|

Programming - User Support

Applications

l

l

{ssue Number 57

1SSN # 0748-9331

September / October 1992 US$3.95

Z-System Corner
Dr. S-100
Home Automation with X10
Real Computing
File Transfer Protocols
MDISK at 8 MHZ.
Introduction to Forth
Shell Sort in Forth

Z AT Last!

EPROM PROGRAMMERS

$750.00

Al CETR S PUE e < Completely stand-atone or PC driven

LWL ELEREETR « Programs E(E)PROMs
VN Yy, Splitting 1 Megabit of DRAM

Stand-Alone Gang Programmer

User upgradable to 32 Megabit
.3/.6" ZIF socket, RS-232.

Paratiel In and Out

32K internal Flash EEPROM for easy
firmware upgrades

Quick Pulse Algorithm (27256

in 5 sec, 1 Megabit in 17 sec.)

2 year warranty

Made in US.A.

Technical support by phone

Complete manual and schematic

Singls Sackat Programmer also

available. $550.00

« Split and Shutfie 16 & 32 bit

+ 100 User Definable Macros, 10 User
Definable Configurations

* intefligert identifier

* Binary, Inte! Hex, and Motorola S

20 Key Tactile Keypad (not membrane) 20 x 4 Line LCD Display

$139.95

Internal Programmer for PC
New Intelligent Averaging Algorithm. Programs 64Ain 10sec., 256in 1 min.. 1 Meg (27010,G11) in2 min. 45 sec.,

2 Meg (27C2001) in 5 min. internal card with external 40 pin ZIF. 211, Cable 40 pin ZIF
\

* Reads, verifies, and programs 2716, 32. 32A. 64. |
64A, 128, 1284, 256, 512, 513, 010. 011, 301,
27C2001, MCM 68764, 2532

o Automatically sels programming vallage

 Load and save bufier to disk

 Binary, Intel Hex, and Motorofa § formats

o Upgradable to 32 Meg EPROMs

o No personality modules required .

 1year warranty » 10 day money back guarantee

* Adapters available for 8748, 49, 51, 751,52, 55, |
TMS 7742, 27210, 57C1024, and memory cards i

* MadeinUSA. {

Call for more information

(916) 924-8037
cop @0 == FAX(316) 972990

NEEDHAM'S ELECTRONICS

4539 Orange Grove Ave. « Sacramento, CA 85841
Mon. - Fri. 8am - S5pm PST

Cross-Assemblers . owasssow
SII’I_’IUI&tOI‘S as low as $100.00
Cross-Disassemblers vz 1000
DeveIoPer Packages

as low as $200.00(a $50.00 Savings

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,

. including conditional assembly and unlimited include files.

Get It To Market--FAST
Don't wait until the hardware is finished to debug your software. Qur
Simulators can test your program logic before the hardware is built.
No Source!
Aminor glitch has shown up in the firmware, and you can't find the original

source program. Our line of disassemblers can heip you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.
Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 Intel 8051 intel 8096
Motorola 6800 Motorcla 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motoroia 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilog 780

NSC 800
Hitachi HD64180 Motorola 68000,8 Motcgnrola 68010 Intel 80C196
e Ail products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develog;menl Products Group
716 Thimble Shoals Bivd, Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

Joumey with us to discover the shortest path between
programming problems and efficient solutions.

The Forth programming language is a model of simplicity:
Inabout 16K, itcanoffera complete development systeminterms
of compiler, editor,andassembler, aswell asaninterpretivemode
to enhance debugging, profiling, and tracing.

As an “open” language, Forth lets you build new control-flow
structures, and other compiler-oriented extensions that closed
languages do not.

Forth Dimensions is the magazine to help you along this
journey. Itis one of the benefits you receive as amember of the
non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable,andannual FORML conferencesare
alsosupported by FIG. To receive a mail-order catalog of Forth
literature and disks, call 510-89-FORTH or write to:

Forth Interest Group, P.0. Box 2154, Qakland, CA 94621,
Membership dues begin at $40 for the U.S.A. and Canada.
Student rates begin at $18 (with valid student 1.D.).

GEnie is a trademark of General Electric.

SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software
Z3PLUS or NZCOM (now only $49 each)
XBIOS for SB180 ($50)

ZMATE text editor ($50)

BDS C for Z-system (only $60)

Turbo Pascal new manual ($60)

DSD: Dynamic Screen Debugger ($50)
PCED: ARUNZ and LSH for MSDOS ($50)
ZMAC macro-assembler ($50, $70 with printed manual)
Order by phone, mail, or modem and use
Check, VISA, or MasterCard.

Z-System public domain software by mail.
Regular Subscription Service
Z3COM Package of over 1.5 MB of COM files
Z3HELP Package with over 1.3 MB of online documentation
Z-SUS Programmers Pack, 8 disks full
Z-SUS Word Processing Toolkit
And More!

For catalog on disk, send $2.00 ($4.00 outside
North America) and your computer format to:

Sage Microsystems East
1435 Centre Street

Newton Centre MA 02159-2469
(617) 965-3552 (voice 9 to 11AM)
(617) 965-7259 (pw=DDT)
(MABOS on PC-Pursuit)

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consuitant
Chris McEwen

Contributing Editors
Brad Rodriquez
Matt Mercaldo

Tim McDonough
Frank Sergeant
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1992
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $18 one year (6 issues), $32 two
years (12 issues). Foreign (surface
rate). $24 one year, $44 two years.
Foreign (airmail): $38 one year, $72
two years. All funds must be in U.S.
dollars drawn on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 535, Lincoln,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple II, lI+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk, Plu*Perfect Systems. Clipper, Nantucket;
Nantucket, Inc. dBase, dBASE II, 4BASE III, dBASE Il
Plus, dBASE IV; Ashton-Tate, inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar; MicroPro Inter-
national. {BM-PC, XT, and AT, PC-DOS; IBM Corpora-
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Joumnal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence.

TC

The Computer Journal
Issue Number 57 Sept / October 1992

Editor’'s COMMENESccccevrrererisensessssnssesssnnesssssassersnes 2

Reader to Readerc.cccecernimrninmrnrsesenneesssecssanens -3
Z-Systems COMMerocvvmiineiinmnsinissnnsssssessnsssnnsassesss 8
Language Independence.

By Jay Sage.

Dr. S-100 ... s connenens 12

Starting our regular support for S-100 systems.
By Herbert R. Johnson.

Home Automation with X10cccccciiiiiicncnnneesssnnees 14

A definitive report on home control with CP/M systems.
By Rick Swenton.

File Transfer Protocols rerenerrennes vesererernnsnnsene 20

All you wanted know about modem transfers.
By Steven Westlund.

Real ComMpUtingccccevereercmmsmmsmssnsssmssssesssscssnsaessnnsss 29
0S/2, MINIX and SCSI.
By Rick Rodman.

MDISK at 8 MHZ.ccccvniinvvrrvicnnnnas T .. 29
An AMPRO update.
By Terry Hazen.

Introduction to FORTHcccccccreerrmereerescssscsssassnnenees 91

A special beginners introduction to Forth.
By Frank Sergeant.

Shell Sortin Forth........c.cccvcmeviinnnenneee. reeeeeeeeeeeneans 35
A great intermediate project in Forth.
By Walter J. Rottenkolber.

ZATLaSt ... s 42
CP/M or ZCPR on a PC?

By Lee Bradley.

The Computer Corner..........cceuueeee. ST - X]
By Bill Kibler.

EDITOR'S COMMENTS

Welcome to issue number 57. This time
* TCJ is back to normal minimum size.
Time and money (the problems of any
business these days) have me keeping
the size from getting too large. Actually
I am saving up for the big celebration
‘issue number 60.

NOTICE TO ALL WRITERS

Issue number 60 will be our TENTH
YEAR aniversary issue. Since there are
only two more issues to go, all our writ-
ers (and hope to be writers) need to re-
view what they want to say and do for
this special issue. I am looking for retro-
spective articles. Articles that compare
systems of 1982/83 vintage to today’s.

For ‘CLASSIC’’ system people, I am
looking for articles that chronicle the
rise and fall of various vendors. A good
example might be the BIG BOARD sys-
tem which got Dave Thompson doing

Micro Cornicopia magazine. That board
became the Xerox 820 and Kaypro.

MICRO-C DISK LIBRARY

I have a tenative agreement with Dave
Thompson to acquire the rights to sell
the Micro C floppy disk library. If all
goes as planned, by next issue I should
have all the disks in house and be able to
supply those disks. The library consists
of 5 1/4 and 8 inch disks for Xerox,
Kaypros, Big Boards, and PC based sys-
tems. This move is part of my CLASSIC
system support concept.

Many disks in the Micro C library are
not available elsewhere. This is impor-
tant if you are trying to bring up an older
system. A number of CP/M BIOS source
files are in the library. Along the same
grounds, I will as time permits, be going
back through old issues, putting listings
on disk. This will take considerable time,

so I do not expect to have any available
till summer of next year.

ISSUE 57

In this issue our regulars are back in full
strength. T must congratulate them for
being able to produce so much, for so
little reward, and being under so many
other obligations. Jay Sage and Rick
Rodman have big columns, and Frank
Sargeant has what so many have been
asking for, a FORTH intro tutorial.

A number of articles were unable to
meet press deadline, because of their
own product deadlines (the D/A article
series is being dealyed due to product
shipment and last minute modifications.)
Spread throughout the issue, you will
find some new features like, CLASSI-
FIED, SUPPORT WANTED, NEWS-
LETTER REVIEW, and so much more.
So read on and enjoy! Bill Kibler.

DELAYS, DELAYS, and more DELAYS

The bad side of the changeover has
been delays. Issue number 57 was
shipped in early October and not our
normal September 15 mailing. Some
back issue orders have taken 3 months
to complete. Subscriptions, address
updates, and renewals have all been
delayed in one form or another. To
our readers we apologize for the
DELAYS. We are working as hard as
we can to correct any and all problems.
Systems are being set up to streamline
the operation and prevent probiems.
Some systems are in place, many are
still waiting their turn. We ask all
readers to be patient with us as the
transition continues into next year.

What can you do to help? From our
readers we ask that you write and not
call whenever possible. Written re-

sponses are less prone to €rrors, espe-
cially when they contain full addresses
and names. Please do not send only checks
or half filled out forms. We cross check
everything received for errors. Short and
cryptic correspondence does not help.
We have recently received incompleted
credit card orders, requiring a second
contact and more delays. Please proof
read and provide phone numbers (only
with credit card orders.)

The best help we can get from you the
readers of The Computer Journal is your
financial support. All these changes are
taking money. We ask that you read and
review your subscription labels, and when
possible pay early. That helps save us the
work and expense of sending out re-
newal forms. TCJ will no longer send
issues that have been lost due to not

recciving a change of address request in
time. We use the post office 3547D ser-
vice. They charge $.35 to tear off the
cover (and throw away YOUR issue)
when you do not offer to pay forwarding
charges. All we get from the postal ser-
vice is your new address. If you figure in
all the costs, your lost issues, form
3547D, a second issue, mailing
expenses,our cost nears $4.00 to get your
second issue to you. We typically recieve
10 to 20 3547Ds each month. Only you
can help us with this problem.

Lastly please support our advertisers.
They support TCJ by helping to offset
the cost. So when contacting them, please
say you saw their ad in TCJ. Our only
alternative is to raise our subscription
rates, which are now very low. Your
help and comments are always welcome.

The Computer Journal / #57

READER to READER

92/08/11

From: L.CAMERONS
To: B.KIBLER

Sub: TCJ issue 56

Dear Mr. Kibler,

I have a number of comments that I
would like to make on issue #56 of TCJ
inspired by your editorial comments:

I have spent almost two years now put-
ting together my vintage IMSAI com-
puter and have enjoyed it tremendously.
When I first bought it, it was a mess and
I have lovingly restored it to perfect
working condition. This computer in-
troduced me to electronics; before start-
ing to work on it I didnt know the right
end of a soldering iron! I would love to
see more articles on the S-100 buss. How
about printing a list of people who stock
S-100 buss compatible cards? I had a
hell of a time locating cards for my IMSAI
and actually took out a “‘wanted’’ ad in
Nuts and Volts mag to be able to find
them.

My IMSALI is running a Z80 Cromemco
processor board, IMSAI BASIC and
IMSAI assembler from 2708’s, 48K
RAM, and a Hayes S-100 300baud mo-
dem (I'm writing from my IMSAI).
Currently I am working on getting up
and running an Altair. Iguess you could
say this is my hobby and I would like to
be able to contact other antique com-
puter junkies thru your magazine! Some-
times I feel like I am the only person
crazy enough to be doing something like
restoring old *‘obsolete’’ computers but
I get a kick out of it; I feel like I am
preserving a piece of something that has
been forgotten about, but literaly changed
our society!

The Computer Journal / #57

I think your changing the focus of the
magazine to more hardware related
projects is a good move. I cant honestly
say that I have gotten anything out of my
trial subscription but that may change I
hope with the next issue. The software
articles you published seemed to be di-
rected toward an extremely small group
of your readers. Iagree with your com-
ments about Elektor electronics trying to
reach to broad of a cross section of inter-
ests and in my opinion publishing
unfocused and watered down articles,
but your magazine was at the other ex-
treme: too narrow!

In conclusion: ‘‘platform independent’
good idea; continued S-100 stuff: good
idea; more focused on hardware and less
on software: definetely a great idea.

Larry Cameron

p.s. anything on GEnie Z80 related that
I can download and make use of on my
IMSAI?

=END=

Larry:

Thanks for the GENIE message. On S-
100, you will be happy to see our new
Doctor S-100. We have also started clas-
sified columns to help you find and sell
items that only other ‘‘Classic system’’
lovers would want. I prefer the term
“CLASSIC’ in place of ‘‘obsolete”’, but
I think most of our readers still remem-
ber with fondness their first put it to-
gether project. TCJ's readership israther
wide, so there may be some articles over
your head at first, but by looking up old
articles and just hanking in there it will
all make sense one day soon. To help

you out, we are starting a few more
beginners columns to try and bring your
skills up to date. Thanks for the good
words. BDK

9/15/92
Dear Mr. Kibler

Congratulations on becoming the editor
of the computer journal. I have been a
subscriber for several years and have
enjoyed the articles very much. I was
very interested to read the letter by Herb
Johnson of Trenton, New Jersey express-
ing his interest in S-100 bus systems. As
a long time user of Compupro equip-
ment 1 would very much like to see ar-
ticles about the S-100 bus.

I also wanted to express my opinon of
the new Computer Journal. I was some-
what disappointed to see the small size
of the new magazine. It seems to have
dimished to less than half of its previous
size. I was also disappointed not to see -
the column on Z-system software by Bill
Tishey. Since The Computer Journal is
one of the last 8-bit computer maga-
zines, | have always looked forward to
the articles about Z-system programs and
other information about 8-bit software
and hardware.

The other reason that I felt compelled to
write was the poor quality of some of the
writing, I was particulary disturbed by
some of your articles and comments. Your
writing is riddled with grammatical er-
rors and misspellings and some of the
sentenences do not make sense. Mr.
Kibler, there is no letter ““a’’ in the word
excellent and [possessives are formed by
adding apostrophe ‘s’ such as in “‘IBM’s
implementation’’ and °‘‘Netware’s

NETBIOS.” Also, referring to page 4,
people do not ‘‘do’’ articles any more
than the ‘‘do”’ lunch. I really don’t think
you need to include your initials at the
end of your comments to identify your-
self as the writer. By the way, the sen-
tence on page 2 should be *‘are my com-
ments’’ not ‘‘is my comments.”’

I am by no means an expert writer but I
do find the multitude of errors unaccept-
able, especially since your first sentence
is about the ‘improved’’ journal. I ex-
pect the editor of any magazine to have
at least basic writing skills and be able to
spell. I don’t wish to be excusively criti-
cal and, if you would like, I would be
very happy to proof read any of your
writing before publication.

Please let me know if I can be of any
help. Best of luck with the magazine.

Regards, Chris Christsen, S.B. CA
Chris:

Thanks for all the good and bad com-
ments. I really do try and catch all the
mistakes possible. When I put issue 56
together, my main concern was making
it to press ASAP. Far too much time had
passed between issues and making dead-
line was foremost. That meant my third
and four proofing just didn’t happen. I
would love to use your help, but I do
most all the work between my job and
teaching. TCJ would never make it to
press if I had to ship everything some-
where else to be checked. Thanks any-

way.

The size and missing articles were mostly
due to the change, people on vaction,
and everyone being overworked. We try
to keep the magazine at 60 pages and
Jeel that #56 s size will not happen again.
Since adding so many new writers and
columns, even if someone takes time off,
there will be plenty to read without them.
I am looking forward to hearing from
you again after I have had a chance to
introduce all the new writers and topics.
I hope by this time next year to have a
much better handle on everything you
mentioned. Thanks again. BDK

P.S. After your comments on my initial-
ing my writing 1 checked several na-

tional magazines. The editors all put
their initials after their comments and |
do it now so that later editors (I plan on
having my “‘contributing editors’’ re-
spond in later issues) can be distin-
guished from mine.

8/11/92
Dear Bill Kibler,

I really like your ideas about TCJ for the
next 10 years. I think Forth is a great
language and a great way to learn about
programming. Your emphasis on plat-
form independent projects is excellent.

De-emphsizing programming is okay. I
think software should be treated more
like hardware anyway. By this I mean
put the software and processor in a black
box and use it as a functional block.

Would you be interested in projects that
involve i2¢ bus from Signetics? These
chips make for a fairly platform inde-
pendent approach.

I got the 68HC16 kit and it looks good.
I also got the 68HCO5K1 kit and it is
excellent. Maxim also puts out really
great kits. Some vendors are really get-
ting the idea.

Are any of your issues available in text
form only on a disk? This would be more
usefful to me than a hardcopy. I can read
3.5 inch Mac and IBM format.

I primarily work with MacIntosh sys-
tems and single board systems such as
the New Micros 68HCI1.

Thanks for TCJ
Gus Calabrese, Denver CO

Gus:

Seems like I am on a roll with the NEXT
TEN article, now all I need to do is make
it all happen. Maybe you could help
make it happen with a few articles on
those Motorola kits. I have been plan-
ning on doing them myself, but not a
chance these days. How about it? Got
any great little learning project for those
trainers? TCJ will be suppling code on
disk in the future, but for now it has to

be hardeopy. I can and will be upload-
ing some code to GENIE, but proably
not till next year when I have more time.
On doing an article about the i2c, it
sounds great, in fact I have several
people who have suggested the same.
My policy is to print as many article on
a single topic as possible, only as long
they are not exactly the same. So con-
tact me about what you want to do and
I will make sure it hasn't already been
done. Thanks again Gus. BDK

9/8/92
Dear Mr. Kibler:

I was pleased with your article about the
next ten years for the TCJ. I am a retired
Electrical Engineer who got into com-
puting just after the WW-II, using ana-
log machines, onlly to miss the fun of
digital machines due to other demands
on my time. Now with time to play
“‘catch Up’’, your publication is most
interesting to me. I was sorry to sce
Micro-Cornucopia cease publication,

As a member of a local computer club,
I edit the small newsletter, a copy of
which is enclosed, since I commented on
the TCJ in a manner I hope is pleasing
to you.

I am looking forward to Herb Johnson’s
articles since I have several S-100 ma-
chines in various stages of dis-repair. I
also have some MS-DOS equipment.

I have enjoyed the embedded controller
articles.

T would like to see some articles on ad-
aptation of MS-DOS machines and print-
ers to barcoding of mail. It seems to me
that it is high time that the Post Office
Department extend reduced postage rates
to all mailers, not just volume mailers
with varying degree of political clout.

Best Wishes,
Eliot C. Payson, Litteton, CO.

Eliot:
Hopefully Herb’s articles will get your

S-100 systems running like new again.
Maybe we will even be able to get you

The Computer Journal / #57

running ZCPR on them as well. Your
clubs newsletter was great and thanks
for the good words. Barcoding hasn't
yet been covered in TCJ, guess it is an
oversight on our part. Maybe someone
out there reading this can correct the
problem. One of TCJ s writers is snowed
under with other projects (and our ar-
_ ticle as well), but when he sees the light
of day, Iwill try and get him to report on
how they do barcoding in Forth on a
80451. BDK

8/15/92
Dear Bill,

I read your computer Corner article about
your trials and tribulations using Netware
(known as NetPig to it’s friends).

I’ve been down the same road that you
are currently on. I ran a two computer
network for 18 months using The $25
Network ($25N). It is a super product
and I highly recommend it. I upgraded
the systems to The Little Big Lan (LBL)
(aka The $75 Network). It is also a su-
perior product and I also recommend it.
LBL supports both serial and Arcnet
cards. If you can put up with the speed
restricitons of a serial network and you
have two or three netnodes then the $25N
will work fine. If you think that some
day you will grow the network and will
require the additional speed that Arcne
gives you then LBL would be a viable
choice.

In my case I wanted to set up a network
that was:
inexpensive,
high speed,
did not cost a lot of money,
used twisted pair,
was cheap
did not require a dedicated
server,
low per node charge,
was easy to use,
economical,
easy to install and maintain
frugal,
allowed multiple peers in the
network.

The last requirement was to allow me to
use the single tape drive to back up the

The Computer Journal / #57

local disk on each node. I also wanted to
offer each system’s resources to other
users on the network.

My choice of networks is Artisoft’s
LANtastic. It is a very inexpensive peer
to peer network product. LANtastic sup-
ports a number of different network
boards in a variety of ways. There are
some network boards that LANtastic will
talk to directly. There are others that you
need the Adapter Independent (AI) ver-
sion. With the wide number of different
network adaptors, most of them sup-
ported in some way by LANtastic.

1 was able to obtain a large supply of
AT&T Starlan cards. Starlan is a IMB
twisted pait network. I have a ton of
unshielded twisted pair (UTP) in the
house, I wanted to use the cable rather
than pulling new cable to each node.
Sadly Starlan is not supported by
LANtastic. Something about the age of
the boards (pre transistor?) and the
strange memory addressing scheme.
After a number of tries with techsupport
it looked like a lost cause.

Then Artisoft announced LANtastic for
Netware. LANtastic for Netware uses
the IPX drivers and NETBIOS. You load
just the LANtastic REDIR and where
needed the SERVER programs. The
LANtastic packets ride inside the IPX
packets, the network delivers the packet
to LANtastic.

sesk ok okok de ol ok ok sk sk ok ok kokok kokok ok

* THE HARDWARE *

e ke e she e e e ol s s ke sk sk o e obe kel e s e ok sk ok ek

* PX *
Aok ok ok ok okl ok ok ok ok ok ok o e o ok o
* NETBIOS *
ok o ok ko ok ok ok o ok ok o o o o ko o o oK
* REDIR *
A ok AR AR o R o sk skok ok ok
* SERVER *

ke ook o ook o ok o ok e ok ok ok o sk ook Kok ok ok ok

A friend and I did some digging and
found Starlan IPX drivers. We also found
a very old (1985) copy of NETBIOS. We
loaded them into a test system, loaded
LANtastic and everything worked. The
neat thing is that you do not need
Netware, just the IPX drivers and
NETBIOS.

The network works quite well. I've been
running it for about five months and I've
had zero problems in using it. It is trans-
parent to all of the programs that I use -
and most major applications, for example
Windows 3.1, see that it is there and can
cope with it.

Like you I’ve been digging on the BBS
systems and I have found a number of
programs that work with LANtastic.
Most of the “‘well behaved programs™
are on the Artisoft BBS and on
Compuserve. I picked up a very nice
LAN monitor that tells me about packet
flow across the network. Since we are all
very lose the need for E-Mail is very
small, LANtastic has a very good E-
Mail program built into it. It also has a
‘‘chat’” program, pretty useless when
you can see the other person, but it may
be a feature to you.

Let me address the cost. The cost for
LANtastic for Netware is $299. This
allows you a 300 node network. The cost
of the Starlan boards range from $100
each to two for $25. (I'll let you decide
which boards I purchased.) Each node in
my network cost about $75. Depending
on the cost of your adaptors the cost may
be lower or higher. The key factor is that
IPX drivers can be found for most boards
and that my activity is supported by
LANtastic.

Ok, last plug for LANtastic. It has been
a PC Magazine “Editors Choice’’ the
last few times it has been reviewed. The
other great feature is Artisoft
Techsupport. I call, I get answers or I get
a baffled tech, who finds another tech,
who calls me back. We've thrown some
really gorky questions to them and they
have responded with some super answers.
(That actually was two plugs for Artisoft,
one of Techsupport’s big problems is my
inability to count.)

I"d like to address some of the comments
you made. I'll refer to the paragraph
numberr of your article.

Paragraph 9. You reference two books
about NETBIOS. Another good source
is Ralf Brown’s interrupt list that he
publishes four times a year. It describes
the NETBIOS structure and I've found

it to be very accurate.

Paragraph 10. LANtastic is also loaded
as TSR’s. You can usec the MARK and
RELEASE programs to remove them.
Due to the tiny size and the ability to
load them high, I doubt that you will
need to recapture the memory.

Paragraph 12. It’s interesting that most
of the mags state that LANtastic is not
good for networks more than a few hun-
dred users. It was really interesting that
a survey of networks shows that the av-
erage number of nodes in the network is
fairly small.

Paragraph 13. You hinted at an ODI
serial driver. I’d like to find a serial IPX
or ODI driver for my laptop. Let me
know when the code is done, I'd be
happy to field test it.

Paragraph 14. The are a number of ver-
sions of NETBIOS out there. The one
that I use is from 1985. You may find
that an older version will work better for
you. There is a new Novell NETBIOS
that was released in June that may give
you a big improvement.

Ok, this has gone on long enough. I'd
suggest that you try LANtastic. It has
worked very well for a number of us. We
even use L4N at work, we’ve had so few
problems our biggest problem is finding
the manuals when we want to change

anything,

I agree with you once you get more than
one system, it’s time to network them.
With the number of low cost, easy to use
products, it makes sense to network.

Keep up the good work with TCJ!!!
Foster Schucker, Eagle PA

Well Foster that was some letter (actu-
ally a mini article.) I am sure all our
readers are glad to get that review, but
would be more interested in knowing
where the Starlan cards can be had for
325 (send me a couple and I will pay you
back later!) Like I said in my article,
Artisoft technical support makes their
products one of the best. We just started
using the Netware NETBIOS 3.10 and. it

solved most of our problems. However
one problem that had been fixed, popped
up again. I really do not know why so
many people who have only two or three
computers buy 10 or 20 node Netware
products. My feelings are the sales people
(used cars sales people before becoming
a computer person) just didn’t tell them
of all the alternatives. Currently I don’t
have time to work on a serial ODI, but
maybe one of our readers does. Any
takers??? I have been thinking about
how to do LANs on CP/M or any mixed
platform system. Maybe I can get the
325 network people to tell us how to talk
to their system from other machines. Till
then, thanks for the great review. BDK

TCI:
Bill,

I've enjoyed The Computer Journal for
many years now and I applaud your tak-
ing-over in light of Chris’ illness. I've
read your column in every issue (though
it is not my cup of tea) and learned much
from it. Although Jay Sage is my favor-
ite author, I am writing to ask what
happened to the Paul Chidley column. 1
am in the process of building a YASBEC
and I wait with baited breath for the
latest developments on what I think is
the most interesting project since Bill
Godbout started putting out kit comput-
ers. I have read your article about the
magazine’s direction and I can some-
what agree, but this mag was the pre-
mier vehicle for information on the sub-
ject and Z-SYSTEM in general. Please
don’t drop another segment of your au-
dience as so many other magazines have.
T'have been toying with the idea of floppy
controller and some ports for the
YASBEC as a system addition and I can
understand your bias toward homebrew
and microcontrollers, I have learned
enough to feel that I can do it on my
own, given time, others may feel this
way too. Give them a home as we've
been thrown out of so many other places.

Respectfully,
Jim Thale, Deerfield, IL

Guess I missed the mark a little Jim. My
intentions are to make TCJ the ONLY
magazine to turn to for people who want

to tinker with ‘‘CLASSIC’’ systems.
Please feel at ease that we will NOT
become another PC only magazine. Jay
is back in full this issue, but I have not
been able to get anything yet on YASBEC.
I will press everyone for something in
the next issue, but since they don’t get
paid for it, I can’t press too hard. I am
not sure what you or I meant on a
“bias’’, but I feel very strongly that if
you want to learn, you have got to get in
there and ‘‘tinker’’ with your hands.
The fact that you feel like you can do the
tinkering now says that maybe TCJ has
helped at least one reader to become
more skilled. Thanks for the letter. BDK

Dear Chris:

You will no doublt be heartened to hear
that I've received each issue to date,
already opened. TCJ obviously creates
interest as it passes through sorters hands
in the mailroom. I’m not going to sug-
gest a mailing envelope, as obviously
costs would escalate. There’s not a lot of
room at the page edge either. I can imag-
ine howls of protest if a staple was found
to obliterate some cryptic bit of assem-
bler listing at page edge so perhaps the
use of your simple sticker has been well
thought through. #54 arrived with the
extra taped edges, made from what ap-
pears to be mailing labels. These worked
well.

To things Morrow, my MD3 to be exact.
Still running on floppics, but at least
I've managed to mount Quaddrives, so
we have nearly 800KB per drive. I may
well take up your generous offer on
Socrates BBS to help us find specific
programs. There are about 3 I have in
mind, and just perhaps will be obtaineable
through or on the BBS.

I Jook forward to suggested up coming
articles on generic SCSI add-ons and
confess that the enthusiastic and detailed
reviews of the Z-System components have
me hooked! Though this 8 bit software is
a “‘must have’’, I'm a little unsure of
just what exactly the purchase of
NZCOM will get me, and how complete
and up to date will the utilitics be. How
much therefore, would I be required to
purchase, to get a full Z-System??

The Computer Journal / #57

As I also log onto Sypko Andreae’s
M.OR approx once per month, and by
your American standards, earn very little;
you’ll appreciate that I can spread my-
self only very thinly. Calls therfore, to
Socrates can also be only brief, and per-
haps once per month.

Your acceptance of MasterCard will
make renewal much easier, and the pur-
chase of p.d s/ware disks off the bbs... is
this service still available? I imagine,
that for most of us distant subscribers,
all but the smallest d/loads (or up) will
be far too expensive.

Thank you for your time, and a most
definite BIG thank you for all the team
who help produce such a readable and
informative TCJ.

Sincerely, Paul MacDiarmid, Rotorua,
New Zealand.

This letter was passed to me by Chris,
and sorry to say Paul but the BBS is no
longer on line. I am not sure if Chris will
put it back on line from his new place in
Washinton state or not. Jay Sage has a
BBS you might try in place of Chris’
(617-965-7259). Most of us have moved
to the CP/M section of GENIE and I will
be starting to upload things to it soon. |
have passed your request on to Jay about
NZCOM and what you really need to
bring a system up. Supposedly it has all
been done in past articles, so maybe a
back issues order is what you need at
this point. I am trying to get some begin-
ners type reviews, as we are gelling so
many first time CP/M users. I currently
do not have any Morrow writers, but if
you need help for something specific try
our new and free, help needed section.
On mailing envelopes and the mail in
general, have I stories to tell you. For
your information and all our readers, I
have had many problems with getting
the magazine out the local post office.
TCJ is much more than they are use to.
It will proably be issue 60 that gets
mailed without any troubles, so hang in
there and stay with us while I get the new
problems resolved. BDK
Mail your letters to :
o
P.O. Box 535
Lincoln, C4 95648-0535

The Computer Journal / #57

NEWSLETTER REVIEW

TCJ will reprint articles of interests to our readers from NEWSLETTERS we
receive. To have your newsletter reviewed, inculde a letter indicating permission
to reprint articles and include us on your regular mailing list. We reserve right
to select or NOT select articles for reprinting. TCJ does not endorse or support any
products presented. This service is provided as a means of assisting our readers fi
alternative sources of information.

TDS2020 BOARD COMPUTER '8
a +5vouT =
w =
@® m
[o]) %
=3 RS 833795883882
9, g a € 009_000000 Q
Lo R 8 NEuE#mm\-nmg
N | _.N(_JIHRHS::NL.;A{-:I
@ [¢] (2] (2] (o Xe Vi lwliwiviviwieie)]
N N‘ o;pmucﬂm;un-
> @ CS8180s + CSBi81»
==[15 4
74HC138 ¥ & HCTL2016
Q < [eXe] <
» 2 SRSz 8 _ 22 8 8
o= NSRS 4K7[o~ 3 >
22444zz22 2
582320000 o
PR
mmm
222 9 z %7
[eXeXe] & 0O
8§88 2K7
mmm BT G
— N L3 =]

HP SHAFT ENCODER

(HP Shaft Encoder software) DECIMAL
0 VARIABLE PREVIOUS (copy of last reading)
0. 2VARIABLE COUNTER (32-bit signed accumulator of current
ghaft position)
$8180 CONSTANT ENCODER (change for other chip selects)
: SETUP (set Data Direction Reg to put 10MHZ clock on c31)
$OF SPF8O Ct
CODE GET (-- n read shaft position)
R3 CLR, { ensure top byte is 0)
R4 CLR, (ensure top byte is 0)
B ENCODER)) R3 MOVFPE, (get most sig. byte)
B ENCODER 1+)) R4 MOVFPE, (get least sig. byte)
B R3 SWAP, (transfer to top byte)
(
(

R3 R4 ADD, merge to 16-bit count)
@-R7 R4 MOVO, push count on stack)
END-CODE
: POSITION (-- update 32-bit position counter)

(withshaft encoder reading)
GET DUP PREVIOUS @ SWAP - COUNTER 2@
ROT N+ COUNTER 2! PREVIOUS 1! ;
; BXAMPLE (test routine, exit with ctrl/c) SETUP
BEGIN POSITION COUNTER 2@ 14 D.R CR 500 M3 ?TERMINAL

UNTIL ;

Reprinted from the newsletter of: Triangle Digital Services Limited, 223 Lea
Bridge Road, London E10 7NE, Tel: 081-539 0285. In USA & Canada: The
Saelig Company, 1193 Moseley Road, Victor NY 14564, Tel: (716)425-3753.
On CompuServe: USA Sales 71042,17, other sales /technical 100065,75.

The Z-System Corner

By Jay Sage

Programming for Language
Independence

At the time I wrote my last column I was
just about to depart for Germany, where
-- besides vacationing -- I was going to
attend ZedFest Europe 1992. I promised
a full report in this issue, but I'm afraid
that is not going to happen in the way I
originally envisioned. After I got back,
a critical situation at work kept me at the
lab until after midnight nearly every night
for four weeks. It was exhausting, but
fortunately I got the results I was hoping
for and was able to report on them at the
conference from which I have just re-
turned. With all that intense work, I had
no time to think about computing, and
my mind is still in a bit of a blur. I said
I was going to take a roll of black-and-
white photos, and I must have done it,
but I have no idea right now where the
pictures are. So a full photographic re-
port will have to wait.

ZedFest Europe 1992

Despite the mental blur, I recall clearly
that ZedFest Europe 1992 was as enjoy-
able and successful as last year’s (see
issue 53). Uwe Herczeg has sold his
share in the computer store where we
met last year and is now affiliated with
a new company, whose offices occupy
the second floor of the home of the par-
ents of one of the owners. We met there
this year, and it was quite an experience
for me -- the house was built in the
1500s! That’s something we don’t come
across here in the United States.

Most of last year’s participants returned.
Helmut Jungkunz, the organizer, was
there, of course, and so was Tilmann
Reh, designer of the CPU280 board.

Juergen Peters again drove all the way
down from Hamburg. Unfortunately,
because of a misunderstanding about the
date of the meeting, Franz Moessl from
Italy did not make it. However, the
international character was upheld by
Wim Nelis, who spent 24 hours on trains
to get there from Holland. He provided
the Dutch for the source code I’'m going
to show you shortly.

Some other new people joined us as well.
Matthias Voclker showed up with an
incredibly souped-up Commodore C128
(8 MHz Z80H CPU, 20 Mb hard disk,
3.5" high-density floppy drive, and
more), I have encouraged him to write
some articles for TCJ. Alexander
Schmid was there with a beautiful
CPU280-based computer: one 3.5" HD
floppy, two 5.25" HD floppies, an 80 Mb
IDE hard drive running using Tilmann
Reh’s board, a Hercules-compatible
graphics card, an IBM keyboard and
monitor, and a large static-RAM disk.
You’ll hear a little more about Alexander
later.

Multi-Language Programming

At last year’s meeting we mostly got
acquainted and talked about some issues
in general terms. At this year’s ZedFest,
however, we got down to real work and
fleshed out a new coding concept that I
will share with you in this column. Last
year, as I described in issue 53, we dis-
cussed the matter of international com-
patibility in our programming, but we
never really got around to doing any-
thing specific about it. This year we
decided to write some code on the spot.

Since essentially all Z-System programs
have been produced in English, native
English speakers don’t have much sense

of the difficultics posed by programs
written in a language they don’t know.
It became clear at last year’s ZedFest
that if Z-System is to become more popu-
lar in non-English-speaking countries,
we must make our programs readily
adaptable to other languages.

This statement, of course, is not limited
to Z-System programs. Many of the
large software houses, such as Microsoft,
offer their products in versions for other
countries. I’'m not sure how they do this,
but my guess is that they compile special
versions for each language. I am going
to describe a very simple technique that
allows the same basic program to be
used in multiple languages and to be
reconfigured by the user. I will even
describe how the Z-System might sup-
port programs that run automatically in
a designated language. The PCBoard
bulletin board software for MS-DOS
computers (this is what I use on the DOS
BBS I run for my Boston Computer
Society user group) is the only program
I am aware of that has this kind of flex-
ible language adaptation.

A Sample Program

Listings 1 and 2 show two versions of a
sample program, each using a conven-
tional approach to the display of mes-
sages. Listing 1 follows the technique
that was most common in standard CP/
M programming. It makes use of an
operating system call. The DE register
pair is loaded with the address of the
message string, which is terminated by a
dollar sign; the C register is set to the
operating system function number for
printing a string.

Listing 2 uses PRINT, the in-line print
routine from the SYSLIB subroutine li-

The Computer Journal / #57

brary. I have not shown the source code
for that routine (with SYSLIB you don’t
have to worry about the source), but here’s
how it works. PRINT gets the address of
the string by popping the program counter
off the stack. It then displays the char-
acters embedded in the code until it en-
counters a null (i.e., zero) byte. Then it

_pushes the following address onto the

stack and returns. This programming
style has been very popular in Z-System
programming, since the in-linec message
text makes the code easier to read and
modify.

There are a couple of requirements that
must be met to make it easy to gencrate
programs in a multitude of languages.
First, we have to gather all the messages
into one place, as in Listing 1. In-line
strings would be very hard (though not
impossible) to modify. This is similar to
what was done with configuration data
in order to support the ZCNFG general-
purpose configuration utility (see Al
Hawley’s articles in issues 52 and 53).
As with the configuration data, it is con-
venient to put the text strings near the
beginning rather than the end of the
program, Second, we have to make pro-
vision for the fact that the message strings
may be of different lengths in different

languages.

Listing 3 shows a first cut at achieving
these objectives. The messages are now
placed before the actual code (and after
any ZCNFG configuration block and/or
an internal environment for compatibil-
ity with standard CP/M -- sece my col-
umn in issue 52). Extra space is pro-
vided for each message by the ORG di-
rectives. Now, instead of the SYSLIB
routine PRINT, we use the SYSLIB rou-
tine PSTR, which prints the null-termi-
nated string starting at the address in the
HL register pair. A Dutch-language over-
lay for the version of the program in
Listing 3 is shown in Listing 4.

Before going on, let me add a note sug-
gested by Howard Goldstein. Although I
am using PSTR in my examples, the
same techniques apply to the other
SYSLIB printing routines, such as
EPSTR and VPSTR. In fact, the ex-
amples here really should use EPSTR,
which does basically what the BDOS

The Computer Journal / #57

function call does: prints a string di-
rectly to the screen. The PSTR routine
has extra capability that we don’t really
need here. The same techniques also
apply to routines that send output to a
printer or even a file.

The overlay can be used in either of two
ways. The source can be assembled to a
HEX file and then installed over any
existing version of the program using
MLOAD or MYLOAD. Alternatively,
the source can be assembled or loaded to
absolute binary and then installed using
the ZCPR3 GET command or a special
utility. I will illustrate this in more
detail later, where I will show some of
the additional power that this approach
allows. Of course, both approaches can
be supported at the same time. I antici-
pate that source code for the language
overlays will be provided with program
releases.

When I proposed this solution at the
ZedFest, Andreas Kisslinger had an
immediate objection: it wastes space.
Every message, individually, has to have
extra space to accommodate the longest
message that might be required in any
language. He argued that it would be
much better to supply a table of pointers
to the messages, and Lagreed. Animple-
mentation of this refined approach is
shown in Listing 5, with the correspond-
ing Dutch overlay code in Listing 6.
Now we have to replace the PSTR calls
with a call to a special subroutine, which
we have named PRINTS. This routine
first loads into DE the address stored at
the address stored in HL (double indi-
rection). Then it moves that address
into HL and calls PSTR.

At this point, I had my own objection:
the language overlays contained abso-
lute addresses (the pointers to the mes-
sage strings). This meant that type-3
programs (these are Z-System programs
that are executed at addresses other than
100H -- sce my column in issue 55)
would require a separate HEX or binary
overlay for each load address. Even
worse, type-4 programs (these are Z-
System programs whose load address is
computed by the command processor at

run time) could not be implemented at
all. This, of course, was unacceptable.

The solution to that problem was to
modify the pointer table so that it con-
tains not the absolute addresses of the
message strings but rather the offsets of
each message from the beginning of the
message block. Once this is done, it
matters neither where in the program
the message block is located nor where
in memory the program is executed.

Before I show this code, I want to add
one final refinement. I feel that it is a
good idea (from the standpoints of safety
and functionality) for modules to iden-
tify themselves. Listing 7 shows the
final form of our test program. I have
written this as a type-3 program with the
special ID string at offset 3 into the code
that identifies the program as one that
has been written according to Z-System
standards.

This same identification approach is
applied to the language block. First, there
is a leading byte with the opcode ‘“RST
00H” (a call to address 0000). This
ensures that, should there ever be an
attempt to execute a language overlay,
the result will be a warmboot. Second,
there is an ID string of ‘Z3TXT" fol-
lowed by a null byte to identify the code
module as a message text overlay (the
RST instruction helps, too). Finally,
there is a filename in the form needed
for a file control block (FCB). The name
portion indicates the program for which
this is the overlay, and the extent portion
identifies the language. Ianticipate that
the binary language overlay file will be
given this name. The final Dutch over-
lay is shown in Listing 8.

Automatic Language Adaptation

This approach affords the possibility of
automating the language adaptation and
configuration process further. For ex-
ample, I assembled Dutch and German
versions of the overlays for the test pro-
gram into the files TEST.DUT and
TEST.GER (in binary form, not HEX).
I renamed the complete English version
of the program (a type-3 version with
execution address 100H) to TEST.BIN

and wrote an alias TEST with the fol-
lowing script:

get 100 testbin
if null $1
go
else
if exist test.$1
get 180 test.$1
go
else
echo L%>anguage overlay
%<TEST.$1%> not found.
-fi
A

I could then enter the command “TEST”
to run the program with English mes-
sages or ““TEST DUT’ to run with
Dutch messages or ““TEST GER™ to
run with German messages.

There are still more ambitious possibili-
ties, but I did not have time to write code
to test the concept. However, I think,
this might be the ideal way to implement
language independence. A byte in the
Z-System environment descriptor (the
Z-System memory module that contains
a description of the operating environ-
ment -- see my column in issue 54) could
be set to indicate the language to use.
For example, 0 might indicate English;
1, German; 2, Dutch; efc.

One approach would be to include in the
program code for loading its own over-
lays. That code would check the
environment’s language byte and the
currently installed message text code. If
a new language needed to be installed,
the name of the file could be generated
from the current overlay and the lan-
guage byte, and then that overlay could
be loaded from disk. Here is a first cut
at pseudo-code to perform the task.

Get the language byte from the
ENV and translate it to text (e.g., ENG,
DUT, etc.).

Compare to currently installed
language as indicated by the filename in
ID string in the program.

If installed language = speci-
fied language, then start executing pro-

10

gram.
Otherwise search for the ap-
propriate language overlay file.

If not found, display an error
message in the current language and
either terminate or (preferably, I think)
run with the current language.

Otherwise, load the language
overlay to the appropriate address.

Run the main program code.

Alternatively, an extended command
processor could be used to load programs,
or the command processor could be en-
hanced to install language overlays.
Since these tools would not already know
where a language overlay (if any) is stored
in a program, it would have to search for
it. This is where the ID string ‘Z3TXT’
becomes essential. The following pseudo-
code would be added at the beginning of
what we showed above:

Scan from start of program
looking for the ID string C7,’Z3TXT",0.

If not found, assume that the
program does not support multiple lan-
guages, and just run it

Remember (1) the address
where the overlay starts and from the
header (2) the file name and (3) the

language.

If this scheme were implemented, it
would be possible to run a remote access
system (a Z-Node) that would allow a
user to specify his/her language prefer-
ence and then to have programs run
automatically in that language. How-
ever, typical users will probably be sat-
isfied (and served more efficiently) by
installing the overlay for their language
directly into the program’s COM file.

A Call For Assistance

There are lots of programs in existence
that need to be converted to this new
multiple-language capability. If you are
the author currently maintaining a pro-
gram, [ask that you try converting your
program to the form I have described, as
shown in Listing 7. For programs that

are not currently being maintained by
anyone, [invite any programmer to take
a shot at making the conversion (you can
send me the code on a diskette or via
GEnie mail or my Z-Node if you would
like me to check it out).

The process is not terribly difficult for
most programs. You have to perform
three basic steps: (1) the code where the
messages are sent to the screen or printed
have to be converted to calls to PRINTS
(or a similar routine for printer output);
(2) the messages have to be collected
into a module along with a pointer table;
and (3) the subroutine PRINT$ (and
possibly a similar routine for printer
output) has to be added to the code. If
you assemble and link the modified ver-
sion and it works, chances are very good
that you did it right.

Alexander Schmid, who was at the
ZedFest, has already tackled one of the
most difficult programs: ZFILER.
Helmut Jungkunz sent me the code,
which can be converted very neatly be-
tween English and German. I want to
make a few minor changes, but by the
time this column reaches you, the new
version should be out on Z-Nodes and
ZSUS diskettes.

Post-Script

Having just mentioned ZSUS, the Z-
System Software Update Service, I would
like to inform people who have sub-
scribed and have been wondering where
their disks are, that I hope to have the
service back in operation shortly. When
Chris McEwen was forced to give up
TCJ, he also had to discontinue ZSUS,
and my schedule has not afforded me the
time to sort through all the records and
get the production reorganized. That
will be happening soon, and I hope there
will be a flood of programs with internal
ENV modules for operation under stan-
dard CP/M and language modules for
flexible multilingual operation.

For those who want to see how NOT to
do this (language independence), try
Microsoft Systems Journal Nov-Dec
1991. These 30 pages show the prob-

The Computer Journal / #57

msgs:

hello$:
done$:
hello:
done:

org

db

db

db

db

180h
00h
'Z3TXT 0

‘TEST ' ; Program ID
‘ouT ; Language ID
helio-msgs

done-msgs
‘Hallo wereld!' cr,}f,0

db 'Programma is beeindigd’,cr,if,0
end

The Computer Journal / #57

; st0: ip start
lems you wx{l nee'd to overcome totrythe % ra et ENV data hore
same idea in Windows. 1 will also ask Here is the messages block
some of TCJ's Forth writers to show how org S0+80h
simple it can be done in Forth. BDK s ow hello
done$: dw done
= hello: db "Hello, world!' cr,if,0
Listing 1 done: db 'Program finished'cr, If.0
; ———— Here is the program code
o equ 13 org msgs+80h
¥ equ 10 start d h, hello$
. bdos oqu 0005h ; BDOS entry address call print$
pintt equ 9 ! " hi,done$
; BDOS function code for message display call print$
ret
, weee Hetre is the program code
print$: push de ; Save DE
i de,hello Id e,(hl) ; Load address at HL into DE
i ¢,printt inc hi
call bdos id d,(h|)
ex de,hl
id de,done ; Get message address into HL
d ¢,printf pop de ; Restore original DE
call bdos ip pstr
ret ; Now let PSTR print the message
end
; ——- Here are the messages
hello: db ‘Hello, world' crif,'S' Listing 6
done; db ‘Program finished' cr,if '$’
end
er equ 13
== i equ 10
Listing 2 org 180h
i msgs:
. hello$: dw hello
extm pint done$: dw done
: SYSLIB routine for in-line messages hell: db ‘Hallo wereld!" cr, 1,0
done: db ‘Programma is beeindigd',cr,if.0
e equ 13 end
f equ 10
call print Listing 7
db ‘Hello, world!' cr,if,0
cal print , extm pstr ; SYSUIB routine
db ‘Program finished',cr,if,0 o equ 13
ret F equ 10
end
st0: ip start
= db ‘ZBENV' | Z-System |D string
Listing 3 db 3 ; Type-3 program
—— dw 0 ; Space for ENV address
i dw st0 , Load address
extm pstr ; SYSLIB routine
o equ 13 ; =~ Here is the messages block
f equ 10 org st0+80h
. msgs: rst 00h
Si0: L4 start db ‘Z3TXT,0
; ZCNFG and ENV data here I
; ———— Here is the messages block db ‘TEST ' ;Program ID
org t0+80h db ‘ENG' ;LanguageID
hello$: dw helio-msgs
hello: db ‘Hello, world!' cr,if,0 done$: dw done-msgs
org hello+25 =~ helio: db "Hello, worldr cr, 1,0
done: db Program finished",cr,#,0 done: db "Program finished cr, 1,0
org hello+80h
. ; ————— Here is the program code
; ===ermee Hero is the program code org msgs+80h
start id hi,hello
cait pstr start Id hi.hello$
id hi,done call print$
cail pstr id hl,done$
ret call print$
end ret
print$: push de ; Save DE
- id e.(hl) ; Load offset at HL into DE
Listing 4 inc ht
e d d,(hl)
cr equ 13 d hi,msgs ; Get starting address
I oqu 10 add hide
org 180h ; Add to get message address
helio: db ‘Hallo wereldl‘,cr.lf,o pop de : Restore original DE
hello + 25 ip pstr
done: db ‘Programma is beeindigd’,cr,if,0 : Now let PSTR print the message
end end
Listing 5 Listing 8
extrn pstr , SYSLIB routine
e equ 13 o equ 13
f equ 10 i equ 10

In Issue #58

- Multitasking in Forth 83
Brad Rodriquez explains the
ins and outs of mulitasking.

- C based program to Calculate
Monostable and Timer Values
Clem Pepper gives us a
simple C program so we can
put away all those complex
charts.

- Z-System, REAL computing, and
more!

TCJ is looking for atticles that cover
the following;

- IDE drive specifications and soft-
ware protocols.

- YASBEC interfacing project re-
ports. Tell our readers what you did
and how it works.

- Network interfacing from CP/M
or Z80 systems. We have many
readers who would like to hook their
classic systems into existing LANS.
Let us know if you have done this
or have a vendor who can.

- Special ports. TCJ readers want
to hear from those who have ported
products to different systems. Have
you ported MINIX to S-100 or a
Radio Shack Model 16? Did you
put F83 in ROM? ZCPR on a TRS-
807

- Cross platform development. Have
you used your classic system to do
68HC11 development. Tell our
readers about your problems and
how you overcame them.

Dr. S-100

By Herbert R Johnson

The editor, Bill Kibler, and I have cor-
responded about what amateur comput-
erists want and need to support their
“‘older’’ or “‘antique’’ computers, while
providing something of merit for new
amateurs and new developers. One of
my special interests, professionally and
personally, is in the first generation of a
series of microcomputers called ““S-100"
systems. To kick off, I'll introduce you
to buses in general, and the S-100 in
particular for ‘‘historic’’ reasons. I'll
suggest why you should be interested,
and begin to discuss historic differences
between S-100 computers. I'll try in each
column to give sources for S-100 stuff.
Then, it’s your turn to write to me with
questions and sources of more comput-
ers, software and docs!

In the beginning, the Bus

"In the mid 1970s, a number of small
companies built the “‘first generation’
of personal computers. Like their prede-
cessors, the minicomputers, these com-
puters consisted of a box of electronic
cards each of which shared a common
set of signals. A consistent definition for
these signals, along with a description of
the “‘logical’’ operations associated with
each signal, and a physical description
of the connector and connections, is
generally referred to as a computer’s
“bus’’.

Why is a bus useful? A designer of hard-
ware, armed with the bus specification,
could design a new board not only to fit
the bus, but also to ““fit”’ the device
connected to this new card. Also, other
developers could design ‘‘standard’’
cards for standard devices such as termi-
nals and printers. Finally, cards with
limited and older technology (like small
memory chips) could be replaced with

12

expanded and newer technology (larger
or faster memory chips).

There were several ‘‘bus’” designs dur-
ing the 70s, even as there are several
today. Each bus provides some paths for
data, some paths for addresses (locations
for data and instructions), and control
signals to determine the timing and op-
erations on that data. So, why should I
rave about the S-100 bus? First, it was
one of the most common and enduring
bus designs of the 70s and 80s. Transla-
tion: there are a lot of surplus S-100
systems out there! Second, the technol-
ogy of that period - the digital chips -
are simple, well documented, cheap, and
generally available even today. Third,
they are slow enough (by today’s stan-
dards) that most electronic hobbyists can
buy or build inexpensive test equipment
to maintain or even redesign S-100 sys-
tems.

Fourth, S-100 systems are still powerful
enough computers to do reasonable tasks;
yet not so powerful as to be unlearnable.
Fifth, most of those systems were in-
tended to be ‘‘learning systems’ (mi-
crocomputers were new to EVERYONE
then) so they were thoroughly docu-
mented. Finally, the software and hard-
ware universe for 8080/Z80 based S-100
systems is fairly stable: a lot of old but
useful software, yet a handful of recent
developments (Z-system for instance) that
combine to offer something for every
taste.

Like many engineers and technicians in
the 1970s and early 1980s, I learned
about affordable computer hardware and
software on the early IMSAI Altair,
Cromemco and other computer manu-
facturers who based their systems on the
S-100 bus. Today’s new engineers, techs

and hobbyists can also use these systems
for learning and development, but they
will need some help in finding the old
docs, hardware and software, not to
mention the new software and technol-
ogy being developed today.

This column, with the help of your cards
and letters, can provide a common
ground for all of us who are still hard at
work in our basements with these beasts
which, like the extinct dinosaurs, still
fascinate many of us. If you aren’t inter-
ested in S-100 systems as such, you might
find that this computer “‘bus’’ is enough
like your favorite computer that you can
learn from, and contribute to, our dis-
cussions.

Send your letters to me directly, either
by mail or the electronic addresses given
at the end of my column, and I'll try to
respond directly to you. I'll assume your
letters can also be printed in this column
unless you say otherwise, so we can all
benefit. In the meantime, I'll start the
column with a quick rundown of S-100
““standards’’.

S-100 ‘‘standards”

Now that I've raved about the benefits of
a common bus, the first thing you must
know about S-100 cards is that they are
NOT all alike! The ‘“‘standard’’ was
initially whatever pins were used by the
Altair computer (from MITS). It evolved
as the number of manufacturers grew,
and stabilized when a real, written-up
and voted-upon standard was approved
by a working group of the IEEE (Insti-
tute of Electrical and Electronic Engi-
neers). Their standard, called ‘‘IEEE-
696", was also adopted by ANSI (Ameri-
can National Standards Institute). Be-

The Computer Journal / #57

tween the first Altair computer in 1976
and the last of the Compupro’s in the
late 1980°s, I find it convenient to think
of three flavors of S-100 cards:

IMSAI/ ALTAIR compatible cards were
based on the original design by MITS,
Inc. that appeared in Popular Electron-
ics back in 1976. One hundred pins, 50
per side, with 8 bits of data into the
processor, 8 bits out (yes, separately!),
and 16 bits of address for 2**16 or (about)
64K memory addresses. A number of
signal pins were provided for processor,
I/O and memory operations; several lines
for front panel operation (this is criti-
cal!); and several for interrupts, proces-
sor halt, and processor wait. Altair boards
had some additional lines for memory
enable and disable.

These cards were designed for 1 MHz to
2 MHz 8080 and Z80 operation. Floppy
disk controllers were designed from in-
dividual ‘‘discrete’’ logic for 8" drives.
No hard disk controllers. Memory cards
were only a few ‘K’ (thousand bytes)
or even less. Most of these cards are too
antique, even for our antique computers!

Post-IMSAI ~ compatible cards
(Cromemco was a typical manufacturer
of such cards) retained most of the above
lines except for front panel operations,
particularly single step. Specifically, pins
20 and 60 were grounded, which for me
defines this class of cards. These pins
must be un-grounded to use these cards
on a front-panel based system. I simply
tape over the pins on the connector, rather
than cut traces and pads.

Some of this class of cards have useful
bank-switching memory and/or re-ad-
dressing schemes which “‘stretch out™
the 64k memory space for RAM and
ROM use. These cards can run at 2MHz,
perhaps at 4AMHZ. 68000 cards and 5-
inch and 8-inch class hard disk control-
lers were available, and 5-inch floppy
controllers as well. Many used fairly
sophisticated 40-pin controller chips for
floppy and hard disk drives. Even later

versions combined these functions onto

the processor card, creating a single

The Computer Journal / #57

board computer that could still operate
all your old ‘‘peripheral’” cards.

IEFE-696 compatible cards (Compupro
is one manufacturer of commonly-found
cards) used the original data lines for
*‘double duty” as 16 bit bi-directional
data paths. They also added another 8
lines of address for a total of 24 address
bits. The standard described the appro-
priate bus signals for switching proces-
sor cards or ‘‘bus masters’’ which could
also include ‘‘temporary’’ masters (take
control of bus from another CPU card.)

These cards do not work conveniently in
front-panel IMSAI-based systems, but
they typically run fast: 4Mhz, 6MHz, or
better. These cards were designed in the
mid-80s and are now becoming surplus.
They include cards with one to two megs
of RAM, RAM disk, 16 or 32-bit proces-
sors (68020, 80286, even 80386), and
*‘slave’” processor cards.

Moral for today

Whenever possible, stay within one class
of S-100 technology. Better still, stay
with the same manufacturer! Incompat-
ibilities, if not lack of detailed documen-
tation and source code, makes ‘‘mixed”’
systems a challenge only for the experi-
enced! Of course, if you are experiment-
ing, dig in and learn the differences!

Sources:

Herb Johnson. As far as I know, I’'m the
only regular vendor of S-100 cards
around, and I'm getting kind of skepti-
cal. Send me an SASE (or at least a
stamp!) for my catalog. I typically sell
cards and disk drives, but I may have
complete systems. Hard disk controllers
are rare, but I might design a SCSI or
IDE card if enough people ask for it
(hint) at the right price (hint). Docu-
mentation is a problem, as some vendors
are still around and thus retain copy-
rights. No problem with IMSAI and
Altair, as they are long dead, and I have
some other stuff as copies. Software is in
the same boat, except I can sell some

legitimate CP/M 2.2 diskettes, and some
bootable disks as well.

IEEE-696 standard. Its full name is [EEE
Std 966-1983. Contact the IEEE Secre-
tary, Standards Board, 345 East 47th
St., New York NY 10017. Check your
library for the magazine JEEE Computer,
July 1979, for a “‘rough draft’’ version.
Contact me first, however, as I might
have a source for a book on the subject.

Lambda Systems. While not strictly a S-
100 vendor, David McGlone is a Z-80
‘‘specialist’ across several hardware
platforms, and sells some commercial
software and CP/M bootable diskettes.
His journal, Z-Letter, is reorganizing and
he should be encouraged: call or write
him for details. Hint: he has a 2-part
series on the IMSAL/Altair S-100 bus
specification among his back issues.

And, of course, check the advertisers in
Computer Journal.

Biography

Herb Johnson is an Electrical Engineer
by training, but programs what used to
be called microcomputers instead. When
not chasing dump trucks to the scrap
yard for those ‘ ‘blinking light”” comput-
ers, he tinkers with CCD cameras for
astronomy. Call his basement lab at
(609)-588-5316; or via FidoNet 1:266.22
as Herb Johnson; or Compuserve as
70303,1024. Mail to CN 5256 #105,
Princeton NJ 08543

Support Requests

To request support or assistance
on a given project, please write
our support people directly.
TCJ's Technical Editors place
their address in their columns
so that you can get faster
response by writing to them
directly. Your requests will be
included in later articles. Our
editors reserve the right to
refuse service or redirect you to
a more appropriate source.
Please include as much back-
ground information as possible.

Home Automation with X10

by Rick Swenton

Here is an article that explains about
using the appropriate system for the job.

I think Rick shows what I have been
talking about by using a CLASSIC sys-
tem for modern day projects. The article
also says all there is to be said about the
current state of house and business con-
trols. I do not think I have seen such a
complete review as Rick provides. Great
research job! BDK

HOME AUTOMATION

If you are an electronic hobbyist like me,
you are likely involved in some kind of
electronic wizardry in your home. Soon,
you are bitten by the remote control bug.
It is all around you! VCR, Stereo and
TV infrared controllers, radio controlled
garage door openers, photo electric and
motion detectors, even people detectors
for smart lighting control have invaded
" our homes.

Soon you discover a need to control AC
line powered devices like lamps and
appliances. You also wish you had switch
wiring located at places you never
thought you would ever need them. Enter
the X10 Powerhouse system.

The X10 system is a versatile way to
control lights and appliances by sending
control signals through the existing house
wiring. Using X10, you can control
lights or appliances from anywhere in
your home without the need to install
special wiring. All you need is an AC
outlet at each end.

Two basic parts are needed for a mini-
mum system: A transmitting device and
a receiving device. There is a wide
variety of each in the X10 system. Trans-
mitting devices come in the form of con-
trol units with ON/OFF/DIM switches

14

as well as radio controllers, infrared
controllers, clock timers and an inter-
face unit which can be operated with a
contact closure or low voltage input.

Receiving units come in the form of lamp
modules or appliance modules which
plug into the wall receptacle, replace-
ment wall switches, replacement duplex
outlets, and interface modules with relay
contact outputs.

The transmitting devices are called ‘‘con-
trollers’’. The receiving devices are
called ‘modules”.

The formal name for the system is called
*“X10 Powerhouse’’. This is the same
system sold under other names such as
Radio Shack’s ““Plug ‘n’ Power’’. Com-
patible systems are sold by Sears, Stanley
(Lightmaker), Heathkit and X10(USA)
itself.

The most versatile X10 component is
the CP-290 computer interface. This is
a smart interface which connects to your
computer’s serial port and allows you to
send commands to your X10 system.
Before I discuss the details of the CP-
290, perhaps you might like to know
more about the X10 system and its com-
ponents. After you go wild installing all
these X10 components around your house
like I did, you will soon discover how
nice it would be to interface your home
to your computer with the CP-290 inter-
face.

Here are some of the features, in
detail, of the X10 system:

All devices share some common fea-
tures. The X10 system supports 16 sepa-
rate unit codes in 16 separate house codes
to yield a maximum support of 256

modules. You could have more than one
module on the same address if you de-
sired. By X10 convention, the house
codes are lettered A through P and the
unit codes are numbered 1 through 16.
This means that the address of a device
can range from Al through P16. The
original concept of the house code was
to cope with things like people in an
apartment building using X10 systems
fed from the same power line. Each
apartment could use a different house
code but each would be limited to 16
devices. The success of such a system
relies on the mutual cooperation and
coordination of the users. In a single
home located a sufficient distance from
the neighbors, the house codes could be
thought of as ‘‘zones” in the single
house. For example, I have each floorin
my house assigned to a specific house
code. This means that an ““All Units
OFF”’ command issued from a first
floor controller would only turn off all
units located on the first floor.

Controllers:

There are several X10 control devices
which send commands over the power
lines. The smallest is the MC460 Mini-
Controller. This device can control 8
modules (only the first 8 unit codes, it
can not address modules 9 -> 16). It has
switches for ‘‘All Lights On”, ““All
Off”’, “Dim’” and ““Bright”’. The SC503
Maxi-Controller has all these features
too but supports all 16 addresses instead
of only 8. The TR2700 Telephone Re-
sponder allows you to control your first
8 unit codes over the phone and the
RC35000 controller allows you to control
the first 8 unit codes by radio remote
control.

The Computer Journal / #57

For timer controllers, there is the MT522
which allows you to manually control 8
modules and timer-control 4 modules to
go on or off at specific times up to twice
a day. It also has a security mode to
simulate random on/off operation while
you are away from home, The CR512
has all of the features of the timer-con-
troller built into a clock radio. Both
have battery back-up.

Another device which falls into the cat-
egory of controller is the BA284. X10
calls this unit a Burglar Alarm Interface.
Radio Shack calls it a Universal Inter-
face, and I like this name better. This
unit is a small box which plugs into any
outlet. You would use this unit to con-
trol X10 modules with an external volt-
age or contact closure. You can config-
ure this unit to control a single module
of any type. You can also configure it to
transmit the ‘‘All Lights On’’ command
in addition to a single selected unit code.
Finally, you can configure it to flash all
your lights on and off, such as would be
the case if you interfaced it to your alarm
system. This interface is very versatile.

In general, the house code is sclected
with a thumb wheel or screwdriver oper-
ated rotary switch on controllers. While
controllers can control all 16 house codes,
it is mostly inconvenient to change the
house code as though it was a user-oper-
ated feature. Usually, you dial-in the
house code on a controller and leave it
set.

Modules:

The LM465 Lamp Module is a small
box which plugs into any AC outlet and
can control up to 300 watts of incandes-
cent light. It can dim or brighten the
lamp and responds to the “‘All Lights
ON”’ and ‘‘All OFF”’ commands.

The LM486 (2-prong) and LM466 (3-
prong) Appliance Modules are also small
boxes which plug into the AC outlet.
They control their loads with a relay so
they can operate things like TV’s and air
conditioners, up to 15 Amperes. Appli-
ance modules do not respond to the
“Dim’’ or ‘‘All Lights On’* commands

The Computer Journal / #57

but they do respond to the ‘“All Units
Off”” command.

The SR227 is a duplex outlet which can
control a 15 A load. This unit is a
replacement for your existing wall outlet
and unless you know what you are do-
ing, you would be better off enlisting the
help of an electrician. Like the appli-
ance modules, the duplex outlet module
does not respond to the ““Dim’’ or *“All
Lights On’’ commands but it does re-
spond to the **All Units Off”* command.

The WS467 and WS4777 (3-way) are
wall switch modules. They replace your
existing wall switch and can control 500
watts of incandescent lamps. Consult
with your electrician on this one too. If
your wall switch controls wall recep-
tacles in the room, keep in mind that
these modules can onty handle light bulbs
and they may overheat or could even
cause damage to anything other than a
light plugged into the receptacle. Like
the LM465 Lamp Module, the Wall
Switch Modules can dim or brighten the
lamp and respond to the ‘‘All Lights
ON’’ and ‘‘All OFF’ commands.

The HD243 (15 AMP) and HD245 (20
AMP) are heavy-duty plug-in modules
to control high current 220 volt loads
like air conditioners.

Finally, there is the TH2807 Thermostat
Set-Back. You think I meant ‘‘Set-Back
Thermostat™ but I didn’t! This unit is
actually not a thermostat. It is simply a
heater. You install it on the wall under
your existing thermostat. When it is
connected to an appliance module, you
can use your control of the appliance
module to operate the heater. When the
heater heats the air around your thermo-
stat, it ““fools’’ it into thinking that the
room is warmer than it really is, so it
doesn’t call for heat.

Of special interest to us hardware hack-
ers are the BA-284 Universal Interface
and the BA-506 Universal Module. The
Universal Interface is essentially a con-
troller which operates with a voltage or
contact closure instead of the push of a
button. The Universal Module is essen-
tially a plug-in module but instcad of an

AC receptacle for the load, it has two
screw terminals with dry relay contacts.

Typical Applications

The X10 system can be put to work in
many applications around the home or
business. In my house, there are several
lights which are timed to turn on and off
automatically. Almost every room is
equipped with an X10 wall switch. This
means that the room lights can be turned
on and off from the wall switch and from
any X10 controller. Having an X10
controller located at the exit door allows
me to use the ““All Units Off” command
to be sure the kids didn’t leave their
bedroom lights on. It saves me a trip to
the second floor. Another application is
a timed vacation schedule which is pro-
grammed to make the house appear to be
occupied because the lighting in every
room closely -- but not exactly -- re-
sembles our normal activity. The timer
security mode varies the timed events
each time they are sent. My favorite
application involved stealing a commer-
cial idea which allowed your garage door
opener to also control a remotely located
light. Tused a BA-284 Universal Inter-
face and connected it to the lamp control
relay in my garage door openers. I used
an opto-coupler on each opener lamp
relay and simply connected their output
transistors in parallel to form an ““‘OR”
gate. When either opener lamp comes
on, the large fluorescent lamps in the
garage come on too.

A microswitch on each door is connected
in parallel with the opto-coupler transis-
tors. The switches are installed to be
activated by the door in the up position.
When the door is up, the garage
flourescents stay on, even after the opener
lamp times-out.

At the office, I have an appliance mod-
ule connected to the FM radio which
plays music-on-hold into our phone sys-
tem and background music into the of-
fice. All the equipment is located in the
back room except for the X10 Mini-
Controller located at the front desk.
When the office staff reports to work,
they can skip the daily excursion into the

15

back room and turn on the radio from
their desk.

At church, I installed an appliance mod-
ule on the sound system amplifier. In
addition, I installed a universal module
(dry contact closure) in parallel with the
output of the FM wireless microphone
receiver. Our church is located at a very
" high elevation and the FM wireless mic
receiver picks-up many other signals
when our portable mic is not powered-
up. Now, from several locations in the
~ church, we can disable the wireless mic
receiver if we are not using it. You may
~ ask why not just use an appliance mod-
ule on the receiver’s AC power line.
Well, turning on the power causes a
thump in the sound system as the re-
ceiver comes on. Putting the dry con-
tacts in series with the audio leaves an
open circuit (noise potential) at the am-
plifier input. Placing a short on the
audio definitely mutes the audio from
the receiver as well as any potential noise.

In reality, X10 applications are unlim-
ited. You can turn on your sprinklers to
water your lawn. You can control your
heating and air conditioning. Using a
special X10 interface, you can send and
receive X10 commands using a dedi-
cated controller such as the one Jay Sage
has been describing. This interface,
- called the TW523, consists of only the
very basic circuits to interface to the
power line. Your host software must to
all the timing in order to send or receive
X10 codes. The nice part is that this box
plugs directly into the wall receptacle.
You connect to it with a modular phone
jack. It isolates your controller safely
from the power lines. Purchase of the
TWS523 gives you permission to use the
proprietary X10 format signals.

One of my personal goals is to develop
a custom system, similar to Jay’s, but
use X10 as the primary access to AC
power control. I also envision a CRT
screen used as a status board to scroll
through displays of heating/air condi-
tioning, lighting, and watering. It will
also have a phone line interface to allow
commands to be received remotely or
even entered from any phone in the house.
It will have a clock to schedule pro-

16

grammed events including security light-
ing and temperature set-backs.

Ken Davidson authored two articles about
the power line interface. They appeared
in the May/June 1988 and September/
October 1988 issues of Circuit Cellar
Ink. These articles are essential if you
intend to integrate the interface into a
dedicated controller system.

The Ultimate X10 Controller for Com-
puter Junkies - The CP-290

The CP-290 is an intelligent interface to
control your X10 modules with your
computer. It connects to your serial /O
port and communicates in 2 manner very
similar to an intelligent modem. Using
the CP-290 you have the ability to turn
units on or off directly from your com-
puter keyboard as well as the ability to
program the CP-290’sevent timer. There
are 128 individual programmable events
which can be set to turn things on or off
an any predetermined time for selected
days of the weck. The CP-290 main-
tains an internal 24-hour 7-day clock.
You do not need to keep your computer
on or even connected to the interface.
The interface will keep on transmitting
the programmed event information over
the power lines at the correct times.
There is an internal 9-volt battery to
maintain the programmed information
during power failures.

The CP-290 comes with software. Only
Apple-Ile, Commodore, Macintosh or
IBM-PC software is available from X 10,
Other computers are supported by pri-
vate companies but none, to my knowl-
edge, have any commercial software
available for use under CP/M. This in
understandable since each CP/M com-
puter accesses its serial /O ports differ-
ently. At the time I purchased my CP-
290, I only owned CP/M computers 5o
the IBM or Macintosh software was of
no value. It was obvious that if I wanted
acomprehensive software package to run
my CP-290 interface on CP/M systems,
I would have to write one myself.

If you looked at the Programming Guide
which came with the CP-290, you would
quickly realize that it is no simple matter
to write a program to control the inter-

face. The microprocessor in the CP-290
is a relatively simple controller with only
8K of RAM. The firmware command
instructions are not consistent. All have
a different number of bytes and most
bytes have bit-mapped definitions. This
means that for a program to talk to the
CP-290, not only must it know how many
bytes to send, it must also know which
particular bits within certain bytes must
be on or off.

Eventually I was able to develop a series
of programs in Z80 assembly language
to access the features of the CP-290. As
time went on, I consolidated the indi-
vidual utilities into one single program.
Finally, with the help and encourage-
ment from Al Hathway and Biff Bueffel,
we honed and polished X10.COM into a
full-featured program for CP/M and Z-
System.

To give you a taste of the program, see
the Menu Display on the next page.

X10.COM can run in menu mode. or
from the CP/M command line. Here is
an example of a typical X10 command
entered from the command line. This
command will turn-on a light with ad-
dress D12 and dim the lamp to level 9.

X10 NOW D12 DIM 10

I
@ @ 6
(1) House/Unit Code - A ->P, 1 -> 16
or ALL
(2)- Function - ON, OFF or DIM
(3)-Dim Level - 1 (dim) --> 16 (bright)

The CP/M command line is an ideal way
to pass all the X10 commands to the CP-
290 interface through ZCPR3 Aliases or
other scripts.

It should be noted that the Libraries were
used extensively during the development
of X10.COM. SYSLIB, VLIB, Z3LIB,
DSLIB and ZSLIB provided routines
which greatly enhanced the power and
versatility of X10.COM without having
to re-invent the wheel at every turn. The
Libraries made programming in Assem-
bly Language a pure joy! This allowed
us to create a program which ran well
under ZCPR3 / NZ-COM as well as plain
CPM.

The Computer Journal / #57

The hardware specific software for

. X10.COM is contained in an overlay file
similar to IMP and MEX. We have
provided overlays for many popular sys-
tems as well as a generic overlay to help
you create a custom installation. The
overlay also contains a spot for the ter-
minal definitions. The terminal defini-
tions are only required to run X10.COM
under plain CP/M. We have an internal
environment and TCAP in X10.COM
because we wanted to create ready-to-
run COM files for Heath and Kaypro
which would run under plain CP/M. If
you are running ZCPR3, X10.COM will
use your currently defined terminal in
the ZCPR3 TCAP.

X10 Mega-Systems

At the very high-end of X10 systems are

commercially available products not pro-

vided by X10 USA but which use all
X10 products as system accessories.
These systems are usually found in the
million-dollar mansions with the sepa-
rate Audio/Video room which has elec-
tric drapes on the wall screen for the
projection TV and a custom built 200
slot laser disc juke box.

The Enerlogic ES-1400 is a micropro-
cessor based intelligent home control
system. It uses an IBM (tm) compatible
PC as the human interface but does not
need the computer to be on or even con-
nected to perform automated tasks (just

like the CP-290). What’s special about
the ES-1400 is that it is a TWO-WAY
INTERFACE. It can also receive com-
mands from other controllers and then
make an intelligent decision based on
the command just received. This open’s
the door to macro commands where the
touch of one button somewhere in the
house will cause the ES-1400 to ‘‘re-
map’’ that command into a scries of
other commands which can occur now
or at some time in the future.

Some of the suggested applications are
to use motion sensors to turn-on sclected
room lighting when you are home but
have them activate the alarm system
when you are away.

The Enerlogic ES-1400 sells for about
$370.

The JDS Telecommand System 100 is a
microprocessor controlied telephone in-
terface. This unit will allow you to send
any X10 command from any Touch-Tone
(tm) telephone. This includes all phones
inside your home as well as dial-up from
outside. Think about it. You could call
your home from the cellular car phone
and start the air conditioning on that hot
summer day while you are on your way
home from work!

The Telecommand System 100 sells for
about $450.

+

+

|t

[W X10.COM —> X-10 CP290 Computer Interface for CP/M
Copyright 1989, 1990, 1991 by Rick Swenton

i |
A |

Current Drive/User. C10:

Version 3.3

+

Primary Commands

¢ — &

Secondary Commands |

-+
+

Starting at $2,000, Home Automation
Inc. has the system for you. This is a
microprocessor controlled ‘‘whole-
house’” system. This single unit pro- .
vides two-way X10 interface, schedul-
ing, heating/air-conditioning interface
with temperature control, macro com-
mands, 21-zone coverage for fire, bur-
glary or emergency, alarm system with
auto dialer and digital speech messages
(name, address, type of emergency, ¢tc).
It also has local and dial-up telephone
control.

The Future

X10 is the simplest way to control things
without installing witing by using exist-
ing AC power lines. The X10 system
has been around for many years, so it is
a proven system. However, X10 is not
compatible with the new CEBus stan-
dards which are emerging today. CEBus
(Consumer Electronics Bus) is a new
way for devices in the house to commu-
nicate with each other, regardless of the
manufacturer. CEBus can use power
line, phone line, coax, infrared, RF or
any combination to communicate. On
the power line, it uses a scheme similar
to X10 but at a higher speed and capac-
ity. With CEBus, you could in theory
program a scheduled event into your VCR
from the front panel of your microwave
oven! CEBus opens the door to phones,
thermostats and alarm switches sharing
the twisted pair wiring, appliance con-
trol sharing the power line wiring, and
the audio/video sharing the coax wiring
with routers interconnecting the three
media and translating events between
them. Of course, the consumer products
need to be manufactured with the CEBus
capability built-in to take advantage of
the system.

Compatibility with CEBus could dimin-

ish your X10 investment in the near
future. However, there are clever people
out there who would enjoy developing a

[Njow - Immediate direct command
[Elvent - Program an event
[Ulpload - Upload events from disk

[Alrea - Change drive/user
[Blase - Change base housecode
{Dlownload - Download events to disk

[Rlead - Read and display events [P]rint - Print Events on Printer]

[Cllear - Clear selected Events [T}ime - Display the Time/Day bridge between X10 and CEBus. It
{Flles - Display UPLOAD files [S]et - Set the Time/Day shouldn’t be that hard to do.

[Hlelp - Help with specific commands [lnterface - Diagnostic self-test

[J\A]omtor - Display Activity Conclusion

+
t

|' [Qut - Exit the program (also X or AC)
+ + The X10 system is a powerful and ver-
satile system to control lights and appli-

ances around the home without the need

Enter selection:

The Computer Journal / #57 17

to install special wiring. The CP-290
Interface makes it easy to control your
home by programming events on your
PC clone or better yet, your new
YASBEC system! Once you get started
with the basic X10 system, it is very
difficult to break the habit of expanding
the system on a weekly basis. It took a
little time for my family to acclimate to
the unconventional light switches and
power controllers. Now, it is a way of
life.

Publications:

Electronic House

747 Church Road, G-11
Elmhurst, IL 60126-1420

(219) 256-2060

$14.95 per year MC/VISA/JAMEX

Circuit Cellar INK
4 Park Street Suite 20

Vernon, CT 06066
(203) 875-2751
$17.95 per year MC/VISA

Other:

There is a special user area in GEnie
dealing with Home Automation. GEnie
is an on-line subscription computer ser-
vice. In the Home Automation area in
GEnie, you will find a roundtable -- a
two-way dialog of people interested in

home automation as well as computer

~ programs available for downloading.

To sign-up for GEnie, call client ser-
vices at 1-800-636-9636 or write

GE Information Services
401 North Washington Street
Rockville, Maryland 20850

The program X10.COM is available for
downloading on GEni¢. Version 3.3 is

called X10-C33.LBR which contains
ready-to run COM files for Heath,
Kaypro, Ampro and SB-180 and the
Users Manual. X10-S33.LBR contains
the source code files including the over-
lays and extended TCAP files.

X10.COM is also available on the TCC
BBS (203) 673-8752, Jay Sage’s BBS
(617) 965-7259 and several RCP/M sys-
tems on the west coast.

Biff Bueffel is currently preparing
release 3.4 of X10.COM and should be
available ‘‘real soon now’’.

The following notes pertain to the Cross-
Reference table:

* DAK is currently having financial
problems and may be in the midst of
bankruptcy proceedings. It’s possible
that some good deals may be available

Cross-Reference of X10 Products

Product X10 HeathKit* Radio Shack Crutchfield DAK*
Lamp Module LM465 BC465 61-2683 009LM465 9779
Appliance 2 prong LM486 AM-486 61-2681 009AM468
Appliance 3 prong LM466 BC-466 61-2684 009AM466
Wall Switch WS467 BC-467 61-2683 009WS467 9780
Wall Switch 3-way WS4777 BC4777 61-2686 009WS4777
Wall Receptacie SR227 BC-227 61-2685 009SR227
220V 15A Appliance HD243 HD-243
220V 20A Appliance = HD245 BC-245
Thermostat Set-Back TH2807 BC-2807
Mini Controller MC460 MC-460 61-2677A
Maxi Controller C503 BC-503 61-2690 009SC503 4622
Radio Controller RC5000 BC-5000 61-2675 009RC5000 4712
Telephone Controller TR2700 BC-2700 .
Universal/Alarm BA284 BC-284 61-2687
(Interface external system inputs such as alarm systems)
Universal Module UM-506 5690
(Interface external system outputs such as sprinklers or drapery openers)
Whole House Control URC-5000
(Infrared hand-held VCR-style remote control for X10 and TV/VCR/Stereo, etc)
Command Center URC-3000
(The receiver portion needed with the hand-held URC-5000)
Sensor Chime SL-5321
Timer MT522 MT-522 61-2679 009MT522 4973
Timer/Radio CR512
Computer Interface CP290P BC-290P 905-2087 009CP290P
18 The Computer Journal / #57

now or in the future. There’s also some
risk.

HeathKit has ended production of elec-
tronic kits. At this time, they are still
in the home automation products busi-
ness.

' The Computer interface CP290P comes

with a serial cable which can directly
connect to the H89 modem port 330.
The other H89 serial ports can be used
but the gender of the connector needs to
be changed from female to male and
pins 2 and 3 need to be swapped.

You can order any product directly from
X10 (USA) Inc. They accept major credit
cards. You can also stop into your local
Radio Shack store for most of the com-
mon products.

X10 (USA) INC.

91 Ruckman Road
Closter, NJ 07624-0420
(201) 784-9700

(800) 526-0027

DAK Industries

8200 Remmet Ave.

Canoga Park, Ca 91304
(800) 325-0800 - Order
(800) 888-9818 - Tech Info

‘Crutchfield

1 Crutchfield Park
Charlottesville, VA 22906
(800) 446-1640

HeathKit
Benton Harbor, MI 49023
(800) 253-0570

Radio Shack

1500 One Tandy Center
Forth Worth, TX 76102
(817) 390-3011

Home Control Concepts

P.O. Box 27983

San Diego, CA 92198

(800) 828-8537 Order (cards ok)

(619) 484-0933 Info and Support
HCC is a high volume distributor carry-
ing a wide variety standard and EX-
OTIC X10 Products. They do have a
$100 minimum order but prices are low!

The Computer Journal / #57

For Sale: Televideo terminal boards. Have

3 of 950 and 1 of 925, still in working
order. I am willing to remove all electron-
ics from the case and ship to you. §25
each, plus UPS shipping fees. Call Bill at
TCJ, (916) 645-1670.

For Sale: HP2621 terminal with printers.
These HP terminal were working, but
recent moving has damaged some cabling.
Will take out all boards and ship to you
for $25 each, plus UPS shipping. Call Bill
at TCJ. (916) 645-1670.

For Sale: Lexidata 3400 RGB CAD sys-
tem. High resolution graphic station with-
out any docs. Will sell boards (6809 video
CPU) or entire system. Can ship boards,
but cabinet and power supply too heavy.
Entire system includes monitor and would
require motor freight, $250. Small parts
or boards are negotiable (else will part it
out). Call Bill at TCJ. (916) 645-1670.

For Sale: GIMIX 6809 SS-50 floppy disk
controllers. Have six to sell at $25 each.
These are like new and docs maybe had

Wanted: SAGE/Stride CP/M68K or
UNIX software. Have a SAGE 1V,
(actually II but labeled wrong - a real
classic) with 500K of memory. Also
looking for hard drive for same. Want
source code for CP/M BIOS and
BOOT disk. Have entire P-System
with source for that BIOS and ROMs.
Complete set of DOCS and will copy
what you might need in exchange for
software and or support. UNIX may
not run on my system, but feel that I
need to collect this information before
it disappears for good. Call Bill at
TCJ (916) 645-1670.

Wanted: Help with NORTHSTAR
ADVANTAGE, these hard sectored
disk systems are still munning, but hard
to get disk for. Need modem program
and other support software on hard
sectored disk. Any modifications to
go soft sector out there??? Contact
Jack care of TCJ. (916) 645-1670,

for a fee. An entire system is available

with software and documents. If inter-
ested contact Bill at 7CJ. (916) 645-
1670.

The Computer Journal Classified section
is for items FOR SALE. It is priced and
setup the same as NUTS & VOLITS. If
you currently have an ad running in NUTS
& VOLTS, just send us a copy of the ad
and your invoice from them, along with
your check, and we will publish it in the
next TCJ.

CLASSIFIED ads are on a pre-paid ba-
sis only. The ad rate is $.30 per word for
subscribers, and $.60 per word for oth-
ers. Those rates are for the first 150
words and double beyond 151 words.
There is a minimum $4.50 charge per
insertion. Photos and drawings are extra.
Contact TCJ for details (or see an issue
of NUTS & VOLTS.)

Wanted: Software and advice on HP
125. Is there anybody in my area that
can help me? How about local clubs
or organizations? Leslie Jones, 1206

. Overdale Rd., Orlando, FL 32825,

(407) 240-2189.

The Computer Journal SUPPORT
WANTED section is a FREE service
for our readers who need to find old or
missing documentation or software.
No FOR SALE items allowed, how-
ever exchanges or like kind swapping
allowed. Please limit your request to
one type of system per entry. Provide
the make, model number, and vintage
when possible. A phone number or
BBS contact is recomended as well as
home or business address. TCJ re-
serves the right not to print any re-
quest it feels that does not meet the
guidelines or is more an classified ad
than a request for support.

19

File Transfer Protocols
by Steven G. Westlund

Here is a great article that covers all
anyone needs to know about transfer
protocols. Steven does such a great job,
1 have used this as a handout for my data
communications course. You might think
you have already learned all there is
about protocols, but I think you will be
surprised by some of his information.
BDK

COMPARISON OF FILE TRANS-
FER PROTOCOLS FOR MICRO-
COMPUTERS

If you venture into the world of telecom-
munications with your microcomputer,
you probably take advantage of the vast
array of public domain software and
shareware available on bulletin board
systems (BBSs) across the country. You
may have discovered that a significant
amount of connect time can be consumed
in transferring those files to and from
your system. It can become rather ex-
pensive when dialing long distance or
using an on-line service. If this sounds
familiar, take a closer look at your file
transfer protocol options. It just might
save you time and money.

FILE TRANSFER BASICS

File transfer can be defined as the pro-
cess of sending a file over a communica-
tions line from one computer to another.
Files can consist of text characters, bi-
nary data or program source code. The
computers involved can range from home
and office micros to minicomputers and
mainframes used by businesses, govern-
ment and on-line services.(1)

In a typical file transfer process, the send-

ing computer reads a file from a mass
storage device, such as a floppy disk,

20

fixed disk, or RAM drive, and transfers
the data through a serial port to the
sending modem. (The word ‘“modem”
means modulator-demodulator). The
sending modem converts the data from
digital to analog form and transmits it
over a communications line, usually a
voice grade telephone line, to the receiv-
ing system. The receiving modem ac-
cepts the data and converts it from ana-
log back to digital form. This modem
transfers the data through a serial port to
the receiving computer, which stores it
in a file on a mass storage device on that
system.

File transfers can take place in two di-
rections. Uploading is the process of
sending data to another computer. Down-
loading is the process of receiving data
from another computer. Both systems
must use the same protocol, which is the
set of rules that govern the exchange.
These rules define the handshaking and
data formats that manage error detection
and correction. In other words, the pro-
tocol indicates when to transmit, when
to receive, and how to communicate to
the other system that something wasn’t
understood.(2)

ASCII FILE TRANSFER

An ASCII file transfer uses the simplest
type of protocol. Commonly invoked to
transfer straight text files, it is generally
limited to files containing 7-bit ASCII
characters. The ASCII protocol uses
transmitter on (XON) and transmitter
off (XOFF) characters to signal when to
start and stop sending data.

In an ASCII transfer, data is sent char-
acter-by-character to the receiving sys-
tem. Data buffering can be used on both
ends to speed up the process, since it

reduces the times a transmission must be
halted while the sending or receiving
computer accesses its disk. The XON/
XOFF protocol allows either system to
start and stop the transfer when this
OCCurs.,

Parity checking is a type of error detec-
tion available on systems using 7-bit
ASCIIL. The parity bit is transmitted at
the end of a 7-bit character. Two types of
error checking methods are employed:
EVEN/ODD and MARK/SPACE.

EVEN/ODD parity determines if the sum
of a string of bits should always be even
or odd. An even parity check works as
follows: The sending computer, when
framing a character, counts the number
of bits equal to one and then adds the
parity bit. The value of this bit will be
zero when the total is an even number.
When the addition of bits is odd, the
parity bit will be equal to one, to make
the total even (hence - even parity check-
ing.) So, with even parity, the total num-
ber of ones should always be even (in-
cluding parity bit.) With odd parity, the
total should always be odd. The receiv-
ing system checks for this result. When
finding a discrepancy, it flags the data
and requests a retransmission,

MARK/SPACE parity is even more ba-
sic. Mark parity always places a on¢ in
the parity bit with the receiving com-
puter expecting it to be there. Space parity
calls for a zero parity bit. There are some
basic problems with this method of error
detection. Parity checking is not avail-
able on systems that use 8-bit ASCIIL
When employed, it is not very reliable.
This is because parity schemes are only
successful in catching one-bit errors. Two
bit errors can mask themselves.(3)

The Computer Journal / #57

ASCIH transfer is gencrally an accept-
able protocol when transferring text over
a quality telephone line. However, when
telephone connections are noisy, data
can be lost. This is because ASCII does
not provide for the retransmission of
garbled data. The ASCII protocol’s pri-
mary limitation is its inability to send
binary files and programs. For this type
of exchange to work, the files must first
be converted from binary to hexadeci-
mal. Following transmission, they must
be converted from hexadecimal back to
binary. This complex procedure con-
vinced early microcomputer users of the
need for an error-detecting file transfer
protocol designed to work with binary
data.

THE XMODEM PROTOCOL

In 1977, Ward Christensen developed a
protocol that was designed to provide
reliable file transfer of text and binary
files between microcomputers. The pro-
tocol, known as XMODEM, or the
Christensen Protocol, was generously
placed in the public domain. Since its
introduction, XMODEM has been the
most popular file transfer protocol used
by microcomputers. It is a standard op-
tion on BBSs and in communications
programs offering non-proprietary pro-
tocols.

In a XMODEM transfer, a file is sent in
132-byte frames, also called blocks. Each
frame begins with an ASCII control-A
mark character, followed by the block
number. The data field is 128-bytes long,
which is the size of a standard 8-inch
CP/M disk block. For error detection, a
checksum byte is added to each frame.
Figure 1 illustrates a basic XMODEM
block.

A file transfer is initiated when the re-
ceiving system sends a negative
acknowledgement (NAK) character. The
file is sent just as it is stored on disk,
without conversions. The control ficlds,
and usually the data field, are composed
of 8-bit ASCH characters. The checksum
is calculated by adding up the ASCII
values of all the bytes in the block and
dividing that total by 255. The single
digit remainder is the checksum charac-
ter. If the receiving system calculates the

The Computer Journal / #57

same checksum, it transmits an
acknowledgement (ACK). Otherwise, it
sends a NAK.

The sending computer waits for a return
ACK or NAK to determine whether to
send a new block or resend the last one.
The transfer process normally ends when
the sending system transmits an end of
transmission (EOT) at the end of the file
and receives acknowledgement, The
transfer also can be aborted by either
user, too many retries or a time-out. The
checksum method of error-detection of-
fers 95 percent reliability.(4) This is
much better than the ASCII parity check,
but still leaves room for improvement. It
only takes one-bit error to disable a com-

puter program,
XMODEM EXTENSIONS

A common XMODEM option, the cy-
clic redundancy check (CRC), improves
the way the protocol checks for errors.
This extension is usually identified on a
BBS as XMODEM CRC, and may be
offered in a communications program.
Both systems, of course, must have this
capability, and a program supporting
XMODEM CRC can usually detect if
the other system offers it. CRC is se-
lected when the receiving system sends
the character ““C”’ to initiate the trans-
fer. If nothing happens, it tries a few
more times before sending a NAK, which
initiates a XMODEM checksum trans-
fer. The cyclic redundance check adds a
second checksum byte to each block to
enhance error detection up to 99.6 per-
cent.(5)

Another extension of the protocol, called
MODEM7, adds batch file transfer ca-
pability. This permits a group of files to
be sent in one operation when the opera-
tor requests several files or uses a wild-
card asterisk character in a file name in
order to transfer all files of a particular

type.

The XMODEM IK protocol represents
a significant enhancement in terms of
throughput. This extension increases the
blocksize from 128 to 1024 characters
and adds CRC error-checking. With a
good connection, XMODEM 1K can
improve throughput over regular

XMODEM by as much as 87 percent.(6)
XMODEM LIMITATIONS

XMODEM, with all its extensions, still
has certain inherent limitations. Because
XMODEM requires 8-bit control char-
acters, it won’t work over a 7-bit ASCII
channel. Control fields, like the block
number, would translate incorrectly. This
means that XMODEM can’t be used
over certain public packet-switched net-
works, such as Telenet. It also won’t
work with certain host computers, like
IBM mainframes, that require the use of
character parity.(7)

The XMODEM block data field was
designed for CP/M. On MS-DOS sys-
tems, it pads the last block in a file with
null characters when a file doesn’t end
on a 128-byte boundary. This alters the
true file length, increasing the time re-
quired for the transfer.

THE YMODEM PROTOCOL

The YMODEM protocol was developed
by Chuck Forsberg, who was respon-
sible for several XMODEM enhance-
ments. YMODEM, actually defined by
Ward Christensen in 1985, was named
after Forsberg’s ‘“Yet Another Modem™’

(YAM) communications program.(8)

YMODEM incorporates many of the
XMODEM extensions, including 16-bit
CRC error-checking and 1024-byte
blocks. A special version, called
YMODEM Batch, performs multiple file
transfers like MODEM 7. YMODEM is
available on many BBSs and communi-
cations programs for both CP/M and
MS-DOS microcomputers.

Be aware that not all versions of
YMODEM out there are compatible, This
is because of some confusion between
YMODEM and XMODEM IK. A few
communications programs claim to sup-
port YMODEM when they actually offer
XMODEM IK. This can cause frustra-
tion when a transfer is canceled because
the program does not send or receive the
correct YMODEM pathname block.(9)
However, the odds are that your
YMODEM transfers will work fine. Most
YMODEM implementations are com-

21

patible.
THE WXMODEM PROTOCOL

The WXMODEM protocol was created
by Peter Boswell for use by People/Link
subscribers. WXMODEM stands for
windowed XMODEM. A windowed pro-
. tocol is a full-duplex protocol that doesn’t
require the sending computer to wait
between blocks for an ACK or a NAK.
WXMODEM can send up to four blocks
without an acknowledgement of any kind.
The window is the difference between
the block being sent and the block for
which the last ACK or NAK was re-
ceived. The sending computer is always
one to four blocks ahead of the receiving
computer. When a NAK is received,
WXMODEM knows what block must be
retransmitted.(10) Like the original
XMODEM protocol, WXMODEM
transmits 128-byte data blocks. Figure 2
illustrates a WXMODEM window.

THE ZMODEM PROTOCOL

Chuck Forsberg initially created the
ZMODEM protocot for transferring files
over the Telenet packet-switching net-
work. Because of its performance,
ZMODEM has become the protocol of
choice by many BBSs and individual
users. The ZMODEM protocol differs
‘from XMODEM in how it deals with
packet-switching networks and main-
frames. ZMODEM can transmit files over
a 7-bit ASCII channel. It uses 512-byte
data blocks and, unlike XMODEM or
YMODEM, preserves the exact file
length if it doesn’t end exactly ona 512-
byte boundary. Like WXMODEM,
ZMODEM is a full-duplex windowed
protocol that does not have to wait be-
tween packets for an ACK or NAK from
the receiving system. It also allows the
user to increase the size of the input
buffer space from the 1024-byte default
to a maximum of 8192 bytes. This can
result in faster transfer times, especially
on floppy disk systems.

ZMODEM’s advanced features include
a 32.bit CRC, crash recovery, flexible
control of selective file transfers, and
security verified command downloading.
The 32-bit CRC code, written by Gary S.
Brown, is an improvement over the 16-

22

bit version used by XMODEM and
YMODEM.(11) After a broken connec-
tion is reestablished, crash recovery will
resume a transfer from the last acknowl-
edged packet. I have found this feature
to be a lifesaver. Nothing seems as frus-
trating as downloading a large file over
a long distance telephone line, only to
have the connection broken right before
the transfer is completed. With other
protocols, you would have to dial back
and start over from the beginning. With
ZMODEM, once the connection is rees-
tablished, the transfer can continue from
the last acknowledged packet.

Forsberg offers a shareware version of
the protocol, known as DSZ, for MS-
DOS systems. Ron Murray’s public do-
main program, ZMP, provides CP/M
users with the capability. Both ZMP and
DSZ can be downloaded from many BBSs
across the country.

THE KERMIT PROTOCOL

The Kermit protocol was developed in
1981 by Frank da Cruz and his team at
Columbia University. With a growing
number of microcomputer users and the
decentralization of computing responsi-
bilities, the university was faced with the
problem of how to get its mainframes,
minicomputers and micros to communi-
cate with each other. Because compat-
ible communications packages were not
available at the time for all its systems,
Columbia made the decision to develop
a communications protocol that would
meet the needs of the university. Yes,
the protocol was named *‘Kermit™’ after
the famous frog of Sesame Street. Kermit
also happens to be a Celtic name that
means ‘‘free.”’ This is appropriate, since
it was placed in the public domain.

Kermit was initially developed for CP/
M and MS-DOS microcomputers, the
DECSYSTEM-20 and IBM 370-Series
mainframes. Pleased with the initial re-
sults, da Cruz began presenting the pro-
tocol at computer users conferences.
Columbia University openly shared the
Kermit programs, source code and docu-
mentation with interested computer us-
ers. As other organizations developed
Kermit for their systems, they sent the
new implementations back to the uni-

versity. The process continued. By 1986,
Kermit was available for about 200
machines and operating systems.(12)

Kermit is an ASCII character-oriented
protocol capable of transferring 7 or 8-
bit ASCII files. When necessary, it can
convert 8-bit characters to 7-bit. This is
accomplished by translating ASCII val-
ues greater than 127 into a pair of 7-bit
bytes, which can be transmitted safely.
Kermit breaks the data file into packets
that are normally 96-bytes in length. The
packet size can vary because of changes
in transmission conditions. Basic Kermit
packets are composed of a header, file
data and checksum.

The header begins with a control-A char-
acter marking the beginning of the
packet. The next three bytes of header
information indicate the packet length,
the sequence number and the packet type.
The length byte is an ASCII decimal
value equal to 32 plus the total of the
remaining characters in the packet. The
sequence number byte is an ASCII deci-
mal value from zero to 63, and is used to
detect lost or duplicated packets. Se-
quence numbers wrap around to zero
after each group of 64 packets. The type
field is an uppercase letter indicating the
purpose of the packet. Special packet
types are used to send initialization pa-
rameters, file headers, ACKs and NAKs.
They also signify the end of the file, a
break in transmission, or an abort in the
transfer process.

In a data packet, the data portion is
followed by a block check. This single
byte arithmetic checksum represents all
the characters in the packet between the
control-A mark and the block check.
Like XMODEM, Kermit uses the
checksum to detect errors. Figure 3 il-
lustrates a basic Kermit packet. This
format represents a normal Kermit
packet that all programs should support.
Like XMODEM, Kermit also has op-
tions that vary the length and block check
fields.

KERMIT EXTENSIONS
Though normal Kermit packets are 96

characters, longer packets can be used.
The sender must set this capability in the

The Computer Journal / #57

initialization packet and furnish extended
length header fields. The extended
header is placed between the packet type
and data fields. It contains packet length
and header checksum fields. The maxi-
mum length of a long packet is 1000
characters.

Normal Kermit programs send and ac-
knowledge packets one at a time. An
extension of the protocol, known as Su-
per Kermit, employs full-duplex, sliding
window capability. Like WXMODEM,
it allows multiple packets to be sent be-
fore an ACK is received. Super Kermit
can send as many as 31 packets before
receiving an ACK.(13)

Kermit offers an optional form of data
compression known as run-length en-
coding. This extension replaces any data
character, appearing more than three
times in a row, with a shorter prefixed
sequence identifying the character and
the number of occurrences. This form of
data compression is most effective when
transmitting fixed-blocked files with
trailing blanks, program source code,
indented outlines, or binary files with
repeating zeros.

The MS-DOS and CP/M versions of the
Kermit can be downloaded from many
BBSs across the country. Many public
domain, shareware and commercial
communications programs also support
the protocol. MS-DOS users can find
Kermit as an option in Procomm, a
shareware communications package by
Datastorm Technologies, Inc. David
Goodenough’s Qterm program provides
Kermit support for CP/M systems.

PERFORMANCE TESTS

Table 1 compares the performance of
several public domain file transfer pro-
tocols. The tests were conducted from
my residence using an IBM PC-XT run-
ning Procomm Plus communications
software with a 1200 baud asynchronous
dial-up connection to a local BBS. The
communications parameters were set for
eight character bits, one stop bit and no
parity check. The Super Kermit programs
employed sliding windows and data com-
pression. ZMODEM capability was
added to Procomm through an external

The Computer Journal / #57

program, DSZ.COM.

As the test results show, maximum
throughput was achieved by the
YMODEM protocol. ZMODEM and
XMODEM IK were also high perform-
ers, while Super Kermit was the slowest
protocol tested. Another aspect to con-
sider is the size of the file after the trans-
fer. In this category, only ZMODEM
and Super Kermit kept the original file
size intact. All the other protocols in-
creased the length in order to end on a
128-byte boundary.

The tests were performed under favor-
able operating conditions. If a high level
of line noise or transmission delays had
been a factor, the results would have
been different. ZMODEM and Super
Kermit, with full-duplex windowing
capabilities, are designed to handle trans-
mission delays. Kermit and XMODEM
CRC, due to smaller packet sizes, can be
more efficient than the other protocols
on a noisy line.

CHOOSING A PROTOCOL

When signing on to a BBS, make note
of the protocols it supports. Choose one
based on its throughput, error-detection,
error-recovery and effect on file integ-
rity. Of the protocols discussed in this
paper, ZMODEM has the most to offer.
It has excellent throughput, employs 32-
bit CRC and crash recovery, and does
not alter file length. If ZMODEM is not
available, look for YMODEM, then
XMODEM 1K, XMODEM CRC and
XMODEM checksum. ASCIH is only
recommended for transferring text files
when other options are unavailable.

Use Kermit when you need to send 8-bit
characters to a mainframe computer.
Super Kermit and WXMODEM perform
best when on line with commercial sys-
tems, such as the Source and People/
Link. CompuServe offers its own proto-
col, known as CompuServe B. It is also
available in the public domain, and
should be used when on that system.

Public domain and shareware communi-
cations programs generally offer a better
selection of non-proprictary protocols.
Some, like Procomm and MEX, have

evolved into more powerful commercial
versions. Procomm Plus (MS-DOS),
MEX-PC (MS-DOS) and MEX-PLUS
(CP/M), support many of the file trans-
fer protocols available in the public do-
main,

So, if you haven’t given much thought to
the file transfer protocol you've been
using, try one of the high performance
protocols the next time you download a
file. You just might be surprised at the
results.

BIOGRAPHY

Steve Westlund has been working with
microcomputers since 1978, He is inter-
ested in telecommunications and appli-
cations programming in the CP/M and
MS-DOS environments. Steve is em-
ployed by Washington University as a
Senior Project Leader. He is responsible
for the design, development and imple-
mentation of information systems. Steve
also teaches programming classes at
Belleville Area College and is finishing
work on his Masters degree in Informat-
ion Management. Steve can be reached
on Bitnet at C08920SW@WUVMD.

REFERENCES

(I)Michael A. Banks, The Modem Ref-
erence (New York, 1988), p. 220.

(2)Al Stevens, ‘A Phone Directory and
XMODEM added to SMALLCOM™’,Dr.
Dobbs Journal, (April, 1989), p. 110.

(3)Michael S. Booner, Micro to Main-
frame Data Interchange (Blue Ridge
Summit, PA, 1987), p. 38.

(HAlfred Glossbrenner, ‘“The Down-
loading Zone’’, Personal Computing,
(March 1988), p. 90.

(5)Michael A. Banks, The Modem Ref-
erence (New York, 1988), p. 235.

(6)Glossbrenner, p. 90.

(7)Frank da Cruz, KERMIT, A File
Transfer Protocol (Pittsburgh, PA, 1987),
p. 304.

(8)Chuck Forsberg, DSZ- a ZMODEM,

23

True YMODEM, XMODEM File Trans-
fer Program (Portland, OR, 1988), p. 4.

(9)Forsberg, p. 4.
(10)Banks, p. 235.

(11)Forsberg, p. 34.

(12)da Cruz, p. 9.

24

(13)Glossbrenner, p. 92.

File: 51134 bytes (binary)
Protocol Min:Sec Bytes/Sec Bytes After Transfer
XMODEM 8:13 103 51200
XMODEM CRC 8:30 100 51200
XMODEM 1K 7:20 116 51200
YMODEM 7:16 117 51200
ZMODEM 7:18 116 51134
Super Kermit 10:12 83 51134

Table 1. File Transfer Protocol Performance Tests

MARK BLOCK NUMBER DATA CHECKSUM

Figure 1. Basic XMODEM Block

Before Packet 1 ACK'd After Packet 1 ACK'd
Packet 1 Packet 1
Packet 2 Packet 2
Packet 3 Packet 3
Packet 4 Packet 4
Packet 5 Packet 5
Packet 6 Packet 6

Figure 2. A WXMODEM Window

MARK LEN

SEQ TYPE DATA CHECK

Figure 3. Kermit Packet Fields

The Computer Journal / #57

Real Computing

By Rick Rodman

0S/2 2.0, Minix within 0S/2, and
SESI

0S/2 2.0!

08/2 2.0 is finally out: the full 32-bit,
386-specific operating system that does
everything better and faster. Now you
can run all of your existing PC software
- at once!

You can have multiple DOS boxes - all
the DOS boxes you want - and they can
each have all the EMM and/or ex-
tended memory you want, all emulated
through the magic of the 386. Plus,
they all execute quasi-simultancously
with OS/2 sessions and with each other.
Plus, the quality of the emulation is
better than under 1.3. Heck, you can
even boot a real DOS inside OS/2... or
Minix (more on that later).

One of the nicest features is that you
don’t have to explicitly create a DOS
box. All you have to do is enter the
command name at the system prompt. If
it'sa DOS or Windows program, it
will create a box for you.

The Windows aspect of the DOS box
emulates Windows 3.0, Actually, it re-
ally is Windows 3.0. It runs in Stan-
dard mode only. If you simply type in a
Windows program name, it’llrunina
*“Windows Full Screen’” box. However,
you can get it to run on the regular
desktop, by creating a Workplace Shell
object for it.

Workplace Shell is what we used to call
Presentation Manager, and maybe still
do. It’s alittle different from previous
08/2 and Windows GUIS; it uses a lot

The Computer Journal / #57

more direct manipulation (drag and
drop).

But you could have read most or all of
the aforesaid in PC Week. TCJ readers
want to know about what’s under the
hood.

Well, you can write true 32-bit code
now. Remember how many times the
““640 K barrier’’ has been broken? It
was broken by EMS, right? By EMM?
By DOS 5? By Windows 3.0, certainly?
Horse hockey!

There never was a 640 K barrier. Any-
body who programs PCs can tell you
right off that the real barrier has always
been 64 K, just like on the Z-80. Yes sir,
you can plug 32 megabytes of RAM
right onto the motherboard, but as soon
as you have a data object bigger than a
measly sixty-four kilobytes, it’s like
changing your vacation from Baltimore
to Bulgaria.

Anyhow, you can now write true 32-
bit code and try to forget all of that
segmentation garbage. But, you may
have existing 16-bit libraries or DLLs.
What then? No problem, you can still
use them!

How can the operating system have
mixed 32 and 16 bit code? Well, it’s
quite tricky. The selectors for 16-bit
code are set up in a *‘tiled”’ fashion, so
that there is a direct conversion be-
tween a segmented 16-bit address and a
flat 32-bit address. So that the compiler
knows to generate code for this, you
have to use special compiler directives
““ Segl6” and ““_Farl6. IBM’s re-

leasing a compiler toolkit, called Workset/
2, and other compilers are on the way.,

Of course all of your existing 16-bit
08/2 and DOS compilers will work just
fine. They won’t produce 32-bit code.
However, since the operating system is
internally more efficient, they’ll often
compile faster under OS/2 than they did
under DOS!

What are the down sides? Some folks
have had trouble installing OS/2 2.0 on
some SCSI disk controllers, although
I haven’t. The default mode for instal-
lation is to run your hard disk ROM
BIOS (chip on the controller) in a kind
of DOS box. It takes a long time to
install - it comes on 21 high-density
floppies. The key to getting good per-
formance is to have lots of RAM. Of
course, RAM has continued to get
cheaper and cheaper.

As an aside, many magazines, and
even newspapers, made a lot of noise
“comparing’” Windows 3.1 to OS/2
2.0. That’s a lot like comparing a twelve-
speed bike to a Maserati. Yes, Win-
dows 3.1 is somewhat better than Win-
dows 3.0. But so what?

Microsoft is touting its future Windows
NT as a new product which will pre-
serve people’s investment in Windows
development by using an API which is
‘‘almost” compatible with Windows.
This is a weird concept, Windows’ API
is awkward and messy, with funny and
inconsistent naming, whereas OS/2’s
is cleaned up. Microsoft should know

25

- I'm pretty sure they’re the ones who
cleaned it up.

Minix within 0S/2

Not only can you run DOS programs
in a DOS box under OS/2, but you can
also boot areal DOS disk from within
0S/2. The instructions for doing so are
on page 101 of the Installation Guide.
Basically, by entering the program com-
mand line ““*’’ (a single asterisk), a
special *‘virtual DOS machine’” (virtual
8086 session) is created. These sessions
emulate the entire PC hardware, includ-
ing extended and expanded memory.
Also, if your C: drive is FAT, youcan
access it from the booted DOS. Sorry,
DOS can’t access an HPFS partition.

Since the session is really an emulation
of the PC hardware, you’re not restricted
to booting just DOS. You could, for
example, boot Concurrent DOS or CP/
M-86. And most importantly, you can
boot Minix!

Minix will run in real mode, which
means you’re restricted to 640K. After
creating the program object (call it
“Minix’’), putting a star in the
program name, and setting
DOS_STARTUP_DRIVE to A: (inDOS
Settings), you're ready to go. Put the
Universal Boot Disk (#3) in the A:
drive and doubleclick. From there, you’ll
need disk #4 (Root File System) and a
copy of disk #5 (/usr).

With DOS, you don’t need to change the
disk while booting, so you can make
images of the system disk(s) on your
hard drive with a program VMDISK.
Since Minix requires that you change
the floppy, you’ll have to use the floppy
drive, at least until you set up the hard
disk partition(s) (/hd2 and maybe /hd3)
for Minix.

If you’re running with floppies, you’ll
need a non-write-protected copy of disk
#5. Actually, I only work with copies
of disks. I never use original disks with
any program other than DISKCOPY.
Copying these Minix floppies is a real
pain. Since they have no BPB, DOS
and OS/2 only copy 40 tracks, which is
only 360K instcad of 720K. I have two

26

programs, GETDISK and PUTDISK,
which I use to copy Minix floppies. Of
course if you can get Minix up on a
hard drive, you can use Minix to copy
them.

Running operating systems inside other
operating systems takes a little getting
used to, especially when it’s a
multitasking OS like Minix. It’s a fea-
ture which really has potential though.
I always hated rebooting to change
operating systems - now there’s no
need to!

SCSI

A great tool for experimenting with
SCSI devices is the PC-532 monitor’s
“‘raw’’ command. You set up buffers
for the command and any data you want
to send or receive, issue the command,
and then look at the buffers. Any sense
data or messages that have come in are
right there.

Quick introduction to SCSI; You send
a command, which may be 6, 10 or 12
bytes long, depending on what com-
mand it is. You may send some data
along with it (data out). Normally,
everything goes fine and you may get
data coming back, if you asked for any
(data in). Ifthere’s a problem (a ‘‘check
condition’’), the controller will usually
doa “‘sense’’ for you and retrieve some
data describing the condition (sense
data).

The SCSI bus can have 8 physical
devices attached to it (‘‘PUNs”’). Each
PUN can have 8 logical units (LUNSs).
Hardly anyone uses LUNs. The PUNs
are usually numbered 0 to 7. PUN 7 is
usually your interface card (‘‘host
adapter”’).

The commands are quite intelligent.
You can ask a device to tell you what it
is, how big itis, and other relevant
details, and control all aspects of the
device’s operation. There areno more
sectors, cylinders and heads. Instead,
disk drives are just a sequence of
logical blocks numbered starting at zero.
There are SCSI disk drives, tape drives,

scanners, graphics boards, video digi-
tizers, printers...

Enough introduction. As usual, the
software and documentation out there
are almost criminally inadequate given
the exciting potential of the hardware
and protocol design. If you want to do
anything, you pretty much have to start
off at square zero. So what if you’re not
lucky enough to have a PC-5327 What
do you do if you have to use (shudder) a
PC?

After sifting through the various claims
out there, I've come to the conclusion
that, in the PC world, there is only one
SCSI API that is usable and documented,
and that’s Adaptec’s ASPI

ASPI is a pretty simple interface. You
set up a structure containing various
parameters such as the PUN to talk
to, where your data buffer is, and which
direction the data is supposed to go,
plus the SCSI command, then make a
far call, and you get a status back and
sense data if it failed. ASPI workswith
cither Adaptec or Corel SCSI boards,
and maybe others too.

Some people may tell you that you don’t
need to understand the ‘‘complexities’’
of SCSI and interpose their own transla-
tion layer. But all they’ve done is sub-
stitute a different, proprietary set of
complexities for the standardized com-
plexities of SCSI, which actually aren’t
very complex anyhow.

Besides, sooner or later you’re going to
have a device that you need to toggle the
bits and bytes on, and their ‘‘high-
level’” interface isn’t going to support it,
so you’re going to have to get down into
the SCSI level anyway.

SCSI is everything that IEEE-488 was
supposed to be and lots more. Any new
peripheral device should be designed with
a SCSI interface. SCSI, not Ethernet, is
the next RS-232. (I know, there arc
length limitations. These things take
time.)

Now to access ASPI from Windows

in protected mode, you have to use
what is called DPMI. DPMI (“‘DOS

The Computer Journal / #57

Protected-Mode Interface’) is a messy
and confusing kludge cobbled up to
translate between °‘paragraph-style’’
(8086) segmented addresses and *‘se-
lector-style’” (80286) ones. It involves
setting up a structure, setting some reg-
isters, and doing an INT 31 hex.

On the topic of DPML...

Microsoft has a new C/C++ 7.0 com-
piler out. This product has two serious
flaws. First, it doesn’t support the 16-
bit mode of OS/2 any more. This is no
great loss, since OS8/2 2.0 is out. The
more scrious drawback is that it uses
some ‘“Microsoft-proprictary extensions
to DPMI”’ which require a special
memory manager. [can’t decide whether
this is just bone-headed design - after
all, we’re only talking about a compiler
here, not an operating system - or a
deliberate, sleazy effort to prevent the
compiler from working under any non-
Microsoft OS. Either way, avoid this
product. Ifyou have 6.0, don’t upgrade.
if you don’t, get Borland or Zortech,

The reason these PC compilers get so
complicated is because of the Intel
processors’ segmentation. Of course the
fact that C is such a muddy mess com-
plicates the matter, but: Microsoft C/
C++ 7.0 comes on 11 high-density
floppies. The Prendeville compiler, for
the clean NS32 architecture, fits on a
single 360K floppy - and it includes all
source, t0o.

Next time

Well, I've used up my allotted space, so
some of the news from the PC-532 and
Linux fronts will have to wait for next
time. Another topic I hope to discuss is
the advent of the Gnu tools - gcc,
gplus, and more - under OS/2. Running
in full 32-bit mode, a regular PC is a
whole new machine.

Where to call or write

Adaptec BBS: +1-408-945-7727

The Computer Journal / #57

I* getdisk - copy a disk into a disk file

*

901103 rr from readabs.c

For Datalight Optimum-C

#include “dos.h"

#finclude “stdio.h”

#define NUM_SECTORS 9

#define SECTOR_SIZE 512

#ifndef 18086L

** error must be compiled large model

#endif
struct dbt {
unsigned char specifyt,
unsigned char specify?2;
unsigned char matorturnoff;
unsigned char sizecode; [* sector size code */
unsigned char lastsector;
unsigned char gaplength;
unsigned char datalength; /* usually 255 */
unsigned char formatgaplength;
unsigned char formatdatavalue;
unsigned char headsettle;
unsigned char motorstartup;
} *diskbasetable;
unsigned char buffer] NUM_SECTORS * SECTOR_SIZE];
static void usage(char*),
static void reset_disk_system(void);

I" - main program - */

main(argc,

#to

#endif

argv) int argc; char *argv(]; {

int n, drive, head, track, sizecode, retry;
int i;

union REGS regs,

struct SREGS sregs;

unsigned char origsizecode,

FILE *outfile;

if(arge 1= 3) usage(“Incommect number of parameters supplied”);
switch(*argv{1]) {

case ‘a":
case ‘A"
drive=0;
break;
case ‘'b":
case 'B"
drive = 1;
break;
default:

usage(" <floppydrive> must be A: or B."); p73
}
outfile = fopen(argv{ 2], "wb”),
if(outfile == (FILE *) 0} usage("Can’t open output file");
I* get the disk base table data pointer */
diskbasetable = * (struct dbt **) 120L; /* vector 30 */
origsizecode = diskbasetable -> sizecode;
printf(“\Anorigsizecode was %d”, origsizecode);
head = track = 0;
sizecode = 2;

memset(buffer, 0, NUM_SECTORS * SECTOR_SIZE);
reset_disk_system();
printf{ “\n\nGetting disk...\n\n");
for(track = 0; track < 80; ++track) {
for(head = 0; head < 2; ++head) {
printf{ “\itrack %d head %d", track, head);

diskbasetable -> sizecode = sizecode;
if(sizecode == 0)

diskbasetable > datalength = 127,
selse diskbasetabie -> datalength = 255;

for(retry = O; retry < 3; ++retry) {
sregs.es = sregs.ds = getDS();

regs.h.dl = drive; ro=A ..
regs.h.dh = head; roort..*
regs.h.ch = track;

regs.h.cl= 1, I* sector 1 */
regs.h.ah = 2; " read sector(s) */

regs.h.al = NUM_SECTORS; /" # sectors */
regs.x.bx = { unsigned int) &buffer{ 0], /* buffer */

int86x(Ox13, ®s, ®s, &sregs); /* invoke BIOS */
n = regs.h.ah; I* get errors */

if(n == 0) break;

reset_disk_system();

}
if(n) printf(“\n** Disk error %d ** %d secs read\n”,
regs.h.ah, regs.h.al);

I* write the data gotten to the output file */
if(fwrite(&buffer{ 0), SECTOR_SIZE, NUM_SECTORS,

27

outfile) 1= NUM_SECTORS) {

printf(“\nError writing output file\n"), .

fclose(ouffile);
exit(1);
}
}
) }
static void usage(s) char *s; {
printf(*Usage: getdisk drive> «fil n”),
printf{ "'Ervor: %s\n s) p73
) exit(1),
stahc void reset_disk_system{) {
union REGS regs;
regs.h.ah=0; I* reset disk system */

intB8(Ox13, ®s, ®s); /* invoke BIOS */

}
I* end of getdisk.c */

P* putdisk - copy a disk file onto a disk
901103 rr from getdisk.c

For Datalight Optimum-C
*/

#include “dos.h”

#include "stdio.h”

#define NUM_SECTORS 8
#define SECTOR_SIZE 512

#iftndef 180861
** arror must be compiled large model
ftendif
struct dbt {
unsigned char specifyl;
unsigned char specify2;
unsigned char motorturnoff,
unsigned char sizecode; /* sector size code */
unsigned char lastsector,
unsigned char gaplength;
unsigned char datalength; /* usually 255 */
unsigned char formatgaplength;
unsigned char formatdatavalue;
unsigned char headsettle;
unsigned char motorstartup;
} *diskbasetable;

unsigned char buffer] NUM_SECTORS * SECTOR_SIZE ;
static void usage(char*);
static void reset_disk_system(void),

J*.— main program — *

main(argc, argv) int argc; char *argv(]; {
int n, drive, head, track, sizecode, retry;

int i

union REGS regs;

struct SREGS sregs,;
unsigned char origsizecode;
FILE *infile;

if(arge 1= 3) usage(“Incorrect number of
parameters supplied”),
switch(*argv{ 1]) {

case ‘a"
case ‘A"
drive = 0,
break;
case 'b
case ‘B
drive = 1;
break;
default:

usage(“<fioppydrive> must be A: or B:"), p73

}
infile = fopen(argv{ 2], "rb”);
if(infile == (FILE *) 0) usage(“Can’t open input file"),
I* get the disk base table data pointer */
diskbasetable = * (struct dbt **) 120L; /* vector 30 */
origsizecode = diskbasetable -> sizecode;
printf("“\Anorigsizecode was %d", origsizecode),
head = track = 0;
sizecode = 2;
memset(buffer, 0, NUM_SECTORS * SECTOR_SIZE),
reset_disk_system();
printf{ “\n\nPutting disk...\n\n"),
for(track = O; track < 80; ++track) {
for(head = 0; head < 2; ++head) {

printf(“utrack %d head %d", track, head),

1 read the data gotten to the output file */

if(fread(&buffer{ 0), SECTOR_SIZE, NUM_SECTORS

28

#it0

#tendif

}

infile) 1= NUM_SECTORS) {
printf(“\nError reading input file\n”),

fclose(infile),
exit(1);
}
diskbasetable -> sizacode = sizecode;
if(sizecode == 0}
diskbasetable -> datalength = 127,
else diskbasetable -> datalength = 255;

for(retry = 0; retry < 3; ++retry) {
sregs.es = sregs.ds = getDS(),

regs.h.di = drive; ro=A.."
regs.h.dh = head; POort... Y
regs.h.ch = track;

regs.h.cl =1 I* sector 1°*/
regs.h.ah=3; I* write sector(s) */

regs.h.al = NUM_SECTORS; /* # sectors */
regs.x.bx = (unsigned int) &buffer[0]; /* buffer */

int8Bx(0x13, &rags, ®s, &sregs),
I* invoke BIOS */

n = regs.h.ah;

if(n == 0) break;
reset_disk_system();

I* get errors */

}

if{ n) printf{ “\n** Disk error %d ** %d secs wrifin",
regs.h.ah, regs.h.al);

}

}

static void usage(s) char *s; {
printf(“Usage: putdisk <floppydrive> <filename>\n"),
printf(“Error. %s\n”, s); p73

exit(1),
}
static void reset_disk_system() {
union REGS regs,
regs.h.ah = 0; I* reset disk system */
intB8(Ox13, ®s, ®s); /* invoke BIOS */
}
I* end of putdisk.c */

1DS2020 OR TDS9092 CARD COMPUTER

18d

S8d
£8d

18d

98d

¥8d
c8d

0ad

Lvd
Gvd

£vd

vd

$vd

¥vd

vd
ovd

~ [-]

5 o £3 2
r[)f:'g’—] %s §F£l’3
2 @ 2P 4 NPT
= 8 = R 293
S T 23E| BS5e8
— T $58| Ege
e <*% -8
= €| 233

- @ 22}

= aSB] b
I—[)- ® S Qoo E
2ol 58| EEgd
2 & T gég Al
= 2| TR - o — O
S o) 28:| 25279
5 58| Bz
» T 000 B Ao s o
l?)—_‘_’ ~p— gsg o'?ge
"B 2L | @S S
PE °h §S§ S5
‘8 ; "Ef| cE3¢
o D o EEE| RS
= S -0 EE:| LB BT
- 5 omoe| 298 Z€gg
- ST 2RE| BSS S
TE al s % Emm<
= & g 8w
Z E2l o827

~ @ . —
I—Di’ -1 sE| S8
> 8 el 2ha| E-Ee
-8 . s2| E-E3
- § bt §45 SEED
= <O & LS B
" “—’ZSWRW-‘ R 008
Z—: - op | 2E8| EDFO
* - SEQg=
a5 ='ﬁl’-'§ g mwvO

5= g 25%
L =
-+

The Computer Journal / #57

MDISK at 8 MHZ

By Terry Hazen

 Intermediate
 Ampro Hardware

i

Terry sent me a letter with his article
which I think introduces his topic per-
Jectly. BDK

The MDISK at 8Mhz, is an article that
tells how to make an Ampro Z80 Little
Board with an MDISK 1 megabyte RAM
disk combination run at 8 Mhz. The
MDISK is an add-on board for the Ampro
that provides space for 1 megabyte of
RAM that may be configured for use as
a RAM disk. MDISK also provides the
Ampro with bank-switching capabilities
for operating system expansion, such as
use of Cam Cottrill and Hal Bower’s
new banked ZCPR40-ZSDOS2-B/P
BIOS system.

MDISK at 8 is a follow-up to several
earlier articles. The original MDISK
hardware and software articles ran in
TCJ29/30 and George Wamer did an
article in TCJ54 on converting the Ampro
from 4 Mhz to 8 Mhz.

Finally, I’d like to say how much I like
TCI. 1look forward to each issue, espe-
cially the ZCPR3, YASBEC and other
Z80 hardware and software features. I
only wish Lee Hart could return with
more advanced Z80 software ideas. 1
learned a whole lot from his contribu-
tions.

I wish you success with TCJ. It’s cer-
tainly a big job!

Regards, Terry

Adapting A 4 Mhz Ampro Little
Board And MDISK 1 Megabyte RAM
Disk For Use At 8 Mhz

George Warner ended his TCJ #54 ar-
ticle on modifying 4 Mhz Ampro Z80

The Computer Journal / #57

Little Boards to run at 8 Mhz by saying
that he hadn’t been able to make an
Ampro/MDISK '1 megabyte RAM disk
combination (TCJ #29,30) run reliably
at 8Mhz. I’'m happy to say that it only
takes a few simple chip changes to make
an 8 Mhz-modified Ampro/MDISK run
reliably at 8 Mhz and to provide you
with a very speedy and roomy RAM disk
workspace.

First, however, a correction to the basic
Little Board Model 1B (the board with
the built-in SCSI controller) 8 Mhz con-
version directions. In the second col-
umn of page 31, direction number 3 for
providing 8 Mhz to the Z80 actually
applies only to Model 1A. The correct
Model 1B procedure is to cut the compo-
nent-side trace taking the 4 Mhz clock
signal from U3 pin 13 to Z80 pin 6 at a
point directly adjacent to pin 6 of the
Z80. You then provide the 8 Mhz sys-
tem clock to the Z80 by jumpering U3
pin 14 to Z80 pin 6 on the circuit side of
the board.

Adding the MDISK RAM disk board to
the Ampro Little Board changes the
overall RAM timing a bit. Making the
board combination boot and run at 8
Mhz requires a few chip changes on
both boards to speed up some operations
while slowing down others so that the
overall RAM timing is brought back in
sync at 8 Mhz. I’ve specified type 74F
chips when faster chips are required.
It’s possible that other fast chip types
may be used in place of the 74F’s, but 1
didn’t have any on hand to try. Feel free
to experiment. If the boards will boot
and run at 8 Mhz, the timing is ok. It’s
as simple as that. If the timing isn’t
right, the drive light on the boot drive
won’t light or you won’t make it all the

way though the boot process.

On the Ampro Little Board, 6 chips need
to be snipped out and the leads carefully
desoldered and removed. Replace them
with sockets and add the following new
chips:

Model 1A Model 1B New Chip
Ul19 U35 74LS00
U28 U3sg 74LS02
Ul8, U27 U26, U37 74LS74
U20,U29 U22,U23 74F157

On the MDISK board, replace the two
socketed 74L.S245 buffer chips (U51,
U53) with 74F245°s. The 150ns DRAM
chips used at 4 Mhz will still work fine
at 8 Mhz. If your board has 200ns
DRAM chips, you will probably have to
replace them with faster chips. You
should now be able to boot and run at 8
Mhz.

What will this 8 Mhz conversion do for
you? Even if you use your Ampro/
MDISK mostly for word processing or
other terminal-oriented work, you’ll see
abig difference between a 4 Mhz Ampro/
MDISK and the 8 Mhz version. You'll
see even greater differences when run-
ning more computation-oriented appli-
cations. Here are a few real world task
speed comparisons between 4 Mhz and
8 Mhz Ampro/MDISKSs, with the appli-
cation programs running on the RAM
disk. See the chart on the next page.

Now for the gotcha’s! Ampro-specific
utilities that talk directly to the floppy
disk controller chip, such as
AMPRODSK and MULTIDSK, contain
fixed delays that assume a 4 Mhz clock.
These utilities may not operate properly

29

at 8 Mhz, particularly on a Model 1B.
Because of this problem, I've rewritten a
set of Ampro utilities to automatically
check the clock speed when they are run
and set their disk delays accordingly.
They also operate properly under
NZCOM. Sec AMP8ZU13.LBR on your
favorite Znode.

" Ampro’s last official BIOS release,
BIOS38, seems to work all right on my
own 8 Mhz floppy disk machines, but it
has fixed floppy disk controller delays
‘which may cause floppy disk sector write
problems at 8 Mhz on some Model 13

" systems. Model 1A floppy disk opera-
tions don’t seem to be as sensitive to
clock speed for some reason.

With improper delays, it’s possible for
the floppy disk controller to lose data.
When it does, it simply writes zeros for
several records. Since this would be
very unfortunate if you’re doing a direc-
tory write, you should initially verify
floppy disk driver operation by writing
to an unimportant disk before attempt-
ing to write to an important one! Since
the datestamping process also involves
disk writes, turn off your datestamping
before doing any initial testing just to be
on the safe side.

Cam Cottrill and Hal Bower’s new

-banked ZCPR40-ZSDOS2-B/P BIOS
system also runs very well on both my 4
Mhz and 8 Mhz Ampro/MDISK floppy/
RAM disk systems and I hope to have
the B/P BIOS Ampro hard disk driver
sorted out shortly.

Converting your old 4 Mhz Ampro sys-
tem by speeding it up to 8 Mhz and
adding 1 megabyte of RAM won’t make
it run neck-and-neck with an 18 Mhz
YASBEC. I don’t think even George

Warner could do that - that wasn’t a
challenge, George, really! But I think
you’ll be impressed with how much
smoother and more responsive your
Ampro/MDISK has become. It’s amaz-
ing how far you can take that old 4 Mhz
Ampro Little Board floppy disk system
if you don’t mind handshaking with the
cool end of the old soldering iron!

Terry Hazen has a background in analog
electronic and mechanical engineering.
He is currently a product design consult-
ant, specializing in medical electronic
systems. He encountered his first Z80
computer in 1982, installing ZCPR30
when it first came out and has been
pursuing Z80 hardware and software
projects ever since. His company, n/
SYSTEMS, produces the MDISK add-
on RAM disk for Ampro LB computers.
MDISK also provides the Ampro with
bank-switching capabilities for operat-
ing system expamsion. Terry enjoys
designing and building varied types of
hardware and software projects, not ail
of them computer-related. His recent
software projects include the HP and
HPC RPN calculators, the ZP file/disk/
memory record patcher, the REMIND
appointment reminder utility as well as
several new and upgraded Ampro-spe-
cific utilities: AMP8ZU13, a set of seven
ZCPR3/NZCOM/8 Mhz versions of
Ampro configuration/system utilities and
LBCLKS12, clock utilities for reading
and setting the BIOS39 clock, ZSDOS
clock and SmartWatch. He may be
reached on Ladera Z-node #2. His ad-
dress is 21460 Bear Creek Road, Los
Gatos, CA 95030.

RAM Disk Task 4 Mhz 8 Mhz

Floppy-Floppy copy (18 files): 5130 sec 48.88 sec
RAM-RAM copy (18 files): 21.05 sec 8.81 sec
WordStar ("QC,"QR - 78k file): 26.66 sec 10.20 sec
dBASEII (plot data on terminal): 24.18 sec 12.40 sec
FILT84 (174k file): 59.06 sec 28.17 sec
ZMAC (174k source file to REL): 12292 sec 61.05 sec
Z80ASM (174k source file to REL): 29.45 sec 14.16 sec
Z80ASM (174k source file to COM): 26.56 sec 12.74 sec

30

Sending Articles to TCJ

Send your articles and letters of
inquiry to:
The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535

The editorial policy is to seek ar-
ticles that can enhance and edu-
cate our readers. Letters of inter-
est will be printed in our Reader
to Reader section on a space and
topic consideration. Material is
typically printed "as is", however
TCJ does reserve the right to re-
ject or modify (by omitting) por-
tions of letters or articles deemed
unfit for publication.

Major letters and minor articles
are accepted on floppy disk and
will aid in getting your letter pub-
lished "as is." TC.J does not return
disks and materials, unless suit-
able and appropriate return mail-
ers and postage is provided.

Floppy disk and wordprocessing
formats supported by TCJ, are all
the current 51/4 and 8 inch for-
mats in general use. CP/M for-
mats are supported by both Xerox
conversion program and PCDOS
to CP/M conversion program.
PLEASE do not use embedded
punctuation in the file names, as
PCDOS will not accept them.
Output is to PageMaker 4.0, which
accepts many standard PC based
word processing file formats.

For quick response to inquiries
and submussions, GENIE services
are recommened. Leave mail and
attached files for B. KIBLER. The
GENIE system is typically checked
two to three time per week, except
during production of the next is-
sue.

Many changes and projects are in
the works. I ask that you be pa-
tient while we continue to improve
TCJ.

Bill Kibler

The Computer Journal / #57

Introduction to Forth
By Frank Sergeant

Introductory Pygmy Forth Tutorial
for the Complete Beginner (or is it
An Incomplete Tutorial for An In-
complete Beginner?)

“I want to learn Forth but just can’t
seem to put the pieces together to do
anything.”> Bill Kibler tells me he has
heard this complaint from a number of
people, and he wants me to do some-
thing about it.

It just so happens that 1 am in the last
stages of preparing Pygmy Forth version
1.4 for release. It will probably be avail-
able by the time you read this. As part
of the project I have been writing an
experimental Forth tutorial for begin-
ners. It is not meant to be the last word,
but if you suffer from the above com-
plaint, you might look it over and let me
know if it helps any. Many of the fol-
lowing concepts apply broadly to what-
ever Forth you might have handy (and
even other languages) but the exercises
are narrowly aimed at Pygmy, so feel
free to get a copy (available from FIG
and fine BBSs and shareware houses
everywhere), and even to borrow a PC if
necessary, in order to do the exercises.

Foot in the Door

Here’s the tricky part: what do you need
to know to learn Forth? If we cover it at
too low a level you can say ‘“Yeah, yeah,
I already know all that, but I’'m still
stuck.” If we cover it at too high a level
then perhaps nothing will make any sense
at. There is a /ot of information avail-
able about Forth in books, magazines,
diskettes, and bulletin board messages.
Much of this material is available through
the Forth Interest Group (FIG) at 510-
89-FORTH. You should join, or at least
get their list of publications, and read as

The Computer Journal / #57

much as possible. At the very least you
should study the book Starting Forth by
Leo Brodie and you should read the
Pygmy Forth manual (the file
PYGMY.TXT) and study its source code
blocks and their shadows.

RSVP

If you are a beginner, or if you are
“stuck” somewhere in your study of
Forth, please study this tutorial and ac-
tually do the practice exercises, no mat-
ter how silly they sound. Then send me
a report. I would like to know exactly
what you are having trouble with, what
makes sense and what doesn’t. Tell me
what you have tried and where it went
wrong and where it went right. What do
you think are the key points, which if
explained better would make it all make
sense? What are your major remaining
questions or difficulties? I will attempt
to respond in an upcoming article.

Disclaimerl1:

This tutorial takes a single approach to
introducing you to Forth. Right here, at
the beginning, I wish to acknowledge
that many other approaches could be
taken. Having said that, I will omit the
on-the-other-hands. Let’s pretend for
now there is only one right way to do it,
and this is it.

Disclaimer2;

This is a tutorial on Forth, specifically
Pygmy Forth for MS/PC-DOS comput-
ers. It does not include information about
how to use DOS or how to turn on your
computer or warn you that you need to
type a carriage return at the end of a
command or explain what an .EXE or
.COM or .BAT file is or how you can
find the executable files on a disk or how
to browse through ASCII text files or
what ASCII means. [apologize in ad-

vance if I inadvertently touch on any of
those subjects.

The One Right Way
To master Forth you only need:

A. a few broad, simple concepts

B. a ““cookbook’’ collection of examples
C. a lifetime’s worth of evaluating what
you are doing and why

A Few Broad, Simple Concepts

Forth is modular.

We do our work in little bitty pieces and
pyramid them into simple, powerful,
hierarchical structures. We should all
adopt Rob Chapman’s slogan *‘It’s so
simple it has to work.”” Our job is to
make it that simple and keep it that

simple.

Forth is interactive.

We build a little piece and test it imme-
diately from the keyboard. The more we
test early the less we are bitten later.

Forth is not a religion.

Unlike some languages I might men-
tion, Forth is so simple we do not need
to take it on faith. We can see it and test
it, rather than having to ‘‘believe’” and
“hope” and ‘‘trust.”” We can inspect
and modify any part of the system. Full
source code is included, and is small
enough, and modularly organized
enough, to be manageable.

I want to go over this point again be-
cause it is so radical it might be missed:
Pygmy Forth includes all of its own
source code. You can actually under-
stand it. You can study and modify the
system. You can examine any part of
the system you are curious about. This
is virtually unheard of with any lan-

31

guage except Forth.

Forth has an explicit data stack.
Take a stack of magazines and put them
on the floor one at a time, one on top of
the other. Which is the easiest to get to
(the one on top)? Empty the stack and
put one magazine down, saying ‘‘3”’
_then put another magazine on top of it,
saying ‘‘5.”” Ok, what’s on the stack (3
and 5)? Which number is on top (5)?
Now pretend you are the + (i.e. *‘plus”
or addition) operator. It is your job to
take two numbers off the stack, add them,
and put the sum back onto the stack. Go
ahead do it, take the 5 and 3 off the
stack, add them to get 8, and put the 8
back on the stack. How many items are
on the stack now (one) and what is it
(8)? (Notice the ‘‘subliminal’’ hints in
the previous questions, in case you are
having trouble answering.)

Forth has active operators.

In the previous example, + did some-
thing; it wasn’t a parsing symbol to tell
something else to do something. Forth
words are active! They go to the stack
to get the materials (numbers) they need,
they do their work, then they place their
results on the stack.

Forth must be practiced.
Ok, you know enough now to start prac-
ticing with the computer. Go ahead,

bring up Pygmy.

Put some numbers on the stack by typing
1 35 7 9 followed by the carriage
return (which I am never going to men-
tion again!). What is on the stack? What
is on top? Type .S to display the con-
tents of the stack and check to see if your
answers were correct. Now type . and
sce what happens. Type .S and see if
the stack is different. The dot removes
the top item from the stack and prints it
as a number. Play with putting numbers
on the stack and removing them.

Forth uses postfix notation.

This should not surprise you since it is
how + worked several paragraphs back.
Postfix means you type the operator af-
ter typing its operands. Try out these
examples (and use . or .S to see the
results):

multiply 3 by 5 by typing 35 *

32

subtract 7 from 9 by typing 9 7 -

Note, the order of operands is exactly the
same as you are used to in ‘‘infix’’, i.e.
3*5 or 9-7, the only difference is the
operator goes after its operands instead
of between them. Ok, continue.

(3+5)*(6+2) by typing 3 5+6 2 +*
3+5%6+2 bytyping 3 5 6*+2+

Postfix is simple, direct, doesn’t require
precedence rules, doesn’t require paren-
theses. You’ll get the hang of it in no
time. Notice even in these complex
examples that the order of the operands
(the numbers) is the same in both the
infix and the postfix versions. The last
example above, due to the higher prece-
dence of the infix multiply operator, is
not the equivalent of 8*8, but of 3+30+2.
Forth uses one or more blanks to sepa-
rate words in the input stream.

A word is a group of non-blank charac-
ters. Generally speaking, the only things
you feed Forth are words. Each word is
one of three things:

1. A word already known to
Forth (i.e. it is in Forth’s dictionary), in
which case Forth executes the word.

2. A word not in Forth’s dictio-
nary, but one that can be interpreted as
a valid number (e.g. 75), in which case
Forth does interpret it a number and
pushes it to the stack.

3. Neither of the above, in which
case Forth reports an error.

Please re-read that. Isn’t that simple?
Isn’t that pretty? Like the shark is a
feeding machine, Forth is an executing
engine. It gobbles input, pushing num-
bers to the stack, executing words which
exist in the dictionary, and choking on

anything else.

It makes no difference whether you sepa-
rate words with one space or 50, whether
you put several words on one line or
spread them across several lines.

You can add words to the dictionary.

And, they are full citizens with equal
standing to all the other words in the
dictionary. To use this power responsi-
bly, remember to add little bitty words

and not great big unmanageable words.
I do not mean its name should be short,
but that its function should be simple,
obvious, straightforward. We ‘‘divide
and conquer’’ at the beginning rather
than trying to debug a hopeless mess at
the end. Do not make a word a jack of
all trades. Make it a master of one.

This process of adding a word to the
dictionary is called defining a word.
Several different types of words can be
defined, but for now we will study a
single type. This one type can be used
for everything you need at first. This
type of definition is called a colon defi~
nition, because the colon starts the defi-
nition, €.g.
: SEVENTEEN 17 ;

Type that in and see what happens.
Nothing? Well, not nothing exactly, as
you did get the “‘ok’’ prompt to indicate
Forth gobbled it up with no complaints.
The new word SEVENTEEN is now in
the dictionary. Type SEVENTEEN
and see what happens (use . or.S). So,
what else would you expect it to do? It
puts the number 17 on the stack. The
definition begins with the word : which
is followed by a blank because the colon
is not a symbol but an active word.

You are used to numbers preceding a
word that uses them (so they will be
waiting on the stack). On the other
hand, strings often follow the word the
uses them. In this case : expects to find
a string in the input stream, and it uses
this string as the name of the new word
it creates. Then colon collects all the
other words up to the ; and stores them
in the body of the new word. The semi-
colon is a special word in that it ends the
definition. Try defining and executing
the following until you get the hang of it:

+3* (n-3*n) 3 *
17 3*.
2 3%, 2 3* 3* 3+,

: FEET (feet - inches) 12 * ;
6 FEET .

S FEET .

: STAR (-) . *” ;

STAR STAR STAR STAR
: STARS (#-) FOR STAR

The Computer Journal / #57

NEXT ;
0 STARS
1 STARS
2 STARS
200 STARS

¢:DIGITS (-) 010 FORDUP.
1+ NEXT DROP ;

- DIGITS
: DIGITS (-)
CRCRCR ;

CR CR CR DIGITS

Wow, have we got some explaining to
do. Notice the comments in parentheses
inside every definition suchas (m-
). Notice how the left parenthesis is
followed by a space. As you must be
getting used to by now, the left parenthe-
sis is a word, but one that is executed
during the defining process. What does
it do? It skips the input stream up through
the ending parenthesis.

Why do we put in comments? Several
reasons. First, it is our minimum speci-
fication of what the word is intended to
do. It shows what should be on the stack
before and after the word executes. We
need to know what the word should do
as we write it and as we test it. For
example, DIGITS takes nothing from
the stack and places nothing on the stack.
We call this comment a ‘‘stack com-
ment’’ or a “‘stack picture’’. Get in the
habit of putting this in every word you
define. Notice the use of Forth’s print
statement in STAR. The .” (i.e. dot-
quote) is a word, so it is followed by a
space, then by whatever characters you
want to display, then by an ending quote
mark. FOR ... NEXT should be obvi-
ous. DUP copies the top of the stack, i.e.
its stack comment would be (n - n n).
DROP drops the top item from the stack,
ie. (n-). CR does a carriage return.

Next, you try defining a word that prints
your name. Then use that word in the
definition of another word. Here’s an
example:
: ME (-) .” FRANK” ;

(be sure to test it before you continue!)
then

: WHO? (-) ME .” , THAT'S
WHO!” CR ;

Forth is case-sensitive.
At least Pygmy and many others are

The Computer Journal / #57

case-sensitive. To test it try typing the
following four lines to see which of them
Forth executes and which it chokes on.

CR

cr

c¢R

Cr

Review

Where are words looked up (the dictio-
nary)? Where do numbers go (the stack)?
How long should a definition be (not
very)? When should you test (immedi-
ately upon defining each word)? How
do you find out how a particular Forth
word works (look at its source and ex-
periment with it from the keyboard)?
There you have it. Those are the con-
cepts you need. Everything else is sim-
ply a matter of asking ‘‘“How do I do
such and such?”’ and finding a cook-
book example to copy, or better, to study

and possibly modify.

The Cookbook

Where do you find examples, and how
do you answer questions about the Forth
system? Type WORDS and see what
happens. This displays the words in the
dictionary. Did they scroll by too fast?
Try it again and press any key to make
it halt, and then press a key again to let
it continue. When you see a word that
interests you, such as EXPECT type

VIEW EXPECT

Bang, you are popped into the editor at
the definition of EXPECT. You can read
its definition, especially its stack com-
ment. You can then use PgUp and PgDn
to browse through nearby blocks of source
code. If you have the shadow blocks for
Pygmy you can press Ctrl-A to alternate
between the block EXPECT is defined
on, and its shadow block that gives more
information.

Speaking of the editor, type .FILES
and see what happens. This shows the
files that are currently available and the
beginning and ending block numbers for
cach file and the DOS handle number.
(If the handle number is shown as -1
then the file is not available.) Notice
that PYGMY.SCR begins at block zero,
so type
0 EDIT

" This file holds _all_ the source code for

Pygmy. Browse through it with PgUp,
PgDn, (and switch to and from the
shadow file with Ctrl-A, if the shadow
file is available). Do not worry too much
about learning all the details of what you
see. Right now you are just taking a tour
to sce what’s where. Go ahead, browse
awhile. Notice that the definitions of
words usually have stack comments.
Press Esc to get out of the editor.

Between WORDS EDIT and VIEW
you should be able to locate the source
code for any word in the dictionary. Now
here’s where the Cookbook comes in:
get into the editor at the first block or so
(e.g. 1EDIT) and then use the F3 (LE.
the function key F3) and the F10 keys to
setup a search string for the word of
interest and then search across blocks
for it. This way you can find examples
of how that word has been used within
other definitions.

You can learn a lot from doing that.
Plus you will get more comfortable with
Pygmy as a whole. However, until you
are comfortable, until you are familiar
with just how it works, you can refer to
the following list of How-do-I-do-such-
&-such questions to get going.

Q: I am tired of defining words and
having them scroll off the screen where
I can no longer see the stack comment
you made me write. Ditto for retyping
the definition every time I restart Pygmy
from DOS.

A: That’s not a question; that’s a com-
plaint. But, nevertheless, you are now
ready to use the editor to save and change
the source code you write. An entire file
is setup just for your own code. It is
named YOURFILE.SCR. You can seeit
listed when you type .FILES. Note that
it starts at block 2000. Type 2000
EDIT and browse through it with PgDn
and PgUp. All the blocks are blank,
probably, unless you have already put
stuff in them. See the documentation
file PYGMY.TXT for instructions on
using the editor, or use the quick refer-
ence reminder list on the status line at
the top of the display and experiment.

Type away to enter your source code.

33

Then to compile your source code, say
from block 2002, get out of the editor by
pressing Esc and type 2002 LOAD. To
get back into the editor, you can type
2002 EDIT or you can just type ED to
return to the last block edited. When
you exit from Pygmy with BYE the words
you’ve loaded will vanish from the dic-
tionary, but their definitions will still be
onblock 2002. Next time you run Pygmy,
you can easily reload those definitions
without retyping them just by saying
2002 LOAD.

Q: I'm tired even of typing 2002 LOAD
to reload my favorite little additions ev-

ery time I run Pygmy. Isn’t there a way ~

to avoid that step?

A: At least you asked a question this

time. Yes, there is a way. After you

have loaded your favorite words, type
SAVE AS.COM

That creates an executable file similar to
the one you started up Pygmy from, but
named A5.COM. Of course you are free
to invent other names if you don’t like
the sound of AS. But, the file extension
should always be .COM. Next time you
want to run Pygmy, run it by typing AS
from DOS. The dictionary will contain
all your goodies.

Q: How do I create a file in Pygmy?

A: Why do you want to know? You
already have a file for your source code
blocks, i.e. YOURFILE.SCR. Just use
it!

Q: Butit’s full. It only has eight blocks
and I've used them all up.

A: Oh, well, that’s simple. Get into the
editor and move to the block where you
want more room. Press the F9 key. The
editor will ask you how many. Enter a
number, such as 20, The editor will
spread open the file at that point and
insert 20 blank blocks right after the
current block.

Q: But, what if I want to use a different
file for some of my code?

A: Ok, ok. There are several ways to do
it. Just get out to DOS and type

34

COPY YOURFILE.SCR
NEWFILE.SCR

then get back into Pygmy and type
‘ NEWFILE.SCR” 4 OPEN
SAVE A6.COM
or, from within Pygmy you can create a
new file by loading the definition of
NEWFILE from block 136 and using it
to create the new file, ¢.g.
“NEWFILE.SCR” NEWFILE

Well, that give you the idea, I'm sure.

Q: Can Pygmy load from textfiles? I'm
more comfortable with them and with
my favorite editor.

A: What? Well, just practice with
Pygmy’s block editor until you become
comfortable with it. But, the answer is
yes, you can load textfiles with FLOAD
or with INCLUDE. I'll leave it as an
exercise for you to look up those words
in PYGMY.SCR and/or to look up the
discussion of textfile loading in the
manual PYGMY . TXT. However, block
files have a lot to offer over textfiles,
such as their instant availability with the
built-in editor, and their inherent modu-
larity. You are writing very small defi-
nitions, aren’t you?

Q: But I've seen some of your source
code and sometimes a single word damn
near overflows an entire block.

A: Don’t do what I do; do what I say.

Conclusion

Do you feel oriented and comfortable yet
(ves, I sure do, you’ve opened my eyes to
the power and beauty of Forth!)?

Author’s Bio

In addition to developing the Bare Bones
EPROM Programmer Kit and his new-
est, prettiest version of Pygmy Forth,
Frank has recently learned to use the
pumping lemma to prove that certain
languages are not regular. In spite of
that he is accepting Forth questions for
an upcoming article via GEnie as
F.SERGEANT or via the postal service
at 809 W. San Antonio Street, San
Marcos, Texas 78666.

On Language Independence

Jay Sage's article talks about generating
programs for use in languages other than
english. There are several ways in which
Forth can achieve that goal.

In Frank's article, he gives an excellant
example of how Forth can handle lan-
guage independence. The example of
seventeen, wherethe name is entered and
the actual numeric value is put on the
stack, is exactly how independence is
achieved. The difference for use under
other languages, is using the diffinition
as the foreign word, and the action would
be the english equivalent. This means
the entire dictionary could be redifined
in another language. Each language
desired, would have a language load mod-
ule that redifines all words to the new
equivalent word.

Printed statements would still be in
english, unless all statements had previ-
ously been defered words. Defered words
are stored as a pointer to the the state-
ment, which can be later redefined to
another process or definition. Currently
most Forths use inline text messages.
For language independence, the Forth
would need modification of all text strings
to a defered structure.

Although some parts of this explanation

were more complex than Franks article,

language independnce can be tested very

easily. To make a Spanish version, the

number four would be defined (in F83):
: QUATRO 4;

and it is that simple. For text strings we

defer the word then change the pointer:

DEFER HELLO

: ENGHELLO ." HELLO " ;

: DUTHELLO ." HALLO " ;

Now to display english hello we do:

' ENGHELLO IS HELLO
or for our Dutch version:

' DUTHELLO IS HELLO
and wherever any reference is made to
print the banner hello, it is redefined in- .
the Dutch version and "HALLO" prints
as desired. This is another reason why I
feel that Forth is an universal operating
system.
Bill Kibler.

The Computer Journal / #57

Shell Sort in Forth

by Walter J. Rottenkolber

. Special Feature

I saved this article for after Frank gave
us his great beginners review of Forth.
Now here is a complete review of SORT-
ING with some Forth how-to as well.
Should help all you beginners get a bet-
ter handle on using Forth. BDK

SHELL SORTS

The Shell sort dates back to 1959, a time
in the early days of computers when the
main random access memory began the
climb to the unheard of heights of 16
kilobytes, and programmers could con-
template sorting large arrays in memory.

Starting with the Basics

I started with Sedgewick’s book. His
algorithm for the Shell sort is based on
the Shuttle sort, a.k.a the Insertion sort.
Trying to understand the mechanics of
this sort by examining his pseudocode
code is like decoding cuneiform. Much
more enlightening is working through a
physical example of the shuttle sort.

Imagine, say, a row of 10 shuffled play-
ing cards before you (better yet, use the
real thing). Place the largest card at the
left end, and the smallest at the right.
The intent is to sort the cards small to
large beginning from the left. The sweep
of the sort is from left to right.

To start, pick up card #2 and compare it
to card #1. If card #1 is larger than #2,
shift #1 to the right one space. Since
there are no more cards to the left of the
card in hand, put it down in the slot
opened by the shifted card. Now go to
the next card in the line (#3), and pick
it up. Repeat the same comparing and
shifting until either the card to the left is
smaller, or the edge of the card set is
reached. Then set the card down. As you
proceed with the sort, your hand will

The Computer Journal / #57

move first right, then left, until the
rightmost card is processed, and the sort
stops. This back and forth motion of the
hand resembles the movement of the
shuttle in a loom, hence the name of the
sort.

However, I discovered the most common
variety of Shell sort described in pro-
gramming books is one based on a cousin
of the Shuttle sort, the Sift sort. The
general movement of the hand is the
same, but instead of picking up the card,
you first compare it to the one to the left.
If the card on the left is larger, you
exchange the two cards. Then you shift
one card to the left, and repeat the com-
paring and exchanging until either the
card on the left is smaller, or the end of
the array is reached. At that point, you
stop and process the next card in the set.

If the Sift sort reminds you of a back-
wards running Bubble sort, you’re right.
The big difference is that when the com-
parison fails, LE. the left card is smaller,
not only does the exchange not take place,
but the ‘bubbling’ stops also, and the
routine goes to the next card. A Bubble
sort would continue to the end of the
array.

(To add confusion, the term Sift sort is
also applied to the Shuttle sort and to a
type of binary tree sort, but I intend for
it to refer to the exchange variant of the
insertion sort.)

Notice that while small cards quickly
find their proper places in the sorted
array, they do so only after a tedious
comparison with cards on their left. This
is especially true of small cards on the
‘wrong’ end of the array. And large cards
move along only incrementally with the
main sweep of the sort. If only some

simple way could be found to take these
outlying values and bring them closer to
home before the final sort took place.

Enter Shell

In 1959, Donald Lewis Shell proposed
such a means in his paper ‘A Highspeed
Sorting Procedure’’. His idea was to
introduce a Gap between the array ele-
ments to be compared. After sorting, the
Gap is reduced, and the sort repeated.
This continues until the Gap declines to
one, and the sort becomes a simple in-
sertion sort. These gaps logically divide
the array into groups that are increas-
ingly meshed as the sort proceeds. He
chose the Sift sort (Figure 1) to illustrate
his idea. The number of elements was
divided by two for the initial gap, with
repeated division for subsequent gaps.

Knuth called the Shell sort an ‘Insertion
sort by diminishing increment’. Deter-
mining the optimum gap sequence seems
to have defied analysis. His studies did
show that gaps of odd, preferably prime,
number would sort better than the even
numbered groups Shell originally used.
He suggests calculating the gap sequence
using a gapfactor of three. Segewick and
Wirth agreed with Knuth. The sequence
should avoid gaps that are multiples of
one other. They also preferred the Shuttle
sort as the basis of the Shell sort (Figure
2).

If in our example, you begin with a gap
of seven, the initial comparison would
be between card #8 and card #1, then
cards #9 and #2, and so on to the end.
This effectively sorts the ends of the
array. Then a repeat of the sort with a
gap of three would include the middle
cards. Card #4 would be compared with
#1 to start, next #5 with #2, But when
you got to multiples of three, the com-

35

parison would hopscotch to the left. When
you reach card #7, then comparison would
be made with cards #4, and #1, unless
the left card was smaller, whereupon
you would stop and go to card #8. Lastly,
a sort with a gap of one would find most
cards within two or three places of their
final position. This presort of the array is

_what eliminates the long incremental
movement of elements that slows the
plain shuttle sort.

I found two methods employed to gener-
ate the gap sequence. I named them cal-
' culated and division.

The calculated method uses the formula
(in Forth):

1 BEGIN GAPFACTOR * 1+
DUP #ELEMENTS > UNTIL GAP !

where gapfactor is usually 2 or 3, and
#elements the number of elements (not
bytes) in the array. This generates a start-
ing value larger than the number of ar-
ray elements. This value is then divided
by the gapfactor to obtain the initial gap:

GAP @ GAPFACTOR / GAP !
with subsequent gaps obtained by the
same routine. The gap sequence from a
gapfactor of 2 starts with:

1371531631272555111023 ...
and for a gapfactor of 3:

141340 121364 1093

The advantage of this method is that the
gap sequence is constant for a given
gapfactor, and that the sequence ends in
one. The disadvantage is that the num-
ber of elements must be kept below the
value where the starting value would
overflow the integer type. For a 16-bit
integer, this is 65534 for gapfactor of 2,
and 29523 for a gapfactor of 3.

The division method obtains the initial
gap by dividing the number of elements
by the gapfactor, and the remaining se-
quence by further divisions. The advan-
tage of this method is simplicity, and the
ability to have a larger number of cle-
ments for a given gapfactor (e.g. 65535
elements with a gapfactor of three). The
disadvantage is that the gap sequence
now also varies with the number of ele-

36

ments, S0 you can no longer be certain
that the sequence has no multiples, or
that it will end in one. You may need to
add a test (e.g. 1 MAX) to ensure that
the sequence ends in one, or list the
sequence to make adjustments. As a re-
sult, this method is recommended only
where the number of elements is fixed
and the gap sequence checked and found
valid.

Making Shell Sort in Forth

One of the great strengths of Forth is
that it makes it easy to explore variations
in implementing an algorithm. One of
the great problems with Forth is that it’s
sometimes hard to stop exploring.

Shell sorts #1 to #4 are variations on the
algorithm in Sedgewick. This is based
on the shuttle sort with a calculated gap
using a gapfactor of three. This sort re-
quires three nested loops. The outer loop
takes care of the gap size calculation,
setting up the middle loop, and checking
for the end of sort. The middle loop
handles the incremental sweep of the
sort. The inner loop keeps very busy not
only with comparisons and shifts, but
with testing for the array end.

Shell#1 is a fairly straightforward trans-
lation of the Sedgewick’s pseudocode.
Variable SV holds the datum to be sorted,
and SW its address, which is the open
slot. Two tests are required to stay in the
loop. First to check that after subtract-
ing the gap, the address is still in the
array, and second to compare values. If
both are true, then the lower value is
shified to the slot, the index address
decremented by gap, and the loop con-
tinued.

In Shell#2a, I used the stack instead of
a variable to hold the location of the
open slot, and to temporarily hold the
first flag value.

I next experimented, in Shell#3, with
the use of the DO +LOOP. This loop
would do the backward indexing needed
for comparisons. However, as the index
is the address of the upper value, it will
not test if the lower value gone off the
array end. Soa separate test is required.
The datum to be sorted is on the stack.
Shell#4 worked out the exit problem by

using the address of the lower value as
the index, so that it will do double duty
as the gap step and end of array test. The
stack holds both the datum and its ad-
dress. The address is adjusted so that at
exit the proper one is presented to the
routine after +LOOP that puts the datum
in the slot.

Shell#5a must be the most widely known
of the Shell sorts, as I found variations of
it BASIC, Pascal, and Forth (see refs.
1,3,5). This one is loosely adapted from
a version by Mark Manning. It is based
on the Sift sort with a calculated gap
using a gapfactor of two, and is closest
to Shell’s original description. Because
the exchange always places the data back
in the array, the extra steps to keep track
of the ‘floating’ datum are not neces-
sary. Somehow, this does not simplify
the code. Shell#5b is Shell#5a with a
gapfactor of three.

Shell Sort Shuffle

To test the various Shell sorts, I used a
simplified version of the test suite in
““The Challenge of Sorts’”. This pro-
vides for a 1024 element integer array
that can be filled with eight different
data patterns (Figure 3). Since my 5
MHz. Kaypro II doesn’t have a built in
clock, the times (in seconds) are the best
I can do by hand. All times should be
considered relative, as a comparison
between algorithms, rather than as an
absolute indication of performance on
your computer system. If you have afast
computer with a clock, I'd recommend
you adapt the full “*‘Challenge”’ test as it
not only automates the test process, but
provides statistics on the comparisons
and exchanges.

To test the sorts, first run SETUP to
initialize the random number generator.
Next run RAMP, SLOPE, WILD,
SHUFFLE, BYTE, FLAT, CHECKER,
or HUMP to fill the array with the data
pattern you want to sort. By using the
word at the bottom of source screen, e.g.
s2a, the sort will begin. At the comple-
tion of the sort, a beep sounds and the
array checked if it is properly sorted.

The time tests for these Shell sorts are
summarized in Figure 4. The Shell sorts
based on the Shuttle sort with a gapfactor
of three proved faster than those based

The Computer Journal / #57

on the Sift sort. The fastest version is
Shell#2a.

The Sift based Shell sort requires an
extra fetch and store within the inner
loop. You pay for it with an 18% penalty
in speed even when compared to a shuttle
based sort using a similar loop structure.
Putting the exchange code inline doesn’t
help. Shell#5b, with a gapfactor of three,
shows slightly better times than Shell#5a.
The greatest time loss is in the imple-
mentation of all those nested loops (there
are three). The worst performance is by
routines using the DO +LOOP as the
inner loop. DO +LOOPS may look
cleaner on paper than BEGIN UNTIL
and BEGIN WHILE REPEAT loops, but
they hide a great deal of tim¢ consuming
code.

A great deal of energy has been ex-
pended to discover the most efficient gap
sequence, but how to find the best one?
I set up Shell#2b to experiment with
calculated gaps derived from gapfactors
varying from 1.5 to 5.5. Figure 5a gives
the times and Figure 5b, the gap se-
quence.

The times for random data (Wild, Shuffle,
Byte) chart a broad corrugated bottomed
‘U, with the left side rising at a gapfactor
of two at the low end, and 3.7-4.0 on the

right.

A slight downblip in time at gapfactor
2.3, shows the sequence (17 7 3 1) that
works best for random data. Upblips at
1.9, 2.7 and 2.9 show the deleterious
effect of data multiples in the terminal
sequence. For a gapfactor of 2.7, a group
of gaps goes 27 9 3, and this tends to re-
sort (or rather, not sort) the same data.
This time rise proved misleading, as the
times declined again and remained fairly
level for unsorted data until 4.0 and
above. That the gapfactor of 4.0 sorted
faster than one of 2.0 was a surprising
revelation.

The gapfactor time data also reveals why
predicting the performance of the Shell
sort is so difficult —- it depends in part on
the data. Data that is flat or already
sorted (Flat, Ramp) does increasingly
better with larger gapfactors because the
shorter gap sequences more rapidly en-

The Computer Journal / #57"

ter the final sort phase. Pure random
data (Wild, Shuffle, Byte) sorts most
efficiently with the shorter gap sequences
ending in 3 1, or 4 1. Partially sorted
data (Checker, Slope, Hump) did well
with a wide range of gapfactors of 2.1 to
3.7 (except 2.9), that generate sequences
endingin3 1,4 1,0or5 1.

The times of the presort and the main
sort phases act inversely to one other. At
gapfactors of 2.1 or less, the gap se-
quence becomes too long and finegrained,
so that excessive time is spent in the
presort. At gapfactors of 4.5 and above,
the opposite is true, and the main sort is
overburdened. In between, the tests re-
veal a broad spectrum of gap sequences
that perform well.

It’s obvious that any gapfactor chosen
will be a compromise candidate. The
winner, according to the tests, is a
gapfactor of three used to generate a
calculated gap sequence. It lies in the
center of the time base, performs well,
and requires only simple integer calcu
lations.

I ran time tests on a Sift sort version and
obtained a similar pattern, though the
times were longer.

Future Shell

Predicting sort times for large arrays is
helpful in the early design phase of a
program. I ran some tests for larger ar-
rays (Figure 6) so you could get a feeling
of time increases as arrays grow larger.
In his article, Shell plotted time verses
array clement number on a log-log graph
to obtain a straightline with all the data
points dead on the line. I like that kind
of graph. On mine, the data points tend
to scatter like buckshot fired through a
rusty barrel. I followed his lead and used
the following equation to calculate the
slope of the line for the Wild pattern:

log(t2/t1)/log(n2/nl) = 1.23
(approx.)

where t1 & n1 are the times and number
of the smaller array, and 12 & n2 are for
a larger array.

To estimate time for a still larger array,
pick the time and number (t1 & nl) of a
known array and use the equation:

t2 = t1(10M(log(n2/n1)(1.23)))

to get the time (t2) of the array with
element number (n2).

I used this equation (based on a Wild
pattern slope) to calculate times (in pa-
renthesis) for an array of 5800 elements.
The times are less accurate for other data
patterns when compared to the empiri-
cal test times.

According to the formula, an array of
25,000 elements, if you could stuff it
into RAM, would take 13 minutes to sort
on my system. A fair time, but consider-
ably better than an efficient Bubble sort
which would take 21 minutes to sort just
1024 elements.

Conclusion

This article contains everything you ever
wanted to know about the Shell sort (and
more). I’ve also described several Shell
sorts in Forth, some never seen before,
and put them through their paces for
your benefit and pleasure.

References

1. Dwyer, Thomas & Critchfield,
Margot,”’ Basic and the Personal Com-
puter’’, Addison-Wesley Pub. (1978) p.
219-221.

2. FIG Staff,”’The Challenge of Sorts’’,
Forth Dimension, vol. 11, no. 3 (Sept/
Oct 1989) p. 24-29.

3. Gilbert, Harry M. & Larkey, Arthur
1.,”” Practical Pascal’’, Southwestern Pub.
(1984) p. 300-303.

4. Knuth, Donald E.,”’” The Art of Com-
puter Programming, Sorting and Search-
ing’’, vol. 3, Addison-Wesley Pub.
(1975) p. 84-95.

5. Manning, Mark I.,”’ The Forth Sort™’,
Dr. Dobb’s Journal, vol. 8, issue 9 (Sept.
1983) p. 103-108.

6. Sedgewick, Robert,”” Algorithms’’,
Addison-Wesley Pub. (1983) p. 97-99.

7. Shell, Donald. L.,”” A Highspeed
Sorting Procedure’’, Comm. ACM, 12,
No.3 (1969) p. 30-32.

Figures and Listing continues on next

page.

37

| : Eap=3 “‘

Pick-up X

V<X
Exchange values V>X
Figure 1
T T O Y
I s I
V<X
Shift values V>X
Insert X
Figure 2
Test Sort Patterns
Ramp - ascending values, aiready sorted.
Slope - descending values.
Wild - random signed values.

Shuffle -- a Ramp randomly reordered (no duplicates)

Byte

Flat — a single random value.

- random eight bit values

Checker — two random values placed alternatly
on odd/even addresses.

Hump - Gaussian distribution of random values.
Figure 3
Shell Sort Time Test (in Seconds)
1 2a 3 4 5a 5b
Ramp - 7 6 8 7.7 8 6
Slope - 12 105 123 12 16 13
wild - 173 152 19 17.3 207 22
Shuffe -~ 174 154 18 17 217 21
Byte - 17 14 18 17 20 208
Flat - 7 6 74 8 86 58
Checker - 8 7 9 9 9 8
Hump - 16 14 16 15 18 18
Figure 4

S#2b Variable Gapfactor Time Test (in Seconds)

15 19 20 21

10.3 9 7.8

Ramp - 145
Slope - 165 13 13 12
wild - 19 17 162 152
Shuffle - 20 17.6 17 15.2
Byte —- 19 168 168 14.4
Flat - 145 103 9 83
Checker -- 14 11 9 9
Hump -- 18 1563 15 14
30 31 35 40
38

23 25 27 29

78 7 68 67
11.3 11 105 10
149 152 16.3 18
15 152 16 19
138 14 15 16.2
8 7 7 6.4
82 73 73 64
13.8 13.8 145 15.4

45 50 55

Ramp -- 6 6 56 5 48 43 38
Slope - 11 10 102 13 10 98 10
Wwild - 153 148 155 16 16 178 20
Shuffle -- 16 15 16 17 164 17.2 28
Byte - 145 148 162 15 158 16.8 17
Flat - 6 6 5 48 41 41 4
Checker — 7 6.3 8 52 § 6 142
Hump -- 14 13 128 138 14 153 22
Figure 5a

Calculated Gap Sequences for 1024 Items
1.5= 709 472 314 209 13992 614026 17 11421
1.9= 778409215113 693116 8 4 1
2.0 = 1023 511 255 127 633115 7 3 1

2.1= 633301143 68 3215 7 3 1
23= 493214 93 40 17 7 3 1
©25= 833333133 53 21 8 3 1
27= 497184 68 25 9 3 1
29= 668230 79 27 9 3 1
3.0= 364121 40 13 4 1
3.1= 397128 41 13 4 A1
3.5= 652186 53 15 4 1
40= 341 85 21 6 1
45= 469104 23 5 1
50= 781156 31 6 1
56= 188 34 6 1

Figure 5b

Shell#2a Times for Larger Arrays (in Seconds)

#Items - 1024 2200 3600 (5800) 5800
Ramp - 6 15 26 (53) 49
Slope - 105 26 42 (85 73
Wild —- 152 40 72 (132) 130
Shuffle - 154 441 73 (135) 122
Byte - 14 37 67 (122) 114
Flat - 6 15 26 (49) 45
Checker -- 7 16 28 (49) 60
Hump - 14 33 58 (109) 103
(nn) = calculated value.

Figure 6
Screen 1
\ Shelisort Load Screen WJR12FEBS2
2 13 THRU

\S Shell Sort in Forth
Copyright Feb. 12, 1992
Walter J. Rottenkolber

Screen 2

\ Data Array and Utilites =~ WJR12FEB92

: CELLS (a--a') 2%,

:2CELLS (a-a') 2°2";

VARIABLE ITEMS 1024 ITEMS!

CREATE DATA (-a) ITEMS @ CELLSALLOT ;

:S@ (index-—-n) CELLSDATA+ @,

;8! (nindex—) CELLS DATA +!;

: EXCHANGE (idx1 idx2 --) 2DUP S@ SWAP S@ ROT S! SWAP §t ;

Screen 3

\ Sort Variables, Subroutines, & Test WJR12FEB92

VARIABLE GAP VARIABLE SV VARIABLE SW

:SETGAP (~) 1BEGIN3* 1+ DUPITEMS @ > UNTILGAP ! ;

:DECGAP (—-) GAP@ 3/GAP!;

: TEST-DATA (-) \Checks if data is sorted.
DATA @ ITEMS @ 1 DO DATAICELLS + @ SWAP OVER >
ABORT” Data has not been sorted.”

The Computer Journal / #57

LOOP DROP ;

Screen 4
\ Random Number Generator
VARIABLE SEED
:SETUP (-) 1234 SEED!;
:RANDOM (—n)
SEED @ 31421 * 6927 + DUP SEED ! ;
: CHOOSE (limit - 0..limit-1)
RANDOM UM* SWAP DROP ;
1GAUSS (n--u)
RANDOM 0 RANDOM 0 D+ RANDOM O D+
RANDOM 0 D+ RANDOM 0 D+ RANDOM 0 D+
6 UMMOD SWAP DROP UM* SWAP DROP;

WJR13JANS2

Screen 5

\ Random Data Patterns WJR12FEB92

:RAMP (-) ITEMS@ ODO I | St LOOP;

:SLOPE (-) ITEMS@ ODOITEMS @ 1-1-1 S! LOOP;
:WILD (-) ITEMS @ 0DO RANDOM | S! LOOP;

: SHUFFLE (-)

RAMP ITEMS @ 0 DO ITEMS @ CHOOSE | EXCHANGE LOOP ;
:BYTE (-) ITEMS @ 0DO 256 CHOOSE | S! LOOP;
:FLAT (-) RANDOMITEMS @ 0DODUP | S! LOOP DROP ;
:CHECKER (--) RANDOM RANDOM

ITEMS @ 0 DO DUP | S! SWAP LOOP 2DROP;

HUMP (--) ITEMS @ 0DO 256 GAUSS |S! LOOP,

Screen 6
\ Shell#1
:SHELL1 (-)
SETGAP BEGIN DECGAP
ITEMS @ GAP @ DO
i DUPSW! S@ SV!
BEGIN
SW@ GAP @ 2DUP-0<NOT >R-S@ SV@ > R> AND
WHILE
SW@ DUP GAP @ - DUP SW ! S@ SWAP S!
REPEAT
SsVv@ sw@ S! LOoP
GAP @ 2 <UNTIL ;
:st shell1 beep test-data ;

WJR12FEB92

Screen 7 .
\Shell#2a (Fastest)
: SHELL2A (--)
SETGAP BEGIN DECGAP
ITEMS @ GAP @ DO
{ DUP S@ SV!
BEGIN
DUP GAP @ - DUP -0<NOT>R-S@ SV@ > AND
WHILE
DUP GAP @ - TUCK S@ SWAP S!
REPEAT
SV @ SWAP S! LOOP
GAP @ 2 < UNTIL;
s2a shell2a beep test-data ;

WJR12FEBS2

Screen 8
\Sheli#3
:SHELL3 (--)
SETGAP BEGIN DECGAP
ITEMS@ GAP @ DO 1S@
01 DO
| GAP @ - 2DUP S@ < SWAP 0< NOT AND
IF IGAP@-S@ |S!
ELSE{S! LEAVE THEN
GAP @ NEGATE +LOOP
LOOP
GAP @ 2 <UNTIL;
:83 shell3 beep test-data ;

WJR12FEB92

The Computer Journal / #57

Screen 9
\Sheli#4
:SHELL4 ()
SETGAP BEGIN DECGAP
ITEMS@ GAP@-0DO IGAP @ +S@
001DO
DROP DUP | S@ <
IF 1S@ |GAP @ + S!
ELSE | GAP @ + LEAVE THEN|
GAP @ NEGATE +LOOP S!
LOOP
GAP @ 2<UNTIL;
:s4 (--) shell4 beep test-data;

WJR12FEB92

Screen 10
\ Sheli#5a Sift Shell Sot WJR12FEB92
:SETGAP2 1BEGIN2*1+DUPITEMS @ > UNTIL GAP!;
:DECGAP2 GAP @2/ GAPI;
: SHELLSA (-)
SETGAP2 BEGIN DECGAP2
ITEMS @ GAP@-0DO
01DO
IS@IGAP @ +S@ >
IF 1 DUP GAP @ + EXCHANGE ELSE LEAVE THEN
GAP @ NEGATE +LOOP
LOOP
GAP @ 2 <UNTIL;
:85a () shellSa beep test-data;

Screen 11
\Shel#Sb Sift Shell Sort (Gapfactor = 3) WJR12FEB92
: SHELLSB ()
SETGAP BEGIN DECGAP
ITEMS @ GAP @ -0DO
01DO
IS@IGAP @ + S@ >
IF 1DUP GAP @ + EXCHANGE ELSE LEAVE THEN
GAP @ NEGATE +LOOP
LOOP
GAP @ 2<UNTIL;
:85b () shellSb beep test-data;

Screen 12
\ Routines for Variable Gap Tests WJR12FEB92
VARIABLE GAPFACTOR \ Set Gapfactor in tenths, ie. 25 = 2.5
: SETGAP3 (--)

1 BEGIN GAPFACTOR @ 10 */ 1+ DUP ITEMS

@ > UNTILGAP!,

:DECGAP3 (—) GAP @ 10 GAPFACTOR @ */1 MAXGAP !,
:GGS (n--) \ Generates gap sequence list 1.5-5.5

CR 56 15DO

| GAPFACTOR ! SETGAP313.R.":"GAP@U.." =*

BEGIN DECGAP3 GAP @ DUP U. 2 < UNTIL

CR LOOP;

Screen 13
\ Shell#2b - Variable Gap Test WJR12FEB92
: SHELL2B (-)
SETGAP3 BEGIN DECGAP3
ITEMS @ GAP @ DO
| DUP S@ SV!
BEGIN
DUP GAP @ - DUP 0< NOT SWAP
S@ SV@ > AND
WHILE
DUP GAP @ - TUCK S@ SWAP S!
REPEAT
SV @ SWAP S! LOOP
GAP @ 2<UNTIL;
:s2b sheli2b beep test-data;

39

The Computer Journal

Back Issues

Sales limited to supplies in stock.

(o g ™
lssues 1 1o 19 are currently OUT.
of print. To assist those who want
a fult collection of TCJ issues we
are: preparing photo-copied sets.
‘The:sets will be Issue 1t 9 and:
10 10 19. Each set will-be bound
with a plastic pratective cover.

The expected: pricing will- be ‘in
the $24 10429 range (foriegn
price wilt be $10 more). Expect
- TWO to THREE weeks for

{ssue Number 20:

- Designing an 8035 SBC

- Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

- Soldering & Other Strange Tales

. Build an S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

issue Number 21:

- Extending Turbo Pascal: Customize with
Procedures & Functions

- Unsoldering: The Arcane Art

- Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World

- Programming the 8035 SBC

issue Number 22:

- NEW-DOS: Write Your Own Operating
System

-Variability in the BDS C Standard Library

- The SCSl Interface: Introductory Column

- Using Turbo Pascal ISAM Files

- The Ampro Little Board Column

- C Column: Flow Control & Program
Structure
- The Z Column: Getting Started with
Directories & User Areas
- The SCS! Interface: Introduction to SCS!
- NEW-DOS: The Console Command
Processor
- Editing the CP/M Operating System
- INDEXER: Turbo Pascal Program to Create
an index

The Ampro Little Board Column

Issue Number 24:

- Selecting & Building a System

- The SCSI Interface: SCSI Command
Protocol

- Introduction to Assemble Code for CP/M

- The C Column: Software Text Filters

- Ampro 186 Column: installing MS-DOS
Software

- The Z-Column

- NEW-DOS: The CCP Intemal Commands

- ZTime-1: A Real Time Clock for the Ampro
Z.80 Little Board

Issue Number 26:

- Bus Systems: Selecting a System Bus
- Using the SB180 Real Time Clock
- The SCSI Interface: Software for the SCSI
Adapter
- Inside Ampro Computers
NEW-DOS: The CCP Commands
(continued)
- ZSIG Corner
- Affordable C Compilers
- Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27;

- 88000 TinyGiant Hawthorne's Low Cost
16-bit SBC and Operating System

- The Art of Source Code Generation:
Disassembling Z-80 Software

- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation '

- The C Column: A Graphics Primitive
Package

- The Hitachi HD64180: New Life for 8-bit
Systems

- ZSIG Corner. Command Line Generators
and Aliases

- A Tutor Program in Forth: Writing a Forth
Tutor in Forth

- Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

Issue Number 28:

- Starting Your Own BBS

- Build an A/D Converter for the Ampro Little
Board

- HDB4180: Setting the Wait States & RAM
Refresh using PRT & DMA

- Using SCSI for Real Time Control

- Open Letter to STD Bus Manufacturers

- Patching Turbo Pascal

- Choosing a Language for Machine Control

Issue Number 29:

- Better Software Filter Design

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

- Using the Hitachi hd64180. Embedded
Processor Design

- 68000: Why use a new OS and the 680007
- Detecting the 8087 Math Chip

- Fioppy Disk Track Structure

- The ZCPR3 Corner

issue Number 30:

- Double Density Floppy Controller

- ZCPR3 IOP for the Ampro Little Board

- 3200 Hackers' Language

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

- Non-Preemptive Multitasking

- Software Timers for the 68000

- Lilliput Z-Node

- The ZCPR3 Corner

- The CP/M Corner

Issue Number 31:

- Using SCS! for Generalized /O

- Communicating with Floppy Disks: Disk
Parameters & their variations

- XBIOS: A Replacement BIOS for the SB180
- K-OS ONE and the SAGE: Demystifying
Operating Systems

- Remote: Designing a Remote System
Program

- The ZCPR3 Comer: ARUNZ Documentation

Issue Number 32:

Language Development. Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the 281
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an in-
Depth Look at the FCB
- WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems
- K-OS ONE and the SAGE:. System Layout
and Hardware Configuration
- The ZCPR3 Comer. NZCOM and ZCPR34

Issue Number 33:

- Data File Conversion; Writing a Filter to
Convert Foreign File Formats

- Advanced CPM: ZCPR3PLUS & How to
Write Self Relocating Code

- DataBase: The First in a Series on Data
Bases and information Processing

- SCSI for the S-100 Bus: Another Example
of SCSI's Versatility

- A Mouse on any Hardware: Implementing
the Mouse on a Z80 System

- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

- ZCPR3 Comer. ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34:

- Developing a File Encryption System.

- Database: A continuation of the data base
primer sernies.

- A Simple Multitasking Executive: Designing
an embedded controller multitasking
executive.

- ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

- New Microcontroliers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M. Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22

- Macintosh Data File Conversion in Turbo
Pascal.

- The Computer Corner

Issue Number 35:

- All This & Modula-2: A Pascal-like
alternative with scope and parameter
passing.

- A Shont Course in Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.

- Real Computing: The NS32032.

- $.100: EPROM Burner project for S-100
hardware hackers.

- Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

- REL-Style Assembly Language for CP/M
and Z2-System. Part 1. Selecting your
assembler, linker and debugger.

- The Computer Corner

lssue Number 36:

- Information Engineering: Introduction.

- Modula-2: A list of reference books.
Temperature Measurement & Control:

Agricultural computer application.

- ZCPR3 Corner:. Z-Nodes, Z-Plan, Amstrand

computer, and ZFILE.

- Real Computing: N§32032 hardware for

experimenter, CPUs in series, software

options.

- SPRINT: A review.

- REL-Style Assembly Language for CP/M

& ZSystems, part 2.

- Advanced CP/M: Environmental
programming.
- The Computer Corner.

Issue Number 37:

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

- ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

- Shells: Using ZCPR3 named shell
variables to store date variabies.

- Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

- Advanced CP/M: Raw and cooked console
/0.

- Real Computing: The NS 32000.

- ZSDOS: Anatomy of an Operating System:
Part 1.

- The Computer Comer.

Issue Number 38:

- C Math: Handling Dollars and Cents With
C.

- Advanced CP/M: Batch Processing and a
New ZEX.

- C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

- The Z-System Comer. Shelis and ZEX,
new Z-Node Central, system security under
Z-Systems.

- Information Engineering: The portable
Information Age.

- Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

- Shells: ZEX and hard disk backups.

- Real Computing: The National
Semiconductor NS320XX.

- ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

- The Z-System Corner: System
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

- Shells: Using ARUNZ alias with ZCAL.

- Real Computing. The National
Semiconductor NS320XX.

- The Computer Corner.

Issue Number 40:

- Programming the LaserJet: Using the
escape codes.
- Beginning Forth Column: ntroduction.
- Advanced Forth Column: Variant Records
and Modules.
- LINKPRL: Generating the bit maps for PRL
files from a REL file.
- WordTech's dBXL: Writing your own
custom designed business program.
- Advanced CP/M: ZEX 5.0xThe machine
and the language.
- Programming for Performance: Assembly
language techniques.
- Programming Input/Output With C:
Keyboard and screen functions.
- The Z-System Corner. Remote access
systemns and BDS C.

Real Computing: The NS320XX

The Computer Corner.

Issue Number 41:

- Forth Column: ADTs, Object Oriented
Concepts.

- Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

- How to add Data Structures in Forth

- Advanced CP/M: CP/M is hackers haven,
and Z-System Command Scheduler.

- The Z-System Comer. Extended Muitiple
Command Line, and aliases.

- Programming disk and printer functions
with C.

- LINKPRL: Making RSXes easy.

- SCOPY: Copying a series of unrelated
files.

- The Computer Comer.

Issue Number 42:

- Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

- Using BYE with NZCOM.

- C and the MS-DOS Screen Character
Attributes.

The Computer Journal / #57

- Forth Column: Lists and object oriented
Forth.

- The Z-System Corner. Genie, BDS Z and
Z-System Fundamentals.

- 68705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

- Real Computing: The NS 32000.

- The Computer Comer

Issue Number 43:

- Standardize Your Floppy Disk Drives.

-.A New History Shell for ZSystem.

+ Heath's HDOS, Then and Now.

- The ZSystem Corner: Software update
sefvice, and customizing NZCOM.

- Graphics Prog ing With C: Graphi
routines for the IBM PC, and the Turbo C
graphics library.

- Lazy Evaluation: End the evaluation as
soon as the result is known.

- 8-100: There's still life in the old bus.

- Advanced CP/M. Passing parameters, and
complex error recovery.

- Real Computing: The NS32000.

- The Computer Comner.

Issue Number 44:

Animation with Turbo C Part 1. The Basic
Tools.
- Muttitasking in Forth: New Micros F68FC11
and Max Forth.
- Mysteries of PC Floppy Disks Revealed:
M, MFM, and the twisted cable.
- DosDisk: MS-DOS disk format emulator for
CPM.
+ Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.
* Real Computing: The NS32000.
+ Forth Column: Handling Strings.
- Z-System Comer: MEX and telecommuni.
cations.
+ The Computer Comer

issue Number 45;

- Embedded Systems for the Tenderfoot:
Getting started with the 8031.

- The Z-System Comer: Using scripts with
MEX.

- The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-Systemn,

- Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

- Advanced CP/M: String searches and
tuning Jetfind.

- Animation with Turbo C. Part 2, screen
interactions.

- Real Computing: The NS32000.

- The Computer Corner.

issue Number 46:

- Build a Long Distance Printer Driver.

Using the 8031's built-in UART for serial
communications.
- Foundational Modules in Moduta 2.

The Computer Journal

Back Issues

Sales limited to supplies in stock.

- Animation with Turbo C: Text in the
graphics mode.

- 280 Communications Gateway:
Prototyping, Countei/Timers, and using the
Z80 CTC.

Issue Number 47;

- Controlling Stepper Motors with the
B8HC11F

- Z-System Corner. ZMATE Macro Language
- Using 8031 Interrupts

- T-1: What it is & Why You Need to Know

- ZCPR3 & Modula, Too

- Tips on Using LCDs: Interfacing to the
BBHC705

- Real Computing: Debugging, NS32 Muiti-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-SOG 90

- The Computer Corner

Issue Number 48:

- Fast Math Using Logarithms

+ Forth and Forth Assembler

- Modula-2 and the TCAP

- Adding a Bernoulli Drive to a CP/M
Computer (Building a SCS! Interface)

- Review of BDS “2"

- PMATE/ZMATE Macros, Pt 1

- Real Computing

- Z-System Corner; Patching MEX-Plus and
TheWord, Using ZEX

- Z-Best Software

- The Computer Comner

issue Number 49:

- Computer Network Power Protection

- Floppy Disk Alignment w/RTXEB, Pt. 1
- Motor Control with the F68HC11

- Controlling Home Heating & Lighting, Pt 1
- Getting Started in Assembly Language
- LAN Basics

- PMATE/ZMATE Macros, Pt. 2

- Real Computing

- Z-System Comer

- Z-Best Software

- The Computer Comer

Issue Number 50:

- Offioad a System CPU with the 2181

- Floppy Disk Alignment w/RTXEB, Pt. 2
- Motor Control with the FE8HC11

- Modula-2 and the Command Line

- Local Area Networks

- Using the ZCPR3 0P

- PMATE/ZMATE Macros, Pt. 3

- Z-System Comer, PCED

- Z.Best Software

- Real Computing, 32FX18, Caches
* The Computer Corner

Ilssue Number 51:

- Introducing the YASBEC

- Floppy Disk Alignment w/RTXEB, Pt 3

' High Speed Modems on Eight Bit Systems

* A Z8 Talker and Host

- Local Area Networks--Ethernet

- UNIX Connectivity on the Cheap

+ PC Hard Disk Partition Tabie

- A Short Introduction to Forth

- Stepped Inference as a Technique for
Inteliigent Real-Time Embedded Contro!

- Real Computing, the 32CG160, Swordfish,
DOS Command Processor

- PMATE/ZMATE Macros

- Z-System Comer, The Trenton Festival

- Z-Best Software, the Z3HELP System

- The Computer Corner

Issue Number 52:

- YASBEC, The Hardware

- An Arbitrary Waveform Generator, Pt. 1

- B.Y.Q. Assembiler. .in Forth

- Getting Started in Assembly Language, Pt. 3
- The NZCOM I0P

- Servos and the F68HC11

- Z-System Corner, Programming for
Compatibility

- Z-Best Software

- Real Computing, X10 Revisited

- PMATE/ZMATE Macros

- Controlling Home Heating & Lighting, Pt. 3

- The CPU280, A High Performance Single-
Board Computer

- The Computer Corner

issue Number 83:
- The CPU280
- Local Area Networks
- Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest '91
- Z-System Corner
- Getting Started in Assembly Language
- The NZCOM 10P

Issue Number 84:

- 2-System Comer

- B.Y.O. Assembler

- Local Area Networks

- Advanced CPM

- ZCPR on a 16-Bit Intel Platform

- Real Computing

- Interrupts and the 280

- 8 MHZ on a Ampro

- Hardware Heavenn

- What Zilog never told you about the Super8
- An Arbitary Waveform Generator
- The Development of TDOS

- The Computer Comer

issue Number 55:

- Fuzzilogy 101

- The Cyclic Redundancy Check in Forth

- The Internetwork Protocol (1P}
Z-System Comner

- Hardware Heaven

- Real Computing

- Remapping Disk Drives through the Virtual

BIOS

- The Bumbling Mathmatician

- YASMEM

- Z-BEST Software

- The Computer Comner

Issue Number 36:

- TCJ - The Next Ten Years

- Input Expansion for 8031

- Connecting IDE Drives to 8-Bit Systems
- Real Computing

- 8 Queens in Forth

- Z-System Comer

+ Kaypro-84 Direct File Transfers

- Analog Signal Generation

- The Computer Corner

Back Issues Total

California state Residents add 7.25% Sales TAX

\.

Total Enclosed

+ The Z-System Comer. Patching The Word - Z-BEST Software
Plus spell checker, and the ZMATE macro - &n@lling Home Heating & Lighting, Pt. 2 - The Computer Comer
text editor. - Getting Started in Assembly Language Pt 2
4 u.S. Foreign Foreign Total
Subscriptions (Surface) (Airmail) Name:
1year (6 issues) $18.00 $24.00 $38.00 Address:
2 years (12 issues) $32.00 $44.00 $72.00
Back Issues
#20 thru #43 $3.50 ea. $5.00 ea.
6 or more $3.00 ea. $4.50 ea. My Interests:
#44 and up $4.50 ea. $6.00 ea.
6 or more $4.00 ea. $5.50 ea. Payment is accepted by check or money order. Checks must be in US
Back lssues Ordered: funds, drawn on a US bank. Personal checks within the US are weicome.
Subscrpton Totd TC.J-the Computer Journal

P.O. Box 535, Lincoln, CA 95648-0535

Phone (916) 645-1670

The Computer Journal / #57

41

Z AT Last!

By Lee Bradley

Z AT Last! Z AT Last! Thank Cran
And Others! Z AT Last! Z-System On
AT-Class Computers Under MYZ80

On the 1st day of the *8th* month, 1992,
Simeon Cran brought forth MYZ80100.ZIP,
a 58k package which lets AT-class machines
run Z80-class software. Not only does Cran’s
emulator run CP/M programs, but it also
runs Z-System programs!

TCJ readers may already be aware of other
CP/M emulators (22NICE, Z80MUS5,
ZSIM12). Each of these emulators has its
advantages and disadvantages. With the
exception of ZSIM12, none of these emula-
tors runs Z-System. ZSIM12 needs to use a
5 1/4" floppy drive at start up (a distinct
disadvantage if your drive just died (a com-
mon event around here lately) or you don’t
have a 5 1/4" drive. Like MYZ80, ZSIM12
uses a real CP/M 2.2 compatible BDOS.
The *only* thing that’s emulated is the Z80
processor itself, not CP/M.

Although ZSIM12 has the advantage of be-
ing able to read and write files on CP/M
floppies (CPM86 and Osborne worked for
me but I had trouble trying to read others)
and will run on pre-AT-class (ie. XT) com-
puters (MYZ80 only runs on post XT-class
IBM type computers), MYZ80’s features
(speed (due to the higher Mhz rating of
80x86-based computers), hard disk file sup-
port (3 8-meg (!) CP/M ““partitions”’ plus a
RAM disk) and the growing support from
Cran and the Z-System community) make it
the emulator of choice.

As CP/M machines die and IBM machines
get produced, this development comes as
exciting news to those who have remained
active in the 8-bit commumity. Few AT-
class machine owners are aware of the ad-
vancements that have taken place in 8-bit
operating systems over the last ten years.
Now that these advancements are available
to them, I think a series of short articles
which talk about how to get the software
and how to use it has a place. This introduc-
tory piece will hopefully generate more in-

42

terest in future articles. (I've encouraged
Simeon to write something and hope he
takes me up on it).

What You Need And How To Get It

As of this writing (September 1992) the
first thing you need is the file
MYZ80xxx.ZIP. (The first release had xxx
= 100 but last I looked Simeon was talking
about version 1.02). You may send for it
directly by writing the author. MYZ80 is
user-supported software. Author Simeon
Cran will send you the latest version of his
emulator and listen to your questions when
you send him the registration fee ($23.50
US). The address is:

MYZ80 Registration

Software by Simeon

2 Maytone Avenue

Killara N.S.W. AUSTRALIA 2071

MYZ80xxx.ZIP is available for download
from electronic bulletin boards. I run such a
board in Connecticut, Z-Node #12, (203)
665-1100. If you don’t care to or are not
equipped to download, a 720k 3.5" disk
with MYZ80xxx.ZIP *plus* 20 or so of the
latest versions of key Z-System utilities may
be obtained by sending a $10 check to:

Small Computer Support
24 East Cedar Street
Newington, CT 06111

I strongly encourage you to register your
copy of MYZ80 with the author.

The second thing you need is the NZCOM
package, an automatic, dynamic, universal
Z-System, a CP/M 2.2 compatible operating
system. To order it, send a check for $49
plus $3 S&H to:

Sage Microsystems East
1435 Centre Street
Newton Centre, MA 02159-2469

In the few weeks that MYZ80 has been out,
bug reports have been sent to Cran and they
are being addressed. Howard Goldstein dis-

covered two bugs, one of which was serious.
The EXPORT command (used to transfer
files from the A.DSK, the simulated A: drive,
to the DOS environment) failed for files
larger than 16k. DOSDIR (used to show the
directory of files in the DOS environment)
did not show read-only files. Jay Sage’s Z-
Node in the Boston area recently received a
file named MYUTESO1.ZIP with repaired
EXPORT.COM, DOSDIR.COM and
IMPORT.COM plus a README file.

Tom Mannion has reported some problems
running WordStar 4 on large files and sev-
eral people have been struggling trying to
get Z3PLUS going (the Z-System for CP/M
3.0 machines, which Cran is running with-
out a hitch). So there are still some unre-
solved problems. On the plus side, Steven
Hirsch has managed to get a ZSDOS clock
driver to work under MYZ80 and Tom
Mannion has released an IMP that works
under MYZ80.

I strongly encourage you to take advantage
of both Cran’s new product (MYZ380) and
the Z-System it lets you use on AT-class
(80x86) computers. It is so exciting to me
that CP/M, where ““it>* all started, has come
full circle and is now usable in a much more
powerful version (Z-System) on a much big-
ger and faster machine. Preliminary runs of
benchmark programs show that programs
run from slightly slower to much faster than
they run on a standard CP/M machine run-
ning at 4 Mhz (depending on what AT-class
computer you use). There is a wealth of
software available for Z80-based machines
and with MYZ80, new applications will
increase.

Bio:

Lee Bradley is Sysop of Z-Node #12 in
Connecticut (203) 665-1100. He published
the Computer And Humor ‘Zine **Eight Bits
And Change’’ for two years and will send
you all 12 back issues if you send him $40.
His address is 24 East Cedar Street,
Newington, CT 06111

The Computer Journal / #57

Computer Corner

By Bill Kibler

. ;;Reéuiéhf-‘eatumf_ :
~ Editorial Comment

 Universal 05

Z180/PC

Herbert Johnson, who is now our resi-
dent S-100 support person, suggested
building a Z180 based system for the PC
bus interface. At first the idea just did
not ring any bells in the old gray matter
(brain for those who do not watch Detec-
tive Perot.) I finally came to my senses
and decided it was a very good idea.
Here are some of the ideas and reasons
behind the project.

The magazine needs a product which it
can provide for users that allows them to
learn new ideas and concepts. Collectors
of older systems (my CLASSIC comput-
ers) can use their old machines, but what
about new people looking for a cheap
and simple way to get started. Yes, clones
are cheap, but their design leaves little
for experimenters and beginners. Clone
type I/O cards, especially the swap meet
type are cheap and plentiful. The older
designed 1/O cards are for the most part
simple and straight forward. Newer clone
designs are seldom simple and would
not be practical for hardware learning
tools.

When looking at software, we see that
CP/M and it’s variations are simple,
straight forward, well documented, and
in some cases the entirc source code is
available. People wanting to roll their
own system can do so using any Z80
based computer. With ZCPR it is pos-
sible to have many new tools, as well as
programs that allow real work on the
system, not just learning projects.

The design that has been proposed is a
Z180, some RAM and ROM, and maybe
serial I/O for a debug terminal. That is
all that would be on the card. It would be
a half size XT bus format card. It would
talk to the bus as if it were a regular 8088

The Computer Journal / #57

CPU. That would allow use of all the XT
style /O interface cards. Cost is pro-
jected at under $100 for bare board,
ROM, and any PALS or special devices.
Full running and tested boards would
cost $200 or slightly more.

What Herbert wants is your feedback. At
this point we have had some positive
and negative feedback. The question is,
does this product sound better than the
YASBEC? Does this product have solu-
tions for needs you can’t get elsewhere?
Would you buy one? Could your busi-
ness use one? Would they work in your
embedded control system?

Drop me or Herbert a note and let us
know what you think. I am on GENIE as
B KIBLER and Herberts address is listed
in the DR $-100 column.

I am interested in Windows NT due to
the closeness of it to an universal oper-
ating system.

Universal OS

For the old time readers, you know I
have been talking about a Universal
Operating system for some time. For our
beginners, the concept is rather simple.
Operating systems are defined (or lets
say I define) as the control program that
allows the hardware to talk to the rest of
the world. They typically do this through
the file system or /O structure. Com-
mands are entered at the keyboard to
cause the system to use a program in the
disk system.

An important function of any operating
system is hiding the hardware from the
running program. Windows NT does that
and much more. System calls represent
requests by the running program, that
the operating system then translates into

actual hardware calls. NT is built with
the idea that it will reside on many hard-
ware platforms.

Unlike my universal OS, Windows NT
iswritten all in *‘C”’ code. Moving from
hardware platforms will require com-
plete recompilation of the code. With
that fault out of the way, how is this
different than other OS. They are doing
the internals pretty much as I had sug-
gested some years ago (multiple layers
of translation and redirection.)

In Windows NT it becomes real
appearant that knowledge and experi-
ence about how to do operating systems
has reached a peak. By that I mean, the
knowledge is rather universal. If you
want to make an OS that will work across
many platforms, there is only on¢ or two
ways you can do it. Thus, Microsoft has
designed the NT to use pretty much the
current thinking in OS design. What is
that design? Modular and kernel based
is the rule.

In Windows NT, the idea is separation
from hardware, and yet provide many
features of several operating systems
(compatiblity). To do that you need a
kernel design that high level requests
talk to, and it interpets into hardware
request that it gives to the hardware /O
modules. More recently the ability to
change /O interfaces at will has meant
structuring that side of the kernel inter-
face much like the high level has always
been structured.

At this point an overview description
might help put some sanity to the
othewise insane discussion so far. Win-
dows NT is suppose to be compatible
with old and new versions of MSDOS.
So if we start from a running program

43

that thinks it is on a DOS machine, what
happens. Suppose we output a character
to the screen. In PC clone machines,
usually the program would write directly
to the screen memory for speed reasons.
NO longer possible.

In NT, the DOS operating system is
actually an emulator and so the first step
will be to convert the DOS calls (the
request to send the character to the screen)
into instructions that this operating sys-
tem understands. From there it then gets
tranlated into how the DOS system is
being handled. Say our DOS is actually
a small window of many windows. The
intermediate step then attaches informa-
tion to the request that tells the system
which window it is in. Should we be
multitasking at the time, the time slice
and priority of the task gets added. In
short the system has to take a simple
request and fit it into the complex sys-
tem structure.

At some point in the process, the inter-
face has done all the attaching and it
now must work it’s way to the hardware
screen. After interfacing, the structure is
given to the kernel, which inspects vari-
ous layers of information and determines
which screen process gets the data and if
one of the many other /O process (could
go to file spool if process is not currently
in a window display) might also get a
copy of the data.

The screen process could look at the
structure and assign a font to the charac-
ter. The window the display is in may
then get checked and our charter gets
placed in the bit mapped location asso-
ciated with that window. So what would
have been a simple direct write or data
movement now has become multiple
layers of tranlation and conversion. I
think that Microsoft has no alternative if
they want an universal OS that can sup-
port previous systems. Add to that the
fact that so many of these systems have
completely different ways of handing data
and calls. Remember that Windows NT
is suppose to support PC/XT versions of
MSDOS, Windows programs, OS2, and
UNIX as well.

My universal system is conceptually the
same, ‘however I use Forth’s dictionary

44

structure and platform independence to
turn a vety conplex concept into a simple
reality.

FORTH the universal OS?

Now Windows NT is designed for the
latest and fastest computers. As you saw
how each layer must translate and inter-
pret commands, it is very appearant that
only big and fast computers can do that
in reasonable amounts of time. I want an
universal OS that can run on 8031s and
up. Not possible you say, read on.

My concept of the layered approach uses
Forth’s dictionary as the key. Forth ker-
nels look up the next word or operation
to be performed in a dictionary of words.
Actually the dictionary is a list addresses
that contain the actual code that per-
forms the task (or another list of lists.)
Where my kernel would differ is in words
and or operations that are too complex
or involved for the 8031 to do, the kernel
simply takes the word and stack frame
or information and passes it to another
processor.

My concept is really an extension to the
way Forth has always done things. For
embedded free standing tasks, an oper-
ating system is not and never has been
needed. Most modern applications how-
ever, tie many embedded controllers to-
gether with some server or master com-
puter. That master system usually has
horse power to spare. Forth in the past
would not handle words or requests not
in the dictionary. What would happen
now is the small kernels would assume
any request not in the dictionary would
be handled by the server or master sys-
tem.

Conceptually it is very simple and rather
easy to impliment. Lets take EFORTH
as a basis for a conceptual system. We
put a 6805 version of EFORTH (only
takes about 31 unique words to create it)
and put it into an intelligent door con-
troller. Our door controller has a keypad
and a two line LCD display. Entry is by
entering a code squence that is sent to
the master for verification. When things

are ok, the display acknowledges that
fact and our 6805 unlocks the door.

The code is rather simple, read keypad,
packet data, send to host, and display or
perform host requested commands.
Where the OS concept comes into play is
system maintenance. Suppose we have
some mechanical problems with the door
release mechanism. The maintenance
person does not want to enter and reen-
ter the password dozens of times to check
out the device. Instead, simply enter a
special code sequence and password. The
host then puts the system into local con-
trol mode or the local OS takes over.

At this point the maintenance person
can use regular Forth words to turn bits
on and off. Other options are communi-
cations with host, such as asking the
host to send the command as well. Op-
eration as a mini-terminal is possible if
operators or other technicans are at the
host or other door sites. Suppose some
pin numbers are needed and stored on
the servers file system. Normally our
tech would have to go to the host and
print them out. Now they simply do a
normal open for read request (like a DOS
TYPE and MORE command) and then
use keypad keys to page through the file.
Our OS of course has no idea of these
commands, but instead simplly passes
them up the chain and sends the answers
back for display.

Of course you can see that the real power
is in the host system. If done as I see it,
other advantages to even the host are
possible. Multi-processor operations are
now possible by simply having some
dictionary words send their request to
other processors and not the host.

Well as you can see, my idea conceptu-
ally is similar to Windows NT, but mainly
scaled down for real time work in a real
world environment. Now my operating
system could be done by anyone with a
few bucks and some nights learning the
insides of Forth.

Well it looks like my other comments

will have to wait till next issue. Till next
time....Bill.

The Computer Journal / #57

TC ’ The Computer Journal

Discover Advent Kaypro Upgrades (" TCJ MARKET PLACE N
The Z-Letter TurboROM. Allows flexible Advertising for small busite®®
The Z-letter is the only monthly configuration of your entire R:isrl\se?tsi:rrrlon' $35
publication for CP/M and Z-System. system, read/write additional '
Fagle computers and Spellbinder support. formats and more, only $35. Rates include typesetting.
Licensed CP/M distributor. Personality Decoder Boards Payment must accompany order.
Run more than two drives when VISA, MasterCard, Discover,
Subscriptions: $15 US, $18 Canada and using TurboROM, $25. Diner's Club, Carte Blanche,
Mexico. $45 Overseas. Write or call for Hard Drive Conversion Kits. Call JCB, EuroCard accepted.
! : or write for availability & pricing. Checks, money orders must be
free sample. y & pricing US funds. Resetting of ad
The Z-Letter consitutes a new advertisement
Lambda Software Publishing Call (91:)4:3-0312 ” at first time insertion rates.
eves, weekends or write Mail ad or contact ,
720 South Second Street Chuck Stafford The Computer Journal
San Jose CA 95112-5820 4000 Norris Ave. P.O. Box 53§
(408) 293-5176 Scaramento, CA 95824 _Lincoln, CA 95648-0535 J

CP/M SOFTWARE 8 BITS and Change

CLOSING OUT SALE!

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95 All 12 Back Issues
plus $3.00 shipping and handling. Also, MS/PC-DOS Soft-
ware. Disk Copying, including AMSTRAD. Send self addressed, for only $40

stamped envelope for free Flyer, Catalog $1.00
Send check to

Elliam Associates

Lee Bradley

Box 2664 24 East Cedar Street

Atascadero, CA 93423 Newington, CT 06111
(203) 666-3139 voi

805-466-8440 | (203) 665-1100 :::(li?:n

S-100/1€€E-696 Z80 STD USERS!

Siock Speads ta 10 MH
loc! sto 1 2
Comp upro SUPPORT 1 Mbyte On-board Memory
Cromemco Increase your system performance and reliability
OUR while reducing your costs by replacing three of the
lMSHI existing cards in your system with one
A D v E R T I S E R s Superintegrated Z80 Card from Zwick Systems.
Qnd mor@! T E L L T H E M A ?tslperir_utegraled tCard in your slystem prorllects your
tment, rin minor changes to
T Sour mature 280 ode. | ou Can ncrease. your
car ds. Docs . Sustcms [I S A W IT I N g{gﬁgfi{\gagﬁormance by up to 300 percent in a
TC J " Approximatly 35 percent of each Superintegrated

Card has been reserved for custom /O functions
) o -100 including A/D. DA, industrial /O, Parallel Ports, Serial
L4 Ports, Fax and Data Mcdems or almost any other
form of IO that you are currently using.

Herb Johnson, Sfc"m%;g Fﬁéw“’.?,?% L‘?:héﬂ'é‘é’l?&‘ie;‘JS{&a“é’Qrés? and
CN 5256 #'l 05' upgrade your system the easy way!
Princeton, NJ 08543 ZWICK SYSTEMS INC.

(609) 588_53] 6 L Tel (613) 726-1377, Fax (613) 726-1902

