Appl 'CathnS —% g s

Issue Number 45 July / August 1990 $3.95

Embedded Systems for the Tenderfoot
The Z-System Corner
The Z-System and Turbo Pascal
Z80 Communications Géteway
Advanced CP/M
Animation with Turbo C
Real Computing

The Computer Corner

The Computer Journal

Editor/Publisher
Art Carlson

Circulation
Donna Carlson

Contributing Editors
Bill Kibler
Bridger Mitchell
Clem Pepper
Richard Rodman
Jay Sage
Dave Wenstein

The Computer Journal is pub-
lished six times a year by Technology
Resources, 190 Sullivan Crossroad,
Columbia Falls, MT 59912

(406) 257-9119

Entire contents copyright © 1990

by Technology Resources.

Subscription rates —$18 one year
{6 issues), or $32 two years (12 is-
sues) in the U.S., $24 one year sur-
face in other countries. Inquire for air
rates. All funds must be in U.S. dol-
lars on a U.S. bank.

Send subscription, renewals, ad-

dress changes, or advertising in-

quires to: The Computer Journal, 130
Sullivan Crossroad, Columbia Falls,
MT 59912, phone (406) 257-9119.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. it is important
to dge these trad rks as their property to
avoid their |os|ng the rights and the term becoming
public property The ioilowing frequem!y used trade-

marks are ged, and we apologize for any we
have overlooked.

Apple I, 1I+, lic, lle, Lisa, Macintosch, DOS 3.3,
ProDos; Apple Computer Company. CP/M, DDT ASM,
STAT, PiP; Digital Research. DateStamper, BackGroun-
der ii, Dos Disk; Plu*Perfect Systems. Clipper, Nan-
tucke«. Nantucket, Inc. dBase, dBASE I, dBASE M,
dBASE it Plus, dBASE IV; Ashton-Tate, Inc. MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Micro-
Pro Intemational. IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, 2280 leog COrpomnon Turbo Pas-
cal, Turbo C, Parad tional. HD64180;
Hitachi America, Ltd. SB180 Micromint, Inc.

Where these and other terms are used in The Com-
puter Joumal, they are acknowledged to be the prop-
erty of the respective companies even if not specifically

dedged in each

The COMPUTER
JOURNAL

Issue Number 45 July / August1990

o [1 (oY £ - 5N 3
Letters reeessrmersenacens vevesense eimesevecssssrarsarsnnssen . 8

Embedded Systems for the Tenderfoot5
Getting started with the 8031.
By Tim McDonough.

The Z-System Cornercccccoviicmmnenens eesmssssssmsssssns 8
A continuation of using scripts with MEX.
By Jay Sage.

The Z-System and Turbo Pascal cressssnsessenene 16
Patching TURBO.COM to access the Z-System.
By Joe Wright.

Embedded Applicationsccccceeeiiiiiiniinnennanene. 20
Designing a Z80 RS-232 communications

gateway, part 1.

By Art Carison.

Advanced CP/Mcooeiieiiiniieeeeeerencnereenrnneesareases 24

String searches and tuning JetFind.
By Bridger Mitchell.

Animation with TUrbo Cc.ceeeiiiiiirr e 27

Part 2, screen interactions.
By Clem Pepper.

Real Computingcccceeveerrcsiennnninenene SRR .
The NS32000.
By Richard Rodman.

The Computer Corner........ccccicnnenriscenssscssemsiscssnnnnee. 40
By Bill Kibler.

ERAC CO.

P.O. Box 1108, 14179 Halper Road
Poway, California 92064 - (619) 679-8360

(619) 679 8360

MINIRIUR ORDER ‘”5 10

Baby 386-20/24 MOTHERBOARDS 386DX/SX/286
| Motherboard DX5000 386/25MHz-32K Cache-16 Meg-Simms-AMI Blos-Full $998
DX4000 386/20/24MHz Shadow-8 Meg-Simms-AMI-Baby 630/850
One 32 bit-slot, Five 16-bit slot, Two 8-bit siot. Maximum P9400 386SX/16MHz 8 Meg-Simms-Phoenix-Bios-Baby 375
8 meg on board (1 meg SIMMS). OK on board. 80287 or | Pg200 386 SX/16MHz 2 Meg-Dip-AMI-Bios-Baby 385
80387 or Weitec Co-Processor siot. Shadow RAM. SUPABOARD 286/12MHz 4 Meg-Dip-Dallas Ck-AMI-Baby 197
0 390 24 %650 S avante atd Do v ConolieithCa “
nhan ard Disk Orive Controller wi LT
1 meg SIMMS-80ns $115 DC-11M AT Hard/Floppy Contr. 1:1 438Kb/Sec, To 2048 Oyloooooo o 9
Aé}l\lo PLUS 1\!;Gar(Lpt 1-3), 2 Ser(Com 1-4), Gast(t:e, Cables, Ser2(opt) 38
VGA-18 16-bit VGA Board 800x600 with Driver SoHware 118
16 BIT VGA Card 2400 Baud Extemnal Modem, with Software and Manual 99
KBS5161 AT/XT 101 Keyboard, Cherry Keyswitches (Click) 4
RESOLUTION COLOR COLORMOUSE Black-Red-Blue-Beige-Green-Yellow, Software & Manual 39
m& 2'152 g; gg: VOICE MASTER KEY, Add voice commands to software XT/AT 147
1024x768 16 of 256° MONITORS .
Runs all standard VGA modes, 256K RAM on board. Hor. 31/35KHz, Vert. 50,60,70,87Hzccovviuiieniinnnns, 430
Drivers for AutoCad, Lotus, Framework, GEM, VP, WP, CASES
WS & MS Windows. 1 year warranty. MINI-TOWER, 230 W, Reset, Turbo, Keylock, Speaker 143
For 512K $30 extra $185 TOWER, 230W, Reset, Turbo (2 Dgt), Keylock, Speaker 229
KAYPRO Equipment We Repair CPM Kaypros
Bargains CPM COMPUTERS IC’s
........................... 425 81-189VideoPal.................. $15
K10 495 81-194RAMPal 15
Poormen Monfor 89,84, K18 ... 880 e LTI 425 81Seres Char. Gen. ROMs 10
Keyboardcooveuenvnnn.. 50 81-Serles Monitor ROMs 10
Replacement Power Supply 70 We carry all IC’s for Kaypro
| Drivetek 2.6M FDD (Roble or K4X) 75 repair.
Test Equipment NiCds SWITCHERS
OSCILLOSCOPES AACels Bah $1.00 | AT200WPulls,tested $35.00
TEK 7403N/7A18N/7850A 60 MHz . . . $650 12V PackAACells 7ah............... 6.50 SV[75,12VI6, 12V[3,-5V/5 85.00
Leader LBO520 30 meg Dual Trace 300 Sub-CCellst5ah 1.50 S5V/9.5A, 12V/3.8A,-12VI8A 39.00
TEK 475 Dual Trace 200 MHz 1250 12VPackSubC 10.00 SVI3A 12V2A, - 1VI4A 19.50
Scope Probe x1, x10 100 MHz 25 Double D Cell 2.5V 4ahunused 8.00 SVIBA, 12VI2A, A2VNA 29.00
CCellsc.ovviviannannnn., 1.75 | 5VIBA, 24V/1 1/4A, 12V/ 6A, -12V/BA ..29.00
ANALYZERS 7.2VRC-Pack1.2ah 1800 | SVIB0A............ooiiiiiiinnns 39.00
TEK 431 10MHz-40GHz $3500 BVH00Aooveevnieninnnn. 100.00
HP851B/85518 10HMz-40GHz 1500 GEL CELLS so0 | VoA 110.00
Biomation 805 Waveform Rerdr 195 RS- X1 | Y v R P B\ A
Biomation 8100 2-Channel 6V Bah 6.00 HP DG/DC 12Vin SV/BA,12V[5A,-5].3A . 45.00
Waveform Recorder 295 12ViSah ... 15.00 VERSATEC 8222F 22"
HP1600A Logic Analyzer 16ch 295 12v25ah.............ccociiiiint, 8.50 Electrostatic Printer Plotter
HP1600A/1607A Logic Analyzer 32ch . . 495 DCeN258hc.evveerennnnn, 200 | 200 dots per inch. Up 1o D size.
Gould K40 32ch Logic Analyzer 750 ROBOTICS 1°persecond $2,999
MISCELLANEOUS 5V DC Gear Motor w/Tach 12" $7.50 AT 80286-6 CPU BOARD
Optronics 550 MHz FreqCntr $95 280 Controller with 8-bt AID 1500 | with reset and monofcolor switch. Connector for
Heatgun 120Vac7A....... 35 12V Gear Mowor 0RPM 750 | KB, Battery & SPKR. Phoenix Bios (tested with
Cable: DBIM-DBYF 1'length 200 | Award3.03), 6MHz, can be upgraded to 8 or
TERMINALS High Voltage Power Supply 10MHz. Use with backplane, add memory
Televideo925..................... $99.00) board, IfO boasd, etc.
Input. 15-30V DC ONLY $99
OUM 1mv mv 16KV s.m --------------------------

TERMS VISA OR MasterCard (Aad 371 Certibed Choecks. Moray Order. NO COD Perranal Cher ws

must ciear BEFORE we ship. Include shipping charges

Catforma residents agd 7 147 Saies Tas

The Computer Journal / #45

Editor’s Page

Do You Remember...

I've been cleaning up and rearranging,
and kept stumbling over a pile of Byte
magazines. I dropped the subscription two
years ago, but still had a seven year accu-
mulation. I decided that most of the infor-
mation was outdated and that it was time
to clip what I wanted and discard the rest.

It was interesting to note that I saved
more from the older issues than I did from
the more recent ones. I clipped Ciarcia’s
Circuit Cellar from every issue —most is-
sues that was the only thing worth saving.
Byte made a serious error when they lost
Ciarcia, but it was to our advantage be-
cause he started his own magazine, Circuit
Cellar INK. You should definitely sub-
scribe to it if you read his articles in Byte
or if you enjoy hardware projects. Contact
them at Circuit Cellar INK, 4 Park Street,
Suite 20, Vernon, CT 06066, (203) 875-
2751

The clipping process took much longer
than I expected because I got sidetracked
by ads. Ads for Apple II and CP/M re-
minded me of where we were a few years
ago. Then there were ads for CP/M86 and
the p-System (anyone else remember
that?) Other familiar names were Morrow,
CompuPro, Sinclair, TeileVideo, North-
Star, Commodore, Tarbeli, Cromemco,
Osborne, and Victor.

I had forgotten how much change had
occurred during the past decade, until 1
saw history flash before me as I thumbed
through the magazines. It made me won-
der if the changes during this decade will
be as dramatic as those in the past decade.
In the year 2000, which names will make
us say “Do you remember..?”

TCJ’s Toolkit

People frequently ask us what tools we
use, as though we had all the answers.
While we don’t have all the answers, we do
have the opportunity to examine a lot of
products before selecting the ones we will
work with.

If anyone tells you that they are com-
pletely objective in selecting tools, don’t
believe them. We all have our own per-
sonal preferences and are very subjective
when making decisions. You and I have
different methods of working, and differ-
ent priorities. Some of us like to partici-
pate and take part in what we are doing
while others want to stay at a distance and
not become involved. Some are impressed

The Computer Journal / #45

by flashy colors and lots of chrome while
others look for rock solid performance.

Everyone wants the most that they can
obtain for their money, but there is a dif-
ference between value and cheap. I once
saved a few dollars when replacing a drive
motor on a production line conveyor belt,
only to have the cheap motor fail a few
days later. About 50 production line work-
ers sat around smoking and drinking pop
(and collecting full pay!) while I struggled
to install a betier motor. While I was doing
this my boss kept telling me how much the
cheap motor was costing in lost wages, and
explained the difference between cheap
and value. I look for tools which have good
value, but cheap ones are worthless if they
fail to do their job. As one rancher ex-
plained, “If you want first class oats, you
pay a first class price. Hawever, if you'll
settle for oats that been thru the horse
once, they come a lot cheaper.”

To make or to buy is another decision
which must be faced in many situations. I
don’t think that anyone would try to build
a disk drive, unless they were an inventor
attempting to develop something new.
That decision is easy. But, the answer is
not as apparent for things such as
EPROM burners, EPROM erasers, ROM
emulators, development boards, etc. On
these we each have to make our own deci-
sion. Sometimes we’ll decide to build
something in order to learn how to do it.

In addition to value and the correct
quality for the applications, I prefer to deal
with products having the greatest portion
performed in the U.S. I realize that many
of the chips are made overseas, but with
most of the tools I use the boards are de-
signed, made, and stuffed here. In addition
to supporting American products, 1 can
talk to the developers if I need support.

Some of the tools we use are as follows:

8051 Cross-Assembler and Simulator
—PseudoCorp, 716 Thimble Shoals Bivd.,
Suite E, Newport News, VA 23606, Phone
(804) 873-1947 (see their ad in this issue).
Dave Akey has a broad line of macro
cross-assembilers, simulators, and cross-
disassemblers which all run on an IBM
PC. His products were recommended to
me by Tim McDonough from Cottage Re-
sources, and they work very well.

8031 Development Board/uController
Module —Cottage Resources Corpora-
tion, Suite 3-672, 1405 Stevenson Drive,
Springfield, IL 62703, Phone (217) 529-

7679. Tim McDonough (see his article and
ad in this issue) has developed these
boards as a result of what he would liked
to have had while developing embedded
applications. These were designed to fill a
need, by someone who was working in the
area—not something designed by a com-
mittee! I'm working with the Control-R 1
board which is a bargain at only $39.95. 1
had been trying to get something going us-
ing a solderless breadboard, but it didn’t
work because of poor connections. Now,
with the Control-R I, I can concentrate on
the application instead of fighting with the
breadboard problems. Highly recom-
mended for experimenting, prototyping,
and the core for small quantity applica-
tions.

EPROM PROGRAMMER ~
Needham’s Electronics, 4535 Orange
Grove Ave., Sacramento, CA 95841,
Phone (916) 924-8037. Alan Needham
produces a quality product at a very rea-
sonable price (see their ad in this issue). I
am using the PC internal card version, but
they also have stand-alone versions for
production use. It antomatically sets pro-
gramming voltage, uses intelligent pro-
gramming algorithm, and can split the
bytes by two or four for 16 and 32 bit sys-
tems. I have heard many horror stories
about the overseas card bases program-
mers, but Needham’s is made in the US, is
well made, and is well worth the $139.95.

EPROM ERASER-Ultra Violet
Products, Inc., 5100 Walnut Grove Ave.,
San Gabriel, CA 91778. Their DE-4 eight
chip eraser (available direct or from
Jameco for $69.95) has an intensity of
6800 uW/square cm. It is well built and a
good choice for mid-level use. They also
have larger units for production use.

BAR CODE READER - Adaptive
Technologies, 810-208 Los Vallecitos, San
Marcos, CA 92069, Phone (619) 744-
8087. Douglas Johnson has just released
his FlexScan I decoder, which includes a
PC card, wand, and software. It can be ac-
cessed as either a keyboard wedge, or
driven directly thru the API (Application
Program Interface). We are basing a bar
code tutorial on this product. You’ll see a
lot more bar code applications, and you
should start becoming familiar with the
technology. Send for their literature.

(Continued on page 35)

8031 pController
Modules

NEW!II
Control-R II

vV Industry Standard 8-bit 8031 CPU

vV 128 bytes RAM / 8 K of EPROM

V Socket for 8 Kbytes of Static RAM

v 11.0592 MHz Operation

v 14/16 bits of parallel /O plus
access to address, data and control
signals on standard headers.

v MAX232 Serial I/O (optional)

V +5 volt single supply operation

vV Compact 3.50" x 4.5" size

vV Assembled & Tested, not a kit

$64.95 each

Control-R 1

v Industry Standard 8-bit 8031 CPU
v 128 bytes RAM / 8K EPROM

v 11.0592 MHz Operation

v 14/16 bits of parallel [/O

v MAX232 Serial /O (optional)

45 volt single supply operation

v Compact 2.75" x 4.00" size

vV Assembled & Tested, not a kit

$39.95 each

Options:
* MAX232 1.C. ($6.95¢a.)
* 6264 8K SRAM ($10.00¢a.)

Development Software:

« PseudoSam 51 Software ($50.00)
Level I MSDOS cross—assembler.
Assemble 8031 code with a PC.

» PseudoMax 51 Software ($100.00)
MSDOS cross-simulator. Test and
debug 8031 code on your PC!

Ordering Information:
Check or Money Orders accepted. All

or $6.00 for Alaska, Hawaii and Canada.
Illinois residents must add 6.25% tax.

Cottage Resources Corporation
Suite 3-672, 1405 Stevenson Drive
Springfield, Illinois 62703
(217) 529-7679

|
|
|
orders add $3.00 S&H in Continental US

\.

Letters

J

Z80 Controllers

Your letter on small controllers was
quite timely. A fellow hacker and I had
been discussing (arguing) this very subject.
He maintains that the (IBM) PC has made
8 bit systems obsolete. The world is now
standardized, and all computing in the fu-
ture will be done with PC-compatible
architectures.

I pointed out that the vast majority of
micros sold are 4- and 8-bitters. His PC
had one 16-bit CPU, but half a dozen 8-
bitters; in the keyboard, printer, modem,
each disk drive, and in most other periph-
erals.

As to the future, RISC machines could
be the death of the PC. They offer and
order of magnitude more performance
without the PC’s ad hoc architecture and
programming difficulties. It won’t surprise
me if RISC spawns a second micro revolu-
tion. They’ll replace today’s micros as thor-
oughly as they in turn replaced yesterday’s
minis.

Imagine a 1995 Timex/Sinclair 1I, with
it’s RISC CPU and a meg of memory bit-
banging video and disk I/O while emulat-
ing any of a dozen CPUs...

I am a good hardware engineer, and
have several very small Z80 systems in my
portfolio. It takes very little effort to put
together powerful, inexpensive systems.
I'm inclined toward a Z80 with 32K RAM,
32K EPROM, and two 5380s for I/O. Ma-
terial cost would be around $30.

One danger is creeping featurism. Why
not a 64180? 512 K RAM. Disk interface.
Fancy video. Next thing you know, it’s still
another do-all computer, competing with
the PC. No, I thing it should be a KISS
design. If you want more horsepower, add
more boards, or buy a PC.

Why 5380s? For one, they have real-
world drive capability. 8255s are cheaper,
but need extra drivers to run anything real
(LEDs, power transistors, relays, etc.).
Second, they make fast inter-processor bus
(SCSI) easy to implement. Why two
5380s? Because 18 I/O lines is pretty
skimpy for most applications. If more than
36 lines of 1/O is needed, add another
board.

Software is the hardest part. If we de-
pend on assembly language programming,
it will be inaccessible to most people. If we
embed a high-level language, it is sure to
offend the purists. BASIC? Forth? C? All
of them have hate groups that won’t use
them, and none are suitable for multi-
processor systems.

I’d like to see something Smalltalk-like,
sort of a “tiny-Talk.” Each board is intelli-
gent in its own right, and can be pro-
grammed in a high-level language. In a
multi-board system, they pass messages
between each other (the user/programmer
is just one more source/sink for messages).
Smalltalk is the only language I know that
has a structure for non-proceedural non-
hierarchical processing.

As a programming metaphor, I'm
thinking of a spreadsheet. Each cell is an I/
O port or RAM location. You FORMAT
the cell to determine how it inputs or out-
puts data (serial, parallel, individual bits,
etc.). The FORMULA is a one-liner in a
calculator-like language.

For Example, format cell A1 as an 8-bit
output, and B1 as an 8-bit input. The pro-
gram in Al can do some boolean manipu-
lation, like Al=(B1+5)/2. If row A is
physically handled by one board, it con-
tinuously recalculates the output for Al,
which involves sending a message to the
row B board to ask the current value of
B1.

So I'm interested! How do you suggest
we proceed?

Lee A. Hart

PC Development System

Lee Hart sent me a copy of his May
16th letter to you on small systems devel-
opment and encouraged me to respond as
the “fellow hacker...who maintains that the
(IBM) PC has made 8-bit systems obso-
lete”. Well...

I'm a good hardware engineer too, and
I find it hard to develop and manufacture
a system as cheap as an IBM PC. For $500
new, and maybe $250-$400 used, you get a
2-floppy monochrome system. Admittedly,

(Continued on page 36)

The Computer Journal / #45

Embedded Systems for the Tenderfoot

Getting Started with the 8031

by Tim McDonough, Cottage Resources Corp.

How many times have you had a great idea for a project that
required some “smarts” but were put off by either the cost or the
size of dedicating a PC to controlling the system? Or maybe your
latest brainstorm required battery operation to be genuinely useful
or your users just wouldn’t tolerate keyboards, disk drives, etc.
Learning how to develop stand alone microprocessor based proj-
ects, or embedded systems as they are called in the trade, may be
just the ticket to getting that project off the shelif and into the real
world.

Throughout the next couple of issues, or for however long Art
is willing to put up with me, I'm going to present a few projects
that will give you the basics of embedding a microprocessor in your
projects.

This isn’t the kind of stuff that only rocket scientists and black
belt computer hackers can succeed at. If you can already do some
programming in BASIC, Pascal, C, or whatever and have some
rudimentary knowledge of digital electronics, then getting started
with embedded systems is within your reach. You probably won’t
have NASA beating down your door to work on the next genera-
tion of space shuttles, but you will be able to develop some decent
automation projects that do the job you need to accomplish.

There are a variety of processors suitable for use in embedded
systems. Z80s, 80286s, 68000s, and almost any other type you can
think of are used in a variety of systems. The particular chip that
I’'ll be concentrating on is the 8031 which is manufactured by Intel
and second sourced by several other manufacturers. The 8031 isa
member of what Intel calls the MCS-51 family. All members of
this family have similar characteristics and a varying number of
features and functions depending on your particular needs. Key
features of the 8031, the “bare bones” model are as follows:

128 bytes of internal RAM

Built in UART for serial communications
2 16-bit counter/timers

4 8-bit Input/Output ports

2 external hardware interrupt lines

bit addressable memory and I/O ports

Before I go on, let me say that the 8031 is not the only 8- bit
microcontroller around; there are similar products made by Mo-
torola and others. In any given group of engineers, scientists, or

Tim McDonough is the President of Cottage Resources Corpora-
tion. The company manufactures and distributes several single
board computers based on the 8031 and is a dealer for PseudoCorp
brand 8031 cross-assemblers and cross-simulators. He may be con-
tacted at: Cottage Resources Corporation, Suite 3-672, 1405 Steven-
son Drive, Springfield, Illinois 62703, (217) 529 - 7679.

The Computer Journal / #45

programmers, you can get into discussions akin to religion or poli-
tics if you say something like “The 8031 is the best 8-bit microcon-
troller on earth.” Fact of the matter is, the “best” is the one that
you are the most comfortable using that will get the job done. I
happen to have had access to a lot of people and resources that
supported the 8031 while I was a “tenderfoot” and so I continue
to use what I know best.

The circuit shown in Figure 1is a real bare-bones 8031 system.
It contains the 8031, an address latch (more later), and 8K of
EPROM to hold your application program, data tables, etc. This
circuit is very similar to one presented by Steve Ciarcia in his Cir-
cuit Cellar column that appeared in the August 1988 issue of
BYTE magazine.

‘You may wonder about the lack of RAM in the schematic. The
applications I'li be presenting are written in 100% assembly lan-
guage and since this gives total control of the system operation, the
128 bytes of internal RAM contained in the 8031 will be more
than adequate.

Before we delve into the first application, there are a few “tools
of the trade” that are required aside from the circuit shown in
Figure 1. Whether you buy an off the shelf 8031 board or hand
wire your own you will need the following minimum items to get
into developing your embedded system:

The Intel 8-bit Microcontroller Handbook

A host computer on which to write software

A cross-assembler to produce 8031 object code

An EPROM programmer to get your object code into a
blank EPROM.

An EPROM eraser to get rid of your inevitable mistakes.

The amount of money you’ll spend on these items can vary.
There is no upper limit to price but a workable system such as the
one I typically use at home will cost about $270.00. This includes a
cross-assembler, EPROM programmer, and an EPROM eraser.
If you build up a simple 8031 circuit of your own and purchase a
few EPROM s for experimenting, you can still get started for about
$300.00.

So much for the introduction. This first project will get you
used to how some of the more useful pieces fit together and pro-
vide you with a working code example that you can use as the basis
for your first experiments. It demonstrates how to read digital
input sources such as switches, photocells, etc. and shows how to
control simple digital output devices such as relays, LEDS, and
small motors.

Before jumping into the project itself, a quick tour of the
“computer” is in order. As shown in Figure 1, the system is com-
posed of 3 Integrated Circuits —an 8031, a 74LS373 address latch,

and a 2764 EPROM.

The 8031 is essentially the entire computer. It contains RAM,
several counter/timers, system clock circuitry, and a full- duplex
UART that can be used to implement a serial communications
port. The 2764A is an 8K EPROM that is used to hold the pro-
gram that the 8031 will execute. A 74L.S373 is used as a “glue”
chip to hold the other parts together. The 8031 design multiplexes
the low order address lines (A0-A7) onto the same 8 lines as the
data (D0-D7). A separate external Address Latch Enable (ALE)
line (Pin 30) is used to latch the lower byte of the 16-bit address
into the 741.8373, after which the bus is used for data transfer.

The purpose of the system described here is of little interest;
it’s the implementation that should pique your interest. Essentially
it is a complicated, but flexible equivalent of an exclusive “or”
(XOR) logic gate. That is, whenever one and only one of the
inputs is active (grounded), the LED will light. Any other input
conditions will cause the LED to remain off as shown in the fol-
lowing truth table:

TRUTH TABLE FOR A TWO INPUT °‘‘XOR’‘’ GATE

INPUT A (P1.0) | INPUT B (Pl.l) | OUTPUT (P1.2)

| I
+ +
HI | HI | HI
HI] LOW | LOW
LOW | HI] LOW
LOW | LOW | HI
HI == +5VDC, LOW = OVDC/GND

This software “gate” could of course be a part of a much larger
system and in fact I'll be expanding on it in the next several issues.

For now, making it work will give you a good opportunity to get
comfortable with the basic 8031 circuit, cross-assembiler, and
EPROM programmer. The test circuit is shown in Figure 1.
Switches A and B let you simulate the inputs to the “gate” and
LED #1 will let you track the output.

Remember I mentioned earlier that a lot of things don’t re-
quire much in the way of memory? The code for the exclusive-OR
gate uses none of the 8031’s RAM and only occupies 19 bytes of
the system’s 8K EPROM. The source code is shown in Listing 1.

Coding in assembly language, although at times a bit more tedi-
ous, is no different than using whatever high level language you're
using now. In the case of implementing the exclusive-OR gate in
software I simply check each possible set of conditions one by one.
The algorithm, in pseudo code, is as follows:

“main*

if SW1 is set then
goto “"check sw2*

if SW2 is set then
goto "turn LED on*

goto “turn LED off™*

"check SwW2*"

if SW2 is clear then
goto "turn LED on*

“turn LED off"

clear LED1

goto "main*

"turn LED on”

set LED1
goto “"main®

The actual assembly language source code isn’t quite as lucid as

LISTING #1 -- Embedded Systems for the Tenderfoot
000001 0000 ; XOR.ASM —— May 9, 1990
000002 0000 H
000003 0000 ; {C) Copyright 1990 by Tim McDonough
000004 0000 ; Cottage Resources Corporation
000005 0000 ; Suite 3-672, 1405 Stevenson Drive
000006 0000 ; Springfield, Illinois 62703
000007 0000 ; (217) 529 - 7679
000008 0000
000009 0000 .ORG H'0000 ;ASSEMBLE TO BEGIN AT 0000 HEX
000010 0000
000011 0000 : EQUATES are used to give memory locations, registers and bits somewhat
000012 0000 ; english-like names
000013 0000
000014 0090 .EQU sW1,P1.0 ;SWITCH #1 ON PORT 1, BIT O
000015 0091 .EQU sw2,Pl.1 ;SWITCH #2 ON PORT 1, BIT 1
000016 0092 .EQU LED,Pl.2 ;LED #1 ON PORT 1, BIT 2
000017 0000
000018 0000 ; The main program is an endless loop that constantly compares the status
000019 0000 ; of the two input pins against the XOR truth table and adjusts the state
000020 0000 ; of the output pin accordingly.
000021 0000
000022 0000 309005 START: JNB SwW1,s81 0 ;IF 81 = 0 CHECK S2
000023 0003 309109 JNB SW2,LED ON ;81 =1 AND S2 = 0
000024 0006 8003 SJMP LED_OFF ;81 = 1 AND 82 = 1
000025 0008
000026 0008 209104 81 _0: JB SW2,LED_ ON ;S1 = 0 AND S§2 =1
000027 000B
000028 000B D292 LED_OFF: SETB ILED
000029 000D 80F1 SIJMP START
000030 OOOF
000031 O0OF C292 LED_ON: CLR LED
000032 0011 80ED SJMP START
000033 0013 .END

The Computer Journal / #45

+5U Figure 1
SW1
fl@@uf—'—[—-/ Lipi.o vee M2 47uF
1 = suW2 2 g
: _f._—/ PLd RST 1k = +5V
" 45U 25 2 28
470 Alz Atz Vce
a1 3 PL.2 All 24 g:: a1l PGM 27 .Q1ufF
aLe Sg o4 Alo 1
LED AS 57 el :
" As Ag 14
= 8031 |10 20 SND Q_
3z 18 [GND Vec |19 3 ee 1
AD? A7 -
33 3 2 4
ADB AB
34 17 74LS 16 S
18 ADS '35 4 373 5 6]0%
4
XTAL2 zg; 35 14 15 ? 23 EPROM
I XTAL apz2 22 13 ie 8 l a2 27644
7 B s
39pF 19 | XTALL ADL gg s 5 To] AL
ADO _ = A
39pF 20 | GND E OE
11 1
= 30
XTAL = 11.059 MHz Fogn PLE L
23 194 -
18
D6
17
DS
16
D4
15
D3
13
D2
12
1101
Do
22|
OE

the pseudo code. “XOR.ASM” is shown in Listing 1. The file is
formatted for the PseudoSam 51 Symbolic Assembler (See the
_notes at the end of the article for details).

When the 8031 is first powered up, it starts trying to execute
instructions found at location 0000 Hexadecimal. The .ORG di-
rective tells the assembler to locate the assembled instructions be-
ginning at 0000 Hexadecimal as well. Next an “equate” directive is
used to assign some “reader friendly” names to several of the
8031’s I/O pins. The first equate assigns the symbol “SW1” to Port
1, Bit 0 (P1.0), the location were I've attached Switch #1.

A major advantage of the 8031 for control applications is its
ability to manipulate single bits as opposed to performing opera-
tions on only full bytes. The JNB instruction looks at the bit refer-
enced in the first argument and causes program execution to jump
to the label referenced in the second argument if the bit was not
set. If the bit was set, nothing happens and the next instruction is
executed. The JB instruction does just the opposite, jumping if the
referenced bit is set.

The other instructions used are fairly straight forward. SETB
and CLR set and clear bits, respectively. SIMP is practically like a
GOTO in BASIC or FORTRAN. It simply forces program execu-
tion to continue to a certain location.

I hope it’s obvious that using a microprocessor, EPROM, latch,
crystal and all the other assorted components in this project as a
replacement for an XOR gate isn’t a great idea in and of itself. If
all you need is a gate then by all means use one. But what if we
wanted to transmit the status of the two switches to a PC via a
serial port? What if we needed to measure a temperature in addi-
tion to knowing the two switch positions? To accomplish either of

The Computer Journal / #45

these tasks and many more, very little additional hardware is
needed. It’s mostly “code”.

If you decide to experiment more with the 8031, the basic cir-
cuit described in this article can be used over and over for a variety
of projects. Some people will want to wire-wrap or point to point
wire their own board to make it exactly what they want. If you
don’t have the time to build or would rather spend the bulk of
your time coding, an assembled and tested version of this circuit
that also includes the circuitry for an RS232 compatible serial port
(Tl be talking about serial port programming in an upcoming is-
sue) is available from Cottage Resources Corporation. The Con-
trol-R 1 (pronounced “Controller One”) is available for $39.95
and the PseudoSam 51 cross-assembler is available for $50.00
(plus $3.00 Shipping per order) from Cottage Resources Corpora-
tion, Suite 3-672, 1405 Stevenson Drive, Springfield, Illinois 62703,
(217) 529-7679@

References:
Embedded Controller Handbook, Volume I 8-bit 1988, Intel
Corporation.
Mastering Digital Device Control by William Houghton, 1987,
SYBEX. (Editor’s Note: This book is out of print.)

Why Microcontrollers? Part I, by Steve Ciarcia, August 1988,
BYTE Magazine.

The Z-System Corner
by Jay Sage

Last time we gave you a pretty thorough presentation of the
script language from the MEX-Plus telecommunications program.
However, as necessary as such documentation is, it does not really

* teach one how to make effective use of the language. So this time
. we will present as a teaching example significant portions of the
script suite that I use for almost all my telecommunication work. It
is the most complex script that I have ever written, illustrates many
techniques, and might be very useful to many of you as well.

This script is far from perfect. Every time I work with MEX-
Plus I learn something more about it, and that was a large part of
my motivation for writing these two columns. As usual, I hope that
some astute readers will notice ways to improve on my script.

More MEX Commands
Before getting into the script itself, I have a few items to add to
the discussion from last time. First, I forgot to mention one ex-
tremely important MEX command; second, just today I discov-
ered some more undocumented commands that appear to be
quite interesting.

The WAIT Command

The WAIT command is one of MEX’s most important com-
mands. It allows MEX to monitor the character stream coming
back from the remote system and to take various actions depend-
ing on what it sees. There are four variants of the command:
WAIT DATE, WAIT TIME, WAIT SILENCE, and WAIT
STRING.

The first two forms cause the script to pause until a specified
. date or time arrives. Obviously, you must have a real-time clock
and a MEX clock module installed for these commands to work.
The command forms are:

WAIT DATE mm/dd
WAIT TIME hh:mm

These commands would be useful for a script to automatically

Jay Sage has been an avid ZCPR proponent since the very first
version appeared. He is best known as the author of the latest ver-
sions 3.3 and 3.4 of the ZCPR3 command processor and for his
ARUNZ alias processor and ZFILER point-and-shoot shell.

When Echelon announced its plan to set up a network of remote
access computer systems to support ZCPR3, Jay volunteered imme-
diately. He has been running Z-Node #3 for more than five years
and can be reached there electronically at 617-965-7259 (MABOS
on PC-Pursuit, pw=DDT). He can also be reached by voice at 617-
965-3552 (between 11pm and midnight is a good time to find him at
home) or by mail at 1435 Centre St., Newton, MA 02159. Jay is now
also the Z-System sysop for the GEnie CP/M Roundtable and can
be contacted as JAY.SAGE via GEnie mail or chatted with live at
the Wednesday real-time conferences (10pm Eastern time).

In real life, Jay is a physicist at MIT, where he tries to invent
devices and circuits that use analog computation to solve problems
in signal, image, and information processing. His recent interests
include artificial neural networks and superconducting electronics.
He «can be reached at work via Internet as
SAGE@LL.LLMIT.EDU.

place a call during the middle of the night when phone rates are
lower.

The WAIT SILENCE command waits until no characters have
been received from the modem for a specified time interval. This
is one way to infer that the remote system has finished what it was
doing and is ready for a command from you. The syntax is:

WAIT SILENCE [time]

The most powerful of the WAIT commands is WAIT
STRING, whose full syntax is:

WAIT STRING [time] stringl [etring2 string3 string4]

This command takes from one to four string expressions and
an optional wait time, which otherwise defaults to values set by
STAT parameters. The command terminates as soon as one of the
strings is detected or the time limit expires. The VALUE variable
tells you the result. It will be 0 if the time limit was reached or 1, 2,
3, or 4 depending on which string was matched. You will see a
number of examples of the use of this command in my PC-Pursuit
script.

Undocumented Commands

MEX has quite a number of undocumented commands. These
can be discovered by doing a memory dump of MEX.COM and
looking for the command dispatch table. Scanning programs’ com-
mand tables to see what goodies might have been built into them
that the authors —for one reason or another —decided not to tell
you about is a great sport. I will mention only a few of the MEX
commands I discovered this way.

First, there are some commands that are just alternate names
for documented functions. For example, there is a RENAME
command that vectors to the same code that the REN command
does.

Since, as I mentioned last time, there seemed to be a paucity of
ways to get out of MEX (only about six commands!), I was quite
relieved to discover the command ABORTMEX, which appears
to offer yet another way! Actually, I have a recollection of having
seen that command somewhere in the documentation, but it is not
listed in the index and I cannot find it again. From examining the
dispatch vectors, I can tell that ABORTMEX is not the same
thing as CPM, EXIT, QUIT, and so on, but it seems to do the
same thing.

One command that I think will prove quite useful is the
PAUSE command. Its syntax appears to be like that of the un-
documented PRINT. Whatever text comes after it is echoed to
the screen, and the script then pauses until any key is pressed.

The MEM command looked as though it was going to be quite
useful, as it displays the status of MEX’s memory buffer. The
troubie is, I have not been able to figure out what buffer this is! I
started a capture buffer, and MEM still showed the same values
and reported that none of the buffer was in use. Then I put the
command in a script file, thinking it might report the status of the
script buffer. Alas, the report was still the same. Perhaps this is just
a command that was never fully coded. All I can say is that the
buffer size reported does depend on the size of one’s TPA.

The Computer Journal / #45

Another very interesting command is WIN. Its name suggested
that it created some kind of window, and indeed it does. It is proba-
bly not documented because it does not scem to work completely
correctly. I entered the command

WIN 55 12 75

and MEX drew a partial box of the sort that “BOX 5 5 12 75”
would have and then put its prompt at the upper left corner of the
window. After that, screen output was restricted to the lines in the
.window, but the lateral limits of the window were not observed; text
still ran across the full width of the screen. The STAT command
would fill just the window and then wait for a keypress to continue.
Of course, I did my tests from the command line, and WIN may act
differently if invoked from a script file.

The “@” command cursor addressing could still take one any-
where on the screen. Thus, it looks as though the WIN command
might be useful in some special cases where one wants to keep
certain status information on the screen. The window could be set
to the last 20 lines on the screen, and status information could be
written using “@ SAY” to the regions outside the window.

Another command whose function I thought I could guess was
FLUSH. I assumed that it flushes the contents of a buffer, perhaps
the capture buffer. However, I tried it with a capture buffer, and
nothing seemed to happen. There must be something more subtle
about it.

Finally, there are the commands DUPE, RESTORE, TRAP,
LIB, EXEC, OVRINIT and probably a few others.

A Challenge

I will offer an unspecified prize to the user who does some detec-
tive work and sends me the most complete documentation on these
undocumented commands. A free copy of the Mex-Pack terminal
emulation and remote operation modules might be a fitting prize.
Or perhaps a copy of the new ZMATE macro text editor.

I also have some recollection that someone once figured out a
way to use either the strings assigned to keys or the names in the
phone directory as string variables. So far, however, I have not been
able to figure out how to do it. We'll include that and any other
undocumented information about MEX-Plus within the framework
of this challenge.

Now let’s begin the look at the PCP script.

The PC-Pursuit Script

The Purpose

The purpose of this suite of MEX scripts is to make life with PC-
Pursuit easier. Before the recent changes in policy, using PCP was
an enormously frustrating experience. The outdial modems were
almost always busy, and it sometimes took dozens or even hundreds
of tries to get connected to a desired city —each try requiring one to
enter one’s user ID and password. Today, with the 30-hour limit on
free access, things are much, much better, but it is stili handy to
have a script take care of the operation automatically.

Here is basically what my script does. It calls up the local Telenet
access point and issues the commands to set up the proper terminal
mode. Then it negotiates a connection to the city where the selected
remote access system (RAS) is located. If all the modems in that
city are busy, the script can keep trying. If all the 2400 bps modems
are busy, it can even automatically step down and try the 1200 bps
modems. Today, one rarely fails to connect on the first try at 2400,
but in the past the multiple tries and automatic stepdown were
lifesavers.

Once the connection to the city has been established, the script
issues the commands to put the remote modem into Racal Vadic
mode and then dials the number for the RAS. In Vadic mode, the
modem issues call status reports, so you know when the modem is
dialing, when the phone is ringing, when the line is busy, and when
the call has simply failed. The MEX script monitors these reports
and responds appropriately.

Once the remote system has been reached, a very short script is

The Computer Journal / #45

initiated so that a maximum amount of memory will be free for
MEX to use for its capture and file transfer buffers. The script also
programs several function keys to make logging onto the RAS eas-
ier.

It would be quite easy to have the PCP script chain to a script to
perform the complete login operation, but I generally prefer to do
this manually. That gives me a chance to notice if there are any new
bulletins or other changes in the system.

Design Philosophy

Two main principles guided the design of the script suite. First,
as 1 mentioned last time, I made it highly modular. This makes
writing the script easier and clearer but, more importantly, it over-
comes memory limitations. By chaining from one script to another,
only one script has to be in memory at one time. By making the last
script a very small one, almost no buffer space is lost during the
time the user is working on the remote system, even though a script
is still in operation.

The second principle is to provide as much error checking as
possible. For example, at the very beginning, the script checks to
make sure that the local modem is connected, turned on, and re-
sponding. I learned to do this after trying many times to run this and
other scripts with the modem turned off.

In its present form, when an error is detected, the script nor-
mally issues an explanatory message and then terminates. It would
be better to provide error recovery wherever possible. For example,
having discovered the PAUSE command, I might now improve the
script by making it pause until the user turns the modem on and
presses a key. Then the script would loop back and try again.

There are quite a few places in the script where it will retry a
failed operation several times before it gives up. Sometimes PC-
Pursuit just seems to go out to lunch, and I have been unable to get
any response from it even with manually entered commands. In
such cases, of course, there is nothing more that the script can do.

Architecture

Before talking about the detailed functions of each module in
the script, I would like to describe the architecture. There are 6
modules, and their relationships are shown in Figure 1.

The central script is in the file PCPMENU.MEX. The invoca-
tion script, PCP.MEX, performs some one-time operations and
then transfers control to PCPMENU. After that, control branches
to other scripts but eventually returns to the menu script. It is only
from PCPMENU that the script can be terminated and control
returned to CP/M in a graceful fashion.

The data needed to connect to a remote system can be supplied
in two ways. First, the menu displayed by PCPMENU lists many
commonly called systems. When one of these is selected, control
branches to PCPDATA, which loads the required data into MEX

PCPDATA . MEX PCPMAN.MEX -->+
A

\ /

Figure 1. This shows the architectural organization of the suite
of script files that comprise the complete PCP script.

numerical and string variables and function keys.

Alternatively, there is a choice for contacting a RAS that is not
on the menu. In this case, the script PCPMAN (short for
PCPMANUAL) provides for step-by-step, menu-driven entry of
the required information. If the user decides against making that
call, control can be returned to PCPMENU. Normally, however,
control from either PCPDATA or PCPMAN flows to PCPCALL.

PCPCALL carries out the operations required to make PC-
Pursuit connect to the requested city and then dial the requested
-local telephone number. When either the PCP or RAS modems is
busy, the script allows the user to decide whether to continue
trying and how many times. If the call cannot be completed and
the user does not want to continue trying, control returns to
PCPMENU.

If the remote system is reached, control is passed to the small
script PCPCONN (short for PCPCONNECTED). We showed
this script in the previous column. It puts the user into terminal
mode for login. Whenever the user exits back to MEX command
mode, a prompt is put up. Entering the command “M” returns
control to PCPMENU. Other MEX commands can be entered as
usual for transferring files, opening capture buffers, changing
STAT parameters, and so on.

This script suite does not make use of any subroutine scripts
invoked using the DO command. In all cases, control is transferred
permanently to another script using the READ command. There
are some subroutine command blocks defined by the PROC and
ENDP commands. These subroutines are contained within the
script file because they execute faster that way and because there
was no reason in most cases to implement them as separate files.

We will now make a few comments about details of the individ-
ual script files. Because the code is quite lengthy, we are unable to
print it all here. Many whole sections have been removed, and
some comments have been cut out. However, there are several
ways to obtain the complete scripts. First, they will probably be
included on the ZSUS (Z-System Software Update Service) sub-
scription disk that is released at about the time this issue appears.
Second, the files will be posted on RASs. Finally, Art Carlson has
offered to make them available to subscribers who send him a
formatted, labeled diskette with return postage and mailer.

"Script PCP.MEX

This script (Listing 1) initializes a number of variables. Note
that variables that the user is likely to want to change are placed at
the beginning of the script. Also note that certain values that could
have been hard coded into the script, such as the default number
of tries to connect to a city, are stored instead in numerical vari-
ables. This is like using EQU parameters in assembly code and is a
highly recommended practice. It is not a bad maxim never to use
actual numerical constants in any program; always use symbolic
constants.

Table 1 shows how variables are used in the scripts. I'll have to
confess that I prepared much of this list after the fact. That was a
mistake. I would have made many fewer coding errors had I me-
ticulously documented the use of variables from the very begin-
ning. In fact, the comments next to each variable should be more
extensive than what I show here. Some of the information is in-
complete; some may even be wrong.

Note the way command line parameters are handled in
PCP.MEX. The full syntax for invocation of the script is

READ PCP [menu choice] (city tries] [RAS tries)

There are three optional parameters. The first is a menu
choice. If you know that you want to place a call to RAS number 1
on the menu, you can use the command “READ PCP 1” to do so
directly. In case you think that it is too hard to remember the
numbers, you are right; that’s where ARUNZ aliases come in! My
LADERA alias becomes “MEX READ PCP 1”. The other two
parameters are the default number of times to connect to a city’s

10

outdial modem and the destination modem, respectively.

The parameter values are carefully validated in the script. If the
values are illegal, then the built-in defaults are used. Validating
user input is something that none of us does enough of.

In the part of the script that checks the local modem, there is
the command

WAIT STRING 2 “OK™= "0~

This makes the script wait for up to 2 seconds for the modem
to respond with either “OK” (which it will do in normal verbose
mode) or “0” (which it will do if it was left in terse mode). It is
always a good idea to have code anticipate and deal with all pos-
sible situations.

I have an MNP level-4 modem, and Telenet supports MNP
error correction at the indial port that I use. Therefore, I put the
modem into MNP mode at the beginning of the PCP script and
set it back to normal mode on normal exit. I have omitted this
code from the listing. If you do not have an MNP modem, you
would, of course, remove (comment out) this part of the script.

The script is pretty carefully written to make sure that every-
thing is proceeding correctly. After connecting to Telenet, up to
two attempts are made to establish the required synchronization.
This same technique of looping with a max-tries count in variable
%z is used in many places throughout the scripts. Note the use of
the SLEEP command to introduce delays when the system you are
communicating with does not always respond immediately.

Script PCPMENU.MEX

The menu in this script (Listing 2) is drawn inside a box and has
the RAS selections displayed in three columns. Free entries are
filled in with a row of dots. We have included only enough entries
to show how they are generated. It is important that free entries be
trapped later in the script.

The menu is adaptive. If one is currently connected to a city,
the city code and data rate are shown in the menu header, and the
menu selections for changing the data rate that otherwise appear
at the bottom are omitted.

Another example of robust coding is provided by the ABORT
routine at the end. Whenever this script is running, we should be
connected to PC-Pursuit. Therefore, the script attempts to discon-
nect by sending the HANGUP command that PCP likes to see. If
several attempts to disconnect in this way fail, however, we simply
drop carrier.

Script PCPDATA.MEX

This script (Listing 3) is quite straightforward. It sets some de-
fault key definitions that apply to many systems. Then it branches
to the entry for the RAS selected from the menu in PCPMENU.
Here the variables necessary to place the call are set and any other
function key definitions are made. Then control is transferred to
PCPCALL. In the listing we show the entry for only one RAS.

Script PCPMAN.MEX

This is the second most complex module in the series (Listing
4). T used to have a much simpler and less agreeable version; in
honor of this column I just rewrote it. It used to require manual
entry of all information, and it provided no checking. Now it puts
up a menu of all PCP cities and allows selection by number. It also
keeps track of the area codes covered by each city. When there isa
second area code, a menu lets the user choose. The script is even
smart enough to include the area code as part of the local number
when needed and to insert the “1” prefix for those phone systems
that require it.

There are two major subroutines in this module. Routine CI-
TYNAME takes the city number and produces the name of the
city and state in a string variable. Routine PCPCODE generates
the PCP outdial code and the telephone area codes for the city.
The same CITYNAME subroutine is also included in module
PCPCALL.

The Computer Journal / #45

Listing 1: Script PCP.MEX.
stat filter on turn filter on
.. PCP.MEX: MAIN PCP SCRIPT (04/15/90) stat trigger "<;. do sendouts immediately
.o stat sodelay on;. ..but at a slow rate
.. This is the main entry point to the script for automating stat reply 0;. do not wait for response to a sendout
.. calls via the PC-Pursuit network. This part of the script stat case on;. ignore case
.. handles initialization of MEX and the modem and establishes .. etc.
.. the connection to the local access number.
.. Two things we have to take care of right away .
.o Initialize the Modem
screen off .
stat sep “;" ..
.. .. Make sure the modem is connected and responding.
.o configuration Information sendout “AT/r*
.. wait string 2 "OK® “0";. allow verbose or terse responses
. if value=0 A="No response from local modem”;GOTO ABORT
.. etc.
phone pcp=000-0000 2400;. 1local access number and baud rate
A="Your Town -Class B";. type of Telenet access for meg later ..
key i="PCP_USERID™;. key for entering user ID ..
key w="PCP_PW";. key for entering password .. Establish Connection to Local Access to Telenet
Tm=100; . default menu (100 -> display it) .o
$t=5;. default attempts to reach city
ts=l;. default attempts to reach BBS screen on;. tell user what we are doing
3b=2400;. default baud rate value for outdial say "/n/nDialing Telenet (",A,") . . . *;.
B="24" default baud rate as a string screen off
In=2;. automatic stepdown mode
key O="read pcpmenu/r"; key for reinvoking script .. place call to Telenet
.o dial pecp
.o if value=0 A=“No connection to Telenet:";GOTO ABORT
.. Initialization screen on
.. say “CONNECTED/n"
.. initialize PCP session
.+ Initialize data from command line. There are three optional
.. parameters. The first is a menu selection number to call tz=2;. max tries
.. immediately. The second is the number of attempts that LABEL LOGIN
.. should be made to connect to the destination city. The third if %2z<1 A="Telenet not responding”;GOTO ABORT
.. is the number of times to attempt to connect to the local tz»%z-1
.. number in that city. 1In all cases, we check to make sure that screen on;say " 8ync... ";screen off
.. we have an acceptable value. sendout “€*;sleep 1;sendout *D/r"
wait string 1 “TERMINAL"
.. menu selection (variable %m) if value=0 sleep 1;goto LOGIN
screen on;say “"terminal ID... “;ecreen off
2d={1:0);. read parameter 1 with default value of 0 sendout "D1/r"*
if $d<l GOTO BADl;. ignore if illegal value
if 3d>100 GOTO BAD1 read PCPMENU; . chain to PCPMENU script
tm=td; . if value in range 1..100, use it
LABEL BAD1 .o
.. similar code for other parameters omitted. .. Subroutines
.. Initialize various variables and MEX parameters ..
ta=0;. no area code requested LABEL ABORT
.. etc. screen on
D= ;. no PCP outdial (city) code say "/n/n*,A,"; session aborted./n/n*"
.. etc. dsc

The menu of PCP cities is drawn by calling the CITYNAME Table 1: A list showing how the string and numerical variables are
routine from inside a loop. This is much slower than drawing the used in the scripts.

menu directly. I put the code for the CITYNAME subroutine at | 3 error message string, temporary string
the beginning of the script, since I think it executes a little faster < temporary city code in PCPHAN
fri h D PCP outdial city code
om there. E RAS phone nuwber
I wrote the script this way for two reasons. First, it illustrates r RAS system name, scratch sometimes
some interesting techniques, such as iterated loops and computed ta area code of city currently connected to (or 0 if none)
: N9y i : : b maximum baud rate
coordmates‘for the @ command. Second, it keep§ information byt marzent oity selection (see PCPMAN.MEX menu)
about the city names in one place. If they are kept in more than 3d temporary variable
one place, then when changes are made in the future they might bt e e %"
not be made everywhere. As it is, this danger exists in several g alternate area code (or 0 if none)

. . N : sh £l £ 1= £i i t (0 if t ired
places in these scripts. For example, the menu of RASs isdrawn in | ; 89 fox 17 prefix requirement (0 if mot xequired)

PCPMENU, but the data for each RAS are stored in PCPDATA. tj

. tk
When changes are made, the user must be sure to keep the infor- 2l
1 i L menu selection
mation synchromzed. n stepdown mode (0 = manual, >0 = automatic)
sc"m PCPCALLMEX to flag used to indicate current stepdown status (0 = no
.stepdown yet)
Now we come to the most complex module in the script (List- p number of city actually connected to
. : . : q
ing 5). This one has to perform a lot of housekeeping and tricky o count of number of rings detected
operations. It has to know if we are already connected to a city and s default tries to connect to RAS
if s0 which one. It then has o decide how to g0 about CONNECHING | 4 Flag to show intisl attempt i sonmect to a city or RAS
to the requested city. This may require disconnecting from the w flag to show Vadic status (>0 if modem in Vadic mode)
W cursor row i
: ™ loop index
(Text continued on page 15) rr loop indeX =
sz dumsy countex

The Computer Journal / #45 11

.. PCPMENU.MEX (04/15/90)

if IM<100 GOTO PROCESS;. if selection already made, process it

.. Main Re-entry Point and Display of BBS Menu

LABEL DRAWSCREEN

screen on

cls

box 1 1 20 79

€ 2 32 say "PC-PURSUIT MENU"

€ 6 3 say “1. Al Hawley (2NO2)"
.. etec.
€ 14 3 say “9. Vanhorn (ZN66)"

¢ 6 27 say "10. Roger Warren (ZN09)"
<. ote,
€ 14 27 say “1B.iiiiiiccnciranes®

€ 6 52 say "19. Terry Pinto”

€11 52 Bay “24. c.iiiniiiiiiiiennaeaa®
.. ete,

€ 12 52 Bay “"25. cecreeriencenionenaa®
€ 14 52 say "27. WLA PCBoard"

€ 16 12 say * 0. RESET™
€ 17 12 say " 99. QUIT"
¢ 18 12 say "100. MANUAL ENTRY MENU"

.. The following baud-rate-selection choices are allowed only if
.. not presently connected to a city.

if ta=0
€ 16 45 say *200. 2400 BAUD AUTO"
€ 17 45 say *201. 1200 BAUD FIXED"
€ 18 45 say “202. 2400 BAUD FIXED"
endif

.. Baud Rate / City Connection Status Display

LABEL DRAWBAUD

if sa=0
if In>0
¢ 4 20 say = Set to max “,ib," bps (auto stepdown) "
else
€ 4 20 Bay " Set to ",%b," bps "
, endif
else

€ 4 20 say “Connected to Citycode *,D," at *,B,*00 bps=
endif

.o Get / Process Selection

LABEL GETSEL

€ 22 12 say “Enter Selection: -

Listing 2: Script PCPMENU.MEX

e 22 29
input;tm=value

LABEL PROCESS

~-- ppecial selections

if sm=0 GOTO RESET

if ¥m=99 A="User termination”;GOTO ABORT

if %m=100 READ PCPMAN;. manual entry of city and phone #

.. if already connected to a city, do not allow baud rate changes
+. by resetting the choice to 999%9%

if 3p<>0

if sm>=200 tm=9999
endif
.+ handle baud mode selections
if Im=200 In=2;3b=2400;B=~24";GOTO DRAWBAUD
if $m=201 ¥n=0;%b=1200;B="12";GOTO DRAWBAUD
if $m=202 %n=0;3b%=2400:B="24";GOTO DRAWBAUD

if ¥m>27 GOTO BADSELECT
if $m<l GOTO BADSELECT

e mmmemeeee calling selections
.. reject unassigned menu choices
if ¥m=12 GOTO BADSELECT
.. etc.

if $m=25 GOTO BADSELECT
READ PCPDATA; . chain to data fetch routine

LABEL BADSELECT

bell 1
GOTO GETSEL

.. significant part of script omitted

.o Subroutines

LABEL ABORT

screen on
cls
€ 5 0 say A,"; session ended.”

z=3;. max tries

LABEL ABORT1

z=3z-1

if %2<1 dsc;GOTO ABORT2;. if soft disconnect fails, hang up
screen on

sendout "/r€/r";.

wait string 1 "@%

if value<>1 GOTO ABORT1
sendout “hangup/r"

wait string 10 "NO CARRIER"
if value <>1 GOTO ABORTL

send disconnect commands to Telenet

LABEL ABORT2

sendout “AT\N1l/r™

say "/n/nModem MNP mode turned off/n*
cpm

.+ PCPDATA.MEX (04/14/90))

.. This routine contains all the data for the systems in the
.. menu. Each entry sets the following variables:

.. B actual baud rate code ("12" or “24%)
.- D outdial code

. E phone number

. r name of system called

. ta area code

. tc city number (see PCPMAN menu)

.. In addition, function keys are set up (where the defaults are
.. not correct) with the login names and/or passwords.

key 1="Your Name/r";. default key definitions
key 2="Your-Usual-PwW/r™

if $b=1200 B="12"
if $b=2400 B="24"

Listing 3: Script PCPDATA.MEX

.. dispatch table

if sm=1 GOTO BBSO1
.. etc,
if tm=27 GOTO BBS27

.o Data on Remote Access Systems from Menu

LABEL BBSO1

F="Al Hawley (3N2)"

D=“CALAN"

tc=13

ta=213

E="670-9465"

key 1=~j}jcccceec/r*;. login id/password combination
READ PCPCALL;. chain to place the call

.. entries for other systems omitted

12

The Computer Journal / #45

Listing 4: Script PCPMAN.MEX

.. PCPMAN.MEX (04/14/90)

.. This subroutine script handles the manual entry of data for a
.. destination RAS.

.. See if there is usable call data already defined. If so, the
.. user will be given the option of using it (in case this is a
.. second attempt to make the same manual call). Otherwise, we
.. will skip that menu and go directly to the data input menus.

GOTO START

.e subroutines (placed at beginning for speed)

.. This subroutine is passed the city number in scratch variable
.. %d and returns the name of the city in string variable A.

PROC CITYNAME

if %d=1 A=“Atlanta, GA";ENDP

.. ete.

if td=34 A="washington, DC";ENDP
A=*"Unknown City"

ENDP

.. This subroutine takes the city number in %d and sets the PCP
.. city code into string variable C, the main area code into

.. variable 3f, and any additional area code into %g. Variable
.. %h is set to 1 if a *1" prefix is required.

PROC PCPCODE

.. initialize

f=0;. no main area code
3g=0;. no alternate area code
th=0; . no “1" prefix needed
Cm® no city code

if $d=1 C="GAATL";tf=404;ENDP

if %d=2 C="MABOS";%f=€17;ENDP

if %d=3 C="ILCHI™;%£=312;%g=815;%th=]1;Fr="815";ENDP
.. etc.

if td=29 C="CASJO";3£f=408;3g=415;F="415"; ENDP

.. etc.

if %d=34 C="DCWAS";2£f=202

ENDP

.. Main Code

LABEL START

C=D;. set temporary city code to current value
if %c=0 GOTO SETCITY

comp € * ";if value=l GOTO SETCITY

comp E * *;if value=l GOTO SETCITY

screen on

.o Ask About Entering New RAS Data
cls
td=3c; . convert city code into city name in A

GOSUB CITYNAME

box 1 5 15 50

€ 3 19 say "Manual Call Entry*

€ S5 10 say "1. use current data"
¢ 6 15 say "System Name: ., r

€ 7 15 say “City: A

¢ 8 15 say "PCP City Code: *,C

¢ 9 15 say “Data Rate: -,tb
if $n>0 say * AUTO"

€ 10 15 say "Area Code: ", %

€ 11 15 say “Phone Number: " E
€ 13 10 say "2. enter new RAS data”

¢ 17 1 say “Enter selection (or 0 to return to main menu):*
LABEL ASKMODE

€ 17 48 say * -

€ 17 48

input

if value=3 3m=100;READ PCPMENU

if value=l GOTO MAKECALL
if value<>2 bell 1;GOTO ASKMODE

.o Get PCP oOutdial City Code

LABEL SETCITY

cls
box 1 1 18 79

if tp=0

@ 3 28 say "PC-Pursuit City Choices®
else

td=3%p

GOSUB CITYNAME;. get current city name into A

¢ 3 10 say "PC-Pursuit Cities (Currently Connected to ",A,*)*
endif

tx=1;. starting city number
LABEL COLUMN

$d=%x

GOSUB CITYNAME

Sy=4; Sw=tx+4

if ¥x<10 3y=5

if $x>12 ty=28;Iw=Ix-8
if $x>24 3y=52;%w=tx-20
¢ 3w 3y say x,". ",A
Tx=¥x+1

if ¥x<35 GOTO COLUMN

€ 20 5 say *“City code selection (or 0 to return to main menu):*
LABEL ASKCITY

€ 20 56 say * -

@ 20 56

input;3$c=value

if %c=0 Sm=100;READ PCPMENU;. return to main menu

3d=3¢c;GOSUB PCPCODE; . set PCP code and area code data
if Sc=%p GOTO SETPHORE;. if already connected, skip baud query

.e Get baud rate to use if a new city is specified.

LABEL SETBPS

cls

box 5 5 13 54

@ 7 10 say "Data rate to use for new city (",C,"):"

€ 9 15 say “1. 2400 AUTO"

€ 10 15 say “2. 1200 FIXED"

€ 11 15 say "3. 2400 FIXED"

€ 15 1 say "Enter selection (or 0 to return to main menu):*

LABEL ASKBPS

@ 15 48 say ™ -

e 15 48

input

if value=1 $b=2400;B="24";3%n=2;GOTO SETPHONE
if value=2 tb=1200;B="12";tn=0;GOTO SETPHONE
if value=3 3b=2400;B="24";%n=0;GOTO SETPHONE

.. if bad answer, ring bell and get another answer

bell 1
GOTO ASKBPS

LABEL SETPHONE

cls

if %g=0 %a=%f;GOTO SETNUMB

box 5 5 12 50

@ 7 10 say "Area Codes for PCP City Code *,C
€ 9 15 say "1. main area code: ", f
€ 10 15 say “2. alternate area code: ",%g
€ 14 10 say “"Area code selection: *

LABEL ASKAREA

€ 14 32 say " -

¢ 14 32

input

if value=l ta=%f;3h=0;GOTO SETNUMB
if value=2 3a=1y;GOTO SETNUMB

.. if invalid response, ring bell and ask again

bell 1
GOTO ASKAREA

(Listing 4 continued on next page)

The Computer Journal / #45

13

say
say
say
say

(Listing 4 continued from previos page)

say "/n/nArea code is ", %a

say "/n/nEnter phone number (###-####): *
accept E,8

if %a=%g E="(F)}-(E}";. prefix the area code to the number
if sh>0 E="1-(E}*;. if required, prefix “1-* to number

say "/nEnter system name (optional): *
accept F

¥d=%C;GOSUB CITYNAME

label MAKECALL
say “/n/nReady to place the following call:/n”

“/n System Name: ., F
=/n City: A
"/n PCP City Code: *=,C
=/n Data Rate: »,%b

D=C; .
READ PCPCALL; . chain to PCPCALL script

if sn>0 say " AUTO"
say "/n Area Code: “,%a
say "/n Phone Number: -E

say "/n/nData Correct (Y//m)z *
accept A,1

comp ".{A}" ".";if value=l GOTO MAKECALL1
comp A “Y";if value=~l GOTO MAKECALL1
GOTO SETCITY;. start over again

LABEL MAKECALL1

set PCP city code

Listing 5: PCPCALL.MEX

. PCPCALL.MEX (04/16/90)

-. This script performs the steps necessary to connect to the
.. designated city and remote system.

Tm=100; . clear menu selection
su=0; . flag to show initial run thru script

. *** gection omitted here **«

Branch depending on whether we are presently connected to no
.. city, to the requested city, or to a different city.

if %p=0 GOTO NEWCITY;. no city connected presently

if %c=%p GOTO LOCAL;. already connected to desired city
.e Disconnect from wrong city

3d=3%p; GOSUB CITYNAME; . get name of currently connected city

say "/n/nDisconnecting from *,A," . . . *
tz=3;. max number of tries
LABEL DROPCITY

screen off

sendout */r€/r";. try to return to PCP command mode
wait string 2 “€-;. we should get ‘€' prompt

if value>0 GOTO DROPL;. if we do, continue below
tz=%z-1;. else decrement count

. abort if count expired
if %2<1 A="Cannot quit current city";GOTO ABORT
GOTO DROPCITY;. try again

LABEL DROP1
ecreen off

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers (370)

- NZCOM: Z-System for CP/M-2.2 computers ($70)

— ZCPR34 Source Code: if you need to customize ($50)
Plu*Perfect Systems

— Backgrounder ii: CP/M-2.2 multitasker ($75)

— ZDOS: date-stamping DOS (875, $60 for ZRDOS owners)

— DosDisk: MS-DOS disk-format emulator, supports subdirecto-
ries and date stamps ($30 - $45 depending on version)

BDS C — Including Special Z-System Version ($90)
Turbo Pascal — with New Loose-Leaf Manual ($60)
SLR Systems (The Ultimate Assembly Language Tools)

— Z80 Assemblers using Zilog (ZROASM), Hitachi (SLR1&0), or
Intel (SLRMAC) Mnemonics

— Linker: SLRNK

- TPA-Based (350 each) or Virtual-Memory (Special: $160 each)
ZMAC — Al Hawley’s Z-System Macro Assembler with Linker (§50)
NightOwl (Advanced Telecommunications)

- MEX-Plus: automated modem operation with scripts {$60)

~ MEX-Pack: remote operation, terminal emulation (§100)

Next-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling §3 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am - 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

dout *D/x™;. tell PCP to disconnect from city
tp=0; . show no city connected
tTv=0; . show not in Vadic mode
screen on
say “OK";. tell user that it worked

Connect to new city

LABEL NEWCITY
screen on

.. We do different things depending on whether or not we have
.. exhausted the first set of attempts.

if tu=0
say "/n";. end any line of screen output
su=1;. show no longer first time
te=it; . number of tries into variable ‘e’
else
A=" city code"
gosub GETD;. gets number of times to try

say "/nCalling *,F,"/n";.tell user whom we are trying to reach
endif

td=%c;GOSUB CITYNAME
say *"/nDialing city code *,D,” (“,A,")";.report the city code we
are dialing

$z=1;. count of tries
to=1;. indicate no auto stepdown yet

LABEL CITYCODE

if $z>3d goto MORETRIES

sleep 1

screen on;say “/n try #",%z," of “,%e," at *,B,"00bps..."
;8creen off

$z=%z+l

sendout “C D//";sendout D;. city code
sendout “//“;sendout B;. baud code
sendout *,“;sendout “PCP_USERID";. user id
sendout ",";sendout "PCP_PW";. user password

sendout */r*
wait string 4 *"CONNECTED"™ "BUSY" "“FAIL"

. If we connected, set %3p to show new city connected and %u to
. indicate the first pass at connecting to the specified RAS.

if value=l fu=0;%tp=%c;GOTO LOCAL
screen on

if value=3 say "Failed Call®;goto MORETR1
if value=2 say “"Busy"

(Listing 5 continued on next page)

14

The Computer Journal / #45

(Listing 5 continued from previous page)

if value=0 say “No Response” screen on
goto CITYCODE if value=0 say “/nVadic Mode Failed/n";goto REINIT
LABEL MORETRIES say “/nRemote modem now in Vadic Mode®
if %n=0 goto MORETRI1;. no auto step down tv=2;. show Vadic mode
if %o=0 goto MORETRL;. already stepped down
LABEL DIAL1
to=0;. show now stepped down
if $b=2400 B="12";%2=1;GOTO CITYCODE;. reset trial count %z r=0;. initialize ring count
screen on;say “/n/nTry #-,%z," of “,%e," (at *,B,"00 bps)/n*
LABEL MORETR1 dout "D"; dout E; dout */r"
A=" city code" LABEL DIAL2
GOSUB ASKMORE screen on
if value=1 GOTO NEWCITY;. try again to reach new city wait string 25 “ANSWER® “BUSY" "DIAL TONE" “RINGING...™
if value=l goto SUCCESS
READ PCPMENU; . else chain back to main menu if value=2 goto BUSY
if value=3 goto DIALTONE
if value<>4 goto BADCODE
- In right city; try connecting to specified system .. *** many routines omitted #w#
.o LABEL SUCCESS
screen on
LABEL LOCAL say “"G/n/nCONNECTED TO HOST SYSTEM/n/n*
screen on READ PCPCONN; . chain to short script to free memory

$d=%p;GOSUB CITYNAME
say "/n/nConnected to city code ",D,™ (" ,A,")"
------------ Subroutines
.. initialize destination modem to make sure it is still alive
. Ask user for the pumber of times to connect and put answer is

if Svm2;. if in Vadic mode, reinitialize modem .- %e¢. If the answer is less than 1, then use a value of 1.
sendout *I/r";. exit from it
IV=0; . show initialized modem PROC GETD
sleep 1 say */nTry how many times to connect to™,A,"7 *
endif input
te=value
LABEL REINIT if te<l te=1
$z=3;. max attempts to initialize modem ENDP
LABEL REINIT1
if 3z<1 A="Remote modem failure*;goto ABORT .. Ask if user wants to continue trying to connect. Return with
3z=%z-1 .. the answer in VALUE, 1 if YES, 0 if NO.
screen on;say "/n initialize remote modem... ";screen off
sleep 1 PROC ASKMORE
sendout “ATZ/r* LABEL ASKAGAIN
wait string 3 “OK™ screen on
if value=0 goto REINIT1 say “/n/nTry",A,” some more (Y//N)? *
bell 1
. Call destination system accept C,1
screen off
LABEL LOCALAGAIN comp C *Y*
if value=1 ENDP
.. *** gection omitted #**w comp C "N*
if value=1 value=0;ENDP
LABEL DIAL bell 1
goto ASKAGAIN
sendout ““E/x“;. enter Vadic mode
wait string 3 “»* <+ *** remaining routines omitted ws»
system. PCPCALL then chains to PCPCONN (Listing 6), which
Listing 6: Script PCPCONN.MEX drops one into terminal mode with the function keys programmed
. PCPCONN.MEX (02/08/90) to ease logging in. It wouid not be hard to have the script first call
- This short script is run once the destination system has been a SUbl'Ol.l(ll']e Scrlpt to perform the lOglﬂ Opel'.athﬂ auton_latlcally.
<. zeached. The easiest way would be to store a number in a numerical vari-
screen on able as a flag and the name of the iogin script file in a str'ing
ols cod & . 00 bps/n/nn variable. Unfortunately, it’s not clear that we have a free string
Y o ed o T A B o erminal mode variable to use. One possibility would be to use the system name in
variable F. One could run it using the command “DO {F}”.
LABEL LOOP
say “"/nEnter a single MEX command (or M for menu): * COﬂc’US'on
accept A
comp A "M* I hope this extended example will give you a better idea of how
?{;"1“"1 READ PCPMENU and to what extent MEX script commands can be used to auto-
GOTO LOOP mate telecommunications tasks. Please let me know if you have
some ideas to improve these scripts. ®

current city and then connecting to the new city.

The script has to allow for things not always going right, at least
not the first time. You should particularly note the pains it takes to
reset and test the PCP outdial modem and to put it into Racal-
Vadic mode.

If the outdial modem is busy or if the RAS is busy, the script
will ask the user whether to make additional attempts and if so
how many. The script is very careful to keep the user informed of
exactly what is going on.

If all works out, we eventually end up connected to the remote

The Computer Journal / #45 15

The Z-System and Turbo Pascal

by Joe Wright, Alpha Systems

“Real Programmers Don’t Eat Quiche” really started some-
thing. Real Programmers don’t write applications, only tools. Real
Programmers don’t write in High-Level languages, only in Assem-
bler. And so on...

" These statements become popular cliches only because they
are largely true. Authors of High-Level languages strive for gener-
ality and avoid system-specific constructs or references. Authors of
system-level programs find High-Level languages insufficient to
the task and almost always choose Assembler.

I suppose I am primarily a system-level or “Real” programmer
and have never had much use for High-Level stuff (I mean, can
you really write a BIOS in Fortran?). I have written a few ‘applica-
tion’ programs in dBASE II (a High-Level language) but have
spent most of my time writing ‘tools’ in Assembler.

As some of you already know, I have had an abiding interest in
ZCPR3 and the Z-System for some years now. I am the author of
NZCOM and its predecessors dating back to 1985. My company,
Alpha Systems, began distributing Borland’s Turbo Pascal 3.0
(CP/M and PC-DOS versions) earlier this year. In order to handie
Tech Support phone calls, I bent myself to the awesome task of
learning a new High-Level language.

Well, its not really that hard. Pascal was designed as a means to
teach programming (to un-real programmers?) and does the job
well. I'm learning.

The Z-System derives much of its power and flexibility from
the use of complex data structures such as Z3ENV and Z3MSG
segments. Attempts to address these structures in the context of a
High-Level language have not borne fruit, until now. Please let me
digress for a moment.

A 73 utility (.COM file) has a special ‘header’ associated with it
which includes a “‘pointer’ to Z3ENV, the Environment Descrip-
tor. Knowing the address and the structure of Z3ENV, the 73
utility can have complete access to the entire Z-System, especially
through the use of SYSLIB, Z3LIB and VLIB subroutine librar-
ies. Most of us know this already. Let’s continue with something I
just found out.

Turbo Pascal has a Record construct allowing the definition of
complex data structures as variables in Pascal terms. This means
we can define Z3ENV, Z3MSG, Z3NDIR, Z3CL and other Z-
System structures as Pascal records of variables. If we only knew
where they were.

Further, Pascal has a Pointer construct to point to a record of
variables. If we only knew where the pointer was.

OK, you guessed it. We patch TURBO.COM so that it looks
like a Z3 utility and can be ‘installed’ by the command processor
which puts the Z3ENV address at 109H in the .COM file. In
Pascal, we define the contents of 109H as a Pointer variable to a
Record of variables, the Environment Descriptor. From now on,
we can access the entire Z-System as Pascal variables.

1 apologize if this seems a bit obtuse to the casual reader. In
effect, the High-Level Application programmer in Pascal can now
have complete access to Z-System and the “Real” system-level
programmer, who can’t even spell quiche, is no longer restricted to
Assembler. Many otherwise complex Z-System “tools” can be

16

written quickly and easily in Turbo Pascal.

To demonstrate this, I have written NZ-TOOL.BOX as shown
in Listing 1 for Turbo Pascal. It contains the Z-System structures
defined as Records and a few SYSLIB and Z3LIB functions in
Pascal.

I offer this tool.box and the simple programs which follow with
abject humility and apology to the veteran Pascal programmer. I
am told that “It doesn’t even look like Pascal” by more than one.
“It looks like Assembly Language”, they say.

Well, what do you expect from Joe? I have been programming
in Assembler for six years and in Pascat for six weeks. Style aside, it
works. Please dress it up for me. Thanks.

The CPY and PD programs shown in Listing 2 are perhaps too
simple to be useful Z3 utilities. They are here to demonstrate the
use of the NZ-TOOL.BOX routines.

Well, 'm out of breath (and out of paper) and will get off my

-soapbox for now. I hope that I have tweaked more than a little

interest in both Z-System and Turbo Pascal. In the case that I
have succeeded, you can get either or both from:

Alpha Systems Corporation
711 Chatsworth Place
San Jose, CA 95128
(408) 297-5594

Listing 1

(* NZ2-TOOL.BOX 1.0 for Turbo Pascal 3.0
Copyright (C) 1989 Alpha Systems

Author: Joe Wright
Date: 20 sept 89
Version: 1.0

Invoke TURBO.COM with a Z-System alias, TP.COM, as follows..

1 --> GET 100 TURBO.COM;
2 --> POKE 103 5A 33 45 4E 56 01 00 00;
3 --> GO

This puts a Z3ENV Type 1 header at the beginning of TURBO.COM
so that GO will ’install‘’ the Environment address at 109H.
COM files created by TURBO.COM will also contain this header
and therefore be 23 utilities.

This version of the TOOL.BOX describes the entire Z-System in

terms of Turbo Pascal Records. The Record structure and Turbo

Pascal Pointers will allow the veteran Pascal programmer complete

access to the Z-System Environment and by implication, a
description

of its entire structure.

The Z-System assembly language programmer is presented with Pascall
functions and procedures with familiar SYSLIB and Z3LIB names 8o
that he can 'call’ his favorite subroutines within Turbo Pascal
without re-inventing the wheel.

Programming style seems to vary according to the square of

of programmers (or equare programmers?) and no one should feel
limited by the examples in this TOOL.BOX. Think of it as a
demonstration. In the end, do it your way.

Load the Tool Box into you program with the Turbo Pascal
{$I NZ-TOOL.BOX) insertion directive.

Turbo Pascal is not upper/lower case sensitive. We tend to use
mixed case for readability. In order to distinguish among Turbo
Pascal Standard declarations and our own, I try to follow the
convention that..

(Listing 1 continued on next page)

The Computer Journal / #45

(Listing 1 continued from previous page)

GoToBed is a Turbo Pascal defined Word or Identifier
GOTOBED im the User Definition
gotobed is the User Declaration

Mixed case is Pascal, UPPERCASE is our own definition and
lowercase declares our definitions.

*)
{ User-Defined Global Types }
Type

STRS = string[8);

STR21 = string[21];

Dir Name or Password
NDIRNAME: FILENAME . TYP

-~ -

ARRS = Array(l..8] of Char;
ARR3 Array[l..3] of Char;
ARRS Array[1..5] of Char;

Name or Password array
File type array
Five-char ID like Z3ENV

L]
-~ -

SECTOR = Array[0..127) of Byte; { Standard CP/M Unit Record

FCBPTR = "FCBREC;

FCBREC =

Record
DRIV : Byte;
NAME : arr8;
TYP : arx3;
EBXT : Byte;
81 s Byte;
52 : Byte;
RC : Byte;
ALLOC : Array{[0..15] of Byte;
CR : Byte;
RREC : Integer;
RERR : Byte

End;

{ This describes the Z3MSG structure. }

MSGPTR = "MSGREC;

MSGREC =
Record
ERFLG : Byte;
IFLEV : Byte;
IFSTS : Byte;
CHMDST : Byte;
ERADR : Integer;
PRGER : Byte;
ZEXMSG : Byte;
BEXRUN : Byte;
ZEXNXT : Integer;
ZEX1ST : Integer;
SHCTL : Byte;
SCRAT : Integer;
ERCMD s Array[l..32) of Char;
REGIS : Array[0..31] of Byte;
nd;

(’Thia describes the Z3CL structure for 'standard’ Z-Systems.)

MCLPTR = “MCLREC;

MCLREC =
Record
NXTCHR : Integer;
MCLMAX te;
MCL : String[203];
End;

MEMORY = Array[0..S$7FFE] of Integer;

PATPTR = “PATREC;

PATREC =
Record
PATH : memory;
End;
NDRPTR = “NDRREC;
NDRREC =
Record
DU : Integer;
NAME : arr8;
PASS : arr$;
End;

-~

}

ENVPTR = “ENVREC;

ENVREC =
Record

ENV : Byte;
CBIOS : Integer;
231D : Array[l..5] of Char;
ENVTYP : Byte;
EXPATH : patptr;
EXPATHS : Byte;
RCP : Integer;
RCPS : Byte;
I0P : Integer;
10P8 : Byte;
rcP : Integer;
FCPS : Byte;

The following Record Structures define the Z3 Environment of
any NZ-System.

~

~

Z3NDIR : ndrptr;
Z3NDIRS : Byte;
Z3CL : mclptr;
23CLS : Byte;
Z3ENV : Integer;
Z3ENVS : Byte;
SHSTK : Integer;
SHSTKS : Byte;
SHSIZE : Byte;
Z3MSG : magptr;
EXTFCB : fcbptr;
EXTSTK : Integer;
QUIET : Byte;
ZIWHL : “Byte;
SPEED : Byte;
MAXDSK : Byte;
MAXUSR : Byte;
DUOK : Byte;
CRT : Byte;
PRT : Byte;
COLS : Byte;
ROWS : Byte;
LINS ¢ Byte;
DRVEC : Integer;
SPAR1 : Byte;
PCOL s Byte;
PROW : Byte;
PLIN : Byte;
FORM : Byte;
S8PAR2 : Byte;
SPAR3 : Byte;
SPAR4 : Byte;
SPARS : Byte;
ccp : Integex;
ccPs : Byte;
DO8 : Integer;
DOSS : Byte;
BIO : Integer;
SHVAR : Array([1..11] of Char;
FILELl : Array{l..11] of Char;
FILE2 : Array[1l..11] of Char;
FILE3 : Array([1..11] of Char;
FILE4 : Array[l..11] of Char;
PUBLIC : Integer;
End;

{ Global Variables }

{ These are the Absolute (External) variable assignments which
give the Turbo Pascal program access to everything we know. }

var
WBOOTV : Integer Absolute $0001;
IOBYTE : Byte Absolute $0003;
CDISK : Byte Absolute $0004;
BDOSV : Integerx Absolute $0006;
FCB1 : fcbrec Absolute $005C;
FCB2 : fcbrec Absolute $006C;
TBUFF : String[126] Absolute $0080;
DBUFF : sector Absolute $0080;
Z3EADR : envptr Absolute $0109;

{ These Global Variables are used by the new Functions and Proceduren

and the Main program to pass parameters among themselves.)}

SPEC1 : str2l; {For DIRECTRY:FILENAME.TYP}
SPEC2 : str2l; {For DIRECTRY:FILENAME.TYP}
DIRS : strs; {For D:, U:, DU: or DIR:}
NAME : strs; {Directory Name}

PASS : str8§; {Directory Password}

SOURCE : File; {File being Read}

DESTIN : File; {rile being Written)

CURDU : Integer; {Current (default) Drive/User}
SRCDU : Integer; {source D/U}

DSTDU : Integer; {Destination D/U}

From here on, we will collect various User-Defined functions
and procedures which emulate SYSLIB and Z3LIB subroutines of
the Z-System. To the extent that they may ‘call’ each other,
they are arranged here such they are Declared before they are
called, SYSLIB, 23LIB, VLIB, in that order. Turbo Fascal is
itself rich enough to provide most of the functions we need. }

-~

Procedure CAPSTR(Var S8:str2l);
Var I : Integer;
Begin
for i t= 1 to Length(s) do s[i] := UpCase(s[i])
End;

Function PHEX(N,B:Integer):str8;
Var H : atr8; I, C : Byte;
Begin
h{0] := #0; { Clear the string }
For i := b Downto 1 Do
Begin
¢ := n and 15; n := n shr 4;
1f ¢ < 10 Then ¢ := c+48 Else o := c+455;
Insert(Chr(c),h,1)
End;
phex := h
End;

(Listing 1 continued on next page)

The Computer Journal / #45

17

(Listing 1 continued from previous page)

Function RETUD:Integer; dnscan := du
Begin End;
retud := 256 * (Bdos(25)+1) + Bdos(32,S$FF)
End; Function NAMSTR(Nam:arr8):strs;
Var I : Integer; Str : str8;
Procedure LOGUD(DU:Integer); Begin
Begin str[0] := §8;
Bdos{14,Hi(DU)-1); Bdos(32,Lo(DU)) for i := 1 to 8 do str[i] := nam[i];
End; i := Pos(' ',str);
if i <> 0 then
Procedure PDU(du:Integer); str[0] := Chr(i-1);
Begin namstr := str
Write(Chr(Hi(du)+64),Lo(du),*:") End;
H
Function DUTDIR(du:Integex):Boolean;
runction GETNDR:Integer; Var ndir : ndrptr;
Begin i : Integer;
getndr := Ord(z3eadr”.z3ndir) Begin .
End; name([0] := §0;
. pass(0] := §0;
Function DIRSCAN(S:str8):Integer; ndir := Ptr(getndr);
Var NDIR : ndrptr; Repeat
D, I : Integer; if du = Swap(ndir~.du) then
Begin begin
d := 0; name := nametr(ndir”.name);
ndir := Ptr(getndr); pass := namstr(ndir”.pass);
if ndix“.du <> 0 then end;
Repeat ndir := Ptr(Ord(ndir)+Sizeof (ndrrec));
name[0] := #8; Until (Length(name) <> 0) or (Lo(ndir~.du) = 0);
for i :» 1 to 8 do name[i] := ndir“.name[i]; dutdir := Length(name) <> 0
i := Pos(* ',name); End;
if i <> 0 then name[0] := Chr(i-1);
if 8 = pame then d := Swap(ndir“.du) else d := 0; Function GETWHL:Boolean;
ndir := Ptr(Ord(ndir)+SizeOf (ndrrec)); Begin
Until (d <> 0) or (Lo(ndir”.du) = 0); if z3eadr”.z3whl® = 0 then
dirscan := d; getwhl := false
End; else
getwhl := true
Function DUSCAN(S:str8):Integer; End;
Const d = *'ABCDEFGHIJKLMNOP';
Var du, uer, cod : Integer; Procedure SETWHL(B:Byte);
Begin Begin
du := curdu; z3eadr”.z3whl” := b
if Length(s) <> 0 then End;
begin
if Pos(s(1],d) <> 0 then : Function GETDUOK:Boclean;
begin Begin
du := Pos(s[1),d)*256 + (du and 255); if z3eadr”.duck = 0 then
Delete(s,1,1) getduck := false
end; else
if Length(s) <> 0 then getduck := true
begin End;
vVal(s,usr,cod);
if cod <> 0 then Procedure PARSE(Var S:str2l);
du := curdu else du := (du and -256) + (usr and 31) Var P : Integer;
end; Begin
end; dirs{0] := #0; (Clear the string }
duscan := du; p := Pos(‘':',s);
; if p <> 0 then
begin
Function DNSCAN:Integer; dirs := Copy(s,1,p-1);
Var du : Integer; Delete(s,1,p)
Begin end;
du := dirscan(dirs); End;

‘if du = 0 then du := duscan(dirs);
{ End of NZ-TOOL.BOX 1.0 }

Listing 2
Program PD;
. . Repeat
{ g:::?:- ;g‘s:'lggt if x > 20 then x := 1 else x := 35;
: P y = y+l1;

Version: 0.1 GoToXY(x,y div 2);

if getduok then pdu(Swap(ndir-.du));
name := namstr(ndir”.name);
paes := namstr(ndir”.pass);
} x 1= x+5;
GoToXY(x,y div 2);
Write({name);
if (fcbl.pame[1]='P') and getwhl then
Begin
X = X+9;
GoToXY(x,y div 2);

Poorman's version of PWD.COM to demonstrate NZ-TOOL.BOX and
access to the Z3NDIR structure.
{$1 nz-tool.box}

Var NDIR : ndrptr;
X, ¥ : Integer;

Begin

o i LowVideo;
ndir Ptr(getndr); R . Write(' Pass: ',pass);
namstr(zleadr”.extfcb”.name); Normvideo;
End;
WriteLn;
ndir := Ptr(Ord(ndir)+sSizeOf(ndrrec));
Clrscr; . . , . Until Lo(ndir~.du) = 0 (!
WriteLn('Print Working Directories'); End;
if fcbl.name(1] = '/' then End. !
Begin
. WriteLn(* Syntax: °',name,' [P]');
WriteLn(* The P option will show Passwords if Wheel is ON‘);
End
else { Program: CPY.PAS 4
Begin . Author: Joe Wright
Write(' 23 Wheel is 0'); Date: 10 Sept 8%

if getwhl then WriteLn('N') elee WriteLn('FF');

if ndir”.du <> 0 then (Listing 2 continued on next page)

18 The Computer Journal / #45

(Listing 2 continued from previous page)
Version: 0.1 specl :=» gpec2;
dstdu := dnscan;
This single-file copy program uses the NZ-TOOL.BOX to add if (detdu = srcdu) and (specl = spec2) then
many Z3LIB functions to Turbo Pascal programs. Write(bel,'Don''t be silly..') { source=destination }
else
Version 0.2 is modified for the changes in NZ-TOOL.BOX begin {copy}
logud(dstdu); { Log into destination area)
} Assign(destin,specl);
if not o then
Program CPY; begin
{$I nz-tool.box} {$1-}
{ Constants are used very much like EQUates. } Reset(destin);
Const {$I+}
ver = 0.2; { Version Number } If IO0result = 0 then
cr = “M; begin
1f = "J; pdu(dstdu);
bel = “G; if dutdir(dstdu) then Write(name,' °);
recs = 128; { Sector size } Write(specl,' Exists. Overwrite? (Y or N) *);
bufs = 128; { 128 of them for 16k (Max)) Read(Kbd,ch); WriteLn(ch);
Var if UpCase(ch) < ‘Y' then Halt;
inpbuf : Array{l..bufs,l..recs] of Byte; end;
gount : Integer; end;
i s Integer; ReWrite(destin); (erases any existing file }
cks ¢ Integer; { Checksum variable } { Tell the user we're up to something }
ch : Char; { Keyboard response } Write(* Copying ‘);
[: Boolean; { Overwrite option } pdu({srcdu);
n : Boolean; { No verify option } if dutdir(srcdu) then Write(name,®' ');
Write(spec2,' to °});
BEGIN {ning of CPY.PAS) pdu(dstdu);
name :< pamstr(z3leadr”.extfcb”.name); if dutdir(dstdu) then Write(name,®' ');
if fcbl.name[l] < '0' then (Help} WriteLn(specl);
Write(cks := 0; { clear the checksum word }
name,' Ver ',ver:1:1,' Single-File Copy Program',cr,lf,
' syntax: °',name,' [dir:]source [[dir:]destination] [/ Repeat
oo}’ ,cr,1f, Write('.');
' where ''/oco'' is [O]verwrite and/or [N]o Verify options.' logud(srcdu);
} BlockRead (source,inpbuf,bufs,count);
else if not n then
begin {source} for i := 0 to (count*recs)-1 do
o := false; cks := cks + Mem{Addr(inpbuf)+i};
n := false; logud(dstdu);
curdu := retud; { retud from nz-tool.box } BlockWrite(destin, inpbuf,count);
dstdu := curdu; Until count = 0;
i = Pos('/’',tbuff); { check for '/' on command line }
if i <> 0 then Close(destin);
Repeat if not n then
i= i+1; begin {verify)
if tbuff(i] = 'O' then o := true; Reset (destin); { Prepare to read it)}
if tbuff(i] = 'N' then n := true; Write(cr,1f,* Verifying '});
Until tbuff(i]} = #0; pdu(dstdu) ;
specl := ParamStr(l); if dutdir(dstdu) then Write(name,' °);
parse(specl); { parse dir: part to dirs) wWriteLn(apecl);
srcdu := dnscan; { dnscan resclves d:, u:, du: and dir: }
logud(srcdu); { log it in } Repeat
Assign(source,specl); Write('.*);
{$1-) BlockRead(destin, inpbuf ,bufs,count);
Reset (source); { open the input file } for i := 0 to (count*recs)-1 do
{$1+) cks := cks -~ Mem[Addr(inpbuf)+i};
if IOresult <> 0 then Until count = 0;
Write('Can'‘'t find *,specl)
else if cks <> 0 then Write(bel,cr,1f,' Failed!')
begin {destin) end; {verify)
spec2 := specl; end; {copy}
specl := ParamStr(2); end; {destin}
parse(specl); end; {source}
if (Length(specl) = 0) or (specl{l] = '/'} then END. {of CPY.PAS}

If You Don't Contribute Anything
Then Don't Expect Anything

TCJ is User Supported

The Computer Journal / #45 19

Embedded Applications

280 Communications Gateway, Part 1

by Art Carlson

‘When someone mentions their com-
puter, we expect to see a keyboard, CRT
display, and disk drives. But embedded
controllers are also computers, even
though they may not have any of the usu-
ally expected peripherals. They also use
unfamiliar processors with strange archi-
tectures. Leaving the secure world of pre-
packaged desk top computers for the do-
it-yourself world of embedded controllers
can be rather frightening—it’s something
like taking the training wheels off your
bike.

The design and application of embed-
ded controllers is very interesting, and it is
one of the few areas which provide signifi-
cant opportunities for small entrepre-
neurial businesses. There are also many
employment and consulting positions
available for people with embedded con-
troller application expertise.

- 1 feel that working with embedded con-
trollers can be fun, useful, and rewarding.
The purpose of this series is to encourage
you to explore the world of embedded
controllers with the least trauma. Here, we
will cover the low-level basics and use the
more familiar tools in order to tempt you
to get started on some beginning, but yet
useful, projects. Other more advanced
projects using different processors and
tools will be covered in other articles.

Selecting the level at which to start is a
very significant problem with any how-to-
do-it series. Where ever we begin will be
too advanced for some, and overly simple
for others. Hopefully we will cover most
needs through a combination of different
articles. I don’t intend to spend a lot of
time on boring theory and facts to memo-
rize, but rather will concentrate on learn-
ing by doing. An old Chinese proverb says,
“I hear and I forget, I see and I remem-
ber, I do and I understand.” My goal is to
get you to assemble and program some
simple controllers so that you will feel con-

20

fident enough to tackle more advanced
projects of your own choosing.

Controllers versus Processors

One of the most confusing aspects of
embedded controllers is understanding the
difference between the chips used in our
desk top microcomputers and the chips
used in embedded controllers. Our micro-
computers generally use a microprocessor
such as a Z80 (CP/M), 8088, 80286,
80386, etc. (IBM PC series); or 68000,
68020, 68030, ectc. (Apple Macintosh se-
ries). Embedded controllers frequently use

“l hear and | forget,
| see and | remember,
1 do and | understand.”

An old Chinese proverb

a microcontroller such as an 8031, 8096,
68HC11, 6803, or Z8. But, it gets very
confusing because many embedded con-
trollers use microprocessor chips such as
the Z80, 80186, and 68000. Also, desktop
microcomputers use microcontrollers, in
addition to the main microprocessor, for
disk drives keyboards, etc. Intel made a
wise move when they changed the name of
their 1989 edition Embedded Control Ap-
plications Handbook to Embedded Appli-
cations for the 1990 edition. I'll probably
follow their lead and use the term Embed-
ded Application, and not be concerned
with whether the chip is a processor or a
controtier. We’ll let others spend their
time and effort on debating the semantics
while we spend ours on building and pro-
gramming devices.

One of the first steps in designing an
embedded application is to select the chip

(actually the first step is to define the re-
quirements, but let’s assume that has al-
ready been done). In order to minimize
confusion, I'm going to refer to the chip as
the processor instead of using different
terms for a microprocessor or a microcon-
troller.

For some applications with the main
emphasis on monitoring and setting 1/O
line status a processor such as the 8031 is a
good choice. Other applications with the
main emphasis on calculations and data
manipulation may be better served with a
processor such as the 68000. You will
rarely find an application which can not be
forced to run on most of the common
processors. The choice is made based on
cost, space, familiarity, available tools,
precedent, stubbornness, and other factors
which also may (or may not) include the
features most suitable for the application.

In general terms, the processors con-
sidered for applications with a lot of com-
puting requirements have a very powerful
set of commands with calculating and
data manipulation instructions. The more
recent computing type processors can ad-
dress a large memory area, and are in-
tended to work with large program and
data areas. The processors primarily con-
sidered as controllers generally contain on-
chip I/O lines, counter/timers, A/D, serial
communications, and/or other features
which are usually provided by separate pe-
ripheral chips for computer type proces-
sors. The controller processors are usually
intended to work with very small memory
areas, with a fixed (in ROM) program.
The program memory (8048) may be as
small as 1K of ROM and the data memory
as small as 64 bytes (that’s BYTES not
KBYTES!). The differences will become
more understandable as we work with the
different processors in this and other ar-
ticles.

Even though we hear a lot about the

The Computer Journal / #45

16/32 bit 80X86 and 680X0 families which
are so popular in the desk top computers,
8 bit processors still rule the embedded
applications field—in fact they still pro-
duce a large volume of 4 bit processors for
embedded applications.

Enough discussion, let’s get started.

'Z80 Communications Gateway

Embedded applications frequently re-
quire the use of intra system communica-
tions both during the development and for
the end use. The RS-232 serial interface is
widely used for this purpose, and the abil-
ity to understand and implement this inter-
face is essential.

The purpose of this project is to pro-
vide an RS-232 communications link
which can be used with various computers
so that future projects can be interfaced to
any computer with an RS-232 port. It will
also provide the background needed to
design other serial port implementations.

I selected the Z80 processor for a num-
ber of reasons: 1) I had the chips, the tools
(assembler, debugger, etc.), and the data
books. 2) I am familiar with the instruction
set. 3) I felt that the serial port could be
implemented with the least amount of
programming by using the Z80 CPU and
the Z80 SIO. 4) I wanted to compare the
amount of programming time and hard-
ware cost/space with a future 8031 im-
plementation. 5) Many readers have and
are familiar with the Z80 and its tools, and
I want to make it easy for them to get
started.

The 280 CPU

The Z80 is a very versatile processor. It
has 40 pins (see Figure 1), some of which
will not be used in the first stage of this
project. The Z80 instruction set provides
some very useful communications fea-
tures, such as INIR (input to memory
from I/O port and increment pointer until
byte counter is zero), and OTIR (output
from memory to I/O port and increment
address until byte counter is zero). The
7380 interrupt protocol is implemented in
the peripheral chips (Z80 SIO, CTC, PIO,
DMA) which takes much of the pain out
of implementing interrupt driven systems.
Debates on polled versus interrupt designs
generate lively discussions (arguments?)
and we’ll delve into this in later articles. In
general, interrupts are faster and reduce
the processor load but require more hard-
ware, while polled response is slower and
uses more processor time but requires less

The Computer Journal / #45

280eCPU
ms—'f—
N ER
AL3S-
ALz
Al 280CTC 280510
me% b7 CcK/TRAEE :-3-;—07 Rxoa—i—g
fo [22 o 21 T A B
As 22 D5 CK/TRZEH 52105 TXDAR 2
a7 13f b4 zc ToZ 22104 TSCAL2
Ag 22 D3 . 32103 S?Wél—é
A5 =2 D2 CK/TR1-ZE =2 WrRARL2
R EE b1 zc-TolbE- T -
A3 122 Do 3 40 ihe m—i;
A2 PEI CK/TRgZ 33 (‘.T'S'é—s-
AL (32 cst zc/To 22 e OTRAHLE
Ao 3@ cse 2418,a DeDAHE
ol Bl
D?i—g i; AT %m‘ RXDB 23
Dep== =={I0RQ ==4T0RG RITB
3 3 32 26
DST FRD' 'ZT'R-D- TXDBE
iy 17 ey 21 lmrepr SYRBRED
8 LA ED
b33 15 20 RE
pzle 1S ek 291k
15 Bl 24
BT 12 5 |23
bor— PRl Te|INT CTSBrEE
27 TitE! 2 L 7
24 HTE 211E0 —1e0 ECDE'-—
IB—UQIT NREGE
18 1Ny TorRaH-22
17 21
ENMI RU—E—
SR RESET Uﬁ?g
£2{BUsRa RFoAES
£b ik FRCT|SS
BUSAR==
Figure 1: The Z80 Communications Chip set.

hardware. The Z80 is still currently in pro-
duction, in fact a new 20 MHz version is
now available. Technical literature is still
available from Zilog, but many of the Z80
books from other publishers have gone
out of print. We are preparing a Z80 re-
source directory which will list currently
available reference material and tools.

The Z80 has 16 address lines which can
address 65,536 memory locations. In com-
puter terms this is referred to as 64K. The
addressing capability is calculated by rais-
ing two to the power equal to the number
of address lines (or address bits). A system
with 8 address lines can address 2 raised to
the 8th power, which equals 256 memory
locations. Two to the 10th equals 1024,
which we call 1K. Any system with 16 ad-
dress lines has to use some sort of paging
or memory management system (MMU)
in order to address more than 64K (two to
the 16th power).

The Z80 also has 8 bidirectional data
lines which we will use to communicate
with the peripheral chips and the serial
port. Other pins will be discussed as they
are used.

Buffers and Drivers

TTL and CMOC digital logic circuits
employ high speed, low voltage, low cur-
rent signals. These signals are too weak to
operate relays, light LEDs, or to travel
over wires off of the board. The Z80 can
communicate with other TTL level chips
through its address and data lines, but it
needs help in order to communicate with
off-board devices. The Z80 has address,
data, and control lines, but it lacks the on-
chip I/O lines which are on control ori-
ented processors such as the 8031.

Peripheral chips are used to convert
low-level logic signals to the higher levels
needed for communications and control.
There are many peripheral chips with dif-
ferent combinations of characteristics
available. For this project we will use the
MAX232 Dual RS-232 Receiver/Trans-
mitter which is specifically designed for
RS-232 serial communications. Buffers,
drivers, latches, opto-islolators, and other
peripheral chips will be covered in future
projects.

Not all peripheral chips are used for
signal level interfacing. There are also tim-
ers, counters, communication protocol, A/
D and D/A, and many more devices. The

21

Z80 communications gateway uses the
Z80 SIO, and the Z80 CTC. If we add a
bidirectional paralle! port we’ll use the
7380 PIO.

RS-232 Serial Communications

The two methods of communicating
between boards and/or systems are serial
and parallel. With serial communications
the information is sent through one pair of
wires, one bit at a time, with each bit fol-
lowing the other. Parallel communications
uses one wire for each bit, and sends a
group of bits at the same time. Examples
of .serial communications are RS-232,
RS422, and RS485. Parallel communica-
tions is used for the Centronics printer in-
terface and for computer buses. Addi-
tional lines are often added for control sig-
nals.

Serial and parallel communications
both have their uses. In general, serial is
slower because the bits are sent one at a
time, it takes more software and/or hard-
ware to support the protocol, wiring costs
are less because of the fewer wires re-
quired, and the standard serial implemen-
tations can handle long distances. Parallet
is faster because more bits are sent at the

same time (8 bits at once for Centronics,
and up to 32 bits at once for some buses),
it takes less software and/or hardware to
support the protocol, wiring costs are
higher because of the large number of
wires, and the usual implementations are
intended for shorter distances.

Communications involves much more
than just dumping some bits into one end
of a wire and picking them up a the other
end. Communications protocol specifica-
tions can be broken down into two general
areas. 1) Mechanical and electrical specifi-
cations, such as how many signal lines,
voltage levels, connector design, etc. 2)
Signal definitions, such as the number of
bits, headers, control signals, timing, error
detection and correction, etc. While the
RS-232 interface is widely used, it is far
from being standardized, and almost every
manufacturer redefines the signal lines -- 1
have a rack full of adapter cables needed
to make systems talk to each other. Many
starting consultants paid the rent by
trouble shooting RS-232 computer/printer
interfaces with a breakout box. I'll design
the gateway to interface with my equip-
ment with a rather simple protocol. You
may have to either modify it to work with

Pin Mnemonic RS-232 Description Direction

1 GND AA Protective Ground X

7 GND AB Signal Ground X

Data

2 TXD BA Tranemitted Data From DTE

3 RXD BB Received Data To DTE
14 (S)TD SBA Secondary Transmitted Data From DTE
16 (S)RD SBB Secondary Received Data To DTE

Control

4 RTS CA Request to Send From DTE
5 CTS CB Clear to Send To DTE

6 DSR cc Data Set Ready To DTE

8 DCD CF Data Carrier Detected To DTE
20 DTR cD Date Terminal Ready From DTE
21 sQ CG Signal Quality Detector To DTE
22 RI CE Ring Indicator To DTE
23 CH Data Signal Rate Selector (DTE) From DTE
23 cI Data Signal Rate Selector (DCE) To DTE
12 {s)DbCD SCF Secondary Data Carrier Det. To DTE
13 (S)CTS SCB Secondary Clear to Send To DTE
19 {S)}RTS SCA Secondary Request to Send From DTE

your system, or else write compatible driv-
ers for your system.

The following information is NOT a
complete tutorial on RS-232--that would
take a small book. Hopefully, it will be
enough to get you started. I am consider-
ing a separate RS-232 tutorial booklet,
and would like to hear how many people
are interested.

RS-232 Electrical and Mechanical
Specifications

RS-232 was written for two computers
talking to each other over telephone lines
with modems connecting the computers to
the phone lines. It was intended for a
DTE-DCE-telephone line-DCE-DTE link
where each computer (the DTE, or Data
Terminal Equipment) was connected to a
modem (the DCE, or Data Communica-
tions Equipment), and the modems were
connected to each other by the telephone
line. The standard is too general, was not
written with micros in mind, and is unnec-
essarily complex for most micro applica-
tions. When designers simplify the stan-
dard for their application, they don’t
choose the same path. This creates a con-
fusing mess.

The RS-232 electrical specifications are
quite complex. It includes things such as:

The driver (sending chip) must not be
damaged by an open circuit or by a
short to ground or to any other wire
in the cable.

The terminator (receiving chip) must be
able to tolerate 25 volts above ground
and 25 volts below ground.

The driver’s impedance should be selected
such that the “one” and zero” levels
at the output of the driver are be-
tween 5 and 15 volts in magnitude.

A logical “one,” or MARK or OFF condi-
tion exists when the voltage at the in-
terface point is between -3 and -15
volts.

A logical “zero,” or SPACE or ON condi-
tion exists when the voltage at the in-
terface point is between +3 and +15
volts.

Timing The RS-232 driver and electrical in-
15 (TC) DB Trane. Signal Element Timing (DCE) To DTE clude bipolar (both positive and negative)
17 RC DD Rec. Signal Element Timing (DCE) To DTE
24 (TC) DA Trans. Signal Element Timing (DTE) From DTE voltages and. volFagc levels above those
that TTL logic chips can supply. There are
9 Reserved for Data Set Testing standard driver and receiver chips for RS-
10 Reserved for Data Set Testing 232, and everyone I know uses these ChipS
, instead of trying to clobber up something.
11 Unassigned . .
18 Unassigned The industry standard chips are the 1488 A
25 Unassigned Quad line driver and the 1489 Quad line !

Figure 2: RS-232 signal descriptions receiver (49 cents each at Jameco). The

22 The Computer Journal / #45

driver requires both positive and negative voltages, and is usu-
ally supplied with +12 and -12 volts. Most small computer
boards will run on just +5 volts, except for the RS-232 port,
and it was aggravating to have to provide +12 and -12 voits
for the serial port. Maxim developed the MAX232 chip with
two receiver and two driver channels plus charge pumps which
runs on just the usual +5 volts and generates +10 and -10
volts on the chip— you’see this chip used frequently here and
in Circuit Cellar Ink. Motorola has recently announced the
MC145407 5 volt only Driver/Receiver with three drivers and
three receivers. I've been told that on occasion the Maxim
chip lacks the power to drive long lines, and in these cases the
Motorola chip has provided enough power to solve the prob-
lem.

" 'The standard defines 25 pins, three of which are unas-
signed and two of which are reserved for testing (see Figure
2), but does not specify the size or shape of the connector. For
a long time the de facto standards were the DB-25S (female)
and DB-25P (male connectors. IBM uses a non-standard nine
pin DE9 connector for the serial port and an DB25 for the
parallel port. Some manufacturers have put both a serial and
a parallel port on a single DB25 connector, while others have
added a current loop interface to an RS-232 DB2S
connector —you’ll have to watch out for non-standard bastard
implementations.

You really need the RS-232 specifications for any com-
puter, terminal, printer, or other device with which you want
to communicate. My Morrow Decision I S-100 systems are
non-standard, and I had to learn a lot about RS-232 before 1
could get them to communicate. The Ampro Z80 Little
Bsuie (which is now again available, see editorial), is more
standard, using six wires (Protective Ground, RXD, TXD,
RTS, CTS, and Signal Ground). .

The minimum for two way RS-232 communications is
three wires with Signal Ground, RXD, and TXD, which is
what is provided on most controller processors.

The formal name of the RS-323 is Interface between Data
Terminal Equipment and Data Communications Equipment
Employing Serial Binary Data Interchange. It describes, 1) The
mechanical description of interface circuits, 2) The functional
description of interchange circuits, 3) The electrical signal
characteristics. It does not specify the ASCII character set or
how to control message transfer using ASCII. We need a new
up-to-date standard, one author has referred to RS-232 as
death throes of a dinosaur. But RS-232 is what we have, and
we’ll have to make it work.

Serial Binary Data Transfer using a UART

The subject of data transfer is entirely separate from the
subject of RS-232, although we usually consider them as one
and the same. But RS-232 only describes the lines and voit-
ages, it doesn’t specify what is being sent. A full discussion of
start bits, data bits, stop bits, and parity would take most of
TCJ. We'll leave that to the bit-bangers for now, and use the
780 SIO UART (Universal Asynchronous Receiver Trans-
mitter) which does most of the hard work for us. The SIO is
configured by writing to certain registers during system initiali-
zation, and then the paraliel data is sent to and received from
the SI1O.

The SIO BAUD rate (used in honor of a Frenchman

The Computer Journal / #45

EPROM PROGRAMMERS

Stand-Alone Gang Programmer $750.00

L ARSI ER M AL » Completely stand-alone or PC driven
g iRt UEOEE SR« Programs E(E)PROMs

Py 1 Megabit of DRAM
User upgradable to 32 Megabit
.3/.6” ZIF sockel, RS-232,
Parallel In and Out
32K internal Flash EEPROM for easy
firmware upgrades
Quick Pulse Algorithm (27256
in 5 sec, 1 Megabit in 17 sec.)
2 year warranty
Made in US.A.
Technical support by phone
Complete manual and schematic
Single Socket Programmer also
available. $550.00
 Spiit and Shuffle 16 & 32 bit
» 100 User Definable Macros, 10 User
Definable Configurations
Intelligent Identifier
Binary, Intel Hex, and Motorola S

.

“ e o

20 Key Tactile Keypad (not membrane} 20 x 4 Line LCD Display

Internal Programmer for PC $139.95

New Intelligent Averaging Aigorithm. Programs 64Ain 10 sec., 256 in 1 min., Meg (27010, 011)in2min. 45sec.,
2 Meg (2762001) in 5 min. Internal ith | i X
g (}Yin 5 min. Internal card with external 40 pin ZIF 2 1. Cable 40 pin ZIF

* Reads, verifies, and programs 27186, 32, 324, 64,
64A, 128, 128A, 256, 512, 513, 010, 011, 301,
27C2001, MCM 68764, 2532

. it sets ing voltage

« Load and save buffer to disk

« Binary, Intel Hex, and Motorola S formats

Upgradable ta 32 Meg EPROMs

No personality modules required

» 1 year waranty * 10 day money back guarantee

* Adapters available for 8748, 49, 51, 751, 52, 55,
TMS 7742, 27210, 57C1024, and memory cards §‘

« Made in USA. i

NEEDHAM'S ELECTRONICS Call for more information

4539 Ora_nge Grove Ave. » Sacramento, CA 95841 X — $3\1(6(3196)2§7.2839:‘)62
Mon. - Fri. 8am - 5pm PST C.OD. “ visa

named Baudot) is determined by the combination of the receiver and
transmitter clock signals and the clock mode. The Z80 CTC Counter/
Timer is used to provide programmable clock rates for the SIO.

Next Time

So far we have concentrated on the fundamentals. Next time we'll
cover the details of the Z80 SIO and CTC, and how they are used for
RS-232 serial communications. If you have any questions or comments
on RS-232 or serial communications, send them for use in this col-
umn. @

References

The RS-232-C Serial Interface, by Phil Wells, Parts One and Two,
TCJ issues Number 1 and Number 2.

Advanced CP/M
Tuning JetFind

" by Bridger Mitchell

Trenton Computer Festival Notes
This year, the 15th annual Trenton Computer Festival featured
an all-day Saturday section on current and future Z-System devel-
opments. Coordinated by Jay Sage, the program included:

10:30 Bridger Mitchell: Tools for CP/M—DosDisk, JetFind,
PluPerfect Writer, and the new ZMATE editor.
11:45 Bob Todd: SIG/M: Future of Public Domain Software.
1:00 Jay Sage: Introduction to Z-System.
2:15 Hal Bower, Cam Cotrill: The Future of 8-Bit Operating

Systems.

3:30 Jay Sage: Computing Automation Using ARUNZ
Scripts.

4:20 Al Hawley: Assembly Language Programming and the
New ZMAC Assembler.

4:45 Bridger Mitchell: Multitasking with BackGrounder ii.

Despite the heavy rains on Saturday, it was standing room only
for several talks, and conversations continued well into the morn-
ing hours of Sunday. Then it was catch a few winks and off to the
flea market.

As a first-time attendee I particularly enjoyed meeting so many
talented Z-System colleagues face to face! Cam Cotrill, Al Hawley
and Rob Friefeld also came from Los Angeles, and Carson Wilson
from Chicago. Others, from up and down the East Coast, included
Lee Bradley, Howard Goldstein, Liv Hinckley, Chris McEwen,
Bruce Morgen, Dick Roberts and Bob Schultz. If you missed
Trenton, look out for Tony Parker’s “z-system, lies, and vide-
otape™!

Tuning JetFind
Computers are good for organizing information—or at least
they should be! It’s easy enough to save correspondence, notes,
old programs, addresses and most everything else that clutters up
a real desk in files on disks. The files can have somewhat meaning-
ful names, and related files can be stored together in library files.

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He's the
author of the widely used DateStamper (an automatic, portable file
time stamping system for CP/M 2.2); Backgrounder (for Kaypros);
BackGrounder ii, a windowing task-swiitching system for Z80 CPIM
2.2 systems; JetFind, a high-speed string-search utility; DosDisk, an
MS-DOS disk emulator that lets CP/M systems use pc disks without
file copying; and most recently Z3PLUS, the ZCPR version 3.4 sys-
tem for CP/M Plus computers.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St.,
Santa Monica CA 90402, or at (213)-393-6105 (evenings).

24

And disk space can be reduced by crunching or squeezing the files
first.

The rub comes when you need to retrieve some of that infor-
mation. Much of the time I can’t remember exactly which file T
saved it in. And in many cases I need only a few lines of material
buried inside the file. Or, I may be looking for a particular subrou-
tine or data structure.

Some three years ago I looked into the programs available to
handle these retrieval tasks. Dissatisfied with them all, T wrote
JetFind, a tool that can find one or several strings in files.

Three things set JetFind apart. First, it works with most types
of CP/M files —text, WordStar, crunched, squeezed, and also any
of those types when stored a library. Second, it has very powerful
“wild-card” capability and can match regular expressions. And
third, it is fast, so fast that many users find it more convenient to
search for information by running JetFind than to reach up to
their bookshelf for documentation that is near at hand. Compara-
tive testing by others has established that JetFind is some two to
six times faster than other Z80 search tools.

String Searches

Searching for strings is one of those programming tasks that
presents itself as a really standard, top-to-bottom problem, one
that almost automatically organizes itself into logical blocks. Once
you have obtained the search parameters from the user, your pro-
gram’s tasks are:

open a file
read a block
move a line into linebuffer
scan line for pattern
if found, report success

In each task block, the task is repeated until a termination
condition is encountered (“while more files”, ..., “while another
pattern™). Like the poet’s fleas, a smaller task is perched on the
shoulders of its surrounding task block. Indeed, if we look inside
the scanning block, it too has still smaller “while” loops.

With this strong hierarchy governing the search, it’s pretty clear
that there are big payoffs to tuning the innermost task—the line
scanner that matches a pattern. And, indeed, a better pattern-
matching algorithm proves to be a better mousetrap.

What is not so obvious, perhaps, is that simply getting a byte of
input from a file is also a place where major speed can be gained.
In developing JetFind I had paid a good deal of attention to both
areas, and achieved some significant speedups over the “obvious”
hierarchy.

The Computer Journal / #45

A New Burst of Speed] T
Despite JetFind’s good performance, since com- Figure 1. Sketch of Boyer-Moore Algorithm in Z80 Code.
pleting the distribution version three years ago I've more: 1d de, (text.) ; point at right end of candidate text
occasionally wondered if I had overlooked some op- i: bl (pat.) point at right end of pattern
. . . a,(line len
portunity for still-faster searching. And I've kept cp o (imetenathl
watch on some of the computer science literature . ie ©,not_found
that covers efficient searching algorithms. loop: 1d a, (de) ; compare text with pattern
. <p (h1)
Recently, two papers caught my attention. An- ip nz,next
- drew Hume, (in the November 1988 Qo 1 7 pack D pevvers ptr
Software— Practice and FExperience) describes his ip p.loop ; while more pattern bytes, loop
success in speeding up two UNIX versions of ‘grep’. i feund 7 point at beginning of match
Using a profiler, he isolated time-intensive sections ; 1 L
. . next: d, HIGH Dtable ; prepare pointer to displacement table
of the code. Replamng the standard C lnpuUOUtPUt 1d hl, (text.) H poi:t at right end of zundidnto text again
library functions more than trip]ed the speed of 1d e,(hl) i get x%ght text character, use as index to table
. 1d a, (de) ; get displacement value from table
grep. That result didn’t surprise me; in JetFind I had add 1 ; add it to text pointer
-worked hard to optimize the file input routine, and 1 (text.).a ; update low byte of pointer
3 . . ip more ; and do next comparison
had already won substantial gains. But his second
optimization held still unrealized potential for vt aw linebaf + patlen-1
JetFind -- using a variant of the “Boyer-Moore” pat: dv patbuf + patlen-1
g Y
algorithm. org 200h
i linebuf:
Smart Searching ora 2008
Everyone knows how to search for a pattern by patbuf:
u - . h
“brute-force.” You start at the beginning of the line | pon. °°0
and compare the first byte with the first byte of the
pattern. If they match, compare the second bytes, . o .
etc. If all pattern bytes match, the search succeeds. Figure 2. Initializing the Displacement Table
If nOt, pOint at the second byte of the line and re- MAXSYM equ 128 ; input chars have been masked to 7-bits
1 » new
start the pattern CompaI'lSOﬂ. 1d b,HAXSYM © ; set all displacements
In 1977 (Communications of the ACM, October) ld bl,Dteble i to pattern length
Boyer and Moore published their key idea—start 1 a,patien
comparing at the end of the pattern, and work back- 18 et (hiyes
ward toward the first byte. Then, when a mismatch djnz 1%
occurs, move forward as far as possible and then i pop n1
again compare from the end of the pattern. dec a ; patlen-1
. . . id b,a
The Boyer-Moore algorithm works like this. Sup- 1d de,patbuf ; -> 1st byte of pat
: ¢ » ret z ; if l-byte pattern, skip loop
~ pose we are searching .for Fhe word “where”. It has 5 282 14 u, (de) 7 get pattern byte
characters, one of which is repeated. We make the 1d 1,a i point at that character in displacement table
first check at position 5 of the line, comparing the fi- o Gk i install distance to jump
nal pattern letter, an ‘¢’, with the letter at that posi- ' :'}C *21;
. . . 3 nz
tion in the text being searched. rzt

12345678890
where is
where

text:
pattern:

If it is ‘e’, we check the previous character for a match with
‘r’. And we continue checking from right to left until either we
have matched all 5 characters and found an instance of the
pattern (shown above) or we have a mismatch.

Most of the time a mismatch occurs, and then we jump
ahead, by sliding the pattern to the right as far as possible.

1234567890
everywhere
where

text:
pattern:

How far can we slide? Suppose, first, that the first text
character that we check (a y’) doesn’t occur anywhere in the
pattern. In this case we can slide the pattern 5 characters to
the right, the length of the pattern.

1234567890
everywhere
where

text:
pattern:

The Computer Journal / #45

Why? Because now that we know that the pattern cannot be found
in the first 5 characters of the text because they include something not
in the pattern.

Suppose, instead, that the first character we check (a ‘w”) does occur
in the pattern, but not as the last character.

1234567890
now where
where

text:
pattern:

Then we can slide the pattern to the right far enough to align that
position in the text with the pattern, and then again start checking from
the right end of the pattern. (In this case we slide right by 4 characters).

12345678290
now where
.+« .where

text:
pattern:

Boyer-Moore is a kind of leap-frog algorithm. It has the directness
and impact of a light-bulb-just-turned-on, why-didn’t-I-think-of-that!
An idea that is “obvious” in retrospect, and a contribution you will

25

atways admire.

Unfortunately, the details aren’t equally direct. The algorithm
and several variations have been studied in considerable depth in a
succession of computer science papers. A number of actual imple-
mentations have also been described.

The second article I had spotted, in the July 1989 issue of Dr
Dobbs’ Journal, claimed a major improvement in search speed
implementing the Boyer-Moore method under MS-DOS Tur-

.boPascal. But on closer investigation a reader had found (DDJ,
October 1989) that particular code proved to be slower than brute
force coded in the same language!

Nevertheless, 1 kept returning to the Boyer-Moore algorithm in
idle moments, feeling there must be some way to exploit its inher-
ent efficiency. And ultimately I found it.

The Z80 Algorithm

For this implementation I could assume that the text to be
searched was a line already in a buffer and not more than 254
bytes long. I put the pattern in a second buffer and arranged the
buffers so that both begin on “page” (nn00 hex) boundaries.

Look at Figure 1. The heart of the search is quite elegant.
Short, quick instructions manipulate the low byte of the pattern
and text pointers.

The major piece missing from Figure 1 is the displacement
table that tells the algorithm how far to shift the pattern, or
equivalently, how many characters may be jumped over. Figure 2
gives a simple routine for initializing it. First, all displacements are
set to the length of the pattern, pretending that each of those
characters does not appear in the pattern anywhere. Then, for
each character that does appear in the pattern, the displacement is
“corrected” to be the distance from that character to the end of
the pattern.

Because this “correction” value is computed from left to right,
it will never be too large and cause the jump to skip past a true
match. In some circumstances, however, it results in a smaller than
optimal jump. The optimal algorithm been worked out, but it is
more complicated and also increases the number of instructions in
the innermost comparison loop. The simple correction algorithm I
used is, I believe, due to Horspool (1980 Software — Practice and
Experience).
Actual implementation

Getting a search algorithm working in a real program requires
paying attention to a host of other details. You have to initialize
the pointers and line length before you can use the routine. And of
course, you have to have all of the surrounding code from the
higher-level blocks, as well as the user interface, to specify the
patterns, files, and options. In all, JetFind is some 16K.

Moreover, it sometimes pays to look before you leap-frog with
Boyer-Moore. You can scan the line for the first occurrence of the
final character of the pattern, using the zippy Z80 CPIR instruc-
tion. This quickly rules out many lines that don’t contain the pat-
tern, and gets the search started well into the line for others. How-
ever, because this involves inspecting each character, it can be less
efficient than using just the Boyer-Moore search when the pattern
is more than a few bytes long.

The new version of JetFind checks to see if the pattern is a
“plain” pattern, or includes one or more wild-card characters that
make up a general regular expression. If it is plain, it uses the
Boyer-Moore algorithm. If not, it uses the already developed
“grep” algorithm.

There’s one other point of some interest. When a crunched file

is processed, some of the logic is inverted. You might think that
uncrunching would simply involve adding an “uncrunch-block”
task between steps 2 and 3. And it could be done that way. But
decompression is inherently a variable-flow process: you read
some bytes and bits and produce some, or perhaps quite a few
more, as output. So, instead of managing a variable-sized buffer
for the uncrunched output, it is more convenient to invert the
process. The uncruncher takes control, reading blocks and calling
the pattern-scanner for each line, until the file is fully processed.
By maintaining well-modularized routines, it was possible to intro-
duce this change in flow with very little recoding.

open a file
call uncruncher
read a block
uncrunch a line
move line into linebuffer
scan line for pattern
if found, report success

Performance

The theoretical performance of the Boyer-Moore algorithm is
impressive. It’s worst-case running time is proportional to the
number of bytes in the input text (“linear”), and its average time is
less than proportional (“sub-linear’).

To get an approximate measure of the improvement obtained,
I ran the old and new JetFind versions on the source files (147K in
all), using timing to the nearest second that is automatically re-
ported by JetFind when running on a DateStamper system.

For this test the basic overhead to read the files was 5 seconds
on an SB180FX’s ram disk (at 9 MHz, 1 wait state). Searching for
four identical patterns (“expression”) , JetFind version 1.22 re-
quired an additional 7 or 10 seconds, depending whether case fold-
ing was requested when it used the “grep” algorithm. Using the
Boyer-Moore algorithm, the extra time was just 2 or 3 seconds. A
single pattern can be searched in essentially the time required to
read the files!

JetFind 1.22 JetFind 1.28

with Boyer Moore

read files 5 5
1 pattern 6 5
ignoring case 7 5
2 patterns 9 6
ignoring case 10 6
4 patterns 12 7
ignoring case 15 8
Other Search Algorithms

The search for a still more efficient search (!) has occupied
more than a few good minds, and there is a growing literature on
variants of Boyer-Moore and other algorithms. Significant gains
can be achieved for special cases such as small alphabets and large
memories. The vanilla Boyer-Moore, however, is likely to remain
the speed leader for general-purpose string searching. ®

The Computer Journal / #45

Animation With Turbo C Ver. 2.0

Part 2: Screen Interactions

| by Clem Pepper

Before beginning new topic I must back up a couple issues to
make a correction. I hereby apologize for any frustration resulting
from my omitting the variable declarations from some programs in
the March/April issue. Also, after emphasizing the use of
HEADING.C I am replacing it with a superior approach. The
programs I am referring to are RECT1.C, PLANE.C, TANK.C
and VIEWPORT.C. Listing 1 contains the revised declarations.

Listing 2 is an include file, GRAP_ENB.H. Its use is illustrated
in the revisions of Listing 1. All the required function calls for
enabling the graphics mode are included in this file. The palette
number is declared in the program file and passed to
GRAP_ENB.H in the function call enable_graph(palette);. Wish
I'had thought of this at the beginning, it is so much cleaner.

Taking Advantage Of Turbo C’s MAKE Utility

In this segment of the series on animation we are taking our
initial step toward the production of a complete screen action
game. This portion of the game consists of five modules. The five
require compiling and linking to acquire the .EXE run file. Nor-
mally when in the process of developing a project of this scope I
give each of the modules its own main() so it can be compiled and
run independently. Using that approach with this number of mod-
ules in an article series is impractical, so we sort of have to dive
right in.

It’s not all that bad. Learning to use MAKE straight out of the
Borland manual can be frustrating; it took me the better part of
three evenings to make sense of it. So you’re getting the benefit of
my frustrations — be happy.

MAKE really makes compiling and linking modules easy and
fast. The MAKE file for the game we are going to learn about
here is shown in Listing 3. The top line of the listing is where the
action all comes together at the finale. It defines the .EXE file as
the end product of the module .OBJ files. The next line calls
TLINK for the module linking at the .OBJ level. This instruction is
spread over two lines as a necessity for printing. It MUST ALL BE
ON ONE LINE in your .MAK file. The lines below perform the
compiling of the individual C modules. The sequence doesn’t mat-
ter, though I normally place the module containing main() at the
bottom.

My name for this file is TNK_WAR.MAK. You can call it by
any name you choose so long as the extension is .MAK. The com-
mand line must read MAKE -FTNK_WAR (in my case). Without
the leading -F the program will abort.

You may very well need to make changes from the listing. I do
all my work on a floppy in drive A:. My Turbo C files are on a hard
drive, directory E:\btc20, E:\btc20\include, and E:\btc20\lib. My
AUTOEXEC includes a path statement of:

PATH=C: \PCWRT;E:\BTC20

The Computer Journal / #45

Listing 1. Corrections to the previous graphics program listings.

t 22332222222 4
RECT1.C
#include <etdio.h>
#include <graphics.h>
#include "grap_enb.h"

/* == Begin program == */
main()
{ int palette = 2; /* specify 0,1,2, or 3 *»/
enable_graph(palette);
]

pick up from article listing.

(22222322202
PLANE.C
t#include <stdio.h>
#include <graphics.h>
tinclude “grap_enb.h"

/* == Begin program == /
main()
{ int palette = 2; /* specify 0,1,2, oxr 3 */
enable_graph(palette);
|

pick up from article listing.

E2 22222222223
VIEWPORT.C
$include <stdio.h>
tinclude <graphics.h>
#include “grap_enb.h*

/* == Begin program == #/

main()

{ int palette = 2; /+ apecify 0,1,2, or 3 */
int i = 9, left col = 0; rite col = 9, top = 0, bottom = 9;
enable_graph(palette);

pick up from article listing.

i3s3 2222222
TANK.C
#include <stdio.h>
#include <graphice.h>
tinclude “grap_enb.h"
/% == Begin program == /
main()
{ int palette = 2; /* specify 0,1,2, or 3 */
enable_graph(palette};

pick up from article listing.

AR RN RN RN

Because I am still using MS-DOS 2.11 only .EXE files are identi-
fied. So I copy C0S.0OBJ, TURBOC.CFG and GRAPHICS.LIB
onto the floppy. So you must modify your MAKE file to conform
to your system.

To use the MAKE utility with the five modules all that is neces-
sary is to type up the .C source files. With this done simply enter
make -fink_war on the command line, press the Enter key, sit
back and enjoy the clicking as your hard disk and floppy go
through the process of compiling and linking the modules. The
real beauty of it is when you make a change in one of the modules.
MAKE identifies the changed module by comparing the time and
date on the source and object files. Really neat!

Listing 2. The header file for enabling the graphics mode.

/* GRAP_ENB.H
#% Call this function with the main() module of a graphics program.
*/

/* == enable the graphics mode == */
enable_graph(int graphmode)

int graphdriver = CGA;
int errorcode;

/* graphics driver */
/* graphics error code */

initgraph{&graphdriver, &graphmode, "e:\\btc20"*);
/* «% replace “e:\\btc20* with your directory location *+ +/
errorcode = (graphresult()); /* get result code */

/* *+ graphics error function routine call +** ¢/

if (erxorcode != grok) /* always check for error */

{
printf(~Graphice error: %s\n",grapherrormsg(errorcode));
exit(1l);

}

/* *+ call to set background color ** =/
setbkcolor (BLUE) ;
}

Listing 3. The Turbo C MAKE file for TANK_WAR.C.

tank_war.exe: tank _war.obj bomr.obj shell.obj gme_figs.obj bombs .obj
tlink cOs bombs gme_figs shell bomr tank_war,tank_war,/x,
e:\btc20\1lib\cs graphics.lib Note: This MUST all be on one
line.

bombs .obj: bombs.c
tcc -a —¢ -ms bombs.c

gme_figs.obj: gme_figs.c
tcc -a -c -ms gme_figs.c

shell.obj: shell.c
tcc -a -¢ -ms shell.c

bomr.obj: bomr.c
tcc -a -c -ms bomr.c

tank_war.obj: tank war.c
tcc ~a -c -ms tank_war.c

The Basics of Module Construction
~ The five modules of Listings 4 - 8 are printed with line num-
" bers. This to make it easier for me when referring to a specific
function or whatever in any given module.

Starting at the top we observe that each module contains only
those #include files required for itself. The primary module,
TANK_WAR.C is loaded with the most, seven. The majority of
the remainder have only one or two. A mandatory #include
<graphics.h> is found in each. The other is <stdio.h>, required
when we use some of the keyboard and console functions.

There are a lot of global declarations. The preferred technique
with C is to pass values in function calls, but this gets out of hand
quickly in this kind of a program. So we take the easy way out.

When a module requires a unique variable that will be used by
one or more of the other modules it is declared in the originating
module in the usual fashion as a global int or char or whatever. In
those modules making reference to that variable the declaration is
preceded by extern. This informs the compiler, TCC, that the vari-
able is declared somewhere else. We don’t have to be specific on
where somewhere else is, the compiler will track that down on its
own very nicely.

To be fair I should mention I do all my work with my own
editor, PC-Write and the command line. I almost never use the
environment file, TC. That should not in any way effect the results
obtained with TANK_WAR as shown in the listings.

In one respect the modules are rather sloppy in that I have not
been too concerned with function prototypes. If you want to work
them in, feel free.

28

Listing 4. The main module for the TANK_WAR action game.

: /* TANK_WAR.C

: ** Main module for TANK_WAR screen action game.
: *+ Compiled with TURBO C Ver. 2.0 graphics library routines.
T Rk

s */

: #include <stdio.h>

: $include <conio.h>

: #include <alloc.h>

9: #include <ctype.h>

10: #include <dos.h>

11: #include <graphics.h>

12: #include *“grap_enb.h*

13: #define SFKEY 0x16

14: extern void clr bomrs();

15: /% %% global declarations *% */

16: int n_asc, son;

17: int leftt_col = 200, ritet_col = 219;

18: int tdir_flg = 0; /* tank moves to left +/
19: extern char far *tank;

20: extern int bhl_hit,bh2_hit,bh3_hit;

21: /+* == read non-ascii key == */

22: int rd_nonasky()

23: (

24: union REGS regs;

25: regs.h.ah = 0;

26: regs.h.al = 0;

NN AW N

27 int86 (SFKEY, &rxegs, ®s);

28: n_asc = rege.h.ah; /* pon-ASCII code */
29: scn = regs.h.al; /% SCAN/ASCII code */
30:)

31: /* == Begin program == +/

32: main()

33:

34: int palette = 2, i = 1;

35: char key, run = 0;

36: enable_graph(palette);

37: /* ** create game figures *% /
38: drw_figs();

39: - /* #*» pet viewport for scoring %+ «/
40: /* This will be added later */
41: /* ** begin animation ** */

42: while(i) { scn = 1;

43: /* *+ tank direction on screen control #*+ #/

44: if(tdir_flg == 1) {

45: leftt_col += 3; ritet_col += 3;

46: }

47: elge if(tdir flg == 0)

48: { leftt_col ~= 3; ritet_col -= 3;)

49: draw_tank{);

50: /* ** increment bomber group ** */

51: bombex();

522 if(bhl_hit == ¢ || bh2_hit == 0 || bh3_hit == 0)
53: drop_bombs();

54: shel(run); run = 0;

55: drop_bombs();

563 clr_bomrs();

57: putimage(leftt_col,189,tank,XOR_PUT);

58: if (leftt_col <= 4) { tdir_flg = 1; continue;)
59: if(ritet_col >= 297} { tdir_flg = 0; continue; }
60: /* *+ obtain input from the keyboard #*+ =/

61: if (kbhit() == 0) continue;

62: rd_nonasky();

63: if(n_asc == 72 || n_asc == 75 || n_asc == 77) goto L;
64: else { run = toupper(toascii(scn));

€5 if(run == *Q') { i = 0; break; }

66: else if(run == 'A' || run == *5* || xrun == *
67: j}] run == *p* || run == 'F') continue;

68:

}
693 /* *+ move tank to the right =« #«/

702 L: if(n_asc == 77)

71: { tdir_flg = 1; continue; }

72: /* ** move tank to the leftt ** «/

73: else if(n_asc == 75) { tdir flg = 0;
74: continue; }

75:¢ /* ** halt tank in current position #** */

76 else if(n_asc == 72) { tdir_flg = 2;
77: continue; }

78: }

79: closegraph(); /* return to text mode */
80: exit(0);

81:)

82: /* == draw tank as sequence of horiz lines == #*/
83: draw_tank()

84: {

85: putimage(leftt col,189,tank,COPY_PUT);

86:)

As you scan through the listings take note of the large number
of comments. Getting lost in the maze of program interactions
between modules is no problem at all. In your modules comment

The Computer Journal / #45

So, let’s look at what we have here for a game.

A Review of the TANK_WAR Action Game
As mentioned, there are five modules. At this point scoring is
not included. That will come with the next in this series.

The TANK_WAR Module

This module, which contains main(), controls the action. The
initial step of course is to set up the graphics mode. The second is
the creation of the game’s play objects. These are a fleet of
bomber aircraft, organized in a flight group of three. There is an
army tank, which is under control of the player. The player fires
shells at the planes, so there has to be construction for these. And
the planes drop bombs on the tank—a construction is in order
here. When a shell or bomb makes its bang there is need for a
burst. All of these are constructed in a dedicated module,

The Computer Journal / #45

Listing 5. The TANK_WAR game module for play object construction.
1: /* GME_FIGS.C €9: bomr = (char *)malloc(numbytes);
2: ** Game figure creation module for TANK WAR game. 70: getimage(0,0,20,20,bomr); /* save the image */
3: *x Compiled with TURBO C Ver. 2.0 graphic library routines. 71: cleardevice();
4: «/ 72: /* ** draw shell figure *+ +/
: #include <alloc.h> 73: /* *+ as a sequence of vert lines *+* #/
: #include <graphics.h> T4: setlinestyle(0,0,1);
7: /* ** global declarations ** */ 75: setcolor(3); /* brown */
: char far *tank; 76: moveto(0,2); lineto(0,5);
9: char far *bomr; 77: moveto(1l,0); lineto(1,6);
10: char far *shell; 78: moveto(2,2); lineto(2,5);
11: char far *burst; 79 /* *+ determine storage needed *#* */
12: char far *bomb; 80: numbytes = (unsigned int)imagesize(0,0,6,6);
13: /* == begin program == %/ 81: /* *% allocate buffer =+ »/
14: drw_figs() 82: shell = (char *)malloc(numbytes);
15: 83: getimage(0,0,6,6,shell); /* save the image */
16: char buffer[80]; 84: cleardevice();
17: unsigned numbytes; 85: /* %+ draw burst figure *+ ¥/
18: /* *+ draw initial tank figure ** */ 86: /* %+ as a sequence of lines *+% ¢/
19: setlinestyle(0,0,1); /* solid line, one pixel wide */ 87 setcolor(2); /* red */
20: setcolor(2); /* tank top is red */ 88: setlinestyle(0,0,1);
21: moveto(9,0); lineto(15,0); /* segment a */ 89: moveto(4,4); lineto(4,7);
22: setlinestyle(0,0,3); /* solid line, 3 pixels wide */ 90: moveto(5,4); lineto(5,6);
23: moveto(7,2); lineto(17,2); /* segment c */ 91: moveto(6,3); lineto(€,7);
24: setlinestyle(0,0,1); /* solid line, one pixel wide */ 92: moveto(7,4); lineto(7,6);
2S: moveto(9,4); lineto(15,4); /* segment & */ 93: setcoloxr(3); /* brown */
263 setcolor(l); /* lower tank is green ¥/ 94: moveto(2,5); lineto(3,4);
27: moveto(5,5); lineto(19,5); /* segment e */ 95: linerel(l,-1); linerel(1,0); linerel(l,-1);
28: moveto(4,6); lineto(19,6); /* segment f */ 96: linerel(1,0); linerel(0,1); linerel(1l,1);
29: moveto(5,7); lineto(19,7); /* segment g */ 97: linerel(1,1); linerel(-1,1); linerel(-1,1);
30: moveto(6,8); lineto(18,8); /* segment h */ 98 linerel(-1,1); linerel(-1,-1); linerel(-1,1);
31: moveto(7,9); lineto(17,9); /* segment i */ 99: linerel(-1,-1); linerel(-1,0); linerel(l,-1);
32: /* *% determine atorage needed *+* #/ 100: linerel(-1,-1):
33: numbytes = (unsigned int)imagesize(0,0,20,20); 101: setcolox(l); /* green */
34: /* *+ allocate buffer *x =/ 102: moveto(0,3); lineto(l,1);
35: tank = (char far *)malloc(numbytes); 103: linerel(1,1); linerel(l,-1); linerel(0,-1);
36: getimage(0,0,20,20,tank); /* save the image ¢/ 104: linerel(-1,-1); linerel(1,0); linerel(1,1);
37: cleardevice(); 105: linerel(1,0); linerel(0,-1); linerel(1l,-1};
38: /% ** draw initial bomber figure ** */ 106: linerel(l,1); linerel(1,0); linerel(1,1);
39: setcolor(2); /* fuselage is red */ 107: linerel(-1,1); linerel(1l,1); linerel(1,1);
40: /* #** draw wings ** */ 108: linerel(-1,1); linerel(0,1); 1linerel(-1,1);
41: setcolor(l); /* wings, tail are green */ 109: linerel{(-1,1); linerel(0,1); linerel(-1,-1);
42: moveto(9,1); lineto(9,8); /* segment wl */ 110: linerel(-1,-1); linerel(-1,1); linerel(-1,0);
43: moveto(10,2); lineto(10,8); /* segment w2 */ 111: linerel(0,-1); 1linerel(-1,0); linerel(-1,-1);
44: moveto(11,3); lineto(11,8); /* segment w3 */ 112: linerel(1,-1); linerel(-1,-1); linerel(0,-1);
45: moveto(12,4); lineto(12,8); /% segment wd */ 113: linerel(-1,-1);
46: moveto(13,5); lineto(13,8); /* segment w5 */ 114: putpixel(7,8,3); putpixel(8,7,3});
47: moveto(14,6); lineto(14,8); /* segment w6 */ 115: putpixel(8,2,3); putpixel(6,1,3);
48: moveto(14,12); 1lineto(14,14); /* segment w7 +/ 116: putpixel(2,3,3); putpixel(1,2,3);
49: moveto(13,12); 1lineto{13,15); /* segment w8 */ 117: putpixel(3,5,3); putpixel(8,5,3);
50: moveto(12,12); lineto(12,16); /+ segment w9 */ 118: /* xx determine storage needed #+ »/
51: moveto(11,12); lineto(11,17); /* segment wl0 */ 119: numbytes = (unsigned int)imagesize(0,0,10,10);
52: moveto(10,12); 1lineto(10,18); /* segment wil */ 120: /* *+ allocate buffer w« #/
53: moveto(9,12); lineto(9,19); /* segment wl2 */ 121: burst = (char *)malloc(numbytes);
54: /* %% draw tail »*»* =/ 122: getimage(0,0,10,10,burst); /* save the image */
,55: moveto(1,5); lineto(1,15); /* segment sl */ 123: cleardevice();
56: moveto(2,5); lineto(2,15); /* segment 82 */ 124: /* %+ draw bomb figure s */
57: moveto(3,6); lineto(3,14); /* segment 83 */ 125: setcolor(2); /* red */
58: moveto(4,7); lineto(4,13); /* segment 84 */ 126: setlinestyle(0,0,1);
59: /* ** draw fuselage ** */ 127: putpixel(0,0,2); putpixel(2,0,2);
60: setcolor(2); /* fuselage is red */ 128: moveto(0,2); lineto(0,5);
61: moveto(8,8); lineto(15,8); /* segment f1 */ 129: moveto(1,0); lineto(1,6);
623 moveto(4,9); lineto(18,9); /* segment £2 +/ 130: moveto(2,2); lineto(2,5);
63: moveto(0,10); lineto(20,10); /* segment £3 */ 131: /* ** determine storage needed *+% #/
64: moveto(4,11); lineto(18,11}; /* segment f4 #*/ 132: nuwbytes = (unsigned int)imagesize{(0,0,2,6);
65: moveto(8,12); 1lineto(15,12); /* segment f5 «/ 133: /* »+ allocate buffer #** »/
66: /* *+ determine storage needed ** */ 134: bomb = (char *)malloc(numbytes);
67: numbytes = (unsigned int)imagesize(0,0,20,20); 135: getimage(0,0,2,6,bomb);
68: /* ** allocate buffer *+ */ 136: cleardevice();
137:)
freely. You'll be awfully glad you did. GME_FIGS.C.

With the play objects all constructed and safely tucked away
into buffers awaiting the call to action we can begin the screen
activity. This commences with the while() loop beginning at line
42. The entire action of the game is controlled by this loop. The
while is enabled by the integer “i” whose value is set to “1” in the
declaration. To exit the game this variable is reset, that is, set to
zero. Another key variable is run, which we will learn more of
shortly.

As we take a look at the activity maintained by the loop it
should become apparent why a loop is the only sensible approach
to control of the game action. A point of importance is that only
two actions are available to the player: control of the tank’s direc-
tion and control of its gun firing. And so we have to look at the
loop as the carrying out of two tightly related tasks: a continuation

29

of the screen action while enabling the player’s input on the tank’s
operation.

In the normal development of a game of this kind operations
are built up in layers as it were. First came the tank, followed by
the bomber group. After working out the wrinkles, shell firing was
added to the tank’s activity. With the player able to fire shells
means had to be developed to detect contact with any of the air-
craft. A shell burst replacing both the shell and the target was
-designed. With sound. The bombers were taught when to drop the
objects which would detonate on contact with the tank or the
“ground.” Once a bomb is dropped it has to be maintained, no
matter what else goes on. All of this activity is reflected in the
procedures embedded in the while loop.

As we review the other modules it will become very clear that
the decision making is heavily dependent on the values taken on by
flags. Flags are set and cleared as the action requires. The flag
value becomes the basis for decisions on the kind of action to be
taken. Right off in the loop we see this process in determining the
direction the tank is to take in its trek across the screen. Three
possibilities exist: move left, move right, or don’t move at all. We
will see at the end of the loop how the flag values are arrived at.

Which should raise the question of why the determination is
made at the end of the loop. Why not at the beginning.

Okay. In order to get the game going in the first place some
arbitrary decisions have to be made, one of them on the direction
to be taken by the tank. The direction flag is tdir_flg, declared as a
global integer with the initial value of 0. The tank will start off
moving to the left. Not too illogical considering its initial
coordinates, int leftt_col = 200, ritet_col = 219;, also a global,
place it at the extreme lower right corner of our screen.

With the tank underway the program now must set the remain-
der of the agenda into motion. This it does with a call to bomber()
(line 51). bomber() is located in another module, BOMR.C. Each
call to bomber() must perform a routine of tasks. These we will
look at shortly.

The first check is to ascertain there really is a bomber available.
A non-existent bomber should not be dropping bombs. If any of
the hit flags still read zero there really is one available. In this event
a call is made to a function by name drop_bombs() (line 53,
TANK_WAR.C). drop_bombs() is in its own module, BOMBS.C,
Listing 7. Offhand dropping a bomb might appear to be a rela-
tively simple task. Well, read on and see.

The call to shel(run) passes information on whether a shell has
been fired, and if so at which angle. The shell firing keys are the A,
S, D, and F. The test is performed at the SHELL.C module, List-
ing 8. If no key has been pressed the function returns. If a key has
been pressed run is reset on the return.

Line 55 is a second call to drop_bombs(). The purpose here is
to speed up the descent. Bombs are dropped incrementally unlike
shells which streak off at their target without interruption.

At this time, line 56, the bombers are cleared. Recall that the
call to display the bombers was made back in line 51. The interven-
ing action takes place with these in view. With this call they are
erased from the screen. The purpose of this scheme is to simply
maintain the aircraft in view while it is being shot at and/or drop-
ping a bomb.

At this time the tank is displayed, line 57. The call to puti-
mage() is followed by a screen edge test. If the tank is at a limit its
direction flag is reversed. Note that the remainder of the loop is
leaped over in this event. This to prevent the player from counter-
acting the change before realizing it has taken place.

30

Listing 6. The bomber aircraft group for the TANK_WAR action game.

: /% BOMR.C

: *+* Construction of a three plane, left-to-right aircraft group.
¢ %+ A module of TANK_WAR.C

s ** Compiled with Turbo ¢ version 2.0 graphice library.
2 v/

: $include <stdio.h>

: tinclude <graphics.h>

/* ** global declarations ** #*/

9: int leftbd col = 10,leftbd _top = 20, riteb col = 30;
10: int leftbel top, leftbe2 top, leftbe3_top;

11: int leftbel_col, leftbe2_col, leftbe3 col;

12: int bhl_hit = 0, bh2_hit = 0, bh3_hit = 0;

13: extern char far *bomr;

[T Y Y

14: /* == Begin program == */

15: bomber(}

16: {

17: if(bhl_hit == 1 &% bh2_hit == 1 && bh3_hit == 1) (
18: leftbd_col += 100; riteb_col += 100;

19: bhl_hit = 0; bh2_hit = 0; bh3_hit = 0; }
20: /* *+ begin animation ** #/

21: /% *% draw first bomber *# =/

22: leftbel col = leftbd col; leftbel_top = leftbd top;
23: if(bhl_hit == 0) draw_bomber();

24: /* *+ draw second bomber ** */

25: leftbd col -= 10; leftbd top += 20; riteb_col -= 10;
26: leftbe2 _col = leftbd col; leftbe2 top = leftbd_top;
27: if(bh2_hit == 0) draw_bomber();

28: /* ** draw third bomber #** */

293 leftbd _col += 25; leftbd_top += 5; riteb_col += 25;
30: leftbe3_col = leftbd col; leftbe3_top = leftbd_top;
31: if (bh3_hit == 0) draw_bomber():;

32: /* ** advance to next position #*% */

33: riteb_col -= 5; leftbd col -= 5; leftbd top = 20;
34: if (riteb_col >= 299) {

35: leftbd_col = 10, riteb col = 30;

3¢6: 3}

37:)

38: /* == erase bombers == */
39: clr_bomrs()

41: /* ** erase fixrst bomber ** */

42: if (bhl_hit == 0)

43: putimage(leftbel col,leftbel_ top,bomr,XOR PUT);
44: /* ** erase second bomber *+ =/

45: if (bh2_hit == 0)

46: putimage(leftbe2_col,leftbe2_top,bomr,XOR_PUT);
47: /% »* erase third bomber *+ +/

48: if(bh3_hit == 0)

49: putimage(leftbe3_col,leftbe3_top,bomr, XOR_PUT);
50

51: /* == draw bomber as sequence of h/v lines == */
52: draw_bomber()

53:

S4: putimage(leftbd_col,leftbd top, bomr,COPY_ PUT);

55:)

The remainder of the loop is concerned with keyboard input. A
challenge was how to interpret the closure of any key, ASCII or
non-ASCII, without echo with a single key press. We can do this
using the function rd_nonasky() because of the manner interrupt
16H reads the keyboard. The non-ASCII keys place a 0 in register
AL and an integer for the key in AH. An ASCII key press places
the ASCII value in AL.

The first requirement is to check the keyboard for a closure. If
there is none waiting there is no point in going on to the end of the
loop. If kbhit() has a value of zero the program returns to the
beginning of the loop. If a non-zero value exists a check is made of
the keypad arrow keys, 4,6, and 8. If one of these non-ASCII keys
has been pressed its value is in variable n_asc. If this is not the case
either a meaningless key or an ASCII key has been pressed. As-
suming an ASCII key closure its char value is assumed by the
variable run. Pressing the Q key exits the program.

Now that we have looked at how the program control performs
let’s make a quick review of the four supporting modules.

The Game Object Construction Module

The constructions in GME_FIGS.C all use putimage(). To
date I have not found a way to combine putimage() with viewports
in animation without the whole thing blowing up. Viewports do
work with putimage() for static displays, such as the game scoring

The Computer Journal / #45

Listing 7. The BOMBS module for the TANK_WAR action game

: /* BOMBS.C

: ** The bombs module for TANK_WAR.C.

: ** Compiled with Turbo C version 2.0 graphics library.
: %/

: #include <graphics.h>

/* ** global declarations w* */

: extern char far *bomb;

: extern char far *burst;

9: extern char far *tank;

10: extern int leftt col;

11: extern int leftbel col, leftbe2_col, leftbe3_col;
“]12: extern int bhi_hit, bh2_hit, bh3_hit;

13: int tnk_hit = 25;

14: int tnk_hit_flg = 0;

15: /* == begin program == #/

16: drop_bombsa()

17:

18: static int xa = 0, ya = 0;

19: static int drpl_flg = 0, drp2_flg = 0, drp3_£flg = 0;
20: static int boml_flg = 1, bom2_flg = 1, bom3_flg = 1;
21: static int xbmbl,xbmb2,xbmb3;

22: atatic int ybmbl = 65,ybmb2 = 69,ybmb3 = 73;

W NAWM e WN

123: /* *+ begin animation *% %/
24: /* *+ bomber 1 bomb drop ** */
25: if(bhl_hit == 0 && (leftt_col-leftbel col)
26: <= 40 && boml_flg == 1) {
27: drpl_flg = 1; boml_flg = 0;
28: xbmbl = leftbel col + 6;)}
29: if(drpl_flg == 1) {
30: bmbl_drp(xbmbl,ybmbl);
31: ybmbl += 6; }
32: if (ybmbl >= 189 || (ybmbl >= 189 && xbmbl
33: >= leftt_col && xbmbl <= leftt_col + 20)) {
34: xa = xbmbl; ya = 189;
35: bburst(xa,ya); {
36: drpl_flg = 0; boml_flg = 1; ybmbl = €5;
37: 1}
38: /* %* bomber 2 bomb drop ** */
39: if(bh2_hit == 0 && (leftt_col-leftbe2 col)
40: <= 40 && bom2_flg == 1) {
41: drp2_flg = 1; bom2_flg = 0;
42: xbmb2 = leftbe2 col + 12; }
43: if(drp2_flg == 1) {
44: bmb2_drp(xbmb2,ybmb2) ;
45: ybmb2 += §; }
46: if (ybmb2 >= 189 || (ybmb2 >= 189 && xbmb2
47: >= leftt_col && xbmb2 <= leftt col + 20)) (
48: xa = xbmb2; ya = 189;
49: bburst(xa,ya); {
50 drp2_flg = 0; bom2_flg = 1; ybmb2 = 69;
51: })
52: /* ** bomber 3 bomb drop ** */
53: if(bh3_hit == 0 && (leftt_col-leftbe3_col)
S54: <= 40 && bom3_flg == 1) {
55: drp3_flg = 1; bom3_flg = 0;

56: xbmb3 = leftbe3 col+6; }
57: if(drp3_flg == 1) {

58: bmb3_drp(xbmb3,ybmb3) ;

59: ybmb3 += 6; }

60: if (ybmb3 >= 189 || (ybmb3 >= 189 && xbmb3
61: >= leftt_col && xbmb3 <= leftt col + 20)) (
62: xa = xbmb3; ya = 189;

63: bburst(xa,ya); {

64: drp3_flg = 0; bom3_flg = 1; ybmb3 = 73;
65: }3]

66:)

67: /* =% display shell burst #+ #/
68: bburst(short xa,short ya)

69: {

703 if(xa >= leftt_col && xa <= leftt_col + 20)
71: putimage(leftt _col,189,tank,XOR_PUT);
72: putimage (xa,ya,burst,COPY_PUT);

73: /* ** ring bell ** */

74: sound(1000);

75: delay(50);

76: sound(1500);

77: delay(50);

78: sound(2000);

79: delay(50);

80: sound(1000);

81: delay(50);

82: nosound() ;

83: putimage(xa,ya,burst,XOR_PUT);

84: if(xa >= leftt_col &6 xa <= leftt_col + 20) {
8S: putimage(leftt_col,189,tank,COPY_PUT);

86: /* #* update tank hit scoring #* #*/
87: tnk_hit_£1g = 1; tnk_hit -= 1; }
88:)

89: /* == draw descending bomb 1 figure == */
90: bmbl_drp(int xbmb,int ybmb)

91: {

92: putimage (xbmb, ybmb , bomb,COPY_PUT) ;

93: delay(1i5);

94: putimage (xbmb,ybmb,bomb, XOR_PUT) ;

95:)

96: /* == draw descending bomb 2 figure == */
97: bmb2_drp(int xbmb,int ybmb)

98: {

99: putimage (xbmb, ybmb, bomb,COPY_PUT);

100: delay(15);

101: putimage (xbmb,ybmb,bomb, XOR_PUT) ;

102: }

103: /* == draw descending bomb 3 figure == ¢/
104: bmb3_drp(int xbmb,int ybmb)

105:

106: putimage { xbmb, ybmb, bomb,COPY_PUT);

107: delay(15);

108: putimage (xbmb,ybmb,bomb,XOR_PUT);

109:)

to be developed in the next of the series. But even with these
problems can develop.

The library graphics do have a bad feature in that the construc-
tion of each object is accompanied by a brief flash of its image at
the screen’s HOME position. To date I have not found a way
around this. Hopefully someday.

Five play objects are created in this module: the tank, a
bomber, the shell fired from the tank, the bomb dropped from a
plane, and the burst resulting from an exploding shell or bomb.
They are declared as far pointers in lines 8 - 12. The declarations
must be global. All the modules are created in the one function,
drw_figs(). Two declarations are required: a buffer to store the
image temporarily, and an unsigned variable to hold the imagesize.
All of the play objects are constructed from straight line segments.
After the object’s design is specified the storage need is deter-
mined, the buffer allocated, and the image stored using a call to
getimage(). This is followed by a brief flash on clearing the screen.

The BOMR() Module

When we look at Listing 6, we see that lines 20 - 31 have
responsibility for displaying each of the three planes. To get to this
point, however, a preliminary screening process takes place in lines
17 -19. Again a reliance on flags (BH stands for Bomber Hit). The
AND (&&) logic reports if all the bombers have been shot down.

The Computer Journal / #45

If that is so, they must be re-constructed. New screen coordinates
are assigned as offsets in a brazen attempt to confuse the player on
just where it is they may re-appear.

If we have shot down a bomber we jolly well do not want it to
continue on its trek across our screen. We want it to go away!
Right? So if the flag is set to 0 the plane appears. When a plane
receives a shell hit, as we shall shortly learn, its hit flag is set to 1.
In which case it is not drawn.

So why are its column coordinates updated as though it were
really present? So the program will always know where it should
be, even if it is not visible, that’s why. Just a simple matter of
keeping track for its later re-appearance. Bomber drawing is per-
formed with putimage() in its COPY_PUT action constant mode.

After our bombers have been drawn and been shot at, assum-
ing they were not shot down, they have to be advanced to the next
location on screen. It is a good idea to erase the existing image
prior to displaying another at its new location. The function
clr_bomrs() attends to that. Erasing is performed with putimage()
inits XOR_PUT action constant mode.

The BOMBS Module

When it comes to dropping bombs there are a lot of flags and
other variables to keep track of. When you think about it, bombs
do require some conservation. We shouldn’t just sprinkle them

31

/% SHELL.C
: *¢ Program to animate an artillary shell in any one
of four angles: 50, 70, 110, or 130 degrees.
*+ A module of TANK WAR screen action game.
*+ Compiled with Turbo C version 2.0 graphics library.
*/
: §include <atdio.h>
: #include <graphics.h>
: void sburst(short x1,short yl);
10: /* ** global declarations #* */
11: extern int leftt col, ritet_col;
12: extern int bhi_hit, bh2_hit, bh3_hit;
13: extern int leftbel_col, leftbel top;
14: extern int leftbe2_col, leftbe2 top;
15: extern int leftbel_col, leftbe3_top;
16: extern int drpl_flg, drp2_flg, drp3_flg;
17: extern int xbmbl,xbmb2,xbmb3,ybmbl,ybmb2,ybmb3;
18: extern char far *shell;
19: extexrn char far *burast;
20: extern char far *bomr;
21: int score = 0;
22: int pla hit = 0;
| 23: int flite_flg = 0;
24: int shl bal = 150;
25: int shl_fir flg = 1;
26: /* == Begin program == #/
27: shel(char tnk_shl)

L PR
"
*

[N)
. .

28: {

29: if(tnk_shl 1= °*A' &§& tnk_phl I= *'S*

30: && tnk_shl 1= 'D’ && tnk_shl t= 'F') return;
3: /* ** begin animation ** #/

32: dis_pla_shl{tnk_shl);

33:)

34: /* == display shell burst == »/

35: void sburst(short xa,short ya)

36:

37: putimage (xa-5,ya-5,burst,COPY_PUT);
38: /* ** ring bell #» »/

39: sound(1000);
40: delay(50);
41: sound(1500);
42: delay(50);
43: sound(2000) ;

44: delay({50);
45: sound(1000);
46: delay(50);

47: nosound({) ;
48: putimage(xa-5,ya-5,burst,XOR_PUT);
49:)

503 /* == create basic shell == #/
51: tshell(int xb, int yb)

52: {

53: int xbs = xb, ybs = yb;

54: /* #+ display and erase shell »+ #*/
| 55: putimage (xb,yb,shell,COPY PUT);

56 hit_tst(xbs,ybs);

57: delay(8);

583 putimage (xb,yb,shell, XOR_PUT);

59:)

60: /* == test for aircraft hits == »/
61: hit_tst(int xb,int yb)
62:

Listing 8. The SHELL FIRING module for the TANK_WAR action game.

6€3: /% *» test for hit on bomber 1 #+ */

64: if(bhl_hit == 0) {

65: if(xb >= leftbel col && xb <= leftbel_col + 20

€6: && yb >= leftbel top && yb <= leftbel_top + 20)
€7: {

68: sburst(xb+10,yb-10);

69: putimage (leftbel col,leftbel_ top,bomr,COPY_PUT);
70: putimage(leftbel col,leftbel_ top, bomr,XOR_PUT);

71: putimage (xb,yb,shell,COPY_ PUT);

72: flite_flg = ©;

73: bhl_hit = 1; pla_hit += 1; score += 100;

74: return; 3}

75: /* *+ test for hit on bomber 2 *#* #/

76: if(bh2_hit == 0) {

77: if(xb >= leftbe2_col && xb <= leftbe2_col + 20

78: && yb >= leftbe2_top && yb <= leftbe2 top + 20)
79: {

80: sburst (xb+10,yb-10);

81: putimage(leftbe2_col,leftbe2_top,bomr,COPY_PUT);
82: putimage (leftbe2_col,leftbe2_top,bomr,XOR_PUT);

83: putimage (xb,yb,shell,cOPY PUT);

84: flite_flg = 0;

85: bh2_hit = 1;pla_hit 4= 1; score += 100;

86: return; })

87: /* *+ test for hit on bomber 3 *+ %/

88: if(bh3_hit == 0) {

89: if(xb >= leftbe3_col && xb <= leftbe3_col + 20

90: && yb >= leftbe3 top && yb <= leftbe3_top + 20)
91: (

92: sburst(xb+10,yb-10);

93: putimage (leftbe3_col,leftbe3_top,bomr,COPY_PUT);
94: putimage({leftbe3 col,leftbe3_top,bomr,XOR_PUT);

95: putimage (xb,yb,shell,COPY PUT);

96: flite_flg = 0;

97: bh3_hit = 1; pla_hit += 1; score += 100;

98: return; 1}

99: })

100: /* == read key and fire shell == #/

101: dis_pla_shl(char shl_ang)

102: {

103: int x = leftt _col + 10, y = 179, ang_flg;

104: flite _flg = 1; shl_fir_flg = 1; shl_ bal -= 1;
105: switch(shl _ang) {

106: case 'A': { ang_flg = 1; break;)}

107: case 'S': { ang_flg = 2; break;)}

108: case 'D': { ang_flg = 4; break;)}

109: case 'F': { ang_flg = 5; break;)}

110: default: return;

111:

112: while(flite_flg) (

113: if(ang_flg == 1) { x -= 4; y -=5; tshell(x,y);

114: if(flite_flg == 0) break; }

115: else if(ang flg == 2) { x -= 3; y -=5; tshell(x,y);
116 if(flite_flg == 0) break; }

117 elpe if(ang_flg == 4) { x += 3; y -=5; tshell(x,y);
118: if(flite_flg == 0) break; }

119: else if(ang flg == 5) { x += 4; y -=5; tshell(x,y);
120: if(flite_flg == 0) break; }

121: if(y <= 22) { flite_flg = 0; return; }

122: }

123:)

like wildfires across the screen in hopes of knocking out a tank. So
it’s back to decision making logic again. The variable declarations
are all static as their values must be maintained between function
calls.

Bombs descend in steps of six pixel increments. We have first
of all to make sure there is a plane available. Then its screen
position relative to its target, the tank, has to be checked. If these
tests are positive and a bomb flag, bomi_fig, is enabled, where the i
is 1, 2, or 3 depending on the aircraft, a drop flag, drpi_flg, is
enabled. At this time the bomb flag is cleared, else next time
around a new bomb may be dropped, ready or not. With each call
to drop_bomb() the bomb makes a descent until it strikes the tank
or the “ground.” At that point the burst function is called with the
burst coordinates and the flags are set up for the next drop.

There is a complication with the screen images when one inter-
sects another, such as when a bomb or shell strikes an object. First
we want the shell to go away. Then we want the burst to appear
overlaying the object underneath, if any. Then, if there has been a
hit on an object it has to go away. Well, the XOR_PUT action

32

constant for a given object does not necessarily affect another.
Without some cleanup provisions our screen is quickly littered
with debris, sort of like the space junk now orbiting the earth. So
as part of the cleanup procedure lines 92 and 94 clean up the
debris from bomber 1 by a quick draw and erasure. Even so there
will be an occasional display of lingering garbage, which is swept
away by the next pass across the screen.
The SHELL Module

By now we have a pretty fair understanding of all the concerns
to be considered in moving screen objects around. Even so the
large number of global variables in this module may be a surprise.
This simply because there is so much to keep track of. First we
have to know where the tank is when the shell is fired. Shelis
mysteriously appearing from out of nowhere are not uncommon in
working out some of these coordinate schemes. And as the little
guy goes streaking off into the sky its motions require continuous
draw, delay, clear, advance instructions.

The actual shell firing takes place in the last function,
dis_pla_shl(char shl_ang), beginning at line 101. The only flag

The Computer Journal / #45

actually used at this time is the flite_flg which maintains the shell in
a transit loop. The shi_fir_flg and variable shl_bal are used for
scoring. This istrue for the variables pla_hit and score as well. The
scoring of hits and keeping track of shells fired is actually relatively
simple. The reason for not including them at this time is that their
display on the screen is not.
The shell may or may not hit one of the bombers. So the rela-
tion of each bomber to the shell must be maintained. With each
_shell advance detection logic must test for an intersection. The
testing is performed in the function hit_tst(), beginning on line 61.
As we saw in the BOMBS module the putimage() action constants
COPY_PUT and XOR_PUT perform debris cleanup.

It may come as a surprise that a burst function is included in
two modules. This is largely as a matter of convenience for passing
location variables.

Summary

We have learned that bringing all the play object action to-
gether on our screen does involve a fair amount of complexity.
Since activities of this kind require a lot of program code it is to
our advantage to write individual modules and link them together.
The Turbo C MAKE utility is of considerable assistance in the
compiling and linking operations.

This article of necessity starts right out with the completed
modules.

In a real development each play object is written in a stand-
alone mode to verify its construction. When we are satisfied with
its performance it is revised for linking in with the overall program.
The interactive logic must be developed with the entire system,
but doing what can be done in the stand-alone mode eases this
task. @

BackGrounder ii

Plu*Perfect Systems ==

World-Class Software

Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator, notepad, screendump, directory
in background. CP/M 2.2 only. Upgrade licensed version for $20.

Z-System....... .
The renowned Z-System command processor (ZCPR v 3.4) and companion utilities. Dynamically change memory
use. Installs automatically
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2,

ZMATE treseessoteessnes e nnere s n e s e ae s e s ae e sraan .$50
New Z-System version of renowned PMATE macro editor with split-screen mode for two-window viewing of one or
more files. Extremely powerful and versatile macro capability lets you automate repetitive or complex editing
tasks, making it the ultimate programmer's editor. Macros can be saved for reuse and also assigned to keys.
Editing keys can be reconfigured for personal style. Supports drive/user and named-directory file references.
Auto-instalis on Z systems. Z-80 only. Supplied with user manual and sample macro fiies.

PIUPEIECT WIILET ... cerereceeecrtnseesasentensssenesaesanssaesevesssssesssassssasarresr ansasssnseansmmesssssesssessarases $35
Powerful text and program editor with EMACS-style features. Edit files up to 200K. Use up to 8 files at one time,
with split-screen view. Short, text-oriented commands for fast touch-typing: move and delete by character, word,
sentence, paragraph, plus rapid insert/delete/copy and search. Built-in file directory, disk change, space on disk.
New release of our original upgrade to Perfect Writer 1.20, now for alf Z80 computers. On-disk documentation
only.

ZSDOS ...t s s $75, for ZRDOS users just $60
State-of-the-art operating system. Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DOSDISK .oiiieeiieeeeiiiiassemeeriesaeetrassssnsssesaeesassesnsarsbesanesarasasssanensannanssesssssssnsnansesnsnnnnnensnsnnnanssnnssesns $30 - $45

Use MS-DOS disks without copying files. Subdirectdries too. Kaypro w/TurboRom, Kaypro w/KayPLUS, MD3,
MD11, Xerox 820-1 w/Plus 2, ON!, C128 w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly
language expertise and BIOS source code.

IMULTICPY ... eene e es st mseeste st set e e s e s o e s s as e r e sor e e s b o e asas s sasaemaneaneese et ssraeanassasnsrmsersnans $45
Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats. Includes DosDisk. Requires Kaypro
w/TurboRom.

JOIFIN ..o eccrran st st a st ettt st s ecsa e crsrar i essamesme R e s e e ne aemasnecaeesseenaeessarresueaeereenaranann $50
Fastest possible text search, even in LBR, squeezed, crunched files. Also output to file or printer. Regular

expressions.

Plu*Perfect Systems
410 23rd St.

Santa Monica, CA 90402
(213)-393-6105 {eves.)

To order: Specify product, operating system, computer, 5
1/4" disk format. Enclose check, adding $3 shipping (55
foreign) + 6.5% tax in CA. Enclose invoice if upgrading
BGii or ZRDOS.

BackGrounder I ©, DosDisk ©, Z3PLUS ©, PluPerfect Writer ©, JetFind © Copyright 1986-88 by Bridger Mitchell.

The Computer Journal / #45 33

Real Computing

The National Semiconductor NS320XX

by Richard Rodman

Metal 0.6
Version 0.6 of Bare Metal is available now. It has been com-
pletely transformed through the use of a new assembler by Bruce
Culbertson. It is now linked together from separately-assembled
or compiled modules. Phil Prendeville’s C compiler has been
modified for compatibility with the assembler.

Metal is now being distributed as a complete cross develop-
ment package for a PC. For example, if you want to put the system
in a directory C:\NS32, put the floppy in the A: drive, and enter
the command:

install c¢: ns32

Notice the space between the C: and the NS32. MS-DOS has
such a stupid command interpreter that the drive and the directory
have to be passed as separate items.

At any rate, along with the compiler and assembler you also get
a make utility, a new version of the host program, an EPROM
utility, and other miscellaneous utilities. Naturally, source code is
provided for everything. BIOSes are provided for the Cromemco
16FDC and for the PD-32 coprocessor board.

The new version of host supports the TDS download format.

(The previous one claimed to, but testing showed that it didn’t.)

. The simple ROM monitor, SRM, has been modified to allow TDS
download format and commands.

Work is under way to supply a complete C library and include
files. This will allow the compiler and assembler to run in native
mode, and a PC will no longer be necessary.

There are a number of major internal changes in version 0.6. In
order to get around the address-constant problem, we’ve basically
given up and created a new kind of executable that exccutes at a
CP/M-like TPA address of 010000 hex (64K). These files should
be linked as follows (for a hypothetical program myprog):

1d -e _ main -T 010000 -o myprog.e myprog.o -lc

Not very user-friendly, you say? All suggestions and help are
welcome!

Executables generated in the .E32 format, which are com-
pletely relocatable, are still supported. Hopefully, in the future, an
approach to solving the address constant problem can be deter-
mined that will not require the TPA restriction; unless you have an
MMU (not currently supported), only one program can be run-
ning at a time, like CP/M.

Another internal change is that the single-character 1/O system
calls are no longer supported. They just turned out to be too inef-
ficient. New system calls for the seek and tell functions (get and set
read/write position in a file) have been added.

Rules for 360s and 1.2s
There are two simple rules for exchanging floppies between
360 KB and 1.2 MB floppy drives. These are as follows:

34

1. If you format it on the 360, you can write it on the 360, but if
you ever write it on the 1.2, you can’t read it on the 360
anymore.

2. If the floppy has never, ever been formatted on any drive, and
you format it /4 on the 1.2, you can write it on the 1.2; but if
you ever write it on the 360, and then write it on the 1.2, you
can’t read it on the 360 anymore. Reformatting on the 1.2
won’t help; if you reformat on the 360, see rule number 1.

Remember that any writing to the disk involves writes to the
directory, too, so don’t imagine that “accessing different files” will
keep you safe.

Maybe it’s about time we say to heck with the silly nonsense
and standardize on 3.5 inch floppies!

Speaking of standards, I recently saw a Zenith MinisPort, and
was pleasantly surprised. The keystroke feel was nice, the display
was quite easy to read (it’s adjustable to any angle), the 2-inch
floppy is kind of spiffy, and the thing is amazingly light and small!
Why are all the reviewers so intent at bad-mouthing it? Because it
has a lowly 8088 processor, I suppose. Tests with laboratory ani-
mals have proved that using a faster CPU actually increases typing
speed.

ICU test comments
The ICU test program presented in a previous column will not
work on the PD-32 board. It seems that the H-counter is used on
the PD-32 board to control dynamic memory refresh. The gen-
eral-purpose I/O bits of the ICU are used to control various other
functions of the board, so be careful.

The CD conspiracy

There are two shocking facts about CDs that are being kept
secret by a mammoth conspiracy. Tell everyone you know!

First, CDs are by no means indestructible. The CD contains a
very thin top layer (the printed side), which is very delicate. So
delicate, in fact, that thumbnails pressing on, or even small objects
pressing on or dropped on this side will destroy the disk.

Worse, however, is the Notch. It seems that some people in the
entertainment industry wanted a copy-protection scheme for the
DAT (Digital Audio Tape) in which there would be a 45 dB notch
at 15 kHz. Essentially, frequencies in that region would be com-
pletely wiped out, which (as any audio buff will tell you) will cause
distortions throughout the rest of the spectrum.

As with all copy-protection schemes, this idea punishes all le-
gitimate users without really impacting any illegitimate ones; but
the entertainment industry is a more monopolistic and openly op-
pressive cartel than the computer industry has ever had. They tried
to get Congress to force this on everyone, but fortunately this
attempt failed.

But here’s the sickening part: The electronics industry is doing
it anyway! Not only do all DAT decks incorporate the Notch, but
more and more CDs are being produced and distributed recorded

The Computer Journal / #45

with the Notch.

A Real Computer

Dave Rand, the designer of the PD-32 board, has designed a
new board which is considerably more powerful. It has a 32532
CPU equipped with up to 32 megabytes of no-wait-state, page-
access SIMM DRAM. It has 8 serial ports. It has two SCSI ports,
one for a disk and/or tape, and one for other uses. It also can be
equipped with a 32381 math coprocessor. The system is offered as
an unpopulated four-layer printed circuit board for $200. If you’re
"interested, contact him at the address below.

Bruce Culbertson and others are working on porting Minix to
the board, and are reported to be close to finished. He is working
on an add-on board to include an Ethernet port and 16 additional
serial ports.

The design of this board really gets around a lot of the limita-
tions of the Designer’s Kit board, mainly limited RAM and I/O.
After all, what good is a fast processor if you can’t get data in and
out of it?

What, after all, makes a system fast? We’ve all seen 8080 sys-
tems that offer lightning response —and 386 systems that move
like glaciers. For a really fast system, all components have to be
tuned together, including the software.

State machines
Tuning implies music, and music implies rhythm. In an embed-
ded system, it often doesn’t matter so much how fast you do some-
thing, as how close to the right time you do something; so, embed-
ded systems are often designed around a synchronous, tick-derived
state machine. Such a design yields a deterministic —accurate and
predictable —response.

However, a synchronous state machine does not lend itself to

dynamic, constantly-changing systems such as general-purpose
computers. Many modern multitasking kernels offer a hybrid ap-
proach, where tasks can be implemented as synchronous state ma-
chines or as dynamic tasks.

It has been considered a truism that real-time operating sys-
tems make poor development environments. Real-time operating
systems cannot allow priorities to be changed; they can’t allow vital
tasks to be swapped; they can’t use high-overhead, dynamic-block,
multiply-indirect file systems. However, I think as the kernel de-
sign advances, as processors get better, and as the low-overhead
system design approach catches on, we’ll see systems with all of the
friendliness of Unix (or more, hopefully) that really are suitabie
target environments for real-time systems. What would be really
great is if you had binary compatibility from the bottom of the line
to the top, like the VAX, but in a micro.

Next Time
Futurebus: Is it going places, or taking people for a ride? ®

Where to Call or Write
BBS: 1-703-330-9049
Dave Rand, 1-408-733-4125

User Disk
The complete installation package of Metal 0.6, includ-
ing C compiler, assembiler, linker, make utility, ROM moni-
tor, host program, and various utilities, is available on 3.5"
1.44MB, 3.5" 720K, or 5.25" 360K PC format disks for $13
postpaid in the U.S.

Editor

(Continued from page 3)

You'’ll hear more about these products here, but contact

them for more information in the meantime.

Ampro Little Board Returns

~ The Ampro Z80 Little Board which had been out of pro-
duction has been picked up by Davidge Corporation, 94 Com-
merce Drive, Buellton, CA 93427, Phone (805) 688-9598.
Dean Davidge has been producing his own line of single board
computers for quite a while. I had one of his Z80 boards and
it was a fine product, so he should do a good job with the
Ampro LB.

Davidge is providing repair service for units made by both
Ampro and Davidge. They can also provide the Project
Board/80, CP/M and ZCPR3, BIOS Source, and manuals. As
far as I know, this is one of the last CP/M computers still in
production —support them if you want a source to be avail-
able in the future.

Another Davidge product line is the RIM (Remote Inter-
face Multiplexer) Bus series of data collection and control
cards.

Now that the Ampro LB is again available, I would like to
develop a ROM based system to use the card as an embedded
stand alone controller. This will be for controller applications,
not desk top computer applications, and will be very different
from the usual CCP, BIOS, and BDOS. Any one else inter-
ested in this? e

The Computer Journal / #45

Cross-Assemblers a owsssow
SImU|atOI'S as low as $100.00
Cross-Disassemblers asowassiooo
DeveloPer Packages

as low as $200.00(a $50.00 Savings,
A New Project

Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.
Get It To Market—FAST

Don't wait until the hardware is finished to debug gour software. Our
Simulators can test your program logic before the hardware is built.

No Source!
Aminor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.

Quality Solutions
PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.
BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 Intel 8051 Inte! 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorala 6805
Hitachi 6301 " Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilog Z80 NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196

e Al products require an IBM PC or compatible.
So What Are You Waiting For? Call us:
PseudoCorp

Professional Develogment Products Group
716 Thimble Shoals Bivd, Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154 !

Letters
(Continued from page 4)

it’s somewhat painful to interface with in-
dustrial-class devices, such as milling ma-
chines, motors, sensors, etc.; and floppies
don’t work well in oily, smoky, electrically
noisy or corrosive environments. However,
I believe the PC sets expectations as to
- price and performance. “Why should I buy
a $1000 single-board computer when I can
get an AT for that price?”: never mind
that the AT couldn’t do the job half as
well. And can you build a floppy controller
for $19, or a video card for $25? This
trend will only get worse as new XTs drop
" in price, and used XT are pushed out of
industrial use by cheap AT-class machines
(or RISC machines as Lee suggests).

Actually, my more interesting argu-
ment is not that IBM-type PC’s are cheap
end-use systems; they are cheap develop-
ment systems. There are good reasons
that chip manufacturers sell their develop-
ment tools to run on PCs. Typically, a PC-
compatible processor development pack-
age includes a plug-in card, assembler, de-
bugger and docs for several hundred dol-
lars and up, with $1000 a common price.
PC-class cross-compilers for C (and occa-
sionally other languages) are available for
a few to several hundred dollars and up.
There are even shareware sources for a
few cross-compilers, with registrations un-
der $100. And there are more and cheaper
tools for native development of 8088-class
- applications.

However, I have to admit that running
a C cross compiler on a PC to cram code
into the 4K program space of an 8051
which will operate a voice-responding
home security system is a bit of overkill.
And, as it turns out, a lot of work to con-
vince the compiler not to use the “huge”
model of 1 gigabyte addressing to make
the code fit at all! The engineer or pro-
grammer becomes very removed from the
application when you are designing a
“talking doorknocker” from a screen/disk/
keyboard environment. And for “high-
powered” applications with multiple proc-
€ssors in constant communication, the ge-
neric cross-compiler/simulator is not very
useful: the development system usually is
the application system.

I think the answer is a modular devel-
opment environment, where you assemble
physical and software resources as needed.
It could be as small as a few modules on
your desk and a calculator-like interface;
or as large as a PC connected to several
processors. Lee Hart may have something
with his “Z80 on a shingle” product and

36

his “spreadsheet” programming meta-
phor. Now, if I can only get him out of the
“2K teensie-weensie BASIC” world of de-
velopment systems, we might get some-
where!

I have more thoughts on the subject, if
your readers are interested, but I have to
get off my PC-AT and go into the base-
ment to check my memory test run on
some customer’s S-100 IMSAI 32K
DRAM boards. The “heat test” hairdrier
sometimes slips off and starts cooking my
8-inch floppies!

Herb Johnson

Forth Advocate

I am impressed with your publication
to the extent that I must congratulate the
staff for a job well done! The contributors,
both regular and otherwise, usually ac-
complish their duty of generating fascinat-
ing and useful articles. Moreover, I feel
compelled to contribute as well. I see you
would like more contributors and am curi-
ous about your format preferences. Do
you have any? I have such documents for
various publications and would rely on
them for any assistance otherwise. EDN,
Personal Engineering, and Micro Cornu-
copia are the others I speak of, and as you
may well know they all have different “fla-
vors.”

As long as I mentioned Micro Cornu-
copia, I must say I do not wish TCJ to
become The Last of the Mohicans
amongst the various magazines still ori-
ented towards serious fringe computing.
That is why I must contribute along with a
general support of the advertisers, etc.
You WILL receive a manuscript or two
from me. I just need to get up off my rear
to do it. I'm quite sure most other TCJ
readers have other things to do, besides
document their personal projects. Al-
though, after going through the work of a
project, documentation and publication
really is worth it. It's a great way to make
contacts and gain a reputation. Not to
mention the satisfaction gained by the edi-
torial approval.

As far as suggestions go, I would like a
Neural Network article that is practical.
I've contacted Dave Weinstein about his
OOF (Object Oriented Forth) efforts and
thought that OOF would be a good way of
going about it. You may well agree. I am
glad that Forth is a mainstay of TCJ. You
can bet that I always hope Forth comes in
every issue I receive! Also, the slant to-
wards microcontrollers lately has been wel-

come. My main gripe about most articles
in Embedded Systems Programming is that
they are not very practical or useful
Pseudo code may be a good thing to some,
but to me it seems quite useless. I like ar-
ticles with schematics and real code, not
fairy tails. Another thing I have been inter-
ested in lately is the CEBus development
and articles in Circuit Cellar INK about
them. Maybe that would be an opportu-
nity for some people to contribute.

Anyways, I won’t waste any more of
your paper. Keep up the excellence and
thanks.

Ronn Guttmann
Australia

Editor’s Note: Our Forth authors are all
overloaded with work, so there are no Forth
articles in this issue-—but there are more
coming.

I
MOV NG?

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don’t notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

The Computer Journal / #45

issue Number 1:

* RS-232 Interface Part One

* Telecomputing with the Apple 1l

» Beginner's Column: Getting Started
* Build an ‘“'Epram”

Issue Number 2:

* File Transtfer Programs for CP/M

* RS-232 Interface Part Two

e Build Hardware Print Spooler: Part 1

* Review of Floppy Disk Formats

+ Sending Morse Code with an Apple i

¢ Beginner's Column: Basic Concepts and
Formulas

Issue Number 3:

* Add an 8087 Math Chip to Your Dual
Processor Board

« Build an A/D Converter for Apple Il

* Modems for Micros

* The CP/M Operating System

¢ Build Hardware Print Spooler: Part 2

Issue Number 4:

* Optronics, Part 1t Detecting,
Generating, and Using Light in Electronics
* Multi-User: An Introduction

* Making the CP/M User Function More
Useful

¢ Build Hardware Print Spooler: Part 3

* Beginner's Column: Power Supply
Design

lssue Number 8:

o Build VIC-20 EPROM Programmer.

® Multi-User: CP/Net.

e Build High Resolution S-100 Graphics
Board: Part 3.

e System Integration, Part 3: CP/M 3.0.

e Linear Optimization with Micros.

Issue Number 16:

* Debugging 8087 Code

* Using the Apple Game Port

s BASE: Part Four

« Using the S-100 Bus and the 68008 CPU

o Interfacing Tips & Troubles: Build a
*Jellybean” Logic-to-RS232 Converter

The Computer Journal / #45

THE COMPUTER JOURNAL

Issue Number 18:

* Parallel Interface for Apple Hl Game Port
¢ The Hacker's MAC: A Letter from Lee
Felsenstein

¢ S-100 Graphics Screen Dump

* The LS-100 Disk Simulator Kit

¢ BASE: Part Six

* interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 1

issue Number 19:

* Using The Extensibility of Forth

* Extended CBIOS

* A $500 Superbrain Computer

* BASE: Part Seven

¢ Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 2

* Multitasking and Windows with CP/M: A
Review of MTBASIC

tssue Number 20:

* Designing an 8035 SBC

* Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

* Soidering and Other Strange Tales

* Build a S-100 Floppy Disk Controlier:
WD2797 Controlier for CP/M 68K

issue Number 21:

* Extending Turbo Pascal: Customize with
Procedures and Functions

* Unsoldering: The Arcane Art

* Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World

* Programming the 8035 SBC

issue Number 22:

* NEW-DOS: Write Your Own Operating
System

* Variability in the BDS C Standard Library
e The SCSI interface: Introductory
Coiumn

¢ Using Turbo Pascal ISAM Files

¢ The AMPRO Little Board Column

Issue Number 23:

e C Column: Flow Control & Program
Structure

* The Z Column: Getting Started with
Directories & User Areas

* The SCSI Interface: introduction to SCSI
* NEW-DOS: The Console Command
Processor

* Editing The CP/M Operating System

¢ INDEXER: Turbc Pascal Program to
Create Index

* The AMPRO Littie Board Cotumn

issue Number 24:

» Selecting and Building a System

e The SCSI Interface: SCSI Command
Protocol

« Introduction to Assembly Code for CP/M
» The C Column: Software Text Filters

« AMPRO 186 Column: Installing MS-DOS
Software

e The Z Column

« NEW-DOS: The CCP Internal Commands
¢ ZTIME-1: A Reaitime Clock for the AM-
PRO Z-80 Little Board

issue Number 25:

Repairing & Modifying Printed Circuits
Z-Com vs Hacker Version of Z-System
Exploring Single Linked Lists inC
Adding Serial Port to Ampro L.B.
Building a SCSI Adapter

New-Dos: CCP Internal Commands
Ampro '186 Networking with SuperDUO
ZSIG Column

Issue Number 26:

* Bus Systems: Selecting a System Bus

« Using the SB180 Real Time Ciock

e The SCSI Interface: Software for the
SCS| Adapter

* ingside AMPRO Computers

» NEW-DOS: The CCP Commands Con-
tinued

e ZSIG Corner

¢ Affordable C Compilers

e Concurrent Multitasking: A Review of
DoubleDOS

issue Number 27:

* 68000 TinyGiant: Hawthorne’s Low Cost
16-bit SBC and Operating System

e The Art of Source Code Generation:
Disassembling Z-80 Software

* Feedback Controi System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

« The C Column: A Graphics Primitive
Package

* The Hitachi HD64180: New Life for 8-bit
Systems

« ZSIG Corner: Command Line Generators
and Aliases

s A Tutor Program for Forth: Writing a For-
th Tutor in Forth .

o Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

* Starting your Own BBS

« Build an A/D Converter for the Ampro
L.B.» HD84180: Setting the wait states &
RAM refresh, using PRT & DMA

* Using SCS! for Real Time Control

* Open Letter to STD-Bus Manufacturers
* Patching Turbo Pascal

* Choosing a Language for Machine Con-
trol

Back Issues

Issue Number 29:

« Better Software Filter Design

* MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

* Using the Hitachi HD64180: Embedded
processor design.

* 68000: Why use a new OS and the 680007
« Detecting the 8087 Math Chip

* Floppy Disk Track Structure

¢ The ZCPR3 Corner

Issue Number 30:

* Double Density Floppy Controlier

« ZCPR310P forthe Ampro L.B.

* 3200 Hacker's Language

o MDISK: 1 Meg RAM disk for Ampro LB,
part2

¢ Non-Preemptive Multitasking

* Software Timers for the 68000

+ Lilliput Z-Node

¢ The ZCPR3 Corner

* The CP/M Corner

Issue Number 31:

* Using SCSI for Generalized I/O

« Communicating with Floppy Disks: Disk
parameters and their variations.

* XBIOS: A replacement BIOS for the
SB180.

* K-OS ONE and the SAGE: Demystifing
Operating Systems.

* Remote: Designing a remote system
program.

e The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

* Language Development: Automatic
generation of parsers for interactive
systems.

« Designing Operating Systems: A ROM
based O.S. for the Z81.

» Advanced CP/M: Boosting Performance.
« Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

e WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCII terminal
based systems.

* K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

s The ZCPR3 Corner: NZCOM and ZC-
PR34.

Issue Number 33:

» Data Flie Converslon: Writing a filter to
convert foreign file formats.

s Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

¢ DataBase: The first In a series on data
bases and information processing.

* SCSI for the $S-100 Bus: Another example
of SCSI's versatility.

¢ A Mouse on any Hardware: Implemen-
ting the mouse on a 280 system.

* Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

» ZCPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0

37

Issue Number 34:

e Developing a File Encryption System.

o Database: A continuation of the data base
primer series.

e A Simple Multitasking Executive: Design-
ing an embedded controller multitasking ex-
ecutive.

e ZCPR3: Relocatable code, PRL files,
2CPR34, and Type 4 programs.

o New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy toc pro-
gram.

o Advanced CP/M: Operating system exten-
sions to BDOS and BIOS, RSXs for CP/M 2.2,
e Macintosh Data File Conversion in Turbo
Pascal.

o The Computer Corner

Issue Number 35:

® All This & Modula-2: A Pascal-like alterna-
tive with scope and parameter passing.

- A Short Course in Source Code Genera-

tion: Disassembling 8088 software to pro-

. duce modifiable assem. source code.

o Real Computing: The NS32032.

® S-100: EPROM Burner project for S-100
hardware hackers.

e Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

o REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your assem-
bler, linker and debugger.

» The Computer Corner

Issue Number 36:

e Information Engineering: Introduction.

e Modula-2: A list of reference books.

e Temperature Measurement & Control: Ag-
ricuttural computer application.
e ZCPR3 Corner: Z-Nodes,
strand computer, and ZFILE.

¢ Real Computing: NS32032 hardware for
experimenter, CPUs in series, software op-
tions.

o SPRINT: A review.

o REL-Style Assembly Language for CP/M
& ZSystems, part 2.

e Advanced CP/M: Environmental program-
ming.

e The Computer Corner.

2-Plan, Am-

Issue Number 37:

e C Pointers, Arrays & Structures Made Eas-
ier: Part 1, Pointers.

e ZCPR3 Corner: Z-Nodes,
NZCOM, ZFILER.

e Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

e Shells: Using ZCPR3 named shell vari-
ables to store date variables.

® Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

e Advanced CP/M: Raw and cooked con-
sole [/O.

¢ Real Computing: The NS 32000.

e ZSDOS: Anatomy of an Operating System:
Part 1.

¢ The Computer Corner.

patching for

Issue Number 38:
o C Math: Handling Dollars and Cents With

C.

e Advanced CP/M: Batch Processing and a
New ZEX.

e C Pointers, Arrays & Structures Made Eas-
ier: Part 2, Arrays.

e The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

® Information Engineering: The portable In-
formation Age.

e Computer Aided Publishing: Introduction
to publishing and Desk Top Publishing.

e Shells: ZEX and hard disk backups.

e Real Computing: The National Semicon-
ductor NS320XX.

o ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 30:

e Programming for Performance: Assembly
Language techniques.

e Computer Aided Publishing: The Hewiett
Packard LaserJet.

¢ The Z-System Corner: System enhance-
ments with NZCOM.

e Generating LaserJet Fonts: A review of
Digi-Fonts.

¢ Advanced CP/M: Making old programs Z-
System aware.

e C Pointers, Arrays & Structures Made Eas-
ier: Part 3: Structures.

e Shells: Using ARUNZ alias with ZCAL.

e Real Computing: The National Semicon-
ductor NS320XX.

o The Computer Corner.

Issue Number 40:

e Programming the LaserJet: Using the es-
cape codes.

® Beginning Forth Column: Introduction.

o Advanced Forth Column: Variant Records
and Modules.

o LINKPRL: Generating the bit maps for PRL
files from a REL file.

o WordTech's dBXL: Writing your own cus-
tom designed business program.

¢ Advanced CP/M: ZEX 5.0—The machine
and the language.

o Programming for Performance: Assembly
language techniques.

e Programming input/Output With C: Key-
board and screen functions.

o The Z-System Comer: Remote access sys-
tems and BOS C.

¢ Real Computing: The NS320XX

o The Computer Corner.

Issue Number 41:

e Forth Column: ADTSs,
Concepts.

s Improving the Ampro LB: Overcoming the
88MDb hard drive limit.

e How to add Data Structures in Forth

e Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.

e The Z-System Corner: Extended Multiple
Command Line, and aliases.

o Programming disk and printer functions
with C.

o LINKPRL: Making RSXes easy.

e SCOPY: Copying a series of unrelated
files.

o The Computer Corner.

Object Oriented

e Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

e Using BYE with NZCOM.

e C and the MS-DOS Screen Character At-
tributes.

e Forth Column: Lists and object oriented
Forth.

e The Z-System Comer: Genie, BDS Z and
Z-System Fundamentals.

e 88705 Embedded Controller Application:
An example of a single-chip microcontrolier
application.

e Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

o Real Computing: The NS 32000.

o The Computer Corner

issue Number 43:

Standardize Your Floppy Disk Drives.

A New History Shell for ZSystem.

Heath's HDOS, Then and Now.

The ZSystem Corner: Software update
service, and customizing NZCOM.

o Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

e Lazy Evaluation: End the evaluation as
soon as the resuit is known.

® S-100: There's stiil life in the old bus.

e Advanced CP/M: Passing parameters,
and compiex error recovery.

e Real Computing: The NS32000.

e The Computer Corner.

Issue Number 44:

e Animation with Turbo C Part 1: The Basic
Tools.

e Muititasking in Forth:
FB8FC11 and Max Forth.

o Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

o DosDisk: MS-DOS disk format emulator
for CP/M.

e Advanced CP/M: ZMATE and using
lookup and dispaich for passing parame-
ters.

e Real Computing: The NS32000.

o Forth Column: Handling Strings.

e Z-System Corner: MEX and telecommuni-
cations.

¢ The Computer Corner

New Micros

\

Subscriptions u.s. Foreign Total
(Surface)
1year (6 issues) $18.00 $24.00
2 years (12 issues) $32.00 $46.00
Air Mail rates on request.
Back Issues
16 thru #43 $3.50 ea. $4.50 ea.
6 or more $3.00 ea. $4.00 ea.
#44 and up $4.50 ea. $5.50 ea.
6 or more $4.00 ea. $5.00 ea.
Issue #s ordered
Subscription Total

Back Issues Total

Total Enclosed

Alil funds must be in U.S. dollars on a U.S. bank

Name

Address

O Check 0O VISA

Card #

0 MasterCard Exp. Date

Signature,

The Computer Journal
190 Sullivan Crossroad, Columbia Falls, MT 59912
Phone (406) 257-9119 Mountain Time Zone

The Computer Journal / #45

Computer Corner

(Continued from page 40)

need to be in place and followed. We have
a big problem now with the use of “C”.
Many organizations have gone to “C” as
the solve all language. They feel by using
“C” there is no need to institute all the
.standards I talk about. The truth is just the
opposite. Unreadable and undocumented
“C” code is just as possible as any other
type of coding. You need standards for
your own programmers and any outside
consultants. We have treated software as a
magical art, but in fact it is a simple sci-
ence like many others. When we buy a car,
you know you can go an buy a shop man-
ual for it. That shop manual shows you
how things go together, are repaired, sche-
matics for trouble shooting, and basically
the scientific rules by which the car was
created. A software product should have
nothing less than a “shop manual” as well.

EXORMACS

A few last comments on the Motorola
Exormacs assembler. There are two items
about that assembler which are important
for our readers. The last ten years of work
was done using the Exormacs assembler. I
have gone to the Avocet assembler on the
PC to replace the use of the Exormacs. In
doing so I have discovered many things.
The most important is how poor the Exor-
macs is as an assembler.

Some of the modules that assemble
properly on the Exormacs will produce
several hundred errors. At first I thought it
was just minor differences between the
Exormacs and the Avocet. Instead I have
learned that the difference is due to lim-
ited error checking on the part of the Ex-
ormacs. I am now a confirmed believer
that your assembler should have good
tight error checking. As part of the ab-
sence of personal controls, the past pro-
grammer exploited all the loose structures
the Exormacs assembler allowed them to
use.

A recent case in point has to do with
DC statements. DC statements allocate a
place in memory and set what is stored
there to a defined value. A DS statement
however just sets the space aside, typically
setting it at zero value. When a table of
variable values is desired you can include
that table by using the DC statements and
the corresponding desired value. If you
want tables in which an offset or pointer
into the table is used instead of the exact
address you typically will use DS state-
ments to define the pointers into that
table.

The Computer Journal / #45

Those are the rules which the Exor-
macs manual states. If an “offset” value is
placed at the beginning of the DS defini-
tions, then the assembler will equate point-
ers for those defined items. Later you can
use the defined items as pointers or offsets
that are added to a register to fetch or
change a value stored in that location. The
assembler however should error out if a
DC statement is given an “offset” value.
The problem is an offset forces addressing
to start at zero location, and as such you
are directing the assembler to put specific
values at those locations.

Well it turns out the Exormacs allows
DC statements with “offsets” of zero. This
is completely opposite of what the manual
states. What actually happens is the as-
sembler treats the DCs as if they were
DSs. It returns pointers if we give the DCs
a zero offset, but addresses if no offset is
used. When the same code is used on the
Avocet crossassembler hundreds of errors
get produced because it adheres to the
rules. It forces you to create lists of offset
pointers different from the list of values to
be stored there. For me it has made things
more difficult, because not only must I
now make two lists of pointers, but I have
to seek out these differences wherever
they maybe in 4 megabytes of source code.
It really is a management of information
problems. It makes it hard to find out
which module is actually defining the
space and which modules are just using
the same list of DCs for offset pointers
(they all use the same include file). With
two separate lists, I can see the users from
the source quickly and easily.

The biggest concern is the lack of error
checking. If use of DCs with an “offset” is
an error, say so. I have since found many
cases where the assembler will just put
what it thinks should go there instead of
erroring out. What it thinks should go
there and what you need to go there to
make it work, may in fact be two different
things. If I say do this, and that is not cor-
rect, I want to know! Without good error
checking you may find yourself with bugs
that are assembler generated, and can be
solved only by disassembling the produced
code. I have spent many hours of late
doing just that. What I have discovered is
a lot of places in which the code is not
what was assumed or desired.

Because the managers of the project
had so little control over the programmers,
nobody has ever checked to see what the
assembler produced. Their solution to
bugs was adding more code to make up
for the unknown source of the bug (the

assembler we now know). Based on the er-
rors I have seen on the Avocet, I guess
there may be as many as 1000 lines of
code improperly assembled that exist in
the 50,000 lines of source code. To make it
worse, I may have to find every one of
those errors, before it can be assembled
on a new assembler. No simple task.

Till Later

We spent this whole time on program-
ming, but I think it is important. If your
business is based on a software product, I
hope you may look a little more seriously
into what is happening within those
begin...end statements. Next time I hope
to talk about the Harris RTX2001A.

4)
CP/M SOFTWARE
Including Amstrad

100 Page Public Domain Catalog,
$8.50 + $1.50 S&H
New Digital Research CP/M 2.2 manual
$19.95 + $3.00 SAH

Turbo Pascal $65.00 + $2.50 S&H
Uniform $65.00 + $2.50 S&H
LocaScript 2 $80.00 + $2.50 S&H
Nevada $30.95 + $2.50 S&H
Out-Think $00.95 + $2.50 S&H
Checks & Balances $74.95 + $2.50 S&H
T/Maker $120.00 + $2.50 S&H
SuperCaic $96.00 + $2.50 S&H
EZDT (a 280 DDT) $17.95 + $2.50 S&H
Plus Much More —————
Over 400 Public Domain disks: Languages,
Datab Word Pr , Inf G

Spread Sheets, & Utilitles. Some CP/M-86 Public
Domain. Over 300 Disk Formats. No extra charge
for yours! Disk copying services including DOS,
Apple, Mac, Atari & Amiga. SASE for free informa-
tion. 30 page catalog $1.00.

Elliam Assoclates

Box 2664-T
Atascadera, CA 93423

_ (805) 466-8440)

39

The Computer Corner

by Bill Kibler

Another article with more on a hot
topic (at least for me)—programming. It
occurred to me I hadn’t explained what or
how you can determine if your program is
well structured. So let’s see if we can’t give
you some pointers into better code gen-
eration and programmer management.

Defining The Problem

The reason I have been so much in-
volved lately with what constitutes good
and bad programming is my job. I work
for a company who has 10 year old code
and can not maintain it. I know that they
are not unusual in any way. Lots of com-
panies are finding themselves in this situ-
ation. There are a number of mistakes
they have all made and as we will see,
some ways they could have prevented
those problems.

Let’s talk about my current problems
and how they got there. This is 68000 as-
sembly language code. In many cases this
was the first time any of these program-
mers had written assembly language code.
"They knew only high level structures and
imported them to the code whenever pos-
sible. They have used macros in order to
create the higher level structures they
thought were needed. Many of the pro-
grammers felt only they were capable of
writing good code. Personality problems
added to the way code was generated.
Some of the original employees are still
here and I can see how they are still mess-
ing up the other programmers by forcing
their concepts of good programming on
them.

Before I explain how to test good style
from bad, what is bad programming. I
have 10 years worth of code that is mostly
unreadable. It runs on for pages and ap-
pears to do nothing. They have used mac-
ros which are not transportable to other
assemblers. The have gone so far as to
write their own computer language. To
make it worse they have incorporated
macros to talk to their own language. They
use thosc special macros even when the
code is going into ROMs that do not inter-
face to their code. Since many of the pro-

40

grammers have left the company, there
are large sections of code in which we have
no person to ask to find out what they are
suppose to do. Documentation is almost
non existent. There is not a single docu-
ment that explains how the actual code
works, which modules talk to which mod-
ules, what method of passing data is used,
or what the overall functionality of the
program is. We can’t rewrite the code be-
cause we do not know what the code actu-
ally does.

How Not to Get There...

The company got themselves in this
problem for a number of reasons. Early
on, the managers should have been in
charge and were not. By this I mean, tak-
ing control from your programmers. As a
manager you need to know where the
company is going, what the long term ob-
jectives of the product are, need clear
functional specifications of the product,
and take charge of the project. A new
manager here, has his programmers wriie
specifications of the proposed code before
any code is written. This is a good start.

Where he and most places fall apart is
checking on the actual code written. No-
body here reviews the code once it is writ-
ten. If it works, it becomes a product. That
is how 10 years of really bad, but working
code, has been keeping the company
going. Now they want to keep their cus-
tomers happy and are having real prob-
lems fixing minor bugs and adding simple
upgrades. What was needed all along was
a review committee on written code.

If you are a single programmer working
on a project, you will know every bit of
code. If however you are part of a group
working together on a large project, your
code must fit in with others and be read-
able by them as well. The only way to
guarantee that is to have the group review
that code. For small groups everybody
would get involved. For larger groups,
committees of three or four would do. The
main task for the manager is making sure
the reviewers do it properly.

Some simple guidelines are needed,

and it is up to the manager to take charge
and enforce those guidelines. Most of the
code I see does work very well. The prob-
lems come when that code is stuck into, or
as the case may be not into modules. “Spa-
ghetti” code typically has good sections,
however those sections need to be “fac-
tored” out. Factoring is breaking the code
into smaller modules so that the same
functions are not repeated hundreds of
times with new code.

What I have used for myself is a list of
questions that need to be asked for every
program you write or are involved with.
The reviewers need to continuously ask
these questions and use them as guide
lines. They are:

1) What will be needed if this code is ported
over to another operating system, hard-
ware platform, assembler, or program-
ming style.

2) What will happen if new features are
needed, can they be added easily.

3) Does the structure lend itself to easy main-
tenance, how are minor changes made,
can bugs be found and corrected eas-
ily.

4) Is the structure clearly defined and docu-
mented so we can work on the project
two years from now without major prob-
lems.

5) What happens if the lead programmer
dies, moves, or gets sick.

The last one is my favorite and usually
causes the most problems. It becomes a
problem when they answer back that “I
will get it done after ... “, because that
after never happens. As a manager you
can not ignore these five concepts, doing
so is a guarantee that your code will not be
portabie, maintainable, or repairable. A
bottom line here is setting standards for
your programming operation.

Those standards involve how the code
is written, not only in what language used,
but style, version tracking, documentation,
flow charting, testing, and generation.
Clearly defined standards for these aspects

(Continued on page 39)

The Computer Journal / #45

