be cleaned off
because of it’s corrosivness. And the
final station on the line, why a visual in-
spection station, yet another good

19

Jeve'cred

e Muitipte Commands per iine

more easily added

® 76 syntax-compauble support uthities

(@

Z Operating System, an 8-bit OS that flies! Optimized HD64180/280 assembly language
code — full software development system with proven linkable libraries of productive
subroutines — relocating (ROM and RAM) macro assembler, linker, librarian, cross-
reference table generator, debuggers, translators and disassemblers — ready to free
youl

High performance and fexibiiityl Productivity results from gynamically customized OS erviron-
ments. malcning Cperator Lisks dnd machine

Redl-tume control kerre! option allows quick software developrment for industral cnurol
spplications other toors and utilities for office desk-top personal computing functions. [oca: area
networks 1o Ethernet. AppieTalk. Ornninet. ArcNet. PC-Net [Sytek) — from micro to manframe
Lommand. control and commurications Distnibuted processiNg appHeation Brograms are 2dsily

e Extrerne organizational flexibdity, £ach directory another environment

e Alases {complex senes of commands known by simple names| with vanable passing
e Named Direciones with absotute password securnty

Futl-screen command fine eaiing with previous command recall and execution
Shells and Menu Generators. with sheli vanables

e Command-file search Paths. dynamically alterable

e Screen-oriented file manipulation and autoratic archiving and backup

512 megabyte file sizes, 8 gigabyte disks handled

Auto disk reset when changing floppres

TCAP database handles characienstics of over 50 computers and terminals.

Tree-structured online help and documentation subsystem

Your missing link has been found — Z1 Now fly with eagles! Fast response, efficient
resource utilization, link to rest of computing world — shop floor to executive suite,
micro to corporate mainframe. Cail 415/948-3820 for literature.

Echelon, Inc. 101FirstStreet o Suited27 ¢ LosAltos, CA 34022 ¢ 15/948-3820)

reason for cleaning the flux away.

My feeling is that some people
familiar with how boards are soldered
and then cleaned in an automated
production facility incorrectly exten-
ded that to what happens when boards
are hand soldered using good ole har-
mless rosin-core solder. You can verify
this hypothesis by the fact that most
circuit boards from America are indeed
well cleaned while boards in products
madesin the Far East rarely are
(although this is changing as
automation is spreading throughout the
world.)

The bottom line is that if you use
rosin-core solder then you really don't

have to clean it all away. You can do so
if you wish for aesthetic reasons or to
inspect the connections.

One more comment about flux
removal. If you purchase finished
products under warranty you will
probably be warned that the warranty
is void if repairs or alterations are
made. Let's assume that you wish to
alter or repair the item and that you
can open it up without breaking any
seals or leaving other telitale clues as
to what you've done. If you do any
soldering then you should either clean
away any flux if the board is otherwise
fluxless or be sure not to if that is its
original condition. Otherwise should

20

youreturn the item for a warranty
repair then flux or lack thereof may
give you away.

The corollary is that if you ever need !
to repair or inspect a circuit board, the
presence of flux on a clean board in-
variably indicates some sort of repair
or rework occurred. Many times the
parts replaced will have failed again
and this will give you a clue as to what
needs fixing. You should also inspect
the joints to be sure the previous
technician properly soldered them,
sometimes that's the problem.
Soldering failures are the very reason
for this article.

It wouldn't be fair to spend so much
time talking about removing flux
without discussing how to do so. Let's
imagine that you want to clean an en-
tire board and that you're sure there
are no parts on the board that couid be
damaged by cleaning it, such as swit-
ches, relays etc. You'll need a solvent.
You can purchase spray cans
specifically labeled for removing rosin
based flux. You can also use some com-
mon solvents such as Isopropyl
Alchohol or VMP Naptha, both can
damage plastics so don't use these if
there are vulnerable parts. Don't use

paint thinner as most leave some
residues after evaporating. And never,
NEVER use gasoline or kerosene, both
are far too dangerous to ever use as a
cleaner or solvent and that which
makes them so hazardous also makes
them do a lousy job.

Next you'll need a safe place to work,
even the recommended soivents all
produce vapors that must be ven-
tilated. Don’t work near any flames,
open or closed, or anything that can
spark, or make sure such things are
turned off while you work and until the
fumes have been expeliled. Label any
switches so that no one can accidentally
turn them on, while you're working.

You will also need a place to work
where the liquid solvent and flux can
NOT cause physical damage. Don't
work above a fine piece of furniture, a
finished floor, or wall-to-wall carpet. All
of these soivents can disolve finishes,
leave white streaks, and the rosin can
stain fabrics. And some of them, the
one that Radio Shack sells for example,
will really do a number on plastics. In
fact the Radio Shack brand will mar
plastics even if just the overspray hits
them, so work well away from in-
struments or other objects in plastic

k

63802 CPU

ProDOS ORCA/M

65802 as the standsrd 65802 sssembler.

APPLE), +,7//,//e &//c OWNERS
UPGRADE THAT TIRED 6502 TO 16 BITS 1i

16 bit version of the 6502. Pin for pin snd completely software

compatible with the 6502 CPU. You can upgrade your Apple]l,ll+,
{11.11e or/lc to a 16 bit computer simply by replacing the 6502
with the 65802 without losing the sbility to run any old softwars.

(ist $79.95) $69.95
This ProDOS version of ORCA/M comes with the completes 65802
instruction set. if you intend to develope softwars for this new

CPU, then this packege is a must. Chosen by the designers of the

$49.95

310995

FEATURES:

The Computer Journal/Issue #20

cases.

Spray the solvent onto the board
while holding it at a slight incline, work
from top to bottom so the dissolved flux
flows away from the board. If the flux is
particulary stubborn use a retired
toothbrush (test first to be sure the
solvent won't disolve it) scrubbing
around the connections to encourage
the cleaning action.

To clean one or two connections, such
as after a repair, the following
technique is easier and safer. Take a
cotton swab, hold it right up to the
spray nozzle, and spritz it just enough
to wet it. Roll the swab around the
joint, don’t scrub as the sharp edges
will catch and tear it up. The cotton will
absorb the flux and leave a neat looking
repair. You may need to do it several
times for maximum cleaning. By the
way the Radio Shack produect is great
for this job, just be sure that when wet-
ting the cotton tip that any overspray
will not touch plastic surfaces.

Solder
Electronics solder is an alloy of 60%
tin and 40% lead. These proportions

(continued on page 27)

e - ' — — e

This packege includes 65802 CPU and the ProDOS ORCA/M. All
you need to start.

FORTH, PASCAL P-tode Upgrade & MORE!
TO ORDER, SEND CHECK OR MONEY ORDER TO:

ALLIANCE COMPUTERS
PO BOX 408

CORONA, NY 11368

POSTAGE AND INSURANCE INCLUDED. (718) 426 2980
All CPU's will be sent by Postsl Service, ist class insured or UPS,
insured. Plesse specify USPS or UPS. UPS doesnl deliver to POB's.
Software will be sent by UPS Blue Label. If you want UPS Next Dey
Air, sdd $5.00 (CPU's onlyl). Most all orders sent out same day.
COD add $3.00. APO's end FPO's welcomed.
Forsign orders: Plesse make payment in US doliars drawn on a US
bank. Add $S for Registered Mail and Air Mail Postege (sxcept
Canads). No foreign COD's.

PLEASE INCLUDE YOUR PHONE NUMBER WITH ORDER

16 bit Motorola 68000 CPU operating at 5 MHz or 10 MHz, 20K of on
board fast static RAM, 16K bytes of on board EPROM space, 7

autovectored interrupts, 3 memory/ device expansion buses, 2 serial
communication ports (RS-232 C), 16 bit bidirectional parallel port,
5-16 bit counter/timers with vectored interrupt and time of the day
clock. On board monitor allows to download and debug programs
generated on APPLE II, TRS-80 and CP/M using our M68000 Cross
Assembler.

PRICE:
M68K Bare board with documentation
M68MON monitor & mapping PROM’s
MD512 Memory,/Disk Contr. {Bare Board)..
M68KE Enclosure with P.S. and card cage
M68000 Cross Assembler
M68K Documentation only
Shipping & han

(foreign):::.
CALIFORNIA RESIDENTS ADD 6% TAX

P.0.BOX 16115. IRVINE, CA 92713

(714) 854-8545

Educational
Microcomputer
Systems

EM

The Computer Journal/Issue #20

21

Build a S-100 Floppy Disk Controller Board
WD2797 controller for CP/M 68K

by Joseph Kohler

A ny discussion of a floppy disk controller board which
ignores the software to run the controller is incomplete. The
board described in this article is presently being used with
the 68008 CPU card given in reference 3 so all software will
be for the 68008. The controller may be used with any S-100
CPU card provided the CPU chip is fast enough to perform
the time critical functions of the routines mrd and mwr
discused later.

If you wish to run CP/M 68K or any other operating system
you will need a floppy disk controller board and a boot rom.
Here is a design using the WD2797 which operates both 5 and
8 inch drives in single and double density.

Hardware
Addressing: A 8131 (see Figure 1) is used together with dip
switches and pullup resistors to select 8 addressess in the I/O
space to which the board will respond. Assertion of MATCH-
. H,SOUT and PWR results in assertion of PUT-H and PUT-L
{see Figure 2). Writes to the board with A2 set to 0 access the
WD2797 (see Figure 3) and with A2 set to 1 they access the
control latch (see Figure 2). Assertion of MATCH-H, SINP
and PDBIN results in the assertion of GET-H and GET-L (see
Figure 2). Reads from the board with A2 set to0 access the
WD2797 (see Figure 3) and with A2 set to 1 they access the
wait flip-flop (see Figure 4).

Clock: A 4MHZ clock (see Figure 1) is divided by 2 and 4
using two flip-flops to produce clocks of 2MHZ and 1IMHZ for
use by the WD2797. Bit 5 of the control latch determines
whether a IMHZ or 2MHZ clock reaches the WD2797. This
choice is made by using two tristate drivers of an LS125 (see
Figure 4) and enabling one or the other to pass either the
1MHZ or 2MHZ signal to the WD2797. The WD2797 requires
the IMHZ for 5 inch drives and the 2MHZ clock for 8 inch
drives.

Control latch: Overall control of the board resides in an
LS273 8 bit latch. The meanings of the various bits are shown
in Table 1.

This design simplifies the hardware at a slight cost in sof-
tware complexity. A byte must be kept in ram which reflects
the state of the LS273, since the LLS273 is write only. In order
to make a change you must get the ram copy, change only the
desired bits in the ram copy and then write it to the LS273.

When RESET or POC is asserted so is MCLR-L, which
initializes the LS273 so that no drive is selected and MOTOR-
ON-Lis negated. The EPROM is enabled and PHANTOM is

-asserted on the 8-100 bus (provided the switches to use the
EPROM and PHANTOM are on).

Wait flip-flop: The read which references the wait flip-flop
is simply used to create a pulse which clocks the wait flip-flop,
with no intent to return data to the CPU. Assertion of POC or
RESET clears the wait flip-flop.

My first exposure to the idea of stalling the CPU was in an
early issue of BYTE (see reference 1) where a USRT was em-
ployed to serve as a floppy disk controller. The wait flip-flop is

just a device to synchronize data transfers between the CPU
the and WD2797.

INTRQ: If an error occurs during data transfers between
the CPU and disk the WD2797 asserts INTRQ. Furthermore,
INTRQ once asserted remains asserted until the WD2797
status is read. As long as INTRQ is asserted the wait flip-flop
is held in a clear state no matter what happens at its clock in-
put. Thus in case of error the routines mrd and mwr run to
completion (transferring meaningless data) without wait

states. INTRQ is negated by the routine mbusy when the

status is read (see Figures 3 and 4).

e ' .
ioefd 1301
Ny 1o oft Lo alt
|
Q)] ©
1 1 Lol L) s 3 <x 5 1le o2 Muz
mlrl “ 3
’L ’” 2mmz
A e MATCN ~ ¥
° .8
et —2] 0 [oe
843 1 " 1 " ' 1.
sa4 " 1 0 jabdn 2l s s
YY) 3 . b 3 o L
Sae 3 @ . EN\" . 13
a7 ! 2 £ 3 6 12
3

;i)

Figure 1: Clock and base port selection.

Ll g 2 2@0" ———
. 4 3 Abc 1 G "
1Y
s
;
L DUNEN 5 B ‘_z@».u__—a
=) i] [17 <a "
1}
el 13 1, DENSEL -
o 1a T .Y
m 1 raos L
—_—7
L . 1y woTanan I£8"7y "
oma "

it
12 ALy B2 s PUTR
e 1} o o
oUTE [} @ 9) o
——) 2

3
EE=DES b

Figure 2: Control latch and decoding for
CNTRL-CK and WAIT-CK.

22

F

BAO 5
BA1l 6
BA2 3
GET-L 4
PUT-L 2
BDO 7
BD1 8
BD2 9
BD3 10
BD4 11
BD5 12
BDé6 13
BD7 14
2797-CK 24
DEN-SEL 37
EN5-L 17
DRQ 38
INTRQ 39
Unused 19

A0
‘Al
'C8
RE
WE
DALO
DAL1
DAL2
DAL3
DAL4
DALS
DALS6
DAL?

CLK
DDEN
5/8

DRQ
INTRQ

MR

Figure 3: WD2797 data and control.

BPC-1 10
—_—

BRSET-L ¢

orQ 2

INTRO 3 @

Figure 4: Clock selection and wait syne circuit.

bit 0
bit 1
bit 2
bit 3

J bit 4
bit 5

bit 6

bit 7

alow selects 8 inch drive 0
a low selects 8 inch drive 1
a low selects 5 inch drive 0
a low selects 5 inch drive 1

At most one of the above bits should

be low at the same time.

a low (high) selects double (single} density
a low (high) enables the IMHz (2MHz)
clock and the buffers to operate

5(8)inch drives

a Jow (high) enables (disables) the

EPROM and the PHANTOM
alow (high) negates (asserts) the 5 inch

motor on signal

Table 1

The Computer Journal/Issue #20

DRQ: Whenever the WD2797 wants to transfer a byte of
data it asserts DRQ which clears the wait flip-flop waking up
the CPU. Details may be found in the discussion of the
routines mrd and mwr (see Figures 3 and 4).

Drive interface: The interface between drives and the
WD2797 follows a well defined standard. The rules are that
signals received are pulled up by a 150 ohm resistor, and
signals sent must be driven by something capable of pulling a
line (which is pulled up by a 150 ohm resistor) low. An LS244
or LS240 meets this requirement. There is also enough
hystersis to reliably receive the raw read data.

Bit 5 of the control latch is used to select the LS240 and
LS244 (see Figures 6, 7 and 8) drivers and receivers for
whichever type of drive is being read or written. The two
signals which do the selection are EN5-L for 5 inch and EN8-L
for 8 inch drives. Note EN8-L is the inversion EN5-L {see
Figure 4) so exactly one of these signals is active at any time.

EPROM: Reads from the EPROM occur when PROM-SEL-
L is asserted by the control latch, A15is 0 and SMEMR is
asserted (see Figure 12). In order to transfer ROM data to the
CPU the dip switch E3, which connects pin 10 to pin 7 must be
closed (see Figure 11), otherwise the OE pin of the EPROM
{see Figure 11 and 12) will be pulled high by a pullup resistor
and BOARD-TO BUS-L will not be asserted. If dip switch E3,
which connects pin 11 to pin 6 is closed and the control latch
asserts PROM-SEL-L then PHANTOM is asserted.

The EPROM socket has 28 pins so any EPROM from a 2716
to a 27128 can be used. So far a 2716 has proved adequate sin-
ce it is used only to boot CP/M 68K. NOTE: The pin numbers
in Figure 12 refer to the 28 pin socket.

The program in the present EPROM simply moves a loader
program to RAM (beginning at $9000) and then jumps to
$9000 to execute the loader. My present system uses two
Digital Research 64K RAM cards. The low order board is set
with half phantom and the high order with full phantom
enabled. If more boards are added they should have full phan-
tom enabled.

Adjustment procedure: The WD2797 requires some initial
adjustments in order to operate.

1. Make sure switches E3 pin 6, 7 and 8 are all open. If you
want to be more careful also remove the EPROM.

2. Do not connect cables to disk drives.

3. Place the board in an 8-100 system with power off. Turn
on power.

4. Press reset to force control latch outputs DEN-SEL and
ENS5-L low, which sets the DDEN input to the WD2797 low
and the 5/8 input to 5 inch.

5. Momentarily short pins 19 and 20 to perform a master
reset on the WD2797.

6. Close switch E3 pin 8 to enable TEST on the WD2797.

7. Set your scope to 0.1us/div and place probe on pin 31 of
the WD2797. Adjust the 10K pot until you see a waveform
200ns wide.

8. Now put your probe on pin 29 of the WD2797. Adjust the
50K pot until you see a waveform 250ns wide.

9. Set your scope to 1us/div and adjust the 5-60pf variable
capacitor until you see a squarewave with pulse width 2us i.e.
a frequency of 250KHZ.

10. Open switch E3 pin 8 to disable TEST on the WD2797.

For more information on the WD2797 see reference 2.

The discussion below assumes a5 points to the base port of

- the controller board. For example, if the address selection

switches are all on the base port is 0, so a5 must be set to $ff-

The Computer Journal/Issue #20

ff00. Also the equates

status
femd

equ0 .
equ0

are in effect.

Execution of a read: The instruction

move.b status(ad)dl

reads the status register of the WD2797. The 68008 CPU
board executes this instruction by placing the address ${fff00
on address lines A0 through A23 (see Figure 9). Address
signals A3 through A7 are passed through E1 to E2, an 8131,
which then asserts MATCH-H because BA3 through BAT are
all low (see Figure 1). Next the 68008 CPU board asserts
SINP and PDBIN. The WD2797 board receives these signals
through (the always enabied LS244) D2 so BIN-H and BDIN-H
are asserted on the board. Now pins 3,4 and 5 of A2 (see
Figure 2) are all high so GET-L is asserted. This forces the
assertion of GET-H which in turn results in the assertion of
BOARD-TO-BUS-L. Now the WD2797 has a low on CS
because A2 is 0 and a low on RE since GET-L is asserted. The
lines A0 and A1 now select the register within the WD2797
whose contents will be sent to its DAL lines and therefore
appear as data on BDO through BD7. Finally, the data appears
on the 8-100 bus through the enabled driver C2 (see Figure 9).

Execution of a write: The instruction
move.b d4,femd(ad)

sends a command to the WD2797.

The address information and the assertion of MATCH-H is
the same for read and write. After the address information is
setup the 68008 CPU board asserts SOUT and places d4.b on
DOO0 through DO7. Following a suitable delay the 68008 CPU
board asserts PWR. The WD2797 board receives PWR and
SOUT through D2 (see Figure 10) so BWR-H and BOUT-H are
asserted. Now pins 1, 2 and 13 of A2 (see Figure 2) are all high
so PUT-L is asserted. This in turn enables the buffer C1 (see
Figure 9) so the data on DOO through DO7 arrives on BDO
through BD7. Now the WD2797 has a low on CS because A2 is
0 and low on WE since PUT-L is asserted. The lines A0 and
Al now select the register within the WD2797 to which the
data on its DAL inputs will be sent.

Software

The CP/M 68K BIOS is too long to fit into this article but
you can follow the code to read and write sectors by assuming
that a4 points to a RAM buffer, d6.w has the track number
and d7.w has the sector number of the host disk.

The software discussion below is for 5 inch drives, but is
almost identical for 8 inch drives. mdriv is the only routine
which is different and it is simpler for the 8 inch drives.

read:

clr.b arflag
aove 3, retry
readt: aoves. 1 al-a2/d6—d7,-{ep)
ber rd_mini
moves. 1 (ep)+,al-a2/d6—d7
tst.b erflag
beq resd2
subi ol,retry
bne readt
bar orr_routine
read2: res

23

IN91 4
PUMP 2—3————-{ l——{y_/‘/\—L—gd
] 1K
.yf
vco |28 | gd
I 560 pt
rRew |18 w
\L D
2
#5 ——AAAA/ ed 2
50K Po 9
WPW 33 .
45 NVJ(A. ad
I0K Pot
_— 9
Test 2238 gd
Figure 5: WD2797 set up circuits.
ENB - L

RAWRD

Iu] |vn >
ramne

wNoNunOoE

+
w

1500

k

1son

A /:,\

k

1500

3}

150

Ak
A A

1500

1 l 4

1500 K

13 I /2:

7 ison ~
AN 12

15 & _/‘

1500 o~

17 3 %

ENS—L ?‘9

All odd smmbered pins oa J1 sad J2 are ground.

Figure 6: 5 and 8 inch drive control.

24
ss028 2
w
o sTerll> L]
2
7
3 DIRcH®)
7
ol s
1 @ WG 30 1
roy |32 Z

[
»

A /:.’\/; /g\ A

150

+5
13

A

A

Figure 7: More 5 and 8 inch drive control.

SSO
STEP
DIRC

WD

WG

TG43
ENP

RDY

HLT

EN8—L N
(Il 1)19
25 17 3
———4
15 15 5 6
L
;6 13 S 7 A4
1 11 2 9
————38
30 2 g ——(18 40
29 4 16 <6
1
1500
32 14 @ 6 9
8 12 (n
L B 33K
28
IN914 4,74
13 2 'l','
od 9602
7

Figure 8 : Eight inch drive control.

[S
—

+5

+5

The details of the err__routine, which just prints, are omit-

ted.

rd__mini: At entrance to rd__mini register sp is saved so

that in case an error occurs during processing the error
routine can restore sp. This relieves the other routines of the
burden of keeping track of sp. Upon return from rw__mini
d4.w has the SSO bit set and all other bits are 0. The WD2797

The Computer Journal/Issue #20

read command is or'ed into d4.w and the command placed into
dl.w for use by mrd, which returns, after executing the read,
with the WD2797 status in d1.w. The relavent bits are
checked for a read error. If a read error has occurred bit 6 of
erflag is set. The final return is then made to read.

rwmini: The routine parmx merely sets a5 to point to the
base port of the board and sets d5.w to the disk unit number.
Each cylinder is divided into 2 tracks i.e. cylinder n of a
diskette consists of tracks 2n and 2n. The track number is
converted into a cylinder number, placed in d6.w, and a side
select bit, placed in d4.w. mdriv is called to select the drive,
get the drive up to speed and make sure it is ready. mdriv
returns with the Z-bit clear if this drive is not the same as the
previous one. In this case mrdid is called to locate the head of
the newly selected drive. Next the byte count for a read or
write command id placed in d2.w and the sector register of
the WD2797 is loaded. The hardware details of this write to
the sector register are almost identical to the move.b d4,f-
cmdl(a5). The addq $1,d7 is done because the BIOS starts sec-
tor numbering at 0 and the WD2797 starts it at 1.

mdriv: The first 3 instructions prepare data for thie control
latch so that MOTOR__ON is asserted, PROM is off, 5 inch is
selected, double density is selected and the proper unit is
selected. This information is sent to two places, one is the
control latch and the other is dketrl which holds the ram copy
of the control latch. A call to mbusy is made to see if the drive
isready. If not, a delay loop is executed. A call to mbusy is
again made to see if the drive went ready. The idea is to sam-
ple the ready line of the selected disk. If it is ready then exit,
otherwise delay a short while and then sample again. After
delay2 tries at this you can assume the drive is not going
ready so error bit 3 is set and flow passes to merr, the error
routine.

If the drive does go ready then prev__51, which keeps track
of the current drive is updated. mdriv returns with the Z-bit
clear if the current request is on a different drive from the
previous request.

mrdid2: This routine begins by aiming a0 at a 6 byte area
into which the disk id will be read. Next a byte count is placed
in d2.w (1 less than the actual number of bytes transferred)
and a readid command is placed in d1.b. mrd is called to tell
the WD2797 to perform the readid. The WD2797 status is
returned in d1.w following the command. The and instruction
sets the Z-bit if there is no error, otherwise clears it.

mrdid A call to mrdid2 asks it to read an id field. If no error
occurs the track register of the WD2797 is updated. If an
error does occur mrdid steps out 1 cylinder and tries again. If
all goes well this time the track register of the WD2797 is up-
dated, otherwise bit 3 of erflag is set and the error exit is
taken.

The stepout was chosen because once CP/M 68K is running
cylinder 0 is not accessed. Also this seemed to work in most
cases.

mseek: Recall that rwmini set d6.w to the desired cylinder.
This is compared with the cylinder register of the WD2797. If
they are equal no seek is necessary, else a seek command is'
sent to theWD2797. A call to mbusy is made to wait for com-
pletion of the the command and to get the status. The and in-
struction clears the Z-bit if an error occurred in which case bit
5 of erflag is set and the error return taken. If all is well
mseek returns to the caller.

mrd: The call to mdisint saves the CPU status register,

The Computer J ournaIiIssh'«a_m

disables interrupts, sends the command in d1.b to the
WD2797, aims al at the WD2797 data port and aims a2 at the
wait flip-flop. The code which follows is the loop to transfer
data from the WD2797 to memory. Execution of the move.b
{a2),d1 merely sets the wait flip-flop, thereby stalling the
CPU. When the WD2797 has a byte of data it will assert DRQ,
clearing the wait flip-flop and waking up the CPU. The CPU
then reads the data, placing it where a0 points, bumps a0 and
decrements the byte count. This loop continues until the byte
count number of bytes is transferred. If the WD2797 encoun-
ters a problem it asserts INTRQ, which also clears the wait
flip-flop. INTRQ remains asserted until the status register of
the WD2797 is read. In this event data is still transferred but
it is meaningless. After the data is transferred the CPU
status is restored.

mnbinit: This routine restores the CPU status.

mbusy: A short delay allows the WD2797 time to prepare
its status register. Now the status register is continuousiy
checked until the busy bit goes off. Finally, the WD2797
status is returned in d1.b.

You will notice 3 instructions are commented out. The
reason for this is that they are priviliged instructions. CP/M
68K runs transient programs in user mode so when testing
this program these instructions are not executed. However,

25

the BIOS operates in supervisor mode so the *’s can be
removed when the code is inserted into the BIOS.

mwr: This routine operates in essentially the same way as
mrd except the data transfer is from RAM to the WD2797.
The WD2797 asserts DRQ whenever it wants a byte of data.
INTRQ operates here the same as it does for mrd.

merr: The control latch is set to deselect all drives and dk-
ctrl is set to mirror the control latch. prev__51 is set so that
mdriv will regard the next selection as new. Finally sp is
restored and the return made to read (or write as the case
may be).

wr-mini: This routine operates much the same way as
rd__mini.

e

DI
95> 0 18 2 BDO
DI1 16 L 4 BD1
94> s
4]> DI2 14 2 6 BD2
4
42> DI3 12 p 8 BD3
\ DI4 9 11 BD4
91)
92> DI5 7 13 BD5
93> DI6 5 15 BD6
3 DI7 3 @ 17 _BD?
1 19 BOARD-TO-BUS-L
N D00 2 18 BDO
36)-
N\ DO1 4 16 BD1
35> L
ga)_ D02 6 S 14 BD2
2
go)_D03 8 P 12 BD3
\ D04 11 4 9 BD4
38)-
39> DO5 13 7 BD5
40> D06 15 5 BD6
90\/ DO7 17 @ 3 BD7
il ﬁ? PUT-L

Figure 9: Data interface to S-100 Bus.

bl 19
PN Al5 2 18 BA15
gey-Ald 4 L 16 BAl4
gs)—A13 6 $ 14 BA13
2
> Al2 8 4 12 BA12
aH_AlL 11 4 9 BAll
1N AL0 13 7 BA10
34)—A9 15 5 BA9
V4
A8 17 3 BAS
84y
T 0
a:> AT 2 d o 18 BAT
g2y-A8 4 L 16 BAS
N_AS 6 S 14 BAS5
29 >
30/LA4 8 4 12 BA4
342 11 419 BA3
a_A2 13 7 BA2
80(Al 15 @ 5 BAl
4
N A0 17 3 BAO
7
1 ‘19
+))_SMEMR 2 18 BMEMR-H
N_PWR 4 L 16 1 7 BWR-H
77
,&_PDBIN 8 3 14 BDIN-H
4 5§ SOUT 8 3 12 BOUT-H
4ey SINP ny 4 1o BIN-H
99§ POC 13 7 BPC-L
75> RESET 15 5 BRSET-L
E3 pin 1l 3 17 PROM-SEL-L

Figure 10: Address to Eprom and S-100
control bus connections.

26

The Computer Journal/Issue #20

1 | 28
2 {27
3 1 24 | 26
4 2 23 25
5 3 22 24
6 14 21 | 28 28pin EPROM
7 5 20 22 socket with
‘ insert for 2716
8 | 6 19 | 21
9 | 7 18 20
10 8 17 19
1|9 16 | 18
12 | 10 15 | 17
13 11 14 16
i 14 12 13 15
D2 pin3 1 6PHANT°M67
£3 5 N
PROM—-TO-BUS—L 10 _~17 }
E3
15 5 9
1]o
@/ GET~H Bé @ >0—BO—AR-D——_-TO—-

BUS—L

Figure 11: EPROM socket and PHANTOM.,

BAO 10 | A0

BAl 9| A1 3

BA2 8| A2 1 00 | 11 BDO
BA3 7] a3 © o1 |12 BD1
BA4 6| A4 02 | 13 BD2
BAS5 5| A5 03 | 15 BD3
BA6 4| As 04 | 16 BD4
BA7 3| A7 05 | 17 BDS5
BAS 25 | A8 06 |18 BDS6
BA9 24 | A9 07 |19 BD7
BA10 21 | A10 ‘

E
T22
1 E3p7

s
20
PROM —SEL— L

-2
9 [
BA1S 17143 0‘@ 8
BMEMR—H 11 PROM=TO —

19 BUS— L

gd

Figure 12: 2716 and EPROM control.

parmx: This routine references a data structure which
holds information about the disk to be accessed. a3 is a poin-
ter to this data structure. Details have been omitted.
See listing.

Listing

parax:
acove.b phys_unit(a3),d5 + gat physial unit nuaber
anveq.l 0-1,d1 * get all 1's
msove.b base_port(a3),dl * insert base port nuaher
scve.l di1,aS
rts
derl ay *qu 200006 * loop dwlay to select diféferent disk
—————m

* 2797 comasands
g —————

rator oqu +08
readid equ <4
writc o SaB
readc oqu 88
skcad equ slc
freint equ sde
stepout equ 468

® port offsets from base port nuaber in a$
PO

statur equ
4cmd oqu
track aqu
sector equ
ddata equ
select eoqu
owait Lo
dens o

NsdruUN~a0

fcontinued on page 37/

Conclusions

We have been using this controller for 5 months with 5 inch
TEAC and 8 inch Mitsubishi drives. With the 8 inch drives we
have been using single sided disks in double sided double den-
sity mode with almost no errors. This can be done if the Mit-
subishi drives are properly jumpered. On the 5 inch drives the
error rate seems to be about the same as my friends who run
IBM PC’s or clones i. e. somewhat higher than on 8 inch
drives. In all cases (both 5 and 8 inch disks) the errors seem to
occur when a disk is first used. Once a disk has been format-
ted and used for a while it usually runs error free. Our
department has two Stride computers (both run CP/M 68K)
and we have had no trouble interchanging disks with these
systems. At present our 68008 systems have a 68008 CPU
card, this disk controller with 5 and 8 inch drives, two Digital
Research 64K RAM cards, two Digital Research semi disks
and a serial I/O card. Students then interface whatever other
boards they need. B

References:

1. Build This Economy Floppy Disk Interface, by Dr. Ken-
neth Welles, Byte February 1977, page 34.

2. 1983 Components Handbook, Western Digital Inc.

3. Using The S-100 Bus and the 68008 CPU, issue 16, The
Computer Journal

The Computer Journal/Issue #20

Soldering

feontinued from page 20/
give solder the ability to turn liquid at a
workable temperature. There are dif-
ferent solders for specialized work and
these are usuaully not suited for elec-
tronics because they turn liquid at
higher temperatures. There is one type
of solder that is 63% tin and 47% lead
which is very good for electronies but it
is harder to locate than the standard
60/40 type.

The only real choice in buying solder
is to select the best gauge for the work
at hand. Gauge refers to the thickness
of the solder. Some common gauges are
.032" which is very fine, .040" and .050"
both good sizes for kit building, and
.062" and up.

Actually gauge is not critical at all, if
you happen to have a very fine gauge
then you'll need to feed more into the
joint to produce a good result, with
heavier gauges just a little is all that’s
required. It becomes something of a
personal preference as to what you like
best. Just be sure to purchase in
economical quantities, small packages
can run out quickly and cost more to
buy.

Hints And Tricks

Throughout we've talked about the
theory of soldering, the tools used, the
solder itself and a most exhaustive
discussion of a sticky brown glob (rosin
flux). Interspersed with these topics
we've included some basic techniques.
So to wrapup lets mention some odds
and ends that can be helpful. If readers
of this Journal know some more then
please contribute, knowledge is only
valuable by its sharing.

Cleaning Traces

Modern circuit boards are made with
copper traces which are then plated
with a nickel/tin alloy to keep them
from corroding as rapidly as they would
if left as bare copper, such traces are
silver in color. Boards may also have a
solder mask, this is a coating that
repels solder, reducing the possibility
of solder bridges, the mask is either a
pale green or blue color. If a board has
either or both of these then you don't
want to clean it. It's not needed and
would only damage the plating and the
mask. However, some small boards may
show copper colored traces. These
should be lightly cleaned with fine steel
wool or one of those nylon scouring
pads until the traces just begin to shine.
Do this once just prior to beginning

work on the board. Even so you may
find that such boards are more dificult
to work on, a fine gauge solder may be
helpful because it provides more flux.

The other item that may need
cleaning is the leads of the parts to be
installed. It's always a good idea to look
at the lead and if particulary dull then
lightly scrape it with a utility knife or
pull it through the closed jawsof a
needle-nose pliers. Ceramic disc
capacitors are sometimes coated with a
wax substance, this may extend down
the lead far enough to serioulsy inter-
fere with solering, it also keeps the lead
shiny, for this reason [always clean
these leads even if they don’t seem to
need it.

Parts Positioning

An experienced hand once said that
soldering was easy, but keeping the
parts from falling out before you can
solder them is the real trick. In almost
all instances you have to solder a PC
board bottom side up, you insert the
part and then turn the board over and
all too often the part will either fall out
or slip away from the board. In in-
dustrial situations the same problem
has led to several solutions, most of
which are not really useful to the casual
builder.

One industial method involves cut-
ting the lead just above the pad and
then bending or staking it over. This
works great, too great in fact. In the
next article on unsoldering this
becomes unsoldering nightmare num-
ber one, it's also more than is really
needed for casual work. The second
method involves bending or forming
the leads so that when inserted into the
PC board they press against the holes
enough to hold the part. This is fine for
kit builders but it requires special tools
to always achieve it. Actually, half the
time this will occur by chance and you'll
find the part stays in place by simple
friction.

A very simple variation of the for-
med lead method is to insert a part and
if it is loose then hold it down with one
hand and with a needle nose pliersin
the other grasp the lead about a quar-
ter inch above the board and pull it
sideways parallel to the board for about
a quarter or eighth of an inch. This will
generate enough friction to hold the
part until soldered. The real diference
here is that the industrial method is
done to the part prior to inserting it
while this variation is done after the

27

part is in place.

Sockets present a slightly diferent
problem as they don't have enough lead
length, again don't stake one or two
pins as that makes unsoldering nearly
impossible. Yet some people do on the
grounds that unsoldering a socket is
impossibly dificult anyways and ex-
tremely rare as well. My method is to
insert the socket and then turn the
board over onto the workbench, ideally
onto a piece of cloth or cloth over foam
rubber. Then while soldering I press
down slightly to force the socket flush
to the board. I only solder two diagonal
pins and then I check to be sure the
socket is flush and that the pin one end
is correctly oriented before completing
the other pins. Of course I often do
several sockets at a time so this isn't as
tedious to do as to describe. This
doesn't always work because
sometimes other parts extend above
the socket, that's why the foam rubber
but if that doesn't help [keep a few
small blocks of wood around that can be
strategically placed under the socket to
push it up.

Wires and Lugs

Back when kits included lots of
soldering of wires to lugs there were
two problems that may have driven
more than a few folks to swear off kit
building. Both problems have
reasonably good solutions and since
there are still a few instances where
they may be needed we'll mention
them.

When soldering a wire to a switch lug
most kits will tell you to make a loop of
wire around the lug and then solder.
This forms a mechanical connection
prior to the soldering and it's alright to
do it this way. But if you ever need to
undo the connection you'll find that
usually the wire must be cut and then
the loop unsoldered. And guess what,
the wire will then be too short to reat-
tach, you'll have to splice it or take it off
the other end and use a new length of
wire. I generally don't make a loop but
rather a 90 degree bend in the wire and
then slip it through the lug, solder it
and then trim away any excess wire.
Sometimes if it holds I may just slip it
through the lug with no bend at all.
With one exception, I do make loop
type connections on large wires or
wires that will carry power.

The other problem occurs when you
have to solder a wire to a lug that is
buried within other lugs and wires.

28

What happens is that as you make the
connection You notice a foul odor of
burning wire. The cause is that one or
more of the surrounding wires is being
charred by the hot barrel of your
soldering iron. One way to avoid this
aggravation is to use a battery powered
iron if you have one {they only get hot
at the tip). The other solution is to keep
the wires pulled back. Extra hands are
great for thisif you have them, your
own that is. don't try to use someone
elses, like a spouse or relation. You see
the hot iron may burn the other per-
son’s fingers and then instead of
charred wires you'll have a charred
relationship.

A real easy way to hold back the
wires is with hold-backs. What are they
and from what obscure mail order firm
do you buy them? You don’'t buy them,
youmake them. Just get a few paper
clips some bigs ones and some little
ones, add a few rubber bands some
short ones and some long ones. Now
take your wire cutters and cut the
paper clips just around the bend of each
loop. Tie a rubber band with a half hitch
over one loop. To use them just grab
the offending wires with the open loop
and then gently stretch them away by

fastening the rubber band to keep them
out of the way while you solder. There
will be aiways be something that the
rubber band can loop over. You can
make as many hold-backs as you need
and feel free to modify them in any
fashion.

Conclusion

That pretty much wraps up
soldering, the only thing left is for you
to go out and try it. If you're just
begining start with a small project or
with a scrap circuit board, some surplus
firms sell such items. Then you'll be
ready for the next feature, unsoldering.

Sources

The following companies publish
catalogs that you may wish to send for.
They are listed only for that reason and
no assertion as to their worthiness or
lack is implied. As always you should
exercise reasonable care when making
purchases by mail.

Radio Shack catalogs are available at
most stores. Tools and parts, plus some
simple kits.

The Heath Company, Benton Harbor,
MI 49022, (800) 253-0570, many kits
from simple to complex, including com-

money in the process. Ver. 2.0 features include:

Large Characters)

Zero Fill)

OVERCOME
FORTRAN |PASCAL |C
LIMITATIONS WITH

Alibrary of over 90 Assembier routines transform FORTRAN, Pascal and C language
compilersinto the fiexible, responsive, compiete languages needed for the microcom-
puter environment. Hundreds of NO LIMIT owners are creating highty interactive
software systems, often utilizing existing mainframe code and saving time and

EXTENSIVE GRAPHICS (Get, Put. Paint, Color, Dot, Line, Box, Circle, Ellipse,

FULL SCREEN CONTROL (Windows, Cursor, Read/Write Screen)
STRING MANIPULATION (Match. Compare, Concatenate/Extract, Pack, Justify,

Ver. 2.0 For:

MS FORTRAN/Pascal/C
18M Professional
and R-M FORTRAN
SuperSoft FORTRAN

P

Y
S

The Computer Journal/Issue #20

puter kits and training courses, test in-
struments, also some tools.

Edlie Electronics, 2700 Hempstead
Turnpike, Levittown, NY 11756, (800)
645-4722, carries electronic parts and
tools, for soldering and circuit repair,
also some simple kits. Catalog is good
reference for what is available.

Jameco Electronics, 1355 Shoreway
Road, Belmont CA 94002, (415) 592-
8097, many electronic parts, also tools
and supplies and some kits. Again a
good catalog to have for reference
especially electronic spares etc.

Active Electronics, P.0O. Box 8000,
Westborough, MA 01581, (800) 343-
0874, large stock of electronics parts
and also lists tools, no kits though.

Priority One Electronics, 9161
Deering Avenue, Chatsworth, CA
91311, (800) 423-5922. Electronic parts
and products, also soldering tools and
circuit repair products.

The above is only a partial list of fir-
ms that supply tools and may also sell
kits. Many others sell only kits, you
should check the pages of this and other
technically astute publications for the
names and addresses of these firms. B

KEYBOARD CONTROL (Read Key During Execution, String Read With Edit)

FILE MANAGEMENT (Exist?, Rename, Delete)

COMMUNICATIONS (Full Interrupt Driven to 9600 Baud. Set Com Line,
Send/Receive, Line/Modem Status)

INTERRUPTS DOS Execution. Program Execution

OTHER FEATURES (Command Line Read, DOS 3.0 Directories. Peek, Poke,

Random Numbers, System Status, etc.)
And to complement NO LIMIT, the I/0 PRO development system allows creation
and editing of FORTRAN/Pascal/C callable screens. This word processor type sys-
tem pays for itself several times over on your first project. $260.

For immediate solutions to your programming needs call
(800) 562-9700
(512) 251-5543 (Texas)
M | E | F Environmental Inc.
POQ. Box 26537 Austin, Texas 78755

< Tracamark of MCrosoft In¢. Superso nc. 1BM Corporstion Ryan-McFenand and Mcrosofl inc. resoectrvery

Here’s a catalog any serious computer tinkerer needs. It's a
treasure-trove of stepper motors, gear motors, bearings, gears,
power supplies, lab items, parts and pieces of mechanical
and electrical assemblies, science doo-dads, goofy things,
plus project boxes, lamps, lights, switches, computer furni-
ture, and stuff you might have never realized you needed.
All at deep discounts cause they are surplus!

Published every couple of months, and consecutive issues
are completely different. Send $1.00 for next three issues.

JERRYCO, INC. 601 Linden Place, Evanston, llinois 60202

The Computer Journal/Issue #20

Apple /I Graphics
fcontinued from page 13) $40, 302, $98, 305, $2C, $AD, 568, 999, $AC, 361, 899, 929, $19, W0, 848,
(_AVLIN (9623-9831)-—plot vert. line at col h between
¢) row] and rom2)
\ SAD, 802, $99, $83, $2D, SAD, 306, 399, S4C, $81, $98, 320, 628, WO, 8468
PROCEDURE _setpartition(partipartitian)} 121
;;;;:h between full screwn grephics and aixed text/graphics) (;:rl“‘ ::I:nl':"ntru:tw-d“:-:.::ﬂl' 4:::;::“;: mtut(-mtwt‘;o
s, for that satter, 1w any har *—spec
CASE part OF Qenerated even with standard syntax’ This just happens to be
FULLSCREEN: _wrhoatbyte ! _FULICRMN,8) | a quick and dirty way to define & table of bytes that represents
MIXED: _wrhostbyte(_MXD,8)§ 4362 instructions)
END3 VAR source.dest, inthiintegert
END3 DEGIN
source: ~ADDR(LORESTUFFI11}§ (starting address of dats to send)
PROCEDURE _selectpage(pagenus:integer’y mti-mm (where 1n the 6562's RAN to put 1t)
{switch to specifisd grephics page) Inth:=$2F; {haw sany bytes to send)
BEGIN _wrhostdata(source,dest, inth)}
IF pagenum=i THEN _wrhostbyte(_Pei,e) ENDs
ELSE IF 2 THEM _ tel_PB2,0
E1LSE writwln(’There is no page °,pagenus)| ¢ 4
ENDS
PROCEDURE textscreen (psgenus:integer)s PROCEDURE loresgr (pagenuaiinteger; partipartition)d
(switch to specified text screen) (smitch to low resolution graphics an specifisd page)
BESIN BEBIN
_selectpage (pagenum) | _selectpage (pagenus) |
_wrhostbyte(_TXT,8)) _l.!p'!::um(p-tll
END3 _wrhostbyte(_LRS,#)}
_wrhostbyte(_ORF 13}
FUNCTION ~ioranqein,lolisit,hilisit:integer) :booleans B0
{toat for value cutaide of liaita—used to prevent orawing N
autside the wen bound.
BEBIN wer arien) {(Elesentary lores graphics procadures}
IF (n>=lolimit) AND (n<=h THEM : = TRUE
ELBE _inrangw: ~FALSES tliait) -inrenge:= mm clear_lores_screens
' _callapl (_LOCLRSCR)S (_callapl is in the file PCP.INC)
(and of APLER/@) END3

PROCEDURE setcolar (color:loreshuss) s

LISTING 3. APLER/L.INC (specify colar to use for drawing)
VAR kolor:bytes
BEGIN
kolor :=0RD{colar)s
(APLER/L. INC enables calling low resolution Apple graphics ~wrhostbyte(_ARES, kolor) ¥
routines froa Turbo Pascal prograss. _callapl {_ASETCOL)§
Requires the PCPI 788 card (Applicard). o
Copyright 1984 by N.T.Carnevasle.
Peraission granted for nonprofit use.) PROCEDURE plot (coluan,romsibytels
{dram a point at specified location)
{contains these routines: BEOIN
PROCEDURE. 1or wupatchil IF _inrange(coluan, §, LOMRES) THEN
—installs the register-icading routines nweded by setcolor, IF _inrange(row,#,LOVRES) THEN BEGIN
plot, hlin and viin wrhostbyte(ARES,row)$
PROCEDURE | oresgr (pagenus: integer] partipartitionis _wrhostbyte!{_YREG,column}i
~=invakes lores graphics cailapl (_APLOT)3
PROCEDURE clear lores_screen (pagetinteqger)s MDY
~—clears specified lores page (>)
PROCEDURE watcolor (colar:lareshuss)s
——selects color for dreming FUNCTION _loresclipin,lolimit ,hilimitiinteger)iinteagers
PROCEDURE plot (column,row:byte)l (called by hlin & vlin to prevent drawing Outside screen asrgins)
=—puts a point on the screen BEBIN
PROCEDURE hlin(row,colli,col2:byte)} IF n<loliait THEN _loresclip:=lotlimit
—draws a horizontal line EL9E IF n>hiliert THEN _loresclip:=hilimit
PROCEDURE vlin(col,rowl,rom2:byte)} ELSE _loresclip:i=ng
~—drews a vertical line END}
Some of these procsdures call lores graphics routines PROCEDURE hlin(rom,coll,col2:bytel|
at the following ROM locationa: (draw horizontal line at "row™ from coll to col2)
SETOR. = F864H aet colar VAR temp:bytes
Mmor = SFBPEOH plot a point BEGIM
HLIN = SFBI9% dram a horirontal line IF _inrange(row,§,LOVRES) THMEM
VLIN - GFE26MH - vertical line IF _inrange(call,8,LOMRES) OR _inrange(col2,0,LOMRES)
THEN BEBIN
This reguires “poking” a few short sschine language (4362) coll:=_loresclipicoll,s,LOMRES)§

routines into the 4382°s RAN starting st location P063H. col2:=_larwsclipicol2,s,LOMRES) 3
The paramsters needed by these routines are "poked” i1nto IF coll)>col2 THEN BEBIN
locations 7966—9902H (bytes destined for the A and Y registers teuwp:=calls
and locations 2CH or 20M) . coltz=col2;
)
TvPE
10r eshues= (BLACK, MABENTA, DARKEILLEE , PURPLE , DARKGREEN, GREY1 ,
MEDIUMBLUE, L IGHTBLUE , BRUMN, ORANGE , GREY2, P INKX, K _wrhostbyte!_LOCXX,col2)§
LIGHNTEREEN, YELLOM, AQUA, MHITE) ¢ (lores colors) _callapl (_AMLINYS
END3
CONST EnD3
{low resolution constants)
LOHRES=40% (8 of pixels across the screen) PROCEDURE viin(col.rowl,row2:byte)s
LOVRES=488 ($ull screen vertical resotution) {draw vertical line at col from rowl to rom2)
LOMIXVRES=481 (mixed sode vert res} VAR tewp:bytet
_LORESPAGE 1 =$400; (start of lores page 1) BEBIN
_LORESPAGE2=3808] (but can’t use page 2 with Applicard® IF _inrangw(col,s,LOHRES) THEM
Overlaps with vital drivers 3 IF _inrange(rowl,8,LOVRES) OR _inrange (row2,$,L.OVRES)
THEN BESIN
(easily accessible ROM routines for lores graphics) rowl:=_loresclip(rowl,®, LOVRES) §
LOCLRSCR=8F §32) {clears whole lores screen) rowm2:= loresclip(row2,8,LOVRES)}
_LOCLRTOP=8FA34) (spares four text lines at bottom) IF romid>row2 THEM BEGIN
tomp:=rowi}
(The following addresses in the 4562°s RAM are used by rowl 2=y omzs
rom2:=teapt
setcolor, plot, hlin and viin)
_ASETCOL=$9063; (set color) Enn3
_APLOT=s900a; (plot a point at coluan,row) —mrhostbyte (ARES,romwl) s
_AHLIN=39914; (plot horiz. line at row v betwewn coli and col2) ~wrhostbyte(_YRES,col)}
_AV_IN=$99233 tplot vert. line at col h between rowl and row2) -srhostbyte! LOCXX,row?) §
_callapl (_AVLIN}S
¢ END3

{Next ar® routines to bew patched into sothevboasrd’s RAN at o
$7963 49633 so that setcolor, plot, hlin and vliin can be used)
tend of APLER/L)

PROCEDURE lorespatchi

Cinstalls the register-loading routines needed by

setcolor, plot, hlin and viin)

CONST

LORESTUFF: array [$81..82F] of bdyte=(

{_ASETCOL (79F3-7969) —set color)
SAD, 860, 399, 326, 344, ¥FB, 848,
(_APLOT (996a-9913)--plot & point at coluan h, romw v)
SAD, 869, 370, SAC, 381, 999, 328, 999, ¢ 8, 348,
{_AHLIN (9814-9922)—piot horiz. line et row v betwsen
coll and col2)

The Computer Journal/Issue #20

LISTING 4. APLGR/H. INC

(APLAGR/H. INC enables cailing hi resolution Apple graphics
routines from Turbo Pascal prograss.

Requires the PCP1 766 card (Rpplicard).

Copyright 1984 by N.T.Carneavale.

Permission granted for nonprofit use.)

{(contains these routines:
PROCEDURE hirespatchi
—-installs the register-icading routines to be pstched
1Nto eotherboard’s RAM at $7932-39€38 so ROM hires routines

Portable programming environment

can he used
PROCEDURE hiresqr (pagenus:integert partipartition)t

Whether you program on the Macintosh, FROCEDURE. claar mires.sereen tnoger incopenrt oo eten
the IBM PC, an Apple |l series, a CP/M PROCEDURE o asl ect (serniinemger 1
®' —! system. or the Commodore 64. your pro- PROCECt g clear wpecitied pege
) gram will run unchanged on all the rest. If PROCEDURE s atcnt o ook or t hi reatues) §
™ you write for yourself, MasterFORTH will PROCE R h ot e - integerts
. srom:
protect your investment. If you _———= -plot a point at specified location
write for others, it will expand S === e from present tivuor o destination
your marketplace. 3 —— kX W sty coror ot macrorony
MasterFORTH is a state-of-the-art imple- oot Curenr ot o Tocetian T inteverts
mentation of the Forth Computer.language. Some of these procedures invoke some of the following ROM
Forth is interactive — you have immediate hor - TLTerEmH imvore hires disslay page | with 4 text lines
™ feedback as you program, every step of the WOLR - GIEM clear carremt mices page L Reree
- <l
way. Forth 1s fast, too, and you can use its BKOND z 8F3FaM wat hackground color
. HCOLOR = OF&F9H set color for hires drawing
built-in macro assembier to make it even = 4 HPLOT = GF4S7H position cursor &k piat a point
. - INE = #FS53AH lot
faster. MasterFORTH's relocatable utilities. R HPOSH - FALIN et carver at hyv withaut sloteing
transtent definitions. and headerless code ™ SETR = OFTIEN wete e sheme pormeera
let you pack a lot more program into your memory. The oy S Seamton e Bowk o Lae aeion) ey i Deions
resident debugger lets you decompite, breakpoint, and This reguires "poking” s few short routines into the 6362°s RAR
trace your way through most e are Tokeas nte lotetsone 20ee-resI (oytew sestined
programmlng problems A st”ng l)or the A and Y registers and location 435H).
package, file interface, and
G — Other Hires graphics locations—
full screen editor are all standard features. COLRTBL = 8F6F6H start of color table
MasterFORTH exactly matches the Forth-83 Stan- VCOORD - SETH vertieal cooraimate oot
dard dialect described in Mastering Forth by Anderson FLRRAS % SN coler Susiung word fres coler teie
and Tracy (Brady. 1984). The standard package in- PAGENIN = SOEGH 828 for page 1. $48 for page 2
cludes the book and over 100 pages of supplemen- SCALE - JSETM scale factar for shape dreming
tary documentanon SHAPTABL = SOEGH two byte address of shape tadble ,
FO R O ":frnmn-<m|.u¢m.v1m,mnsl.mz.m.m.mxmr|
Maste! RTH standardpadaqo EEIN consT
Mﬂcim“h --»..n..'.-,....--..-.»-a.'x.g‘12§ ’: ;?::E’;-;::tmu’ {8 of pixels across the scrwen)
,'B” PC and PC Jr. (S DOS 2.1).......:125 . neseiess (eiree e e reny T

HIRESPAGE 1=$20085 (start of hires page 1}
HIRESPABEZ2=340081 (stert of hires page 2

{wasy ROM routines to call-—no paramssters needed)

_HER=$FIE2s (invoke hires dinplay pege 1 with 4 text lines)
_HOR2=9F3D8} {invoke hires display page 2 (full screen)}
_HOLR=$F3F 21t {clear current hires page)

< »
{The +¢olloming 4362 RAM locations mll be patched to hold
routines that allow access to the ROM graphice functions,
such as setcolor, hplot, hline etc.)
_AHCOLOR=$9632; (PURPOSE: swet color for hires draming
SETUP: poke colar into XREB)
_AHPLOT=$9839; (PURPOSE: dram a point at location h,v
SETUP: poke v into AREB, lo byte of h into
XREB, hi byte of b into YREG)
_AHLINE=$98465 (PURPOGE: draw a line fros initial cursor
lacation to specified point
QETUP: poke v into YREG, lo byte of h into
ARES, and hi byte of h into XREB)
_ABKEND=$9933; (PURPOSE: wset background color
SETUP: set color before calling, then poke
color sask into ARES?
_AHPOSN=$9959; (PURPOSE: put cursor at location h,v
without plotting
SETUP: poke v into AREG, 1o byte of h
inta XREG, h: byte of h into YREG
—same as for _AMPLOT)

PROCEDURE hirespatchi

{installs the routines to be patched into the 4582°s RANM.)

CONST
{where this patch starts and how long 1t is)
CODESTART=39€32;
CODELENETH=9343
(Borland Pascal’s “structured constants” festure i1s nonstandard.
So, for that aatter, 1% any hardware-specific code that aight
be generated even with standard syntax' This just happens to
be a quick and dirty way to define a table of bytes that
represents 6362 1nstructions)

12077 wl“hin B'Vd., #m . HITSYWF‘::R;rrly ts#t..CODELENGTH) of byte=t
Los Angeles, CA 90025 1R 202,999, 829, 458, 456, 000,

SAE, 392, $99, $AD, $86, $99, SAC, $61, 399, $29, 357, 954, 348,
C_AHLINE)

s 121918214340

The Computer Journal/Issue 320

SAE, 382, 998, 34D, 368, $99, $AC, $81, 999, 329, $3A, FS, 848,
¢ _ABKGND)
SAS, $E4, $28, $F 4, 3F3, 868,
{_ANPOSN)
SQE, 382, 999, SAD, 369, 998, $AC, 361, 999,928,911, W 4, 368
s {
VAR source,dest,lnth:integer)
BEGIN
source: =ADDR(HIRESTUFFL11)§
dest: =CODESTART})
Inth: =CODELENBYHS
_wrhostdata(nource,dest,inth);
END3

[

PROCEDURE hiresagr (pagenua:integert part:partition))
{invoke hires aode with specified page and partition)
BEGIN

_selectpage (pagenua) t

_setpartition{gart)s;

_wrhostbyte{_WRG,#)

_wrhostbyte (_GRFX,#)}
END3

<

(Elemwntary hires graphics procsdures)

PROCEDURE clear _hires_screen
BEQIN
Writeln(dummy routine to Clear hires screen’))
1

PROCEDURE hgrselect (scrn:integer))
{swlect and Clear spec:fied page)
BESIN
IF scrn=i THEN _callapl (_HBR)
ELSE IF scrn=2 THEN _cailapl (_HGR2)
ELSE writeln({"There 1w no page ’,scrn}s
END3

PROCEDURE hgrclears
{clear hires screen)
BEBIM

_callapl (_HOLR)}
END3

PROCEDURE hi setcolor (Color:hireshuss)s
(st color for drawing)
BEGIN
_wrhoutbyte(XRES,ORD(color))y
_callaepl (_AHCOLOR)t
END3

PROCEDURE hplot (column,rom:integer)
{(plot a point at specified locus)
BEGIN
IF _inrange{coluan,$,HIHRES) THEM
IF _inrange(rom, IVRES) THEM BESIN
_wrhostbyte(_AREB,lolromw))s

_wrhoutbyte(_XRES, lo(coluan)) i
_wrhostbyte(_YREB,hi (Coluan))s
_callapl (_AMPMLOT)
(2]
END$

PROCEDURE hl ine (destcol ,destrow: integer) |

(Draw from present cursor to dest. Uses truly crude clipping')

PESIN
IF _iowange(deatcol ,0,HIHRES) THEN
IF _inrange(destrow,S,HIVRES) THEN BEGIN
_srhostyte({ ARES, lo(destcol)}
“wr yte(_XRES,hi (1)y
_wrhountbyte(_YRES, lo(destrow))
_callapl (_AHLINE))
END3
END3

PROCEDURE setbackground (tint:hnireshuse)s
(specify color of bBackground)
BEBSIN

hisetcolar (tint)i
_callapl (_ABKEND) §
0y

PROCEDURE setcursor (Coluan,row:integer))
{put cursor at s specific location}
BEBIN
_wrhoutbyte(_AREG, lol(row!))
whosthyte(_XREH, lo(coluan)))
~whostbyte (_YREB,hi (coluan))y
-callapl (_AHPOSN) 3
END3

(ond of APLER/N)

LISTING S. LORES.A&S

ILORES. A6S

iPurpose: enable calling Apple low resolution graphicw
iroutines from CP/M using the PCPI 188 card (hpplicard).
iCopyright 1984 by N.T.Carnevsle.

iPereismion granted for nonprofit use.

3

3 .
iAssemble with A4S, then use hex codes of the .PRN file to

igenerate the code which will be written to the sotherboard.
3

s ~—-~ROM Lores graphics routines.
SETCOL: .EQU oFSa4H ;sat color

PLOT: LEQU SFOeeH iplot a paint

HUING -EQU FaL9H jdram & horizontal line

VLING -EQU gra2em vertical line

§~-—————————==-Other Lores graphics locations. ——
.EQU #e2CH Irightacat end of harizontal line
-EQU 082DH ibottom end of vertical line

) |

-BLOCK 9688M (put this abhove the driver sres

3

AREG: - BLOCK
YRES: - BLOCK
LOCXX: « BLOCK

13
CODESTART:
i

fdirst, loci for teeporary storage—
Ithe scratchpad to which the Appli-
icard writes data destined far

1A, Y, and 2C or 2DM

ibeginning of patch area

IROUTINE: ASETCOL
iPURPOSE: set the color uesd for drawing

;SETUP: poke "color”® byte into AREE befoare calling
3
ASETCOL:

LDA AREG

JSR SETCOL

RTS

FROUTINE: APLOT

sPURPOSE: plot & point at coluan h, raw v

$SETUP: poke h i1nto YRES, v into ARES before calling
]
APLOT:

LDA AREG

LDY YREG

JSR PLOTY

RTS

INE: AHLIN

ROUT
FPURPOSE: draw a horizontal line at row v betwewn
coiumns bl and h2, whers hich2

1SETUP: poke v into AREG, hi 1nto YREG,
1 and h2 into LOCXX before cailing
i
AHLIN:
LDA LOCXX
STA H2
LDA AREB
LDY YRES
JSR HLIN
RTS
1
i
$ROUTINE: AVLIN

$PURPOSE: draw a vertical line at colusn h betwsen
] rows vi and v2, where vidv2
I SETUP: poke h into YREB, vl into ARES,

] and v2 1nto LOCXX before ceiling

]

AVLIN:
LDA LOCXX
STA v2
LDA ARED
LDY YREB
JSR VIN
RTS

i

1

FINISH:

1]
thow long the whole warke is:
LENBTH: .EQU FINISH-CODESTART

1]
jend of {ORES.AMS

PROGRAN 1 owr ws g

(Copyright 1984
Peraission gran

{8l PCP,INC)
{81 APLOR/G. INC)
(81 APLER/L.INC)

VAR
ansichar)
scrnlintegert
hyviinteger)

tint:loreshues
PROCEDURE delays

VAR i, jtintegers
BEBIN

{lores routine test)

by M.T.Carnevale.
ted for nonprofit use.)

{4ar keyboard respanses)
{uhich lo-res Qraphics screen to use)
{horizontal and vertical coordinates
—top left = 0,0

t {(colaor used for drawing)

{about 4 second delay)

FOR i:=8 TO 66 DO
FOR j:=1 TO 368 DO3

END3

BEGIN
loreepatchs

(install the register-loading routines)

writeln(’Low-resolution graphics exerciser’)j
write(’Press retun to clear and ¢il]l screen 1: *)¢

readinians)t

{can’t use lores ucresn 2}

lor esgr (1, FULLSCREEN) § {display lores screen 2)
clesar lores_scresng (clear it}
tint:=BLACKS {start with black)}

FOR v:=6 TQ LOVRES-1 DO BEBIN

setcalor (tint)}

{use specified color)

hlin(v,®,LOHMRES-1)3 {draw hariz line acrose scresm)
IF tint=oHITE THEMN tint:=RLACK
ELSE tint:=SUCC(tint)s (next Color to use)

ENDs
del ays

FOR h:=® TO LOMRES~) DO BEBIN
setcolor (tint)s
viin(h,§,LOVRES-1); {(draw vert line down screen)
IF tint=wHITE THEN tint:=SLACK
ELSE tint:=SUCC(tint)1

END3y
delays
textscrean(l)s

(return to the tent diwpley betare ewit)

END. (and of PROBRAN 1owres)

32

LISTING 7. SINES.PAS

S
{
PROGRAM sines| (demonstrates plot of sine function)

{Copyright 1984 by N.T.Carnevale.
Peraission granted for nanprofit use.)

CONST
BRAFSCREEN=21 (use only hires scresn 2 with PCPI v,2 CP/M)
BELL=71

TYPE
{(these are used to sap the "real world® onto the display)}
realdat a=RECORD
u,yiresl} (xky worid coordinates, that is, "reasl data®)
ENDS
scr sendat a=RECORD
®,ylintegeri (x&y display coordinates)

ENDS
real scal of actor e=RECORD
= ,2y,bu,by:reeii (used to map worlid 1nto display)
END3

{8l PCP.INC)
{81 APLAR/G. INC)
{81 APLER/H. INC)

VAR
ans:char)
érammloc, irsawsi ze: scrsendatal
lowerleét, upperright:realdatal
frame:realscalefactorst
huehireshuesy

{81 PLOTTER. INC)
{PLOTTER. INC cantains tha fcllowing:

PROCEDURE sotframe——sats up the coséficients ("ssgmifications”

and “shiéts®) that are used to transfore or map “real data”
to the display. Parassters are:
lowerieét ,upperright:resldata-—the apposite corners of
a rectanguiar area that contains the range of “real
data”™ to be plotted (“corners o the real worlid”).
fremeloc: screendata-—leét upper corner of ares on the
scCreen where the data 16 tOo QO (whare to put the
picture
framesizeiscreendata-—diagnsions of the area on the
screen wheve the data is to 9o (how big to sake the
picture
VAR freae lacalefactors—this record contains the
coméficients (calculated by setframse) that will be
uUsed by other procedures to aap “resal data® to the
display.

PROCEDURE plot--draws a point on the hires page using
wpecified scale factors. Par ters ared
pointirealdat %,y coordinates of the point i1n the
“real world.”
trameiscaletactore——the comtficionts used to asp

the point onto the display.

PROCEDURE plotline——starting from present cursar location,
draws a line to the point on the screen that corresponds
to a specifiwd endpoint 1n the “real warid,” using
wpecified scale factaors. Paramsters are:

endpointirealdata—x,y coordinates of the snd of the
line in the I world.”

frame:scaleéactor the cowfficients used to asp the
point onto the disolay.

PROCEDURE genploti

{(generate and plot one cycle of a sine wave)
COMNST PI=3, 14159263

VAR

1:integery

pointirealdatas

dxirealt

BEGIN

pornt.x:i=6_@%

dx:=@.82ep1

point.yIi=sin(point.nit
plotipoint, frame)}

FOR it=1 TO 198 DO BESIN
point.xl=point.x+dxi (calculate the next point)
point.y:msin(paint.xlg
plotline(point, frase)} {and draw a llne to it)

END}

ENDt

(plot the first point)

BEBIN
hirespatchi (install registwr-loading routines)
writeln("Sine plotter’)s
write("First, screen °,BRAFSCREEN,
> will be cleared--press return toc proceed’)}
readin(ans)i
hgrselect (BRAFSCREEN) § (select screen to use)
hiresgr (BRAFSCREEN, FULLSCREEN)S ¢ and clear §t)
textacreen i) {(restore text display)
writelng
writeln('Press return to plot sine function.’))
writeln(’After the bell rings, press return again’}i
writeln(’ to lesve graphics sode.’)s
readin(ans)y
{specrfy limits of "rea]l world"
lowerleft.x:=9. .8} lomerleft.y
upperright. x:=2eP15 upperright.y:=1.8;
(s@t up size of display area)
framesize.x:=HIHRES - 99 Jrasesize.y:=HIVRES DIV 2§
{put first frame at top leét-hand corner of display)
frameloc.x:=8; éramwloc.y:=#1
hirewsgr (BRAFSCREEN, FULLLSCREEN) § (g0 back to graphics)
hue:=BLACK]§ (¢tirst "color” to use}
REPEAT
hue=succ (hue) t
hisstcolor (hue)
framsloc.y:=iramasloc.y+i8f (and shift the irame)
frameloc.x:=érameloc.x+12}
st érane (lower left ,upparright, frassioc, fraeweize,

{advance to the next colar)

ane)§

The Computer Journal/Issue #20

genploti {(plat one sine wave)
UNTIL hue=wMITE2S
writeln(che (BELL)) (ring the bell)
readln(ans)y (wart until return key is presssd)
textascreen(1); {restore text display befare exit')
END. (end of PROBRAM sines)

LISTING 8. PLOTTER.INC

(PLOTTER. INC-—what it takes to set up & frase

and plot data i1nto 1t. Written for floating point data.
Capyright 1984 by N.T.Carnevale.

Permission granted for nonprofit use.)

(sThis file eust be included after PCP, APLOR/G and APLER/H.
The following types (and corresponding variablee) sust be
defined in the esin file before PLOTTER is included:

realdata=RECORD
x,yireal (aby world coordinates, that is, “real datas")
ENDS
screendat a=RECURD
x,yiintegeri (xky display coordinates}
1]

real scal of actor e=RECORD
an ,my,bx,by:real} {(used to mep world into display)
END3

PLOTTER contains the following procedures:
satfraas——sets up the coesfficients (“sagnifications”
and "shifts”) that are used to transform or sap “real data®
to the display. Paraseters are:
lowertiett,upperright:realdata—the opposite corners of
a rectangular arsa that contains the renga of "real
data® to be plotted (“corners af the resl worla®).
frameioc:screendata--left upper corner of area on the
screen where the data is to Q0 (where to put the
picture).

¢ramesize:scraendata~—diasnsions of the area an the
screen whare the data 18 to Qo (how big to sake the
picture).

VAR frasw:realscalefactors~—this record contains the
comfficients (calculated by setfrase) that will bw
used by other procedures to sap “real deta® to the
display.

plot-——draws a point on the hires page using
specifind scale factors. Parsseters ared
point:realdata--x,y coordinates of the point 1n the
“reel world.”
fremm:acaletactore--the cosfficients used to sap
the poirt onto the display.

plotline—-starting froa present cursor location,
draws a line to the point on the screen that corresponds
to & specified endpoint 1n the “real world,” using
specified scale factors., Paraswters ere:
endpornt: ruldutn—!.v :cl'.rdlnll- of the end ot the
line in the "real world.
frame:scalefactors—the costficients used to eaap the
point onto the display.

Procedures nat in this file that would be nice to have:
—*moveto” a specific location without drasing a point

(unlike plot, which moves the cursor to & point and
drawe a point there)

~~‘relative” cursor aoves (plot and plotline put the
cursor at a specific or "absolute” location on the
disglay

~~true clipping, so that, i¢{ one or both endpoints of a
line lies cutside the defined frame, only the portion
of 1t that is within the frame will be drawn

-=~a circle drawing procedurs

*)

{sets up the scale factors used by the plot routines)
setirane
(lowerlett,
upperright:reaidata) (data limits)
frammlociscresndatas (left upper corner of display area)
framesize:ascreendatal (dissnsions of display ereal
VAR frame:reslscalefactors {(calculated by setfreas)
113
BEBIN
WITH frase DO BEBIN
axi=(framesize.x—1)/ (upperright.n-lowerleft.x)}§
bxi=frameloc.x—axslowerleft.us
ay:=(framesize.y-1)/(lomerleft. y-\wriwt v
(not-. Apple’s screen is “upside-down®)
i{mérameloc.y-eysupperright.ys

END‘
END3 .
(put cursor and plot a point at s specified location)
PROCEDURE plot(pointirealdatal framss:realscalsfactors)}
VAR h,viinteger! (actual display coords)

BEGIN

MITH ¢rame DO BEBIN

hi=round (axepoint . x+bx)§
vi=round (myspaint . y+by} |
Nplot th,v)§

END3

END;

{draw a line from pressnt cursor location to specified endpoint}
PROCEDURE plotline(endpointirsaldata; érame:realscalefactors)i
VAR h,viintegeri (actual display coords)
BEGIN
WITH frame DO BEGIN
N2 =round (ex sendpoint.x+bx) §
v =round (aysendpoint . y+by}§
hlineth,v)}
END}
END;

{end of PLOTTER. INC)

The Computer Journal/Issue #20

LISTING 9. OUMPSCRN.PAS

(
PROBRAM dumpscrng (dumps a hires screen ta the printer.
Assumes the printer card 18 software—coepatible with
the BRAPPLER.
Copyright 1984 bv N.T.Carnevale.
Peraission granted for nonproéit use.)
CONST GRAFSCREEMN=2; (use® only hires screen 2 with PCPI v.2 CP/M)}
($1 PCP.INC}
(81 APLGR/6. INC)
(8! APLGR/H, INC)

TYPE string7@=string(7813

VAR
sizre: (single,double)s
ans:chary
controlstringistringl{4ls
t,nusl ¢, capynua: integery
scrniintegers

{apecifien 121 or 2:1 screen dusp!)

{used fOor printer card commands)

PROCEDURE delays
VAR 1, i inteqers
BEBIM
FOR 1:=8 7O 568 DO
FOR j;:=1 TO 5@ DO}
EMDI

FUNCTION prosptans (prospt:string7®)ichart
{display the prompt on the console,
get a single uppercase response from the keybaoard)
VAR ans:chart
BEGIN
write(prompt)y
readin(ans}}
proaptans:=upcassians)i
END3

PROCEDURE duapit)

VAR 1:iintegers

BEGIN
ans:mproaptans ("Adjust top edge of paper, then prees RETURN®)§
FOR 1:=t TO nualf DO writeintist)} (blank lines for centering)
writelni(lst.cthw (@) ,che (23) ,controletring}s (nuil i1s for

{tell Grappler to do the screen duap)

FOR 1:=1 TO numlé DO witelnilet)s {more blank li1nes after dump)
ENDS
BEGIN
toxtscreenmtl}s (insure text display at start of prograa)
hiresgatchi {1nstall register-loading routines)
REPEAT

write!’Duaping screen °,BRAFSCREEN, ' --'1}
scrn : =GRAF SCREENS

satety’s sake)

hiresgr (scrn ,FULLSCREEN) (shows the screen without clearing 1t}

delayi

taxtscrean (1) {(rwturn to text display)

ans:esproaptans ('Plroceed or Qluit?
UNTIL ans IN ("P",.°Q" 13
If ans='P’* THEN BEGIN
ansi=promotans(’'Dlouble or S)tandard size?
.IF ana='D' THEN BEGIN
nual =94
controlstring:=’GDR2’$
END ELSE BEGIN
nuel f: =193
controlstring:="GR2';
END3
writeln;
write Nusber of copies to make:
readln (copynum!;
FOR 1:=1 7O copynum DO dumpiti (do the screen duep)
writeln(’Check top sdge of paper and reset printar’)}
END3

{(command for sagnified screen dusp)

{(standard scresn duap)

(of PROGRAM duspscrn}

LISTING t@. SAVSCRN.PAS

PROGRAN savscrni (saves a h1 rew screen to disk.
Copyright 1984 by N.T.Carnevale.
Permiss10n granted for nonprofit use.)

CONST GRAFSCREEN=2; (use only hires screen 2 mith PCPI v.2 CP/M)

{81 PCP.INC)
(81 APLGR/G. INC)
($1 APLGR/H. INC)

TYPE
string’@=string{7a3}
bvte=chari
screeniine=array (1.. BPtL1 of bytes
f1gfilea=FILE of screenlines

(_BPL 13 defined Ln APLGR/E}

vAR
ansichar:
scrniintegers

PROCEDURE del avs
VAR i, linteqer;
EGIN
FOR 1:x6 TO 308 DO
FOR ;:=1 TO 5@ DOY
END3

FUNCTION promptans (prompt:string7@):chart
{(display prompt on msomitor,

qet uppercase 31ngle character from keyboard)
VAR ans:chars}

33

[AMEILIILEL]

3

toeracanaas [

\
‘_
(
{

Cesgatven~

P asesssoaaa (aresnessaa

L

2Saven o

Y st sIdwsin
.
AL ETTY)

* €uyetevvey oo o
tessssasna
LT X TIITTY)

——

PRYPSTE.

cameana

sessnae

Anngaaa

A
L

D Sessssssas O

INTELLICOMP
Introduces
Inexpensive
S-100 68008
CPU Board

The card pictured above is $65 for the bare board, $210 for the kit, or $265 assembled and tested.
It uses only standard parts. A sample BIOS for CP/M 68K is available on disk for $20. The board works
fine with Digital Research Computers 64K RAM boards and semi disks. A detailed description of the
board appears in Issue 16 of The Computer Journal.

For additional information call Intellicomp, Inc. at (614) 846-0216 (evenings best time) or write to:
Bruce Posey
Intellicomp, Inc.
292 Lambourne Ave., Worthington, OH 43085

BEGIN
writelprompt);
readiniane) i i
prosptans: supcase(ans)i

END;

FUNCTION rowstart (row,pageinteger) integers
(calculate the starting address corresponding a line or row nusber)
VAR pagsbase:integeri
BEGIN
IF page=! THEN pagebase:=HIRESPAGE] ELSE pagebase:~HIRESPABE2:
rowstart:=pagebase + $28¢(rom SHR &) + ({(row SMR 3} M0D 8) L 7}
+ ((row MOD 8) SHL 183
END3§

PROCEDURE doit: (si1apie read and save a screen to disk)
VAR

fi1lnam:string{ 1213

ér61gé1lms

linenumiinteger}

temp:screenline; (temporasry array to hold a line fros the screen)
BEGIN

wite('File to receive pictuwe: ")}

readlni{filnam}}

assigni(f,fr1lnam)

revrite(f)s

FOR linenua:=@ TO (HIVRES-1) DO BEBIN
(read _BPL bytes from the display essory, starting at
the address that corresponds to the line nuaber,
into the array teep(l)
_rdhostdata(rowstart (1inenus, GRAFSCREEN) , addr (templ11), BPL)Y
{mave the array of bytes 1n the file)
witel(f temp)i

END;

close($)}

END3

BESIN
textscreen(l); (quarantes text display at prograa start)
hirespatchi {install register-loading routines)
REPEAT
writet'Saving screen °, BRAFSCREEN, ' ~--")}
scrn:=GRAFSCREEN:
hiresqr (scrn,FULLSCREEN) | (shows the screen without clearing it)
delay:
toxtacreen (1} {(return to text display}
ans:sproaptans (‘Piroceed or Quit” "4
UNTIL ans IN ['P","°Q")3
IF ans='P’' THEN doi1t}
END. {ena of PROGRAM savscrn)

FREE SOFTWARE
RENT FROM THE PUBLIC DOMAIN!

The Computer Journal/Issue #20

LISTING 11. GETSCRN.PAS

PROGRAM getscrnt {(fills a h: res display with data fros
a file that was saved to disk by savscra.

Copyright 1984 by N.T.Carnevaiw.

Permission granted for nonprofit use.)

CONST GRAFSCREEN=2{ (use only hires screen 2 mith PCPI v.2 CP/M)

(81 PCP.INC}
{81 APLGR/6. INC)
(81 APLGR/H. INC)

TYPE
string76=atringl 78]}
byte=chars
screenline=array (1.._BPL] of bytes
f19file=FILE of screenline}

Var
ansichars
scrnlinteger;

PROCEDURE delays
VAR 1.5 integers
BEGIN
FOR i:=# T0 366 DO
FOR ;:=1 TO Se# DO:
END:

FUNCTION promptans (prompt:string7®):chars
VAR ans:ichars
BEGIN
writei{nrompt)
readlntans)i
promotans: sugcase (ans){
END1

FUNCTION rowatart (row.page:integer)iintegers .
{caiculate the starting address corresponding a line or row number)
VAR peqebase:inteqer;
MGIN
If pages! THEN pagebase:=HIRESPAGE! ELSE pagubase:=HIRESPAGE2S
rowstartI=pagebase + $28¢(row SHR &) + (({row SMR 3) MOD @) SHL 7)
+ {(row NOD 8) SHL 18)3
ENOD:

FROCEDURE doi1t; (si1eple read a screen éros disk
b write to spwcified screen)

VAR
tilnam:istringl1213
é141gfr1les

linenusintegeri

tempscreenline; (temporary array to hold a line fros the screen)
PEGIN

write(’File to read: ')3

readin(éilnams);

assign(f . f1lnam)}

reset (f)§
hiresgr (scrn,FULLSCREEN)$ (shows the screem without clearing it)
FOR linenue:=6 TO (MIVRES-1) DO BEBIN
(read BPL bytes from the file into tesporary storage)
readif,teap);
{write the bytes to the display ssmory, starting at
the address that corresponds to the line number)

User Group Software Isn't copyrighted, so there are no fees to ENDy AT (REI LI rommtart (1 inemua, GRAFSCREEN) , BPLYS

pay! 1000's of CP/M and IBM software programs in .COM and ey

source code to copy yourselfl Games, business, utliities! Ail PEGIN

FREEI :x.:::::::::“‘ ::::::l;“r:::t::w:rw routines)
CP/M USERS GROUP LIBRARY merear e _
Volumes 1.92, 46 dlsks renta|—$45 :::::?r(urn.mmn (shows the screen without clearing it}

textscreen(lds {return to the text display}
ans:=prosptans {’Replace that with data from a file? ")

SIG/M USERS GROUP LIBRARY IF amenov: THEM BEGIN
Volumes 1-80, 46 disks rental—$45 E:i?w)
Volumes 91-176, 44 disks rental—$50 o or

SPECIAL! Rent all SIG/M volumes for $90

K.U.Q. (Charlottesville) 25 Voiumes—$25

ansiwpromptans (Do it again? *)j
£END3
UNTIL ans<>’Y*}
END. {(end of PROGRAM getscrn}

IBM PC-SIG (PC-DOS) LIBRARY
Volumes 1-200, 54 " disks $200

174 FORMATS AVAILABLE! SPECIFY.

For those who would rather not
key in these listings, they are available
on disk in Apple CP/M format for
$10.00. Send payment (VISA or
MasterCard accepted) with your name
and eddress to The Computer Journal,

Public Domain User Group Catalog Disk $5 pp. (CP/M only)
(payment in advance, please). Rental Is for 7 days after receipt,
3 days grace to return. Use credit card, no disk deposit. 190 Sullivan Crossroad, Columbia
Shipping, handling & insurance-—$7.50 per library. Falls, MT 59912.
(619) 914-0925 Information,(9-5) n
(818) 727-1015 anytime order machine
Have your credit card ready! VISA, MasterCard, Am. Exp.

Public Domain Software Center
1533 Avohill Dr.
Vista, CA 92083

Si

\&

3t £ sersvou FREE!

Free to create computer environments right for you . . . free to automate repetitive tasks . . . free to
increase your productivity. Z-System, the high-performance 8-bit operating system that flies!
Optimized assembly language code — full software development system with linkable libraries of often
needed subroutines —relocating (ROM and RAM) macro assembiler, linker, librarian, cross-reference
table generator, debuggers, translators, disassembler — ready to free you!

New generation communications package provides levels of-flexibility, func-
TERM 11 tionality, performance notavailable until now. Replaces BYE and XMODEM ...
master/server local area network capabitiity . .. public or private bulletin board
and electronic message handling are integral features . . . auto-dial/answer, menu install . ..
XMODEM (CRC/Checksum), MODEM?7 Batch, Kermit, CIS, and XON/XOFF protocols . . .

100-PAGE MANUAL L oottt ettt e et et e et et ee e et tae s $99.00
Rolls Royce of message handling systems ... mates with TERM i1l or BYE for
Z-MSG most advanced overall electronic mail/file transfer capabilities . . . menu
installed . . . extreme configurability . . . many levels of access and security . ..
word, phrase editor, field search . . . complete message manipuiation and database
aaF= 1] (=T o= ool P $99.95

Elegant, menu and command-line driven file and disk catalog manager.
DISCAT Generates and controls multiple master catalogs, working catalog used for
update quickness. Nine flexible moduies easily altered by user for custom
requirements. Works with Z shells (VMENU, VFILER, MENU), aliases, and multiple commands
oL g T 0T AP $39.99

ZCPR3: The Manual Bound, 350 pages, typeset book describes features of ZCPR3
command processor, how it works, how to install, and detailed command usage. Bible to
understand Z-SysStemttt i i e i e e i et $19.95

ZCPR3 and 1/0PS Loose-leaf book, 50 pages, 8-1/2" by 11", describes ins-and-outs of
input/output processing using Z-System. Shows how to modify your BIOS to include I/O
redirection . .. complements TheManual iiiiininnenn... $9.95

More missing links found — Z Application Progams! Fly with eagles! Our programs promote high
performance through flexibility! Productivity resuits from dynamically changeable work environments,
matching operator to tasks and machines.

Above programs require 48K-byte memory, ZCPR3, Z-Com, or Z-System, and Z80/NSC800/HD64180-
based computer. Shipping from stock. State desired disk format, plus two acceptable alternatives. As
payment, we accept Visa, Mastercard, personal checks, money orders, and purchase orders from
established companies. We also ship UPS COD.

Call or write to place order or to obtain literature.

Echelon, Inc. 101FirstStreet o Suite427 o LosAltos, CA 94022 o 415/948—3820j

-

36

Editor
fcontinued from page 1)

mapped I/O transfer capability; two-
channel, full duplex asnychronous serial
communications with programmable
baud rate generator and modem control
signals; 12-source vectored program-
mable interrupt controller; two channel
16-bit programmable reload timer;
clocked serial I/0 port; programmable
dynamic RAM refresh and timing; wait
state generator for slow memory and
I/0 devices; and dual-bus interface
compatibility with 68xx and 80xx
families. It is currently available in a
6MHz version and an 8 MHz version is
promised. The higher clock speed plus
instructions which operate in fewer
clock cycles than the Z-80 and a har-
dware 8-bit multiply with 16-bit results
have produced some impressive ben-
chmark results. We are currently
working on a construction series for a
HD64180 Single Board Computer, and
are looking for articles on programming
it. Micro Mint is announcing a very
reasonable priced SBC, Echlon has
their enhanced Z-System and an
assembler ready, and Byte will be
breaking a feature article. Keep your
eye on this chip, it's hot and we will be
carrying more information when
available.

WD65802 CPU for Apple Upgrades

Western Design is finally delivering
its WD65802 which is a plug-in
replacement for the 6502, and provides
16-bit accumulator, ALU, X and Y in-
dex registers, and stack pointer, and
can run existing 6502 and 65C02 code.
The S-C Macro, ORCA/M, and Merlin
Pro assemblers are ready for the 65802
{they'll also handle the 65816), and it is
rumored that Apple will bring out a
new model II based on one of these
chips.

This chip allows Apple II users to
upgrade to 16-bit registers for about
$50 and still continue to use their
existing hardware and software. Now if
Apple would only release 800K high
performance drives, the model II's
would really hum.

Reasonably Priced Software

Many of the new programs are
available for $100 or less, and the
unrealistically high software prices
may be a thing of the past. Some com-
panies try to defend their high prices
by talking about the man-years of
development time and the high
promotional and support costs, while

they drive BMW's and throw $50,000
parties. Eventually the marketplace
will decide the proper price, and it is in-
teresting to note that some of the best
support comes from the lower priced
software companies where you can talk
to the original programmer and people
care about their product and their
customers. These companies have
lower advertising budgets (no ten
million dollar promos) which will raise
hell with the slick four-color magazines
which depend on these budgets. We
should help support reasonably priced
software by passing the word and
telling others about programs that
work and provide good support at low
cost.

Hacker's Haven

If my workshop was in the attic I
could call it Art's Attic, but it'sin the
basement and if my name was Dave I'd
call it David's Dungeon. Since I can't
think of anything better, I'll call it
Hacker’s Haven for now and hope that
you will all understand that I'm using
the original definition of hacker and
NOT someone who breaks into
systems. In fact, right now I don’t even
have a modem!

I'have added a Vista A800 8" DSDD
drive interface to my Apple II +, it sure
is nice to have 1.2 Megabytes of high
speed disk available. It's not a hard
disk, but I have removable media and I
picked up the interface for $50 and used
it with one of my existing drives. Under

The Computer Journal/Issue #20

CP/M it can write either standard IBM
format single density or double density,
and using single density I can read and
write to the disk with both the Apple
and S-100 CP/M systems, which will
make it easy to transfer files between
the systems. I'll aiso run some bench-
marks on this drive against the Apple
drives. I received patch disks for DOS
3.3, CP/M 2.2, and Apple Pascal. If
anyone has experience with this inter-
face I'd like to hear from them,
especially if they have any information
on patching ProDOS to run on this in-
terface.

The operating system is the most
important part of a system, and CP/M-
80 does have its shortcomings. I have
acquired the ZCPMS3 core and utilities
from Echelon and will be bring it up
this month (I hope). From reading the
literature it will do a lot of the things
that I missed in CP/M-802.2, and I'll
keep you posted as I learn more about
it.

If I add the 65802 to my Apple with
the 8" drive, and get a HD64180 run-
ning with ZCPR3, I'll be content for
some time while I learn how to use
their new features (and still be able to
run all my existing software). But this
magazine isn't just about what I am
doing —it’s also about what you're
doing. Drop us a line and tell the
readers what you are working on, and
what you'd like to do. If you have any
questions or problems, let the other
hackers help you find an answer. B

AFFORDABLE
ENGINEERING
SOFTWARE

TRSDOS
PCDOS

cP/M

FREE CATALOG
MSDOS
-

\

* LOCIPRO Root Locus — $69.95 w
® ACTFIL Acuve Fiiter Design/Analysis — $69.95

e STAP Static Thermal Analysis — $69.95

* MATRIX MAGIC Matrix Manipulation — $69.95

* RIGHTWRITER Proofreader & Writing Style Analyzer — $74.95

® ACNAP2 AC Circuit Analysis — $69.95

DCNAP DC Circuit Analysis — $69.95

SPP Signal/System Analysis — $69.95

PLOTPRO Scientific Graph Printing — $69.95

PCPLOT2 High Resolution Graphics — $69.95

(| Engineering .
F Professional Software
\! 220C Business Way Suite 207 ¢ River<ige CA 9250! o {714} 781-0255

<
= @9

The Computer Journal/Issue #20

37

Floppy Disk Controller
. mrdid:
fcontinued from page 26/ [-rdid2
. baq ardidt
{ msove.b OSstepaut, fcad (a3)
ber sbuesy
bar ardid2
bne eid_srr
lI] ™] ardidl: sove.b ctrak,track{al) & set track reg in 2797
L rts
aid _err?
(5244 I Ls240 3 baat o4, orflag & alse sot read id asssage
bra - ® and error
ErPsom ard:
ber sdisint & do set up and disabie
intarrupts
L 1 H sove.b (a2),di * any reed from EWAIT ok to stop
cpu
wo 1797 sove.b (al),(al)+ * send & byte
I Ls7s l 3 dora d2,ardl ® loop for count
e bra anbint * common exit code and snabe
interrupts
wa | L tsaee l"| s2ee | Fisas] [mu]” ? —
bar adisint * do set and disable
s2ee | [usaee | s2ee | [] 1502] ! interrupts i
. - he -t move.b (a2),di * any read from EWAIT ok to stop
o < . A cpu
agve.b (af)+, lal) * get a byte
Board Layout dbra d2, me 1 ® loap for count
anbint:
- move df,er ® snable interrupts
abusy:
- soveq 10,41 * status not available for a
short bit
- _sini: abusyl: dbra d1,abuuy!
sove.l ap,spuv abusy2: aave.b status(a3),di * gat status
ber ruming btst a.,d}
art Swritc,de bnw abuny2 ® loop while the busy bit set
-aove d4,d1 rts
ber -~
and.b oséc,dl edisint:
beq wr_an2 . aove wr,d8 * save status
beet e7,arélag - ari *NE708, ar ® disable interrupts
bra aorr sove.b dl,fced(al) ¢ send commend to 2797
w_an2: rts lea ddata(asS),al * aia; al at DATA
lea ewait(al),a2 * ais a2 at EWAIT
rd_einis res
agve.l =p,puv
ber rwsini -
arti Sreadc,de
sove d4,dl
::-. :::.dx : LS27% amanings are given below
ool ::-:‘fl * aotor_an i actar_oft . bit7
bra —_—] e prom_ofé 1 prom_an [bité
rd_an2: rts ® S inch L] 8 inch 1 bitS
- * doubl @_dens [single_dens 1 bita
-
rumini * 3 {och_sel_1 bit3
ber paran * 3 inch_sel @ bit2
o~ove o6, dd ® track to di.w * 8 inch_sel 1 bitl
and al,d4 * aven or odd ® 8 inch_sel 6 bite
isl a,04 ® position bit for 880 e —
lar a,ds ® cylinder to sesk
bwr adriv delayt equ as
beq resint delay2 equ 10008
ber ardid
reainl: ber veek adriv:
sove.l ad,al aove.b oucs,dl
aove 311,42 ® byte count beet a3,d1 * d3.5 has unit nuaber
addq 81,d7 * sokhwt starts at ¢ sove.b di,dkctrl
aove.b d7,sector (aS) aove.d di1,select(aS) * salect WOrive
rte sove Sdelayl,d2
adriv2: bur
—— and.b
* can’t use clr.b select{al) ar »f select(al) beq
* becasuse both do & read befare write which sove
& sats the WALIT ¢ move
[— adrivi: dbra
awrr: andi .b 9840,dkeerl * deselect drive move
acve.b dkctrl,select(al) dora
st prev_31 ® prev = -~ beet 3, arflag ® set err bit
aove.l spsv,sp * restaore stack ptr to starting bra
value ariv3: cep.b prev_351,d3
rte beq adrive * oq asans can skip rdid:
aove.b dS,prev_51 * sgt prev to current disk
suowk: airiv4: rte
cap.b 879,46 ¢ don’t dasage drives
bet abad_trk
cap.b track(ald),dé * right track ? .
beq muaekl
eove.db dé,ddata(al) * tell 2797 new position
agve.b Gskcad,fcad(a3) ® go find it
bar mbusy * wait for statue
and.b #e98,d1
bne asseak_err ® if error
ssenkl: rts
abad_trik:
2, arflag
bra awrr
asewk_err:
beat S,evflag - set seek srror esssage
bra anrr - and error
ordid2s:
low ctrak,ad ® read & byte sddress id into
cctrak
"oveq o3,d2
apve.b Grsadid,dl * read addr id command
ber ard ® read it
and.b *e¥f,d1 * if no errors

rts

38

The Computer Journal/Issue #20

Root Locus Analysis

BV Engineering has added LOCIPRO
toits line of engineering software.
LOCIPRO provides control system and
electronic engineers a simple means to
quickly determine closed loop system
stability from open loop transfer fun-
ctions. LOCIPRO is a stand-alone com-
puter program which quickly solves the
locus of roots for systems up to 26th or-
der and ten loop elements. Output data
can be vectored to a line printer or data
files. All program inputs are free for-
mat and menu driven. Qutput files are
compatible with other BVE products
adding transient analysis and high
resolution graphics. LOCIPRO is
available for $72.95 under PC/MSDOS,
CP/M-80, and TRSDOS in 121 different
disk formats. For additional infor-
mation and a free catalog call or write
BV Engineering, 2200 Business Way
1207, Riverside, CA 92501, phone (714)
781-0252.

C Development System

AGS has announced Smart/C, a fully
integrated, pre-compilation develop-
ment environment for the C language.
Smart/C, which incorporates many
elements from artificial intelligence
research, is a productivity enhancing
software tool. It allows the user to
create, edit, test, and debug C
programs, all before any compilation
step. ’

They claim that Smart/C supplysa
complete set of tools for eliminating all
syntax errors and most logic errors
before any compilation is done, and that
its interpretation is not incremental
compilation, but true interpretation.
Smart/C consists of the Environment,
which provides syntax directed editing
and interpretation of C source; and the
Migrator, which allows C programs not
created with Smart/C to take advan-
tage of the editing and debugging
capabilities of the environment. There
is a Verbose capability available which
prompts the novice user as to the next
appropiate syntax element when the
program is being created.

Smart/C runs on several machines,
ranging from the IBM PC, to the AT&T
3B series, to the VAX 11/780 tm and
runs on a variety of operating systems,

New Products

including MS-DOS, UNIX tm System V
release 2, XENIX and Berkeley BSD
4.2. Pricing ranges from $500 for the
IBM PC under MS-DOS to $10,000 for
the DEC VAX 11/780 running Ultrix.
For more information, contact AGS
Computers, Inc., Advanced Products
Division, 1139 Spruce Drive, Mountain-
side, New Jersey 07092,

Assembler and Debugger for Hitachi
HD64180 Super Chip

Echelon, Inc has announced two
programs to support Hitachi's HD64180
high-integration 8-bit microprocessor
chip: ZAS, a machine code relocating
macro assembler and ZDM, a debugger
and monitor.

ZAS produces Intel compatible HEX
as well as Microsoft REL files. It's
compatible with Digital Research’s
ASM, MAC and RMAC, with
Microsoft's MACRO-80, and Xitan's
TDL assemblers.

Considered a universal assembler,
ZAS converts Hitachi HD64180 in-
structions (INO, MLT, OTDM, OTIM,
OUTO, SLP, TST, and TSTIO} into
machine operation codes. ZAS also
handles the complete Zilog Z80 instrue-
tion set. Nestable conditionals and full
expression handling, relocation by ab-
solute, code, common, and data criteria,
and complete macro expansion and
library insert capabilities. ZAS creates
8-bit standard SYM tables used by
DSD, SID and ZSID debuggers. Fifty
pseudo-ops are provided making for ef-
fective and efficient Assembly
Language code writing, for both ROM
and RAM usage.

ZAS comes complete with Microsoft
compatible REL file linking loader
(ZLINK), Intel-to-Zilog mnemonic tran-
slator (ZCON), relative code file
librarian (ZLIB), and source listing
symbol-to-line cross reference
generator (ZREF).

ZDM, the dynamic debugger and
monitor, provides quick assembly
language code development and main-
tenance. Twenty-one commands permit
complete object code debugging and
hardware port exercising. Beyond-
normal commands: string search in hex
and ASCII, send and receive I/O port
bytes, verify if two blocks of memory

are identical, show only branch
statements, send all screen output to
printer, examine prime and alternate
registers. Plus math in hex,
enable/disable interrupts and regular
functions such as fill, go, input, move,
display, read, set, trace, and untrace
complete the command set.

ZAS sells for $69.00 inciuding a 70
page loose-leaf manual, and ZDM sells
for $50.00 including a 20 page manual.
Both programs work with CP/M, MP/M,
and Z and run on Z80, NSC800 and
HD64180 based microcomputers. For
OEM’s and VAR's, Echlon offers ZAS
and ADM with economical pricing and
multi-year, volume buying
arrangements. Echlon also produces
the high-performance 8-bit operating
system called Z-System (combined ZC-
PR3 and ZRDOS) which is fully upward
compatible with CP/M plus utilities and
subrputines.

Contact Echlon, Inc., at 101 First
Street, Los Altes, CA 94022, or phone
(415) 948-3830.

Data Acquisition Network

Strawberry Tree Computers now has
a network that links up to 64 computers
running its Analog Connection PC data
acquisition system, to a master com-
puter up to 3500 feet away. The DNA
network manufactured by Network
Development Corporation transfers
data at up to 1 million bits per second
over a 4-wire cable between IBM PC,
XT, AT or compatible computers.
Remote computers can log data on the
master computer or print on a shared
printer while monitoring and con-
trolling temperature, pressure and
other inputs. Any computer, including
the master, can run MS DOS programs
such as Lotus 1-2-3 or dBase III for data
analysis and process supervision. The
slave can operate without disk drives in
dirty environments. Operation of the
network is not impared by failure of
any remote computer.

The prices are $695 for the Master
Interface Card and Software, $395 for
the Slave Interface Card, with the
Analog Connection PC data acquisition
interface starting at $690 for eight
channels. For more information contact
Walter Maclay at Strawberry Tree

The Computer Journal/Issue #20

Computers, 949 Cascade Drive, Sun-
nyvale, CA 94087, phone (408) 736-3083.

ProDOS Assembler for Apple Ile and
Ile ‘

The S-C Macro Assembler Version
2.0 is now available in both DOS 3.3 and
ProDQOS versions. They both support
the full instruction set and addressing
modes of the 6502, 65C02, 65802, and
65816 processors, as well as Steve
Wozniak's SWEET-16 pseudo-
processor.

The ProDOSS version includes all
the familiar S-C Macro features, and
adds some new ones. One new directive
implements a form of text compression
for programmer messages that
squeezes text to an average of less than
five bits per character. It also supports
a new "blocked include” directive,
which allows even larger programs to
be assembled than was possible with
the DOS-based version.

The S-C Macro Assembler is NOT
copy protected, and is compatible with
the Apple II, II Plus, IIe, and IIc. Only
64K RAM is required, but if more is
available the ProDOS /RAMdisk may
be used. Videx Videoterm and
Ultraterm cards, standard IIe and IIc
80-column hardware, and hard disks
such as the Sider and Corvus are fully
supported.

S-C Macro Assembler is priced at
$100 for either the DOS 3.3 or the
ProDos versions, or $120 for both pur-
chased at the same time. An upgrade
price is available for owners of previous
versions. It is available from S-C Sof-
tware Corporation, 2331 Gus
Thomasson Road, Suite 125, Dallas, TX
75228, phone (214) 324-2050

Data Logging Software for IBM PC,
XT, & AT

Lawson Labs has added the PC64
data logging software which allows up
to 64 channels of analog input to be
defined and scanned at a preset inter-
val. Each channel has its own label,
units label, offset and scaling factors,
and high and low alarm limits. 16-
channel strip chart recorder software is
included, and the strip chart will run on
an IBM graphics printer or any Epson
compatible graphics printer. Data can
be stored on disk automatically bet-
ween scans, and the data files are fully
compatible with Lotus 1-2-3 which can
be used for data manipulation. Sam-
pling can be done at rates of 1 scan per
second to 1 scan per day. The software

is not copy protected and is fully
listable. A 128K IBM PC or equivalent
with one disk drive and one Lawson
Labs Model 140 A/D card is required.
The price including manual is $150.
Contact Lawson Labs, Inc., 5700 Raibe
Road, Columbia Falls, MT 59912, phone
(406) 387-5355

SBC180 Computer/Controller
Micromint has developed a single
board computer using the powerful
Hitachi HD64180. The SB180, only
4 x 72" offers a Z-80 compatible CPU
running at 6MHz, 256 bytes of RAM, up
to 32K bytes of ROM, two serial ports, a
parallel port, expansion bus, and an in-
dustry standard 756 A-compatible disk
controller for up to four disk drives {any
combination of 32", 5'% ", or 8" drives.
It can be used for a disk based com-
puter system, or a battery-powered
dedicated controller with 32K of ROM
space, and can run standard 8080/8085
and Z-80 software at up to twice the
speed of a 4dMHz Z-80. The SB180 can
run CP/M 2.2, CP/M Plus, Z-System,
MP/M II, TurboDOS, and Oasis
operating systems.

DON'T PAY $700
FOR DATA ACQUISITION
SOFTWARE

We offer tuli-featured, reasonably
priced data logging software. Our
software is well documented, unpro-
tected and fully listable.

64 - CHANNEL CAPACITY DATA

LOGGING PACKAGE for 1BM

PC® ... $150

128 - CHANNEL CAPACITY DATA
LOGGING PACKAGE for

APPLE lI® $100
HARDWARE SUPPORTED:
IBM: Model 140 15-bit A/D
7.5 sam/seC $265
APPLE: Model 34 12-bit A/D
40,000 sam/sec $325
Model 38 8-bit A/D
111,000 sam/sec $165
Model 14 13-bit A/D
15 sam/sec $175
Model 40 Timer/Clock
1 ms resolution $175
BOTH: Model 20 Ditferential
Thermocouple Thermometer
with true cold junction
compensation $175
Model 17 16-channel differ-
7 ential Multiplexer ... $165

LAWSON LABS, INC.

5700 Ralbe Road

Columbia Falls, MT 59912
Phone: 406 387-5355

—

39

The SB180 with 256K bytes RAM
and a ROM monitor is $369.00. A boot
disk with the Z-System, limited
utilities, and Super BIOS scource
listings is $49.00. To order, or for more
information, contact Ken Davidson at
Micromint, 25 Terrace Drive, Vernon,
CT 06066, phone 1-800-635-3355.

“BMON"

Software In-Circuit Emulator

Links your CP/M computer with any Z80
based computer or controlier that you may
develop. All thatis needed is BMON, 8K of
ROM space, and a handshakeable bi-
directable |/ O port (either RS232 or Paral-
lel).

Features:

—Full program development debugger
with Breakpoints, Snaps, Stops, &
Waits.

—Single Step program execution.

—Download file from CP/M system to de-
velopment RAM.

—Upload Memory from development
RAM to CP/M disk.

—Two versions: Master BMON runs in
your CP/M system, Slave BMON runs
in your target system.

Note: Requires Microsofts M80 & L80
assembler & linker to setup Slave
BMON.

8" SSSD Disk containing Master
BMON, Slave BMON, CONSOL,
BMONIO, CONSOLIO, and Users
Manual $49.95

Shipped Via prepaid UPS
—No COD or P.O. Box—
Check or Money Order to:

Barnes Research & Development
750 W. Ventura St.
Altadena, CA 91101
(818) 794-1244
CP/M is a trademarx of Digital Research inc
M80 & L80 are trademarks of Microsoft inc

40

The Computer Journal/Issue #20

Back Issues Available:

Volume 1, Number 1 (Issue #1):

s The RS-232-C Serial Interface, Part One
¢ Telecomputing with the Apple][: Tran-
stferring Binary Files

* Beginner’s Column, Part One: Getting
Started

* Build an “Epram”

Volume 1, Number 4 (Issue #4);

* Optoelectronics, Part One: Detecting,
Generating, and Using Light in Electronics
* Multi-user: An Introduction

* Making the CPIM User Function More
Useful

* Build a Hardware Print Spooler, Part
Three: Enhancements

» Beginner's Coumn, Part Three: Power
Supply Design

Volume 2, Number 1 (Issue #5);

* Optoelectronics, Part Two: Practical
Applications

* Multi-user: Multi-Processor Systems
* True RAMS Measurements

* Gemini-10X: Moditications to Allow
both Serial and Parallel Operation

Volume 2, Number 2 (Issue #8):

* Build a High Resolution S-100 Graphics
Board, Part One: Video Displays

* System Integration, Part One: Selecting
System Components

* Optoelectronics, Part Three: Fiber Op-
tics

* Controlling DC Motors

® Multi-User: Local Area Networks

* DC MotorApplications

Volume 2, Number 3 (Issue #7):

* Heuristic Search in Hi-Q

* Build a High-Resolution S-100 Graphics
Board, Part Two: Theory of Operation

* Multi-user: Etherseries

s System Integration, Part Two: Disk Con-
trollers and CP/M 2.2 System Generation

Volume 2, Number 4 (1ssue #8):

* Build a VIC-20 EPROM Programmer

¢ Multi-user: CP/Net

* Build a High-Resolution S-100 Graphics
Board, Part Three: Construction

s System Integration, Part Three: CPIM
3.0

* Linear Optimization with Micros

® LSTTL Reference Chart

Volume 2, Number 5 (Issue #9):

* Threaded Interpretive Language, Part
One: Introduction and Elementary
Routines

¢ Interfacing Tips and Troubles: DC to DC
Converters

e Multi-user: C-NET

* Reading PCDOS Diskettes with the
Morrow Micro Decision

o LSTTL Reference Chart

¢ DOS Wars

¢ Build a Code Photoreader

Volume 2, Number 68 (issue #10):

s The FORTH Language: A Learner's Per-
spective

e An Affordable Graphics Tablet for the
Apple J[

* Interfacing Tips and Troubles: Noise
Problems, Part One

e LSTTL Reference Chart

s Muliti-user: Some Generic Components
and Techniques

¢ Write Your Own Threaded Language,
Part Two: Input-Qutput Routines and Dic-
tionary Management

* Make a Simple TTL Logic Tester

Volume 2, Number 7 (Issue #11):

s Putting the CP/IMIOBYTE To Work

s Write Your Own Threaded Language,
Part Three: Secondary Words

* Interfacing Tips and Troubles: Noise
Problems, Part Two

* Build a 68008 CPU Board For the S-100
Bus

e Writing and Evaluating Documentation
e Electronic Dial Indicator: A Reader
Design Project

Voiume 2, Number 8 (Issue #12):

e Tricks of the Trade: Installing New I/O
Drivers in a BIOS

* Write Your Own Threaded Language,
Part Four: Conclusion

e Interfacing Tips and Troubles: Noise
Problems, Part Three

* Multi-user: Cables and Topology

s [STTL Reference Chart

Volume 2, Number 9 (Issue #13):

® Controlling the Apple Disk][Stepper
Motor

* Interfacing Tips and Troubles: Inter-
facing the Sinclair Computers, Part One
* RPMvs ZCPR: A Comparison of Two
CP/M Enhancements

* AC Circuit Anaysis on a Micro

* BASE: Part One in a Series on How to
Design and Write Your Own Database

* Understanding System Design: CPU,
Memory, and 1/O

Issue Number 14:
e Hardware Tricks

* Controlling the Hayes Micromodem Il
From Assembly Language

e S-1008to 16 Bit RAM Conversion

¢ Time-Frequency Domain Analysis

* BASE: Part Two

* Interfacing Tips and Troubles: Inter-
facing the Sinclair Computers, Part Two

Issue Number 15:;

* Interfacing the 6522 to the Apple J[and
e

* Interfacing Tips and Troubles: Building
a Poor-Man’s Logic Analyzer

» Controlling the Hayes Micromodem Il
From Assembly Language, Part Two

¢ The State of the Industry

s Lowering Power Consumption in 8”
Floppy Disk Drives

* BASE: Part Three

Issue Number 16:

s Debugging 8087 Code

¢ Using the Apple Game Port

* BASE: Part Four

¢ Using the S-100 Bus and the 68008 CPU
¢ Interfacing Tips and Troubles: Build a
“Jellybean" Logic-to-RS232 Converter

Issue Number 17;

* Poor Man’s Distributed Processing

s Base: Part Five

e FAX-64:Facsimile Pictures on a Micro
e The Computer Corner

» Interfacing Tips and Troubles: Memory
Mapped !/0 on the ZX81

Issue Number 18:

® Interfacing the Apple Ii: Paralle!
interface for the game port.

® The Hacker's MAC: A letter
from Lee Felsenstein

® S-100 Graphics Screen Dump

® The LS-100 Disk Simulator Kit: A
product review.

® BASE: Part Six

® Interfacing Tips & Troubles:
Communicating with Telephone
Tone Control

® The Computer Corner

Issue Number 19:

® Using The Extensibility of FORTH

® Extended CBIOS

® A 3500 Superbrain Computer

® Base: Part Seven

® Interfacing Tips & Troubles: Part two
Communicating with Telephone
Tone Control

® Multitasking and Windows with CPIM:
A review of MTBASIC

® The Computer Corner

Ordering Information: Back issues are $3.25 in the U.S. and Canada. Send payment with your complete name and
address to The Computer Journal, 190 Sullivan Crossroad, Columbia Falls, MT 59912. Allow 3 to 4 weeks for delivery.

The Computer Journal/Issue 320

1y

C oneyear(6issues)$14inU.S.

Back Issues #'s

41

ORDER FORM

Enter my subscription to The Computer Journal for the period checked. Payment in U.S. funds is enclosed.
two years (12 issues) $24 in U.S. T new subscription [J renewal

@%3.25 ea.
0O Checkenclosed T VISA MasterCard Card#
Expiration date Signature
Name
Address
City State ZIpP

The Computer Journal, 190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 2579119

Classified

The Computer Journal will carry Classified Ads. The rate is $.25 per word. All Classified
Ads must be paid in advance, and will be published in the next available issue. No checking
copies or proofs are supplied, so please type your ad or print legibly.

KEYBOARDS FOR COMPUTER BUILDERS. Full
ASCII, numeric pad, UC/ic, CAPS-LOCK, REPEAT,
SELF-TEST! Brand new, hundreds sold to builders
of Apples, Xerox 820s, Big Boards, etc. Parallel TTL
output, strobe. 5 voits/100 ma. Custom case
available. Keyboard $35. Documentation (21
pgs.)/cable pkg. $5. Spare CPU/ROM $4. UPS in-
cluded. Detailed specs on request. Electrovalue In-
dustriat Inc., Box 376-CJ, Morris Plains, NJ 07950.
(201)-267-1117.

Voice Processor for the KAYPRO Camputer.
Unlimited speech contains all software. Call or write
Busch Computer, PO Box 412, West Haven, CT
06516. Phone (203)484-0320.

$-100 68008 CPU BOARD. Detailed description in
issue 16 of The Computer Journal. A&T $260, Kit
$210, Bare Board $65. Prices include shipping. IN-
TELLICOMP, INC., 292 Lambourne Ave., Wor-
thington, OH 43085, Phone (614)846-0216 after 6
p.m.

$-100 Bus {EEE-488 Interface Card with cable,
manuals. and software for the North Star Horizon.
Purchased new from Pickles and Trout in 1979 and
used once. $100. Call Phii Wells at (406) 755-1323
days of (406) 257-5326 evenings.

Corvus 10MB Hard Disk for the Apple il plus,
$888.00; Apple |1l Second Disk Drive, $199.00;
Appie |1 SOS Device Driver Writer's Guide §19.95;
BP! Accounting for Apple 1! (Requires Hard Disk)
$99.00; Apple Writer 1.1, 16 Sector, $8.88; Apple
DOS User's Manual (11, 1l plus, 1e), $8.88; Appie
DOS Programmer's Manual (11, 11 plus, lle), $6.88.
KAYPRO-Home Accountant by Continental, $49.00:
Sorac 1Q 130 Terminal, $399.00. All plus shipping.
The Computer Place, 36 2nd Street East, Kalispell,
MT 59901, Phone (406)755-1323.

THE SECURITY DISK. PROTECTED VS UNPROTEC-
TED. At last, the best of both worlds. Here is sof-
tware designed to PROTECT YOUR PRIVATE FILES.
SIMPLE PROTECTION TO MULTI-LEVEL CRYP-
TOLOGY. Plus ‘‘DYSUN::THE DISK UNLOCKER"
WILL ANALYZE & UNLOCK COMMERCIAL '*COPY-
PROTECTED'' DISKS, then recopy them to standard
DOS 3.3 format. *'DYSUN'" will also RECOVER
LOST DATA & REPAIR BLOWN DISKS. A special
“'SECRETS-TIPS-TECHNIQUES'' program is also
included. Not locked-up. Listable. Machine
Language Source Codes included. Supports Apple
It, Il Plus, ilc, Ile. To order send $29.95
CHECK/MO to B.M.E. Enterprises, Box 191-J, Kila,
MT 59920.

Morrow Decision 1 S-100 system with MPZ-80 CPU,
DJ/DMA floppy disk controtler, 256K static ram,
Wonderbus 1/0 on mother board, Disk Jockey Hard
Disk (HOCA) Controtler, 801 floppy drive, 10M8
hard disk, CP/M, Micronix Muitiuser system, un-
configured MP/MII, dBase i1, Wordstar, Accoun-
ting Plus. Excellent condition. $3500, some trades
considered. TCJ, 190 Sultivan Crossroad, Columbia
Fails, MT 53912 Phone (406)257-9119.

Book Sale—These books are offered at this price
while the supply lasts.
Zilog Z80-CPU Technical Manual, $1.50
Real Time Programming—Neglected Topics
by Caxton C. Foster, $8.00
CBASIC Users Guide
by Osborne, Eubanks, and McNiff, $14.00
Introduction to FORTH
by Ken Knecht, $9.00
FORTH Programming
by Leo J. Scanlon, $13.00
These prices are postpaid in the U.S. only. TCJ,

190 Sultivan Crossroad, Columbia Falls, MT 59912,

42

The Computer Journal/Issue #20

Books of Interest

Apple II/Ile

Robotic Arm Projects
by John Blankenship
Published by Prentice-Hall
149 pages, 7 x 97

Robotics is an interesting subject,
and as Blankenship states, “More than
ever before, there is a need for anyone
interested in computers and/or elec-

tronics to learn about motor control, ar-

tificial intelligence, and other robotic-
related subjects.” While there are
many robotics books on the market; the
serious ones assume that you have a
Ph.D and are so theoretical that they
don't help in average practical ap-
plications, and the hobbyist books have
little or no useful information.

This book is a pleasant combination
of fundamental information and simple
demonstration programs for those who
want to get started in this interesting
field. The author’s goal is to enable you
to understand the basic principles
through simple projects, so that you
can create your own designs and not
just imitate his work. The contents of
the book are as follows:

eChapter 1 Introduction. Industrial vs.
hobby robots, constructing the robot,
what is a robot? software and inter-
facing, robots can be fun.

*Chapter 2 A Simulated X-Y Arm.
Why simulation? simple videobot three
dimensional video simulation, Using
the simulator, BASIC X-Y simulator
program.

*Chapter 3 Intelligent Control of the
X-Y Simulator. Defining the goal,
command syntax, using the flowchart,
designing by defining, logical control
structures, folwcharting the modules,
multipurpose modules, coding the
program, BASIC Blocks World
Simulation program.

*Chapter 4 A Mechanical X-Y Arm.
Construction of a physical arm, using
surplus parts, motor control, electronic
noise problems, optical isolation, open
vs closed loop systems, eliminating
bounce, software counters, Assembly
Rev Counter program, input/Output
ports, the 6522 VIA, plotting with the
arm, BASIC X-Y Plot Demo program.

eChapter 5 Vision Systems. Types of
Vision, restrictions and limitations, ob-
jectives, a simpie example BASIC
vision 1 program, practical uses, scaling
factors, BASIC Vision Algorithm
program, centroids and vectors, con-
densing the data, vision hardware, a
HIRES SCRN function, HIRES SCRN
function assembly program.

*Chapter 6 A Simulated Jointed Arm.
Why joints? trigonometry needed for
joint simulation, coding the simulator,
manual control of the simulator, BASIC
Manual Jointed program.

oChapter 7 Intelligent Control of the
Jointed Simulator. Manual vs computer
control, converting X-Y coordinates to
joint angles, converting to steps,
algorithm to ensure that all joints will
finish at the same time, BASIC In-
telligent Control of a Simulated Jointed
Arm program.

oChapter 8 Control of Stepper Motors.
How a stepper motor works, step
variations, half stepping, interfacing,
bipolar and unipolar motors, program
control, integrated circuit controllers,
sample BASIC Stepper Motor Control
program.

*Chapter 9 Building & Jointed Arm.
Flexibility, construction, attaching
motors, the software, BASIC In-
telligant Control of a Stepper Motor
Arm program, controlling the motor.
*Chapter 10 Positional Control of DC
Motors. Why DC motors? comparision
of Stepper and DC motors, overshoot, a
test platform, the computer interface,
designing the program, coding the
program, BASIC Motor Positional Con-
trol System program.

oChapter 11 Hobby Servo Motors.
Using radio controiled model servos,
generating the pulses from the game
port, the interrupt program, Quad Ser-
vo Drive System assembly program,
BASIC Servo Control Demo program.
*Chapter 12 An Arm for a Hand Pup-
pet. constructing a robot puppet, inter-
facing the motors, the software, In-
terrupt Timing System assembly
program, BASIC Puppet Controller
program.

¢Chapter 13 Computerizing a Toy
Arm. Why use toys? The mechanical
connection, controlling the solenoids,

sensory feedback, designing the sof-
tware, BASIC Armatron Controller
program.

oChapter 14 Man-Sized Arms. Degrees
of freedom, making compromises,
designing the manipulator, building
working models, designing the wrist.
sAppendix A Sources for Robot Parts.
sAppendix B Optional Diskette Infor-
mation.

Although the book is rather thin (146
pages of text), it is tightly written and
contains a lot of useful information.
Some of the subjects are covered in a
mere pharagraph or two, which was
done to avoid overwhelming the begin-
ner with more information than he
needs. Other books can be consulted for
more details on specific subjects after
the fundamentals are absorbed. The
author has used BASIC for most of the
programs, not because it is necessarily
the best-suited language for robotic ex-
perimentation, but because the
majority of the readers will be familiar
with it. The programs in the book are
also available on disk for $19.95 for
those who would rather not key the
listings.

This book should be useful for
someone’s first indroduction to building
and controiling robotic devices using
low-cost junk box and surplus parts. B

Apple Il and Ile are registered
trademarks of the Apple Computer
Corporation.

The Computer Journal/Issue 20 43

Advertiser’s Index
Alliance Computers...........ccoviiieniinn. 20
ADIOPOS. . oot e 43
ArCLeC ... i e 4
BarnesResearch.................ol 39
JohnBell.........c. i 8
“..received my moneys warth with just one Bersearch............coiiiiiiiiiii i 15
issue...” Business Utility Software................coovvvn... 5
—J. Trenbick BV Engineering................... ceeeneiniiones 36
“...always stop to read CTM. even though Classifieds.........cvvveeunreei i iineaenaanen. 37
most other magazines | receive (and write for) CompUter TrAader . . . nveneneeeeeeaneennnn. 43
only get cursory examination...” o

—Fred Blechman, KEUGT Davidge.........c.coiiiiiiiiii i 43
Echelon,Inc.......coovviiiiii i 19,35
. -315.00t0r 1 year Educational Microcomputer Systems............... 20
Mexico, Canada . . 33

Fareign Intellicomp............ i
(U.S. funds oniy) B 1) o 1+ TSN 28
Permanent (U.S. Subscription) LawsonLabs.......cooiiiiieiiiiiiiiianinan, 39
Sample Copy Miller Microcomputer Services.................... 11
1704%” EE LAMS_ER_T, W4WDR Next Generation Systems.............ccviinunnnn, 17

am Drive e Birmingham, AL 35235 . .

(205) 854-0271 Public Domain Software...................oiunt, 34

APROTEK 1000™ EPROM PROGRAMMER

L ARTEIR, ek
! R}

2 am -
< [
’ $250.00
A SIMPLE, INEXPENSIVE SOLUTION TO PROGRAMMING EPROMS

The APROTEK 1000 can program 5 volt, 25XX series through 2564, 27XX
senes through 27256 and 68XX dewvices pius any CMOS versions of the above
types. included with each programmer is a personaiity module of your choice {others
are onty $10 00 ea. when purchased with APROTEK 10007 Later. you may re-
quire future modules at only $1500 ea.. postage pad. Avaiable personaity
modules: PM2716. PM2732. PM2732A, PM2764. PM2764A, PM27128.
PM27256. PM2532. PM2564, PME8764 iincludes 68766) (Please specify
modules by these numbers).

APROTEK 1000 comes complete with a menu dnven BASIC driver programmer
hsting which allows READ. WRITE. COPY, and VERIFY with Checksum. Easily
adapted for use with {8M. Appie. Kaypro. and other microcomputers with a RS-232
port. Aiso included 1s a menu driven CPM assembiy language driver ising with Z-80 POWER THATGOES ANYWHERE’
{DART) and 8080 (8251) 1/O port examples. Interface s a2 simpie 3-wire RS-232C -

with a female DB-25 connector. A handshake character 1s sent by the programmer

after programming each byte. The nterface 1s switch selectable at the foliowing Single Board Computer
6 baud rates: 300. 1.2k, 2.4k, 4 8k. 3.6k and 19.2k baud. Data format for program-
ming 1s ‘‘absotute code’’ (i.e., it wil program exactly what it s sent starting at
EPROM address Q). Other standard downloading formats are easily converted to FAST — B6MHz Z80B* CPU
absolute (object) code 0 ERF 6K RAM. 2K to 64K ROM
The APROTEK 1000 is truly universal. It comes standard at 117 VAC 50.60 HZ POW uL - 64’5 10 25 T . o
and may be internaily jumpered for 220-240 VAC 50 60 AZ FCC vernfication — 5%" and 8" Floppy Controller. SASI
1CLASS B) has been obtained for the APROTEK 1000. — 2 RS-232. Centronics Port

APROTEK 1000 is covered by a 1 year parts and labor warranty.
— SRR s ellid-alid FLEXIBLE — 50-pin I/0 Expansion Bus.

FINALLY — A Simple, I ive Solution To Erasing EPROMS 3 "
APROTEK-200™ EPROM ERASER APROTEK-300™ only $60.00. SMALL - 5%"x10
Simply insert one or two EPROMS This eraser 1s .denucal to APROTEK
and switch ON. In about 10 minutes, ~ 200™ but has a builtn timer so that tne :
you switch OFF and are ready to uitraviolet lamp automatically turns off n r)“!‘?| !’.Ja
reprogram. 10 munutes, ekminatng any risk of overex- ST o SN

R .200™ only $45.00. posure damage to your EPROMS.
APROTEK-200"™ only $45.0 APROTEK-300™ only $60.00. gggEDG‘EHCq’RPGS:g'ON
— as 1 way
APROPOS TECHNOLOGY PO Box 1839
1071-A Avenida Acaso, Camarilio, CA 93010 -
CALL OUR TOLL FREE ORDER LINES TODAY: Bueliton. CA 93427 (805) 688-9598

1.(800) 962-5800 USA or 1.(800] 982-3800 CALIFORNIA 280 .5 4 requster .
TECHNICAL INFORMATION: 1-(805| 482-3804 290 5.4 regisierned ademart of 2109

oo ShopnaParten 3300Con U $800CAN Mexco i ax rsoe |

44

The Computer Journal/Issue #20

THE COMPUTER CORNER

A Column by Bill Kibler

It is the hot time of the summer and
computing is starting to take a back
seat to other forms of recreation. I have
had a chance to reflect and review my
computing needs while my systems
were shut down during the last few
weeks of moving to a new location. My
vacation is about to start (sure need one
after moving all those boxes) and the
industry as a whole is doing a two step,
and I thought this would be a good time
to review pending projects and ideas
for them.

Some months back I stated an in-
terest in doing machine to machine
linking and have since found several
products already available. I usually

use public domain software as my sour- .

ce for most of my projects, and BYE
and XMODEM will allow most users to
handle their system to system needs.
Packet radio links have still got my in-
terest and you will see something later
from me for sure.

Ireceived one inquiry on my putting
together a FORTH ROM based system
and all the problems that it implies.
This idea has also become my next
project and hopefully will be my next
special article for The Computer Jour-
nal. The idea here is first to check out
the public domain disks for source code,
go after the bugs and unknown
probiems, followed by implementation
and uses. Now FORTH has some good
points and some bad points, but for
robotics or solar system control the
idea of being able to tailor an operating
system to consist of just the code
needed for the project (and maybe por-
table to other systems) is hard to beat.
If someone out there has done this
already and would like to write about
it, give the editors here at TCJ a call
and I will go on to some other projects.

I'haven't got my hands on anything
new lately, as the market for used
systems is pretty bad. My old units will
not sell and so [haven't any money for
the new (used) stuff. With the market
changes and the maturity of the
systems, I am rethinking all my efforts.
Iam still planning on buying one of the
68000 machines later this year, and
maybe use it for the FORTH system.

T'll be attending Micro Cornucopia’s
SOG IV (unofficial get-together) and
should have some thoughts on my
projects (and comments on the SOG
too). What this is all coming down to is
the state of the industry, pretty
shakey.

There has been a real shakeout in
computer companies, but a most in-
teresting fact surfaced last month. Ap-
ple reported that over 60% of it's sales
were for the TEN year old Apple II's.
This amounts to about 450,000 systems
by Apple (plus who knows how many
copies) which is still a considerable
amount of units. The software is not
quite the same story, as very few new
programs have been released. I liken
this whole problem to autos, especially
antiques, which are still rebuilt and
sold and even driven a lot, with some
units that are over 40 years oid. Now
computers aren’t quite 40 years old but
there are still a lot of us that will keep
using our old systems, no matter what,
and I expect to see some support to
spring up in this area soon (other than
magazines like TCJ).

A few final comments before I grab
my backpack and head out the door. My
Remex drives are still working, the
modified units have only an occasional
error, while the unchanged one gets a
lot. I have heard of others dying for
ever, but have not gotten any infor-
mation from our readers as to why, yet.
The cost of print spoolers is dropping
and for those who didn't build the one in
TCJ I'll have some words about an S-
100 unit next month. For you clone
builders, check the layouts well as some
bare boards need by-passes and tuning
caps in some places to make them work.
Seems some of the timing windows
were rather poorly done and may need
some slowing down just to work. These
may be undocumented spots for
capicators, and require trial and error
work to get the correct value.

Had some troubles with other mini
drives, and remembered to look for in-
verse logic. It never fails to catch you
when you're sure you know what you're
doing. A TEK drive wouldn't work

right until all the switches were turned

on and the drive selected switch turned
off. So when faced with a series of swit-
ch positions and the unit doesn’t work,
try reversing all logic, you will be sur-
prised how often the documentation is
wrong about this item. Also had a drive
motor sieze up on me, seems the Oillite
bearings had no oil. If you decide to
take it apart, it is not for the bumble
fingers, these are small and will give
you problems getting the brushes
altogether again. Try unbending the
tabs at the back and putting the
brushes in after partial assembly. Soak
those bearings in a good light oil not
WD-40 types (they will strip out the
good oils). On some of the double sided
drives, watch out when cleaning the
heads. The floating head is just that,a
floating head mounted by thin strips of
metal. I got to rebend the metal gimbal
of one that had been caught by a cotton
swab, and bent badly out of shape. The
unit now has a crease in it, but checked
out OK after realignment.

Now where is my freeze-dried
food??? bye.... B

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms,
but these registered trademarks are
the property of the respective com-
panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the
term becoming public property. The
following frequently used marks are
acknowledged, and we apologize for
any we have overlooked.

Apple II, II + , II¢, ITe, Macintosch,
DOS 3.3, ProDOS; Apple Computer
Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter-
national Corp. IBM-PC, XT, and AT;
IBM Corporation.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property of the
respective companies even if not
specifically mentioned in each occuren-
ce.

o

