Issue Number 67

{SSN # 0748-9331

May/June 1994 US$4.00

Small System Support
European Beat
Serial Interrupts for Kaypro 11
DR S-100
Real Computing
Support Groups
Little Circuits
Moving Forth Part 5
Centerfold - SS-50 & SS-30

The Computer Corner

TCJ - For Having Fun With Any Computer!




OSXXX COMPUTER
~ PRODUCTS From
- Peripheral Technology

68000 System Boards with 4 Serial/
. 2 Parallel Ports, FDC, and RTC.
PT68K4-16 with 1MB $299.00
PT68K2-10 w/ 1MB (Used) $149.00
REX Operating System Included

0S9 V2.4 Operating System $299.00
With C, Editor, Assembler/Linker

SCULPTOR V1.14:6 for Business
Software Development - requires any

version of OS9/68K. $79.00

- Other 68XXX products available!
1480 Terrell Mill Rd. #870
Marietta, GA 30067
404/973-2156

Joumey with us to discover the shortest path between
programming problems and efficient solutions.

The Forth programming language is a model of simplicity:
Inabout 16K, itcanofferacomplete developmentsysteminterms
of compiler, editor, and assembler, aswell asaninterpretivemode
to enhance debugging, profiling, and tracing.

As an “open” language, Forth lets you build new control-flow
structures,and other compiler-oriented extensions that closed
languages do not.

Forth Dimensions is the magazine to help you along this
journey. Itis one of the benefits you receive asamember of the
non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable, andannual FORML conferencesare
alsosupported by FIG. To receive a mail-order catalog of Forth
literature and disks, call 510-89-FORTH or write to:
Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.
Membership dues begin at $40 for the U.S.A. and Canada.
-Student rates begin at $18 (with valid student 1.D.).

GEnie is a trademark of General Electric.

Cross-Assemblers aowas ssow
SII’[IUlatOI'S as low as $100.00
Cross-Disassemblers asiowe 1000
DeveIoPer Packages

as low as $200.00(a $50.00 Savings

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.
Get It To Market--FAST
Don't wait until the hardware is finished to debug gour software. Our
Simulators can test your program logic before the hardware is buiit.
No Source!
Aminor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassemblers can heip you re-create the
original assembly language source.
Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.
Quality Solutions
PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.
; BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):
Intel 8048 RCA 1802,05 Intel 8051 intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC 11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 8502 WDC 65C02
Rockwell 65C02  Intel 8080,85 Zilog 280 NSC 800
Hitachi HD64180  Motorola 68000,8 Motorola 68010  intel 80C196
o All products require an IBM PC or compatibie.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develo‘{)ment Products Group
716 Thimble Shoals Blvd, Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)
ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
4DOS “zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modem and use
Check, VISA, or MasterCard. Please include
$3.00 Shipping and Handling for each order.

Sage Microsystems East
1435 Centre Street

Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11PM)
(617) 965-7259 BBS




The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriguez
Ronald W. Anderson
Helmut Jungkunz
Dave Baldwin
Frank Sergeant
JW Weaver
Richard Rodman
Jay Sage
Tilmann Reh
The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoin, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1993
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44 two
years (12 issues). All funds must be
in U.S. dollars drawn on a U.S.
bank. Send subscription, renewats,
address changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 535, Lincoln,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple I, I+, llc, Yte, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket;
Nantucket, Inc. dBase, dBASE Il, dBASE Ill, dBASE Il
Plus, dBASE IV, Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar; MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; iBM Corpora-
tion. Z80, Z280; Zilog Corporation. Tusbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Joumnal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence.

TC

The Computer Journal

Issue Number 67 May/June 1994

Editor's Comments..........ccccerevererneinensens reeesssersssensneas 2
Reader to Reader.........coeeciiivieecreiireeeenrensresrencrenseennes 3
The European Beat..............coeviiiiimrecmmncniiinincennnneens 13

More AMSTRAD history.
By Helmut Jungkunz.

Trenton/Z-Fest & Letters.
By Herb R. Johnson.

Small System Support.......cccvccmrmmrirn .. 20
6800/6809 programs and more.
By Ronald W. Anderson.

Center FOId.......oocciiieeiirieecrneciirnriresisenesreessensssenense 25
The SS-50 & SS-30 BUS.

Serial Interrupts for Kaypro i ............. ereresssssereerenne 29
Using Forth for Serial 1/O.
By Waiter J. Rottenkolber.

Real Computing ......c.coceceiiiiiiiicsninninnnnnenneescesnseenseae. 36
Tiny-TCP and WIN.

By Rick Rodman.

Moving Forth .........c.cciivvmmmmenccsreeeeene 40

Part 5 and Z80 Source Primitives.
By Brad Rodriguez.

Little Circuits.......cccoveccviiiiiiinicccc e 46

Wire and cable concerns.
By Dave Baldwin.

Support Groups for the Classics ........ccccccriiicneeenn. 48
Support groups directory.

The Computer Corner..........ccooceieeceeerniiccincrerineeeees 52



EDITOR'S COMMENTS

" Welcome to issue number 67, our spe-
cial on Forth. Well actually not a special
just a couple of big articles.

We start out as usual with a much larger
Reader to Reader section, which means
- it is not usual since it is larger. However
the TCJ mail bag is still very large and
as such I expect to have as many or more
letters in the issues to come.

Of special note are two mini-articles in
Reader to Reader. Charles Shattuck treats
us to why he likes polyFORTH. The
review covers a product with over 20
years of development! So if you want to
know about a truly mature and excellent
Forth read on. For those unable to make
the Trenton Computerfest, Ron Mitchell
gives us a quick review of some of this
years activities.

Our man in Europe is back and Helmut
Jungkunz gives you the software side of
Amstrad’s history. I didn’t myself know
. of Helmuts skill or past experiences till
now, but it sure seems he was well mixed
up in giving users more power in using
the Amstrad system.

Dr. S-100 was also at the Trenton
Computerfest, but unlike Ron, Herb
mainly bought and sold. He did get some
Z-Fest discussions and pizza consumed,
so all was not purely business. Herb also
answers letters and ask for your input on
the IDE S-100 project.

Ronald Anderson is next up in the pages
and gives us some of his experiences,
both of past and present. For those not
aware of the 6800 or 6809 CPU internals,
he gives us an insight in his beginners
page.

Paging on as we must, produces the
centerfold, which supports Ronald’s
work, by documenting the SS-50 Bus. 1
provide the pin out and jumpers from

the Gimix SS-50 bus system. As you will
see, the bus is based on the 6800 family
and is much simpler than the S-100 bus
design. The SS-30 was also a great way
to save money in the early days when
board design and construction was so
expensive.

For you Forth people and actually any-
one wanting to know about interrupts on
a 780, Walter Rottenkolber shows us
how to do serial interfacing on a Kaypro
II, all in Forth. I have found over the
years that many programmers and hacker
don’t fully understand interrupts or how
to handle them. Walter takes a very good
stab at helping anyone get a better un-
derstanding of what goes on and how to
deal with it. So if your serious about
understanding what you are doing read
on.

We take a break from heavy hitting with
Rick Rodman’s Real Computing. Rick
gives us the good news that his Tiny-
TCP is done and working. Good going
Rick. The code which is on the BBSs’ is
ready and waiting for experimentation.
Rick also updates us on the death of abus
and some Windows programming tips.

For those wondering about Brad
Rodriguez’s moving Forth series, the code
is in. Brad has the first listing of his Z80
Forth primitives. Now this is part 5 of
the series and if you haven’t been follow-
ing his work this will scem a bit over
much. Brad’s other four articles how-
ever have slowly explained the how and
why of building your own Forth. He now
brings together all those concepts and
design decisions you got to consider into
one listing. My compliments and con-
gratulations go out to Brad for this mas-
sive project.

From the massive we jump back to the
Little Circuits as Dave Baldwin discusses
design problems your hardware layout

should avoid. Dave’s ‘Little Circuits’’
cover one of those little points that many
would be designers get in trouble over,
wire capacitance and inductance. Dave
reminds you that PC board traces are
wires too.

Truly last as usual i< my own short col-
umn this time. I aud a few more com-
ments on using PLC’s and provide a
short Forth snippet of possible PLC
words. Now if one of you readers has
actually done a complete PLC system in
Forth, please let me know and we will
sec about an article on it.

I think I am catching up on back orders
and mail, but alas I have found a few
misplaced items the other day. Please
give me a call if you feel something has
fallen through the cracks. My office hours
are normally Mondays 9 to 11 AM
ONLY. I almost had to go out of town
on business but instead just changed my
days off around so I could put more
effort in fixing problems over the phone
instead of in person. So when I say nor-
mally in my office on Mondays, I mean
normally baring unplanned interrup-
tions.

It has been some time since we had
inquiries about 68306’s and explained
how you could buy them. I have yet
however to receive any articles on using
them. So please, if you have started or
completed work on that chip, let us all
know. Your letters or mini articles are
always welcome by those about to won-
der down that rocky design path to
knowledge.

With that I give you issue number 67 for
your reading enjoyment.

Bill Kibler.

The Computer Journal / #67



READER to READER

 AlReaders

Dear Editor,

I am trying to get more specific informa-
tion about The Computer Journal. 1 would
like to receive a copy of it to be able to
write a review about it in our newsletter
ZXir QLive Alive! which is dedicated
tot he Timex Sinclair computers. And
also those that are using other computers
to emulate the T/S computers.

I do not know the cost, the frequency of
publication or the number of pages of
the magazine. Please inform me of the
data.

Something that you might want to pub-
lish is that the Timex Sinclair Users go
to the Dayton (Ohio) Computerfest the
last weekend of August and have several
tables in the flea market arca devoted to
T/S computers only. We started that in
1991 and it is now an annual thing. The
majority of the T/Sers stay at the Red
Roof Inn North which is about 9 miles
from the Hara Arena which is the loca-
tion of the Computerfest. I like to arrive
about mid afternoon on Friday and greet
(at Red Roof) the other T/Sers as they
check in. For me it is getting more and
more like a reunion than anything ¢lse.
Meet and thrash out problems, greet old
friends, swap equipment, find things,
and just socialize in general.

I am looking for book on CP/M hope-
fully a tutorial or manual. I have a disk
interface (AERCO FD-68) for a Timex/
Sinclair 2068 that has its own DOS plus
a DOS called RP/M that is supposedly
compatible with CP/M but the AERCO
manual does not have much information
but refers you to the CP/M manual. It is
not a must have situation but I would
like to find a manual to satisfy curiosity.

The Computer Journal / #67

I went to the meeting of ISTUG (Indiana
Sinclair Timex Users Group) April 30th
which is a 150 mile one way drive for
me. So you see I am a dedicated T/Ser.
I also have 3 different disk interfaces for
the T/S 2068 computer none of which
are compatible. One of the disk inter-
faces is still being manufactured so it is
not a dead machine yet.

TIMEX/SINCLAIR STILL LIVES.

Sincerely yours, Donald S. Lambert,
Auburn, IN.

Well Donald I hope you get my mailing
in time for the computerfest. I will ad
some flyers for TCJ, plus a few samples,
like #65, our Sinclair Z80 special. My
work will keep me from going to Dayton,
but hopefully people like you will drop
me some letters I can print to let our
readers know what they missed.

RP/M is actually functionally equal to
CP/M 2.2 and any CP/M manual or
book will work (815 for an official CP/
M 2.2 manual set from Lambda Publish-
ing - see inside back cover). RP/M was
sold and written by Jack Dennon, of
microMethods, PO Box 909, Warrenton,
OR 97146 (503)861-1765. Jack disas-
sembled CP/M 1.4 for his Hayden book
““CP/M Revealed’’ only to have to redo
it again as version 2.2 came out while
his book was being readied for printing.
After that he decided to take what he
learned and wrote RP/M firom scralch.
Jack says his version is a little like ZCPR
with some of the extra features. The main
difference is, RP/M will work on 8080
CPU’s.

Several OFEM'’s bought RP/M for use
with their systems, AERCO being one.

Jack says most of the small OFEM's re-
ally didn’t pay but two other OEM’s did
make it worth his time, somewhat. The
older version of RP/M’s manual, of which
1 lost mine in the last move, provided a
complete listing of RP/M. Thus RP/M
gave you a look at how the insides of a
CP/M compatible operating system might
be done. He has a newer version that
runs on top of a Z280 emulator on the
PC. He is not actively selling any RP/M
versions, but if pressured to sell he col-
lects 3129 for it with printed manuals,
slightly less if all on disk. Jack is send-
ing me a sample to review, so I can keep
my readers up to date.

Since RP/M could be supplied with
source on disk, and your 2068 disk con-
troller builder’s might have changed
things, we can’t promise, but feel rather
strongly that you could purchase
NZCOM from Lambda Publishing and
run it. Since Jay Sage has spent the last
several years explaining the how and
why of using ZCPR or NZCOM in TCJ,
our back issues are probably a good
place to learn about ZCPR and CP/M
for that fact.

So please let me know how your work
with using CP/M or RP/M (or NZCOM)
goes, and how Dayton T/Sers spent their
time this year. Thanks for contacting
TCJ. Bill Kibler

Dear Bill.

Reading ‘‘Reader to Reader’’ in the is-
sue 66 I had a bad conscience. So I have
now collected the files regarding ZX81
ROMs on a disk, which I send you.

Please note there are some old copy-
rights, but to the best of my knowledge,



the firms don’t exist anymore. Anyhow,
I think the software is so good it deserves
to be used more.

Now you can do with it what you think
best.

Regards, Gorm Helt-Hansen, Denmark.

Directory of B\ZX81 ROM

ASZMIC HEX 11537 04-26-94 10:52a
FORTH HEX 23056 04-26-94 10:54a
FORTH DOC 37502 04-29-94 11:14a
ASZMIC BIN 4096 04-27-94 12:29a
FORTH BIN 8192 04-27-94 12:25a
ASZMIC DOC 23661 04-29-94 1:13a
8 file(s) 108044 bytes

ZX81-FORTH.

EPROM: 2764.

Checksum: C925.

Copyright (c) 1983 Skywave Software.

ZX-81 Forth matches the fig-FORTH com-
mands, although ZX81-FORTH is not fig-
FORTH. It was not possible to include all
the fig-FORTH words because of ROM space
limitations. ZX81-FORTH also contains
some non-standard words so that
multitasking can be accomplished. ZX81-
FORTH is multi-tasking. This gives the
programmer the ability to write real-time
routines.

ASZMIC HEX.

Eprom type: 2732.

Sumcheck: 2A44

Copyright (c) 1982 Comprocsys Ltd.

ASSEMBLY LANGUAGE DEVELOP-
MENT SYSTEM for the Sinclair ZX81.

After connecting the power to your ZX81
you will have a clear screen, except for a
funny little character towards the bottom
left and a blinking cursor on the line just
above it. The speed of the blink identifies
which mode ASZMIC is in: fast blink means
EDIT and slow blink means DEBUG. With
16k of memory on the system you will be in
DEBUG mode out if you are using a “bare”’
machine then you will be in EDIT mode.
Shifting between EDIT & DEBUG modes is
achieved by the use of the Shift 9 & Shift E
keys. Experiment by pressing Shift 9 (DE-
BUG) and Shift E (EDIT) alternately, and
watch what happens to the cursor blink rate.
There is only one difference between EDIT
and DEBUG modes, but that is an important
one. When you hit newline in DEBUG mode
the line you have just finished will be passed
to the Command Interpreter. In EDIT mode

you just start a new line.

Thanks Gorm, the code is very much
appreciated. I will be putting this up on
DIBS and JW'’s BBS, both of which are
listed in user group section. The bad
part is, I will have to burn a ROM and
test them out. I tried them with the ZX81
emulators and was unable to get either
one to work. Not sure why the emulators
didn’t work, but maybe some one else
can try who has worked on the emula-
tors longer than myself.

Anyway Gorm, I know some others who
will appreciate these files a whole lot.
Thanks again! Bill.

Dear Bill

Thank you for the sample issues of 7CJ.
I especially enjoyed the article about the
ZX-81 in issue #65, and the readers
comments is issue #66.

Some points of interest to you and your
readers: Sinclair Research manufactured
6 computers: ZX-80, ZX-81, Spectrum
(3 versions) and QL. Timex Corporation
manufactured 3 computers: TS1000,
TS1500 and TS2068.

ZX-80: B&W video, 1K intérnal
memory, 4K operating system. Later
Sinclair released a modification that
consisted of a new keyboard overlay and
8K operating system. (Same operating
system as ZX-81.) This unit had ap-
proximately 30 integrated circuit chips.

ZX-81: B&W video, 1K internal
memory, 8K operating system. Feranti
Semiconductor developed a special 40
pin I.C. for Sinclair, which replaced 25
I.C’s used in the ZX-80. The ZX-81
used 5 L.C.’s.

TS1000: Same computer as the ZX-81,
except with 2K internal memory.

TS1500: B&W video, 16K inte.n.
memory, modified 8K operating system
used in the ZX-81 and TS1000.

The ZX-80, ZX-81 TS1000 and TS1500
all used same sofiw:i.e.

Spectrum: Color video, 3 versions - 16K,

48K, and 128K internal memory. Very
few Spectrums made it to the U.S.A.

TS2068: Color video, 48K internal
memory, different operating system than
Spectrum. If operating system ROM was
replaced with special after market
EPROM, Spectrum programs could be
run on TS2068.

All above computers used Z-80A CPU’s.

QL: Color video, 68000 CPU, 16 bit
Super Sinclair computer.

This is a thumb nail history of the
Sinclair and Timex computers.

Best Regards, Fredric Stern, L.I.S.T.
Newsletter Editor, PO Box 264,
Holbrook, NY 11741. (Long Island
Sinclair Timex user group)

Thanks for the short history, Frederic. I
am starting to understand why so many
have good feelings about the Sinclair
machines. For one reason, as you showed
us, there were many versions, with many
Jfeatures, and all for a very reasonable
price. Again, Thanks. Bill Kibler.

Dear Bill:

I have been remiss in sending you money;
I hope that I will not lose any issues of
TCJ due to my getting hung up in trying
to keep my clients happy. I do have a
couple of items, however, that you and
your readers may find useful.

First, at a recent Motorola seminar on
TPU (timing co-processor in the 68332
chip), I passed on your complaint to
Motorola people that “‘real people’ (i.e.
non-professionals) don’t have reasonable
access to state -of-the-art chips. I was
assured that Wylie and H: 1ilton-Hall-
mark are two distributo. wive
telemarketing divisions that wiu - 2
orders for small quantities (read that as

’’) of anything they sell, over the tele-
pnone, from anybody, presumably paid
“o. with credit card. I have not yet fol-
lowed up on this.

Second, I would like to recommend to

you and all, and particularly to Brad
Rodriguez, a terrific source for proto-

The Computer Journal / #67



type-quantity printed circuit boards. You
might also want to approach them about
advertising in TCJ. AP Circuits will make
printed circuit boards from Gerber files
that you send to their bulletin board,
with turn-around of four (yes that’s 4)
working days, for amazingly low prices.
The last boards I had done, which were
- about 2.5" x 3.5", cost me $75 for two
boards, including Federal Express ship-
ping. There are no artwork or setup
charges. If you call their bulletin board,
you can download a file with their rates
and requirements. Also, you can down-
load a public domain version of the
printed circuit board layout program
PROTEL EASYTRAX for the cost of
the telephone call (it’s about 700K bytes,
as I remember), with which to do the
board layout and produce the Gerber files.
Here’s their address and phone num-
bers:
AP Circuits, #14-3650 19 St. NE,
Calgary, Alberta, Canada T2E 6V2,
(403) 250-3406, BBS: (403) 291-9342
(8N1).

While I'm playing with my new word
processor, let me say how much I enjoy
Brad Rodriguez’ articles on Forth and
the 6809. I am also pleased that you have
corralled Ronald Anderson. I let my
subscription to 68 Micro lapse a few
years ago while I was out of the country,
so I had lost track of him. I think he’ll
be a fine addition to 7CJ.

And, of course, here’s my subscription
check.

Sincerely, Wilfred S. “‘Steve’” Brown,
Houston TX.

Thanks for the help Steve. Yes we have
heard about more companies taking
credit card calls for small quantities. 1
think it is a market pressure change, but
even with a minimum charge it means
you can get the parts you need.

AP Circuit had been recommended be-
Jfore. We had not however heard from
anyone actually using them. Since you
seem to be a satisfied users of their
services and since they seem to be doing
things right (like giving away a program
to do the design with), I feel good about
recommending them to my readers.

The Computer Journal / #67

Adding Ronald Anderson has been won-
derful, and I can tell he was looking for
an outlet of his writing energy. He is
several articles ahead and grinding them
out faster than I can produce issues. As
to which is more prolific, Ron or Brad,
beats me, but TCJ'’s current growth cer-
tainly is owed to their work. I send them
my thanks as often as possible.

And to you Steve, thanks for your letter.
Bill.

Dear Bill,

To update Brad Rodriguez’s comment
(TCJ #65) on Jameco, their most recent
catalog (#941) for Feb-Apr 1994, drops
the minimum order, but adds a $5.00
service charge if the order is under
$25.00. This is similar to the policy of
JDR and Digi-Key.

I agree with Brad’s observations on lan-
guages, and your comments. Some of
the most incomprehensible code I’ve seen
was written in Pascal. With a little effort
you can take any language and create a
Write Once Read Never program.

I've adapted Frans van Duinen’s PDE to
my Laxen and Perry Forth83 for my
Kaypro II. Though not as fancy, it pro-
vides an integrated programming envi-
ronment as pleasant as any Turbo or
Visual compiler. Another reason I prefer
Forth is that debugging Forth is easier
than other languages, esp. using the
compilers available for eight-bit systems.

The C/80 compiler from Software
Toolworks is supposed to have been
derived form Small-C. Together with
the Math-Pak, it provides all the basic C
functions and data types except Typedef,
bit structures, and register assignment.
One big internal change was to assign
local variables to memory locations rather
than a stack frame. It generates assem-
bly code fairly quickly. The assembler
needs to tap into a compiled library. You
could use a commercial assembler, such
as RMAC. The supplied assembler un-
fortunately, is very disk intensive and
slow. However, C/80 does show that
Small-C could evolve into a fairly com-
plete C compiler.

Yours truly, Walter J. Rottenkolber.
From an earlier letter by Walter:
Dear Bill,

When 1 first started in computers ten
years ago, the 8-bit home/personal com-
puter had fleshed out to the full 64 Kbytes
RAM address space. And with this ex-
panded RAM came an explosion of in-
terest in adapting languages other than
BASIC and assembler to the personal
computer. As a result, there appeared
magazine articles, books, and inexpen-
sive compilers for a wide variety of lan-
guages. Over time, [ collected and tried
many of them. Some were obscure
(“‘BPCL”’, Algol, Pistol, Mouse). Other
were well known, but the mini-versions
had limited usefulness and distribution
(COBOL, Fortran, Lisp). Of them all,
I’d say that five had the widest use,
interest, documentation, and compiler
availability -- Forth, Pascal, ‘C’, BA-
SIC, and assembler.

Everyone tends to pick one or two of
these because they ‘work’ for them. The
languages not only do the job, but they
fit in with the way the person thinks and
likes to program. For me they are Forth
and assembler. My Forth (an L&P F83
with PDE) has an integrated program-
ming environment better than Borland’s
Turbo-Pascal, and both open up the com-
puter on a more elemental level than the
other, more abstract, languages.

I can read source code in the other lan-
guages, but I would object to being forced
to write a demonstration program in
them. I can sense from the comments of
the other authors that they have similar
feelings. As a result, [ believe that the
best compromise is for the working pro-
gram to be in the author’s language of
choice, but that the essential algothrim
be described in well commented pseudo-
code. Afier all, that’s what the text of the
article is for.

Since the readers are not at the same
level of experience and knowledge, an
article will have points of confusion
despite the author’s best efforts and in-
tentions (I know!). A Q&A column scpa-
rate from the letters to Editor column,



would provide a forum for answering
these questions. All this presupposes that
the reader is willing to make the effort to
learn. Nothing will help the lazy reader.

One project, implied in your article,
would be to round up, develop, or find
sources of languages. After all, F1.G.’s
efforts led to fig-Forth being available
on most 8-bit platforms of the early
1980’s. The process broke down for
Forth-83, alas. The comments in your
article suggest that Small-C had a simi-
lar distribution. BASIC and assembler
were widespread though their availabil-
ity may now be spotty for some systems.
The status of Pascal is unknown to me.
The Kaypro had Turbo-Pascal, JRT Pas-
cal, and tiny Pascal (at least). Ideally, all
five languages should be available for as
many systems as possible.

A good start would be to develop a mas-
ter list of all languages available for all
systems of reader interest, not just the
big five. And there are some systems I’d
never heard of before -- Dolphin-8 and
Propoise-8, indeed. And some strange
languages -- Mouse. It would give the
readers a good excuse to dust off their
disk ‘junk’ box and revisit the past. Just
for fun, I'm including my list.

A listing of languages for Kaypro IT, CP/
M computers. The (K-?7?) are disks from
MicroC Kaypro library (now for sale by
Lambda).

Algol - ALGOLS0.

Basic -- CBASIC2 (DRI), EBASIC,
MBASIC (Microsoft), OBASIC (Mi-
crosoft), SBASIC (Kaypro), ZBASIC
(Northstar), TINYBASIC v1.0 & v3.1.

Assembler Z80 -- HD64180A&B,
Z80MR V1.2 (K-25), M80 (MicroSoft),
CROWE-Z380 [Z80 (K-10) & ASMZ PD
by C.C. Software], SPASM (Intel mne-
monics, single pass), ZSM (for inclusion
in C programs), Z80.PAS (compiler in
Pascal).

Assembler 8080 -- ASM (DRI),
LINKASM, MAC (DRI).

‘C’ -- C/80 v3.1 with mathpac (Sofiware

Toolworks), Small-C v1.1 & 2.0 & 2.1
(K7-8, K35-36).

Cobol -- Nevada COBOL (Ellis Com-
puting).

Forth -- FIG-FORTH v1.1 (K-12&13),
F83 v1.01 & 2.01 (K-32), UNIFORTH
sampler , EFORTH51.

Fortran —~ Nevada FORTRAN

Lisp -- LISP/80 (Software Toolworks),
ILISP (based on SCHEME), LISP (in
pascal), XLISP (for Kaypro).

Pascal -- TURBO-PASCAL v3.01A
(Borland), JRT PASCAL v3.0 (JRT Sys-
tems), LITTLE-PASCAL (K16).

Pilot (computer aided instruction) --
Nevada PILOT (Ellis Computing),
ZPILOT (in Z80code), PILOT/80 (in
basic).

Misc -- APL-Z, BCPL (by Martin
Richards & Colin Whitby-Strevens),
OCTAL, MOUSE, PBS (basic prepro-
cessor), STAGE2 (macro-preprocessor).

Yours truly, Walter J. Rottenkolber.

Thanks Walter and it seemsyou too have
hit on the best way to handle the code
problem. What is needed now is a stan-
dard way of doing pseudo code com-
ments. I guess we could use Pascal style
of coding as the comment format. I once
worked with a programmer that did all
her design in Pascal and then did the
assembly work from that. After all wasn’t
Pascal written to teach and explain pro-
gramming concepts.

You have a rather good sample of pro-
gramming languages and I guess now
that we are finding out who has what,
some articles on personal experience
with these older versions is needed. |
would not want to recommend someone
using an older version that was so buggy
that the result was unusable.

1 can see too that we have yet to get you
to explain your PDE setup. 1 am sure
many programmers have gone to Turbo
products due to the integrated program-
ming environment. Made me switch! How

about it? Thanks for your never ending
work! Bill.

Dear Mr. Kibler

I just received your complimentary copy
of TCJ. 1 like it, good mag. Please enter
my subscription for the next year. I will
also order some back issues when [ have
time to figure out which ones I need.

Basically I am jumping into the middle
of things. Yes, like most kids, (52 is still
a kid) I had my share of computers. The
Sinclair 1000 & 1500, a VIC 20, and a
TI 99. Istill have all of these and use the
VIC 20 regularly as a dedicated RTTY
terminal, and the T199 for games (mostly
for the grandkids).

Never being into programming, I didn’t
use these old computers for anything but
for software that was preprogrammed on
tapes or cartridges. Budgetary and time
restraints of raising a family didn’t leave
much for computing. Now I am picking
up where I left off fifteen years ago. This
is where TCJ fits in, helping me to learn
and re-learn the past.

There is also the revolution aspect. Back
in 1987 1 bought my first 8088 XT. It
had an unbelievable 256K of memory,
and a monstrous 720K disk drive. Com-
pared to my previous 2K of memory and
no disk drive this computer would last
me a lifetime. WRONG. 1 soon found
that it was inadequate and had to get an
AT 286 with 1M of memory, a 32 meg
hard drive, 2 floppy drives and 512K of
mem just on the video card. This lasted
a couple of years, and found that due to
the large programs I needed more. So off
to a 386/40 with 8Mcg mem, a 260 meg
hard drive etc. This now isobsolete.
WAIT STOP! Something is wrong! [ am
doing very little more now, than I did on
Sinclair 1000. So back to the beginning,
it makes a lot more sense, and a lot more
fun.

I enjoyed your article on PLC’s in the
Computer Corner. A week ago I would
have probably skipped over this article,
but I just returned from one week cram
course on the GE Series 1 programmable
controller, so I was able to read and
understand it. By the way the GE con-

The Computer Journal / #67



troller uses a Z80 with 2K of mem, and
controls up to 128 I/O functions. The OS
is in ROM, with all the functions entered
from a keypad, i.e. dedicated keys for all
the logic operatives, contact, internal and
external coils, timers etc. Too bad I was
not able to get a copy of the firmware, it
would have been interesting.

Finally a couple of years ago I acquired
an old TRS 80, 16B. This is quite a
machine. It has a 68000 main processor
with a Z80 co-processor to handle I/O’s,
1Meg mem and dual eight inch floppies.
1t is very fast and if I can ever figure it
out, it looks like there is a lot of potential
there.

Thank again Bill for a fine magazine. I
will be looking forward to many years of
it.

Yours Truly, Lew King, Industry, PA.

Thanks for your subscription Lew. Yes |
had a model 16 for awhile and they run
Xenix, MicroSofis version of Unix. I sort
of wished I had kept it, but I was running
out of space.

As to the madness of the clone, use them
and leave them problem, I can’t agree
more strongly. You want fun and real
knowledge of how things work, keep your
old machine and start writing your own
programs. I guess one could learn CP/
M inside and out in six months or so,
while just getting programs to work on
the latest DOS could take that long and
wouldn’t work right with the next up-
grade. Pure madness.

To have fun with computing means know-
ing everything you are dealing with pretty
well. That equates to keeping it simple.
XT'’s are just barely simple, AT’s a little
bit over the edge but learnable, 386/
486°’s may only have a few parts on the
board, but software complexity is defi-
nitely not for those wanting to have fun.

Thanks again Lew and welcome to TCJ.
Dear Bill,
The back numbers arrived safely. Thank

you. This concludes with an order for
more.

The Computer Journal / #67

I noticed mention of E Roche & Windsor
BBUG on pg 45 of issue 65. This BB is
the remnant of the CPMSDOS-UGUK,
which was wound up last year. Roche
was a prolific contributor to its newslet-
ter & to The Disc Library News of the
Windsor BBUG. Names and addresses
of WBBUG of which you may be already
aware by now, are;
Sysop: Peter Catley

11 Haslemere Rd.

Windsor SL4 SET

England, UK
Disc Librarian: Rodney Hannis

34 Falmouth Rd.

Reading

Engiand, UK
I was led to 7CJ by Rodney.

Idea! I got much of my software from PD
sources. Other late comers like me might
enjoy thumb-nail biographies of authors
who have shown us the way. Ward
Christensen/LASM/DU, Dave Rand/
NSWP, etal.

Sincerely HK Fraser, Blairgowrie, Scot-
land, UK.

Thank you for your order and letter
Mpr.Fraser. I like your idea and hope-
Sully they or people with knowledge of
them will see this and send me some
Bio’s. I printed some information last
issue about the UK group, hoping that
people would know that at least the BBS
and Disc libraries are still available.

Many support groups have disbanded,
partly due to lack of interest, but more
1 think to people being a bit too busy
with so many other projects, that their
hobbies got left behind. The important
thing to remember is that most of the
BBS’s and libraries of public domain
software are still available. So you might
not find a meeting to attend, but help
and programs are often just a phone call
away.

Thanks again. Bill.
Dear Bill,

Thanks for advertising my equipment.
All three machines sold, along with the
tech manual. I am pretty amazed that
they all went so quickly -- one to a man

in Texas just a couple of weeks ago. In
fact, I could have sold the K-1 with hard
drive four or five times!

I am enclosing a listing of the last of the
stuff I have. As you will notice, I am
pricing these things to move. Could you
please list them in the T7CJ ““for sale”’
section for me? I am enclosing a check
for $10 to pay for this and the first ad
you ran.

Thanks for helping me find good homes
for these machines. I will always have
found memories of my start in comput-
ing with Kaypros and the Z-System.

Sincerely, Dave Templin, West Sacra-
mento, CA.

Good to hear they sold quickly Dave. I
think many people have the wrong im-
pression that nobody wants older ma-
chines. My sons classmate’s father was
about to use 7 Z100s for land fill. My
wife was taking the son to a birthday
party at their house and saw them stacked
in a corner awaiting burial in the back
yard. A few words with the Father and
they ended up in my garage, free.

Well one had been dropped wasting the
monitor tube, but all else worked. We
found that out as we swapped boards
and tested them. The we in this case is a
Jfriend who is still using his Z100 I sold
him way back when. He had since bought
a spare unit when the local Heath/Ze-
nith dealer went out of business. To say
we had fun testing and fixing would be
an understatement. I think we both could
have played with these repairable units
Jfor weeks without complaint. I sent him
home with two and a half machines. He
now has at least three spares for every
part in his own 2100/

With the prices you asked, getting spare
complete systems is cheap and easy.
Users who aren’t hardware oriented can
just buy a complete spare or two and
feel safe for many years to come. Re-
member computers don’t get old just
sitting in some corner waiting to be used,
there is not an expiration dates on these
pieces of history.

Thanks Dave and good luck. Bill.



Dear Bill Kibler,

Please pass this on to Ronald W. Ander-
son. It’s a response to his request in the
TCJ #66 ‘“Small System Support’” col-
umn for-a ‘““C whiz’’ to write and ex-
plain why his example comparing the
use of array indexes versus pointers is
" “‘clumsy.”” I suppose I qualify as a C
whiz, since I make my living as a C
programmer. We who ““C’’ prefer point-
ers because they generally produce
smaller, faster code. It’s that simple.
True, pointers may seem cryptic to C
- neophytes, but they are very important to
the language. Now, pointers are much
better because...

First, take a look at my example file,
TESTP.C. It’s practically identical to
Ronald’s example on page 34 of TCJ
#66. I've left out the incorrect versions
that printed out the terminating null.
We’'re interested in comparing the two
functionally equivalent versions, one that
uses array indexing, and the other that
uses a pointer. Two minor differences in
my code from Ronald’s. I didn’t use the
braces around the string constant that
initializes the character array, string.
They don’t hurt, but are not necessary in
this case. Second, I initialized pointer s
by assigning string to it. An array name

-in C is the address of the Oth element,
i.e. equivalent to &string{0]. Next, squint
a bit and look at the assembly output
from C80. This is the result of compil-
ing TESTP.C by the CP/M command
line:

A>C80 -M1 TESTP.C

The -M1 switch means to create an as-
sembly file output in a format that the
Microsoft M80 Macro Assembler pro-
gram can use. I used this compiler switch
so the mnemonics would be standard
8080. I've edited the file and put in
some white space and comments. The
array indexing version begins at the la-
bel .f, and the pointer version at .h. The
code of both versions is virtually identi-
cal except for one big difference. The
indexing version has four more machine
instructions, and they are costly. The
instructions are:

LXI D,string

DAD D

There are two occurrences of this se-
quence inside the loop to print one char-
acter. What it’s doing is easy to under-
stand. Each array indexing operation,
string[n], requires that the address of
string be fetched, and the value of n
added to it. The pointer version doesn’t
need to do this, because the pointer s is
simply used.

My test string has 25 characters, so when
the array indexing version executes it
performs 100 more machine instructions
(on an 8080) to print the string than does
the pointer version. Programs that per-
form a lot of iteration thfough arrays
will suffer both a performance degrada-
tion, as well as increased code size, if
they use indexing rather than pointers.
There are many times that indexing into
an array is a valuable option to have in
the programmer’s bag of tricks, but there
is ample reason to prefer pointers in
cases like Mr. Anderson’s example.

+

Very truly yours,

Richard E. Brewster, Richmond VA

1* File: testp.c 4/24/94 Richard Brewster
Purpose: To see if array subscript or pointer is
more efficient in terms of assembly operations.

Ref: TCJ #66, p. 34 - Article by Ronald W.
Anderson
*/

char string[} = “This is the test string.\n";
/* Braces not necessary */
int main(void)

char*s;
int n;

/* Array subscript version */

n=0;

while (string[n])
putchar(string[n++]);

I* Pointer version */
s = string;/* same as s = &string[0] */
while (*s)

putchar(*s++);

return 0;

}

TESTP.MAC
,C/80 Compiler 3.1 (4/11/84) - (c) 1984 The
Software Toolworks

CSEG
string:: DB 84,104,105,115,32,105,
DB 115,32,116,104

main:

DB

101,32,116,101,115,116

DB 32,115,116,114,105
DB 110,103,46,10,0
PUBLIC main

DSEG

Dw 0 ;char*s;
Dw 0 vintn
CSEG

LHLD .

PUSH H

LHLD d

PUSH H

LXi H,0 n=0;
SHLD e

; while (string[n]) putchar(string[n++]);

£

LHLD
X
DAD

MOV
ORA
JZ
LHLD
INX
SHLD
DCX

LXI
DAD

CALL
PUSH
CALL
POP
JMP

Xl
SHLD

e

D,string ; the offending
; instructions

D

AM

ToIon >

D;string ; here they are
; again
D

g.##

H
putchar
B

f

H,string ; s = string
d

; while (*s) putchar(*s++);

.h:

: Done

LHLD
MOV
ORA
JZ
LHLD
INX
SHLD
DCX
CALL
PUSH
CALL
POP
JMP

LXt
XCHG
POP
SHLD
POP
SHLD
XCHG

z

¥

utchar

WV ITQ@ITaTao—P>Pa

o TaoX

The Computer Journal / #67



RET

EXTRN putchar
EXTRN g.

END

Thanks Richard for the sample code and
I am glad you put the command line to
generate assembler code in. My experi-
ence with “‘C"’ has taught me to always
look at the assembler output. You can
see some pretty ugly things. I guess the
way to keep it from being so ‘‘ugly’’ is
knowing which method or option to use.
In this case pointers seems better. Thanks
again. Bill.

Dear Bill:

My name is Larry Campanell and I am
a Computer Hacker ...

After reading the last few issue’s Reader-
to-Reader, I feit compelled to join the
ranks of Computaholics Anonymous.
Here is my story.

The computer bug bit me back in ’81
when I bought the bare boards for a
computer called the LNW-80. This was
a TRS-80 Model I clone with some sig-
nificant extensions (e.g. hi-res graphics,
color and a 4Mhz Z80). I almost bought
the ZX80 (kit) but, decided on LNW due
to the abundant supply of software avail-
able for the Model 1.

As my computing interests grew, so did
my LNW. First, 5.25" drives, then 8"
drives, then a double density adapter,
then a CP/M adapter, then a hard disk.
All of the hardware modifications were
done from scratch, either by wire-wrap-
ping a daughter board or photo-etching
from a layout in a magazine. The hard
disk I used had a proprietary interface
so, after building the host adapter, I then
had to write the driver software. The
LNW is very flexible. If a TRSDOS (or
compatible - there were at least six Op-
erating Systems for the Model IVIIV/IV
family) disk was in the boot drive, it
became a CP/M 2.2 machine. I still use
the LNW, although it is more often used
to copy information between various
5.25" and 8" disk formats.

The Computer Journal / #67

At the ’86 Trenton Computer Festival
flea mart, I bought a XEROX 16/8 Pro-
fessional Computer. It is very similar to
XEROX 820, but it also has an 8086
daughter card. Like the LNW, it takes
on the personality of its boot disk. Al-
though this time, the choices were CP/M
80, CP/M-86 and MS-DOS. I don’t use
the MS-DOS mode very much as the
machine is not PC hardware compatible.
Only very simplistic text-oriented MS-
DOS programs will work on it. How-
ever, with a Qume Sprint 11/55 Daisy-
wheel printer and WordStar running
under CP/M, it became my document
processing workhorse (the LNW could
have performed those duties but, when-
ever I really needed to write something,
the LNW was usually in the middle of
some sort of hardware modification).

The following year’s TCF landed me an
EPSON PX-8 (or Geneva). To me, this
little 8.5" by 11" notebook that ran CP/
M 2.2 was the best thing since sliced
bread. All of the work I was doing on the
LNW or XEROX could go with me any-
where I went! I could create my WordStar
documents on the road and print them
when I got home or access a BBS with
its built-in modem. In fact, I'm using it
now to create this letter while on a busi-
ness trip. I get a few stares when I use it
in public - after all, it doesn’t do Win-
dows. By the way, does anyone have a
PF-10 they’d like to sell?

But alas, I eventually fell prey to the Big
Brother mind set of computing. For, in
the past few years I've picked up an XT
clone and a 386SX system. Things scem
to be different now. A “‘hacker’’ used to
be someone who could crack the most
sophisticated copy protection scheme or
use his computer to verify that the light
in his refrigerator really did go out when
the door was closed. In the MS-DOS
world, it seems a ‘‘hacker’’ is simply
someone who knows how to manipulate
*ini files to get the latest version of a
multi-megabyte application to run with-
out crashing. Oh, I'still get the urge todo
something “‘exciting’’ and I’ll find my-
self wire-wrapping a SCSI host adapter
for one of my CP/M machines or writing
some code to display GIF files on the
LNW. As you have said in many of your
recent 7CJ issues, the older ‘‘classics’”

are very good tools for learning how a
computer works. Has anyone interfaced
a CD-ROM to a CP/M machine?

I thank you for letting me tell my story.
As with any group therapy, the first step
to recovery is publicly admitting you have
a problem.

Sincerely, Larry Campanell, Blue Bell,
PA.

Thanks Larry for your confession and
comments. I feel at times, especially when
trying to find something in my rather
large pile of computers, that professional
help is needed (shrink or garbage truck?).
However that is what TCJ is for, a place
to find others with the same affliction.

The more complex the Clone machines
become, the stronger and easier it is to
see that my position is very valid. Do
your learning and playing on the older
machines, you might just learn some-
thing besides a new swear word.

Thanks for the good comments, Larry.
Bill.

polyFORTH
by Charles Shattuck

I recently had the opportunity to get
polyFORTH for MS-DOS. Over the past
twelve years or so I've used a number of
different Forths, starting with a com-
mercialized FIG FORTH for my old 8
bit Atari, then a Forth 79 for an Apple
11, F83 for the Atari ST and one for MS-
DOS, and for the last four years F-PC for
MS-DOS machines. I've written Forth
assemblers and target compilers for three
different embedded micro-controllers as
well. I feel as though I’'ve finally got the
Forth I’ve been looking for.

polyFORTH is a product of FORTH, Inc.,
the company started in 1973 by Chuck
Moore, the inventor of Forth, and Eliza-
beth Rather, currently president of
FORTH, Inc. polyFORTH has 21 years
of development and use behind it, which
must qualify it as one of the most mature
MS-DOS development systems around.
Let me try to explain why I like it so
much.



I learned to program in Forth. Well ac-
tually I used BASIC for about three
months before getting frustrated and tem-
porarily giving up. Then I read about
Forth in some computer magazine and I
got one for my Atari 800. At that time
what 1 really wanted out of computers
was to learn how they worked and to be
able to control one myself. Forth was the
answer for me because everything is out
in the open and understandable. Forth is
so simple that it is possible for a single
individual to understand everything that
happens in it. It’s not necessarily easy,
but it’s possible. Even more so in
polyFORTH because the extraneous de-
tails have been weeded out and the writ-
ten documentation is truly excellent.

If you know Forth at all you have prob-
ably heard the arguments between those
who like BLOCKS and those who like
TEXT FILES. I like blocks. 1 learned on
blocks so I'm biased, but I also love the
idea of simple and portable virtual
memory. For those who don’t know,
blocks are 1024 byte packets of datd on
disk which are transparently brought into
main memory and then stored back on
disk. They can be used as 16 lines of 64
characters for source code editing pur-
poses or they can be used to store data
base records. Each block is referenced
by number so for example ‘600
BLOCK’ arranges for block number
600 to be in one of the block buffers in
main memory, and the address of the
block buffer is placed on the stack. “600
LIST”’ would print the block on the ter-
minal screen as 16 lines of 64 charac-
ters. The polyFORTH editor is a combi-
nation of text commands and cursor and
function key commands which work on
a LISTed block.

F83 has a very similar editor which I
used for several years, but this one just
feels better. I especially love the way the
top of the screen freezes when you LIST
a block and your commands scroll by on
the bottom part of the screen. I often
want to refer to source code while de-
bugging and now that’s automatic. In F-
PC there are commands in the editor to
do the same sort of thing, but it probably
takes 10 or 12 keystrokes to set it up and
just as many to undo it. In polyFORTH

10

to go back to full screen scrolling you
simply type PAGE.

There were actually two features that
really make polyFORTH stand out for
me. The first is the multi-user operating
system. Both F83 and F-PC are multi-
tasking single-user systems. It is easy to
define background tasks such as print
spoolers but it is not easy to attach ter-
minals and multiple users. polyFORTH
was designed from the very beginning as
a multi-user system and it shows.
polyFORTH is reentrant so that each
terminal task can share code with the
others. Block buffers arc shared by all
tasks, but pains have been taken to avoid
conflicts via facility variables which are
similar to semaphores in other systems.
I was able to configure and start using a
terminal via COM1 in just a few min-
utes. Example code is included to sup-
port serial multiplexers that allow up to
16 terminals to share a single interrupt.
The task switching is so efficient that
friends report having had four program-
mers working on a single PC-XT with-
out bogging down. Sixty-four terminals
serviced by a single 68010 has been re-
ported as well. When a task is asleep it
only consumes a single instruction cycle
in the round robin polling loop. In gen-
eral if a terminal task is awaiting 1/O,
such as a keystroke, it is asleep. The
keyboard interrupt wakes it up long
enough to handle that keystroke and then
the task puts itself to sleep again to wait
for the next key. This is so simple and so
efficient yet no other Forth I’ve used
does it this way.

The data base toolset included with
polyFORTH was designed, as was the
rest of polyFORTH, for use in realtime
systems. When a tradeoff must be made
between ‘convenience’ and efficiency,
efficiency wins. Even so the tools are
also pretty convenient. There are words
for defining ‘FILES’ which are named
regions of contiguous blocks. There are
words for defining ‘RECORDS’ which
are fixed in length and fit into the blocks
within a ‘file’. There are ‘FIELDS’
which are offsets into records and there
are access words which fetch, store, and
display fields of different data types.
There are words which help manage
ordered index files and there are words

which allow chaining of one record to
another, possibly in a different file.
Chaining allows you to get around the
fixed record lengths by tacking on extra
storage for records that need it.

I’ve wanted to write a book checkout
and library cataloging program for a long
time. I worked in a library for nine years
before becoming a professional program-
mer, and now I believe I have the perfect
set of tools for the job. With an efficient
data base and multiple terminals on
cheap PC hardware I should be able to
produce an excellent system at a fraction
of the cost of the popular mini-computer
based systems on the market. If anyone
is curious maybe I can write some ar-
ticles about that in the future. One fea-
ture that might be of interest to TCJ
readers is using classic computers as
smart terminals. A lot of schools have
Apple J[‘s around for example, and an
average school library could probably be
handled by a PC-XT, AT, or 386 and
two to four Apple ][ ‘s as terminals. Other
topics of interest might be the included
target compiler, which can produce
ROMable headerless code and the
polyFORTH assembler, which seems to
be an attempt at making assembly lan-
guage more portable across different
Processors.

Thanks for the mini article Charlie. What
you didn’t mention is that you bought
this on a special offer. Normally
polyForth costs $995, but for FIG mem-
bers they made a special offer of $295 to
the end of May. Now this is the complete
polyForth system, with all source code
and manuals.

1 asked Steve Agarwal, Forth Inc.'s (800-
55-FORTH), sales manager if they would
continue this offer beyond the end of
May. Steve said he might, but would
have to consider it further. One problem
is that Forth Inc. is NOT set up to sell
software to the general public so to speak.
Steve is the ONLY person taking orders,
as they normally deal with coporate pur-
chases. However, if enough people call
maybe we can get them to release some
of their older, but still useful to us, prod-
ucts at prices normal people can afford.

Thanks again Charlie. Bill

The Computer Journal / #67



*“Year 19 and Going Strong”’
by Ron Mitchell

They thought we were all dead. We
proved them wrong.

Each year the organizers of the Trenton
Computer Festival are tempted to drop
CP/M and Z-System from the list of
events, and each year it appears once
more.

As [ left Ottawa by car on Friday morn-
ing April 15 for the 500 mile journey
southward to Trenton New Jersey, I
wondered if there was anything left to
journey southward for. There had been
more talk during the previous week
about people not coming than anything
else.

Oh me of little faith!

Here are my impressions of a truly re-
markable computer event that has been
going strong for nineteen years.

The Trenton Computer Festival is a two
day event held in mid April each year
and sponsored by the Mercer County
Community College, the Amateur Com-
puter Group of New Jersey, Trenton State
College, the Central Jerscy Computer
Club, the New York Amateur Computer
Club, the Philadelphia Heath User Group
and others. Over the years it has ac-
quired a reputation as something of an
eastern ‘Oshkosh’ of computing. Like
the mammoth fly-in held each year in
Wisconsin, Trenton draws people to-
gether who only see each other once a
year - at Trenton.

This year’s edition held on April 16 and
17 was no exception. It featured a wide
array of topics designed for computer
enthusiasts of every stripe. Included was
everything new and old. National ex-
hibitors were out in force, Aldus, Apple,
Borland, C/A, Cobb, Corell, Microsoft,
Wordperfect and many more. The list
published in the Festival’s printed pro-
gram showed no fewer than 21 major
computer players on the national and
international scene. Each of these corpo-
rations staged a booth to display their
wares,

The Computer Journal / #67

The talks and forums spanned both days.
Subject, no matter what it was, found a
slot somewhere in the weekend proceed-
ings. There were beginner’s sessions on
Lotus 123, databases, windows, you name
it. There were user group sessions for
Unix followers, Amiga followers, Mac
enthusiasts and even for the Apple IL
Despite rumors to the contrary, there
was a CP/M and Z-System conference.
As always the sheer variety and diversity
of the sessions offered made Trenton a
place for everyone.

This year’s guest speaker was Mr. Steven
Levy, author and Contributing Editor
for Wired and MacWorld Magazines.
Mr Levy spoke on the ‘‘Revolution of
Look and Feel” during his Saturday
afternoon address and the ‘‘Coming of
Cryptoanarchy’’ at the evening banquet.
The biographical material provided notes
that Steven Levy “‘lives in New York
City and western Massachusetts with his
wife, son, and six computers.

Probably not a CP/M machine among
them!

These computers have long since been
left to a small but dedicated group of
users who remain firmly convinced that
small is beautiful and that writing effi-
cient and compact code is still a desir-
able thing to do. In room MS-170 of the
Maths and Sciences building at Mercer
Community College there gathered about
15 (give or take) CP/M and Z-System
supporters for a few hours of friendly
chit chat and comparing of notes. They
soon discovered that there is still devel-
opment in the Z-System world that is
worthy of note.

Hal Bower described the latest efforts of
the ZSDOS development team as work
on the BP BIOS (BP= Banked and Por-
table) continues. Over the past year there
has been the addition of NZTIME, a
modification which improves the accu-
racy of the timekeeping routine. The
previous version lost time badly during
disk read/write operations. The modifi-
cation reads the clock card instead of
depending on interrupts.

The introduction of directory hashing
has speeded directory access noticeably.

‘Hashing’ is a technique for searching a
list of items that involves picking a spot
before the item being searched in an
attempt to get as close to it as possible
without actually passing it.

Hal went on to state that the addition of
a 1.7 Meg floppy capability lies in future
plans for BP-BIOS. This improvement
will be possible through the use of Jim
Thale’s I/O board.

For those not familiar with the enhance-
ments provided by Z- System, it should
perhaps be noted here that the perfor-
mance of a 64K CP/M compatible com-
puter can be significantly enhanced at
very reasonable cost. Z-System provides
a powerful console command processor
(CCP) adding additional packages of
capabilitics such as the resident com-
mand package (RCP) and the flow con-
trol package (FCP). More interesting is
the concept of the TCAP or Terminal
Capabilities feature which makes it un-
necessary to install Z-compatible pro-
grams for the requirements of different
terminals. Once installed, the system is
capable or reading the TCAP and adapt-
ing program operation accordingly. Z-
System also provides for the use of
““Alias’s’” which allow the user to de-
velop system commands based on short,
easy-to-prepare text files.

BP-BIOS brings a more efficient usage
of banked systems to the user and allows
significantly improved capability in terms
of the number and size of hard drives
that can be operated by the system. Pres-
ently Jim Thale is using a 200 MEG
Connor drive with his development sys-
tem, and Hal secs no recason why hard
drives sizes could not approach 400
MEG.

Hal noted some other news from the Z-
System world, some bad some good. The
bad news is that Bridger Mitchell, long
time member of the ZSDOS develop-
ment team and author of such notable Z-
System programs as Backgrounder, has
announced that he will no longer be
active on the Z scene. The good news is
that Bridger has agreed to turn over much
of his work to Hal who is now making

11



sure that we secure as much of it as
possible while it is still available.

Also positive news: as announced last
year at TCF93, Jay Sage reconfirmed
that Z3Plus and NZ.COM are to remain
available for the incredibly low price of
$20.00 US each. This represents a real
deal from SAGE Microsystems and
should immediately be snapped up by
anyone interested in improving the per-
formance of their CP/M system. Z3Plus
is for CP/M 3.0 systems and NZ.COM is
for those with CP/M 2.2 machines. Ei-
ther way, you can’t beat that value.

CP/M-ers continued to meet throughout
the day on Saturday in between trips to
the flea market being held adjacent to
the main show and the many sessions
being conducted inside. At any moment
in the conference room you would be
likely to run across Jay Sage, Hal Bower,
Bruce Morgan, Blair Groves, Ian Cottrell
and Howard Goldstein. These people have
each in their own way made a consistgnt
contribution to the CP/M and the Z world
over many years. Listening to them chat
for an hour or two is an education in
itself.

Later Saturday evening there was con-
tinuance of a tradition well established
by the CP/M attenders over the past few
years. There is a banquet held as part of
the main Trenton Computer Festival. It
has become the custom of the CP/M
group to hold an informal evening of its
own apart and separate from these pro-
ceedings. What these people lack in
numbers they more than compensate for
in what amounts to a sinful ability to
consume pizza. Those taking their nour-
ishment with ‘dead fish’ somehow man-
age to consider themselves a cut above
the rest and will hotly compete for the
title of ‘Greatest Glutton’. I was there,
but I do not know who won this year’s
contest. Some say it was Lee Bradley but
reports have it that Lee cheated.

All I know is that I was not part of any
of this. I prefer my pizza without green
things and anchovies.

Following this massive pig-out, the bal-

ance of Saturday evening was social and
also according to tradition. Back in the

12

party room at the Stage Depot Inn a few
more local CP/M-rs joined us and there
was the usual round of introductions
where we each said where we were from
and what we were up to in CP/M. lan
Cottrell managed to pose his annual
answer less question:

If one synchronized swimmer drowns,
do all the others on the team have to
drown too?

And then there was the one that he in-
tended to ask but didn’t:

What was the best thing before sliced
bread?

Both of which top last year’s answer less
question which was:

‘Who brings baby storks?

Think about it. No doubt we shall be
pondering these eternal mysteries until
next year when more will be added.

The 1994 Loonie award for outstanding
contributions to the CP/M community
went to Hal Bower for his work on BP-
BIOS. Congratulations Hal! You deserve
it for your many years of work on our
behalf.

The Loonie Award? Well, this is also a
tradition. Known by only a few in the
CP/M world, this coveted award was
hand designed and buiit by Canadian
CP/M-ers in an attempt to export
Canada’s Loonie dollar coin into the
United States. The trophy is essentially
a Canadian one dollar coin perched pre-
cariously atop a polished wooden base.
Each year Ian Cottrell fights through
insidious urges to award the trophy to
himself and consults with a committee
of his peers to choose a CP/M hobbyist
who has made a significant contribu-
tion.

Hal’s contribution has been quite sig-
nificant. He gets to keep the Loonie for
the next 12 months.

On Sunday, the second day of TCF94, I
dropped my remaining cash at the flea
market which was as impressive this
year as ever. Despite have been deluged

and almost blown apart by early morn-
ing rain and wind on Saturday there was
no shortage of bargains on the Sunday.
For many of us the flea market is the
main attraction, providing as it does a
few history lessons in computing as well
as many incredible bargains. There are
quite literally acres of displays, tables,
equipment, and things to tempt your
wallet.

Notes for next year:

Bring a cart

Bring a rucksack,

Bring a truck,

Bring an umbrella.

Apply sun screen even if it is raining.
Stay away from the Flea - Not!

Find out when TCF 95 is and book time
NOW!

Thanks for the mini article Ron. Herb
Johnson was there and reported on his
experiences which seemed to be very
different from yours. I am glad both of
you reported on it. Now all I need to do
is get more people to let me know about
these events early (so I can send flyers
with you) and make sure I get more than
one report!

By the way Ron, it seems like you have
a good grasp of the problems beginners
have faced getting started on ZCPR.
Maybe you would be interested in writ-
ing about them. Hope so and thanks!
Bill.

We need articles on subjects that are
of interests to our readers. Those
interests now span small and older
eight bit systems, through the obso-
lete IBM PC/XT style of computers.

Projects which use surplus parts avail-
able from current vendors, showing
how to debug and develop the needed
knowledge of the used system, is of
interest to our readers and advertizers
as well,

Send your letters to:
The Computer Journal

P.O. Box 53§
Lincoln, CA 95648-0535

The Computer Journal / #67



The European Beat
by Helmut Jungkunz

More Sugar for Computers (More about AMSTRADS)

Well, last time I told you the basics about AMSTRAD. I
presented the three different kinds of Game-Computers (Colour
Personal Computer CPC), the 464 (cassctte drive integrated),
the 664 (3" disk drive integrated) and the 6128 (128K RAM
and disk drive integrated, CP/M-Plus too). This time I want to
shine a little more light on the other side of the business. What
kind of software was there in the beginning, where did it come
from, and what besides games was available (outside of CP/

M)?

There was a company in England, Eden AMSOFT, that pro-
duced quite a palette of games for the AMSTRADS, even if
some of them may have been not too inventive. They were still
doing business with AMSTRAD recently at the introduction of
the AMSTRAD Notepad. A small company in Spain tried to
convince Alan Sugar that they would be their ideal central
distributor for Spain. Although in the beginning AMSTRAD
did not believe this, they did business with them because the
company could produce excellent game software, including
INDESCOMP -- a name already known from other shores of
the Z80 market. There were lots of others. There were games,
music packages, and office bundles -- everything.

The central distributors in France could only sell what they

The Computer Journal / #67

whether in France, Spain, or Germany -- made incredible sales
in a short time. AMSTRAD France, for instance, sold about
291 million francs worth of AMSTRAD gear between 1985
and 1986, and the German division, Schneider, sold 32.5
million pound sterling of CPC between 1984 and 1985. How-
ever, their price for the ‘‘Personal Computer Wordprocessor’’,
the PCW, was totally disagreeable to AMSTRAD. Where
AMSTRAD had expected a price equivalent to 399 pounds,
Schneider charged around 700 pounds! Besides, all of
AMSTRAD’s efforts to sell the machine as a text processing
device seemed to be ignored by Schneider; instead, they sold it
as a computer, in a market niche that was already pretty narrow
for AT-clones. So many AMSTRADs were sold that it is no
wonder that they form the heart of the European Z80 scene to
this day. This probably made Commodore pretty sick at that
time, especially when a computer magazine’s benchmark re-
vealed the inferior performance of the C64 floppy compared to
the CPC tape drive! (The C128 was not much better than that.)

There were quite a few magazines for Z80 computers at that
time. In England there were magazines that originally covered
the Acorn BBC computer and the Sinclair line but soon picked
up the AMSTRAD and started a regular series about them.
Some had a hard time, since AMSTRAD ran it’s own mag and
had funny ideas about others publishing info on *‘their’’ com-
puters! You could, for instance, join the AMSTRAD USER
GROUP (UK) when buying an AMSTRAD computer and

13



receive the house magazine ‘‘AMSTRAD 464 USER” as a
club news magazine. In Germany the magazine *‘CHIP”’ was
one of the biggies then and always allowed easy comparison of
quite unequal machines. Another one, ‘‘c’t-magazine’’, de-
scribed the AMSTRAD machinery on a very sophisticated
level. But the most important two for AMSTRADs were ‘ ‘Happy
Computer’’ by Markt&Technik and ‘‘CPC-International’’,

where in Germany the word ‘‘international’” normally is the

-biggest lie you can read.

The latter two magazines not only described the functional
layout of the CPCs (and the PCWs also) but also presented lots
of listings that one could either type in or order by disk from
the editors. Even hardware projects were initiated by them.
This is were I came in, by the way.

I myself never had anything in mind with computers at all. 1
am a sound engineer (as in acoustics) and liked to play a little
music myself then. My girlfriend, her cousin, her cousin’s
boyfriend and I rented a big flat (apartment to you yanks) to be
able to have nice, voluminous rooms at a moderate price. After
some time, as life goes sometimes, the other couple broke up,
and we had a vacancy for a room. We put up an ad, since we
couldn’t afford the place ourselves, and a guy moved in who
happened to bring along a Sinclair ZX81. On that cutey I
played with BASIC and fell in love with the super-primitivo
flight simulator, just too good!

Unfortunately, shortly afterward we had to give up the whole
place, due to a very annoying affair with the company that was
originally renting out the house. They sold the building and
urged everone out.

After a while, I met the computer guy again. He had gotten

‘himself a job in the editorial department of ‘‘Happy Com-

puter’” and advised me not to buy a Sinclair, as I had wanted
to, but to wait and buy the new Schneider CPC (AMSTRAD’s
German distributor put their name on it at that time). This I did
and soon got into a discussion about a colour modulator for the
CPC to connect it to any TV-set. Since I, too, had the green
monitor on my CPC (464), I was very interested. My special
friend (Andreas Hagedorn) told me that several people had
already tried and that it would be either too complicated or too
expensive to build the units others had developed. I thought a
while and said that I could possibly build one for very little
money. I had the restriction to use only parts available every-
where, so I had to compromise, but I went to work.

After six weeks, the layout was not only ready but tested,
photographed, and written about in a very long article describ-
ing everything, including the parts list, the operating prin-
ciples, and the methods used to adjust the circuitry. When this
appeared in ‘‘Happy Computer in September, 1985, it was a
real success for them. It opened many doors for me, and I sort
of became a specialist for everything having to do with video.
I wrote several articles on monitors, RAM disks, and other stuff
for ‘*“Happy Computer’’ and went to computer fairs with them,
where I demonstrated their software (remember, M&T --

14

Markt& Technik -- was the company selling all the CP/M
products for the AMSTRADs). Thus I got all the software for
free. This, again, enabled me to contribute knowledge to our
club, SCUG (Schneider/Amstrad/CPC User Group).

Once I was asked to test a RAM disk by a newcomer company
(FECH & OTTEN). It turned out the product was so poorly
designed that it was useless, so I used to refer to it as FRECH
& ROTTEN (frech is somewhat like fresh in that respect). 1
stated my opinion so clearly in my article that it never got
published. CPC-International, the rival magazine, published a
very euphoric test on the same thing. I was puzzled! But -- 1
only met one living person who actually bought that RAM disk,
and -- boy! -- was he stuck with problems with that device!

Meanwhile, in England, a company called dk’tronics sold their
RAM expansion units, which were pretty well behaved in the
sense of AMSTRAD compatibility but showed some strange
bugs due to a hardware error in their *‘Operating System’” unit
design (the device was split in two parts, a basic O.S. part and
the expansion RAM).

Shortly after this, I was given another RAM disk for testing.
I plugged it in, followed the usual intructions to the point -- and
was impressed! That developer had stuck completely to all the
AMSTRAD routines, behaviours, and BASIC RSX conven-
tions, and everything worked like a charm. Oh, you don’t know
what RSXs are? The abbreviation RSX generally stands for
Resident System eXtension and is sort of a software implemen-
tation of a new command into your existing system. AMSTRAD
CPCs allow for this RSX technique even from within their
excellent LOCOMOTIVE BASIC. I wrote to the developer of
the RAM disk for more information, and he called me back on
the phone. We had a few long chats, during which some of my
ideas flowed back to him, and I offered support for people who
had bought M&T’s WordStar, dBASE, or Multiplan for the
CPCs with Vortex RAM disks. Mind you, they had a nasty
patch in them, in order to be able to use German umlauts,
loaded from a routine in the VORTEX RAM-disk BIOS. Due
to that patch, those programs, of course, would not run on any
other machine then. So the patches had to be removed. Still,
some problems were left, and so both my address and our club
address were put onto every disk that came with the
DOBBERTIN RAM disk.

The DOBBERTIN RAM disk enables the CPCs to use a 63K
CP/M-2.2 TPA! The only disadvantage lies in the BIOS of the
CPCitself. CP/M-2.2 usesa standard method for calling BIOS
routines that is different from that in CP/M-Plus. These stan-
dardized jump addresses are often referred to as system vectors.
The CPC’s CP/M-2.2 system vectors are at a very low address,
so they would be in the middle of the TPA if you stuck to
AMSTRAD’s conventions. Whereas Vortex had patched and
repatched their CP/M to be able to use those system vectors,
DOBBERTIN had disabled them, since the reliability of such
a situation is pretty bad. The complete CP/M-2.2 fit into the
system tracks, so no extra BIOS file had to be loaded. This may

The Computer Journal / #67



seem unimportant -- but only for those never stuck with a disk
capacity of only 169 K!

There is a very nice side effect with that RAM disk. When you
have a minimum of 128 K RAM, you can run CP/M-Plus (with
a teeny-weeny patch from DOBBERTIN electronics) on both
the 464 and the 664! Beautiful! I met the DOBBERTIN people
(father and son, hardware and software) at one of the fairs, and

- we had a long talk over dinner. I convinced them that a good
hard disk for the CPC was not only needed but could be sold
in numbers. Vortex had had a hard disk out, but didn’t do too
well, due to problems with the BIOS and failure to stick to
AMSTRAD conventions. They also suffered from a “‘court
call’’ by AMSTRAD, accusing them of stealing their BIOS and
modifying it.

After a short while, the first DOBBERTIN hard disk came into
my hands for testing. As I had expected, you just plugged it in,
and there you had a hard disk in BASIC, CP/M-2.2 small, CP/
M-2.2 with 63K TPA, and CP/M-Plus in a modified BIOS,
loadable from cither an extended system track or a BIOS file.

So, just for the fun of it, I put a different, bootable section on
each of the four 5 MB partitions (20 MBs is the only size they

make for CPCs). Needless to say, with an SYSCOPY command -

you could exchange all CP/M-2.2 boot sectors with any floppy
disk. The CP/M-Plus boot sector, though, was too big for a
floppy system track in one of the CPC disk formats. And this
is another interesting point here: since there are so many CPC
programs out that want to see the typical CPC-type sector IDs
on floppy disk, DOBBERTIN chose a system format of 80
tracks double- sided, the sector IDs following the CPC’s rules.,
Since the VORTEX disk format had already become a sort of
standard, DOBBERTIN accepts the VORTEX-format via
AUTO-LOGIN in CP/M-2.2 or by pressing CTRL-C. This
doesn’t apply for CP/M-Plus, but, nevertheless, it is possible to
read a VORTEX disk in CP/M-Plus as well. For easier han-
dling, 1 forced some of our club people to help me soup up a
quick format switch program, so that within DOBBERTIN CP/
M the various disk formats could be changed: DOBBERTIN
System (DS80), DOBBERTIN Data (DS80), VORTEX System
(DS80), B360K (SS80), CPC System (SS40 on a DS80 drive).

In CP/M-Plus, the login programs for the CPCs and the PCWs
are very much the same, except that the side-bit information on
the CPC starts with a *‘0’’, whereas the PCW wants a high-bit
*‘8”’. So the disk parameter block would be 01 for a double-
sided CPC drive and 81H for the PCW. Some of the programs
for PCWs are written with absolute addressing, so they would
only run with one particular: machine configuration. Again,
members of our club helped to get this mess straightened out.
Now those programs use BDOS, calls to get the address for the
DBP (disk parameter block) and use the standardized BIOS
call to properly jump to machine routines. In my high CPC
times, I had my CPC 464 equipped with the RAM disk and the
hard disk from DOBBERTIN, a second drive (5 1/4) from
VORTEX, another 5 1/4, switchable as A: or B:, and a Hitachi
3" drive that allowed for a 2ms steprate.

The Computer Journal / #67

As you might have guessed by now, my CPC times are almost
over. If I run CP/M, then I use my CPU280 from Tilmann Reh,
about which I will write next time, when I’ll describe the vast
market of home-brew and kit computing in Germany.

VORTEX RAM expansion Card

Floppy disk size comparisons, standard 3.5 inch, Amstrad/
Hitachi 3.0 inch, and standard 5.25 inch.

Mr. Helmut Jungkunz.

15



egular Feature

ermediate

Dr. S-100

By Herb R. Johnson

Trenton Computerfest

_For many years the Trenton Computerfest

has been the largest computer show and
flea market on the East Coast, if not in
the country. It certainly is one of the
oldest and best-known. This was the first
Trenton show I attended in several years,
and the first one where I had a spot in
the outside market. Although there were
many exhibits and talks inside, I was too
busy outside to go in, but I would recom-
mend many of them to TCJ readers as
they included Z-system and CP/M sub-
jects. However, the only ““classic’’ ven-
dors were outside.

There were about 500 outside vendors in
the two small parking lots, doing busi-
ness in tents, trailers and trucks. Maybe
two-thirds of them were selling from
their car trunks and a fold-up table as I
"was: those are the sellers I was interested
in. They would have the old and odd
equipment I wanted: more to the point,
they would not be selling at dealer prices!
They would just want to ‘‘get rid of the
stuff”’ or ‘“see that it gets to a good
home.”” Oddly enough, many of the deal-
ers with big rental trucks were also *“get-
ting rid of stuff”’; this was their annual
basement clean-out of instruments or
machines that they couldn’t sell mail
order, or trade-ins from their customers.

Another factor that drove down selling
prices was the weather. As is traditional,
it rained. This year the downpour was
during the first morning (Saturday). For
those of us in the know, this is a BUY-
ING OPPORTUNITY and I took full
advantage of it. I left all my stuff in the
car and sloshed through the isles, peer-
ing through the water lenses formed on
the plastic tarps that covered the folding
tables. I found one guy who works for

16

some instrument company: on his table
was a stack of oscilloscopes that I recog-
nized as valuable. He was hiding in his
car. I knocked on his window and he
rolled it down. I asked what was the
price range on his ‘scopes. He said ¢‘$75
to $250 dollars.”” I was startled. “‘I just
want to get rid of the stuff.,.I’'m not
going to be here tomorrow.”’ I asked
about the most expensive, an HP 100MHz
storage scope. ‘“$250.”” ““Would you take
two-twenty-five?”” “‘Look, it’s an $800
scope’’ I couldn’t argue with that and
gave him the money. I lugged it to a
nearby building to test it and all seemed
to work, after I figured out all the con-
trols.

I had hoped to buy an IMSAI (S-100
system with the familiar red and blue
front-panel switches) as they usually
surface at these flea markets. I almost
had one when the person behind me
raised the price before I could close the
deal!! Turns out to be one of my custom-
ers, who bought a Xitan (Technical
Design Labs) system from me some
months ago. I was a little more disap-
pointed when, later in the day, someone
asked me for a ‘‘cheaper”” IMSAI sys-
tem. I spent a few hours late that evening
putting a system together, using cheaper
but reliable cards. The next day he hesi-
tated, hoping to find a better, cheaper
system ‘‘at the other end of the lot’” so
he said. At the end of the day he came
back and offered about two-thirds what
I asked and he was surprised when 1
declined his offer.

So what did I get? Well, I picked up a
Heath/Zenith H89 (Z80 system) and a
Heath/Zenith Z100 (S-100 with 8085
and 8088) for about $100 total, a few
sets of S-100 cards; and a few mono-
chrome composite monitors for $10 or

so. I sold an old Apple II+, an AT&T
7300 Unix system, and a Wyse 50 termi-
nal among other things.

Z-Fest

The Trenton Computerfest is a tradi-
tional time and place for the East Coast
Z-System people to congregate. Although
I am not a *‘Z-person,”’ I certainly am
partial to their processor of choice, the
Z-80. Since I share this magazine with
several of these authors, I took the op-
portunity to see them at dinner. A few
phone calls and misdirections later, 1
found about fifteen of them in the back
room of a pizza parlor, competing for
cating the most slices of anchovy pizza
(ick!). Late as I was, I declined the offer
to compete and cleaned up. the less de-
sired pepperoni and Canadian bacon
slices. After dinner, we retired to the
nearby hotel for discussions. Ian Contrell
was the host and toastmaster, conduct-
ing introductions in the circle we formed
around him. Bruce Morgan, Jay Sage,
and many others were there: I did not
take notes so pardon my copious omis-
sions. Perhaps the copious availability of
beer was a factor.

One attendee has a project in the works
that the Dr. (I) would prescribe to you:
a “‘universal’’ Z80 interface. Simply put,
itis a daughter card that plugs into a Z80
socket that includes an 8255 3-port par-
allel I/O chip. The designer says this
would offer a standard bit of hardware
for others to design software around. I
encouraged him to complete the work
and write it up for TCJ: I hope he does
so.

The Computer Journal / #67



Another subject: S-100 IDE hard
drive interface

I have just received the PLA (Pro-
grammed Array Logic) devices from my
Australian colleague that he designed
for an Z80 to IDE interface. As he
prototyped them on an S-100 system,
they could be a product if such makes
sense. I will be considering the comple-
tion and support of such a card very
soon, probably before you read this ar-
ticle. I anticipate the cost to you for a
card, with software to integrate into your
BIOS, would be about $150. Why *‘so
much’? Mostly the cost of chips and
board. I have to anticipate other costs,
including printing and shipping, and
some development costs.

I would be VERY PLEASED to see a
show of support from my readers. Is Dr.
S-100 writing a prescription for a cure
when there is no disease? Or is the “‘cost
of treatment’’ worth it to YOU? It is
important to let me know. Even a few
letters tells me that there are many more
people who haven’t written that would
be interested. I should tell you that, in
the Heath/Zenith Z100 world that a simi-
lar interface for SCSI devices sold for
$260 just a few years ago!

I also need a bit of reader consideration
on the following questions: should this
card have a floppy disk controller inter-
face? It would add about $30-$40 to the
cost. Should it have a serial interface, for
a “plug and play’’ BIOS? That would
add maybe $25 or so. And, what ma-
chines would you run this on? IF they
are all 4MHz Z80 systems, then I don’t
have to worry about timing problems: if
you want this on your Altair 8080, then
it could be a problem. The Doctor needs
your input!!

LETTERS:

Amstrad vs. QX-10, DR’s GSX graph-
ics standard

Got another letter from Roche Emmanuel
from France: “‘I sent you a copy of (the
last?) Windsor Bulletin Board User
Group for you to mention it and its con-
tents, not to mention my name.”” Oh
well.. Roche continues to discuss this

The Computer Journal / #67

group, the impact of the Amstrad PCW’s
in Europe, the QX-10, and Digital
Research’s GSX graphics standard. Z-
system people may want to read this
letter closely: can a comparable graphics
standard be ported to Z-system?

““WBBUG was the successor of the *‘CP/
M User Group (UK)”’ [United King-
dom)], the biggest such group in Europe
in its heyday. Its Journal was wonderful
but never regular. Unfortunately, when
Amstrad launched its CP/M micros
(which were incredibly successful here:
more than 1.250 million sold!), this group
was silent for more than one year... just
at the time of the biggest arrival of new-
comers. As a result, five magazines were
created just to advertise for those.

Personally, I am quite knowledgeable
about the PCW: I keep disassembling its
BIOS, from time to time, to be able one
day to fit four 800K drives. But my per-
sonal favorite is the Epson QX-10, which
is almost unknown in Europe. It was
even more expensive than an IBM-PC
back then! In my opinion this is the best
non S-100 Z80 microcomputer ever
made. [Thanks for the distinction!] For
example, it is consistently 10% faster
than the PCW, as the PCW uses one
large ASIC to decrease the number of
chips on the motherboard. But this ASIC
[a large custom integrated circuit] slows
down everything. By contrast the QX-10
is a forest of chips, as NEC engineers did
everything.at that time to speed it up.

Lastly, the big advantage of the QX-10
is its graphics display controller, the NEC
uPD7220, which except for three CP/M
microcomputers, was the standard of the
first UNIX workstations. For example,
this chip can draw 128 squares on the
screen faster than you can see them
drawn...really amazing!

Which brings us to GSX. GSX from
Digital Research was a microcomputer
implementation of a mainframe graph-
ics standard. It was the most powerful,
by a huge margin, graphics system ever
made to run under CP/M. [Would any of
the Heath/Zenith users care to comment
on this?] Unfortunately, it was only sold
by Digital Research Inc (DRI) for one
year, before they jumped into the 16-bits

wonderland and almost disappeared with
Concurrent DOS. (Two years later,
Amstrad sold its CP/M microcomputers
by the millions and saved DRI from
bankruptcy.)

The Amstrads were sold with the latest
versions of all the DRI CP/M products:
CP/M Plus, GSX, CBasic 2, Pascal MT+.
They also sold DR Graph and DR Draw,
the only GSX application programs
owned and sold by DRI. Two other pack-
ages, DR Kernal and DR Plot, which
allowed a programmer to use portable
graphics, were not sold. A big advantage
of GSX is that it works with device driv-
ers. | have managed so far to find 22
(mostly printer) drivers. So, all my GSX
programs, without any change, will pro-
duce outputs on 22 devices! And, the
resolution was so high (32K X 32K) that
a screen only gives a small idea of the
drawing that one is going to obtain from
the printer. I also happen to have a color
QX-10 (640 X 480 X 8 colors, four
times the Amstrad...) and I also have an
HP graphics plotter and its driver: this
time the resolution is numbered in sev-
eral thousands of steps! When one sees
a color plot made on this plotter, it is
impossible to imagine that it was made
on a CP/M microcomputer!

After closing out Concurrent CP/M and
CPM -86, DRI released some source
code for GSX-86, the 16-bit version. The
sentence you quoted [?77] was written
because some of the remaining CP/M
programmers understand that GSX was
a powerful graphics system, and some
would like to use it more. Unfortunately,
it is no longer supported by DRI, which
did not release its source after leaving
the market. Besides, DRI is dead now.
[This is not strictly true: they are a part
of Novell. But they are not supporting
any CP/M products. David McGlone of
Lambda Software has a license from
“DRI”’ for CP/M-80.]

So, some ‘‘lone hackers’’ continue in
Europe to us¢ and maintain GSX. I hap-
pen to know that one such person, well-
known among the former members of
the CP/M User Group (UK), has man-
aged to disassemble the biggest GSX
printer driver for the Epson FX-80. This
16K driver produced a full 111 page

17



long disassembly. This source is not yet
in the CP/M Software library but it will
be by July-August, after the last check-
outs. I forgot to mention that CP/M User
Group (UK) did produce a library, which
was continued by the WBBUG. 122 vol-
umes have been produced so far, about

30 Mbytes.

For any information about WBBUG and
its CP/M Software Library, write to:

Peter Catley

11 Haslemere Road
Windsor

Berkshire SL4 SET
England

Whew! The Doctor can talk the talk, but
it’s people like Roche that ‘‘walk the
walk’’ and do the real work in the CP/
M community. Thanks for this highly
informative letter and the reference to
our British colleagues and the European
market.

An S$-100 system ‘‘kit’’ (no instruc-
tions included)

Mike Michels of Canton IL brings a
number of *‘patients’’ to the Dr’s exam-
ining table. As usual my immediate com-
ments are in []’s. Unfortunately these
patients are not responsive....

*“‘First of all, I want to thank you for your
Dr. S-100 column in TCJ. I read and re-
read these many times and have it as a
handy reference source. I especially like
the way you have alternated in your cov-
erage of CP/M and S-100, and how the
two are interwoven. [Thanks!] You have
clarified several area that I have had
confused for a long time.

‘“Not being a ‘techno-wizard’’ but rather
a self-learner, I have a strong interest in
the way computers and their components
work, and how they can be configured to
interface with just about anything. As a
““‘wannabe’ tinkerer, I appreciate your
patience and willingness to help those
who are now just starting out learning
about CP/M and S-100 systems. It seems
(even with the various specialized sys-
tem support publications) that they as-
sume their readers know more about their
systems than I do.

18

Would you please provide a listing of
some useful books that would explain
about the S-100 system? I have obtained
one and would like your assistance in
helping me to build this into a fully
operational system. However, not know-
ing what I have nor what I need this is
going to be a long-term learning experi-
ence for me which I hope to pass on to
my children as well as others. Perhaps
we can make this an article if TCJ read-
ers are interested [!]: something about
what I can do with these cards or how we
build these components into a working
system. The cards are:

Compupro RAM XX [this is a static
memory card]

Cromemco Blitz Bus with 21 slots [an S-
100 backplane board]

Cromemco 8K Bytesaver II card [2708
EPROM reader/writer card]

Cromemco TU-ART card [dual UART
(serial) card]
Cromemco ZPU card
processor card)
Morrow Disk Jockey @D/B card  [8"
floppy controller w/serial port]

SD Sales Expandoram card [dynamic
RAM card]

[2/4MHz Z80

The person I bought these card from had
them for a potential project but had never
turned them on (or so he said). He had
no idea how much total memory it has,
or even if they work. No docs, no power
supply, no drives.

I've also acquired some parts of a *‘Four
Phase’’ system with one keyboard, two
video display terminals (both fire up ok)
and several Diablo 630 printers [!!] 1
would like to have the specs to interface
them all together as part of the “‘sys-

LX)

tem .

The Diablo 630 printers have a BNC
connector for a network connection of
some sort [this is correct]. I would like to
interface these to a serial (RS-232) or
parallel (Centronics) interface. I was
directed to a place called ‘The Printer
Works’: however, they have not re-
sponded to my letters in over two months.
Enclosed are details of the boards and
connectors in the printers. I will also
contact Robert Grey: thanks for provid-
ing his contact info.

Thank you very much for any assistance
you can provide in these matters.

A little hand-holding and consulta-
tion

Well, I can certainly see a collection of
several Diablo 630 daisy-wheel printers
and a few ‘‘crates’’ of computers as a
legacy for your children! I vaguely re-
member the Four-Phase systems as an
office system, but I don’t remember much
beyond that. You might look through
back issues of Byte magazine for ads or
even articles. This brings me to your
request for ‘‘useful books’’. The most
useful books are whatever you can get
your hands on! It’s rather unlikely (and
expensive) to try to find computer books
of the 1970’s and ‘80’s through a book-
seller.

Your first resource is always the local
public library, followed by the universi-
ties. Fortunately for us, computer inter-
ests were high in the late 1970’s and
many libraries stocked up on the books
and magazines of the era. My strategy
with a new library is to find the ‘‘com-
puter’’ sections (there are usually MORE
THAN ONE!) and to scan the titles on
the shelves. You might get lucky and see
a title reference to ‘*S-100"": but prob-
ably not, as few books were written ex-
clusively on bus-based systems or the S-
100 in particular. You will probably see
a number of ‘‘CP/M’’ books, and some
on particular systems. Pull them down
from the shelf and page through them:
read the table of contents, the introduc-
tion, etc. You'll probably have more luck
at the University: if you ask a librarian
there, you can probably get a ‘“courtesy
card’’ for a small deposit or fee for bor-
rowing privileges. Generally anyone can
read and copy books in a public univer-
sity library; private universities may be
more restrictive.

The prescription

As for your collection of cards: you have
lucked out! Except for the SD Systems
RAM card, you have a nice set of boards
that should work together. Dr. $-100 has
a few general recommendations that these
cards happen to follow:

The Computer Journal / #67



1) Try to stick with ONE manufacturer
of cards, or at least cards of a similar
vintage. In your case, the Cromemco
and Morrow cards are of the same era,
with the Compupro RAM XX a little
later.

2) Generally, avoid dynamic RAM cards
- and use static RAM, subject to the first
rule. That would eliminate the SD Sales
card, I believe. What is this rule about?
Simply put, the old S-100 dynamic RAM
cards were not often built well, and were
marginally designed at their operating
clock speed. Also, there were no stan-
dards for refreshing the D-RAMS, so
different manufacturer’s methods could
conflict. As I said in an older article,
DRAMS can be recognized as “‘small’’
chips with 16 or 18 pins (there are ex-
ceptions) with numbers like 4116, 4164,
etc. Static RAMS were generally wider
24-pin packages with numbers like 6116;
or small packages with numbers like
2102, 2114, and so on. Dynamic RAM
cards had more chips, and funny delay
lines, or even timers and DRAM con-
troller chips.

I should explain that ‘‘static’” RAM’s
use a circuit for each bit that generally
includes a couple of transistors that flip
from one state to another, and which
_ retain a bit value as long as power is
applied to the chip. ‘‘Dynamic’’ RAM’s
use a ‘‘silicon capacitor’’ for each bit of
storage, which must be ‘‘recharged’’ by
reading it at regular intervals before the
charge leaks out. D-RAM’s are simpler,
taking less chip space and allowing more
bits per chip (for our era, about four
times as many bits). Even IBM-PC’s
require a “‘refresh cycle” for their dy-
namic RAM’s: that’s what the “‘clock
tick”’ timer on the PC initiates 18 times
a second.

Procedures and instruments

There are other “‘rules’’, but let’s not be
too formal here. What you need, Mike,
isa STRATEGY for bring up these cards!
The first priority is INFORMATION:
on your processor (Z80) and other IC’s,
on the cards, on S-100 systems, on CP/
M. Your library is your best bet. A quick
hint on IC’s: catalogs from JDR Micro-
electronics and DigiKey will at least list

The Computer Journal / #67

IC’s by number and function. Their ad-
dresses can be found in any electronics
magazine. Again, I’'ll have manuals on
the cards themselves (Readers: I charge
for shipping and copying, by the way,
it’s WORK to save and maintain this
info!)

Next are TOOLS: an oscilloscope, a
voltmeter/ohmmeter, soldering iron and
solder sucking device, the usual fine hand
tools. A supply of PARTS, including
IC’s, resistors, etc. would be useful. From
a system’s point of view, you first need
a working backplane and power supply;
followed by a working CPU; then work-
ing RAM; then working I/O with a se-
rial port and some kind of monitor or
boot up process; and then a bootable
disk. You happen to be in luck that I can
provide you with manuals and even a
bootable disk for these cards. I’ll contact
you in a separate letter with details. By
the way, Readers, the Dr. DOES offer
these services to you as well: write with
adescription of your system and its boards
and we’ll ““prescribe’’ some docs to help
you for a modest fee.

Let’s start with the system basics: you
need a power supply that gives you four
voltages. Plus eight volts (+8) at several
amps to be converted to the +5 on each
card; a minus 18 and plus 18 volt supply
(+/- 18 V) at an amp or so for RS-232
and the Cromemco PROM Bytesaver
card; and a minus eight (-8) which is
occasionally used. (Note: even the IBM-
PC has a -5V pin, though it is hardly
used!). Don’t forget to have fuses on
those lines, especially the +8 line! Con-
firm that you have the proper voltages
on the proper S-100 lines. They can be
a little higher with no cards on the bus,
but under load they should not drop be-
low +/- 7 volts and +/- 15 volts. Back
issues with my articles, or references
from the books you found, or markings
on the bus, will tell you where to connect
the power supply.

Specifics on the cards

Next, put the Cromemco ZPU on the
bus, apply power and take a scope to see
what is going on. Immediately check
that the on board voltage regulator is
doing its job: delivering +5 volts!! Then,

look for signals on the Z80 pins, notably
RESET, clocks, address and data. Then
check the bus lines for similar signals,
seeing that no lines are ‘‘stuck’’ when
they should be bouncing between high
and low. If all seems reasonable, power
down and put the RAM card (Compupro
RAM XX) on the bus: you may need to
set some switches to get it to operate.

Use your oscilloscope to confirm address,
data and control lines are operating. In
addition, if the board is being addressed
by the processor, the ‘‘chip enable’’ lines
on the RAM chips will be toggled
(switched from high to low on the oscil-
loscope). Without a front panel or moni-
tor program, which I happen to know
the Morrow DJ 2D does not have, you
can only ‘‘watch the lines wriggle’’, but
tracking even this activity will build up
your confidence in your system and in-
crease your experience in observing bus
behavior.

Speaking of the Morrow DJ 2D: what
you have is a floppy disk controller card
that will operate two 8-inch floppy disk
drives, single sided, at single or double
density. Also, it has a boot up program
on ROM that will start on power up; a
“‘software’” UART that will interface to
a terminal; and ROM support for a CP/
M BIOS that can be booted off a dis-
kette. If you have enough memory on the
Compupro XX, you can run a system
with these two cards and the ZPU pro-
cessor card! Repeat the procedure used
on the Z80 and memory card, namely
check the disk controller chip for rea-
sonable signals, including the ‘‘chip
enable’’ lines.

Addresses

I would encourage anyone who writes
me to include their address and phone
numbers, and any network mailbox ad-
dress they might have. You’ll likely get
more help from another reader than from
me!

Mike Michels, RR 3 Box 139, Canton IL
61520.

19



Regular Feature
68xx/68xxx Support
6800/09 and More}

Small System Support
By Ronald W. Anderson

Vintage 680(X) Computers and Other Stuff

This time I am going to start out with a discussion precipitated
by a letter from Tilmann Reh from Germany. His letter was a
response to my letter that was published with my first column.
I had made some comments about it being easy to talk directly
to the hardware on a PC, indicating that I was able to get a
serial port running that way after having had no luck at all
through a BIOS call or the facilities of Turbo C.

He made some very valid points about it being much better
NOT going to direct hardware control, working at least through
the BIOS calls to avoid writing software that will run on one
system and crash on another. The point is well taken. My
“‘excuse’’ follows:

Realize that I have always been working with embedded con-
trol and measurement systems. The company that employs me
builds balancing machines. That is, we build machines that
balance rotating parts for many applications, for example,
flywheels, crankshafts, fans, blowers, pump impellers, grind-
ing wheels, saw blades, motor armatures and lots more. Some
of our machines are very simple and some are multi-station
automated transfer lines that balance parts ‘‘untouched by
human hands’’.

Our balancers all use a microprocessor based computer to do
everything after we amplify filter and digitize the unbalance
signal coming from transducers on the machine. In the sim-
plest ones, the computer does calculations and tells the opera-
tor how to balance the part. The operator reads the angle and
depth of the hole to drill or the amount of material to add or
remove to do the job. Of course the machine has to know the
drill diameter, maximum allowed depth and a lot of other
information. Things get complex very quickly.

Of course, we have competitors. Rather than try to make our
code portable, it is to our advantage to make it somewhat
hardware dependent in order to make it non-portable. It is also
difficult NOT to make embedded control systems hardware
dependent. Should our machine code (the output of a compiler)
fall into our competitor’s hands, they would have to duplicate
our hardware in order to use it.

I hope we all realize that disassembling someone else’s ma-
chine code, particularly if it is the output of a compiler, would

20

probably be more work than writing a program from scratch.
However, a competitor might disassemble selected portions of
our code to see how we calculate some particular parameter (if
he could find the right section of code). Being hardware depen-
dent makes it unprofitable even to try to use our source code,
though it might be easier to pick up seme of our ‘‘trade
secrets” from our code. So Tilmann, I have grown used to
thinking about hardware dependent code as desirable. 1 very
much understand that most programmers try to write portable
code, and therefore think differently.

The file transfer from 6809 to PC project 1 described in my
letter was a one of a kind project done for a consulting client
so all that mattered was that it would run on my development
system and his. As a matter of fact it failed that test on the first
try. It turned out that my code wouldn’t work if the computer
had SMARTDRY running. The computer was caught tied up
with it’s read or write cache buffer and it missed information
coming from the 6809 system. I discovered the problem acci-
dentally one night and resolved it quickly (by disabling
SMARTDRY for the data transfer).

Tilmann also was critical of my having written my screen
editor to talk directly to the Video Ram. Not very portable, he
said. I wrote the editor when I had a PC-XT which ran at 1/
40 of the speed of my present 386 machine. Any other scheme
of getting characters on the screen was intolerably slow at that
time. My 2 MHz 6809 with a 19.2Kbaud terminal was much
faster than the PC-XT using BIOS calls. Presently I could
probably use BIOS calls, but my editor is done. I don’t use
serial terminals on PCs, so I haven’t had any compatibility
problems. I’'m not running (nor am I planning to run) a BBS,
so my editor doesn’t have to run over a remote serial terminal
link either. Aside from those considerations it has run on the
old 8086 PC-XT, several 286 clones, a 286 and a 386 system
with EGA monitor, my present 386 system at home and
several 286, 386, and 486 systems at work with VGA and
SVGA graphics boards. I have to ask how much more portable
it could be. Lastly the direct video RAM access is a full twelve
times faster than using BIOS calls, by actual measurement.

To put it quite directly, I see little reason to degrade the
performance of my own tool that I am not planning to offer for

The Computer Journal / #67



sale! (I've already offered to give it away. That way I don’t
have to support it <:-) ).

What DID give me fits in porting my program from a 68000
in C to the PC, was my unfamiliarity with the multiple memory
models. I use a 200K edit buffer, and I discovered that though
C’s malloc() memory allocation function didn’t complain, (It
gave me a valid pointer to a buffer), it only gave me access to
" 64K of buffer. After a week of hair pulling I used the ““if all
else fails read the manual’’ approach and found a function
called farmalloc() which successfully allocated a 200K buffer.

Who in his right mind would prefer an X86 with it’s segment
registers to a 68000 that can seamlessly address 8 megabytes
of memory without much more than a fleeting thought about
it? (Apparently IBM would, raising doubts in my mind as to
their sanity). I know, a 386 or 486 running under OS/2 can
address memory linearly as does the 68000. The limitation
used to be in the 8086 and the 286. The 386 and 486 can
address large memory directly but are limited by MS-DOS or
PC-DOS.

6809 Computers

Last Friday, I was trying to get ahead on some projects at work
since the end of our fiscal year is coming and we want to look
good for our annual report. I made some interesting discoveries
while trying to debug a program.

When you don’t initialize a Motorola 6821 (a dual port parallel
interface device) both ports are set up as inputs by the power-
on reset. Apparently when you then write to the data direction
register, thinking you are writing to the data register, the
impedance at the associated input pin changes. Strangely when
you write a 1 to that bit of the DDR, the voltage level at the open
or lightly loaded input terminal actually goes down. My 74L.S640
buffers were light loads and could read the state of the DDR
through the associated I/O pin, though what came out was the
complement of what I wrote in.

The reason the supposed output port was not initialized was
that I had called the wrong port initialization routine in my
program. I had very carefully checked the correct routine to be
sure it was set up to initialize the port correctly, but then I
called a previously used routine that had been carried over into
my program by accident. I had put pieces of a number of old
programs together to make a new one for some different hard-
ware, and had missed at least that problem.

Let me tell you how a not too bright and pretty tired engineer
/ programmer can trap himself. I wanted to output a unique
pattern of 8 bits since I had seven of them connected, three to
some LEDs and four to solid state I/O modules that had
indicator LEDS, so I could see their states. I decided something
like hex 55 (01010101) or hex AA (10101010) were too sym-
metrical so I settled on hex 96 (10010110). I ought to be able
to tell if the bits were in the right order, oughtn’t I? Well, the
technician who wired this rather different one of a kind com-

The Computer Journal / #67

puter had reversed the data bits end for end so they were
(01101001), and then because the port wasn’t initialized cor-
rectly, they got inverted by the input I thought was an output,
i.e. I's and 0’s interchanged, so the two errors cancelled out
and I got 10010110, just what I had expected would prove
everything was working correctly. Some late night sessions,
you just can’t win! In this case two wrongs did make a right
or a double negative cancelled itself out or something like that.

PC’s Again

As I write this paragraph it is Sunday January 30. Last Thurs-
day we had an ice storm in Ann Arbor. The main streets were
nice and clear but when I got to the side street that feeds the
court on which I live, I noted glare ice. I parked at the head of
the court and walked the rest of the way to find a man in a car
stuck in front of my mailbox. He had tried to turn into the court
to turn around and had ended up about 50 yards down the
street, about half way from the head to the dead end circle. All
of his attempts to go up toward the connecting street resulted
in his going down toward the end of the court. Unfortunately
our court is sloped from the connecting street all the way down
to the end.

I decided to work at home on Friday. Since I had some software
drivers I had written for a stepper motor driver card I thought
I would test them. I had brought the card home on Thursday
and started working on the debug of the code I had written
previously when I had the instruction manual which preceded
the card by a couple of weeks. By Friday night at 11:00 I still
had not gotten any stepper pulses out of the three axis driver
board.

On Saturday I decided that I had narrowed the problem down
to the settings in just one of the many control registers on the
board, so I started a little ‘‘trial and error’’ programming and
on about the 4th try I had pulses coming out of the board, but
they didn’t shut off after the programmed number. A little
more experimenting and suddenly I had it all working. I have
a list of six or seven errors in the instruction manual. To be fair
to the supplier, a disk came along with the board with some
drivers written in BASIC and some in C. They supplied a
header file and the executable code module. Since we really
want to know ‘‘all about’’ our hardware, I had decided to do
the driver myself. I've written a letter to the supplier asking for
a corrected manual. They conveniently supplied a bug report
sheet at the end of the manual but I had three or four times as
much as I could fit on their form.

We’ve used several boards from Industrial Computer Source
with excellent results previously. We had used their multiple
parallel port boards in several flavors. The manual for those
had contained errors also, but fortunately they included the
data sheet for the parallel port chip.so we had no trouble using
it. In the present case the manual contradicted itself, indicating
the use of a bit in one of the registers that had been indicated
unused in another portion of the manual. It seemed to me as
though they had expected all of their customers to used their

21



canned drivers, so, though they wrote detailed programming
information, they didn’t go through the steps they outlined to
see if they would work.

I suspect this was a new manual for them, a new product line.
I'll be interested in the reply that I receive from them. If it is
interesting enough, I’ll pass it along here next time.

Last time I ran across something like this we had bought a
computer controlled ‘‘smart servo controller’” specified by
OUR customer for a project. We hadn’t used this product
before, but had always used our own servo controller cards and
built the smarts into our 6809 based computer. The controller
would work just fine for a long time and then suddenly it would
go crazy as if it had been recording all the motions for an hour,
and then decided to play them back. The supplier assured us
that we must be doing something wrong.

At long last I wrote a letter to the supplier complaining that the
software wasn’t robust enough. It was up to the user (us) to
insure that we didn’t send it a command to move 0 distance.
Of course if I had a terminal in front of me and was sending
it commands, I could remember not to do that, but we had to
build a test into our program that controlled the servo, to trap
zero distance moves.

A while later after several long conversations with engineers
and programmers at the servo package supplier, in which I
included threats to replace their package with our own that
worked or at least gave us full access to the software, I received
a call one Friday afternoon in which they told me that they had
reproduced the problem in their lab, and that the chief engineer
would be at our door on Monday morning with new EPROM
program chips to plug into the several servo controllers that we
were using. By then our customer had agreed to let us use our
own servo controllers but we agreed to giving the supplier
another chance.

The new program worked fine. I quizzed the chief engineer and
he said that we were using the program in an unusual way.
Most customers would program a motion profile into the con-
troller and just run it over and over again. We had to tell the
controller different information each time. Due to some small
oversight, the stack could overflow and it then ‘‘started over
again’’ quite literally replaying the previous moves that it had
made.

The chief engineer said that he had passed my letter around to
all of the programmers and made them read it! Perhaps this
is why we are adverse to using someone else’s software. We’'d
rather make the mistakes ourselves and then have full access
to the code so we can debug it when a problem occurs. The bugs
in the purchased servo controllers had cost our project several

22

weeks, and for a time had lost us the confidence of our cus-
tomer.

Beginner’s Page

Last time I included a section just for beginners in computing.
I plan to do this regularly. I thought we might discuss the 6800
and the 6809 a bit today. In order for any discussion of Assem-
bler programming to make any sense whatever, we need to first
look at the ““architecture’’ of the processor chips. Both of these
processors access an 8 bit data bus, and both can access 65,536
bytes of memory via a 16 bit address bus. I’ll mention a few
assembler instructions in the discussion that follows. If you
understand them you’ll be a little bit ahead. If not, don’t sweat.
We’ll get into a lot more detail in a later column.

If you are familiar with the intel ‘“80°° processors you might
be surprised to find that the Motorola processors don’t have a
separate 1/0 bus with I/O addressing. Peripheral devices on the
680X processors simply use memory address space. SouthWest
Technical Products Co. (SWTPc) used the 4K block of memory
from $E000 to $EFFF for I/O. They used FO000 to FFFF for
ROM monitor space. Of course 1/O would never need 4K nor
would the ROM be that big, so some address space was wasted.
At the time these systems came along, however, 56K of user
memory seemed to be many times what anyone would use(!).
How times have changed!

Let’s list the features of each of the chips:

6800 6809

Accumulator A

Accumulator B

Accumulator D *

Index Register X

Index Register Y

Stack Pointer S (system stack ptr)
Stack Pointer U (user stack ptr)
Program Counter PC

Condition code CCR

Direct Page  DP

Accumulator A
Accumulator B

Index Register X
Stack Pointer S
Program Counter PC

Condition Code CCR

Interrupt Facilities

Interrupt IRQ Interrupt IRQ
Fast Interrupt  FIRQ
Non Mask. Int. NMI  Non Mask. Int. NMI

* Accumulator D of the 6809 is the concatenation (joining) of
Accumulator A and B, with B as the low order byte. See
discussion below.

If you think the 6809 looks like an expanded 6800, you have
it pretty well figured out. Now let’s run through the functions
of each of these registers. Each item mentioned above is an 8
bit or a 16 bit register that is internal to the processor. You
could view them as special memory locations addressable by

The Computer Journal / #67



name. They have much more specific functions than general
memory locations.

Accumulators - These are where the arithmetic manipulations
take place. Values in accumulators can be loaded from memory
or stored to memory. They can be added or subtracted. The
6809 has a MUL instruction (multiply A by B, resultin D). The
6809 has the useful extension of being able to place the A and
" B accumulators together to form a 16 bit register. Motorola
implemented a few instructions that take advantage of this
feature. You can load D (LDD #$FFE7) with a specified value
in the program or from a memory location (LDD $1234). You
can store D in memory or transfer the contents of D to one of
the other registers such as X, U, or Y. The instruction set falls
short of much more than that, however. For example you can
complement or negate the contents of A or B, but there is no
NEGD or COMD instruction: You can shift a value in A or B
but not in D. There are other differences, but we will get into
those when we talk about instruction sets later. Just remember
for now that the Accumulators are used to do arithmetic. Using
a second accumulator (B is not quite as talented as A with
regard to the instructions it can do) avoids a lot of temporary
storage of values. It can make a program considerably more
efficient.

Index Registers - An index register is an ‘‘indirect address”
feature. You load X with the address of a variable and you can
then access it as in LDA 0,X. The 6809 is more useful in that
you can add an offset to the address in X. The 6800 allows you
to increment or decrement the address in X with the INX and
DEX instructions. The 6809 allows you to add a value to the
address in X. LEAX 27,X will add 27 to the value in X. The
6800 allows you to add a value in B to X with the ABX
. instruction. You can write programs that are much more effi-
cient with the 6809 instruction set. The 6809 in addition has
the second index register Y. Having two index registers is a
great advantage, again as we will see later when we discuss
instruction sets. The X and Y index registers are both 16 bit
registers so they can hold full addresses.

Stack Pointers - The S register in both processors is used as the
subroutine return address stack pointer. When you do a JSR or
BSR instruction (Jump or Branch to a subroutine), the address
of the next instruction in the program (where the program is
to resume running after completing the subroutine) is *“pushed’’
onto the stack. At the end of the subroutine when the ReTurn
from Subroutine instruction is found, that address is used to
resume execution of the program. That is, the return address
is pulled off of the stack and placed in the program counter
(PC). The stack itself exists in memory. The utility of the stack
pointer is that it is faster to access memory through it than
directly.

The User stack as the name implies can be used by the pro-
grammer for whatever he wants. Some assembler programmers
use it to access their variables as set up in memory. We’ll talk
about that technique later. A stack pointer simply keeps track
of items on the stack. An assembler program can initialize the

The Computer Journal / #67

stack pointer. Pushing a byte on the stack decrements the stack
pointer and places the byte at that address. Pulling a byte off
the stack simply reads the byte and then increments the stack
pointer.

The condition code register reflects the result of an operation.
If two values were compared and were equal, the Zero flag is
set. If a value was subtracted from another and the result was
negative, the Negative flag is set, etc. The status register can
be used directly by a program, but more commonly it is used
by the processor to test for a branch instruction. For example,
BEQ, (Branch if Equal) will happen if the zero flag is set. BNE
{(Branch if Not Equal) will happen if the zero flag is NOT set.
I must insert here that the Motorola assemblers and instruction
descriptions use the dollar sign ($) as a hexadecimal indicator.
$10 indicates hexadecimal 10 (decimal 16).

The PC register is not changed directly by a program instruc-
tion, but it is frequently changed by the execution of an instruc-
tion such as JMP (Jump) or a branch instruction. JMP $1234
causes the program counter to be loaded with the memory
address $1234, and the next program instruction is taken from
that location. When you write an assembler program the last
item at the end is the starting execution address {commonly
called the transfer address) so that when the program is loaded
into memory, the processor knows where the starting point is.

Interrupts are enough of a subject to fill a whole column. Let
me just say that an interrupt usually comes from an external
device. You are working along editing a file and simulta-
neously printing another file to your printer. The printer runs
out of text in it’s buffer and says INTERRUPT -- Hey! give me
more data. Your edit session is interrupted to send another
character (or a line) to the printer and you can resume editing.
If the processor is fast enough, you don’t notice the time the
processor was away and the computer looks as though it were
doing two things at once. In my days of using the 680X I never
found a suitable “‘print spooler’’ that would let me print a file
and not have my editor go dead long enough to miss a couple
of characters if I happened to be typing along at high speed.
Interrupts are extremely handy when you are trying to measure
the time between two external events that can signal when they
OCCur.

The 6800 has a special short addressing mode for the first 256
bytes of memory. That is, memory from $0000 to $OOFF.
Addresses in this range can be represented by a single byte.
Special instructions allow using single byte address values for
these locations, thus making a program smaller. The 6809
allows you to treat any 256 byte “‘page’’ of memory as the
direct addressing page. The value in the DP register is the high
order byte of the address of the direct page. Thus if you set
DP=$02, addresses $0200 to $O2FF are the direct page. Fur-
ther, in an assembler program you can set the DP register as

23



often as you wish, and treat different areas of memory as
addressable with a short address.

Since programs have grown so much, most of them use much
more than 256 bytes for variables. Most higher level language
compilers simply ignore this feature of the 6809 and use
“‘extended addressing’’ mode for all memory addresses. It was
a neat trick when a large memory was 16K. SWTPc sold their
“first computers with a 4K memory board but it could be bought
with enough memory chips for 2K. You had to buy a 2K
upgrade kit to make a 4K out of it.

While the 6809 may appear to be a minor step forward from
the 6800, the greater hardware facilities (registers) and the
‘more powerful instruction set can make quite a difference in
code in assembler to do the same function. I can’t resist one
example so here is code to move $100 (decimal 256) bytes of
data from locations starting at $3000 in memory to locations
starting at $1000 in memory. I’ll comment the code. We’ll get
into much more detail regarding the instruction sets next time.

Idx #$1000 use x register as a pointer for the move
stx xdest save destination address in temp location
Idx #$3000 source address
loop Ida 0,x get a byte from source location
inx increment the pointer
st xsrce store it temporarily
Idx xdest get dest in x
sta 0,x store the byte at dest
inx increment dest pointer
stx xdest store it
ldx xsrce load source ptr again
cmpx #$3100 have we done $100 bytes yet?
ble loop if not, go around the loop again

“When we break out of this loop we have moved 100 bytes of
data from memory location $3000 to $3100 to locations $1000
to $1100. Let’s see how the 6809 could do the same thing:

leax #$1000 slightly different syntax dest address
leay #$3000 useY for source
loop Ida \y+ get a byte and increment y
sta x+ store a byte and increment x
cpx #$1100 have we done $100 bytes yet?
ble loop if not go around loop again

To be sure, there are other ways of coding either of these, but
it ought to be obvious that the 6809 has a more ‘‘powerful”’
instruction set and better hardware facilitiecs. Having two
index registers removes the need to swap the value in the X
register twice per pass through the loop and having the post
increment instruction (,x+) eliminates the INX instruction.
Note particularly that there are many less instructions included
in the loop.

24

With the 6809 it wouldn’t be hard to speed up the operation by
using the D register and moving two bytes at a time:

leax #$1000 slightly different syntax dest address
leay #$3000 use Y for source
loop idd \y get two bytes and increment y
leay 2,y add 2to value iny
std x store two bytes and increment x
leax 2,x increment x by 2
cpx #$1100 have we done $100 bytes yet?
bie loop if not go around loop again

This works fine for an even number of bytes, but the
autoincrement can’t be used to add 2 to the index register
value. Instead, we have to use the more general increment X
by a constant instruction. leay can increment the value by up
to 127. The loop got longer by two instructions but we only
have to execute it half as many times since we are moving two
bytes at a time.

Ron Anderson
3540 Sturbridge Ct.
Ann Arbor, MI 48105

.- ]
Do you need
Micro Cornucopia Disks?
Boot Disks?
Disk Copying?

Lambda Software Publishing

can now supply reprints of
Micro Cornucopia Magazine,
Kaypro Disks, Boot disks, CP/M 2.2,
ZCPR and CP/M programs.

Kaypro disks $5.00
all 49 disks $200.00
Catalog of disks $5.00
Disk Copying $10.00
MicroC reprints $8.00
Z-Letter back issues $3.00
CP/M 22 $25.00
Spellbinder v5.3H $60.00
Contact
Lambda Software Publishing
149 West Hilliard Lane

Eugene, OR 97404-3057
(503) 688-3563

The Computer Journal / #67



TCJ Center Fold

The centerfold is the SS-50 and SS-30 BUS. This bus is an
6800 based bus system. The documentation is based mostly on
the GIMIX GHOST MOTHER BOARD. It provided 15 slots
for full size (SS-50) boards and 8 slots for I/O-sized (SS-30)
boards. A special 10 pin slot also provides Baud Rate Genera-
tion. Some of the features are:

1) Fully compatible with the SS-50 (6800) and SS-50C (6809)
busses.

2) Gold plated PIN and Socket type connections.

3) 4, 8, or 16 decoded addresses per I/O slot.

4) Extended address decoding for the I/O section.

5) The /O block is DIP-Switch addressable to any 32, 64, or
128 byte boundary.

6) Baud rate generator for 75 to 38,400 baud.

7) All data, address, and control lines are terminated and
separated by noise reducing ground lines.

The following information on the SS-50 Bus is gathered from
an 1982 Sam’s book, #21810, ““The S-100 & Other Micro
Buses’’, by Elmer C. Poc and James C. Goodwin (ISBN: 0-
672-21810-0). This book covered all micro based buses in use
at the time. A couple of chapters are devoted to interfacing the
S-100 to Benton Harbor Bus, TRS80 Model I bus, and 6502/

6800 system (KIM).

The SS-50 bus was introduced in 1975 by Southwest Technical
Products Corporation (SWTPC) for their SWTPC 6800 micro-
computer system. Since then, use of the SS-50 bus grew and at
least a dozen manufacturers produced components that ranged
from disk controllers to digital video boards. All manufacturers
of the SS-50 conform to the original bus definitions laid down
by SWTPC. The compatibility problems that plague the S-100
bus do not exist for the SS-50 bus.

Since it was based on the SWTPC 6800 microcomputer system,
the SS-50 bus easily supports the 6800 and 6502 processors.
Unlike the 8080, these processors do not multiplex control
signals on the data bus. All control signals are derived on the
processor. Parallel and serial /O ports and memory are all
treated alike by the CPU. Each is addressable and must respond
to a simple R/W line and the address bus.

Most of the signal on the SS-50 bus come directly from the

6800 processor. The SS-50 data bus is bidirectional; it is not
split into data-in and data-out lines.

The Computer Journal / #67

Center Fold Section

The SWTPC motherboard accepts two different size boards - an
SS-50 and a peripheral board called the SS-30. The SS-30
board uses a subset of the SS-50 signals.

The SS-50 boards are 9 by 5 1/2 inches (22.8 by 13.9 cm) in
size. They plug into the motherboard through 50 pin Molex
connectors. The pins are numbered from right to left. Positive
indexing is provided by plugging pin 33 on all boards.

The SS-30 is designed to facilitate use of both serial and
parallel interface devices. The most obvious difference between
the two is the absence of the address bus on the SS-30. It is
replaced by board select lines which are derived from the SS-
50 address bus. Each board has been assigned a block of four
contiguous addresses in memory. Address decoding circuitry
on the motherboard generates a board select signal (using a 1-
of-8 decoder) when the base address assigned a board is put on
the address bus. The board select signal is fed only to the proper
board, which must then respond to the register select lines, RSO
and RS1. The RSO and RS1 lines are connected to all periph-
eral boards and represent address bus lines A0 and Al. Using
the RSO and RS1 lines, a board can determine which of its four
locations is being addressed. One of the peripheral boards is
usually dedicated to a serial terminal.

SS-30 boards are 5 by 4 inches (12.7 by 10.1 cm) and plug in
through 30 pin Molex connectors. Positive indexing is pro-
vided by plugging pin 7.

Implementation of Motorola’s 6809 microprocessor on the SS-
50 required redefinition of several lines. Most of the changes
resulted from differences in control lines between the 6800 and
the 6809. This changed bus was know as the SS-50C. Some
changes were also prompted in the SS-30, producing the SS-
30C.

Board Select Address Definitions for SS-30 Select Line:

Select #0 $8000
Select #1 $8004
Select #2 $8008
Select #3 $800C
Select #4 $8010
Select #5 $38014
Select #6 $3018
Select #7 $801C

25



The Computer Journal / #67

Center Fold Section

k “ONI XIMI® 196 [
$¥00 -¥27 — KLHOIN 1TV 1, 1YW AWVLHWONd
GHvO8 M3IH.IOW
N8 Mid 05 D>——
: ,J..ﬂlﬁnmh_l NG Nid 05 E——
0TS Nid OF
anv 0S 1Y 04 aNe %ﬁa
Se
sLoe NOLIBNNOD OWYD
Nid OC QNV 08 0L 91 - AV”H“ »- u-owww_ ALYV aNVE M4 O
s101e 900¢
Mid OS GNY 05 OL o_.VA““&.: ersost
visou
148 T
> SL07S NI OF r
44 AN TIV ONY #i-6 w0, - Y il
20 VI*}QM.I_ S1078 Nid 0504 U8 L383v 00%e ——
D PNV ANO Nd 0P L .
! 8-0 RO 0L VS Voo Y9 oo (] <8ty Sidic_zg o
21> v o on o< e
W AHeIT 104 Avea ] LD w
£0 >—f GMYOR NINLON JO MRLNZD PR V1o o- ] "y T e
- { Wi G3LY207 %avd VA0S $ee e . T w
> e 1$ 1 #" - LN
v 'R Ll ¥
SNOI192MNOD 2N /10N viay
0L BNOILJO Wd OC |MN/DNIY . co__ ﬂ
= ny Sivie QDO ov| | |wosesu< N
po >0 | A L. TL1IF) MERY ] o< i) < 4
LL LI 1 (ABUR)AOUN (zan Dyl rvi-a e | en bs—< vty oNEsE< s CaE
ol L1 v KIvE-a 3 < SN 2.2 8
cou F (A J o temg | |#sivtas ¥ v ™ e
—1 sne
v ANA (i of ] 2780031 c oy 231 7 u»
fy SNOILIINNOD oe T un
" > [TTi>2 LUVENESS aive onve 000 o viay 7
N (@on) pulg >—ApA—r N4 0§ — [0S LU
sy >— 0] oLmaos w0l bl HW-a ¢ 0 T <iiv Vi D
v ié8 T vraoll ousne oiv}aso— ] o <o k7N -
3y > T T VAR tvr svla e n T—< o ] *" i
e {1 crew T M ks T T hid 5]
:<VI%.|L a AA < ." 1-2S o
AR hd (ron)vsu <f 2 26 > S no!t o o o
o1y > N b DVVER g
~ ma wom ssu 1Y e - ﬂ
o > P s | D L H
VWA W L IT'DS sootih 1via_o— L ._.o un < av o ¥ —< .ruﬂx
Uit Sl | s >0 | N Wiae I a % T
TR v |, TR WA L FY 3 v i ’ < o~
£ " (4
Sav T sdy T 1« ] " o < v
> va Yﬁl v [ t - & < v
AA— ] AN < —H‘: S
(24 Il<><(1 L L] Ib<»<> -:..A.ﬁ tran) eou O
~—y — 2 i11) (son) 23w <o
sv VAV Ave VWA Tidd Py o .
sy > ow eng > z v —
W v [ 10 4 < g SR 111
2o VR ..-vuﬁ)ZIﬁ. 4o s Ca Py
Ll B oo | w>—{ "1 "“ " by L h:.- ¥
W W
w W | < !
10 = i 3
| 0 | = s F
sdy ol Hdy o




6#00-#20

S3HALIMS dIQ ¥ SNOILJO ¥3dmnr

G¥v0o8 YH3HIOW

~62-

60909 11 '0OVOIHD 30V 1d Wit MLl

“ONI XINID P
d9ld 0914
HOLIINNOD 0089 403 HALJINNO D
LH9IT 1oTd 13S34 ¥3LSWYW
s«—1O | . 4&m—TO
OIL.. X30N| o
O = WIO
X3IONi ® =0)
s+—1+-O O
2vo vd
7914 .
SAYVOS Ndd 6089/0089 % 9id
XINIO HO4 TYWNON SNOILdO NOILYNINYIL
-]
m O AN
ASNg—]
(LYN) —O ﬁ|>mzm(
. AN
O O N
O O N\
m (Lsum) AGUN—O “|\<<(|a¢ _
O )\/z\(
s v
9 '9l4 4914 394
NO 440 NOILdO
0-1 MOTS O-1 MOTIS 0-t MOTS
O O
AGUN——-O
o) eNdiIn4—0O
eve

G3CN31X3

378vS10/3"avN3
$S3400Y Q30N3LX3

s118 $634aAQY

ONILYVLS ¥3IQHO HOMH

3789vSKd/3T8YNI 0-1

S+
aoid

6lvy

8iv

v

oy

NOX3

s

v

24 )

ey

Sia

]

|
(038012)NO

J'9i4

(N340}

« WuOOO0UL0 2

WOld
L ==
v | [ ]
5118 S534GQY 8v ]
DNILYYLS ]
w
¥3aHO MO
v | T
sv || _
91 _ _
3zs 8 L]
101§ 0-l vy |
[ "4
440 (d350719)NO I (N3d0) 440
S3HOLIMS did
rold 1 Ol4
(LONS O-1 ¥3d H 914

$3SS34AAV ¥ SINSN NIHM A34INO3Y KINO)

(g378VYN3 JSI130ld  03718VvSIQ 0SIA Oid

8914

:

SNENId O SNBNIJOE SNOILIO3NNOD 2an/ian
NOILJO LdNYILNI

Ol INN

©o00BJ

Ol Duid

cofGdgo

aevr

sng O
Nid 0€ OL
1NN RUE——O
(o=
s$N8 Nid
os oL out— O

O

——— 1NN

— (Zan) DuIL
— D3l
—(1amQ

O
O

o

b

SNOILIINNOD +aNn/eaN
NOILdO 2SIg Oid

O—1—(van) esu
O.llllﬂg Sy
S'ON
193138 0-1——0O
@)
v 'old
NOILdO 31vY anvd
SN Nid 0€ 01 Nid 0§
viou—+—O | O——Ddusm
as06——-QO | O—4—siv
21064 | O—4—9v
e —--O | O—+4—uv
droozt—4—O. | O—1—9av

e

27

Center Fold Section

The Computer Journal / #67



28

S5S5-50

D@
Dl
D2
D3
D4
D5
D6
D7
AlS
Al4
A13
Al2
All
Al
A9
A8
A7
A6
As
A4
A3
A2
Al
AQ
GND
GND
GND
+8V
+8V
+8V
-12
+12
INDEX
MRST
NMI
IRQ
UD2
UD1
82
VMA
R/W
RESET
BA
g1
HALT
11¢b
15¢b
300b
6 80b
1200b

THE NAMES IN THE "GIMIX"

S$S-59 BUS DESIGNATIONS

GIMIX S§Ss-58C S5-30 GIMIX 55-38C
D@ Do uD3 RS2 RS2
D1 D1 uD4 RS3 RS3
D2 D2 -12 -16 -16
D3 D3 +12 +16 +16
D4 D4 GND GND GND
D5 D5 ’ GND GND GND
D6 D6 INDEX INDEX INDEX
D7 D7 NMI FIRQ/NMI FIRQ
AlS AlS5 IRQ IRQ IRQ
Al4 Al4 RS9 RS@ RSH
Al3 Al3 RS1 RS1 RS1
Al2 Al2 Dg D@ D@
All All D1 D1 D1
AlQ Alg D2 D2 D2
A9 A9 D3 D3 D3
A8 A8 D4 D4 D4
A7 A7 D5 D5 D5
A6 A6 D6 D6 D6
AS A5 D7 D7 D7
A4 A4 g2 E E
A3 A3 R/W R/W R/W
A2 A2 +8V +8V +8V
Al Al +8V +8V +8V
AQ AQ 1200b 1208b/E 1286b
GND GND 6@0b 600b/D 4800b
GND GND 386b 398b/C 3908b
GND GND 150b 150b/B 9600b
+8V +8V 116b 118b/A 118b
+8V +8V RESET RESET RESET
+8V +8V I/0 SEL CS I/0 SEL
-16 -16
+16 +16
INDEX INDEX
MRDY MRDY NOTE: THIS CHART DOES NOT
NMI/BUSY BUSY INDICATE THE POLARITY OF
IRQ IRQ THE SIGNALS. IT IS ONLY A
FIRQ FIRQ COMPARISON OF THEIR NAMES.
Q Q
E E
VMA VMA
R/W R/W
RESET RESET
BA BA
BS BS
HALT HALT
BUSRQ BUSRQ or 1l1@b
S3/A19 9600b or S3
S2/A18 300b or S2
S1/A17 48006b or S1
S@g/Al6 12¢60b or S#@

COLUMN REFLECT THE DESIGNATIONS

THAT APPEAR ON THE MOTHER BOARD ITSELF AND IN THE DOCUMENTATION.
THE ACTUAL SIGNALS AT SOME OF THE PINS DEPENDS ON THE JUMPER
CONFIGURATION OF THE BOARD AND THE PARTICULAR CPU CARD INSTALLED.

Center Fold Section

The Computer Journal / #67



Serial Interrupts for Kaypro 11
by Walter J. Rottenkolber

Forth Interrupt Handler

Using Forth For Serial Port Inter-
rupts In The Kaypro I

I suppose you have heard of interrupts,
but what do you really know about them,
how they work, and how to program
them? Are they really as mysterious and
difficult as you may have heard? This
article describes Forth code I wrote to set
up an interrupt driven serial port (the
modem port) in a Kaypro I

Interrupts can be tricky beasts, however.
You turn loose a chip with a mind of its
own and hope it behaves itself. Although
this code works on my Kaypro II, similar
code crashed a Kaypro 10 with the Ad-
vent ROM. As a result, I make no claims
or warranties regarding the information
or code in this article, or their suitability
for your system. 1 will not assume any
,responsibility or liability for any damage
or loss to hardware, disk drives or data.
If you implement the code or informa-
tion in this article you accept full re-
sponsibility for their use.

Gathering data from serial ports takes
two forms: Polling and Interrupts.

In #ling, the program repeatedly checks
the SIO port for data. Though Polling
wastes processor time, it is simple to
implement, and to synchronize with the
program.

With Interrupts, the hardware generates
a line signal to which the processor re-
sponds. Interrupts allow for immediate
response to external activity, or efficient
handling of infrequent and unpredict-

able signals.
Interrupts can deal with the problem of

data input occurring faster than the pro-
gram or operating system can process.

The Computer Journal / #67

This causes a problem familiar to own-
ers of some later CP/M Kaypros, namely,
characters dropped at the beginning of
new lines wi.en using modems 1200 baud
or above.

Zilog’s Z80 CPU has four hardware in-
terrupts: Reset, Bus-Request, Non-mask-
able, and Maskable.

Reset puts the CPU and hardware into a
startup mode. We usually think of it as
the ‘red button’, but it is also activated
on power up or by too low a line voltage.

Bus-Request is used when peripheral
hardware needs to take over the address
and data busses, usually to do direct
memory access (DMA).

Non-maskable interrupts (NMI) causes
the Z80 CPU to stop its activity and
execute a CALL to memory location 102

(66H).

Maskable interrupts (MI) causes the Z80
CPU to stop its activity and execute other
code. It differs from the other interrupts
in that the sofiware can turn the Z80
CPU response on or off by issuing either
an Enable Interrupt (EI) or Disable In-
terrupt (DI) opcode. The Z80 has three
maskable interrupt modes.

Mode 0 is the default mode enabled on
power up or reset. On interrupt, the ex-
ternal hardware must place a single byte
on the data lines. The Z80 CPU reads
the data lines and interprets the data as
a one byte opcode. Usually, this is an
RST, which is a CALL to one of eight
preassigned memory locations in page
zero. But it could just as well be an INR
which would increment a Z80 register to
count the external event.

Mode 1 executes a CALL to memory
address 56 (38H), to run the code there.

Mode 2 is the most powerful and flex-
ible. It requires the peripheral chips to
be Zilog’s SIO or PIO, as they need to
interact with the Z80 CPU. The Z80
CPU is programmed with the most sig-
nificani byte (MSB) of a 16-bit base
address, and the /O chip gets the least
significant byte (I.SB). The. peripheral
chip can modify the LSB to address up
to eight routines in an interrupt table.
The interrupt recombines the data within
the Z80 CPU and peripheral chip into a
16-bit interrupt address, to which a CALL
is then executed. This address can be to
nearly any location in the 64K RAM.

Non-maskable and maskable interrupts
generally run code routines independent
of the main program. However, the Z80
has a few block move opcodes, such as
OTDR (which transfers a block of data
to a port), that use interrupts to time a
loop. The Kaypro uses the NMI just this
way for disk read/write.

During activity involving the keyboard
or video display, the Kaypro bank

.-switches the lower 16K bytes of main

memory to ROM and video memory.
Any interrupts attempting to access code
located here during a bank switch will
crash. To prevent this, all interrupt code
must be located at or above memory
location 16,384. As a result, we must use
Mode 2 to implement the interrupt pro-
gram. It is the only mode that can ad-
dress memory above page zero (memory
0 to 255).

This problem is not unique to the Kaypro,

although other computer systems may
use different blocks of memory. It’s

29



important to locate interrupt code in stable memory.

I use the Laxen and Perry F83-Forth for the Kaypro, modified
with Van Duinen’s PDE super editor. This Forth is based on
Intel 8080 code and its assembler is limited tc 8080 opcodes.

With that in mind, let’s walk through the Forth source code.
As is obvious, the code required to implement polling (Scr 2

" & 15), is much simpler than for interrupts (Scr 2-12).

First come the constants for the assorted ports and control
codes for the Kaypro II serial chip, Zilog's MK-3884 (ZSIO).
Note that SIO channel-B will be needed even though I plan to
set up interrupts only on channel-A. I excluded the codes for

-establishing the serial port parameters (baud, word-size, etc.),

but have listed some code for simple settings (Scr 17-18) if you
haven’t got your own.

Next are definitions for the Z80 opcodes (RETI, 2IM, & Al-
MOV) required to setup Mode 2 interrupts (Scr 3). The names
chosen follow the Extended Intel notation rather than Zilog’s.
RETI is a special RETurn the ZSIO also interprets to reset the
internal priority latch. 2IM sets Interrupt Mode 2. AI-MOV
moves the MSB of the interrupt address from Reg-A into the
interrupt Reg-1 in the Z80. This is a special move opcode that

- only works with Reg-A. Unlike the 8080 opcodes, these are two

bytes long, as are most of the new Z80 superset of opcodes. To
be consistent, I decided 1o extend the 8080 assembler defining
words with 6MI. This Word can create and compile the two
byte opcodes. They are used the same as the 8080 codes by just
naming them.

The ZSIO has two channels, A and B, which can be pro-

grammed independently. In the Kaypro II, channel-A handles

the modem port, and channel-B, the keyboard. Each channel
has two port addresses, data and control. These ports do double
duty. You transmit data by writing to the data port, and receive
data by reading from it. Likewise, you set control codes by
writing to the control port, and get status information by
reading from it.

Because one byte would not allow for enough data to control
the ZSIO, the control port has eight write and three read
registers internally. Registers are numbered from zero, and
they default to zero after completing a function. Therefore,
only registers above zero require setting before access. You do
this by writing the register number to the control port. Register
#2, both read and write, is missing from channel-A. This
register, accessed only in channel-B, handies the LSB of the
interrupt vector for both channels.

The SET and GET Words do writes and reads to the ZSIO’s
control port. Both require the register number even for zero
register access. Compare this to the polling primitives (Scr 15),
which only access register zero.

Describing all these registers would be an article in itself.
Fortunately, there is some method in the madness. Write reg-

30

isters #3, #4, and #5 primarily set up the port parameters
(baudrate, parity, etc>, as well as some synchronous mode
parameters. Write registers #6 and #7 set up sync characters for
the Monosych mode. So I'll limit the description to those
registers involved with programming interrupts, namely, write
and read registers #0, #1, and #2.

Look over the description of the registers in the side bar. At
first, programming the ZSIO appears daunting because of all
the options. The trick is to mark out the functions you don’t
need, so you can focus on the rest.

I wanted this code to be useful as well as instructive, so [
implemented all four Mode 2 interrupts for Ch-A: Receive and
Transmit data (with buffers), Receive error, and Ext/status.

The buffers are circular queues with a defined Base and Top.
An Inpointer and an Outpointer locate the ends of the data in
the queue. A Count variable tracks the amount of data in the
queue and lets you detect whether it is empty or full.

The assembly code for the interrupt routines (Scr 6 to 8) use
LABEL and not CODE. Label returns just the starting address
of the assembly code. The Calls generated by the interrupts
must see only machine code.

CODE is used when assembly code must be accessed by Forth,
and return to Forth through Next. You could get the address of
the code in a CODE word by using Tick () and >BODY, but
this would be unnecessarily complicated.

The receive data routine, >IRXBUF, gets the data from the
receive data register and moves it to the receive buffer. The first
step is to save all the registers used by the interrupt, just as the
last is to restore the registers via SIORET. This is necessary to
prevent crashing the interrupted program.

Note that with Forth, you can still factor out code subroutines
and fragments which can then be Called or Jumped to. Note
too, that while SIORET has an Enable Interrupt (EI) opcode,
>[RXBUF does not have a Disable Interrupt (DI). That’s be-
cause the ZSIQ itself does a DI as part of the interrupt process.
Also, on returning from an interrupt, you must use RETI, as
this opcode is recognized by the ZSIO and causes an internal
priority interrupt latch to be reset.

The next step in >IRXBUF is to input the data and store it
temporarily in Reg-C. Then the value of IRXSIZE is maneu-
vered into Reg-DE while that of IRXCNT is placed in Reg-HL.

The subroutine HL>DE? is Called. It subtracts the value in
Reg-HL from that in Reg-DE. If the value in Reg-HL is larger
than that in Reg-DE, a borrow occurs, and the Carry/Borrow
Flag is Set. Note the use of SUB and SBB. The first ignores the
borrow in doing the subtractien, but the second includes it.
Since the count is incremented after the data is saved, a count
larger than the buffer size means that the buffer is full.

The Computer Journal / #67



The use of Forth macros in writing assembly code is a nice
touch that makes the code more readable. Here, CO= tests for
Carry Not Set, and if True, we do the subroutine (>IRXBUF).
This moves the data into the buffer, and updates the pointers
and count. Otherwise, the subroutine is bypassed and the data
is dumped. This is my choice of action. You could handle a
buffer overrun differently.

- The subroutine (>IRXBUF) first increments and saves the
count. It then moves the value of Top into Reg-DE, and the
Inpointer to Reg- HL. The data is moved to the buffer address
pointed to in Reg-HL. The Inpointer is incremented, and com-
pared to Top. If it has gone over Top, the Carry is Set (CS), and
the Inpointer is reset to the value in Base before being saved.
In that way the Inpointer continues its circular movement in
the queue.

With a few changes, the assembly code for the transmit buffer
routine follows that for receive. The main routine, TXBUF>,
moves data from the buffer to the SIO transmit data register.
The first step, after the registers are saved, is to test if ITXCNT
is zero, ie. the buffer is empty. Subroutine HLO? does this by
OR’ing the H and L registers, and, if both are zero, to set the
Zero Flag. If the flag is Not Zero (0<>), a data byte is sent by
(ITXBUF>), otherwise ITXRESET is done.

Subroutine (ITXBUF>) decrements and saves the count. The
value of Top is placed in Reg-DE, and the Outpointer into Reg-
HL. After moving the data from memory to the Tx-register, the
Outpointer is adjusted as in (IRXBUF>).

Subroutine ITXRESET sets the Data Transmit Int. Bit to ready
the ZSIO for future transmissions, When you return from the
interrupt without sending data, you must set this bit or the next
data transmission will not cause an interrupt. Flag ‘OIE? is
also set. This flag does double duty by indicating Tx-buffer
empty and transmit ready.

Factoring code into subroutines and fragments makes testing
and debugging much, much easier.

The Receive error and Ext/status routines are similar. Both
clean out the receive data register as it probably contains junk.
The appropriate status byte is read and stored into a variable.
A flag variable is also set. The proper interrupt latch is reset,
and then return. These two routines, as written, are designed
primarily for studying interrupt behavior, since the status byte
of a new interrupt will simply overwrite the old one.

It’s important to save the starting status values. Status bytes do
not startup as zero, and the information you seek may lie in the
difference between the old status value and the new. Also,
hardware design may invert the expected status bit values.

The Interrupt Table is the heart of Mode 2. It consists of eight

two byte addresscs, four for each channel, 16 bytes in ail. You
can have up to 16 tables located in a memory page defined by

The Computer Journal / #67

the MSB in the Z80 CPU. This allows for up to 32 interrupt
driven channels.

When an interrupt occurs, a Call is made to one of these eight
memory locations, depending on the channel and interrupt

type.

Base: TxData Ext/Stat RxData RxError \ Channel-B
TxData Ext/Stat RxData RxError \ Channel-A

Just as you can have interrupt priorities among chips, there is
also a priority within the chip, as follows:

Lowest: Ext/Stat TxData RxData RxError \ Channel-B
Ext/Stat TxData RxData RxError \ Channel-A

In both, RxError for Ch-A has the highest location and prior-
ity.

Let’s take these interrupts from the top down.

RxError - Interrupt generated when received data causes a
parity, receiver overrun, framing, or end-of-frame (SDLC)
error. Parity errors may be excluded from the list. All except
the framing error cause the relevant error bit in RR1 to be
latched so that subsequent data input does not change it. This
allows for a block of data to be received and then checked for
an error. The latched bits must be reset to detect new errors. If
the corrupt data is not removed from the receive register at this
time, it will later cause a normal RxData interrupt and be
saved.

RxData -- There are two receive data registers in the ZSIO and
any data in them will trigger this interrupt. If these registers are
full and a third character received, it is discarded and an
overrun error will occur.

Ext/Status -- Interrupt triggered when a change occurs in the
Data Carrier Detect (DCD), Clear to Send (CTS), or SYNC
lines, or a Break received. A Break is a string of nulls long
enough to cause a framing error. Though a type of receive
error, it causes the interrupt here.

TxData -- Interrupt triggered when the transmit data register
is emptied, and ready to accept another character. If there is no
more data to be transmitted, the Transmit Enable Bit must be
set. Otherwise, this interrupt will not occur with the next data
transmission.

The base address of the table takes the form xxxx000y. The
four ‘x’ bits can be any value, and will determine in which of
16 ‘paragraphs’ the table will be located within the 256 byte
page memory. Bit ‘y’ can be 0 or 1. Its choice should be
consistent or you can inadvertently overlap two tables by one
byte. It’s best, however, to set ‘y’ to 0. Not only are memory
calculations simpler, but it guarantees that none of the inter-

31



rupt addresses will extend into the next memory page.

The routine -- HERE 16 + 15 NOT AND -- calculates the next
paragraph base address. This is saved in INTBL, and then used
to set the Dictionary Pointer (DP) so that the interrupt table is
located correctly as inline code.

I wrote the NOINT function both as a place holder in the table
" and as insurance from an aberrant interrupt. Since Ch-B inter-
rupts are not enabled, it could be left off there. But the ITXBUF>
address must still begin at TxData, the ninth byte of the table.

Ext/Stat and TxData can be enabled independently, but RxError
tracks RxData. If RxData interrupts are enabled, you must
-provide for the associated RxError interrupt. You can use
NOINT to force a RETI, and just ignore the data and status
bytes. However, the corrupt data still in the receive register will
then cause a RxData interrupt and be saved to the buffer. Using
IRXERR instead would dump the corrupt data, and help elimi-
nate screen garbage.

The Receive Error Bits can be used for byte-wise error detec-
tion in data transmission. This was popular in the middle
1970’s, the dawn of microcomputing, but became obsolete after
X-Modem came on the scene.

Next to setup are the buffers. You could locate them in free
memory, but for now it’s simpler te place them inline with
ALLOT. Since all of the buffer pointers and count are vari-
ables, they must be initialized, and INITBUF does this. A
program can also use it to dump the buffer contents. CLRBUF
fills the buffers with nulls. This isn’t absolutely necessary, but
it is good practice to set all variables and buffers to a known
,starting state. This can be very helpful when testing and debug-

ging.

Programs will access the ZSIO interrupt system via IMKEY?
and IMKEY for input, and IMEMIT for output. The names
reflect my using the ZSIO mostly for modem connection.

First to define are DII and EII, to block interrupts. Code that
accesses or changes variables and pointers also affected by
interrupt routines must complete their task without interrup-
tion. Otherwise you get a conflict problem often encountered in
multitasking and networking.

The Words in angle brackets are the primitives. These Words
mirror, in high level Forth, the behavior of the assembly
routines in dealing with buffer counts and addresses. Note the
choice of unsigned comparison operators, eg. U<. It’s easy to
forget that counts and addresses are unsigned integers, and to
use signed integer operators. That is, until the values go above
32,767, and strange bugs appear.

I dreamed up the Word <IMEMIT#?7> to use in block data

transmission. It checks for a minimum buffer count before the
routine fills up the buffer again. Otherwise, the buffer is con-

32

stantly topped off a byte at a time, and data transmission slows.
Waiting until the buffer is empty results in a jerky transmission
pattern.

<IMEMIT> is designed to send data direct to the data port if
the buffer is empty and to return through the interrupt. If data
is being transmitted, then new data is added to the buffer. I
originally had the routine add all data to the buffer, and then,
if it were not transmitting, to access (ITXBUF>) to send it out.
This seemed unnecessarily complicated, but shows that alter-
nate routines are workable.

We initialize the interrupt vectors with INITVEC. First the
LSB of the INTBL address is fetched and stored in Write
Register #2 of Ch-B. Then the MSB is fetched and stored by
CPUVEC into the Z80 CPU. This is where we use the rest of
the Z80 opcodes. After the MSB on the stack is POPped into
Reg-DE, and MOVed into Reg-A, AI-MOYV transfers it to
internal register-I. 2IM then sets interrupts to Mode 2.

ITBL-ON enables the interrupt table by setting the status affect
vector bit (Ch-B only). Words SIOA-IOFF and SIOA-ION turn
the interrupts Off and On in the ZSIO. Don’t confuse this with
DI and EI which disable and enable the ZCPU’s response to
maskable interrupts. Turning interrupts Off doesn’t shut the
ZSI0 down. It still can Send and Receive data by polling. Also,
the interrupts can be selectively turned On. You may find it
more practical, for example, to use interrupts for Receive and
polling for Transmit.

INIT-SIOA-INT starts the machinery going by initializing and
clearing the buffers, initializing Mode 2 vectors and enabling
the vector table, turning the interrupts On, and then initializing
the Status variables and flags.

Lastly, comes a redefined BYE for exiting the program. It turns
off the Ch-A interrupts with RESIOA or SIOA-IOFF. If you
neglect this step, the interrupts may be forgotten, but, trust me,
they are not dead. An interrupt will seek out the now nonex-
istent vector table, jump routine, and program, and your system
will crash. Just turning off the modem can do it.

KILLSIO and KICKSIO are a crude, first pass attempt to
reconcile a ZSIO on interrupts and the Kaypro II disk system.
I had an ASCII file transmit system that also captured the
echoed text into a file. At the time only the data interrupts were
implemented. When the program did disk 1/O, it came back to
a dead ZSIO even though the Kaypro disk routine disables the
maskable interrupts. A variety of error flags were set so appar-
ently enough ZSIO activity occurred to crash the chip. I found
that turning the Receive and Transmit enable bit Off required
resetting the entire ZSIO system to turn back On. So I chose
to simply turn the interrupts Off with KILLSIO, and let the
chip crash. Later, KICKSIO resets all the status latches, cleans
up the system, and restarts transmitting any data in the buffer.
There has to be a better way.

Part of the challenge integrating these routines into your pro-

The Computer Journal / #67



gram is dealing with the buffers. Polling usually has a solid
connection to your program so that changes in I/O occur
instantly. Buffers add a certain springiness to /O response that
your program must allow for and control. To send a Cancel
command, for instance, you will need to dump the transmit
buffer first. If the command were just placed at the end of the
buffer, it could take several seconds before being sent. And a
closing disk save must account for a partially filled receive
" buffer.

Be certain that at least the variables, assembly code, and
interrupt table are located above the 16KB level in RAM to
avoid being bank switched out. The simplest way is to test
HERE before the variables are loaded, and set the dictionary
pointer (DP) at or above 16,384. The statement -- HERE 16390
MAX DP! -- placed just before the variables should do it.

A rough timing estimate on my 5 MHz Kaypro shows that the
assembly /O routines can process about 12,700 bytes/sec., and
the Forth I/O code, 5,200 bytes/sec. Since what goes in the
buffer has to come out, the average data rate, about 3700 bytes/
sec., is the actual throughput. In theory, that’s fast enough to
handle a 14,400 baud modem if the rest of the program (or
system) doesn’t add too much overhead.

Well, that’s all there is to implementing a fancy interrupt
driven serial /O on the Kaypro II. You may find it confusing
at first because there are so many parts to consider and pro-
gram. But all is revealed once you piece them together and
complete the puzzle. Best of all, the lessons learned here can
be applied to other interrupt systems.

Description Of Zilog SIO Registers Used In Interrupts
Write register #0 (WRO):

Bits 0 to 2 -- When set to a number from O to 7 causes the next access, whether read or
write to go to that register (if it exists). After the access, the register resets to #0.

Bits 3to 5:

000 Null code - no action is taken. Allows for other bit commands without affecting these
bits.

001 Send Abort -- in SDLC mode only.

010 Reset Ext/Status Int. -- After an interrupt generated by a Break or a change in the DTR,
CTS, or DCR, the status bits in RRO are latched so they can be read. This command resets
the latch so that interrupts can occur again.

011 Channel Reset -- Like the hardware reset but only effects channel-A.

100 Enable Int. on next Rx character -- Used with the On First Receive Character mode in
which the int. must be reset after each Rx int.

101 Reset Txint. Pending -- If the Tx data register must be left empty (no more data), the
Tx Int. must be reset.

110 Rx Error Reset -- After a Parity or Overrun efror, bits in RR1 are latched so they can be
read later. This command resets the latch.

1 11 Return from Interrupt -- This command is present only in channel-A. It does the same
as the RETI opcode in resetting the highest priority latch so that lower priority devices in a
daisy chain are enabled.

Bits 6 and 7 -- involved with SDLC mode. Normaily set to null in async. mode.
Write Register #1 (WR1):

8it #0 — Enables the Ext/Status Interrupt which causes interrupt on changes in the DCD,
CTS or SYNC lines, or from a Break/Abort transmission.

Bit #1 — Transmit Interrupt Enable

Bit #2 — Status Affects Vector (Ch. B only). This enables the interrupt vector table. Otherwise
only a single add! would be g ted for all interrupts.

Bits #3 and #4:

00 Receive interrupt Disable -- Self explanatory.

01 RxInt. on First Character -- Requires Rx int. to be reset after each character (see WR0)
10 Int. on all Rx characters (include parity in Rx error int.}

11 Int. on all Rx characters (exclude Parity from Rx error int.)

The Computer Journal / #67

Bits #5 to #7 - Wait/Ready Function Selector. Used to control the ZSIO's response to the
WAIT and READY lines during block reads or writes with a direct memory access (DMA)
controller.

Write Register #2 (Ch. B only) (WR2):

Holds the least significant byte of the interrupt vector. During an interrupt, all the bit values as
written are returned if the Status Effects Vector control bit is 0. ¥ this bit is 1, then only bits
#1, and #5 to #7 are returned as written, and bits #2 to #4 are modified depending on the
particular interrupt so as to access the proper address in the interrupt table.

Read Register #0 (RRO):

Bit #0 -- Rx char available.

Bit #1 -- Interrupt pending (Ch. A only)
Bit #2 -- Tx buffer empty.

Bit #3 -- DCD (Data Carrier Detect) Shows inverted state of DCD pin. if interrupt enabled for
Ext/Stat, a change in any of the bits (DCD, /CTS, Sync/Hunt, Break/Abort, or Tx-underrun/
EOM) will cause the DCD to be a latched until the Reset Ext/Stat command (WRO).

Bit #4 -- Sync/Hunt. Used in Sync. mode.
Bit #5 -- CTS (Clear to Send) Shows inverted state of CTS pin. Interrupts as in DCD.
Bit #6 -- Tx Underrun/End of Message -- Used in Sync. mode.

Bit #7 -- Break/Abort. In Async. mode, a null sequence in the input stream long enough to
generate a null character plus framing error will set this bit and cause an interrupt if enabled
(see DCD). The data register will contain a null byte which should also be discarded as part
of reset routine. In Sync. mode, an abort sequence (7 or more 1's) in the input stream sets
the bit and causes an interrupt.

Read Register #1 (RR1):

Bit #0 - All Sent. In async. mode, bit is set when Tx data register is empty. Always set in
sync. mode.

Bits #1 to #3 -- Used in SDLC receive mode.

Bit #4 ~ Parity Error. Set when parity does not match programmed sense (even/odd). Error is
latched and must be reset with Error Reset command (WRO).

Bit #5 -- Receive Overrun Error. Set when three or more bytes enter are received without a
read from the CPU. Receive has two input registers to buffer input. In an overrun, these two
bytes remain, and it is the third and additional bytes that are discarded. Error is latched and
must be reset with Emor Reset command (WRQ).

Bit #6 -- CRC/Framing Error. In async mode, bit is set for a framing error. This error occurs if
the Stop Bit is not detected when expected in the data word bit sequence. In sync mode, bit

is set for CRC error. This bit is not latched but is constantly updated with new data. It is reset
with Error Reset command (WRO0).

Bit #7 -- End of Frame. Used in SDLC mode.
Read Register #2 (RR2) (Ch. B only):

Contains the interrupt vector written into WR2. If the Status Effects Vector bit is not set, the
vector is retumed as written. If the bit is set, the vector is modified. After an interrupt, it is set
to the address of the highest priority interrupt pending at the time of the read. if no interrupt is
pending, the vector returned is modified to 00011x (x= bits as written). This is equivalent to
the Receive Error Condition for Ch. 8.

\ Screen 0
\interrupt Driven Zilog Serial YO ~ WJR04MAY94

Interrupt Driven Zilog Serial /O
16-Bit Pointers

Walter J. Rottenkolber

9 Mar 84

Forth-83 Source Code

( For Kaypro Il CP/M computer using Laxen & Perry's F83.COM )

\ Screen 1
\ interrupt Driven Zilog Serial /O =~ WJR04MAY84
ONLY FORTH ALSO FORTH DEFINITIONS DECIMAL
2 3THRU \Constants, ASM Words and Port routines.
19 21 THRU \ZSIO set parameter routines.
4 13 THRU \ZSIO interrupt code.

14 LOAD \Int. start/stop code.

15 LOAD \Polling IO

16 LOAD \ Simple terminal routines.

\ Screen 2
\ISIO -- Z80-SIO Constants WJR30MARS4
0 CONSTANT BAUDPORTA \ Baudport for SIO Port-A
6 CONSTANT SIOACTL \ SIO Control Port-A
4 CONSTANT SIOADATA \ SIO Data Port-A
7 CONSTANT SIOBCTL \ SI0 Control Port-B
§ CONSTANT SIOBDATA \ SIO Data Port-B
40 CONSTANT TXRES \ Reset Tx Data Empty Int.

33



48 CONSTANT RXERRES \ Reset Rx Data Error

18 CONSTANT EXTSTATRES \ Reset External Status Line Int.
56 CONSTANT INTRET \ Does same as RETI opcode
13 CONSTANT CRR

\ Screen 3

\ISIO -- 280 Opcodes for Mode 2, SIO-A Cti/Status  WJR19MAR94
HEX

: 6MI (b b) (S opcode) CREATE SWAP C, C, DOES> @, ;

ED 4D 8MI RETI ARETI = return from mode 2 int.
ED 5E 6M! 2iM \IM2 = set280 to mode 2 int.
ED 47 6M! AI-MOV \ MOV | A = set page addr. of int. table

DECIMAL

" \ Words to Set SIO-A control bytes & to Get status bytes

: SETBAUDA (ctl) BAUDPORTA PC! ;

: SETSIOA (cti reg#) SIOACTL PCl SIOACTL PCI;

: SETSIOB (cti reg#) SIOBCTL PC! SIOBCTL PC!;

: GETSIOA (reg# - b) SIOACTL PC! SIOACTL PC@ ;

: GETSIOB (reg# - b) SIOBCTL PC! SIOBCTL PC@ ;

\ Screen 4
\ISIO -- IRx Buffer Variables WJR04MAYS4
VARIABLE IRXSIZE
128 IRXSIZE | \ Change Buffer size as needed.
VARIABLE IRXTOP
VARIABLE IRXBASE
VARIABLE IRXIPTR
VARIABLE IRXOPTR
VARIABLE IRXCNT
VARIABLE IRXERRVAL
VARIABLE ‘IRXERR?

\ Screen §
\ISIO -- [Tx Buffer Variables WJRO4MAYS94
VARIABLE [TXSIZE
128 TXSIZE | \ Change bufter size as needed.
VARIABLE TXMIN#
VARIABLE TXTOP
VARIABLE TXBASE
VARIABLE ITXIPTR
VARIABLE TXOPTR
VARIABLE fTXCNT
VARIABLE EXT/STATVAL
VARIABLE 'EXT/STAT?
VARIABLE 'OIE? ‘OIE? ON \true= Tx buffer empty

\ Screen 6

\ISIO - IRx & ITx Buffer YO ASM Routines WJR19MAR94

LABEL HL>DE? \ Carry flag set (CS) if HL>DE, CO= if HL<=DE
AORA EAMOV LSUB DAMOV HSBB RET

LABEL HLO? \Zero flag setif HL=0
LAMOV HORA RET

LABEL SIORET \ Common return path for >IRXBUF & ITXBUF>
PSWPOP 8POP DPOP HPOP El REN

LABEL (>IRXBUF) \data in reg-C, IRXCNT in reg-HL

. HINX IRXCNT SHLD IRXTOP LHLD

XCHG IRXIPTRLHLD CMMOV HINX

HL>DE? CALL CS IF IRXBASE LHLD THEN IRXIPTR SHLD RET

LABEL >IRXBUF \ Moves byte from SIO to ncuffer
HPUSH DPUSH BPUSH PSW PUSH
SIOADATAIN A CMOV IRXSIZE LHLD XCHG IRXCNT LHLD
HL>DE? CALL CO=IF (>IRXBUF) CALL THEN SIORET JMP

\ Screen 7
\ISIO - IRx & [Tx Buffer O ASM Routines WJR16MARS4
LABEL (ITXBUF>) \itxcnt value in HL
HDCX [ITXCNT SHLD [TXTOP LHLD XCHG
TXOPTR LHLD M A MOV SIOADATA OUT HINX
HL>DE? CALL CS IF ITXBASE LHLD THEN
TXOPTR SHLD RET
LABEL ITXRESET
TXRES A MVI SIOACTL OUT
TRUEHLXI ‘OIE? SHLD RET
LABEL ITXBUF> \ Sets var 'OIE? = true when buff empty
HPUSH DPUSH BPUSH PSW PUSH
ITXCNT LHLD HLO? CALL 0<>
IF (ITXBUF>) CALL ELSE ITXRESET CALL THEN
SIORET JMP

\ Screen 8
\ISIO ~ IRXEIT & Ext/Stat ASM Routines WJR30MARS4
LABEL IRXERR \Err in parity, overrun, framing, & frame end
HPUSH DPUSH BPUSH PSW PUSH
SIOADATA IN ( dump data) 1 AMVI SIOACTL OUT
SIOACTLIN OHMVI ALMOV IRXERRVAL SHLD
TRUE H LX) 'IRXERR? SHLD
RXERRES A MVI SIOACTL OUT SIORET JMP
LABEL EXT/STAT \Chg. in DCD, CTS, SYNCH, & Break
HPUSH DPUSH BPUSH PSW PUSH
SIOADATA IN ( dump data) *
SIOACTLIN OHMVI AL MOV EXT/STATVAL SHLD
TRUE HLXI 'EXT/STAT? SHLD
EXTSTATRES A MVl SIOACTL OUT SIORET JMP
LABEL NOINT El RETI FORTH \lInterrupt NOOP

34

\ Screen 9
\ISIO -- Set-up Interrupt Table WJR23MAR94
VARIABLE INTBL
HERE 16 + 15 NOT AND INTBL | \ Base of interrupt tabie
INTBL@ DP 1 \ interrupt Table
NOINT, NOINT, NOINT, NOINT, \ChannelB
ITXBUF>, EXT/STAT, >IRXBUF , IRXERR, \Channe! A

\ Screen 10
\ISIO -- IRx & ITx Buffer Initialize = WJR16MAR94
CREATE (IRXBUF) IRXSIZE @ ALLOT
CREATE (ITXBUF) ITXSIZE @ ALLOT
: INITRXBUF
(IRXBUF) DUP IRXBASE | DUP IRXIPTR |
DUP IRXOPTR | IRXSIZE @ + IRXTOP | IRXCNT OFF ;
¢ INITTXBUF
(ITXBUF) DUP ITXBASE | DUP ITXIPTR |
DUP ITXOPTR | ITXSIZE @ + ITXTOP | ITXCNT OFF
‘'OIE? ON ;
T INITBUF  INITRXBUF INITTXBUF ;
: CLRBUF
IRXBASE @ IRXSIZE @ ERASE
[TXBASE @ ITXSIZE @ ERASE ;

\ Screen 11
\ISIO -- IRx & ITx Buffer /O WJR30MAR94
CODE DIl DI NEXT C;
CODE Ell El NEXT C;
1 <IMEMIT?> (- f) \f= true if itx-buf not fuit.
DIl ITXCNT @ [TXSIZE @ U<EIl;
: <IMEMIT#?> (- 1) \f= true if itx-buf <= itxmin#.
DIl ITXCNT @ ITXMIN# @ U> NOT Ell ;
1 >TXBUF (b)
DIl ITXIPTR @ C! ITXIPTR @ 1+ DUP TXTOP @ > IF
DROP ITXBASE @ THEN ITXIPTR | 1 ITXCNT +{ Eli ;
: <IMEMIT> (b)
Dl 'OIE? @ IF ‘OIE? OFF SIOADATA PC!
ELSE >ITXBUF THEN Ell;

\ Screen 12
\iSIO -- IRx & Mx /O WJIR04MAYS4
1 <IMKEY?> (- f) \f= true if char in n-buf
IRXCNT @ 0<> ;
: <IMKEY> (- b) \ Equiv. to IRXBUF>
DIl IRXOPTR @ C@ IRXOPTR @ 1+ DUP IRXTOP @ U> IF
DROP IRXBASE @ THEN IRXOPTR ! -1 IRXCNT +! Ell ;
:IMKEY? (-f) <IMKEY?> ;
1 IMKEY (-b) BEGIN PAUSE <IMKEY?> UNTIL <IMKEY> ;
:IMEMIT (b) BEGIN PAUSE <IMEMIT?> UNTIL <IMEMIT> ;

\ Screen 13
\ISIO -- Init. Interrupt Vectors WJR28MAR94
CODE CPUVEC ( hi-ivec-adr)
D POP E AMOV AI-MOV 2IM NEXT C;
: SIOVEC ( low-ivec-adr) 2 SETSIOB ;
: SIOA'VECON 41 SETSIOB ;
¢ INITVEC \ Set up Interr. vectors for Channel-A
INTBL DUP C@ ( sio ) SIOVEC 1+ C@ (cpu ) CPUVEC;
: SIOA-IOFF 01 ( cti reg#) SETSIOA ; \iRx & iTx off
\: SIOA-ION 24 1 (ctl reg#) SETSIOA ; \iRx only
\: SIOA-ION 261 (cti reg#) SETSIOA ;\iTx & iRx on.
: SIOA-ION 27 1 (cti reg#) SETSIOA ; \iTx, ext/stat, iRx on
: SET-ERRVAL \ Store base status values.
0 GETSIOA EXT/STATVAL! 1 GETSIOA IRXERRVAL!
'EXT/STAT? OFF ‘IRXERR? OFF ;
. INIT-SIOA-INT \initialize Channel-A SIO interrupts
INITBUF CLRBUF INITVEC SIOA-VECON SIOA-ION SET-ERRVAL ;

\ Screen 14
\ISIO - IRx & ITx Stop and Restart WJRO4MAY94
1 KILLSIO SIOA-IOFF DIl 50 MS ;
: <MKEY?> (-f) SIOACTL PC@ 1AND;
: <MKEY> (-b) SIOADATA PC@ .
. GOBBLE BEGIN <MKEY?> WHILE <MKEY> DROP REPEAT ;
CODE (ITX>) (n) \ n= itxcnt val
HPOP (ITXBUF>) CALL NEXT C;
CTX>  [TXCNT @ (ITX>) ;
T KICKTX ITXCNT @ 0= IF ‘OIE? ON ELSE ‘OIE? OFF ITX> THEN ;
: KICKSIO \ Kickstart the SIO after KILLSIO

Dil TXRES 0 SETSIOA \reset iTx
EXTSTATRES 0 SETSIOA \ reset ext/stat
GOBBLE RXERRES 0 SETSIOA \ reset iRx

0 GETSIOA 2 AND IF INTRET 0 SETSIOA THEN \ reset iRET
SIOA-ION KICKTX Ell ; \ turn on interrupts & restart iTx

\ Screen 15

\ Polling SIO - KayPro2WJR16MAR94

1 <MKEY?> (-f) SIOACTL PC@ 1AND;

I <MEMIT?> {-f) SIOACTL PC@ 4 AND;

: <MKEY> (-b) SIOADATA PC@

1 <MEMIT> (b) SIOADATA PCI;

:MKEY? (-f) <MKEY?>

MKEY  (-b) BEGIN PAUSE <MKEY?> UNTIL <MKEY>;
IMEMIT (b) BEGIN PAUSE <MEMIT?> UNTIL <MEMIT> ;

\ Screen 16

The Computer Journal / #67



TCJ CLASSIFIED

" Needed: Amiga 1000 schematic (revi-
sion A). KB6ZBD, RR2, Box 195,
Woonsocket, SD 57385.

Needed: CP/M Kaypro 10 Software,
Excalibur "work in progress", "payroll",
“"order entry", "standard billings." Need
these separate modules of the group of
11. No Longer supported. Have others in
group intended for repair shop billing.
Contact Jim's Repair Service, 8633
Wicker Ave., St. John IN 46373-9741,

(219) 365-5555.

For Sale: 500 computer and technical
books from 50's thru 90's. 300-400 in
mint condition, many from 70's and cov-
ering micros and minis, software and
hardware. Asking $1500. Richard
Hawkins, (216) 371-5935.

KayPro printer (Juki 6100 daisywheel)
and tractor feed, with cables. Extra
printwheels. Works fine! Close out $45.

Bootable Z-System floppies and ZCOM
for Kaypro 2x or 4. Yes you can run the
Z-System from bootable floppies (on
stock ROM machines). Here they are
with installer disk to make bootable disks
in three TPA's. Basic utilitiecs, ZCOM
(builds itself), ZRDOS and Z-system
manual. All for $20. "Getting the most
from WordStar and Mailmerge:
Things MicroPro Never Told You"
book by David Stone. For version 3.x
and some Ver. 4 tips. Only $5.00. Call at
(916) 371-2964.

For Sale: Make offer on SB180 Dual
floppy system with COMM180 & ETS
180 boards. Loads of Software - Z-Sys-
tem utilities, programming tools,
WordStar 4. All manuals, CP/M books,
TCJ back Issues #22 to 66. Contact: Ian
Partridge, 22 Laing Gardens, Broxburn,
EH52 6XT, Scotland. Tel: +44 506
858038; Fax +44 331 7709.

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid basis
only. The cost is $5.00 per ad entry.
Support wanted is a free service to sub-
scribers who need to find old or missing
documentation or software. Please limit
your requests to one type of system.

Commercial Advertising Rates:

Size Once 4+

Full $120  $90
1/2 Page $75 $60
1/3 Page $60 $45
1/4 Page $50  $40

Market Place  $25 $100/yr
Send your items to:
The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535

e e

\ Simple terminal WJR04MAY94

: ESC? (b) \ Escape from terminal loop
27 (ESC) = ABORT” ++DONE++" ;

: T \Simple polied terminal loop.
BEGIN KEY? IF KEY DUP ESC? MEMIT THEN
MKEY? IF MKEY EMIT THEN AGAIN ;

:IMDM \lInitializes interrupt SIO
1200BBS INIT-SIOA-INT ;

-iT \ Simple interrupt terminal loop.
BEGIN KEY? IF KEY DUP ESC? IMEMIT THEN
IMKEY? IF IMKEY EMIT THEN AGAIN ;

: .ERRVAL \displays int. error values.
IRXERRVAL ? EXT/STATVAL 7,

\ Screen 17
\ Data to Set Zilog SIO Baud Rate WJR180CT93
Baud Cti-Value

300 5

1200 7

2400 0A
4800 oc

9600 OE
19200 OF
\ Screen 18

\ Data to Set Zilog SIO Word Bits, Stop Bit,'& Parity
x-regh = 3 tx-regk = 5

tx-cti x-ctl bits
88 1 5
A8 81 6
c8 41 7
E8 Cc1 8
stop ctl
1 44 stop-bit and parity use reg# 4
15 58 must be OR'd together.
2 4ac
parity ctl
one 40

The Computer Journal / #67

odd a1
even 43

\ Screen 19
\ Init. SIO Routine
HEX
VARIABLE TXCTL \save tx ctl byte for hangup & mbreak
:RESIOA 180 SETSIOA ; \ Reset SIO Channel-A
. SETBBS \ Standard BBS setup - 8N1
C1 () 3 SETSIOA EB (tx 8-bits) DUP TXCTL | 5 SETSIOA
44 (1-stop) 40 (no parity) OR 4 SETSIOA ;
: SETPAK \ Setup for some commercial systems - 7E1
41 () 3 SETSIOA C8 ( tx 7-bits) DUP TXCTL 1 5§ SETSIOA
44 ( 1-stop) 43 ( even parity) OR 4 SETSIOA ;
DECIMAL\S

WJR04MAY94

\ Screen 20

\ Set SIO Parameters WJR0O4MAYS4
: 1200BAUD RESIOA 7 SETBAUDA ;
: 300BAUD RESIOA 5 SETBAUDA ;
\ Words to set SIO for terminal routines

: 120088S 1200BAUD SETBBS;

: 300BBS 300BAUD SETBBS;

: 1200PAK 1200BAUD SETPAK;

: 300PAK 300BAUD SETPAK ;

\ Screen 21
\ TOG-TXBIT HANGUP MBREAK WJRO4MAYG4
: TOG-TXBIT (time-ms mask)

TXCTL @ TUCK XOR § SETSIOA

SWAP ( time) MS 5 SETSIOA ;

: HANGUP 1200 128 TOG-TXBIT ; \ drop DTR to hangup modem.

: MBREAK 100 16 TOG-TXBIT ; \ Send Break to modem.
HEX : DRV-OFF 1C PC@ 40 OR 1C PC!; DECIMAL
\ Turns off Kaypro |l floppy drive motors.

==== End Code ====

6811 and 8051
Hardware & Software

Supporting over thirty versions
with a
development environment..

FORTH runs on both the PC
host and Target SBC with very
low overhead

$84 thru developers systems.
For brochure or applications:

highly  integrated

Our powerful, easy to use

Low cost SBC's from

AM Research
4600 Hidden Oaks Lane
Loomis, CA 95650
1(800)947-8051
sofia@netcom.com

35



Real Computing

By Rick Rodman

Tiny-TCP

I’ve fixed a number of minor bugs in the
FTP client code of Tiny-TCP, and now
it can retrieve files from a server just
fine. The next step is writing the FTP
server side code. I don’t expect too
much difficulty, so this code should be
on the BBS when you’re reading this.
Also, I can E-mail it to you if you send
me E-mail, or mail you a diskette if you
send it to me formatted with return post-
age.

FTPis a very simple package which uses
ASCII messages to transfer commands
and results to and from a *“control port™’,
port 21, while the data is transferred
through another port. These ‘‘ports”’
are simple numbers used by the TCP
layer to identify endpoints within a spe-
cific machine. Tiny-TCP performs a
sort of multitasking by means of a poll-
ing loop in which it calls a function
called *‘application’’.

There are two areas where porting the
code could be a problem: first, in the
accessing of files; second, in the serial I/
O logic. The first area is mostly a
filename syntax and directory format
issue. For example, if you retrieve a file
*“fusr/rickr/photocd/photocd-1.24.doc’’
from a Sun, and want to save it on a CP/
M system, the file saving logic should
have additional logic to remove the di-
rectory path and truncate the filename.
There are also some variations in C com-
piler file I/O function call syntax you
may have to deal with.

As far as the serial I/O logic is con-
cerned, it’s unlikely (unless you’re run-
ning CP/M Plus or MP/M) that your
serial driver has any interrupt-driven
buffering or a standard interface method.

36

Tilmann Reh has suggested using a jump
table so that ‘‘code overlays’’ can be
added to the program for this logic, much
as was done with Modem?7. This seems
like a good idea. Speed-wisg, in a point-
to-point configuration each link could
be a different speed, but I recommend
using 9600 baud for everything. If you
don’t have interrupts on the serial /O,
you probably won’t be able to go that fast
without losing characters; you might be
able to run 1200 baud.

I’ve already discussed the real-time clock.
This clock is used for timeouts. These
timeouts are not very critical, and can be
implemented by incrementing a
subcounter which, when it reaches an
empirically-determined value, incre-
ments the seconds value. If your ma-
chine has a real-time clock, of course, by
all means use it. Because of the fact that
the software uses a big polling loop, do
not do anything that will take a substan-
tial amount of time.

One of my ports will be to the Amiga.
I’'m aware that Matt Dillon has a fine
package on the Amiga, called DNET,
and that KA9Q has also been ported.
However, the machine I have is an old
A1000 with no hard drive, and I'm sure
that most of the Amigas out there are a
similar configuration, so mine, and those,
have no way of using those larger pack-
ages. There is a nice C compiler, also
from Matt, called DICE, which can be
run on a floppy-only Amiga, and this is
what I plan to use.

I’'m also planning to port to the DEC
Rainbow. The Rainbow is an unusual
computer .with two CPUs running si-
multaneously. It appears from the sche-
matics that only the Z-80 can talk di-
rectly to the serial ports, so Tiny-TCP

will need to be running on that proces-
sor. By the way, Rainbows and their
similar-looking kin, the PDP-8-based
Decmate III and the LSI-11-based Pro-
fessional 350, are common in the used
market at giveaway prices. Rather ironic,
considering their original prices!

Another Bus Bites the Dust

The time has apparently come that even
IBM has had to recognize the imminent
death of Micro Channel. In some ways,
Micro Channel was ahead of its time;
but in other ways, it was very annoying.
Yes, you could configure your boards
through software. But the way you had
to do it, booting and re-booting the Ref-
erence Diskette, over and over, some-
times five or six times, was intolerably
cumbersome. And Micro Channel boards
were very expensive, costing twice or
more as much as the equivalent ISA
board.

Now that IBM has admitted its willing-
ness to let MCA fade away, we’re prob-
ably going to sec lots of PS/2s at flea
markets and hamfests. If you’re tempted
by a pretty one, try to think of it as a
generic DOS box - fine for word pro-
cessing, but don’t plan to put any boards
in it.

Conventional wisdom regarding Win-
dows programming

Those of you who, like me, have to make
a buck by programming for Windows,
have always been told to stay away from
Large Model. This is because Windows
can’t move the segments once they are
loaded. If you don’t know what I'm
talking about, skip to the next section.

I’m here to tell you, it ain’t necessarily

The Computer Journal / #67



so. The bad thing about small-model
EXEs and DLLs is that the whole mod-
ule gets loaded in one fell swoop. This
means that your memory requirements
are actually maximized, not minimized,
by using small model. This can lead to
memory problems, especially low-
memory problems. Windows will not be
-able to unload any of your EXE or DLL.
Also, your loading time is maximized -
everything must be loaded at once.

You read it here, and you’ll probably
never see it anywhere else: The way to
do Windows is to use /arge model! But
not just that. You also have to use named
code segments by using the “‘-NT”’ op-
tion of the compile step, and give each
module a distinct name. Then, you have
to list each segment in a SEGMENTS
section of your DEF file, and give it the
attributes ‘“MOVEABLE [sic]
LOADONCALL DISCARDABLE’.
This will cause each to become a sepa-
rate segment in the EXE or DLL file.
Finally, you have to disable the segment
optimization by adding the **-K’’ option
on the RC line. RC will complain about
having to convert some segments to
PRELOAD. By moving things around,
you should try to minimize the number
of segments marked as PRELOAD, but
some will almost always get marked that
way.

I realize that all of this is the exact
opposite of what everyone else is telling
you, but it really works. Send E-mail or
letters if you need more help. Don’t be
ashamed to ask, either. Microsoft Win-
dows has got to be the most bizarre,
idiosyncratic target environment ever
developed - even 1802 machine code on
the COSMAC VIP would be less

byzantine.
News Items

The latest thing in the Minix world is
that Minix has been ported to the
Transputer chip by some folks in Ger-
many. Remember the Transputer? It
was Inmos” attempt to put a Lamborghini
in every driveway.

The AT&T~lean version of Unix called
“NetBSD’” has been ported to the PC-
532, and minor cleanup and debugging

The Computer Journal / #67

is underway. This is a full Unix operat-
ing system which will require 8 mega-
bytes of RAM, which means that a patch
is necessary to the ROM monitor. Dis-
tribution may be done by tape.

Can you believe the software price wars?
FoxPro for $99! Quattro Pro for $49!
08/2 for Windows for $29! (By the way,
0S/2 for Windows is a great package.
Instead of Win-OS/2, you run real Win-
dows - including our old friend Dr.
Watson.) But the low point of the price
war to date is Simply Tax for free. Idid
my taxes with this package - it’s very
good. Now a couple of other software
packages are following this lead, for
example, File Saver. My guess is that
everyone hopes to build market share
and then sell upgrades to a substantial
percentage of their user base.

Rumors are abounding about Commo-
dore, Philips, and Hewlett-Packard. Pic-
ture an Amiga 5000 with a PA-RISC
and a built-in Video Toaster - running
Windows NT. Don’t be in a big hurry to
plunk down plastic for a Power Mac.

It may be asked, what is the Real Com-
puting view of these various RISC pro-
cessors? As TCJ readers, we have to
reserve judgement until we see the as-
sembly language instruction set of each
processor. Otherwise, what else is there
to go on besides marketing hype? The
only one I’ve seen so far is the Motorola
88000. Manufacturers are invited to
submit instruction set listings to Real
Computing c/o TCJ.

I’'ve moved the BBS to an IBM PS/2
running The Major BBS. I’'m sorry this
isn’t a 32-bit platform, but I have other
projects underway. At some point I'd
like to move it to a multitasking plat-
form and integrate it with document
management and text retrieval systems.

Next time

I didn’t get to the Linux TCP/IP owing
to pressing priorities in other areas.
However, TCP/IP is becoming a high
priority in a surprising number of arcas
of my life, both professional and per-
sonal. It seems that TCP/IP has become
the de facto protocol for internetworking

- connecting smaller LANs together.

Here in the Nation’s Capital, the Na-
tional Information Infostructure (NII) is
a popular topic of conversation. Actu-
ally it’s not that nobody knows what it
is, it’s that everybody conceives of it as
their own pet system. Everyone wants to
provide it - the cable TV companies, the
phone companies, the computer compa-
nies, the satellite companies. The only
thing people seem to agree on is that it
will use TCP/IP, or it will use OSI (X.400
and X.500), or an admixture of both, ...
or something else.

Anyway, you can expect that a lot of
TCP/IP and X Window will be forth-
coming in Real Computing. I’m having
fun interconnecting my little machines
so they can be players just like the big
boys in the NII, whatever it turns out to
be - if anything.

Where to call or write

Real Computing BBS or Fax: +1 703
330 9049

E-mail: rickr@aib.com

Mail: 8329 Ivy Glen Court, Manassas
VA 22110

TINY-TCP.ZIP and FTP information
continued on next two pages (38 & 39).

( LINUX $2995 )
Yggdrasil CDROM

Plug-and-Piay * New Release
X Window System
TCPAP, NFS and other protocols
GNU C, C++, Other Languages
Taylor UUCP, kermit, ZModem
Blnaries and Source Code
Supports Most COROM Drives

Just Computers!
(707) 769-1648
FAX: (707) 765-2447

P.O. Box 751414
Petaluma, GA 94975-1414
linux @justcomp.com
Visa/MasterCard

For auto-information, send e-mall to
info@justcomp.com
\__Include word *help" in message

37



Archive: a:TINYTCP.ZIP

Name Length Mod Date
ARP.C 3198 13 Dec 93
'MAIN.C 1654 03 Apr 94
SED.C 7102 13 Dec 93
SEDSLIP.C 6515 13 Feb 94
TINYFTP.C 9105 03 Apr 94
TINYTCP.C 24539 03 Apr 94
CASYNCMS.H 270 14 Dec 93
PROTO.H 2098 13 Feb 94
SED.H 2979 13 Feb 94
TINYTCP.H 6642 13 Dec 93
BU.BAT 126 13 Feb 94
DBAT 54 13 Dec 93
GRAPH.BAT 181 08 Dec 93
XBAT 20 03 Apr 94
DOS.MAK 1387 14 Dec 93
README.TXT 2429 13 Feb 94
CASYNCMS.ASM 6737 14 Dec 93
*total 17 75036
TinyTcp Public Domain Release

The files in this release contain a simple implementation of
TCP & FTP, suitable for burning into ROM. It is, in effect, a
big hack put together in two or three days. It works for us,
though, and you might like it, too. Warning: the code was
intended for a 68000, and doesn’t have any byte swapping
support in it. Shouldn’t be too hard to add, though.

- Geof Cooper

Imagen Corporation
[imagen!geof@decwrl.dec.com]
April 16, 1986

The package requires some system support:

clock_ValucRough() - should be a procedure that returns the
current value of a millisecond clock. The procedure is called
frequently, so that interrupts are not needed to service the
clock.” Our implementation polls the real time timer and
assumes that it is called frequently enough so that it doesn’t
miss clock ticks (Since the timer is only used for network
timeouts, it doesn’t really matter if it does miss clock ticks, of
course). - Systems without a clock could probably get by with
a procedure that increments a static variable and returns it, by
adjusting the timeout constants in the program.

Network driver - some network interface driver is needed. A
driver for a 3Com multibus (ethernet) board is included, this
board isn’t made anymore (at least not by 3Com), so you’ll
probably need to write a driver for the board in your system.

Guide to source files:

sed.c - Simple Ethernet Driver - Driver for 3Com multibus
card. Ifyou have another type of Ethernet board, you can use
this driver as a template.

sed.h - header file for the above.

arp.c - Implementation of Address Resolution Protocol. Note
that there is no arp ‘“mapping’’ per se. The higher level code
(tcp, in this case) is required to keep track of internet and
ethernet addresses.

tinytcp.c - Implementation of TCP.
tinytcp.h - Header file for above, and for everything else.

tinyftp.c - Implementation of FTP, only allows files to be
retrieved, not sent.

Notes from R. Rodman:

While the above says ‘public domain release’, all of the files
contain copyright notices.

940213 The TCP layer appears to be working now, after
correction of a couple of minor errors. However, the FTP
server does not respond when I send a message (e.g. HELP),
and the FTP layer here sits waiting for a response.

ek FTP.TXT

Network Working Group
Request for Comments; 959

J. Postel

J. Reynolds

ISI

Obsoletes RFC: 765 (IEN 149)
October 1985

FILE TRANSFER PROTOCOL (FTP)
Status of this Memo

This memo is the official specification of the File Transfer
Protocol (FTP). Distribution of this memo is unlimited.

The following new optional commands are included in this
edition of the specification:

CDUP (Change to Parent Directory), SMNT (Structure Mount),
STOU (Store Unique), RMD (Remove Directory), MKD (Make
Directory), PWD (Print Directory), and SYST (System).

Note that this specification is compatible with the previous
edition.

The Computer Journal / #67



1. INTRODUCTION

The objectives of FTP are 1) to promote sharing of files
(computer programs and/or data), 2) to encourage indirect
or implicit (via programs) use of remote computers, 3) to
shield a user from variations in file storage systems among
hosts, and 4) to transfer data reliably and efficiently. FTP,
though usable directly by a user at a terminal, is designed
mainly for use by programs.

**xx TCP.TXT
RFC: 793

TRANSMISSION CONTROL PROTOCOL
DARPA INTERNET PROGRAM
PROTOCOL SPECIFICATION

September 1981

by

Information Sciences Institute
University of Southern California
4676 Admiralty Way

Marina del Rey, California 90291

This document describes the DoD Standard Transmission
Control Protocol (TCP). There have been nine earlier
editions of the ARPA TCP specification on which this
standard is based, and the present text draws heavily from
them. There have been many contributors to this work
both in terms of concepts and in terms of text. This edition
clarifies several details and removes the end-of-letter buffer-
size adjustments, and redescribes the letter mechanism as
a push function.

Jon Postel

Editor

RFC: 793

Replaces: RFC 761

IENs: 129, 124, 112, 81,
55, 44, 40, 27,21, 5

PROTOCOL SPECIFICATION
1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for
use as a highly reliable host-to-host protocol between hosts
in packet-switched computer communication networks,
and in interconnected systems of such networks.

This document describes the functions to be performed by
the Transmission Control Protocol, the program that imple-
ments it, and its interface to programs or users that require
its services.

TCP is a connection-oriented, end-to-end reliable protocol
designed to fit into a layered hierarchy of protocols which
support multi-network applications. The TCP provides
for reliable inter-process communication between pairs of

The Computer Journal / #67

processes in host computers attached to distinct but interconnected
computer communication networks.

The TCP fits into a layered protocol architecture just above a basic
Internet Protocol [2] which provides a way for the TCP to send and
receive variable-length segments of information enclosed in internet
datagram ‘‘envelopes’’. The internet datagram provides a means
for addressing source and destination TCPs in different networks.
The internet protocol also deals with any fragmentation or reassembly
of the TCP segments required to achieve transport and delivery
through multiple networks and interconnecting gateways. The
internet protocol also carries information on the precedence, secu-
rity classification and compartmentation of the TCP segments, so
this information can be communicated end-to-end across multiple
networks.

Protocol Layering

+ +
higher-level
+ +
TCP
+ +
internet protocol
+ +

communication network

NOW AVAILABLE!

“...a must addition to the
library of every computer
enthusiast. Highly recom-
mended.”

—John C. Dvorak,
PC Magazine

Stan Veit’s
HISTORY

OF THE
PERSONAL COMPUTER

order trom: WORLDCOMMe 1-800-472-0438

65 Macedonia Road, Alexander NC 28701

(Visa and MasterCard sccepted)
N.C. Residents Add 6% Sales Tax

@ $27.95 plus $3.00 S&H
@ $19.98 plus $3.00 S&H

Please Send:
Hardback Copies of History
____Paperback Coples of History

Name
Address

City Zip

39



MOVING FORTH
by Brad Rodriguez

THE CODE I PROMISED

At long last, I am ready to present the complete source code for
an (I hope) ANSI compliant Forth, CamelForth[1]. As an
intellectual exercise — and to ensure a clear copyright -- I've
written this code entirely from scratch. (Do you know how
hard it is to not look at excellent code examples?) Of course,
my experience with various Forths has no doubt influenced
some design decisions.

Due to space limitations, the source code will be presented in
four installments (if you can’t wait, complete files will be on
GEnie):

1. Z80 Forth ‘‘primitives,”” in assembler source
2. 8051 Forth “‘primitives,”” likewise

3. Z80/8051 high-level kernel, likewise

4. complete 6809 kernel, in metacompiler source

For CamelForth I’'m trying to use exclusively public-domain
tools: for the Z80, the Z8OMR assembler under CP/M [3]; for
the 8051, the A51 cross-assembler on an IBM PC [4], and for
the 6809, my own metacompiler under F83 for CP/M, IBMPC,
or Atari ST.

By “‘kernel’’ I mean the set of words that comprises a basic
Forth system, including compiler and interpreter. For
CamelForth this is the ANSI Forth Core word set, plus any
non-ANSI words necessary to implement the Core word set. A
Forth kemel is usually written partly in machine code (as
CODE words), and partly in high-level Forth. The words
which are written in machine code are called the ‘‘primitives,”’
since, in the final analysis, the entire Forth system is defined
in terms of just these words.

Exactly which words should be written in machine code? The
selection of the optimal set of primitives is an interesting
debate. A smaller set of primitives makes for easier porting,
but poorer performance. I’ve been told that a set of 13 primi-
tives is sufficient to define all of Forth -- a very slow Forth.
eForth [2], designed for easy porting, had a more generous set
of 31 primitives. My rules are these:

1. Fundamental arithmetic, logic, and memory opera-
tors are CODE.
2. If a word can’t be easily or efficiently written (or

written at all) in terms of other Forth words, it should be CODE
(e.g., U<, RSHIFT).

3. If a simple word is used frequently, CODE may be
worthwhile (e.g., NIP, TUCK).

4. If a word requires fewer bytes when written in
CODE, do so (a rule I learned from Charles Curley).

5. If the processor includes instruction support for a
word’s function, put it in CODE (e.g. CMOVE or SCANon a
Z380 or 8086).

6. If a word juggles many parameters on the stack, but
has relatively simple logic, it may be better in CODE, where
the parameters can be kept in registers.

7. If the logic or control flow of a word is complex, it’s
probably better in high-level Forth.

For Z80 CamelForth I have a set of about 70 primitives. (See
Table 1.) Having already decided on the Forth model and CPU
usage (see my previous TCJ articles), I followed this develop-
ment procedure:

1. Select the subset of the ANSI Core word set which
will be primitives. (Subject to revision, of course.)

2. From the ANSI descriptions, write assembler defi-
nitions of these words, plus the processor initialization code.

3. Run this through the assembler, fixing source code
€ITOTS.

4 Test that you can produce working machine code. 1
usually add a few lines of assembler code to output a character
once the initialization is complete. This seemingly trivial test
is crucial! It ensures that your hardware, assembler,
““‘downloader’” (EPROM emulator or whatever), and serial
communications are all working!

5. (Embedded systems only.) Add another assembler
code fragment to read the serial port and echo it back...thus
testing both directions of communications.

6. Write a high-level Forth fragment to output a
character, using only Forth primitives. (Usually something
like “‘LIT,33h,EMIT BYE’’.) This tests the Forth register
initialization, the stacks, and the threading mechanism. Prob-
lems at this stage can usually be traced to logic errors in NEXT
or in the initialization, or data stack goofs (e.g. stack in ROM).

7. Write a colon definition to output a character, and
include it in the high-level fragment from step 6. (E.g., define
BLIP as ‘‘LIT,34h,EMIT,EXIT”’ and then test the fragment
““LIT,33h,EMIT, BLIP,BYE’.) Problems at this stage are
usually with DOCOLON or EXIT logic, or return stack goofs.

The Computer Journal / #67



8. At this point you can write some tools to help you
with debugging, such as words to display in hex a number on
the stack. Listing 1 shows a simple test routine to do a never-
ending memory dump (useful even if your keyboard doesn’t
work). This tests the primitives DUP, EMIT, EXIT, C@, ><,
LIT, 1+, and BRANCH, as well as several levels of nesting.
Plus, it doesn’t use DO..LOOP, which are often difficult to get
working. When this code works, you have some confidence
that your basic Forth model is valid.

9. From here on it’s just testing the remaining primi-
tives -- DO..LOOP, UM/MOD, UM*, and DODOES are par-
ticularly tricky -- and adding high-level definitions. I like to
get a rudimentary interpreter going next, so that I can test
words interactively.

With this set of primitives you can begin writing Forth code.
Sure, you have to use an assembler instead of a Forth compiler,
but -- as Listing 1 suggests -- you can use high-level control
flow and nesting to write useful code that would be more
difficult to write in assembler.

READ THE CODE!

I’ve run out of abstractions for today. If you want to learn more
about how a Forth kernel works and is written, study Listing
1. It follows the Forth convention for documentation:

WORD-NAME  stack in - stack out  description

WORD-NAME is the name by which Forth knows the word.
Often these names include peculiar ASCII characters, so an
approximation must be used when defining assembler labels
(such as ONEPLUS for the Forth word 1+).

stack in are the arguments this word expects to see on the stack,
with the topmost stack item always on the right. stack out are
the arguments this word will leave on the stack, likewise.

If the word has a return stack effect (other than nesting, that

is), an additional return stack comment will be added after
‘SR:”

stack in - stack out R: stack in -~ stack out
ANSI Forth defines a number of useful abbreviations for stack
arguments, such as “‘n”” for a signed single-cell number, “‘u”™
for an unsigned single-cell number, *‘c” for a character, and
so on. See Table 1.

REFERENCES

[1] Definition of a camel: a horse designed by committee.

[2] Ting, C. H., ¢Forth Implementation Guide, July 1990,

The Computer Journal / #67

available from Offete Enterprises, 1306 South B Stret, San
Mateo, CA 94402 USA.

[3] Z80OMR, a Z80 Macro Assembler by Mike Rubenstein, is
public-domain, available on the GEniec CP/M Roundtable as
file Z8OMR-A LBR. Warning: do not use the supplied Z1.COM
program, use only Z8OMR and LOAD. Z1 has a problem with
conditional jumps.

[4] AS51, PseudoCorp’s freeware Level 1 cross-assembler for
the 8051, is available from the Realtime and Control Forth
Board, (303) 278-0364, or on the GEnie Forth Roundtable as
file A51.ZIP. PseudoCorp’s commercial products are adver-
tised here in TCJ.

Source code for Z80 CamelForth is available on GEnie’s Forth

Roundtable as file CAMEL80.ARC.

TABLE 1. GLOSSARY OF WORDS IN CAMEL80.AZM
Words which are (ysually) written in CODE.

NAME stack in - stack out

description

Guide to stack diagrams: R: = retum stack,

¢ = 8-bit character, flag = boolean (0 or -1),
n = signed 16-bit, u = unsigned 16-bit,

d = signed 32-bit, ud = unsigned 32-bit,

+n = unsigned 15-bit,

i*x j*x = any number of cell values,

a-addr = aligned adrs,
p-addr = /O port adrs,

x = any cell value,

c-addr = character adrs
sys = system-specific.

Refer to ANSI Forth document for more details.

ANSI Forth Core words

These are required words whose definitions are
specified by the ANSI Forth document.

! x a-addr - store cell in memory

+ niful n2/u2 - n3/u3  add n1+n2

+ nfu a-addr ~ add cell to memory

- n1/ul n2/u2 -- n3/u3  subtract n1-n2

< n1n2-flag test n1<n2, signed

= x1 x2 - flag test x1=x2

> nt n2 --flag test n1>n2, signed

>R Xx-- Ri-x push to return stack
?DuUP x--0)xx DUP if nonzero

Q a-addr -- x fetch cell from memory
0< n - flag true if TOS negative
0= nfu -- flag return true if TOS=0

1+ ni/ut -- n2u2 add 110 TOS

1- nifut - n2/u2 subtract 1 from TOS

2 xt - x2 arithmetic left shift

2 x1--x2 arithmetic right shift
AND x1x2 -~ x3 fogical AND
CONSTANT n - define a Forth constant
C! ¢ c-addr - store char in memory
ca@ c-addr - ¢ fetch char from memory
DROP X -~ drop top of stack

DUP XXX duplicate top of stack
EMIT c-- output character to console
EXECUTE ixxt-—-j'x execute Forth word 'xt
EXIT - exit a colon definition
FiLL G-addruc - fill memory with char

] - n_R:sys1sys2--sys1sys2

INVERT  x1-x2

J -n R:4%ys .- 4"sys

KEY -c
LSHIFT xlu--x2
NEGATE x1-x2

get the innermost loop index
bitwise inversion

get the second ioop index
get character from keyboard
logical L shift u places
two's complement

OR x1x2--x3 logical OR

OVER x152 - x1x2 x1 per stack diagram

ROT x1 X2 x3 - x2 x3 xt per stack diagram
RSHIFT xlu-x2 logical R shift u places
R> -x Rix-- pop from return stack
R@ ~-x Rix-x fetch from rin stk

SWAP xt x2 - x2x1 swap top two items

um* utu2--ud unsigned 16x16->32 mult.
UM/MOD  ud u1 ~u2u3 unsigned 32/16->16 div.

UNLOOP - R:sysisys2--
U< u1 u2 - flag
VARIABLE --

XOR x1x2--x3

drop loop parms

test u1<n2, unsigned
define a Forth variable
logical XOR

a1



ANSI Forth Extensions
These are optional words whose definitions are
specified by the ANSI Forth document.

<> x1 x2 -- flag test not equal
BYE i - return to CP/M
CMOVE  c-addri c-addr2 u -- move from bottom
CMOVE> c-addr1 c-addr? u - move from top

KEY? -~ flag return true if char waiting
M+ din--d2 add single to doubte
NIP x1 X2 -2 per stack diagram
TUCK x1x2 -2 x1x2 per stack diagram
U> ul u2 --flag test u1>u2, unsigned

Private Extensions
These are words which are unique to CamelForth.
Many of these are necessary to implement ANSI
Forth words, but are not specified by the ANSI
document. Others are functions | find useful.

{(do) n1jul n2ju2 -- R: -- sys1 sys2
tun-time code for DO
(loop) R: syst sys2 - | syst sys2
run-time code for LOOP
{+loop) n-- R:systsys2-- |sys1sys2
run-time code for +LOOP
>< x1 -2 swap bytes
?branch  x - branch if TOS zero
BDOS DEC - A call CP/MBDOS

branch - branch always

lit -X fetch inline literal to stack

PC1 c p-addr -- output char to port
p-addr -- ¢ input char from port

RP! a-addr --  set return stack pointer

RP@ —a-addr  get return stack pointer

SCAN c-addr1 u1 ¢ - c-addr2 u2
find matching char

SKIP c-addr1 u1 ¢ -- c-addr2 u2
s  kip matching chars
SP! a-addr--  set data stack pointer
SP@ - a-addr  get data stack pointer
S= c-addrt c-addr2u --n  string compare

n<0: s1<s2, n=0: s1=52, n>0: s1>s2
USER n-- define user variable ‘n’

; Listing 1.

, CameiForth for the Zilog 280
; Primitive testing code

. This is the “minimal"” test of the CamelForth

, kernel. It verifies the threading and nesting
;.mechanisms, the stacks, and the primitives

: DUP EMIT EXIT lit branch ONEPLUS.

; Ris particularly useful because it does not

; use the DO..LOOP, multiply, or divide words,

; and because it can be used on embedded CPUs.
; The numeric display word A is also useful

; for testing the rest of the Core wordset.

The required macros and CPU initialization
; are in file CAMEL80.AZM.

Z>< ul--u2 swap the bytes of TOS
head SWAB,2,>< docode
Idab
ldbec
dca
next

ZLO c¢1--c2 return low nybble of TOS
head LO,2,LO,docode
Idac
and Ofh
Idca
d b,0
next

ZHl ¢1--¢2 retun high nybble of TOS
head Hi,2,Hl,docode

Idac

and OfOh

rrca

rrea

rrca

frca

ldca

Id b,0

next

42

;Z>HEX ¢1--¢2 convert nybbie to hex char
head TOHEX, 4,>HEX docode
idac
sub Oah
jr c,numeric
add a7
numeric. add a,3ah
idca
next

ZHH ¢ print byte as 2 hex digits
; DUP HI >HEX EMIT LO >HEX EMIT ;
head DOTHH,3,.HH,docolon
DW DUP,HI, TOHEX EMIT LO, TOHEX, EMIT EXIT

;Z.B a--a+1 fetch & print byte, advancing
; DUPC@ .HH 20 EMIT 1+ ;
head DOTB,2,.B,docolon
DW DUP, CFETCH,DOTHH, lit, 20h, EMIT, ONEPLUS, EXIT

ZA u- print unsigned as 4 hex digits
; DUP>< HH .HH 20 EMIT;
head DOTA,2,.A,docolon
DW DUP,SWAB,DOTHH,DOTHH, lit,20h, EMIT,EXIT

ZZQUIT .- endless dump for testing
; OBEGIN QD EMIT OA EMIT DUP .A
H BBBBBBBB
: BBBBBBBB
; AGAIN;
head ZQUIT,5,ZQUIT,docolon
DW Iit.0
quit1: DW lit,0ch,EMIT lit,0ah,EMIT, DUP,DOTA
bW
DOTB,DOT8,DOTB,DOTB,DOTB,DOTB,DOTB,DOTB
DW
DOTB,DOTB,DOTB,DOTB,DOTB,DOTB,DOTB,DOTB
DW branch,quitt

; Listing 2.

; CamelForth for the Zilog 280

; {€) 1994 Bradford J. Rodriguez

; Permission is granted to freely copy, modify,

; and distribute this program for personal or

, educational use. Commercial inquiries should
; be directed to the author at 221 King St. E.,

; #32, Hamilton, Ontario L8N 1BS Canada

; CAMELB0.AZM: Code Primitives

; Source code is for the Z8OMR macro assembler.
Forth words are documented as follows:

x NAME stack -- stack description

; where x=C for ANSI Forth Core words, X for ANSI

. Extensions, Z for internal or private words.

; Direct-Threaded Forth model for Zilog 280

; 16 bit cel), 8 bit char, 8 bit (byte) adrs unit
280 BC = Forth TOS (top Param Stack item)

A, alternate register set = temporaries

. HL= w working register

¥ DE= P Interpreter Pointer

; sp= PSP Param Stack Pointer
M X = RSP Return Stack Pointer
: ty = UpP User area Pointer

; Macros to define Forth headers

; HEAD label,length,name,action

; IMMED label length,name,action

, label = assembler name for this word

g (special characters not allowed)

, length = length of name field

; name = Forth's name for this word

, action = code routine for this word, e.g.

X DOCOLON, or DOCODE for code words
; IMMED defines a header for an IMMEDIATE word.
DOCODE EQU 0
link DEFLO

, flag to indicate CODE words
; link to previous Forth word

head MACRO #abel #length #name #action
DW link
DBO
link DEFLS$
DB #iength,'#name
#label:
IF .NOT.{#action=DOCODE)
call #action
ENDIF
ENDM

immed MACRO #iabel #length #name #action
DW link
DB1
link DEFLS$
DB #length,'#name’
#abel:
IF .NQOT. (#action=DOCODE)
cal! #action
ENDIF
ENDM

; The NEXT macro (7 bytes) assembles the ‘next
; code in-line in every Z80 CamelForth CODE word.
next MACRO

ex de h!

Id e, (hi)

inc hi

Id d,(hl)

inc ht

ex de,hl

ip (h)

ENDM

; NEXTHL is used when the IP is already in HL.
nexthl MACRO

id e,(hl)

inc hl

Id d,(hl)

inc hl

ex de,hl

ip (h)

ENDM

. RESET AND INTERRUPT VECTORS

; ...are not used in the CP/M implementation
; Instead, we have the...

; CP/M ENTRY POINT

org 100h

reset. Id hl,(6h) ; BDOS address, rounded down
Id 1,0 , = end of avail. mem (EM)
dec h , EM-100h
Id sp,hl ; = top of param stack
inch JEM
push hi
pop ix i = top of return stack
dech ; EM-200h
dech
push hi
pop iy ;= bottom of user area
Id de,1 ; do reset if COLD returns

jpCOLD ; enter top-level Forth word

. Memory map:

; 0080h  Terminal Input Buffer, 128 bytes

; 0100h  Forth kernel = start of CP/M TPA

. ?h Forth dictionary (user RAM)

, EM-200h User area, 128 bytes

; EM-180h Parameter stack, 128B, grows down
; EM-100h HOLD area, 40 bytes, grows down

; EM-0D8h PAD buffer, 88 bytes

; EM-80h Return stack, 128 B, grows down

. EM End of RAM = start of CP/M BDOS

; See aiso the definitions of UG, SO, and RO

, in the "system variables & constants” area.

, A task w/o terminal input requires 200h bytes.

; Double all except TIB and PAD for 32-bit CPUs.

, INTERPRETER LOGIC

; See also "“defining words” at end of this file

,CEXIT - exit a colon definition
head EXIT,4,EXIT,docode
Id e,{ix+0) ; pop old IP from ret stk
inc ix
Id d,{ix+0)
inc ix
next

Z it --x fetch intine literal to stack
; This is the primtive compiled by LITERAL.
head lit,3,lit, docode
push bc , push old TOS
id a,(de) ; fetch ceil at IP to TOS,
idc,a i advancing IP
inc de
id a,(de)
Id ba
inc de
next

;C EXECUTE i*xxt--j'x execute Forth word

,C at'xt
head EXECUTE, 7, EXECUTE docode

The Computer Journal / #67



id h,b ; address of word -> HL

dlc

pop bc ; get new TOS

jp (h) ; go do Forth word
. DEFINING WORDS

. ENTER, a.k.a. DOCOLON, entered by CALL ENTER
; to enter a new high-level thread (colon defn.)

; (intemal code fragment, not a Forth word)

: N.B.: DOCOLON must be defined before any

; app of ‘docolon’ in a ‘word’
docolon: ; (alternate name)
enter: dec ix ; push old IP on ret stack
Id (ix+0),d
dec ix
id (ix+0),e
pop ht , param field adrs -> IP
nexthl . use the faster 'nexthf’
;C VARIABLE -- define a Forth variable

; CREATE 1 CELLS ALLOT;
: Action of RAM variable is identical to CREATE,
: so we don't need a DOES> clause to change it.

head VARIABLE,8,VARIABLE,docolon

DW CREATE,LIT,1,CELLS,ALLOT EXIT

: DOVAR, code action of VARIABLE, entered by CALL
: DOCREATE, code action of newly created words
docreate:

dovar: ; — a-addr
pop hi ; parameter field address
push bc . push old TOS
Id b,h . pfa = variable’s adrs -> TOS
idct
next

;CCONSTANT n-  define a Forth constant
; CREATE , DOES> (machine code fragment)
head CONSTANT,8,CONSTANT,docolon
DW CREATE,COMMA XDOES
; DOCON, code action of CONSTANT,
, entered by CALL DOCON
docon: L X
pop hl ; parameter field address
push be ; push old TOS
id ¢,(hf) ; fetch contents of parameter
inc hl ; field > TOS
id b, (hl)
next

ZUSER n- define user variable ‘n’
: CREATE , DOES> (machine code fragment)
head USER,4,USER,docolon
DW CREATE,COMMA, XDOES
; DOUSER, code action of USER,
; entered by CALL DOUSER
douser: ; - a-addr
pop ht , parameter field address
pushbc ; push old TOS
id c,(hl) ; fetch contents of parameter

inc hi ; field

Id b,(hf)

push iy ; copy user base address to HL
pop hi

add hi,bc ; and add offset

Id b,h ; put result in TOS

idc)

next

: DODOES, code action of DOES> clause

, entered byCALL fragment
H parameter field
) fragment: CALL DODOES
; high-level thread
; Enters high-level thread with address of
; parameter field on top of stack.
; (internal code fragment, not a Forth word)
dodoes: ; - a-addr
dec ix ; push old IP on ret stk
Id (ix+0),d
dec ix
Id (ix+0),e
pop de ; adrs of new thread -> IP
pop hi ; adrs of parameter field
push bc ; push old TOS onto stack
Id b,h ; pfa -> new TOS
el
next
, CPM TERMINAL ¥O
cpmbdos EQU Sh ; CP/M BDOS entry point

;ZBDOS dec-a call CP/MBDOS

The Computer Journal / #67

head BDOS,4,8D0S,docode
exde,hl ; save important Forth regs
pop de . (DE,IX,IY) & pop DE value
push hl
push ix
push iy
call cpmbdos
idc,a . result in TOS
Id b0
pop iy , restore Forth regs
pop ix
pop de
next

:CEMIT c- output character to console
; 6BDOS DROP;
. wamning: if c=0ffh, will read one keypress
head EMIT,4,EMIT docolon
DW LIT,08H,BDOS,DROP EXIT

;C KEY - ¢ get character from keyboard
; BEGIN OFF 6 BDOS ?DUP UNTIL ;
: must use CP/M direct console /O to avoid echo
head KEY,3,KEY,docolon
KEY1: DW LIT,0FFH,LIT,06H,BDOS
DW QDUP,gbranch,KEY1,EXIT

X KEY? -f retumn true if char waiting
. xOBBDOS; =don'tcare rins 0 or FF
head querykey,4,7KEY docolon
DW LIT,0BH,DUP,BDOS,EXIT

;X BYE i*x-- return to CP/M
head bye,3,bye , docode
ir0

; STACK OPERATIONS

CDUP  x--xx duplicate top of stack
head DUP,3,DUP,docode
pushtos:  push bc
next

C?DUP  x--0xx DUP if nonzero

head QDUP,4,7DUP,docode
Idab
orc
jr nz,pushtos
next
CDROP x-— drop top of stack
head DROP,4,DROP docode
poptos:  pop bc
next

‘CSWAP x1x2--x2x1 swap top two items
head SWOP,4, SWAP docode
pop hi
push bc
id b,h
lde,l
next

:COVER x1x2--x1x2x1 per stack diagram
head OVER,4,0OVER, docode

pop hi

push hl

push bc

id bh

idel

next

:CROT x1)x2x3-x2x3x1 per stack diagram

head ROT,3,ROT,docode
;x3isin TOS
pop hi X2
ex (sp),hl ; x2on stack, x1in hl
push bc
1dbh
Idct
next

XNP x1x2--x2 per stack diagram
head NiP,3,NIP,docolon
DW SWOP,DROP EXIT

XTUCK x1x2-x2x1x2
head TUCK,4, TUCK,docolon
DW SWOP,OVER EXIT

per stack diagram

:C>R x- R:—~x push toreturn stack
head TOR,2,>R,docode
dec ix ; push TOS onto rtn stk
Id (ix+0),b
dec ix

Id (ix+0),c
pop bc ; pop new TOS
next

.CR> -x R:x-- pop from return stack
head RFROM,2,R> docode
push bc ; push old TOS
Id ¢,(ix+0) ; pop top rtn stk item

inc ix H to TOS
Id b,{ix+0)
inc ix
next
CR@ --x R:x--x fetch from rtn stk

head RFETCH,2,R@.docode
pushbc ; push old TOS
Id ¢,(ix+0) ; fetch top rtn stk item
Id b,(ix+1) ; to TOS
next

\Z SP@ -- a-addr get data stack pointer
head SPFETCH,3,SP@,docode
push bc
id hi,0
add hl,sp
Id b,h
Idct
next

,Z SP! a-addr - set data stack pointer
head SPSTORE,3,5SP|,docode
Id h,b
Idle
id sp,hl
pop be ; get new TOS
next

,ZRP@ -- a-addr get return stack pointer
head RPFETCH,3,RP@,docode
push be
push ix
pop be
next

;Z RP! a-addr -- set return stack pointer
head RPSTORE,3,RP!,docode
push be
pop ix
pop be
next

; MEMORY AND /O OPERATIONS

CH x a-addr - store cell in memory
head STORE,1,!,docode
Id h,b ; address in ht
ldlc
pop bc ; data in be
Id (hi),c
inc hi
id (hi),b
pop bc ; pop new TOS
next

.CCl! char c-addr --  store char in memory
head CSTORE,2,C!,docode
idhb ; address in ht
dic
pop be ; data in bc
Id (hi),c
pop be ; pop new TOS
next

ca a-addr - x fetch cell from memory
head FETCH,1,@.docode
idhb ; address in hi
idlc
Id ¢,(h)
inc hl
id b,(hl)
next

cce c-addr -- char fetch char from memory
head CFETCH,2,C@.docode
id a,(bc)
Idea
Id b0
next

ZPCl char c-addr -- output char to port
head PCSTORE,3,PCl,docode

pop hi scharinl

out (¢}, ; to port (BC)
pop bc ; pop new TOS
next

43



;ZPC@  c-addr-- char input char from port

head PCFETCH,3,PC@,docode
in c,{c) ; read port (BC) to C
Id b0
next

, ARITHMETIC AND LOGICAL OPERATIONS

.C+ ni/ul n2/u2 - n3/u3  add n1+n2
head PLUS,1,+,docode
pop hi
add hl,bc
Id bh
ide)
next

KM+ dn-d add single to double
head MPLUS,2, M+, docode
ex de,hi
pop de ; hicell
ex {sp),hl ;locell, save IP
add hi,bc
Kdbd ; hi result in BC (TOS)
idce
jrnc,mplusi
inc be
mplus1: pop de ; restore saved IP
push hl ; push lo result
next

c- ni1/ul n2/u2 - n3/u3 subtract n1-n2
head MINUS, 1,-,docode
pop hi
ora
sbe hl,be
Idbh
lde,l
next

CAND x1x2-x3 logical AND
head AND,3,AND,docode

pop hi
idab
andh
Kdba
Kdac
and |

idca
next

COR x1x2--x3 togical OR
head OR,2,0R,docode

pop hi

Idab

orh

Idb,a

Idac

orl

Idc,a

next

JCXOR x1x2-x3 logical XOR
head XOR,3,XOR,docode

pop hi
Idab
xor h

Idb,a
dac
xor |

dca
next

JCINVERT x1--x2  bitwise inversion
head INVERT,8,INVERT,docode

Id a,b

cpl

Idba

Idac

copt

Idca

next

;CNEGATE x1--)x2 two's compiement
head NEGATE,8, NEGATE,docode

Idab

cpl

ik ba

idac

cpl

idca

inc be

next

C1+ nilut - n2u2 add 1to TOS
head ONEPLUS, 2,1+ docode

inc bc
next

C1- n1fut -- n2/u2
head ONEMINUS,2,1-,docode
dec be
next

subtract 1 from TOS

Z>< x1 - x2 swap bytes (not ANSI)
head swapbytes,2,><,docode
Idab
Idb,c
Idca
next

c2 x1-x2 arithmetic left shift
head TWOSTAR,2,2* docode
slac
db
next

Co x1-x2 arithmetic right shift
head TWOSLASH,2,2/,docode
srab
ne
next

JCLSHIFT x1u-—-x2 logical L shift u places
head LSHIFT,8,LSHIFT,docode
idbc ; b= loop counter
pop hl . NB: hi 8 bits ignored!
incb ; test for counter=0 case
jr Ish2
Ish1: add hi,hl ; left shift HL, n times
Ish2: djnz Ish1
Idbh ; result is new TOS
idc,d
next

JCRSHIFT xt u--x2 logical R shift u places
head RSHIFT,6,RSHIFT,docode
idbc ; b= loop counter
pop hi ; NB: hi 8 bits ignored!
incb  test for counter=0 case
jrrsh2
rsh1: sih
rrl
rsh2: djnz rsh1
id b,h ; result is new TOS
ide,
next

; right shift HL, n times

C+ nfu a-addr --

head PLUSSTORE,2,+!,docode
pop hi
Ida,(bc) ;low byte
add al
Id (bc),a
inc bc
Ida,bc) ; high byte
adc a,h
Id (bc).a
popbc | pop new TOS
next

add cell to memory

; COMPARISON OPERATIONS

€o= n/u - fiag retumn true if TOS=0

head ZEROEQUAL,2,0=,docode
dab
orc , result=0 if bc was 0
sub 1 ;cyset ifbcwasO
sbca,a . propagate cy through A
idba . put 0000 or FFFF in TOS
idca
next

;C0< n-flag true if TOS negative

head ZEROLESS, 2,0<,docode
slab ; sign bit -> cy flag
sbc a,a , propagate cy through A
idb,a ; put 0000 or FFFF in TOS
Idc,a
next
C= x1 X2 - fiag test x1=x2
head EQUAL,1,=,docode
pop hi
ora
sbc hlbc ; xt-x2in HL, SZVC valid
jr z,tostrue
tosfaise: id bc,0
next

X <> x1x2 - flag test not eq (not ANSI)

head NOTEQUAL,2,<>,docolon

DW EQUAL,ZEROEQUAL EXIT
C< n1 n2 -- flag test n1<n2, signed
head LESS, 1,<,docode
pop hi
ora
sbe hl,be ; n1-n2in HL, SZVC valid

, if result negative & not OV, n1<n2
; neg. & OV => n1 +ve, n2 -ve, rsit -ve, so n1>n2
; if result positive & not OV, n1>=n2
; pos. & OV => n1 -ve, n2 +ve, rsit +ve, 50 n1<n2
; thus OV reverses the sense of the sign bit
jp pe,revsense ; if OV, use rev. sense

jp p.tosfalse ; it +ve, resuit false
tostrue; Id be,Offffth . if -ve, resuit true
next
revsense: jp mtosfalse ; OV: if -ve, reslit false
jr tostrue . if +ve, result true
C> n1n2 --flag test n1>n2, signed
head GREATER,2,>,docolon
DW SWOP LESS,EXIT
;CU< utlu2--flag testui<n2, unsigned
head ULESS,2,U<,docode
pop h
ora

sbe hlbc ; ui-U2 in HL, SZVC valid
sbca,a ; propagate cy through A
idb,a ; put 0000 or FFFF in TOS
idca

next*

XU> ulu2--flag ut>u2unsgd (not ANSI)
head UGREATER,2,U>,docolon
DW SWOP,ULESS EXIT

, LOOP AND BRANCH OPERATIONS

;2 branch - branch always
head branch,6,branch,docode

dobranch: Id a,(de) ; getinline value => IP
Idl,a
inc de
Id a,(de)
id h,a
nextht

;Z ?branch x — branch if TOS zero
head gqbranch,7,?branch,docode

Idab
orc ; test old TOS
pop be ; pop new TOS
jrz,dobranch ; if old TOS=0, branch
inc de , else skip inline value
inc de
next

;Z{do) n1jul n2ju2 -- R: -- syst sys2

Z runtime code for DO

; '83 and ANSI standard loops terminate when the
; boundary of limit-1 and limit is crossed, in

; either direction. This can be conveniently

; implemented by making the limit 8000h, so that
; arithmetic overflow logic can detect crossing.

; | learned this trick from Laxen & Perry F83.

; fudge factor = 8000h-limit, to be added to

; the start value.

head xdo,4,(do),docode
ex de,hl
ex {(sp),hl ; IP on stack, limitin HL
ex de hl
id hi,8000h
ora
sbc hi,de ; BOOO-limit in HL
dec ix ; push this fudge factor
Id (ix+0),h ; onto return stack
dec ix ; forlater use by 'l'
Id (ix+0),!
add hi,bc ; add fudge to start value
dec ix ; push adjusted start value
id (ix+0),h ; onto return stack
dec ix ;  as the loop index.
Id {ix+0),

pop de , restore the saved IP
pop be ; pop new TOS
next

;Z (loop) R: sys1sys2-- | sys1 sys2

Z run-time code for LOOP

. Add 1 to the loop index. if loop terminates,

; clean up the return stack and skip the branch.
; Else take the inline branch. Note that LOOP
; terminates when index=8000h.

The Computer Journal / #67



head xioop,8, (loop),docode
oxx
Id be,1

looptst: id 1,(ix+0) ; get the loop index

Id h,(ix+1)
ora
adc hi,bc ; increment w/overflow test
jp pe,loopterm ; overflow=loop done
; continue the loop
ld (ix+0),! ; save the updated index
Id (ix+1),h
exx

jr dobranch ; take the inline branch
. loopterm: ; terminate the loop

id bc,4 ; discard the loop info

add ix,bc

e

inc de ; skip the inline branch

inc de

next

(+Ioop) n-- R:sys?sys2-- |sys1sys2
run-time code for +LOOP
Add n to the loop index. If loop terminates,
; clean up the return stack and skip the branch.
; Else take the inline branch.

head xplusloop,7,(+loop),docode

pop hl ; this wilt be the new TOS
push be
Id b,h
Ide,l
exx
pop be ; old TOS = loop increment
jr looptst

Cl --n R: sys1 sys2 -- sys1 sys2

C get the innermost loop index

head II,1,|,docode

pushbc ; push old TOS
Id L,(ix+0) ; get current loop index
Id h,(ix+1)
Id c,(ix+2) ; get fudge factor
Id b,(ix+3)
ora
sbc hl,bc ; subtract fudge factor,
idb,h ;. returning true index
Idel
next

CJ -n R:4'sys --4'sys

B get the second loop index
head JJ,1,J,docode

push bc ; push old TOS

id I,(ix+4) ; get current loop index
Id h,(ix+5)

Id ¢,(ix+8) ; get fudge factor

Id b,(ix+7)

ora

sbe hl,bc ; subtract fudge factor,
Id bh ; returning true index
idel

next

;CUNLOOP -- R:sys1sys2-- drop loop parms

head UNLOOP,8,UNLOOP, docode
incix
inc ix
inc ix
inc ix
next

; MULTIPLY AND DIVIDE

;C UM ul u2--ud unsigned 16x16->32 mult.

head UMSTAR,3,UM* docode

push be
&xx
pop be ,u2in BC
pop de ;ulin DE
Id h1,0 ; result will be in HLDE
Id a,17 ; loop counter
ora ; clear cy

umioop: rh
!
md
me
jr nc,noadd
add hl,bc

noadd: dec a
jr nz,umloop
pushde ;loresult
push hl ; hi result

o
pop bc ; ut TOS back in BC
next

The Computer Journal / #67

;CUM/MOD ud ut -- u2 u3 unsigned 32/16->18
head UMSLASHMOD,8,UM/MOD, docode

udloop:

udiv3:

udivé4:

push bc
exx
pop be ; BC = divisor
pop hl ; HLDE = dividend
pop de
Id a,18 ; loop counter
slae
nd ; hi bit DE -> carry
adc hl,hl ; rot left w/ carry
jr nc,udivd
; case 1: 17 bit, cy:HL = 100
ora ; we know we can subtract
sbe hl,bc
ora ; clear cy to indicate sub ok
jr udivd

; case 2: 18 bit, cy:HL = Oxox
sbc hi,bc ; try the subtract
jr nc,udivd ; if no cy, subtract ok

add hibc | else cancel the subtract
scf ; and set cy to indicate
e ; rotate result bit into DE,
dd ; and next bit of DE into cy
dec a

jr nz,udloop

. now have complemented quotient in DE,
; and remainder in HL

Idad

cpl

ldb,a

Idae

cpl

idc,a

push hi ; push remainder

push be

exx

pop bc ; quotient remains in TOS
next

; BLOCK AND STRING OPERATIONS

;CFILL c-addr u char - fill memory with char
head FILL,4,FILL, docode

filldone:

ida,c . characterin a

exx ; use alt. register set
pop bc ; count in bc

pop de ; address in de

ora ; clear carry flag

Id hi,Offffh

adc hl,bc ; test for count=0 or 1

jrne filidone ; no cy: count=0, skip
Id (de),a ; fill first byte
jrzfilldone ; zero, count=1, done
dec be ; else adjust count,
Idhd . let hi = start adrs,
idle

inc de ; letde = start adrs+1
Idir . copy (hi)->(de)

exx ; back to main reg set
pop bc ; pop new TOS

next,

;X CMOVE c-addrt c-addr2 u -- move from bottom

; as defined in the ANS) optional String word set

, On byte machines, CMOVE and CMOVE> are logical
; factors of MOVE. They are easy to implement on

; CPUs which have a block-move instruction.

head CMOVE,S,CMOVE,docode
push be
exx
pop be . count
pop de ; destination adrs
pop hi , source adrs
idab ; test for count=0
orc
jrz,cmovedone
\dir ; move from bottom to top

cmovedone: exx

pop be , pop new TOS
next

:X CMOVE> c-addrt c-addr2 u - move from top
; as defined in the ANS! optional String word set

push bc

exx

pop bc ; count

pop ht ; destination adrs
pop de ; source adrs
idab ; test for count=0
ore

jr z,dmovedone

add hi,bc ; last byte in destination
dec hl
ex dehl

add hi,bc ; last byte in source
dec hl
Iddr ; move from top to bottom

dmovedone: exx

pop bc ; pop new TOS
next

;ZSKIP c-addru ¢ - c-addr v’

Z

skip matching chars

. Although SKIP, SCAN, and S= are perhaps not the
; ideal factors of WORD and FIND, they closely

; follow the string operations available on many

; CPUs, and so are easy to implement and fast.

head skip,4,SKIP,docode

Idac . skip character
exx
pop be , count
pop hl ; address
ide,a , test for count=0
Ida,b
orc
jr z,skipdone
idae

skiploop:  cpi

skipmis:

skipdone:

j¢ nz,skipmis ; char mismatch: exit
jp pe,skiploop ; count not exhausted
jr skipdone ; count 0, no mismatch

inc bc ; mismatch! undo last to
dec hl ; point at mismatch char
push hl ; updated address
pushbc ; updated count

exx

pop be ; TOS inbe

next

;ZSCAN  c-addr u ¢ -- c-addr’ U’

iz

find matching char

head scan,4,SCAN,docode

scandone:

ida,c ; scan character

exx

pop bc , count

pop hl ; address

idea , test for count=0

idab

orc

ir z,scandone

idae

cpir ; scan ‘til match or count=0
jrnz,scandone ; no match, BC & HL ok
inc be ;. match! undo last to

dec hi ; point at match char
push hi ; updated address

push be ; updated count

exx

pop be ; TOS inbe

next

Z S= c-addr1 c-addr2 u -- n  string compare

n<0: s1<s2, n=0: s1=82, n>0: s1>s2

head sequal,2,S=,docode

sloop:

smatch:

sdiff:

snext:

push bc

exx

pop be ; count

pop hl ; addr2

pop de ; addr!

Idab ; test for count=0
orc

jrz,smatch ; by definition, match!
|d a,{de)

inc de

cpi

jr nz,sdiff ; char mismatch: exit

jp pe,sloop ; count not exhausted
; count exhausted & no mismatch found

exx
Id bc,0 ; bc=0000 (s1=s2)
jrsnext

; mismatch! undo fast ‘cpi’ increment
dec hi ; point at mismatch char
cp () ; set cy if char1 < char2
sbca,a , propagate cy thru A
exx
Idb,a , bc=FFFF if cy (s1<s2)
ori ; be=0001 if ncy (s1>s2)
Idc,a
next

*INCLUDE camel80d.azm ; CPU Dependencies
*INCLUDE camel80h.azm ; High Level words

END

45



Little Circuits

by Dave Baldwin

I don’t think I have ever learned anything by getting it right (?)
the first time. Sometimes the worst thing that can happen is
for a circuit to work the first time. You have no idea of what’s
to come. Reminds me of a meter protection circuit I designed
for a school lab. Mine worked perfectly. The copies that
everyone else built from my design set off the alarms anytime
anyone came near them. Oops. The SCR in mine required a
large pulse to turn it on, but all the rest turned on with a teeny
spike.

WIRE AND CABLES

What can go wrong with wires? Well, even in a digital circuit
(maybe especially in a digital circuit) wires are ANALOG
things. They have resistance and inductance and between any
two conductors there is capacitance. And remember, printed
circuit board traces are just flat wires that are glued down.

WIRE RESISTANCE

You just installed the new gizmo board with microprocessor

' controlled power relays, but the power supply is ten feet away.
You grab some 22 gauge wire and connect it up. After
powering it up, you find out that every time the relays come on,
the system resets. You check everything, you have good power
supply voltages and everything seems to check out but it keeps
resetting.

Everytime the relay comes on, the current required by the
gizmo board goes from 100 mA to 3 amps. At 100 mA, the
22 gauge wire drops 32 millivolts, but at 3 amps, it drops .96
volts! The 5 volt supply at the gizmo board becomes 4.04 volts
and your power supply sensing reset circuit reboots the gizmo
and shuts off the relay. Just because of a little wire.

It turns out that a ten foot long piece of 22 gauge wire has .16
ohms of resistance. And the two wires, +5 and ground, add up
to .32 ohms. In this example, you would have to use 16 gauge
wire or larger to keep the voltage drop at the gizmo below 0.4
volts.

Of course, you used the latest CMOS technology to build your
system. If you were even more unlucky, you had an I/O board
near the power supply with a gate output going over to the
gizmo. Every time the relay came on, not only did the gizmo

46

reset, but the input connected to the I/O board blew out. 1t turns
out that with 22 gauge wire, not only does the +5 volt line drop
.48 volts, but the ground at the gizmo is .48 volts more positive
than the I/O board ground. The signal from the I/O board will
turn on the input protection diodes at the-CMOS gizmo input
whether it is high or low when the relay comes on.

WIRE CAPACITANCE

Well, you fixed the power supply wiring and corrected the I/
O signal problem. Now you need to put some pushbutton
switches on the gizmo unit. You use some flat ribbon cable to
connect the switch logic to the gizmo processor board. Now
you find out that every time you push the button something
different happens. What now?

You put the scope on the signals to the switch logic and it’s
being scanned every 10 mS, so that’s 100 Hz. Frequency can’t
be a problem, can it? The problem here is the capacitance
between conductors in the ribbon cable and the input imped-
ance of the CMOS logic. Typical capacitance between conduc-
tors in standard 28 AWG ribbon is about 10pf per foot. This
doesn’t seem like much, but the maximum input capacitance
for an HC gate is about 10pf. This makes an AC voltage
divider that could put 50% of the signal on adjacent conductors
if the frequency is high enough.

Typical transition time from high to low or low to high for high
speed CMOS (HC/HCT) devices is about 20 to 25 ns witha 5
volt supply. This roughly equates to 20 MHz in frequency.
10pf at 20 MHz is about 800 ohms impedance. This could
allow several milliamps of current to flow between adjacent
conductors. This very simple analysis shows that there are
some obvious problems here and we haven’t even considered
the series inductance of the cable that turns it into a tuned
circuit. How do we minimize these problems so our circuits
will work properly?

Crosstalk problems can be viewed as voltage divider problems.
The amount of signal coupled from one wire to another is
proportional to the impedances of the voltage divider that has
been created by the circuit. One solution is to lower the
impedance at the end of the wires. You can use an AC
termination down around 200 ohms. It needs to be an AC
termination (capacitor in series with the resistor) because HC

The Computer Journal / #67



gates and bus drivers can’t supply enough current to drive 200
ohms to 5 volts. 800 ohms in series with 200 ohms lets only
20% of the signal appear on the adjacent wire. Another
solution is to lower the effective frequency by increasing the
transition time. A resistor in series at the source end both
increases the impedance of the offending signal and slows the
transition time by reducing the amount of current available to
charge the capacitance between the wires. Sometimes, if the

- ribbon cable is short, just putting a pullup resistor at the end
of the cable can be enough.

PCB TRACES

It's common to put capacitors on inputs for switches to prevent
stray signals from triggering the inputs accidently. SoI decid-
ed to put some 8.2 uF tantalum caps I got from a surplus store
on the switch inputs for a custom display. I got everything put
together and powered it up to test it. It scemed to work at first.
I pushed a few more buttons and it all went haywire. The
buttons were supposed to work in a particular sequence to light
up the display, but I could never get past the second button. I
checked all the logic, the power supplies, and the sequencer
ROM. Over and over again. Put the scope on everything. Lots
of head scratching. I put the scope on a ground point on the
circuit for some reason and pushed one of the buttons. The
scope triggered on something. Ground is ground, right? I
shouldn't be secing anything. Push the button again, same
thing. I twiddle with the knobs and keep pushing the buttons,
trying to see something. (Gotta get a digital storage scope
someday.) Each time I push the button, I get a pulse of more
than a volt between the two ground points. Turns out that 1)
these were very good caps with low series resistance, and 2) I
didn't put a current limiting resistor in series with the switches.

1 was shorting the caps directly to ground each time I pushed
a switch, and putting several AMPs of current into the ground
system each time. The discharge current from shorting the
caps had caused a voltage drop of a couple of volts in the
ground system on the circuit board. This collapsed the power
supplies and upset or reset the logic on the board each time. As
soon as I put resistors between the switches and the caps to
limit the current to a few milliamps, everything worked per-
fectly.

AVOIDING PROBLEMS

Most of these problems can be avoided by keeping your con-
nections short and paying attention to the amount of current
flowing in your circuits. Small single board computers with
their own local power supplies almost never have these prob-
lems. Designers of high speed desktop computers and work-
stations always have to cope with these problems because of the
speeds that the systems operate at, the power that is required
to get the speed, and the closeness of the traces on the circuit
boards.

When you have to run connections over longer distances, you

need to start taking voltage drops and signal frequencies into
consideration. How fast a signal goes from one level to another

The Computer Journal / #67

is a prime consideration. This is the basic limit on RS-232
connections. RS-232 data rates, even at 100 Kbits per second,
aren't the problem. The fact that RS-232 receivers are relative-
ly high impedance inputs (3 to 7 kohms) and that RS-232
drivers can go from low to high and back at 30 volts per
microsecond is the problem. With long cables, crosstalk be-
tween the conductors causes too many errors. Other serial
standards such as RS-422 and RS-485 avoid problems by using
low impedance terminations at the end of the lines. This (and
other things) allows RS-422 to be used out to 4000 feet at 100
kbps where RS-232 is limited to less than 70 feet at 19.2 kbps.

CONTACT

You can reach me through DIBs BBS at (916) 722-5799, 1200
to 14.4 kb, 24 hours. There is a TCJ conference where you can
leave messages. I've created a special logon that allows you to
get directly to the TCJ conference and file area and skip the
new user questionaire. Call (916) 722-5799 and use the fol-
lowing logon:

First name? <COMPUTER>
Last name? <JOURNAL>
Password? <SUBSCRIBER>

The TCJ download area has a ProComm script for logging on.
All of the Little Circuits articles are available in the TCJ file
area in PM4 format. I can make them available in other
formats if anyone is interested. If you also want access to other
areas, log on with your own name and password.

REFERENCES

BELDEN Master Catalog 885.
/~ TCJ MARKET PLACE )

Advertising for smali business
First Insertion: $25
Reinsertion: $20
Full Six issues $100
Rates include typesetting.

Payment must accompany order.

VISA, MasterCard, Diner's Club,
Carte Blanche accepted.

Checks, money orders must be
US funds. Resetting of ad

consitutes a new advertisement

at first time insertion rates.
Mail ad or contact
The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535

\. _/

SUPPORT
OUR
ADVERTISERS
TELL THEM
"I SAW IT IN
TCJ"

47



- SUPPORT GROUPS FOR THE CLASSICS

ZFest in Europe

As I was finishing off this issue, Jay Sage called to check on
things. While discussing 7CJ's status, Jay mentioned the June
-18th ZFest in Germany. He indicated that many interested
ZCPR users from all over Europe will be gathering to discus-
sion Z-topics and just have fun. If you are interested contact Jay
or Helmut for directions and a schedule of events.

April Fools Newsletter

I received the other day a newsletter or more accurately a small
book with the tittle "A BIT MUCH." This was the April Fools
special newsletter of The NOVA OSBORNE USERS GROUP.
There meetings are on the fourth Thursday in Springfield, VA.
To get your copy or copies of their newsletter, contact William
E. Kost, 7007 Brocton Ct., Springfield, VA 22150.

Now this special has so many puns and humorous items, I was

impressed and more. Take this "What do you call a computer

scientist? It doesn't matter what you call him. He's too involved

with the computer to come anyway." Take that and multiply it

by 203 pages and you have an idea of what I got in the mail.
. So William, thanks and "how'd you do that?" Bill Kibler.

TCJ Staff Contacts

TCJ Editor:

Bill D. Kibler, PO Box 535, Lincoln, CA 95648, (916)645-1670,
GEnie: B.Kibler, CompuServe: 71563,2243, E-mail:
B.Kibler@Genie.geis.com.

Z-System Support:

Jay Sage,1435 Centre St. Newton Centre, MA 02159-2469, (617)965-
3552, BBS: (617)965-7259;, E-mail: Sage@ll.mit.edu. Also sells Z-
System software.

32Bit Support:
Rick Rodman, BBS:(703)330-9049
rickr@virtech. vti.com.

(eves), E-mail:

Kaypro Support:
Charles Stafford, 4000 Norris Ave., Sacramento, CA 95821, (916)483-
0312 (eves). Also sells Kaypro upgrades, see ad inside back cover.

S-100 Support:
Herb Johnson, CN 5256 #1035, Princeton, NJ 08543, (609)771-1503.
Also sells used S-100 boards and systems, see inside back cover.

6809 Support:
Ronald Anderson, 3540 Sturbridge Ct., Ann Arbor, MI 48105.

Users Groups and Project Reports:
JTW Weaver, Drawer 180, Volcano, CA 95689, BBS: (916)427-9038.

Regular Contributors:
Dave Baldwin, Voice/FAX (916)722-3877, or DIBs BBS (916) 722-
5799 (hse "computer”, "journal", pswd "subscriber” as log on).

Brad Rodriguez,Box 77, McMaster Univ., 1280 Main St. West,
Hamilton, ONT, L8S 1C0, Canada, Genie: B.Rodriguez2, E-mail:
b.rodriguez2 @genie.geis.com.

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX 78666, E-
mail: f507675@academia.swt.edu.

Tilmann Reh, Germany, E-mail: tilmann.reh@hrz.uni-siegen.d400.de.
Has many programs for CP/M+ and is active with 2180/280 ECB
bus/Modular/Embedded computers. USA contact Jay Sage.

Helmut Jungkunz, Germany, "Virtual" ZNODE #51, or CompuServe
100024,1545.

USER GROUPS

Connecticut CP/M Users Group, contact Stephen Griswold, PO Box
74, Canton CT 06019-0074, BBS: (203)665-1100. Sponsors East
Coast Z-fésts.

Sacramento Microcomputer Users Group, PO Box 161513, Sacra-
mento, CA 95816-1513, BBS: (916)372-3646. Publishes newsletter,
$15.00 membership, normal meeting is first Thursday at SMUD
6201 S st., Sacramento CA.

CAPDUG: The Capital Area Public Domain Users Group, Newslet-
ter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda MD
20827. BBS (301) 292-7955.

NOVAOUG: The Northern Virginia Osborne Users Group, Newslet-
ter $12, Robert L. Crities, 7512 Fairwood Lane, Falls Church, VA
22046. Info (703) 534-1186, BBS use CAPDUG'.

The Windsor Bulletin Board Users' Group: England, Contact Rodney
Hannis, 34 Falmouth Road, Reading, RG2 8QR, or Mark Minting,
94 Undley Common, Lakenheath, Brandon, Suffolk, IP27 9BZ,
Phone 0842-860469 (also sells NZCOM/Z3PLUS).

L.IS.T.: Leng Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581.

The Computer Journal / #67




Coleco ADAM:

ADAM-Link User’s Group, Salt Lake City, Utah, BBS: (801)484-
5114. Supporting Coleco ADAM machines, with Newsletter and
BBS.

Adam International Media, Adam’s House, Route 2, Box 2756,
1829-1 County Rd. 130, Pearland TX 77581-9503, (713)482-5040.
Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934, Fort
Walton Beach FL 325494934, (904)244-1516. Contact Norman J.
Deere, treasurer and editor for pricing and newsletter information.

MOAUG, Metro Orlando Adam Users Group, Contact James Poulin,
1146 Manatee Dr. Rockledge FL 32955, (407)631-0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E., Toronto,
ONT MS5A INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809 W. 33rd
Ave. Bellevue NE 68005, (402)291-4405. Suppose to be oldest
ADAM group.

Vancouver Island Senior ADAMphiles, ADVISA newsletter by David
Cobley, 17885 Berwick Rd. Qualicum Beach, B.C., Canada V9K
IN7, (604)752-1984.

Northern Illiana ADAMS User's Group, 9389 Bay Colony Dr. #3E,
Des Plaines IL 60016, (708)296-0675.

0S-9 Support:
San Diego 0S-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

Atari Support:

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob
Drews (916)423-1573. Meets first Thurdays at SMUD 59Th St. (ed.
bldg.).

Forth Support:

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-89-
FORTH. International support of the Forth language. Contact for list
of local chapters.

OTHER PUBLICATIONS

The Z-Letter, supporting Z-System and CP/M users. David A.J.
McGlone, Lambda Software Publishing, 149 West Hillard Lane,
Eugene, OR 97404-3057, (503)688-3563. Bi-Monthly user oriented
newsletter (20 pages+). Also sells CP/M Boot disks, software.

The Analytical Engine, by the Computer History Association of
California, 1001 Elm Ct. El Cerrito, CA 94530-2602. A ASCII text
file distributed by Internet, issue #1 was July 1993. E-mail:
kcrosby@crayola. win.net.

Z-100 LifeLine, Steven W. Vagts, 2215 American Drive, Roseville,
CA 95747, (916) 773-4822. Publication for Z-100 (a S-100 ma-
chine).

The Staunch 8/89 er, Kirk L. Thompson editor, PO Box 548, West

Branch IA 52358, (319)643-7136. $15/yr(US) publication for H-8/
89s.

The Computer Journal / #67

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450 Sky-
line Blvd. Woodside, CA 94062-4541, (415)851-7031. Support for
orphaned Sanyo computers and software.

the world of 68' micros, by FARNA Systems, PO Box 321, Wamer
Robins, GA 31099-0321. E-mail: dsrtfox@delphi.com. New maga-
zine for support of old CoCo’s and other 68xx(x) systems.

Amstrad PCW SIG, newsletter by Al Warsh, 2751 Reche Cyn Rd.
#93, Colton, CA 92324. 39 for 6 bi-monthly newsletters on Amstrad
CP/M machines.

Historically Brewed, A publication of the Historical Computer So-
ciety. Bimonthly at $18 a year. HCS, 10928 Ted Williams PL., El
Paso, TX 79934. Editor David Greelish. Computer History and
more.

Other Support Businesses

Hal Bower writes, sells, and supports B/PBios for Ampro, SB180,
and YASBEC. $69.95. Hal Bower, 7914 Redglobe Ct., Severn MD
21144-1048, (410)551-5922.

Sydex, PO Box 5700, Eugene OR 97405, (503)683-6033. Sells
several CP/M programs for use with PC Clones ("22Disk' format/
copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423, (805)M466-
8440. Sells CP/M user group disks and Amstrad PCW products. See
ad inside back cover.

Discus Distribution Services, Inc. sells CP/M for $150, CBASIC
$600, Fortran-77 $350, Pascal/MT+ $600. 8020 San Miguel Canyon
Rd., Salinas CA 93907, (408)663-6966.

Microcomputer Mail-Order Library of books, manuals, and periodi-
cals in general and H/Zenith in particular. Borrow items for small
fees. Contact Lee Hart, 4209 France Ave. North, Robbinsdale MN
55422, (612)533-3226.

Star Technology, 900 Road 170, Carbondale CO, 81623. Epson QX-
10 support and repairs. New units also avialble.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY 10549,
(914)241-0287, BBS: (914)241-3307. 6809/68000 operating system
and software. Some educational products, call for catalog.

Peripheral Technology, 1480 Terrell Mill Rd. #870, Marietta, GA
30067, (404)973-2156. 6809/68000 single board system. 68K ISA
bus compatible system. See inside front cover.

Hazelwood Computers, RR#1, Box 36, Hwy 94@Bluffton, Rhineland,
MO 65069, (314)236-4372. Some SS-50 6809 boards and new
68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)202-0150. SS-50 6809
boards and systems. Very limited quanity, call for information.

MicroSolutions Computer Products, 132 W. Lincoln Hwy, DeKalb,
IL 60115, (815)756-3411. Make disk copying program for CP/M
systems, that runs on CP/M sytems, UNIFROM Format-translation.
Also PC/Z80 CompatiCard and UniDos products.

49



The Computer Journal

Back Issues

Sales limited to supplies in stock.

Volume Number 1:

-Issues 1 t0 9

- Serial interfacing and Modem transfers
Floppy disk formats, Print spooler.
--Adding 8087 Math Chip, Fiber optics

- $-100 HI-RES graphics.

- Controlling DC motors, Multi-user
column.

- VIC-20 EPROM Programmer, CP/M 3.0.

- CP/M user functions and integration.

Volume Number 2:

- issues 10to 19

- Forth tutorial and Write Your Own.

+ 68008 CPU for $-100.

- RPM vs CP/M, BIOS Enhancements.
- Poor Man's Qistributed Processing.
- Controlling Apple Stepper Motors.

- Facsimile Pictures on a Micro.

- Memory Mapped l/O on a ZX81.

Volume Number 3:

- Issues 20 to 28

- Designing an 8035 SBC

- Using Apple Graphics from CP/M

- Soldering & Other Strange Tales

- Build an S-100. Fioppy Disk Controller:
WD2797 Controller for CP/M 68K

- Extending Turbo Pascal: series

- Unsoldering: The Arcane Art

- Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World

- Programming the 8035 SBC

- NEW-DOS: series

- Variability in the BDS C Standard Library

- The SCSI interface: series

- Using Turbo Pascal ISAM Files

- The Ampro Little Board Column: series

- C Column: series

- The Z Column: series

- The SCSI Interface: Introduction to SCSI

- Editing the CP/M Operating System

- INDEXER: Turbo Pascal Program to Create
an Index

- Selecting & Building a System

- Introduction to Assemble Code for CP/M

- Ampro 186 Column

- ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Volume Number 4:
- Issues 26 to 31
- Bus Systems: Selecting a System Bus
- Using the SB180 Real Time Clock
> The SCSiI Interface: Software for the SCSI
Adapter
- Inside Ampro Computers

NEW-DOS: The CCP Commands
(continued)
- ZSIG Comer
- Affordable C Compilers
- Concurrent Muititasking: A Review of
DoubleDOS
- 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System
- The Art of Source Code Generation:
Disassembling Z-80 Software
- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation
- The C Column: A Graphics Primitive
Package
- The Hitachi HD84180: New Life for 8-bit
Systems
- ZSIG Comer. Command Line Generators
and Aliases
- A Tutor Program in Forth: Writing a Forth
Tutor in Forth
- Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats
- Starting Your Own BBS
- Build an A/D Converter for the Ampro Little
Board
- HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA
- Using SCSI for Real Time Control
- Open Letter to STD Bus Manufacturers
+ Patching Turbo Pascal
- Choosing a Language for Machine Control

- Better Software Filter Design

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

- Using the Hitachi hd64180: Embedded
Processor Design

- 68000: Why use a new OS and the 880007
- Detecting the 8087 Math Chip

- Floppy Disk Track Structure

- Double Density Floppy Controller

- ZCPR3 IOP for the Ampro Little Board

- 3200 Hackers' Language

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

- Non-Preemptive Muititasking

- Software Timers for the 68000

- Lilliput Z-Node

- Using SCSI for Generalized VO

- Communicating with Floppy Disks: Disk
Parameters & their variations

- XBIOS: A Replacement BIOS for the SB180
- K-OS ONE and the SAGE: Demystifying
Operating Systems

- Remote: Designing a Remote System
Program

- The ZCPR3 Cormer: ARUNZ Documentation

Issue Number 32:

Language Development: Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the 281
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB
- Word@tar 4.0 on Generic MS-DOS
Systems: Patching for ASCII Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
- The ZCPR3 Comer: NZCOM and ZCPR34

Issue Number 33:

- Data File Conversion: Writing a Filter to
Convert Foreign File Formats

- Advanced CP/M: ZCPR3PLUS & How to
Write Self Relocating Code

- DataBase: The First in a Series on Data
Bases and Information Processing

- SCSI for the S-100 Bus: Another Example
of SCSI's Versatility

- A Mouse on any Hardware: Implementing
the Mouse on a Z80 System

- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

- ZCPR3 Corner: ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34

- Developing a File Encryption System.
- Database: A continuation of the data base
primer series.
- A Simple Multitasking Executive: Designing
an embedded controller multitasking
executive.
- ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.
- New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.
- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22

Macintosh Data File Conversion in Turbo
Pascal.

Issue Number 38:

- All This & Modula-2: A Pascal-like
alternative with scope and parameter passing.
- A Short Course in Source Code Generation:
Disassembiing 8088 software to produce
modifiable assem. source code.

- Real Computing: The NS32032.

- §-100: EPROM Burner project for S-100
hardware hackers.

- Advanced CP/M:. An up-to-date DOS, plus
details on file structure and formats.

- REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembler, linker and debugger.

Issue Number 36:

- Information Engineering: introduction.

- Modula-2: A list of reference books.

- Temperature Measurement & Control:
Agricultural computer application.

- ZCPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

- SPRINT: A review.

- REL-Style Assembly Language for CP/M
& ZSystems, part 2.

- Advanced CP/M:
programming.

Issue Number 37:

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

- ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

- Information Engineering. Basic Concepts:
fields, field definition, client worksheets.

- Shells: Using ZCPR3 named shell
variables to store date variables.

- Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

- Advanced CP/M: Raw and cooked console
vo.

- Real Computing: The NS 32000.

- ZSDOS: Anatomy of an Operating System:
Part 1.

Issue Number 38:
- C Math: Handling Dollars and Cents With
C

Environmental

- Advanced CP/M: Batch Processing and a
New ZEX.

- C Pointers, Arrays & Structures Made
Easier: Part 2, Arays.

- The Z-System Corner. Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

- Information Engineering: The portable
Information Age.

- Computer Aided Publishing: introduction to
publishing and Desk Top Publishing.

- Shells: ZEX and hard disk backups.

- Real Computing: The National
Semiconductor NS320XX.

- ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

- The Z-System Corner:
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

- Shells: Using ARUNZ alias with ZCAL.

- Real Computing: The National
Semiconductor NS320XX.

Issue Number 40;

- Programming the LaserJet. Using the
escape codes.

- Beginning Forth Column: Introduction.

- Advanced Forth Column: Variant Records
and Modules.

- LINKPRL.: Generating the bit maps for PRL
files from a REL file.

- WordTech's dBXL: Writing your own
custom designed business program.

System

- Advanced CP/M: ZEX 5.0xThe machine
and the language.

- Programming for Performance: Assembly
language techniques.

- Programming Input/Output With C:
Keyboard and screen functions.

- The Z-System Corner. Remote access
systems and BDS C.

- Real Computing: The NS320XX

issue Number 41:

- Forth Column: ADTs, Object Oriented
Concepts.

- Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

- How to add Data Structures in Forth

- Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.

- The Z-System Corner. Extended Multiple
Command Line, and aliases.

- Programming disk and printer functions
with C.

- LINKPRL: Making RSXes easy.

- SCOPY: Copying a series of unrelated
files.

Issue Number 42;

- Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

- Using BYE-with NZCOM.

- C and the MS-DOS Screen Character
Attributes. A

« Forth Column: -Lists and object oriented
Forth.

- The Z-System Corner. Genie, BDS Z and
Z-System Fundamentals.

- 68705 Embedded Controller Application:
An example of a single-chip microcontrofier
application.

- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

- Real Computing: The NS 32000.

Issue Number 43:

- Standardize Your Floppy Disk Drives.

- A New History Shell for ZSystemn.

- Heath's HDOS, Then and Now.

- The ZSystem Corner: Software update
service, and customizing NZCOM.

- Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

- Lazy Evaluation: End the evaluation as
soon as the resuit is known.

- §-100: There's still life in the oid bus.

- Advanced CP/M: Passing parameters, and
complex error recovery.

- Real Computing: The NS32000.

Issue Number 44;

- Animation with Turbo C Part 1: The Basic
Tools,

- Multitasking in Forth. New Micros F68FC11
and Max Forth.

- Mysteries of PC Fioppy Disks Revealed:
FM, MFM, and the twisted cable.

- DosDisk: MS-DOS disk format emutator for
CPM.

- Advanced CP/M: ZMATE and using fookup
and dispatch for passing parameters.

- Real Computing: The NS32000.

- Forth Column: Handling Strings.

- 2-System Corner: MEX and telecommuni-
cations.

Issue Number 45:

- Embedded Systems for the Tenderfoot:
Getting started with the 8031.

- The Z-System Corner: Using scripts with
MEX.

- The Z-System and Turbo Pascal: Patching
TURBO.COM to access the 2-System.

- Embedded Applications: Designing a 280
RS-232 communications gateway, part 1.

- Advanced CP/M: String searches and
tuning Jetfind.

- Animation with Turbo C: Part 2, screen
interactions.

- Real Computing: The NS32000.

- The Computer Comer.

The Computer Journal / #67



Issue Number 46:
- Build a Long Distance Printer Driver.

Using the 8031°’s built-in UART for serial
communications.
- Foundational Modules in Modula 2.
- The Z-System Comer. Patching The Word
Plus spell checker, and the ZMATE macro
text editor. .
- Animation with Turbo C: Text in the
graphics mode.
- 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
780 CTC.

issue Number 47:

- Controlting Stepper Motors with the
68HC11F

- Z-System Comner: ZMATE Macro Language
- Using 8031 Interrupts

- T-1: What it is & Why You Need to Know

- ZCPR3 & Modula, Too

- Tips on Using LCDs: Interfacing to the
68HC705

- Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-SOG 90

- The Computer Comer

Issue Number 48:

- Fast Math Using Logarithms

- Forth and Forth Assembler

- Modula-2 and the TCAP

- Adding a Bernoulli Drive to a CP/M
Computer (Building a SCS! Interface)

- Review of BDS “Z*

- PMATE/ZMATE Macros, Pt 1

- Real Computing

- Z-System Comer: Patching MEX-Plus and
TheWord, Using ZEX

- Z-Best Software

- The Computer Corner

Issue Number 49;

- Computer Network Power Protection

- Floppy Disk Alignment w/RTXEB, Pt. 1
- Motor Control with the F68HC11

- Controlling Home Heating & Lighting, Pt 1
- Getting Started in Assembly Language
- LAN Basics

- PMATE/ZMATE Macros, Pt. 2

- Real Computing

- Z-System Comer

- Z-Best Software

- The Computer Comner

Issue Number $0:
- Offioad a System CPU with the Z181
- Floppy Disk Alignment w/RTXEB, Pt. 2

The Computer Journal Back Issues

Issue Number 51:

- Introducing the YASBEC

- Floppy Disk Alignment w/RTXEB, Pt 3

- High Speed Modems on Eight Bit Systems

- A Z8 Talker and Host

- Local Area Networks—Ethernet

- UNIX Connectivity on the Cheap

- PC Hard Disk Partition Table

- A Short Introduction to Forth

- Stepped Inference as a Technique for
intelligent Real-Time Embedded Controt

- Real Computing, the 32CG160, Swordfish,
DOS Command Processor

- PMATE/ZMATE Macros

- Z-System Corner, The Trenton Festival

- Z-Best Software, the Z3HELP System

Issue Number 52:

- YASBEC, The Hardware

- An Arbitrary Waveform Generator, Pt. 1

- B.Y.O. Assembler...in Forth

- Getting Started in Assembly Language, Pt 3
- The NZCOM IOP

- Servos and the F68HC11

- Z-System Corner, Programming for
Compatibility

- Z-Best Software

- Real Computing, X10 Revisited

- PMATE/ZMATE Macros

- Controlling Home Heating & Lighting, Pt. 3

- The CPU280, A High Performance Single-
Board Computer

issue Number 53:
- The CPU280
- Local Area Networks
- Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest '91
+ Z-System Corner
- Getting Started in Assembly Language
- The NZCOM IOP
- 2-BEST Software

Issue Number 54:

- Z-System Corner

- B.Y.QO. Assembler

- Local Area Networks

- Advanced CP/M

- ZCPR on a 16-Bit Intel Platform

- Real Computing

- Interrupts and the Z80

- 8 MHZ on a Ampro

- Hardware Heavenn

- What Zilog never told you about the Super8
- An Arbitary Waveform Generator

BIOS

- The Bumbling Mathmatician
- YASMEM

- Z-BEST Software

issue Number $6:
- TCJ - The Next Ten Years
- Input Expansion for 8031

- Connecting IDE Drives to 8-Bit Systems

- Real Computing

- 8 Queens in Forth

- Z-System Comner

- Kaypro-84 Direct File Transfers
- Analog Signal Generation

Issue Number 87:
- Home Automation with X10

- File Transfer Protocols
- MDISK at 8 MHZ.

- Real Computing

- Shell Sort in Forth

- Z-System Corner

- Introduction to Forth
-DR. $-100

- Z AT Last!

Issue Number 58:

- Multitasking Forth

- Computing Timer Values

- Affordable Development Tools
- Real Computing

- Z-System Corner

- Mr. Kaypro

- DR. §-100

issue Number 59:

- Moving Forth

- Center Fold IMSAl MPU-A

- Developing Forth Applications
- Real Computing

- Z-System Corner

- Mr. Kaypro Review

- DR. 8-100

Issue Number 60;

- Moving Forth Part It

- Center Fold IMSAI CPA
- Four for Forth

- Real Computing

- Debugging Forth

- Support Groups for Cl

- Z-System Corner

- Mr. Kaypro Review
-DR. §-100

Issue Number 62:

- SCS| EPROM Programmer
- Center Fold XEROX 820

- DR $-100

- Real Computing

- Moving Forth part I

- Z-System Corner

- Programming the 6526 CIA
- Reminiscing and Musings

- Modem Scripts

Issue Number 63:

- SCSI EPROM Programmer part Il
- Center Fold XEROX 820

- DR §-100

- Real Computing

- Multiprocessing Part It

- Z-System Comer

- 6809 Operating Systems

- Reminiscing and Musings

- IDE Drives Part Il

Issue Number 64.

- Small-C?

- Center Fold tast XEROX 820
- DR $-100

- Real Computing

- Moving Forth Part IV

- Z-System Comer

- Small Systems

- Mr. Kaypro

- IDE Drives Part ill

{ssue Number 65;

- Small System Support
- Center Fold ZX80/81

- DR $-100

- Real Computing

- European Beat

- PCIXT Corner

- Little Circuits’

- Levels of Forth

- Sinclair ZX81

Issue Number 66:

- Small System Support

- Center Fold: Advent Decoder
- DR §-100

- Real Computing

- Connecting IDE Drives

- PCIXT Corner

- Little Circuits

- Muttiprocessing Part lil

- Z-System Comer

- Motor Control with the FEBHC11 “The D oS issue Number 61:
- Modula-2 and the Command Line . The lopment of - Multiprocessing 6809 part | SPECIAL DISCOUNT
- Controlling Home Heating & Lighting, Pt. 2 {ssue Number 55: - Center Fold XEROX 820 15% on cost of Back Issues when
. f::;?i Shr:‘ed in rl'«(ssembly Language Pt2  “fiuoo 61 : g:::"éo?:mg buying from 1 to Current Issue or all
- rea Networks ‘ . .
- Using the ZCPR3 IOP : The Cyclic Redundancy e - Support Groups for Classics four volumes.
- PMATE/ZMATE Macros, Pt. 3 . Z-System Comer - Z-System Comer 10% on cost of Back Issues when
- Z-System Comer, PCED  Hardware Heaven - Operating Systems - CP/M buying 10 or more issues.
. Z-Best Software - Real Computing - Mr. Kaypro SMHZ
* Real Computing, 32FX16, Caches - Remapping Disk Drives through the Virtual
4 u.S. Canada/Mexico  Europe/Other
Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Name:
1year (6 issues) $24.00 $3200 $34.00 $3400 $44.00 Address:

exp /

Payment is accepted by check, money order, or Credit Card (M/C,
VISA, CarteBlanche, Diners Club). Checks must be in US funds,
drawn on a US bank. Credit Card orders can call 1(800) 424-8825.

TC.J-The Computer Journal

P.O. Box 535, Lincoln, CA 95648-0535

Phone (916) 645-1670

2years (12 issues) $4400 $60.00 $64.00 $64.00 $84.00
Back Issues (CA tax) add these shipping costs for each issue ordered
Bound Volumes $20.00 ea +$300 +$350 +$650 +$400 +$17.00
#20 thru #43 are $3.00 ea. +$100 +$1.00 +$125 +$150 +$250
#44andup are$4.00ea. +$125 +$125 +$175 +$200 +$350 Credit Card #
Software Disks (CA tax) add these shipping costs for each 3 disks ordered
MicroC Disks are $6.00ea +$1 00 +$1.00 +$1.25 +$150 +$250
tems: Back Issues Total

MicroC Disks Total

California state Residents add 7.25% Sales TAX
Subscription Total
Total Enclosed

\

The Computer Journal / #67

51




. Regular Feature
 Editorial Comment

~ PLC&Forth

The Computer Corner

By Bill Kibler

Well here we are again falking about
PLC’s and contrel in geperal. Last i

I explained how a FLC works in vory
fundamental terms. Learning how one
works or is programmed in specific var-
ies from vendor to vendor. i have seen
large changes in ea
mentation and thos if vou s
volved I can only re
a factory schools

h vendors imple.

\ .
aliy gef in-

commend oo attend

If you want to write vour own “'sort of
PLC program, I have the cede samples
(or ideas) that I presented to our Jocal
Forth meeting. The basic idea is io cre-
ate a table of BITS that represent inputs/
outputs/relays that form the maip func-
tion of the PL.C. You in o5
these bits either “"on’ or *"nft™" to rep-
resent functions to be performed. Loop-
ing through this table of BITS lockiug
for changes and making thase chanpges
is actually all the program doge

ceofmrn

My code sample just shows how 10 make
that table, handle the hits, and create the
run time program that would relate bits
to devices. This 1s really just an example
of how you might de ot To really do a
PLC in Forth o1 any lanpuage requires
many more lines of code and stroctre,
The most difficult decision in the design
process is handling 1/0} Now updating
inputs is rather easv_ just copy the input
data to memory locations, possibly as X
bits at a time. Writing or updating the
output is another guestion. e vou just
blindly write the ontput or test and only
write if diffcrent.

The reason writing becomes a problem
depends on how vou talk to /O, We
have a proprictary system falking 10 a
~ PLC. It tells us when things change thus
making updating easy. However, the PLC
bit table can get changed and there isno

52

PLC mechanism to automatically signal
that output bits need updating with our
proprietary ports. What has to be done is
a comparison of what was last sent over
the serial port and what is the bit table’s
current state. If they differ, the location
is flagged for sending.

Z0 what you will notice missing in my
code sample is the input/output part of
the program. I leave that for you to con-
sider and experiment with. Of course
you could consider buying a great al-
ready to run industrial plant control soft-
ware package.

Farth Inc.’s Express

A1 our last Forth mecting, members Gary
Sprimg and Bob Nash (both work at
Sacramento Municipal Utility District =
SMUD) brought a demo version of Forth
Inc.’s Express. SMUD is using this to
control their Solar Cell system. Express
is an object oriented shell (and more)
that sits on top of their polyFORTH pro-
gramming environment. (For more on
polyFORTH see Charles Shattuck’s mini-
article in Reader-to-Reader.)

The demo that Gary gave was great and
showed why they went to express. It
works as a true real time multitasker. It
has a very powerful demo or simulation
maode that helps speed up development
time. Gary couldn’t say enough good
things about the product. After watching
the demo, it was clearly apparent that
PLC ladder programs may be a thing of
the past when compared to express.

How so vou ask. Take controlling doors.
Each door has a location, a name, a
specific type of mechanism, alarms,
groups and many other considerations
that must be checked before opening.

Using Express all these items are placed
inside the ““object’’ called *‘Door”’. Since
different door opening mechanisms have
different procedurgs for powering the
opener, our object ‘‘Door’’ then has dif-
ferent functions it will perform based on
that door type.

This is very powerful and easy to use
once set up. When all the tables/items
have been established, then adding a
new door is just copying the old record
with the minor changes for a new /O
address or door name. Easy!

NEXT?

Well that is it for this time. Keep hack-
ing and sending those letters.

\PLC words to create a ladder logic system

CREATE IRTBL 100 ALLOT
\ set aside a test area for working data
\ address is position within IR table
IRTBL 100 ERASE \ fills table with all zeros...
CREATE BATBL
\ bit mask table for TESTing(AND) and SETing( OR) data
01¢, 02¢c, 04 ¢, 08 ¢,
10¢c, 20¢, 40 ¢, 80 c,

CREATE BOTBL

\ bit mask table for RESETing a bit by ANDing data
FEc, FD¢, FB ¢, F7 ¢,
EFc, DFc, BF ¢, 7F ¢,

: BITTST ( bitval tbladdrs - flag )
IRTBL + c@ AND 0<> ;

: GETBIT ( bit# tbladdrs -- bitval tbladdrs }
SWAP BATBL + c@ SWAP;

- LD (bit# thladdrs - flag ) GETBIT BITTST ;
- LDNOT { bit# tbladdrs -- flag ) GETBIT BITTST 0= ;
: OUT ( flag bit# thladdrs - )

GETBIT IRTBL +

\ gets AND table value and reat address
ROT 0<> IF CSET \ sets bit by ANDing
ELSE CRESET \ clears bit by NOT ANDing
THEN ;

- LDAND { flag bit# tbladdrs -- flag ) LD AND ;
:LDOR { ftag bit# thiaddrs -- flag ) LD OR ;

\ examples:

\ 110LD 210 OUT =if bit 1 of 10 is notzero

\ then bit 2 0f 10 =1

\ 110 LDNOT 2 10 out = if bit 1 is zero make bit2 =1
\ 210LD 112LDAND 3100UT=make3=1

\ if both 2/10 and 1/12 <>0

A\ 210LD 3 10 LDOR 4 10 OUT = make 4/10 =1

\ if either 2 or 3 is <>0

The Computer Journal / #67



TC ’ The Computer Journal

Discover
The Z-Letter
The Z-letter is the only publication
exclusively for CP/M and the Z-System.
Eagle computers and Spellbinder support.
Licensed CP/M distributor.

Subscriptions: $18 US, $22 Canada and
Mexico, $36 Overseas. Write or call for
free sample.

Advent Kaypro Upgrades

TurboROM. Allows flexible
configuration of your entire
system, read/write additional
formats and more, only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

The Z-Letter at first time insertion rates.
Lambda Software Publishing Call (916)483-0312 Mail ad or contact
149 West Hilliard Lane °"°’bh“'ei"es"t"‘ °:’ write The Computer Journal
uc affor P.O. Box 536
Euget;%301;8987:04;3057 4000 Norris Ave. Lincoln, CA 95648-0535
(503) 688-356 Sacramento, CA 95821 \_ Y,

" TCJ MARKET PLACE )

Advertising for small business
First Insertion: $25
Reinsertion: $20
Full Six issues $100
Rates include typesetting.

Payment must accompany order.

VISA, MasterCard, Diner's Club,
Carte Blanche accepted.

Checks, money orders must be
US funds. Resetting of ad

consitutes a new advertisement

CP/M SOFTWARE

00 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95
plus $3.00 shipping and handling. Also, MS/PC-DOS Soft-
ware. Disk Copying, including AMSTRAD. Send self addressed,

stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

$-100/1€€€-696

IMSAI  Altair
Compupro  Morrow
Cromemco
and morel

TR P e e R e TR R R T GTIRTS

Cards. Docs -Systems
Dl‘ ° S'Ioo

Herb Johnson,
CN 5256 #1065,
Princeton, NJ 08543
(609) 771-1503

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW
PRESS

Glen B. Haydon, M.D.

Route 2 Box 429
La Honda, CA 94020

(415) 747 0760

NEW MAGAZINE

the world of 68' micros
supporting
Tandy Color Computer
0§-9 & OSK

$23/year for 8 issues

$30/year Canada/Mexico
$35/year overseas

Published by:
FARNA Systems
P.O. Box 321
Warner Robins
GA 31099-0321

* Or Photocopier
Use household
iron to apply.

81/2"x 11"
Sheets
100% MBG

PnP BI.IIG Paf lIIET

For High Precision
Professional P(B Layouts Quol
1. LaserPrint 1. Lass! nt
2. Iron-On 2. Iron-On
3, Peel-Off 3. Soak-Off w/ Water
4. €tch 4. €ch
An €xtro layer of Resist Tronsfers Laser or
for Super fine Traces Copier Toner as Resist

20Sh$30/405h$50/1 005h$100 Blue/Wet (No Mix)
Sample Pack S Shts Blue + 5 Shts Wet $20
VISA/MC/PO/CKIMO $4 S&H -- 2nd Day Mail

Techniks Inc. P.O. Box 463 Ringoes NJ 08551

(908)788-8249




BASIC Stamp
$39 single-board computer runs BASIC

Radio Shack
Thermistor
(271-110)

0.1uf

low-cost parts.

» BASIClanguage includes instructions for serial 1/0, PWM,
potentiometer input, pulse measurement, button
debounce, tone generation, etc.

» Has 8 digital I/0 lines, each programmable as an input or
output. Any line can be used for any purpose.

» Small prototyping area provides space for connecting
signals and extra components.

* Powered by 5-12 VDG or 9-volt battery.

PAS

LLAX A

The Stamp can measure
resistance with just a few

Helpful application notes
show you how to connect
common l/0 devices, such
as A/D converters.

o d Ik
3
o e el 4000000
oooooo Lmv—> sema
1 ouT

TITT

Consumes just 2 mA (typical) or 20 pA (sleep).

Special cable connects Stamp to PC parallel port for
programming.

Programming Package includes PC cable, software,
manual, and technical help for $99.

Individual Stamps may be purchased for $39.
Requires 8086-based PC (or better) with 3.5” disk drive.

Paraliax, Inc. 3805 Atherton Road, #102 * Rocklin, CA 95765 » USA
(916) 624-8333 « Fax: 624-8003 « BBS: 624-7101

TG“ Post Office Box 535

Lincoln, CA 95648-0535
United States

ADDRESS CORRECTION REQUESTED
FORWARDING AND RETURN POSTAGE

GUARANTEED

BULK RATE
US POSTAGE
PAID
Lincoln, CA
PERMIT NO. 91

Telephone: (916) 645-1670



