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Preface

“I shall on all subjects have a policy to recommend.”
Ulysses S. Grant

Computer programs written in assembly language are alive and
well and can be found in live-action arcade games, kitchen ap-
pliances, outer space, and the winners circle at computer chess
and Othello tournaments. Where compact object code and speed
of execution are critical, assembly language has no equal.

Learning assembly language has never been easy. Higher
level languages like BASIC, Fortran, and Pascal have been de-
signed to be independent of the computer on which they are run-
ning and to communicate in words most understandable to human
programmers. Assembly language, in contrast, forces the program-
mer to think like the machine and to become intimate with the
hardware organization of the machine.

To achieve this, programmers of assembly language have to
study the internal structure of their computer, learn its instruction
set, and live within the constraints of its word size and mathemati-

xi
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cal capabilities. They have to learn a new set of instructions for
each new computer, and they have to learn new operating pro-
cedures for the edit, assemble, and debug programs on each new
computer.

In the past, before writing even the simplest program that
communicates with the operator’s terminal, the programmer had
to know details of the hardware on which he was working—details
like input/output port addresses, status word addresses, and status
bit meanings. And these change from computer to computer.

The advent of the Control Program/Microcomputer (CP/M)
operating system has greatly simplified the learning process for the
beginning assembly language programmer. Using facilities pro-
vided by the operating system, the programmer can write routines
that will communicate with input/output devices and mass storage
units on any computer system running CP/M. These assembly
language programs become “hardware independent” and therefore
portable.

No matter what make and model computer is used, the CP/M
assembly programmer will be working in a familiar environment.
When tackling a new assignment, he or she can use previously
created programs and subroutines that will greatly simplify the
new work requirements. And the programmer will be working
with system utility programs identical to those on the previous job.
CP/M makes all computers look alike.

This book assumes that the reader has no previous CP/M or
assembly language experience. It presents three major aspects of
assembly programming under CP/M: (1) an understanding of the
facilities and operation of CP/M and its utility programs; (2) an
understanding of the internal organization and instruction set of
the 8080 family of microprocessors; and (3) an understanding of the
proper design of assembly language programs.

Whether the reader is a programmer in a higher level lan-
guage, an engineer, student, hobbyist, or just someone who needs
to make a computer control the real world in real time, he or she
will be able to learn all the fundamentals from this book. Since the
reader will be learning to use intimately integrated hardware and
software facilities of the microcomputer, the presentation of topics
in this book is also integrated.

From the first simple exercise in the Introduction, the reader
will be concurrently learning the details of the computer hardware:
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how to edit, assemble, and debug programs, and how to interface
those programs to the operating system. Since this requires that
the reader learn a lot of background material before beginning to
write programs, every effort has been made to present this mate-
rial in an informal, entertaining style. Historical references are
made wherever they will help to explain a subject like binary
numbers or to account for strange, archaic names applied to mod-
ern devices.

A few exercises are included that should be performed by all
readers. Other exercises are suggested, and the reader is free to
experiment with a CP/M based computer at any time in the learn-
ing process. It can’t be damaged from the operator’s console.

When the background material has been absorbed, the reader
will be using the newly acquired knowledge to build up a set of
library subroutines that will be useful in any future programming
efforts. The editing, assembling, and testing of this library and the
demonstration programs that make use of it constitute the majority
of the exercises required of the reader. When these tasks are
finished, the reader will be ready to begin designing and writing
new and wonderful assembly language programs. Suggestions for
future projects are included.

Integrated with the more rigorous topics are comments, sug-
gestions, rules, and edicts aimed at making the reader aware that a
properly constructed program requires more than just stringing
together a bunch of instructions that operate correctly. The goal of
these bits of advice is to instruct the programmer in the construc-
tion of readable, modifiable, portable programs. The world already
has a sufficiency of the other kind.

Personal opinions like the above are mine, and I accept all
responsibility for them, but I am not at all reluctant to impose
them on the defenseless reader.

KEN BARBIER
Borrego Springs, California
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Introduction

Even if you have never written a line of assembly language pro-
gramming, sit down at the console of a CP/M based computer and
key in the following routine. Your keystrokes are those in boldface;
the other characters are displayed by CP/M. The “cr” symbol rep-
resents your pressing the RETURN key on the console. Don’t
worry about what the numbers mean for now.

A> DDTcr
DDT VERS 1.4
-S100cr

0100 01 OEcr
0101 B6 02¢cr
0102 OF 1Ecr
0103 C3 24cr
0104 3D CDecr
0105 01 05cr
0106 43 00cr
0107 4F C3cr
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0108 50 00cr
0109 59 00cr
010A 52 .cr
-G100cr

$

A>

Here you have used CP/M’s Dynamic Debugging Tool (DDT)
to key in and execute a machine language program that displayed
the “$” on the console, and then returned to the CP/M operating
system. There are times when keying in such a routine might be
handy for testing parts of a computer. We could have sent the “$”
to another peripheral device, for instance, as a quick test of its
operation.

This same routine, written in assembly language, would look

like this:

LISTING I-1. Assembly language version of the demonstration
program.

BDOS EQU 5

WCONF  EQU 2
ORG 100H
MVI C, WCONF
MVI E,'$'
CALL  BDOS
JMP 0
END

The use of mnemonics, like “JMP” for “jump,” makes assembly
language source code easier to read. Labels like “WCONF” for
“Write-on-the-Console Function” make the source program more
understandable.

When this source program is keyed into a disk file using CP/
M’s ED.COM and is assembled by CP/M’s ASM.COM, it will
produce the same machine language code that you typed in man-
ually using DDT. With a short little routine like this, it might be
quicker to use DDT and machine language to perform this simple
function, but for any program of practical length, the editor and
assembler provide the most error-free method of program
generation.



Learning by doing

The purpose of this exercise is to illustrate the method by which
you will be learning assembly language programming and the CP/
M operating system. You will be writing, editing, assembling, and
debugging programs that interface with CP/M, as this one does.
This will provide you with the opportunity to see the results of
your learning efforts as you go along.

As with this example, your programming efforts will begin
with routines that output characters to, and read characters from,
the operator’s console. After mastering techniques for interfacing
with input/output (I/O) devices like the console, you will be writing
programs that read and write disk files. Your learning of assembly
language programming will be integrated with learning the inter-
nal structure of the CP/M operating system and how to interface
with it.

This book does not include any rigorous treatment of number
systems, binary arithmetic, or Boolean algebra. With modern mi-
crocomputers, higher level languages are readily available for
mathematical operations. You will need to become familiar with
hexadecimal notation and simple logical operations, of course, and
instruction in these topics is integrated with the other subjects so
you won't have to struggle through a separate section devoted to
number theory.

Why assemble?

Assembly language programming is not dead. The ready availabili-
ty of higher level languages for microcomputers has relegated as-
sembly programming to those application areas where it is
indispensable: intimate interfacing with hardware, and for size-
and time-critical operations.

Assembly language is still useful for writing programs for ded-
icated controllers where program size must be minimized to re-
duce costs. It also has applications where speed of execution is of
primary importance, as in animated displays for video games or
flight simulators, or in controlling high-speed machines like line
printers.
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And, as we will be seeing, learning assembly language pro-
gramming can be both easy and enjoyable, given a friendly en-
vironment. CP/M has provided that environment. As our little
exercise above has shown, it was possible to write this text and
include exercises like these that can be run on any make or model
of microcomputer, so long as it is running the CP/M operating
system. This standard operating system has made this book
possible.

In keeping with an encouraging, simple environment in
which to learn, this book has been written in an informal style. This
means you will have to put up with some bad puns and old jokes
from time to time. In keeping with the informal style, the word
data is herein used as a collective noun, avoiding such archaic
constructs as “if those data were a zero.”

Required equipment

In addition to this book and a CP/M based computer, you should
have access to the manual set that accompanied the CP/M operat-
ing system. One complete copy of the CP/M system disk and a nice
fresh clean empty disk should be dedicated to your exercises and
experiments. You will also want a copy of the “8080/8085 Assembly
Language Programming Manual,” publication number 98-940,
available from Intel Corporation, Literature Department, 3065
Bowers Avenue, Santa Clara, CA 95051, for $17.

The Intel manual will not be required for you to start learning
the 8080 instruction set, but you should order one as soon as
possible. It is to microprocessor instructions what a dictionary is to
English words: a reference work to consult whenever you are not
really sure you understand just what an instruction is doing.

With these tools in hand you will be ready to learn how to
program in assembly language. Enjoy yourself. It is a lot of fun to
make the machine obey your every wish.



Hardware Components
Of the Computer
System

A good name is better than precious ointment.

Ecclesiastes

One of the greatest difficulties to be overcome by the newcomer in
any technical field is getting used to all the new terms. Technical
fields in particular develop jargons all their own. As if learning a
whole new vocabulary were not enough of a problem, the beginner
soon discovers that there are several different names for almost
every item he will be learning about.

Defining terms

For instance, the word terminal is applied to the giant building
where we are searched before boarding a plane, to the TV tube
with a keyboard attached that we use to communicate with a com-
puter, and to a little round metal loop crimped on the end of a
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piece of wire inside that computer. Since we will try not to go
flying off in all directions, and since we are not going to be looking
inside computers in this book, we should have little trouble keep-
ing track of the fact that terminal in this context refers to the device
through which we will be communicating with our computer.

But that terminal is referred to by a number of other names as
well. It will sometimes be called a console, a screen, a CRT, a
VDT, a CON, and a TTY. If, on your particular computer, it hap-
pens to be composed of two parts, the terminal may be referred to
as a monitor and a keyboard. And a “Monitor” is also a particular
type of computer program. And so the confusion is propagated.

These examples are, of course, just the tip of the iceberg.
Since the field of human endeavor that we are going to be explor-
ing does have so many conflicting, overlapping, and duplicated
terms, we will be selecting a subset of those terms in an attempt to
overcome some of the confusion. As we proceed through this book,
we will be defining the terms that we will be using, and we will be
avoiding the use of synonyms as much as possible.

Since the rest of the computer world has not standardized on
such a neat subset, it will be necessary to be aware of all the other
words which refer to the same items in our set. This requires that,
once we have become familiar with our own set of terms, we will
have to be aware that others with whom we talk will be using
different terms for the same items. Some of these different terms
will be defined in appropriate places throughout this book.

The list of terms we will be using in this book has been chosen
to be as close as possible to the words used in the manuals supplied
with the CP/M operating system. Since the language we will be
studying is the assembly language for the 8080 microprocessor, as
defined by the Intel Corporation, we will also be including words
compatible with the usage found in the Intel 8080/8085 Assembly
Language Programming Manual.

In the section following, we will be looking at the components
of a computer system, defining our terms, and building up the
vocabulary to be used throughout this book. Even if you are al-
ready familiar with your computer and the CP/M operating sys-
tem, it might not be a bad idea for you to read through the follow-
ing section anyway, in order to get familiar with the words we will
be using.



The computer operator

There are two classes of humans to be found sitting at computer
terminals: computer users and computer programmers. Some-
times they are easy to tell apart. The user is the seven-year-old
battling Klingons. The programmer is the long-haired, unshaven,
bleary-eyed creature mumbling to himself. The distinction is made
here because there are so many programs intended to be used by
mere mortals (as opposed to programmers) that are so poorly de-
signed that only a programmer can run them. One of the most
important lessons you will have to learn is to always keep in mind
that your programs not only have to work, they have to be usable
by mere mortals.

The time to start thinking of how to make your programs more
usable by nonprogrammers is right now, before one line of code
has been written. The more programs you write, the more you will
learn that what was obvious to you last year has now become a
forgotten detail. There is nothing more frustrating than to be un-
able to run a program you yourself have written. It happens to all of
us, too.

The CP/M operating system provides us with the ability to
name programs, and call up the desired program by its name. All
we fallible humans have to remember, then, is what program
“NAME” will do when it does run. If that program has been prop-
erly written, once CP/M has loaded it and executed it all required
operator inputs will be explicitly prompted for.

This approach may seem silly to you now. Surely you won’t
forget how to operate your own program! Yes, you will. It happens
to all of us. So keep in mind right from the beginning that every
program worth writing is worth writing properly. And the first step
is to make every program usable by the proverbial “unsophisti-
cated user.”

After reading this book, you will surely become an expert
programmer who can understand the inner working of any pro-
gram ever written, but keep in mind that your creations should be
usable by anyone, computer user or computer programmer.

Please note that we have now established definitions for “ter-
minal,” “computer operators,” and the two subspecies “computer
users” and “computer programmers.” That didn’t hurt, did it?



FIGURE 1-1. The hardware components typically included in a small
microcomputer system. The smallest system that can run the CP/M -
operating system is sufficient for use in completing all of the
exercises in this book.

Console
Terminal

()|———r

CPU / Floppy disk

System
Memory

Line Printer

The operator’s console

10

The very earliest computers had operator’s consoles consisting of
rows and rows of lights, switches, and patch cords. Programs were
input in the form of patterns of patch cords in plug boards, or were
keyed into switches bit by bit. When the operator was moved one
step back, and could communicate with the machine from a termi-
nal device, the term “console” went along with him. Some com-
puters of all sizes still include a switches-and-lights type of console,
but we will not consider that type of console in this book since the
context in which we are working assumes the existence of a console
terminal.

Back in those good old days the standard computer terminal
was the ASR-33 from the Teletype Corporation. About 300,000 of
these mechanical monsters have been produced, most of which are
used for sending messages in the telex network.

Because the ASR-33 was inexpensive, rugged, and included a
paper tape punch and reader in addition to its keyboard and
printer, it became the standard of the minicomputer industry as
the computer operator’s console. Five years ago there were no
inexpensive CRT terminals, so all little computers came with an
interface suitable for the TTY. Since “ASR-33 Teletype” is a bit



FIGURE 1-2. A "switches-and-lights” type of computer front
panel console. No longer seen very often, this type of console
permitted the computer operator or programmer to access each
bit within a data or address word. Data was switched in one bit
at a time, and could be displayed one bit at a time. While this
type of operation is no longer necessary, it did make it easy to
visualize bit patterns within computer words.

long-winded, this ubiquitous terminal is called, in short, the
“TTY,” as were others of its predecessors.

When the inexpensive microprocessor invaded the earth in
1975, the TTY was still the most inexpensive method for commu-
nicating between human and machine. Some early microcompu-
ters and most minicomputers wouldn’t accept any other device as
their operator’s console in those ancient times. And in those days
before floppy disks and CP/M, the paper tape punch and reader
sections of the TTY provided the only means of program and data
storage and retrieval on the smallest computers.

The microprocessor itself, which provided the basis for inex-
pensive computers, also brought about a revolution in the terminal
industry. With this smart integrated circuit (IC), it was possible to
build a terminal using an electronic keyboard instead of the TTY’s
maze of motor, clutches, levers, and noise. The printing mecha-
nism of the TTY was replaced by the silent screen of a TV type
cathode ray tube (CRT). The slow paper tape punch and reader on
the TTY have been replaced by the floppy disk, and now our CRT
terminal (or just “CRT” for short) provides us with reliable, silent,
and forgetful communications between human and computer. Now
just what did I do forty lines back that caused all this trouble? With
the TTY, we could always pick up the paper from the floor and see
what we did wrong!

11



FIGURE 1-3. The ASR-33 from Teletype Corp. Once the
standard terminal for small computers, this slow, noisy
mechanical device has left a legacy in the device type
designations still found in the CP/M operating system. The
ASR-33 was the source of such terms as TTY, RDR, PUN, PTR,
and PTP still referred to by CP/M’'s STAT and PIP utilities.

Our more modern CRT doesn’t give us that opportunity, but
at least now we know all about “console,” “ASR-33,” “TTY,” and
“CRT.”

The computer

Our human operator, sitting at his console terminal, is commu-
nicating with a computer. Computers come in all sizes, from giant
“mainframes” through “mega-mini’s” and just plain old “minicom-
puters” down to our lowly microcomputer. At the heart of each of
these machines is a section of hardware designated the central
processing unit, or CPU. This designation dates from the days
when the CPU was a separate rack stuffed full of printed circuit
boards and heat. Another whole rack was needed to hold 16K

12
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words of memory. Later, as integrated circuits replaced discrete
devices (transistors, resistors, etc.), and became smaller and more
complex, it became possible to package a complete computer in a
single rack only six feet high. Now, of course, complete computers
can be held in one hand. Even so, inside each computer is a CPU.

It is the CPU that processes the data. Whether the CPU is
only a small portion of a single integrated circuit, or is a single
integrated circuit, or is a rack full of printed circuit boards, it is still
that part of the overall system that does all the manipulating of
data. The data may come from some other section of the computer,
and after processing be transferred to yet another, but the real
work is the task of the CPU.

The 8080 and its relatives

In our CP/M based computer system, the CPU is one member of
the 8080 microprocessor family, for CP/M is a program written for
the original 8080. The Intel 8080 microprocessor was not the first
micro, but its predecessors were so restricted in computing power
that their usefulness was limited to that of smart controllers, and
only a few brave souls tried to do any real computing with them.

The 8080 changed things suddenly when it became readily
available in early 1975. Here was a CPU contained in a single
integrated circuit package, selling for little more than $100 (in
1975; now less than $5), that executed an instruction set powerful
enough to support real data processing.

It was the instruction set of the 8080, rather than the chip
itself, that became an industry standard. As we will be seeing, the
8080 executes enough instructions to be both useful and easily
programmable. Advocates of other microprocessors will be quick
to point out the deficiencies in the 8080, proving only that you
can’t satisfy all the people all the time. While not perfect, the 8080
instruction set is easy to learn and easy to use. And it has become
the industry standard.

The 8080 integrated circuit itself had more serious shortcom-
ings. It was relatively slow, required three different power supply
voltages, and needed a couple of extra ICs to provide clocks and
system control. Retaining the 8080 instruction set, Intel later pro-
duced the 8085 microprocessor.



14

Instructions

Hardware Components of the Computer System

The 8085 greatly simplifies things for the hardware designer.
Simply connect a single +5 volt DC power supply, connect either
a crystal or a resistor-capacitor (RC) network between pins 1 and 2,
and the 8085 is ready to run. Of course it will need memory and
input/output (I/O) devices as well, but all micros require them.
The real improvement provided by the 8085 is in the simplification
of hardware design, and a great increase in operating speed.

While they are not produced by Intel, there are other mem-
bers of the 8080 family that we will be looking at in some detail in
Part ITI. What we should keep in mind at this point is the fact that
CP/M is written using the 8080 instructions, so some member of
this family must be our CPU.

in memory

No CPU can operate unless we feed it instructions to execute.
These operation codes (opcodes) will be stored in memory, and the
CPU will fetch them from memory one at a time, decode the
operation requested, execute it, and fetch the next instruction in
turn. This set of instructions placed in memory in a meaningful
sequence (we hope!) constitutes a machine language program. The
CPU is a machine, so the opcodes have to be in a format under-
standable by a machine. In the case of the 8080, that format is
“bytes” consisting of 8 binary digits, or “bits,” apiece.

So, you might ask, how do we get the opcodes into memory to
begin with? The original technique involved keying in opcodes
using one of the switches-and-lights consoles. This is slow, error
prone, and a great impediment to progress. It wasn’t long before
all microcomputers included a small program in read-only memory
(ROM) that would load our program automatically. This loader
program would read some input device, like the paper tape reader
on the TTY, and place the instructions it found into read-write
memory, from which they could later be fetched and executed.

In computers with a dedicated purpose, such as controllers or
hand-held digital games, all of the software required can be perma-
nently placed in ROM. In a general purpose computer, we have to
be able to change the program and work with varying data. Bit
patterns which will be changing have to be stored in read-write
memory, or “RAM.” Why “RAM” for Read-Write Memory, in-
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stead of “RWM?” Because that’s the way it has always been. RAM
is an acronym for Random Access Memory. The distinction be-
tween random access and sequential access memory (like our paper
tape) was made decades ago, and we are stuck with an inexact
acronym.

Just because it is not the best term we can’t arbitrarily change
it. We still have to be able to communicate with other computer
users in terms they will understand, so RAM it is.

While we are on the subject of acronyms, two more you will
be needing refer to the major classes of ROM. A PROM is a Pro-
grammable ROM. This is an IC initially fabricated with no stored
program. By a process of fusing internal connections, we can
“burn” a desired bit pattern (our program) into a PROM. This is
fine once we are sure there are no errors in the program. Once
burned, the program stored in the PROM is there to stay. A more
useful device, and more expensive, is the EPROM. This Erasable
PROM allows us to store a program in an IC, test it, and later erase
the bit pattern and start over, if necessary.

There you have the basic components of your computer. The
CPU is one member of the 8080 family of microprocessors. A
loader program is stored in ROM (either a PROM or EPROM) and
will read our program into RAM. To accomplish this, of course, we
will need some kind of I/O device that communicates with mass
storage. Read on.

Mass storage

When the characteristics of the first real digital computer were
originally specified, it was decided that 4,000 words of storage
would be enough to provide for any conceivable computation. Of
course, each of those words was 40 bits long, and the machine was
intended for calculation only.

To implement our microcomputers, we have since bitten
those early long words into more manageable 8-bit bytes. When
we need to calculate with similar precision, we just take a number
of bytes to chew on at one time. And we have since learned to
laugh at a computer with only 4K of RAM. That’s just a toy!

Our 8080 family of micros can directly address 65,536 bytes of
memory. Since we work with binary numbers, we think in terms of
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powers of two. We will be looking into this in detail in Part III. For
now, just remember that two raised to the tenth power is 1024, and
using K (for the Greek “kilo”) to designate thousands, 1024 bytes of
storage is abbreviated “1K.” Sixty-four of these increments is all
the 8080 can address, and 64 X 1024 = 65,536. Or 64K, for short.

Main frame computers and even minicomputers do not have
such a restricted addressing range, but their owners have re-
stricted purchasing power, and high-speed main memory is expen-
sive. The need for lower cost “mass storage” is as old as the com-
puter itself, and this term is just as ancient.

Mass storage refers to any type of external memory: tapes,
disks, drums, or even RAM when it is accessed at addresses out-
side the main memory address space. On our CP/M based micro-
computer, we have typically two floppy disk drives for mass stor-
age, with anywhere from 70K bytes (on 5%" minifloppies) to a
couple of million bytes (M bytes) available on each drive.

As you might guess, main memory inside our computer is
addressed byte by byte using numbers from zero to 65535. Out on
our mass storage device our memory locations are not so easily
organized. It wouldn’t be practical to try to keep track of millions of
bytes of memory if each byte had its own unique address.

Disk addressing

Data on disks is recorded in a number of circular tracks, with each
track broken up into a number of sectors. Each sector will have its
own address, such as “track 14 sector 23,” and the data stored in
one sector will be not one byte but a string of data bytes. These
strings are referred to as records, and each record in the original
CP/M system contained 128 bytes. Double and quad density flop-
pies and hard disk drives may use other sizes of sectors, but we will
not have to concern ourselves with these details.

Neither will we have to remember that the data we want is on
disk drive 2 at track 32 sector 14. It is one of the functions of our
CP/M operating system to keep track of mass storage addressing
details. As computer users or programmers we will be creating
named files on our mass storage devices, and the operating system
will handle the disk space allocation. All we, or our programs, will
have to keep track of is the file name and the drive it is on.



FIGURE 1-4. Data organization on a typical eight-inch single density floppy
disk. Each of 76 tracks contains 26 sectors storing 128 eight-bit bytes of data.
Each sector can be identified by the disk controller by reading the

identification (ID) information contained in the address field that precedes
the data recorded in the sector.
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While it is nice to know some of the details of mass storage
organization, thanks to CP/M we will not have to remember or
work with these details. We are living in'a truly enlightened age!

Since the objective of this book is teaching assembly language
programming, and since assembly language programs are typically
long and detailed, it will be virtually impossible to operate without
some kind of hard copy peripheral. Back in the days of the TTY,
the hard copy we needed was unavoidable. You got a printed copy
of everything you typed and everything the computer output to the
console. Mistakes and all! Nowadays, when you hear the boss com-
ing, you can scroll all the error messages off the top of your CRT
screen. Neat!

The TTY and its descendents, like the Decwriter and similar
printing terminals, print one character at a time. As we key in our
messages to the computer on a printing terminal, we will see each
keystroke echoed on the printer. Output from the computer will
appear to be printed a line at a time, but only because the comput-
er can type faster than we can.

A line printer, in contrast, is built in such a way that it is
incapable of printing one character and then stopping. It will re-
ceive characters and store them in a buffer until it receives a termi-
nation character, usually a carriage return (CR). When it sees this
terminator, it will print the entire buffer in one pass of the print
head.

Line printers matching this description print at rates of from
50 or so to about 300 characters per second. Other types of line
printers use mechanisms other than a moving print head, and can
use up paper at astonishing rates. Trees hate these high speed line
printers.

In our typical CP/M based computer system we will assume
the presence of one of the lower priced line printers. The device
can in reality be the printer portion of your console terminal, if
your system is so configured, but it will be considered to be a
different device when we get to the discussion of device names in
Chap. 3. For now, just keep in mind that references to the line
printer are different than references to the printer on the console.



Hardware Components of the Computer System 19

Some CRT terminals have a printer port built into them, and
some all-in-one computer systems include a function known as
screen printing. A screen printer, or a screen printing function
using the line printer, allows you to save the contents of your CRT
screen on a hard copy device. While this can be a handy technique
for recording your mistakes for posterity, it is not a function built
into CP/M, so we will not assume that our example system includes
this tattle-tale.

Other peripherals

With its operator’s console, CPU, memory, mass storage, and a
hard copy device, our CP/M based microcomputer is complete and
ready to perform. What other peripherals could we need?

If our floppy disk system conforms to one of the standard
formats, we could exchange programs and data with any other
computer, large or small, conforming to the same standard. This
will require transporting the disk between computers. Floppy
disks are ideal for this, as they can be mailed.

Too often, however, we will find a need to input data from
some source that does not have the capability of writing that data
onto a compatible disk. We would then require an additional input
device. The old standby is the paper tape reader. In addition to the
reader on the TTY, which clanks along reading 10 bytes per sec-
ond, there are other types available that can read paper tape at up
to several hundred bytes per second. The complement of the paper
tape reader is, of course, the paper tape punch, the old standard
output device. These also come in various speeds, but cannot
match the speed of the fastest readers, since more mechanical
action is required to punch a hole in paper than to simply detect its
presence.

One reason for mentioning these two old-fashioned slow de-
vices in the same context as our modern high speed CP/M based
computer is that, even if you never see either of them, you will be
encountering their names. The CP/M operating system was itself
generated on a computer that expected reader and punch to be the
most common input and output devices. Use of these device names
as the default names for I/O devices was inherited from this ma-
chine. And we have all been sorry ever since.



20

Hardware Components of the Computer System

" Being able to read paper tape reduces our dependence on
floppy disk compatibility, but it is still limiting. Perhaps the most
universally compatible method of data exchange is the modem.
“Modem” is a contraction of “modulator-demodulator,” which still
doesn’t tell us much about the device. A modem is a device which
enables us to communicate with other computers over a telephone
line. It does this by modulating a carrier tone with our data in the
form of a bit stream at the send end, and demodulating the bits
from the carrier at the receive end.

With a modem connected to a computer on each end, and a
telephone circuit between, we can transfer data between any two
computers. Provided, of course, that the bit patterns used to rep-
resent each character in the data stream are the same in both
computers. Here standardization has been achieved. We have a
standardized code, ASCII, which stands for American Standard
Code for Information Interchange. More on this subject later.

Other types of I/O devices are available in almost unlimited
number. Those that can “look like” a modem (to the computer,
anyway), and communicate in ASCII, can be hooked onto almost
any computer. Most, however, have specific interfacing conven-
tions that suit them for use on one make of computer only. But we
need not worry about them now, as we are about to see.

A simple computer system

The computer system shown in Fig. 1-1 is the minimum hardware
configuration required for the exercises in this book. It is assumed
that the reader has access to such a system, with at least one floppy
disk drive. Only the minimum 16K RAM will be required, and
either some type of hard copy device or unlimited patience will be
necessary.

In the discussions that follow, we will be examining the CP/M
operating system in some detail, and then looking at the 8080
microprocessor as it appears to the programmer. With this back-
ground material behind us, we will start to do some simple assem-
bly language programming. We will be learning this language by
writing, editing, assembling, and debugging programs. This
should provide a much superior learning environment than the
traditional method of exhaustively studying a computer’s instruc-
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tion set and hardware configuration before beginning the first
program.

In this chapter we have learned some of the terms we will be
using in discussing our computer system and how to program it.
We have looked at the components of a computer, and defined the
minimum system required for proceeding with the mastery of as-
sembly language programming under the CP/M operating system.



Software Components
Of the Computer
System
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RE-DO FROM START
BASIC language error message

“Hardware” refers to those parts of the computer system that make
dents in the floor when you drop them. Computerists long ago
decided that the more expensive half of the computer system, the
programming, would be called “software.” Not to be confused with
softwear.

Until the middle "70s most computer main memory was con-
structed using magnetic cores. Core memory can retain its con-
tents even with power off. It took a programming error to wipe out
all the contents of a core memory. When that happened, it was
back to the switches-and-lights console. A new copy of a loader
program then had to be reentered into the computer, and would in
turn be used to read in the operating system from some mass
storage device.

Since keying in a loader in this manner was very time-con-
suming, this loader program was written to be as short as possible.
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No error checking frills were included. To insure that the operat-
ing system was loaded properly, it was customary for this simple,
short loader to first read in a smart loader, that would then load the
system. The minimum loader came to be called a “bootstrap” load-
er, since it allowed the system to pull itself up into memory by the
bootstraps.

The more inexpensive semiconductor memory rapidly re-
placed core memory, and the most obvious failing of this new
technology is that semiconductor RAM loses its memory when the
power goes down. Even a little noise on the power line, or a sag in
line voltage, can wipe out the contents of semiconductor RAM.
Then it is back to the console and key in the bootstrap again.

Until manufacturers began putting the bootstrap loader into
ROM, that is. As EPROMS became available at reasonable prices,
the rows and rows of switches and lights began disappearing from
the front panels of microcomputers. Today, it is the rare exception
that includes this technology on the front panel.

Since “software” referred to the programs that were getting
wiped out all the time, a new term was needed to refer to the
contents of ROM. The ROMs contained programs, and therefore
software, but it wasn’t as soft as the programs in RAM. Hence the
coined word “firmware.” That is, software made harder by being
burned into ROM.

With these terms in mind, let’s look at the soft- and firmware
components of our computer. '

Firmware monitor

When a microprocessor IC of the 8080 family is reset, which occurs
automatically on power up and can be accomplished manually in
case of disaster, it begins operation by fetching an instruction from
memory location zero. As we will see later, in a CP/M system the
low end of main memory address space must contain read-write
memory. If the CPU wants to fetch its first instruction from loca-
tion zero, and CP/M wants RAM at location zero, and our RAM
forgets everything when power is off, how do we ever get our
computer to start up from cold?

Microcomputer designers had to resort to a hardware trick. A
bootup circuit is activated by the same reset signal that starts the
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CPU. This circuit makes the RAM at location zero “disappear,”
and substitutes a “shadow PROM.” Depending on the make and
model of computer, one or more instructions are fetched from the
shadow PROM and executed. At some point in this execution se-
quence, often immediately following the first instruction, the com-
puter hardware is told that it is time to disconnect the shadow
PROM, and reinstate RAM at location zero.

In the simplest implementation of this procedure, the first
instruction that the CPU fetches from the shadow PROM is an
unconditional jump to the beginning of a monitor program in
ROM. This monitor ROM is usually located at the very top of the
main memory address space. When the CPU decodes this jump
instruction, it knows that it should fetch its next instruction from
the location jumped to. The CPU will begin its next instruction
fetch sequence by placing this new address on the computer’s
address bus.

The address bus is the set of sixteen signal lines that contain
the bit pattern of the address of the next memory location to be
accessed for read or write. The bootup circuitry has only to detect
that the most significant bit of the address bus has been asserted.
This circuit then disables the shadow PROM, and reenables RAM
at the bottom of memory.

We do not want to get bogged down in hardware details in
this book, but this discussion is included here as the reset and
bootup procedures are pertinent to understanding the operation of
our computer. All we as computer operators will be aware of is that
turning power on, or hitting the reset switch, will get our machine
up and running.

We do not have to hit the reset switch. It is sufficient to press
it gently. But when a program blows up and manual reset is neces-
sary it is customary to want to hit something, so these switches get
a real workout.

The result of this reset sequence is that the CPU begins fetch-
ing instructions from our monitor PROM. “Monitor” is another old
computer term that is less than enlightening in modern context.
Your computer may or may not have a monitor program in the
classical sense. Traditional monitor programs use the console to
communicate with the operator, and provide routines that enable
him to interact intimately with the computer hardware, as is neces-
sary for diagnosing hardware failures and debugging assembly lan-
guage programs.



FIGURE 2-1. A flowchart showing the sequence of operations
involved in starting up a typical microcomputer. While most of
these operations are transparent to the operator, assembly
language programmers working closely with the hardware and
software components of the computer have to be familiar with
this type of bootup sequence.
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If your computer does have a complete monitor, it may come
in handy in the future when we start writing assembly language
programs that can, in case of programmer error, “bomb” the whole
system, requiring us to hit that reset switch. The absence of a
monitor in PROM will not slow us down, however, as the CP/M
operating system includes DDT, the Dynamic Debugging Tool,
that will provide these same functions.

Another feature provided by some monitor PROM:s is a set of
peripheral driver programs. These drivers are in the form of sub-
routines that our programs can call, providing us with access to all
of the system peripherals without having to know any details of
their hardware addresses. Such drivers are often part of a software
system known as an IOCS, or Input/Output Control System. Once
again, an IOCS in PROM will not be necessary in a CP/M based
computer, as CP/M will provide us with equivalent functions.

What is not optional in our monitor PROM is some form of
loader program. Often the computer you will be using will assume
that a CP/M system disk is in drive zero, and power up or reset will
cause the operating system to be loaded and executed. In such a
system, the functioning and even the existence of the bootup cir-
cuit and PROM become invisible. We simply push the button, and
CP/M comes up running.

If we remembered to place the system disk in the drive. The
right drive. Right side up.

The operating system

CP/M is, of course, the operating system in our computer. While
this program was originally written on, and for, the Intel MDS-800
microprocessor development system, it has since been adapted to
more computers of more different manufacturers than any other
operating system. As we will be seeing in Chap. 3, this has been
made possible by the ease with which CP/M can be adapted to
differing hardware environments.

While other aspects of computer hardware have been stan-
dardized to some degree or other, there has never been agreement
on standard I/O port assignments. For instance, to transmit a char-
acter from the computer to the console, a driver program must test
the status of the output port to which the console is attached, to see
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if it is ready to accept a character. If not, the driver must wait for a
not busy signal. Once the port announces it is ready to accept a
character, the driver outputs the character to the console output
port.

The physical port address for console status and data will
differ from one computer to another. The particular bit that is the
busy bit within the byte read as the console status will differ from
one machine to another. Its sense, whether one or zero for busy,
will also vary from one computer to another. It is possible for a
programmer to learn these hardware details for each computer he
works with, and embed hardware-specific drivers in his programs.
This practice has always been undesirable, as it restricts the use of
a program to a particular computer. With CP/M it is not necessary.

Much more complicated operations are involved in writing to
and reading from mass storage devices. As we mentioned before,
CP/M can be called upon to keep track of all the details required in
disk accesses, as well as operations through 1I/O ports.

Customizing CP/M

Since the computer user and/or programmer has been relieved of
the necessity for knowing these details, the hardware specific in-
terfacing has had to be done when the operating system was adapt-
ed to a particular hardware environment. But of course this sys-
tem-to-hardware interfacing had to be done only one time. By one
of us assembly language programmers, most likely.

The user-to-system conventions built into CP/M are one of
the strong points of the operating system. All disk and I/O accesses
are passed through a single entry point into CP/M. To implement
this, function codes are passed in one register, and the data or
buffer address passed in other registers. Using these conventions,
it is possible to write programs that will run on any computer
hardware without modification.

It is sad but true that some programmers still do not take
advantage of these facilities provided by CP/M, and insist on using
hardware specific addresses in their programs. As we will be seeing
when we begin writing assembly language programs in Part IV,
this is never necessary. Since we will refuse to repeat the errors of
others, all of our programs will be completely portable.



Application programs

The firmware monitor will take some main memory address space,
and the resident portion of CP/M (depending on version) will take
up about 6K. There are also some special areas at the bottom of
RAM that are used by the operating system. The rest of the main
memory address space is available for user programs.

How much RAM is available to the user depends on how
much is installed in the computer. While the 8080 family can
address 64K, it is not often you find a system with the full 64K of
RAM. In the programming we will be doing from here to the end
of the book, the smallest possible CP/M system, residing in 16K
RAM, will be sufficient.

CP/M loads and executes user programs in RAM in an area
known as the “transient program area,” or TPA. The TPA begins at
a fixed address, and includes all available RAM not required by
CP/M. In smaller systems, it may be necessary to overlay part of
CP/M to gain enough user workspace. The operating system has
been arranged so that this can be accomplished without interfer-
ing with the disk and I/O access portions of the operating system.

All of the non-system software (the user programs) are re-
ferred to as application programs. While we are in the process of
editing, assembling, and debugging our application programs we
will be using CP/M’s editor (ED), assembler (ASM), loader
(LOAD), and debugger (DDT). These programs are also going to
be loaded into the TPA as we use them. Obviously, then, they will
not reside in memory all at the same time, and only DDT will
share main memory with our programs. DDT will have to be load-
ed along with our application programs only until the programs are
fully operational.

Special memory areas

28

Down at the lowest addresses in our computer’s RAM are locations
dedicated to vectors. Vectors, in this sense, are unconditional
jump instructions, like the one that got the CPU from its first
instruction fetch at location zero to the monitor in PROM. The
8080 family uses eight memory locations as vectors for hardware
interrupts. The Z80 and 8085 add other interrupt vectors. We do



FIGURE 2-2. A simplified memory map of a typical
microcomputer running the CP/M operating system. Actual
memory addresses are not shown as they will vary depending
on memory available and the size and version of CP/M
installed.
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not need to be concerned with the details of these vectors at this
time, so long as we keep in mind that our programs should not
disturb these memory areas.

Above the space devoted to vectors, CP/M establishes buffer
areas that we will be using when we interface our programs with
the operating system. On our memory map in Fig. 2-2 we see that
these areas all take up only 256 locations at the bottom of RAM,
and the TPA begins at the next available location.

Another special area within RAM may be dedicated to moni-
tor functions. This area will vary from computer to computer, and
may not even be necessary in the machine you are using. Some
monitors use only a few locations, others may grab several K of
RAM for functions such as a memory mapped display image.

One of the responsibilities of the programmer who adapted
CP/M to your particular computer was to insure that the operating
system did not attempt to use any RAM space required by the
monitor or other computer-specific functions. For this reason you
will often see a machine running a 46K version of CP/M, for exam-
ple, when 48K of RAM actually exists. The other 2K, it is safe to
assume, was required for other functions.

In this chapter we have discussed three basic types of pro-
grams: the monitor, the operating system, and applications pro-
grams. The memory map shows how these software elements fit
into memory in a CP/M based computer.



The CP/M-Based
Computer

For the programming exercises in the remainder of this book, it is
assumed that you have access to a minimum size microcomputer
running some standard version (1.4, 2.0, 2.2) of the CP/M operat-
ing system, as in Fig. 1-1. While features of more complex systems
will be discussed, only the devices shown will be required for the
exercises to follow.

In this section you have acquired a vocabulary compatible
with current usage in the microcomputer world. There are a myr-
iad of other terms spoken by minicomputer users, and even more
in the world of the large mainframe computers. Now it is time to
reduce the size of even our minimum vocabulary, and start using
logical and physical device names as defined by CP/M and its
documentation.

Logical names and physical entities

Let us assume that you are sitting in front of your computer’s
operator’s console video display terminal. Meet your “CRT:.” Isn’t
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that easier than “computer’s operator’s. . .?” “CRT:” implies a
physical device, in this case the tube with keyboard attached.
Since this terminal . . . oops! Since this CRT: has been plugged
into the appropriate port on your computer to serve as the opera-
tor’s console, it has assumed the duties of logical device CON:.

Looking back at Fig. 1-1, we see only three other physical
devices attached to our computer. These are the line printer, or
LPT:, and two disk drives numbered 0 and 1 in the Intel MDS
tradition. The creators of CP/M did not establish any three-letter-
plus-colon designations for the disk drives, so we will just number
the physical disk drives 0, 1, 2, etc. When we select a particular
drive we are using its logical device name, A:, B:, etc. Disk drive
logical names map one-to-one with physical names in our mini-
mum system.

The same is not true for I/O devices in a CP/M system. As we
see in Fig. 3-1, we have four logical I/O devices that can be ac-
cessed through the CP/M operating system. We have already dis-
cussed logical device CON:, and we know from the discussion in
Chap. 1 that we will be using our LPT: to make listings of our
programs. So LPT: is connected as logical device LST:, for “list
device.”

Similarly, our general purpose input and output devices are
accessed through logical devices RDR: and PUN.:. If we were using
the old fashioned paper tape reader and punch, we would refer to
them as PTR: and PTP:.

Selecting I/O devices

Under the heading “IOBYT Device Selectors” in Fig. 3-1 we see
the schematic representation of four selector switches. If real
switches were connected as shown, we could use them to switch
from one I/O device to another. For instance, our RDR: could
receive data from a card reader, or a paper tape reader, or the
receive side (Rx) of a modem, depending on the setting of the
RDR: switch.

As inherited from the MDS system, CP/M includes facilities
for selecting any one of four physical devices for each logical de-
vice. Rather than the real selector switches, this is done through
bit patterns stored in a one-byte memory location labeled IOBYT.



FIGURE 3-1. Logical to physical device mapping and selection in a CP/M
computer. While the schematic representations of the device selectors indicate
real switches, the switching is actually accomplished by selectively accessing
different device driver subroutines within the operating system in response to bit

patterns stored in the IOBYT.
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Leaving the physical devices all permanently connected to the
computer (if it had enough I/O ports!) and selecting them in soft-
ware provides for more flexibility. Either the operator can make
the selection through the CP/M CON: interface, or we could allow
our programs to change the selections. Sometimes without telling
us!

It is an unusual system that would have all sixteen selector
inputs all tied to physical devices. Note that there is no require-
ment for devices to be connected to the first available input on
each selector, so long as we know what device is attached for each
IOBYT setting.

As you can see from this figure, a device such as the modem
that includes both send and receive functions must have the proper
settings in both the RDR: and PUN: sections of the IOBYT. The
CON: is the only bi-directional logical device.

CP/M has facilities for changing device selections, either
through the same entry vector used by our machine language rou-
tine in the Introduction, or by CON: operator action. We will be
discussing more of the names and their derivation in Chap. 5.

In our minimum system, however, we will never need to
change the IOBYT switches, and will only be using CRT: as CON:,
and LPT: as LST:.
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What the Operating
System Provides

The services provided by the various hardware components of a
computer system like that shown in Fig. 1-1 are pretty obvious by
their very nature. The services provided by the various compo-
nents of the software system are not so obvious, as we saw in the
preceding section.

Since the bootstrap PROM program accesses the floppy disk
system, as does CP/M itself, and since the computer may contain a
monitor program that can access the console and possibly other
peripherals, as does CP/M, it is obvious that there are more paths
than one to these devices. Since we can’t reach out and touch each
part of the software system, or visually trace the interconnecting
cables, it is not as easy to keep track of what is happening within a
software system as it is in the hardware environment. Especially in
a software system as complicated as the one we are working with.

In this section, we will be looking at the CP/M operating
system as it appears to the operator and programmer. You will be
exercising a few of the built-in and transient commands provided
by CP/M, but there is no point in trying to exercise all of the
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available commands in all their variations until you actually need to
use them in Sects. IV and V. However, if you want, you may use a
nice clean disk and experiment to your heart’s content with creat-
ing, deleting, renaming, and copying disk files using the instruc-
tions which follow.

If you are sharing access to your CP/M based computer with
other users, you should be careful not to use any of their disks to
experiment upon. Otherwise, assembly language may not be the
only new language you will learn.

Named file handling

A file in a computer is like one in a file cabinet. It can contain just
about any sort of information, right or wrong, and the contents of a
file can be identified by a label. In the cabinet, the labels on file
folders can be of any reasonable length, and may or may not actu-
ally represent what is in the folder.

The name of a file in a CP/M system has a few constraints on
it, in comparison. If the creator of the file is lazy, the name could
become meaningless if it is not carefully chosen to remind him of
what is in the file. Don'’t start off by naming all of your experimen-
tal programs “X.ASM” like some unfortunates have in the past!

CP/M allows each file name to be up to eight characters in
length. A file type of three characters is appended to the name,
following a period. In general form, this name/type is represented
by FILENAME.TYP in this book. When the files on a disk are
examined by using the DIR command, the period is not shown,
and the name is always padded out to eight characters with spaces,
to keep everything lined up. But you can use any number of char-
acters up to eight in the name, and you don’t have to type the
spaces.

There are also some constraints on the file .TYP as well. Some
types are fixed in meaning. “.ASM” is an assembly language source
program. “.COM” is a command file that CP/M will load into
memory and execute whenever you type in its FILENAME follow-
ing the prompt “>" that says CP/M is ready to accept a command.

You can create your own file types so long as you don’t conflict
with the default types shown in Table 4-1. For instance, with CP/
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M booted up from your system disk (see Intro.) in drive A:, place
your nice clean disk in drive B: and enter the command:

SAVE 0 B:-WORK.001

followed by a carriage return (CR). This will create an empty file
(zero blocks saved) with a name of -WORK and a “type” of 001, on
the disk in drive B. What kind of type is this?

It really isn’t any kind of type. You have used the .TYP field
to number this disk as your first working disk. This empty file is
like the label on the front of the file cabinet. If there are lots of

TABLE 4-1. Standard file types for CP/M disk files. The .TYP
field of the file name should agree with established
designations for these default types. Other designations for
other types of files can be used at the computer operator’s
discretion.

Standard Use .TYP
Defined by CP/M

Binary program image (Command) .COM
Assembly language source program .ASM
Assembler program output (hexadecimal) HEX
Assembler list output (print) .PRN
Editor input—saved (backup) .BAK
Temporary scratch file 558
Submit command file .SUB

Other Common Usage

BASIC language program .BAS
BASIC compiled program (intermediate) JANT
Fortran source .FOR
Macro assembler source program .MAC
Relocatable compiler output .REL

Data file .DAT
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users on your system, you might have included your initials in the
name, like -WORK-]JJ.001 for Jan Jones’ first work disk. The lead-
ing dash (-) flags this filename as special; not a real information
containing file.

CP/M allows you to create just about any kind of file name and
file type, and this little exercise was to demonstrate that some
thought should go into the selection of both. And it is a good idea to
start off by naming each of your disks with this kind of empty file
that will create a directory entry to provide identification for each
disk you use.

In addition to being able to create disk files from the console,
CP/M provides your programs with the same power. Files can be
created or deleted, or accessed for reading or writing, either from
the console or from within a user’s programs, using the same nam-
ing conventions in all cases.

Wildcards in file names

With your disks in the drives as above, enter the command DIR to
list the contents of the disk in drive A (a carriage return is assumed
following each command entered). “DIR” by itself lists all of the
files on the current disk. Now enter

DIR *.COM

and you will get a listing of only those directory entries with a file
type of .COM (for COMmand). The “*” is a wildcard that tells CP/
M to accept any FILENAME whatsoever. “*.COM” is equivalent

this character position.” Any number of s can be used in a file-
name in place of letters to help you search the disk directory for
sets of files with similar names.

Suppose you had been working on a program to play the game
of LIFE. In the process of updating the source program, you have
created a number of .ASM files: LIFE.ASM, LIFE-1.ASM,
LIFE-2.ASM, etc. You could find all of them by entering
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or, if you are lazy, you could have entered
DIR L*.ASM

which is a little more ambiguous, and might also have included
LOAD.ASM or LOUSY.ASM if such existed on the disk.
LIFE.ASM is unambiguous. It tells CP/M that the file by that
FILENAME.TYP is the only one you are interested in. You can
specify files with more or less ambiguosity by including fewer let-
ters and more ’s, or go the whole route and use *.* and CP/M will
accept any file name and any file type it finds in the disk directory.
Yes, there is a use for *.* in the real world. In the command

PIP B:=A:*.”

we have told the Peripheral Interchange Program (PIP) to copy all
the files from drive A: onto the disk in drive B:. If you want, you
can do just that right now, and create a copy of the system disk
which is in drive A: onto your nice clean disk in drive B:.

In the course of discussing file names, file types, ambiguous
and unambiguous names, and wildcards, we have seen that several
CP/M utilities can be instructed to access files that have been
specified using the same formats and wildcards. All of the programs
accept all the wildcards and drive identifiers alike.

This is one of the most useful features of the operating system.
The same formats and options for specifying files are accepted by
all of the utility programs because all the programs use the same
file handler routines in CP/M. And we will be seeing in Sect. V
that your own programs can be just as flexible, using the same CP/
M supplied file access routines. CP/M provides the same options in
accessing named files for your programs as it does for itself. This is
one of the features of the system that leads to painless
programming.

access

In Chap. 3 we discussed the mapping of logical to physical devices.
CP/M provides both the console operator and user programs with
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simplified access to logical units, and thus to the selected physical
devices. From the console, the operator can specify a logical unit
within a command string such as

PIP PUN:=FILENAME.TYP

and have the named disk file sent to the physical device currently
attached as logical device PUN:. In this way the computer operator
could send a program source file to another computer using a
modem and a telephone connection.

Similarly, a program can access any of the logical devices as
well, without knowing what physical device may be connected.
This could allow a general purpose data communications program
to be used, with the operator specifying the physical to logical
assignment, for example. And finally, either the operator or the
user program can change the logical device assignments.

The mechanisms for making these accesses will be discussed
in Chap. 6, and again in detail in later chapters as actual applica-
tions for the techniques are programmed. While it may sound
complicated to you at this point, you will be seeing that the careful
design of the operating system has simplified all these file and
device accesses, and the programmer is relieved of the tasks of
keeping track of physical devices and the locations of data on the
disks. CP/M is a nice place to work.

Line editing

Since you have been keying in command lines like those listed
above, and will probably want to experiment with others as soon as
you are finished reading this chapter, it is time to discuss CP/M’s
built-in line editing feature.

If you are keying in a command line in response to the CP/M
prompt “>" and make a single-keystroke error, you can back up
one character by hitting the DEL, DELETE, BS, or RUBOUT
key on your terminal. These four options are shown here as differ-
ent keyboards have a different designation for this key. You may
have to experiment a little with your terminal; some have two of
the key names listed above but only one will work properly.

When CP/M sees the delete key code, it will not always be
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able to back up the cursor on the screen, depending on version. If
your version does not back up and over-write the character, the
deletion is shown by the repetition of the character. Since this
clutters up the typed line with extra characters, you can review the
command line before terminating it with the usual carriage return
by entering the control code CTRL R.

A control code is entered by holding down the CTRL key
while pressing and releasing the letter key specified. Then the
CTRL key is released. If you have made a number of keystroke
errors on a command line, and rubbed out the bad ones and re-
typed the correct characters, the line as displayed on the CRT may
be indecipherable. To review it before executing it, type CTRL R
and it will be repeated as edited on the next line.

To give up, and abort the entire entry, type CTRL U or
CTRL X. If you have made too many errors on one line, this is
often the best way out. Give up! CTRL X! Retype the whole line
and be sure it is right.

These are about the only line editing controls you will ever
need, although there are others listed in the CP/M manuals. Don’t
try to learn more than you need to start with.

As with so many other good features of CP/M, these line
editing controls are available to you the programmer, as well as to
you the operator. Your own programs can, and always should,
make use of this feature to provide a friendly environment for the
computer operator. Remember, he will often be you.

And again, to avoid overloading your brain at this point, the
details of how to easily include all these nice CP/M features will be
given in later chapters, as the time comes for you to write programs
that make use of them. Right now you might want to play around
with the commands discussed this far, and exercise the line editing
features. Then again, you might not want to. Do it anyway.
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We are all working together to one end,
some with knowledge and design,
and others without knowing what they do.

Marcus Aurelius Antoninus

Before we can look at the organization of CP/M and see how it
provides all the services listed in the previous chapter, we have to
take a quick look at some items that the operating system needs.
These needs include access to programs at the most primitive
level, that communicate with the physical devices through the
computer hardware. These driver routines have to be supplied
before CP/M can run, and are at the lowest level of all the software
in your computer system.

Eventually you will want to learn more details of this level so
that you can make additions to existing CP/M systems or adapt the
operating system to a new computer. These are a couple of the
interesting tasks that can be performed by the assembly language
programmer.



Disk and I/O access primitives

In the first section we took a look at how data is stored on a disk,
and how a loader program somewhere in ROM is used to load the
operating system into the proper place in RAM. This loader is not
part of the operating system. It has to pre-exist somewhere in the
computer’s memory so that we can get the operating system off the
disk and into memory.

This loader must be available when the power is first turned
on, and also when the operator hits the RESET switch. In addi-
tion, this same loader, or a portion of it, will be used to “warm
start” the operating system. A warm start assumes that the system
has been running previously, so it will use the currently selected
disk drive, and will make no changes in the logical to physical
device mapping as defined by the contents of the IOBYT. A warm
start is used at the end of transient programs to reload CP/M, or in
response to the operator pressing CTRL C to abort a program in
case of trouble.

Obviously, the PROM based loader must contain routines
that permit accessing the disk at the most primitive level, in order
to position the head of the correct disk drive to the correct track
and sector where the beginning of the operating system will be
found, and then load the system into RAM. These same routines
will later be used by the operating system to perform the same
primitive functions. One of the tasks involved in adapting CP/M to
a particular computer is to connect the proper functions in CP/M to
the proper disk access primitives in PROM.

The same is true for I/O device accesses. CP/M does not know
the absolute addresses of all the 1/0 ports, so a computer specific
set of I/O device driver routines is required. Since no communica-
tion with the CON: or other devices is required before the system
is loaded into RAM, it is customary to include the complete VO
device access primitives within the proper area set aside in CP/M,
in the Customized Basic Input/Output System (CBIOS). These
driver routines will then be loaded from the disk along with CP/M.
But this is not always necessary, and I/O device drivers in PROM
could be used by CP/M.

In either case, a particular area within the operating system
has been set aside for a number of vectors that point to the proper
disk and I/O access primitives. These vectors are shown in Table
5-1.
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FIGURE 5-1. The organization of the software elements within user programs,
the CP/M system, and the hardware-specific support routines in a typical
microcomputer. User programs. access all devices through the BDOS call vector,
and exit back to CP/M through the warm start upon completion. Power-up, reset,
and device driver functions are provided by primitive routines stored in read-

only memory (ROM) within the computer. CP/M accesses these functions through
the CBIOS vectors.
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TABLE 5-1. The Customized Basic Input/Output System (CBIOS)
within CP/M includes a set of standardized interfacing vectors,
that will remain in these relative locations for any version of CP/M
installed in any computer. This permits all customization to be
restricted to the subroutines accessed through these vectors.

ADDRS

Vector Description/Functions
System Load Functions

3E00OH+b

3E03H+b

BOOT Enter after power on or RESET and after
system has been loaded from disk.
Display sign-on message, zero IOBYT
and DRIVE, set up low RAM vectors,
select current drive, go to CCP.

WBOOT  Enter after CTRL C or JMP 0. Load
system from disk.
Set up low RAM vectors, select current
drive, go to CCP.

I/O Device Drivers

3EO6H+b

3E0SH+b

3EOCH+b
3EOFH+b
3E12H+b
3E15H+b

CONST Test CON: for keyboard character

ready.
CONIN Wait for and read CON: keyboard
character.
CONOU  Send one character to CON: display.
LIST Send one character to LST: device.

PUNCH Send one character to PUN: device.
READER  Wait for and input one RDR: character.

Disk Access Primitives

3E18H+b
3E1BH+b
3EIEH+b

3E21H+b
3E24H+b

3E27H+b

3E2AH+b

HOME Set current drive head to track 0.

SELDSK  Select drive, store number in DRIVE.

SETTRK Set current drive head to track
specified.

SETSEC  Seek current drive to sector specified.

SETDMA  Set RAM buffer start address for next
disk read or write.

READ Read selected disk, track, sector into
RAM buffer.

WRITE Write contents of RAM buffer into se-
lected disk, track, sector.

b = BIAS = 400H for each 1K offset above 16K CP/M
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Each vector is a three byte jump instruction, JMP BOOT,
JMP WBOOT, etc. The addresses shown in the table are the abso-
lute addresses for a 16K version of CP/M. The first vector points to
routines that get things running properly after the PROM loader
has bootstrapped in the CP/M system, and will be jumped to from
the PROM loader.

The BOOT routines will then display the “xx K CP/M . . .”
sign-on message, zero the IOBYT and DRIVE select bytes in low
RAM, and set up the vectors at locations 0 and 5. BOOT then
jumps to the CCP.

The next vector points to WBOOT, for warm starts. WBOOT
is entered when the operator or a transient program wants the
system reloaded. Within the WBOOT routines the loader in
PROM will be called upon to reload the operating system. Then
WBOOT will rewrite the low RAM vectors, but will leave the
DRIVE and IOBYT selections as they were. WBOOT then jumps
to the CCP.

CP/M itself is activated when the Console Command Pro-
cessor (CCP) is entered. It is CCP that prompts with the “>"
character and then waits for a command to be entered from the
CON: device.

CCP, other portions of CP/M, and user programs in the TPA
will all communicate with I/O devices through the next six vectors
shown in the table and Fig. 5-1. These vectors point to the driver
subroutines that do the decoding of IOBYT and perform the actual
communications between software and physical devices.

The seven disk access vectors follow in the table. You can see
from the descriptions of the routines pointed to by the vectors that
everything that can be done to a disk, at least from a program, can
be accomplished through these vectors and the primitive routines
that they access. An operator is still required to put the right disk
in the right drive, right side up. Humans can’t all be replaced by
machines.

All that is required to adapt CP/M to a new computer is to
provide the loader in PROM and the 15 routines to be accessed
through these vectors. Since this has already been done on your
computer you don’t need to understand the details of these pro-
grams to use CP/M. But someday you may be involved in custom-
izing these programs to add new I/O devices or adapt CP/M to a
new computer. The Digital Research CP/M manuals give all the
details you will need, and include sample programs.



BDOS—The Basic Disk Operating System

S0

In the beginning a floppy disk sector held 128 bytes of data, plus
address and checksum information. Therefore the basic element of
disk storage is the 128 byte record. Also in the good old days,
assembly language programmers thought in terms of 256 byte
“memory pages,” which in nice round hexadecimal numbers hold
100H bytes. In CP/M documentation, you will run across refer-
ences to 128 byte sectors and records, 256 byte pages or “blocks,”
and 1K byte “groups.”

Double density and hard disks have physical sectors that can
be multiples of 128 bytes, so we will use terms that are indepen-
dent of the size of a sector on disk, to avoid confusion. All you have
to remember is that

1 record = 128 bytes
1 block = 256 bytes = 2 records
1 group = 8 records = 1K bytes.

Actually, you can usually let the system remember all of that.
Since CP/M is structured to make things easy for the user, all the
user needs to do is tell the system to read FILENAME.TYP into
the TPA. BDOS will handle the details.

The first detail will be to search the directory for the named
file. The name will be found in a directory entry that is the image
on disk of a File Control Block (FCB). Other information contained
in the FCB tells the system where to find the file on the disk, and
how big it is. The minimum increment of space on the disk that can
be allocated by CP/M is not one record, but is the 1K byte group.
If a file contains only a single byte, it still takes up 1K bytes on the
disk. If it contains 1K + 1 bytes, on up to 2048 bytes, it will take up
two groups (2K) of disk space.

This seeming inefficiency is the price you pay for a system
that provides all the high level niceties that CP/M does. Between
the user with a file name, and the disk access primitives listed in
Table 5-1, stands BDOS to take care of all the little details.

Details like remembering what files have been erased, so that
their space on the disk can be reused. This is known as dynamic
disk space allocation, and is what keeps you from running off the
end of the disk all the time. BDOS maintains all the information
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required for this in the FCBs in the directory. User programs can
ask BDOS to look for files in the directory, read them into RAM,
write them from RAM to disk, or erase them.

In addition, the computer operator, working through PIP or
the CCP, can ask BDOS for these same services. And whether the
disk file access request comes from a user program or from the user
sitting at the console, BDOS will display all disk access errors on
the console.

In the next chapter we will be looking at how a user program
requests disk accesses from BDOS, and in Sect. V will be doing
just that. There is not much else you need to know about BDOS,
except that when it says

BDOS ERR ON B: BAD SECTOR

don’t panic. Maybe you just forgot to put the disk in the drive. Of
course it is possible that there was a real disk error in drive B.
BDOS will try over and over to read or write a sector whenever it
encounters a checksum error. But its patience is limited, and after
a few retrys it will give up and display the message above.

The computer operator has two options at this point. If he
types a carriage return on the console, the error will be ignored. If
he types CTRL C, the system will be rebooted (warm start). You
can ignore read errors in text files, like assembler source files, and
recover the rest of the file. But don’t ever ignore read errors when
loading a program from a .COM file. This is the binary image of
the program, and any error is usually fatal.

If you ever see the BDOS error message

BDOS ERR ON R: SELECT

or this message with any other illegal drive specified, it means your
program is totally lost, and has garbaged the DRIVE select byte at
location 4 in RAM. This means that it has probably garbaged lots of
other locations as well. NOW IS THE TIME TO HIT THE RE-
SET BUTTON. You know you always wanted to!

A BDOS error of READ ONLY means that the disk you are
trying to write on is write protected by having its notch covered
(5%" disks) or uncovered (8" disks) or that you changed the disk
without letting CP/M know. If you have changed the disk, or if you
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pull it out and remove (replace) the sticker on the notch, hit CTRL
C and BDOS will reread the disk directories and then be able to
write again.

All of these error messages are displayed on the console
whether the source of the error is a program fault or human error.
When running a higher level language program, like Star Wars
written in BASIC, there is usually nothing you can do to recover
from BDOS errors. If the error is real and permanent, indicating a
defective floppy disk, recover as much data as you can from the rest
of the disk and then throw the disk away. Disks are cheap. Don’t
risk your valuable software on a bad one. You did make a backup
copy, didn’t you?

CBIOS—The Customized Basic Input/Output System

CP/M is an extremely well organized operating system. It is com-
pact and easy to adapt to a new hardware environment. After
struggling through the first part of this chapter, you might not be in
total agreement that it is an easy system to learn.

One reason that there seems to be a lot of jumping around
from PROM to CBIOS to CCP to TPA is that the system was
written to run on a minimum computer, with only 16K bytes of
RAM required for version 1.4 of CP/M. To provide the user with
all of the required services and still allow him 10K of user work-
space in the TPA required that CP/M make maximum use of the
available resources of the computer. The seemingly fragmented
organization of the system, as we see in Fig. 5-1, is actually evi-
dence of its efficient organization.

It is also evidence of the features of CP/M that make it so
adaptable. Access to all disks and I/O devices can be made through
the single location 5 vector pointing to the BDOS entry point. All
other required vectors, the 15 CBIOS vectors, are grouped in one
place, and more than enough memory space is available immedi-
ately above them for the incorporation of the customized drivers
that make CP/M run on your particular computer hardware.

Table 5-2 is the memory map of version 1.4 of CP/M installed
in a minimum 16K system. (The PROM is not shown, as it is part of
the hardware and its address and size will vary from computer to
computer.) The map shows the locations of all the vectors, RAM
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variables, and the parts of the operating system. BIAS is a value
that will be added to the absolute addresses shown for versions of
CP/M larger than 16K. The program can be resized from 16K to
64K in 1K increments, to adapt it to any 8080 family of
microcomputer

All the other adapting required has been done in your system
in the CBIOS. In various articles, books, and manuals on CP/M
you will find “BIOS” and “CBIOS” used interchangeably. Since
some customizing is required for every computer CBIOS should
be the word to use.

TABLE 5-2. The memory map for version 1.4 of CP/M. All
memory usage below address 100 in hexadecimal remains the
same regardless of the installed size of the operating system.
The addresses for the moveable portion of CP/M are shown for a
16K version. A bias value will be added to these addresses
depending on installed size.

Memory Address Contents Function
From To

0000H 0002H JMP WBOOT at 3EQ0H+b Warm start vector

0003H IOBYT I/O selector
0004H DISK Disk selector
0005H 0007H JMP BDOS at 3106H+b  BDOS entry vector
0008H 0037H not used by CP/M Interrupt vectors
0038H 003AH JMP DDT DDT breakpoint
003BH  005BH not used by CP/M
005CH 007FH TFCB Transient FCB
0080H O00FFH TBUFF Default RAM buffer
0l100H  28FFH+b TPA Transient
programs
2900H+b 30FFH+b CCP Console
commands
3100H+b 3DFFH+b BDOS Disk operations
3E00H+b 3E2CH+b CBIOS vectors See Table 5-1
3ECOH+b 3FFFH+b CBIOS I/O operations

b = BIAS = 400H for each 1K offset above 16K CP/M
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Inside CBIOS are all the I/O drivers shown in Fig. 5-1. Not
repeated in this schematic diagram are the IOBYT selectors shown
in Fig. 3-1, but each of the drivers will have to decode its part of
IOBYT if this feature is enabled in your computer. This is another
option with CP/M; the IOBYT does not have to be used if multiple
I/0 devices are not installed.

If IOBYT is implemented, it takes the format shown in Fig.
5-2. Each of the four logical devices uses a two-bit field within

FIGURE 5-2. Subfields within the eight-bit IOBYT specify one of
four physical devices to be accessed by each of four logical
devices in a CP/M based computer. Minimum systems with few
peripheral devices do not need to implement the IOBYT. More
complicated systems can use it to simplify operator selection of
input/output devices. The device names shown were inherited
from the Intel MDS-800 development system that spawned CP/M.
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IOBYT to select one of four physical devices. Each logical device
driver (CONIN, PUNCH, etc.) will have to read the current
IOBYT, mask out its two bits, and decode the bits to see which
device to communicate with.

All of this is straightforward, and any competent assembly
language programmer can write customized drivers using IOBYT.
What is not so easy to get used to is all the funny device names that
go along with use of the IOBYT. With your CP/M system disk in
the current drive, enter the CCP command

STAT VAL:
and you should see the following display:

CON: = TTY: CRT: BAT: UCI:
RDR: = TTY: PTR: URI: UR2:
PUN: = TTY: PTP: UP1: UP2:
LST: = TTY: CRT: LPT: ULI:

produced by the CP/M transient utility program STAT.

Back in Chap. 3 we saw that all kinds of goodies could be hung
onto our microcomputer, and selectively accessed for data trans-
mission and reception. One handy device is the modem. If you
want to select the modem to be attached as the PUN: and RDR;,
how do you go about it?

In the list of devices shown by STAT VAL: we don’t find any
physical device name like MOD: for modem. This is another hold-
over from the days when CP/M was created. It was originally
programmed on an Intel Microcomputer Development System,
and all the logical and physical device names shown above are part
of the “MDS Syndrome.”

We already know that the MDS expected that old mechanical
device, the ASR-33 Teletype, to be the default selection for all four
logical devices. Other physical device names handed down as part
of the syndrome include PTP: and PTR: for paper tape punch and
reader. If a user insists on connecting more modern devices, he has
to refer to them as the User Punch 1 or 2, and User Reader 1 or 2.
UL1: would be the User selected List device. At least Line
PrinTer and CRT: are included in the syndrome. But no MOD:.

Obviously, you would connect the modem to any available
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serial I/O port, and write a CBIOS driver for PUN: and RDR: that
would talk to the modem when UPI: and UR1: were assigned to
the punch and reader logical devices. Or your CBIOS driver could
access the modem as TTY:, if it was your number one peripheral.

In any case, a customized driver has to be incorporated in
CBIOS, and the operator has to remember which funny name
refers to the modem. Until, that is, you learn enough about assem-
bly language programming to be able to customize the names of
the devices in STAT. It can be done, but first you have to learn
more about the system, and then how to write assembly language
programs. That is a carrot dangling in front of you, in case you
didn’t notice.

By the way, just what is a BAT:? On the MDS it was the paper
tape reader loaded up with a tape full of pre-punched console
commands. In the BATch mode, the paper tape was read one
command at a time, as though it was an operator issuing commands
to the system. Each command was then executed in turn, then the
next read from the PTR:. This allowed the operator time to go get a
cup of coffee, or go to lunch, or just mess around a little. The
computer could run batches of jobs unattended, getting all its
commands from the tape.

CP/M doesn’t use this batch mode. It has an even smarter but
similar program known as SUBMIT. It reads commands from a
disk file, and does all kinds of smart things. Now we have to figure
out something else for BAT: to refer to. I'm sure youll think of
something, even if you don’t have a mother-in-law.

CCP—The Console Command Processor

After the CP/M system has been loaded into RAM from the disk,
CCP prompts the operator for a command line input by displaying
on the console the currently selected drive designation followed by
the “greater than” symbol: A>.

CCP expects to see a command consisting of the name of one
of the resident functions, or the FILENAME of a .COM file on
disk. In the latter case, the FILENAME can be preceded by a
drive designator like “B:” if the .COM file is not on the current
disk. If the resident function or .COM program requires options to
be specified, they follow the command name on the same line,
separated by spaces. Options can be other file names, ambiguous
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or unambiguous, with or without drive designators. Options can
also be any other information required. The line editing features
discussed earlier are active while the operator is keying in the
command line.

CCP executes resident commands using the options spec-
ified, and then prompts for another command line input. If the
command is not one of the resident commands, CCP assumes it is
the name of a .COM file on disk. In that case, CCP aids the author
of that transient program by setting up a default file control block,
containing the properly formatted name(s) of any files specified in
the command line, and a RAM buffer containing the entire text of
the command line, past the command name itself.

Suppose we have a program named COMPARE that com-
pares the contents of two disk files and displays any differences
found between them. To keep the display from scrolling off the
screen faster than the operator can read it, the operator is given the
option of entering a directive to tell the program to pause following
the display of each miscompare. The operator invokes the program

by typing
COMPARE B:TEST.ASM B:TEST.BAK PAUSE

to see all the updates made to his program TEST following the last
edit session (TEST.BAK is the next to last version of TEST.ASM,
automatically saved by the CP/M editor).

Here the programmer who wrote COMPARE uses the CCP
generated default file control block (TFCB in Table 5-2) to find the
two filenames that the program requires. Since the operator can
also specify another option, COMPARE will look in the command
line buffer (TBUFF in Table 5-2) to find the option.

CCP has saved the programmer a lot of effort by setting up
these two storage areas before loading and executing the transient
program. Another example of super service for the CP/M assembly
language programmer.

Resident functions
Given unlimited storage, all of the utility routines listed in Table

5-3 could reside permanently in the system area in the computer
memory. Then they could be executed instantaneously, rather



58

Organization of CPIM

TABLE 5-3. The utility functions provided by the CP/M operating
system are divided into two classes: those resident in memory
at all times, and those loaded into the transient program area.
These latter progams take up memory space only until their
functions are completed.

Resident Commands

ERA FILENAME.TYP (afn) ERAse file(s)

DIR Display disk DIRectory

DIR FILENAME.TYP (afn) Display DIRectory file(s)

REN FILENAME.TYP=FILENAME.TYP REName a file

SAVE xx FILENAME.TYP SAVE contents of TPA on
. disk

TYPE FILENAME.TYP Display contents of a file

Transient Commands

STAT Display STATus of current
disk

STAT FILENAME.TYP (afn) Display STATus of file(s)

STAT VAL: Display logical/physical
e

STAT DEV: Display I/O assignments

ED FILENAME.TYP EDit an ASCII file

ASM FILENAME.shp ASseMble a program from
file

LOAD FILENAME LOAD .HEX f{ile to .COM
file

DUMP FILENAME.TYP Display file in memory
DUMP format

SUBMIT FILENAME x,y.z SUBMIT batch processing

MOVCPM yy w Generate re-sized system

SYSGEN Write moved system to
disk

(afn) = ambiguous file name(s) permitted

xx = size of file in 256 byte blocks

shp = disk drive for source, hex, and print files
X,Y.z = optional parameters

yy = size of resulting CP/M system

w = * option
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than being loaded into RAM from disk as they are required. The
alternative would be for all of the utilities to be .COM files on disk,
with none resident in the operating system.

Since either method would work, the division between resi-
dent and transient utilities is strictly the result of a judgment deci-
sion on the part of the designers of CP/M. Since resident functions
are not loaded from disk, they execute rapidly, but take up memo-
ry space.

The resident function you will be using most often is DIR,
used to display your files on disk. DIR followed by a carriage
return will show all your files on the current disk. DIR followed by
a drive designation will list the contents of the disk directory in that
drive.

DIR can also be followed by a filename, ambiguous or unam-
biguous, as discussed in Chap. 4, to verify the presence of a partic-
ular file or group of files.

ERA can also be invoked with the same options that work for
DIR. ERA *.BAK will clear your disk of all backup files.

ERA B:*.BAK

will do the same for all the backup files on drive B:. ERA must be
used with caution, since it causes a file to be erased, and the next
disk write will reuse the disk space made available by ERA. “ERA”
stands for “erase,” of course, and has nothing to do with political
activities.

In Chap. 4 we used SAVE to create an empty file, just to puta
disk name in the directory. SAVE will also create a .COM file by
moving the contents of the TPA onto disk, with the name specified.

SAVE 12 TEST.COM

will create a file containing 12 memory pages, or blocks of 256
bytes each. Obviously a topic for later discussion, when you are
actually writing transient programs.

REN allows you to rename a file, if you remember that in
assembly language programming a curious convention has been
handed down over the years. That convention is the practice of
specifying everything backwards, as in MVI C,WCONF, where
the C register is the destination, and WCONF is the source of a
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value to be moved into C. REN wants the same reverse sequence:

REN B:GOODPROG.COM=B:TEST.COM

and is here used to put the permanent name onto a transient
program that had been called TEST until it was fully debugged.
The programmer had better remember to rename TEST.ASM
now, too!

SAVE and REN don’t get much use, normally. The final resi-
dent command, TYPE, makes up for that. Like SAVE and REN,
TYPE requires an unambiguous file name as an option. It will type
out the contents of the named file on the console. TYPE can also be
used to list files on the line printer, by including the special control
CTRL P in the command line.

CTRL P is a toggle. Enter it once and everything that is
output to the console for display will be echoed to the LST: device
as well. Hit CTRL P again and the LST: output will stop. Since
everything displayed on the console will get printed when you use
this control, you won’t get nice formatted printouts like those sup-
plied by the PIP utility. But CTRL P is a handy way to get quick
program listings in conjunction with TYPE, and can be used with
DIR and STAT to list the contents of your disks.

Another toggle is CTRL S. If you TYPE a source program
listing, it will go scrolling past on the console so fast you won’t be
able to read it all. Enter CTRL S once and the display will stop.
Again and it will resume flashing by. It is a shame that this control
is not on a single key. That would make it easier to use this handy
function.

When you become a proficient programmer you can write
your own customized version of BIOS, and you can implement a
similar pause control using a single key. Or better yet, you could
implement a speed control to slow the display down for listing long
files. Power to the programmer!

Transient utilities

Enter the command STAT *.COM and you will see why STAT is
not a resident function. The display shows the statistics of all
the .COM files on your disk, including STAT.COM itself. Look at
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the BYTS reported for STAT and you see why it is on disk and not
part of the system; it is too big.

STAT is used most often to allow you to check how much
space is left on a disk. If you are about to update TEST.ASM you
will want to know how big it is as well, so you can be sure that there
will be space enough on the disk for the new TEST.ASM as well as
TEST.BAK when you get through with your update editing
session.

STAT VAL: was used earlier to show all the possible 1/O
devices, and STAT DEV: will show the current assignments, as
programmed into the IOBYT. STAT is also used to change those
assignments in systems using the IOBYT. For instance,

STAT LST:=LPT:

will set the list device part of IOBYT to binary 10 to signal CBIOS
that LPT: is the physical device to assign as the logical list device.
Well, you want to list on the line printer, don’t you?

Since STAT can change the assignment for logical device
CON: as well, and since CON: is the source of the command and
the destination for the next CCP prompt, assigning another device
to CON: will cause your current console device to go dead as soon
as STAT makes the assignment. What to do if you try this when
there is no other console device plugged into the computer? Hit
the RESET switch. But remember that doing so will zero the
IOBYT and reset all the device assignments to TTY:. You will
regain use of the original console, but lose any other reassignments
you might have made.

The other transient utilities supplied with CP/M will be dis-
cussed as they are encountered in our learning-by-doing sessions
beginning in Part IV. If you must fill your head with details you
won’t be using yet, you can skim through their descriptions in the
CP/M manuals. Since those manuals are the complete reference
works on the system, everything about all of the utility programs is
included in their discussions.

There is no need to try to learn everything about all of these
programs at this point. You will be introduced to as much informa-
tion about them as you need at each step in the learning process.
But if questions should arise, remember that this book does not
replace the Digital Research manuals. Turn to them if you feel the
need.
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Since the transient utilities are .COM files and are loaded into the
TPA for execution, and since we, the users of the CP/M based
computer, will be writing programs that also execute in the TPA, it
is obvious that there is no real difference in form between a “CCP
transient command” and a user program. The utilities supplied
with CP/M are referred to as transient commands in the manuals,
but as we have seen, all this means is that they are .COM files on
the system disk.

Our own programs will be accessed in the same manner; by
the entry of a command line into CCP following the CCP prompt.
As we have seen, CCP will parse that command line, and if it
contains one or two file names, will load them into the default file
control block. Other entries in the command line will be saved for
our program in TBUFF. Our program is then off to a flying start.

There are a number of other tasks that CP/M can perform for
our user programs. In the next chapter we will be seeing how to
organize our programs to make maximum use of the services that
CP/M provides.



Interfacing
With CP/M

The hypothetical COMPARE program in Chap. 5 could have been
written to be invoked with the simple CCP command COMPARE.
The program could then prompt the operator for the names of the
two files to be compared. The program would then have to parse
the file names as they were input, create file control blocks for
both, and then ask the operator for any of the other options
permitted.

Since the operating system can do all of this for us using a
single command line input with editing features, it makes no sense
to have these burdens placed on user programs. The system pro-
vides a large number of labor saving facilities, and they should all
be made use of in your programs. That places the burden on you to
learn what is available and how to use it.

The “giant hook” at location 5

In Fig. 5-1 we see the user transient programs accessing all of the
facilities of CP/M through the BDOS CALL VECTOR that the
operating system wrote in memory location 5 (Table 5-2). This is
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the hook on which we hang all our requests for I/O and disk access
services. Since we are assembly language programmers, and know
the locations and operation of all the disk and I/O drivers in CBIOS
and the PROM, we could have used those drivers directly. But
that would be a poor programming practice.

For one thing, each different size and version of CP/M will
have the CBIOS vectors starting at a different absolute address,
and the user program would either have to figure out that address,
or be written to run under only one size of one version of CP/M.
Not too good for program portability. Since each version of CP/M
knows where its BDOS ENTRY is located in RAM, it can set up
the location 5 jump instruction to point to itself. Also, if any of the
PROM routines were called directly, the program would run on
only one hardware configuration.

The reason that this is being stressed here is that there is a
distressing number of programs being sold today that are written in
such a manner that it is difficult or impossible to adapt them to a
new hardware or software environment. As we are seeing, that is
not necessary. Programs can be written to run under any version of
CP/M on any computer. Simply hang your service requests on the
giant hook.

The services available from the system vary slightly from one
version of CP/M to another, although Digital Research has been
careful to avoid any conflicts when updating the operating system.
To avoid any yourself, you should limit your use of system func-
tions to the subset listed in Table 6-1. These are all you will be
needing for quite some time in your programming efforts.

Way back in the Introduction, we loaded register C with a
function code, put our data in register E, and called BDOS at
location 5. This example performed a simple task; outputing one
character to the console. Much more complicated tasks are avail-
able to us, ranging from the input or output of a whole text line, on
up to the reading or writing of one disk record.

All of the system service calls make use of a common set of
calling conventions. We have seen the simplest in our first pro-
gramming exercise in the Introduction. More complicated func-
tions will need to use more registers for passing parameters. We
will be investigating all of these in detail throughout the rest of the
book, as we make use of them.

Once again, we are discussing a topic in advance of your need



TABLE 6-1. The most commonly used disk and I/O access
functions provided by the CP/M operating system. All are
accessed through the single BDOS entry point vector stored in

memory location 5.

I/O Device Functions

Label Code Function
RCONF 1 Read character from console device
WCONF 2 Write character to console device
RRDRF 3 Read character from reader device
WPUNF 4 Write character to punch device
WLSTF 5 Write character to list device
RIOBF 7 Read IOBYT from memory location 3
WIOBF 8 Write IOBYT to memory location 3
RBUFF 10 Read console edited line input
CRDYF 11 Check console for character ready

Disk Access Functions

INITF 13 Initialize BDOS, select drive A:
DSELF 14 Log in and select drive d:
OPENF 15 Open «a file for read or write
CLOSF 16 Close a file
FINDF 17 Find a file in the disk directory
NEXTF 18 Find next occurrence of a file
DELEF 19 Delete a file
READF 20 Read one disk record into memory
WRITF 21 Write one record from memory to disk
MAKEF 22 Create a disk directory entry
SDMAF 26 Set RAM buffer address for read or write

Additional functions are available but are not commonly used.
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to understand its details. This is to help you understand why the
given approach to each task is not always the one which seems most
straightforward. You can rest assured that any approach that seems
roundabout at first glance has a very good reason for existence.
Accept the dictates found in this book on blind faith, and the
reasons for them will be revealed later.

Acceptance on faith is necessary at times because there is so
much background material to learn before you can begin writing
your own programs. More follows in the next section. Through
necessity, discussions of hardware topics, software topics, and pro-
gramming philosophy have had to be mixed together in this book.
This is to help you understand the big picture, and build your
understanding block by block.

Some blocks are hard, some are soft. They are each equally
necessary for you to understand.
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Programming

X2 =X
George Boole

The binary number system uses digits that can assume only two
states. These states are represented by the numbers 0 and 1. The
equation X2 = X is true only if X = 0 or X = 1. On this basis
George Boole developed the rules of formal logic, or Boolean
algebra.

Machine language

The language that your computer understands is composed of bi-
nary digits that can assume one of two states: either of two voltage
levels. These are variously referred to as logic high or low states, or
logic true or false states, or voltage or current on or off. We can
represent these two states by using the binary digits (bits) 0 and 1.

In the exercise in the Introduction, you keyed in a “machine
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language” routine using DDT. While this use of the term machine
language is common, it is not strictly correct. The actual language
of the machine is composed of patterns of voltages that take one of
the two possible binary states.

While you need not concern yourself with what is going on
inside your computer in terms of voltages, you should have some
feeling for what those voltages are accomplishing. The computer
begins each instruction cycle by fetching an opcode from memory.
This eight-bit pattern is placed in the instruction register. In the
storage elements in this register, each bit will be at a high or a low
level depending on the instruction. This set of eight voltage levels
is the language the machine understands, strictly speaking,.

In the exercise in the Introduction, we have taken the liberty
of referring to a hexadecimal representation of those voltages as
machine language. Well, we can’t very well say that we want the
computer to execute OV OV OV OV 5V 5V 5V 0OV as our first opera-
tion. We have to use some more human-readable form of repre-
senting the contents of the instruction register following that first
fetch. Since we don’t want to spell out the voltage levels for each
bit, we could use a shorthand, letting a zero represent a low level
(zero volt) state, and a one represent the high (five volt) state. Our
machine language opcode can now be represented as “00001110.”
And this is, of course, the binary representation of our first opcode.

If we had to enter all our programs into the computer using
that old switches-and-lights type of console, this binary representa-
tion would be quite workable since each binary digit (bit) of either
one or zero would correspond to one switch set either up or down.
This binary word would then look like a map of our switch settings.
And this is the way things were once done.

Today, writing programs in binary would soon wear out two
keys on your terminal and leave the others unused. And of course
it would be difficult for a human programmer to recognize more
than a few binary patterns on sight. So more tractable representa-
tions of eight binary digits were developed. The first technique was
octal representation. Here the binary word is broken up into three-
bit groups, starting from the binary point, or right end.

The rightmost three-bit group in our first opcode is 110. In
octal, if 000 is zero, then 001 is one, 010 is two, and 100 is four. You
can see that 110 must be six, since it is four and two. Using only
these basic patterns and their sums, we can represent numbers
from zero through seven with three bits. This is a set of eight



FIGURE 7-1. An eight-bit byte containing a bit pattern
expressed in octal, binary, and hexadecimal notation. The
decimal equivalent of this pattern is 14.

o’ 1 ' 6 = 16Q
T T T I T 7
o:0|0;0|1;1||1:o = 000011108
I |
0 ‘ E = OEH

states, hence the name octal, based on the same root as octagon
and octopus.

To represent the entire eight-bit opcode in octal, we take the
six as the right most octal digit, next to the octal point. The next
three-bit group is 001, or one, and that goes to the left of the six.
This leaves only two bits for the most significant octal digit, and it is
zero. So our opcode in octal is 016.

Now that we can write 00001110 as 016 in octal shorthand, we
have made opcode patterns more human-readable, but have re-
moved ourselves one more level from those voltage patterns inside
the machine. But we are making things easier on the human ele-
ment in the computer system.

There are those of us who once felt that it was regress and not
progress when hexadecimal notation came along. It is not as easy to
learn as octal, but it does make the representation of longer words
a little simpler. We will be getting into hex, as it is known for short,
in more detail later. For now, let’s just take a quick peek at hex
notation. We saw that eight bits doesn’t break up evenly in octal,
since we had groups of three, three, and two bits. The next step up
from octal notation is hexadecimal, where we break up our eight
bits into two four-bit groups. Now we need more symbols, which is
where hex starts confusing us by mixing numbers with letters.

With four bits in each group, we need 16 symbols to repre-
sent each different hexadecimal digit. Hexadecimal means, of
course, “six and ten.” We ten-fingered humans had already in-
vented zero through nine as symbols to use for counting, and hex
notation borrows the first six letters, A through F, as additional
number symbols. When we were evaluating binary bit positions to
establish our octal digits, we said 000 = zero, 001 = 1, 010 = 2,
and 100 = 4. Obviously then 1000 must be eight! And in hex, 1001
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=9, 1010 = A, 1011 = B, etc., on up to 1111 = F. We see here
that eight (or 1000) plus two (or 0010) equals A. That makes A in
hex (written OAH) the same number as 12 in octal, and 10 in
decimal. And on up to OFH = 17Q = 15D.

Note in the above representations that if a hex number starts
with a letter, we precede it with a zero (not an “oh”) so everyone
and every computer knows it is not an alphabetic word. We follow
it with H as a tag meaning the value is in hex. Octal doesn’t include
letters, so leading zeros are never necessary, but our tag is “Q”
instead of “oh” so it can’t look like a zero. If we just write “15”
without any tag we can expect everyone to assume that a decimal
number is meant.

Discussions of number systems using differing bases are usu-
ally full of equations and confusions. Well, you can’t have every-
thing in a book this size. By the way, if OCT 31 = DEC 25, does
that mean Halloween = Christmas?

The subject under discussion here is machine language. We
have digressed a little to look at the common means for represent-
ing an eight-bit byte, which we then refer to as machine language.
It is as close as we can come to the real language of the machine
without using eight voltmeters and a door on the top of our CPU
IC. In the rest of this book we will forget octal and be using binary
and hex numbers exclusively, as is conventional in 8080 systems.

Since an eight-bit byte divides evenly into two hex digits, it is
obvious that a 16-bit value divides evenly into four hex digits. We
saw in Chap. 2 that a 16-bit address bus can select any memory
address from 0 through 65535, so it is easy to guess that OFFFFH
= 65535. Eight bits can represent any value from 0 through 255, so
OFFH = 255. Our machine, with its 8080 family CPU, will concern
itself with eight-bit opcodes and data values and 16-bit address
values, neatly represented by two- and four-hex-digit numbers.

Back in our exercise in the Introduction, we keyed hex values
for 10 eight-bit bytes into memory starting at hex address 100. This
is our machine language program. All 10 of these bytes were not
opcodes. The first byte, when decoded by the CPU, informed the
CPU that it should fetch the next eight-bit value from memory and
load it into register C. We will be studying registers in Chapter 9;
for now just keep in mind that some opcodes are followed by eight

~ bits of data, and yet others are followed by 16 bits of address.

The CPU will know, when it decodes the first opcode,



FIGURE 7-2. Instructions executed by the 8080 family of
microprocessors can consist of one, two, or three bytes fetched
from successive memory locations. When the first (opcode) byte
is fetched, it is decoded by the CPU to determine if it is a stand-
alone (single-byte) opcode, or if another byte of data or two
more bytes of address data must also be fetched. The
instruction decoder will then increment the Program Counter by
the correct amount to point to the next opcode in the program.
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OPCODE NEXT OPCODE
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whether the next memory address will contain another opcode, or
eight bits of data, or the first eight bits of a 16-bit address. Since a
single instruction can consist of an opcode alone, or an opcode
followed by one byte of data, or an opcode followed by two bytes of
address, a machine language program will have more bytes in it
than there are lines of code in the assembly language program that
produced it.

Assembly language

Beginning with the true machine language of voltage levels within
the CPU IC, we have progressed up through representations of
that language expressed in binary bits and on up through hexadeci-
mal codes. After a little experience with assembly language, you
will learn to read these hex codes. You will find yourself translating
from “0EH” to “MVI C” subconsciously. You will understand that
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MVI C means to MoVe an Immediate value into register C. And
you will know that the next machine language byte in memory will
contain that immediate value. This process of mental translation
from the hex code to the assembly language mnemonic can be
called “disassembling” the program, because it is just exactly the
opposite of what the assembler does.

This discussion so far has been oriented from the bottom up.
Let’s look at the process now from the top down. We start with the
programmer s initial definition of the task: To send the character
“$” to the CON: device. We know from Chap. 6 that we can do this
most easily by using a BDOS system call. This call is made through
memory location 5, so we first define absolute memory location 5
as symbolic location BDOS:

LISTING 7-1. The assembly language
version of the demonstration program
from the Introduction.

BDOS EQU 5

WCONF  EQU 2
ORG 100H
MVI C, WCONF
MVI E,'S'
CALL BDOS
JMP 0
END

Defining this symbol instead of just using “5” as the instruc-
tion operand within the body of the program insures that we can
use this same routine with other operating systems that might have
a different absolute location for system calls. Simply change the 5
in the definition of the symbol and the assembler will use the new
value wherever it finds the symbol name used as an operand.
Similarly the symbol for the “write this character on the console
function” is assigned the mnemonic WCONF. This symbol could
be anything you like, within the constraints set by the writers of
the assembler. In the case of CP/M’s ASM, you can use up to 16
characters. The symbol should be meaningful and help you to
remember what the function performs.

Since this program will run as a transient program, it will be
loaded into the TPA at hexadecimal address 100. So we use the
assembler pseudo-operation ORG to direct ASM to create a ma-
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chine language program that will run when loaded into memory at
location 100H. ORG is called a “pseudo-operation” because it does
not translate into a machine language operation. It is a directive to
ASM telling it where in memory this program will execute.

Now we enter the program proper. To implement a system
call we load register C with the proper function code, which we
have symbolized as WCONF. Next we need to put the ASCII code
for “$” into the E register. Again we MVI, but this time into E. We
could have looked up the hex or decimal value for “$” in the table
in Appendix A, and defined it as a symbol just as we defined
WCONF. But since an equivalent table is included in ASM we
don’t have to. We just tell the assembler to do the lookup for us by
including the desired character in quotes.

The next line performs the system call, and CP/M will decode
the function in register C and send the contents of register E to the
CON.:. Following this action CP/M will return to the calling pro-
gram at the next location in the program. The ball is now back in
the programmer’s court, and he can’t just drop it! The program is
over and now must transfer CPU control somewhere, so it is usual
to jump back to CP/M at the CCP entry. This can be accomplished
by an unconditional jump (JMP) to location 0, wherein is stored our
vector to return to CCP.

The last line in our program is another pseudo-op, END. This
lets the assembler know that no more source code is to be pro-
cessed. Since this program, consisting of symbols, mnemonics,
pseudo-ops, and absolute values, is what we feed into ASM, it is
known as the assembly language source code. The assembler will
read it twice, and generate an output file listing the original source
program and the machine language it has generated:

LISTING 7-2. The assembler output print
(.PRN) file of the program in List. 7-1.

0005 = BDOS EQU 5

0002 = WCONF  EQU 2

0100 ORG 100H
0100 OEO2 MVI C,WCONF
0102 1E24 MVI E,'$'
0104 €DO500 CALL BDOS
0107 €30000 JMP 0

010A END
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This output file consists of the machine language program in
human-readable format, and the source program. The whole idea
for having ASM is to allow us to write programs in a source format
that humans can understand, and then have ASM generate the
program in a format the machine can understand. But the two
portions of this file, the machine language in hex and the source
code, are neither one understandable to the computer!

This file is strictly for giving the programmer a listing of what
ASM did with his source program. This listing should then be
printed, so it carries a file type .PRN. When we get into Chap. 12
and start debugging programs, you will understand how valuable
this listing will be.

In addition to the .PRN file, ASM will also produce another
file with “object” code in it. Aha! This must be the machine lan-
guage code that we can run in the computer, right? Wrong! This
second file consists of a hexadecimal representation of the machine
language program, along with other information. We won’t go into
details as to the exact format of this intermediate code at this time,
but if you look carefully at it you can see the hex machine language
code embedded within it:

LISTING 7-3. The assembler
output hexadecimal (.HEX) file.

:0A0100000E021E24CD0500C300000E
:0000000000

Since the basis of the coding within this file is hexadecimal,
this file has a file type of . HEX. We give ASM our source code in a
file of type .ASM, and it produces two output files with the same
file name but types .PRN and .HEX. ASM then returns to CCP.

You are probably wondering by now how you are going to get
your program into the TPA and run it. Using DDT in our first
exercise, it took only moments to accomplish this. Now, even with
the help of ASM, we still don’t have a program we can run.

The intermediate .HEX file is coded in such a way that it
consists of only printable ASCII characters. This means that the
program in this format can be examined on the CRT (enter TYPE
NAME.HEX) and can be transferred to another computer over a
modem. Since a file containing the binary machine language will
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contain ASCII nonprintable characters and control codes, it could
not be so easily handled.

Before we can run our program we have to convert it from
a .HEX file into a .COM file. Another CP/M transient utility,
LOAD, is used for this. LOAD will read the .HEX file and pro-
duce a .COM file, and return to CCP. We can then run this pro-
gram by calling the .COM file by name. Simply enter the program
name and CP/M will load it and run it.

This entire process is required to assemble, load, and run a
program. It may seem like a lot of bother for such a short program,
and it is. But it is indispensable for long programs, as we will be
seeing in Part V.

In this chapter we have been looking at machine language,
assembly language, and the assembly process. Now it is time to
look at the 8080 and the facilities it provides that can be made use
of through assembly language programming. But before we can do
that, we will have to take another short digression and look at
hexadecimal numbers in more detail. If these discussions on the
dull subject of number systems had been segregated into a sepa-
rate chapter at the beginning of the book, you probably would have
skipped it. Shame on you!

Hexadecimal numbers

When the ancients first began counting, they should have started
counting on their fingers. Unfortunately, they counted on their
fingers and thumbs. As a result, we are raised on the base ten
(decimal) number system, and seem to feel that it is “natural.”

This is not true. Decimal numbers feel natural to us only
because we grew up with them. Things in nature occur naturally in
powers of two. Amoebas multiply by splitting in half, so successive
generations include 1, 2, 4, 8, 16, . . . members. We have re-
cently been looking at binary, octal, and hex numbers. These are
based, obviously, on members of the series above: 2, 8, and 16. If
early humankind had counted on fingers only, and used thumbs as
pointers, we might have started out with hexadecimal numbers.

Hold your hands up in front of your face, with the thumbs
tucked out of sight away from you, and there you have our eight-bit
byte (Fig. 7-1) expressed as two four-finger hexadecimal digits!
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What could be more natural than that? By curling up fingers to
represent zero, and leaving them extended to represent one, we
can easily duplicate the binary pattern of any eight-bit byte. This
naturally separates into two four-bit groups, our two hex digits. Be
careful when you express 24H this way.

Since hex numbers are so natural, you'd think you would have
been using them all your life. Surprise! You have been. All we are
doing here is introducing new symbols to express each increment
in a base 16 number system. You have been using a base 16 device
for a large part of your life.

While decimal numbers seem natural to us, the fractions we
used in grammar school actually are natural. The familiar inexpen-
sive ruler has each major division (one inch) divided into 16 small-
est divisions, and these are multiplied by 2, 4, and 8 for intermedi-
ate divisions. Naturally.

FIGURE 7-3. This fictitious "hexadecimal ruler” helps the
newcomer to the base-sixteen number system visualize
relationships within hex numbers. In hex, eight is half of ten,
and four plus C is ten. Similarly, it can be easily seen that A
plus 3is D, etc.

1/16
/8  1y4 1/2 3/4

l]l}l||l1|l|||lll|
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While it is stretching the truth just a bit to claim that hex
numbers are the same as fractions, you can see from the illustration
of the “hex ruler” that it is easy to learn the basic relationships in
hexadecimal. Eight in hex is half of 10 (8H + 8H = 10H). Similar-
ly, 4H is a quarter, and OCH is three-quarters of 10H. Looking
now at Table 7-1, we see the reason for this discussion. We use hex
numbers as memory addresses, and speak of blocks of memory in
terms of K bytes. Earlier we defined 1K as 1024 bytes, and men-
tioned that 1024 is two raised to the tenth power. Two raised to the
eighth power is 256, and is the largest number that can be ex-
pressed with eight bits.

You should be able to see, now, how natural all these relation-
ships are using hex numbers. Looking at Table 7-1, the relations
between memory size in K bytes and the equivalent hex addresses
form simple sequences. The only complicated numbers in the table
are those silly decimals. Because they are not natural numbers.

Just as on the hexadecimal ruler where eight was half of 10,
we can see from Table 7-1 that 8000H is half of our total memory
address space. Since we begin mapping our memory address space

TABLE 7-1. Some common memory segment addresses
expressed in different number systems: the xx K byte shorthand;
decimal equivalents; and hexadecimal notation.

K Bytes Decimal Hexadecimal
64K 65536 10000H
48K 49152 CO00H
32K 32768 8000H
16K 16384 4000H

8K 8192 2000H
4K 4096 1000H
3K 3072 COOH
2K 2048 800H
1K 1024 400H
12K 512 200H
VK 256 100H

VeK 128 80H
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at location 0000H, our top address is FFFFH. If we counted from
one up, our top address would have been 10000H, similarly to how
we count from one to 10. In decimal, five is half of 10, and 50,000 is
half of 100,000. In hex, 8H is half of 10H, and 8000H is half of
10000H. The other fractions work out just as nicely.

Referring back to Fig. 7-2 and Table 7-1 as we discuss memo-
ry addresses in future chapters will help you establish a feeling for
hexadecimal, without the need for the usual rigorous discussions of
number theory. That you probably wouldn’t read anyway.



The 8080

Microprocessor
And Its Relatives

Version 2 (of anything) is the first version that works.

Anonymous

The CP/M operating system executes on any of a number of differ-
ent computers. These computers do not all have the same CPU
chip inside. There are a number of microprocessors that will ex-
ecute the same instruction set as the original Intel 8080, but also
add new opcodes of their own. Any of these ICs can be used as the
CPU in a computer running CP/M, since the operating system was
itself written using only the standard 8080 instructions.

Anyone writing programs to execute within the CP/M en-
vironment should restrict his selection of instructions to those com-
patible with the 8080. In this chapter we will be looking at the
features of the 8080 and its descendants, and will see what we must
do to maintain program portability.
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The 8080 is an eight-bit microprocessor because that is the length
of its data storage word in memory and also the size of its accumula-
tor register. Since this CPU uses 16 bit addresses, as we have seen,
it also includes some 16 bit registers and can perform some rudi-
mentary 16 bit arithmetic operations.

We have seen that the largest number that can be expressed
with only eight bits is 255, and even 16 bits will only get us up to
65,535 in decimal. Obviously there must be some way to handle
numbers greater than these for any microcomputer to be a practi-
cal tool. Software is the answer, in particular the technique known
as multiple precision arithmetic. Even the most expensive 32-bit
minicomputers have to resort to multiple precision for some of
their operations. The selection of eight bits as the basic size for this
micro was made not on the basis of any required arithmetic preci-
sion, but as a compromise between IC chip complexity and the size
of the instruction set.

In any computer there are only three operations you can
perform. You can move data from place to place. You can operate
on it mathematically. After an operation on the data you can make a
decision based on the results and change the sequence of opera-
tions based on that decision. That’s all you can do. Move, Add, sub-
tract, . . . etc. Jump conditionally. Only three basic operations.

It is variations on these basic operations that requires a practi-
cal microprocessor to have more than a three-instruction set.
There are a number of places you can move data to or from. There
are lots of things you can do to it in addition to basic arithmetic
operations. Things like logical operations, and shifts and rotates.
And there are many possible tests to be performed on the results.
Depending on the results of the tests, there are several variations
on the basic conditional jump instruction. In the 8080 we have
available 244 executable opcodes out of the 256 possible.

You may have heard that the 8080 can perform 72 basic opera-
tions, and that Brand X is better because it has 137 opcodes. The
differences in evaluating how many instructions a particular com-
puter can perform are the result of differing definitions of basic
operations, and not anyone trying to mislead the purchaser. When
we say that the 8080 can execute 244 different opcodes, we are
counting all possible variations of each basic operation.
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If you look at the numerical list of 8080 opcodes in Appendix
B you will see that, of the 256 possible combinations of eight binary
bits, the 8080 has implemented all but 12 of the bit patterns. This
means that the designers of the chip have provided you with about
all the computing power possible with an eight-bit wide opcode.

The next step up from eight bits in a binary sequence would
be a 16-bit computer, which could offer 65,536 different opera-
tions. That would be overkill, and no 16-bit computer makes use of
anywhere near that number of operations. So the eight-bit ma-
chines were a practical compromise, and the 8080 from Intel was
the first microprocessor to offer real computing power in a single,
affordable package.

Within that package exists a CPU consisting of an eight-bit
wide accumulator register, some flag bits to record the results of
operations on data, an arithmetic/logic unit (ALU) that performs
operations on the contents of the accumulator and one other source
of data, and a group of assorted registers. These other registers
include six eight-bit registers that can be paired to form three 16-
bit register pairs, and two dedicated 16 bit registers that are always
used to point to locations in memory.

We will be examining in tedious detail in the next chapter
how to use all these registers. The accumulator is obviously spe-
cial. It contains one of the data bytes that will be operated on in the
ALU, and generally receives the results of that operation. The two
dedicated 16-bit registers are the stack pointer (SP) and the pro-
gram counter (PC). The stack is a special area in memory used to
store certain items, and the SP permits simplified store and re-
trieval operations. The program counter always points to the mem-
ory location containing the next opcode to be fetched. In our sam-
ple exercise (List 7-2), the PC would contain 100H, 102H, 104H,
107H, . . . successively.

The remaining six registers are for general purpose use. They
can be used to store data, hold a count for repetitive operations, or
can be linked together to form 16-bit index registers. Since our
memory has a 16-bit wide address bus, we need 16 bits of address
information to point to a memory location for storing data when we
run out of space in our six registers. The PC points to the next
opcode in our program storage area. The three index registers can
point to other locations in memory for data storage. This is known
as direct addressing, or absolute addressing, since the contents of
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the index point directly to an absolute location in memory. By
incrementing the contents of an index, we can point to successive
locations in memory, as for instance locations within a lookup
table.

We have already seen that following power up or RESET, the
8080 looks for its first opcode from memory location zero. We
temporarily moved our bootstrap PROM to location zero to get
things started at power up. The 8080 can also be forced to go to this
location upon receipt of a hardware interrupt. This hardware inter-
rupt is a signal from some device external to the CPU that says
“Hey! Stop what you are doing and take care of my needs.” The
CPU will respond by stopping the currently executing program,
saving the contents of the PC on the stack, and jumping to location
zero, where it had better find an interrupt vector pointing to the
routine that will service the interrupting device. You, the pro-
grammer, will have to provide that vector (a jump instruction) and
that service routine, if you want this feature to operate properly.

The 8080 can recognize eight of these external interrupts.
Since there are not that many unused pins available on the CPU
package, some external hardware is required between the inter-
rupting devices and the 8080. This hardware will put the correct
bit patterns on the data bus to allow the CPU to know which vector
to jump to when it recognizes that an interrupt has occurred.
These eight vectors reside at the bottom of memory, spaced every
eight locations, at locations 0, 8, 10H, 18H, . . . up through 38H.

That’s the 8080. Eight bit wide accumulator and ALU. Six
general purpose registers that can be linked to form three index
registers. Eight interrupts available if some external hardware is
provided. Absolute memory addressing. Two hundred forty-four
executable opcodes. The original. The target of competition from
some newer microprocessors that include the same features, ex-
ecute the same instructions, but add hardware and software fea-
tures not found in the good old 8080.

The Intel 8085

The major differences between the 8080 and 8085 microprocessors
are in the methods used to fabricate the IC chip and the hardware
improvements provided by the 8085. The 8085 is much simpler to
use when designing hardware, as it uses fewer power supplies and
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requires less external support. From the programmer’s point of
view, the 8085 has two new opcodes not found in the 8080, has a
one-bit input and one-bit output port built in that can be used for
serial communications, and has four hardware interrupt inputs that
require interrupt vectors to be added to low memory if they are
used.

All of these new hardware features are controlled by the two
new instructions, which have opcodes of 20H and 30H. Since these
were unused in the 8080, they are not provided for in the CP/M
assembler, and we will not be discussing them in this book.

Another feature of the 8085 and the other newcomers to the
8080 family is that they will all execute instructions faster than the
8080 does. To avoid getting into hardware discussions in a book on
programming, we have ignored speed of execution up to this time.
The original 8080 was slow. Improved versions that could run
faster were labeled 8080A, 8080A-1, etc. The same kind of speed
designation is used by the manufacturers of other microprocessors
in this family. To simplify things we will not refer to the various
speed-selected versions of all these chips. When writing time-
critical programs, you will have to know how fast your CPU can
execute instructions, and that information will have to come from
the computer system manuals and/or the microprocessor manufac-
turer’s data sheets. Other than this mention of speed, we won’t be
getting into racing topics here.

The 8085, then, adds new hardware features and two instruc-
tions to control them. Otherwise, to the programmer, the 8085 is
identical to the 8080.

The Zilog Z80

The designers of the 8080 left 12 unimplemented opcodes (the
holes in the numerical listing in Appendix B) and when the 8085
was designed it made use of only two of these. The designers of the
780 weren't so reticent; they used all of the 12 opcodes left over
from the 8080. Since the Z80 uses the two new opcodes that the
8085 added, but uses them for different functions, we now have
two new CPU family members that don’t execute the same new
instructions the same way.

Don’t panic. The simplest solution to this problem will be to
ignore the conflicts, and not use any instructions other than the
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original 8080 set. This is recommended no matter what CPU your
computer uses. So long as you stick to the 8080 instruction set your
programs will run on any computer based on a standard version of
CP/M. Provided you avoid the one incompatibility between the
780 and the 8080.

One of the flag bits that records the results of ALU operations
does so differently in the Z80. This very minor change resulted in a
major disaster when one early version of an extremely popular
program, Microsoft BASIC, blew up when loaded into a Z80 based
computer. The detailed discussion later in this chapter on “estab-
lishing a common ground” will show you how to avoid any conflict
with this incompatibility.

Avoiding conflicts is easier than having to accept the fact that
all of the other nice features of the Z80 are not available to us when
working with the CP/M assembler. Zilog made use of the 12 open
opcodes to implement many times 12 new instructions. They did
this by using a one-byte opcode to tell the CPU that it should fetch
the next byte in memory and decode that as an entirely new in-
struction. In this way, a number of the previously unused opcodes
are used as “windows” into a whole new instruction set.

This technique has its cost, however, because these new Z80
opcodes are effectively 16-bit instructions. Now two bytes have to
be fetched from memory and decoded before the instruction can
be executed. This uses more memory space and takes more time.
But it does provide access to some powerful instructions that per-
mit simple setting and testing of a single bit within a byte, or the
movement of whole blocks of data with a single instruction. Again,
remember that we can’t make use of these goodies within the
constraints of CP/M compatibility.

The Z80 improved on the hardware of the 8080 as well. It has
its own new interrupt line, with yet another vector, this one at
66H. The original eight interrupt vectors can also be relocated in
memory in a Z80 system. They don’t have to sit at the bottom as in
the 8080 and 8085. And there is a new addressing mode.

The 8080 provides absolute addressing. Jump instructions are
to a definite location in memory. The Z80 adds PC relative ad-
dressing, where a jump can be specified to a position x bytes before
or after the current program location. This allows programs to be
written that can be relocated. Relocation means that once as-
sembled, they can be loaded anywhere in memory regardless of
the original ORG assignment, and still execute properly.



The 8080 Microprocessor And Its Relatives 87

But for program portability, we have to code so that our pro-
grams can run on any CP/M computer, so all these great Z80
features will have to be ignored for now. Even though the Z80
provides more flexible interrupt vectoring, many new instructions,
and relative addressing.

The National Semiconductor NSC800

Monday morning quarterbacks have it easy. They can sit back and
benefit from the experiences of others. Designers of newer prod-
ucts can do the same, and provide a better product. The National
NSC800 is obviously the result of examining the products of others
and benefiting from their experience. The NSC800 borrowed its
IC pinouts from the 8085, permitting those nice new built-in hard-
ware interrupts, and then borrowed the super instruction set from
the Z80. The best of both worlds, and with the added advantage
that the NSC 800 is a CMOS integrated circuit. This means that it
will run using a fraction of the power that any of its predecessors
consumed. At a higher price, of course.

So if you are contemplating writing programs on your CP/M
system that will then be executed in a battery powered portable
device, you now have a 8080 compatible, CP/M compatible CMOS
chip to design your programs for.

Establishing a common ground

After you have gained a little experience as an assembly language
programmer, you will begin to appreciate -some of the benefits to
be gained by working with microprocessors other than the 8080.
When designing a controller to operate at high speed in real time,
the 8085 with its built-in hardware interrupts is desirable. For
program-intensive applications, like writing a high level language
compiler, the instruction set of the Z80 can reduce programmer
effort significantly. But if you want to write a program that will run
on any CP/M based computer, and will sell a million copies and
make you and the IRS rich, you will have to stick with the instruc-
tion set of the good old 8080.

For your super program to be truly portable, it will have to be
written so that it can be assembled with the CP/M assembler as
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well. This will allow you to sell the source code at $50,000 a crack
to people crazy enough to want to modify your perfect program.
While assemblers for the 8085, Z80, and other micros are available
that will run on a CP/M computer, their use reduces portability,
and we will ignore their existence for the rest of this book.

We will restrict the instructions we use to those listed in
Appendix B: the original 8080 set. Our programs will be written so
that they can be assembled by CP/M’s ASM, and execute in the
TPA. And we will be careful about how we test for byte parity.

The 8080 includes two conditional jumps that test the parity
of the contents of the accumulator that resulted from the last arith-
metic or logical operation. Jump on parity even (JPE) will cause a
transfer of program execution to the address specified if the con-
tents of the accumulator ended up with an even number (0, 2, 4, 6,
or 8) of one bits following an operation involving the ALU (data
moves, such as MOV and MVI, don’t go through the ALU in the
8080). JPO will jump if the number of one bits was odd.

In the Z80, JPE and JPO will work properly only if the pre-
ceding ALU operation was a logical operation: AND, OR, or
XOR. The flag bit that only records parity in the 8080 is used also
to indicate overflow following an arithmetic operation in the Z80.
While this makes sense, and can be very useful, it is also in conflict
with our standard, and can cause a program to execute properly on
a 8080 but bomb on a Z80. It is easy to avoid any bombs when
writing new programes.

All you have to do to avoid the conflict is execute a dummy
logical instruction before testing byte parity. If a byte in the ac-
cumulator is logically ANDed with itself, nothing changes, but the
flag bits will be set in accordance with 8080 practice, even if the
CPU in use is a Z80. So if you have to test parity, execute AND A
(AND accumulator with accumulator) immediately before the JPE
or JPO.

If you got a little lost in that discussion, and don’t even know
why anyone wants to test parity, don’t worry. After we discuss
serial communications in later chapters, you will understand more
about parity. The differences between arithmetic and logical oper-
ations will be covered later also. This discussion was included here
because this is the place for discussing compatibility, before you
get started writing programs that won’t run on everyone’s comput-
er. Do that and just see if you ever get rich!



Register Usage
In the 8080

If our microprocessor can point to any one of 64K bytes of data in
memory, why do we also want hardware registers for data storage?
There are a number of reasons:

1. Speed of execution. Since the registers are part of the CPU
chip, operations on their contents can be performed much fast-
er than on the contents of memory.

2. Program portability. We know that no matter what CP/M based
computer our program is executing on, we will have available
the standard 8080 registers as a minimum.

3. Multiple indexes. Since some data will have to be stored in
memory in most programs, having more than one memory
pointer register simplifies programming tasks.

Somo micro- and mini-computers have been built with as few
as two programmer accessible hardware registers, and have be-
come both successful and even popular. But virtually all program-
mers prefer to work with machines providing as many hardware
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registers as possible. While most of the newer 16-bit and 32-bit
micros have at least 16 registers, the 8080 provides a reasonable
number of registers for most tasks. No matter what computer you
are working with, you will always want more registers than it
provides!

Register organization and data paths

In addition to knowing what registers are available, the assembly
language programmer must know the paths that data follows be-
tween the registers, the ALU, and the outside world.

The “outside world” here refers to everything external to the
CPU chip. This includes memory, and within memory in Fig. 9-1
we have shown the much ignored M register, which we will be
looking at in detail below. First let’s look at the internal registers.

The accumulator (A register) provides one of the two eight-bit
inputs to the arithmetic/logic unit (ALU). The other input comes
off the CPU’s data bus. The results of the operation performed by
the ALU are returned to the destination register over the same
data bus. Condition codes are set depending on the action of the
ALU, and these are stored in the flag register (F).

The F register includes condition bits that are tested indi-
vidually by the conditional jump instructions. They tell us if two
quantities are equal in size, or which one is larger, or if we have
reduced a count to zero, or if the result of the last operation was a
positive or negative number, or if it overflowed the accumulator. If
we have performed an operation that resulted in a number too big
to fit into the A register, the overflow will be recorded in the carry
bit. We will be examining the actions of the bits within the flag
register in detail later on, as we write programs that effect them, in
keeping with our learning-by-doing philosophy.

Fig. 9-1 shows the A and F registers stuck together in one
box, separated by a dashed line. The same is true of the B and C, D
and E, and HL register pairs. This shows that these pairs of regis-
ters can be linked together to form 16-bit registers. The AF pair is
unique in that the only paired operations possible are the stack
operations PUSH and POP. Since these two registers are very
special purpose, they do not participate in the 16 bit operations we
will be discussing later. They are linked together only for stack
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FIGURE 9-1. Register orgamzcmon and data paths within the 8080 microprocessor, and as they extend to the
outside world. The "M register” is actually a location in external memory. It is accessed by supplying a 16-bit
memory address and then reading or writing eight bits of data.
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FIGURE 9-2. The flag register (F) records the results of
arithmetic or logical operations performed by the ALU.
Only five flag bits are implemented in the 8080 CPU.
They can be tested by conditional jump, call, and
return instructions.

Bits: 7.6 5 4 3 2 1 0
[ : T T T 1 ; T J
[ ! I I

§ ! z (I A L1 P L1 ¢

Carry
Parity
Auxiliary Carry
Zero
Sign

operations, and the pair is then known as the program status word
(PSW).

The B, C, D, E, H and L registers are general purpose. Their
contents can be the other input to the ALU, opposite the contents
of A. Each of these six registers can be individually addressed for
eight bit operations, and the paired registers BC, DE, and HL can
be selected for 16 bit and stack operations. Data can be moved
between registers and to and from memory, as well as processed
through the ALU.

In operations involving paired registers, the registers shown
on the left in the figure contain the most significant eight bits, and
the righthand register the least significant half of the 16 bit value.
These 16 bit values can then be used as pointers to memory loca-
tions, in which case the register pair is said to be an index register.
When paired, the BC pair is referred to simply as the B register,
DE is referred to as D, and HL as H, as in the instruction: LXI
H,32767 that loads the HL pair with the value 32767. “LXI” stands
for Load indeX with Immediate data. Immediate data follows the
opcode immediately in the program. Index always implies a 16 bit
register pair.



TABLE 9-1. Within all 8080 instructions that reference registers
there are one or two three-bit register address fields. The
register selections are specified by the three bits in
conformance with this table.

Binary Decimal Register
000 0 B
001 1 C
010 2 D
011 3 E
100 4 H
101 5 L
110 6 M
111 7 A

Fig. 9-1 shows that the stack pointer SP and program counter
PC can also form 16 bit addresses to select one memory location.
This is all these registers can do. We know already that the PC
points to the next instruction to be fetched from memory, so it
must be dedicated to this purpose whenever any program is run-
ning. Which is the same as saying all the time. Stack operations
will be discussed in detail a little later.

Embedded within opcodes that affect the contents of registers
is a three-bit register address field. Since three bits can form eight
combinations, this field can address up to eight registers for the
opcode to work with. These register addresses are shown in Table
9-1.

The M register

This table shows that the binary bit patterns 000 through 101 (0
through 5) in the register address portion of an opcode select regis-
ters B, C, D, E, H, and L. The pattern 111, or seven, selects the
accumulator. This leaves one pattern remaining, 110 (6), and this
selects the M register.
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This “register” is actually the contents of the memory location
addressed by the HL index. The HL pair is sometimes referred to
as the index register, because it is always the index for operations
involving the memory register M. The other index registers BC
and DE can only be used to move data between the A register and
the memory location they point to.

The functional listing of opcodes in Appendix B shows that the
contents of the M register can be operated on by all of the move,
arithmetic, and logical operations that work on the contents of
hardware registers. Since the M register can be any memory loca-
tion, so long as the HL pair contains the correct address, it is easy
to see that this is one of the most powerful of the 8080 general
purpose registers. In spite of this it is usually the least used
register.

This is caused by a human failing, one that computers are
immune to, the mind set. It is too easy to think in terms of hard-
ware registers, and ignore the M register because it is not part of
the CPU chip. But a little thought will show how powerful a facility
it is.

Suppose you are writing a program to fulfill the function of a
calendar clock inside your computer. To simplify programming,
you dedicate one eight-bit value as the count of seconds from zero
through nine. Another eight bits will be used to count the tens of
seconds, from ten to sixty. When the seconds reaches sixty, sec-
onds counters are zeroed and the minutes units is incremented by
one. And so on up through the years’ thousands counter.

By wastefully using one eight bit value for each count you can
simplify the programming effort. Simply count each time digit up,
and if it reaches its limit value, zero it and increment the next
higher digit. The M register is the logical choice for use in such a
task, since there aren’t enough hardware registers for all those
digits.

When it is time to increment seconds (usually signaled by a
hardware interrupt) start by loading the HL pair with the memory
address of the seconds units counter, the first M register. Incre-
ment this count. Test for count = 10. If it is, zero the count, and
increment the contents of HL. This makes the index point to the
next M register, which contains the counts of seconds tens. Incre-
ment this M register. Test for count = 6 (6 tens = 60). If so, zero it
and go on to minutes units, the next M register, and so forth.



FIGURE 9-3. A calendar clock program could be written using
successive memory locations to store the time, date, and year
digits. Each of these could then be accessed in sequence by
incrementing the HL index register, pointing in turn to each
digit within this stack of "M registers.”

Clock Digit Limit Count

YEAR T 10
YEAR U 10
DAY H 3.66%
DAY T 10
DAY U 10
HOUR T PR
HOUR U 10
MIN T 5
MIN U 10
Index increments \1\: SEC T 6
SEC U 10

* Limit test must include HOUR U.

*% Limit test must include DAY T and DAY 1.

You can see from this that the M register is not one register. It
is as many as we have room for in memory. Just point at the one
you want by properly setting the contents of the index. Increment-
ing the index points to successive M registers in turn. This sim-
plifies operations like the calendar clock program that operates on
lists of values stored in the proper order in successive M registers,
or memory locations. The power of the M register is that you don'’t
have to load its contents into the accumulator before performing
arithmetic or logical operations on it, as is true for some other
CPUs. Just look at the functional list of operations in the Appendix,
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and you can see that memory locations can be treated as registers
in the 8080 family of microprocessors.

Stack operations

It takes one of us old timers to appreciate the 8080’s stack. It is a
recent invention, and worth its weight in gold. The stack is a
memory area pointed to by the stack pointer (SP) and accessed by
the stack operations. These include the register save operations
PUSH and POP, the subroutine calls and returns, and the hard-
ware and software (RST x) interrupts. There are other stack opera-
tions that are too incredibly complicated to explain here. You'll just
have to wait a few chapters for XTHL and PCHL.

Suppose you are programming along and suddenly run out of
registers. HL is tied up pointing to a particular place in a look up
table, so you can’t suddenly create another M register. All the
other registers contain data you will need later, but just now you
need a counter to keep track of an iterative operation. What to do?

PUSH B ; SAVE B,C

MVI C,COUNT : LOAD COUNTER
LOOP:  DCR C : COUNT ONE
JZ END : TIL DONE
IMP LOOP
END: POP B ; RESTORE B,C

The dots here represent program statements within the body
of the loop that required the use of a counter. We temporarily
freed up the C register and used it for a counter by PUSHing the
contents of the BC pair onto the stack, thus saving the values
stored in them. We then loaded our count value into C (B re-
mained unused) and entered the loop. We immediately decre-
mented the count (just like subtracting one) and tested to see if it
was reduced to zero. If C was zero, we jumped to END:, finishing
the iteration. If C was not reduced to zero, we did whatever it was
we wanted (the statements represented by dots) until we got to the
statement JMP LOOP. This is an unconditional jump back to loca-



Register Usage in the 8080 97

tion LOOP:. JZ was conditional: Jump if the result of the last
operation was Zero.

At END: we restored the original contents of BC by POPing
B off the stack, which also restores the contents of SP to its original
value. This is of immense importance. The stack is a handy place to
stuff register data temporarily, but you must have an equal number
of PUSHes and POPs.

This is important because the stack is also used to save the
return address when a subroutine is called. In our exercise in the
Introduction, which we also discussed in Chap. 7, we used a CP/M
supplied subroutine to output a character to the console device. In
List. 7-2, the CALL BDOS instruction at location 0104H automati-
cally pushed the contents of PC onto the stack, and then jumped to
location BDOS. Since the PC points to the next instruction to be
executed, it contained the value 0107H. This was pushed onto the
stack and the PC was then loaded with the address of the BDOS
vector, in this case 0005H. The next instruction was fetched from
location 5, and it was a jump to the actual location of BDOS high in
RAM. All this time 0107H is sitting on top of the stack. BDOS does
its thing, decoding the desired operation (WCONF) and sending
the data (E) to the console. When BDOS is done, it executes a
return instruction (RET). This instruction pops the contents off the
top of the stack and places it into PC, so the next instruction is
fetched from 0107H, and we are back in the user program.

Suppose that somewhere within BDOS the system needed to
save some register contents, just as we did, or call another sub-
routine. Subsequent PUSHes or CALLs would operate normally,
saving the required data on the stack. Each time a value is pushed
onto the stack, the first thing that happens is that the SP is decre-
mented, pointing to a lower location in memory. Then the high
order byte of the register to be saved is moved into memory at the
location pointed to by SP. SP is once again decremented, and now
the low order byte of the register is written to memory at this
address. No matter how many pushes are executed, none of the
data previously written is destroyed.

Since pushes first decrement SP, then store a byte, then
decrement SP, then store a byte, the stack fills up from the top
down as far as absolute memory addresses are concerned. Perhaps
an earlier stack oriented computer reversed the procedure. That
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would account for the fact that illogical humans insist on referring
to these actions as pushing data onto the top of the stack, and
popping data off from the top of the stack.

It matters not that these descriptions are not technically accu-
rate, and that the stack actually grows downward in memory, since
the effect is the same in any case. The stack is a handy place to save
data, the last register pair pushed on will be the first data popped
off. Hence the common term for the stack, LIFO, for Last In, First
Out. What is important is that we keep accurate track of stack
operations, since some pops (returns) result in a transfer of data
from the stack to the program counter. If the data on the top of the
stack is register contents instead of a return address, because push-
es and pops were not matched within the subroutine, your pro-
gram will get lost!

In every programming book ever written, the action of the
stack is likened to that of the spring loaded push down tray and
dish dispensers in a cafeteria, where the last clean (sometimes)
plate pushed on is the first grabbed off. Since this analogy has
already been worked to death we won’t even mention it here.

Register use by the user

By now you should have no questions about the use of the stack
pointer and program counter. If you do, write each question on the
border of a $20 bill (one question per bill) and mail them to the
author (NOT the publisher!) of this book. You may get an answer
someday, if you are lucky. Or you might just wait until Part 4,
where things will become clearer as you actually execute programs
and subroutines.

You should also by now realize that the A register is the most
used register, since it is always one of the inputs to the ALU. The F
register is not a programmer accessible register, in the sense that
it can be addressed and have data moved into and out of it. Al-
though the H and L registers can be used individually as eight-bit
registers, it is more desirable to dedicate their use to that of the
number one index register, which provides access to the M
register(s).

That leaves us with four 8-bit registers, that can be linked to
form two 16-bit indexes. If you try to always use the same registers
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for the same purposes in all of your programs, you will find it much
easier to keep track of their use throughout a long program. This
can prove valuable when modifying an existing program or adding
functions to it. You will have less trouble remembering what regis-
ters are in use and which ones have to be saved before being used
within a subroutine.

For instance, if a second index register is required within a
program, always use DE first. If you randomly use BC in some
program segments, and DE in others, you will find it hard to
remember which have contents that need to be saved temporarily
within a subroutine. The worst case could be encountered when
you are writing a subroutine that will be called from a great num-
ber of places within the main program. If you have always used DE
before BC throughout the main program, it will be easy to remem-
ber if BC is in use at all. This could save you the time spent in
pushing and popping BC when all you need is a temporary
counter.

Since “counter” starts with C, why not always use the C
register as your standard eight bit counter, and the BC pair when
you need to count larger numbers? This seems obvious and hardly
worthy of discussion now, but if you have ever had to modify an
existing program, where the programmer used registers selected at
random, you would understand why it is important to set down
some basic guidelines for register use, and to stick with them.

The easiest guideline to remember is that the A register is the
obvious candidate for passing an eight-bit value (like an ASCII
character) to and from subroutines. Since A can’t be paired to form
a 16-bit value, and since it will have to be used for something in
every subroutine we ever call, we can always assume that the first
eight-bit value sent or received will be in A, and that the contents
of A will always be destroyed in every subroutine we ever call. If
we remember that rule, we won’t be surprised by a subroutine that
changes the contents of A. If we must save it, push it on the stack
before calling the subroutine, and pop it off afterward.

Within your own programs, it is easiest to establish the rule
that subroutines which are going to use registers other than A
should save and restore their contents. You could save register
contents in the main program, then call a subroutine, then restore
the registers, if you knew that the subroutine is going to need to
use the registers. But this places an unreasonable burden on falli-



100 Register Usage in the 8080

ble human memory. It is better to write all subroutines in such a
manner that, upon return to the calling program, all registers ex-
cept the accumulator will be restored to their original state. Insure
that you always code subroutines this way, and you won’t tax your
memory, or lose your data.

These are not hard and fast rules accepted by all program-
mers. They are guidelines that you should use as you start to
design your own programs. If you just accept them blindly, for
now, you will find that you are benefiting from the painful experi-
ences of your predecessors. Why reinvent the wheel, or trip over
it, just because everyone else does?

In summary, pass eight-bit values in the accumulator, and
expect subroutines to destroy its contents in the process of doing
their thing. Dedicate HL as your number one memory pointer.
Use DE next, if you need it. Save C for an eight bit counter, and
BC for bigger counting jobs. Write subroutines that will return the
contents of B, C, D, E, H, and L unchanged, but can wipe out A if
need be.

Follow these rules from the beginning and you will save your-
self a lot of grief. Save the grief. You will need it in dealing with
operating systems (yes, even CP/M!) that don’t follow the same
rules, and don’t even establish equally logical ones for themselves.
We will see how to deal with that situation in the chapter on
preserving the user’s environment. Meantime, we will look at how
CP/M uses (and misuses) registers.

Register use by the system

We have repeatedly differentiated between the “user” and the
“system.” Just what is the system? It is the software environment
you have to work within: the CP/M operating system and whatever
firmware comes with your computer hardware.

The CP/M operating system itself was developed on an Intel
Microcomputer Development System (MDS). The MDS included
an extensive monitor in PROM that provided driver subroutines
for a number of I/O devices, as well as extensive debugging facili-
ties. Since this firmware was part of the computer, the writers of
CP/M made their software system compatible with the tools avail-
able to them.

The most obvious tool was the MDS Monitor in PROM.
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Many of its features have been adopted by CP/M, including the
use of the IOBYT and those funny device designations. While all of
this firmware is available on an MDS, your own computer may
have had to duplicate a lot of the facilities of the MDS PROM
within the space provided in the CP/M CBIOS. Obviously CP/M is
a very adaptable software product. It was written so that it could be
easily installed in any 8080 family microcomputer. Some of the
characteristics of the MDS got integrated into CP/M in the pro-
cess, so now all CP/M based computers look a little like the original
MDS. We call this the MDS syndrome.

Along with the good MDS features inherited by CP/M are
some not so good characteristics, like those terrible device designa-
tions and the way registers are used in the system calling conven-
tions. We have previously defined how 8080 registers should be
used. Now we have to look at how they must be used in interfacing
with CP/M. Later we will see how to provide a single interface
between the two worlds; a window between the logical world of
our usages on one side and the MDS syndrome on the other side.

When we call BDOS to input an ASCII character from the
CON: or RDR:, the character is returned to us in the A register.
This is logical, as we have defined it. But when we send an ASCII
character to CON:, we are forced to put the data byte in the E
register, with the C register containing the byte that defines the
output-to-console function. What happens to the A register?

The accumulator is the destination for all operations that in-
put data from I/O devices connected to the CPU. Before the CON:
can be read, it must have a character ready. The computer is much
faster than the operator, so will spend most of its time waiting for
you to press a key on the CON: keyboard. Way down there in the
MDS PROM (originally) was a keyboard read routine that inputs a
status byte into A, and tests it for the character ready bit. This read
routine sits in a tight little loop, inputting status and testing for
ready, until we finally hit a key. Then it reads the keyboard charac-
ter into the A register, masks off the topmost bit, and returns to the
calling program.

This is why we receive an input character in A. The IN in-
struction puts it there. When we send an output character, we do
not put it in A because, way down there at that lowest software
level, the driver first has to read a status byte into A to see if CON:
is ready to accept our data byte. So if we put the byte in A, it would
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have to be saved before the status could be read. To save program-
ming effort in the driver, we are forced to use more of our registers
in the calling program.

This aspect of the MDS syndrome distributes a burden
throughout all high level user programs to save one register for the
convenience of the driver program. Not very logical, but some-
thing we have to live with. In the next chapter we will see how to
minimize this burden.

Other funnies were inherited from the MDS. When we out-
put a byte sized value, we place the function code in C and the data
in E. If we have to output a 16 bit value, we place it in the DE pair.
That makes sense. Eight bits into E; 16 bits into DE.

If we input an eight bit value, it is returned in A. When we
input a 16 bit value, . . . . Well let’s see. It can’t go into the AF
pair, since the flag register is not general purpose. We just used
the DE pair, that might be a logical place for it. Or, since we had to
use the C register for our function code, so it has already been
changed, it might be logical to use it for the other half of the
returned value. No such luck. The MDS syndrome dictates that 16
bit values are returned with the low order byte in A and the high
order byte in the B register.

OK! No more editorial comment about the logic of the MDS
syndrome. We are stuck with it, and can learn to live with it, but
we should know that the blame rests on other shoulders, not on
those of the authors of CP/M.
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Preserving the
User's Environment

Chapter 9 pointed out the desirability of creating a user environ-
ment separate from that of the operating system. Within this user
environment we will use the 8080 registers as we have decided
they should be used. The operating system had to use them the
way its original environment dictated. We could go along with
that, but experience has shown that there is a better way.

That way is to provide separation of the two environments,
and establish an interface between the two worlds. An interface
through which data will be passed, using subroutines that can be
called from any place in any user’s programs. These interface sub-
routines will bear the burden of maintaining the user’s registers
intact, so he will never have to worry about what the system has
done with them.

A little extra effort in creating this interface, the window
through which data will pass, will be well rewarded when you get
around to writing large and complicated programs. You will always
be assured that your environment is preserved intact, and this will
increase the reliability and portability of your programs.
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In the last chapter we saw that the stack is a memory area set aside
as a handy place to stuff data, and a necessary mechanism for
calling and returning from subroutines. Since the data we push
into the stack grows downward in memory from the initial address
contained in the stack pointer (SP), we must set aside a block of
memory for the exclusive use of the stack, and set SP to point to
the top of it.

The first thing we need to know is where some read-write
(RAM) memory space is available. In a CP/M system, user (tran-
sient) programs execute within the TPA, and the TPA is in RAM.
Later you will probably want to write programs that will be burned
into PROM. You will have to remember to set up the initial ad-
dress in the SP to point to the top of some unused RAM. Working
within the TPA, all the space available to us will be in RAM, and all
we will have to do is save a block for the use of the stack, and set
the stack pointer initially to point to the top of that area.

How big should the stack area be? A safe size to start with is
64 bytes. You could execute 32 successive PUSHes of register
contents, or nest 32 levels of subroutine CALLs, in that much
space. Obviously, your actual use of the stack will be for some
combination of PUSHes and CALLs. It would take a very compli-
cated program to need all that space. We will start with this 40H
stack area because it is more than enough, and we want to be sure
that the space is never overrun.

To set up a stack area, way down at the end of each of our
programs we will include these two lines of code:

DS 64 ; STACK AREA
STAK: DB 0 ; TOP OF STACK

“DS” is a mnemonic for Define Storage, and sets aside a block of
memory equal in size to the specified operand. “DB” stands for
Define Byte, and will set up a single-byte memory location with
initial contents as specified by the operand. Note that one operand
specifies the size of a block of memory, the other specifies the
initial contents of a single location. DB and DS are pseudo-ops in
that they tell the assembler how to set up memory areas, but do
not produce any object code that can be executed.
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We don’t really care what the initial contents of the stack are,
since we will have to push something in before we can pop any-
thing meaningful out. We only included the second pseudo-opera-
tion so that we could label the address at the very top of the stack
with the label STAK:. The address assigned to STAK: at assembly
time will be loaded into SP at the very beginning of our program:

START: LXI SP,STAK ; SET UP STACK POINTER

if we remember to include this line. You will only forget it once!
Very strange things happen to programs when no stack space has
been allocated, and pushes wipe out part of the program, or return
addresses are “stored” in PROM or nonexistent memory. You
don’t have to trip over the wheel if you don’t want to. Just remem-
ber to LXI the SP at the start of all your programs, and to set aside
stack space large enough for all the pushing and calling you will be
doing.

If you are a sharp-eyed reader, you should be wondering by
now why the dictatorial author didn’t follow his own advice, and set
up stack space and pointer in the example program in the Introduc-
tion (see List. I-1). How did the CALL BDOS work, if no stack
space was allocated for the return address?

When the command “TEST” (for example) is given to the
Console Command Processor (CCP) from the CON:, CCP will load
the contents of a .COM file named TEST into the TPA. At this
time the system is running using a stack space and pointer that
have been initialized by CP/M. When the .COM file has been
loaded into the TPA, CCP will begin its execution by a subroutine
CALL (not a jump) to location 100H, the start of the TPA.

When your transient program has thus been activated, SP is
still pointing into usable stack space within CCP. You can use this
SP setting and stack space for very short programs, if you are
brave. Since your program has been called by CCP, you can return
to CCP without rebooting CP/M, if you are very brave.

In our example exercise, if the JMP instruction at location
0107H is replaced by a RET opcode (0C9H), the program would
execute normally, but the system would not be rebooted, and the
CCP prompt would reappear instantly. This technique can be
used, with caution, by very short programs when you are confident
you won't overrun the CCP stack space available.
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How big is the available CCP stack space? The CP/M manuals
are silent on the subject. Since we want our programs to be inde-
pendent and transportable, don’t start off on the wrong foot by
relying on the CCP stack. Use it only to simplify example programs
in your next book.

Saving the user’s register contents

In keeping with the policy of separation of user and system, we will
want to preserve the contents of all the hardware registers (except
SP and A) every time CP/M is called upon for I/O services. Since
we have set aside more than enough stack space, we can let BDOS
use some of it whenever we call location 5. And, as we decided in
Chap. 9, we will be passing data in the accumulator, so can expect
that register to get wiped out in the process.

All of the other registers will be saved and restored each time
we pass data through the user/system window. To accomplish this,
we will write a series of I/O subroutines that start off by saving the
contents of B, C, D, E, H, and L on the stack:

Co: PUSH B ; SAVE REGISTERS
PUSH D

PUSH H

which requires only three bytes of program space and six bytes of
stack space. Now we could care less whether or not the system
disturbs the contents of these registers, because upon return from
BDOS we will restore the registers:

POP
POP
POP
RET

; RESTORE REGISTERS

O @ o

before returning the our user’s calling program. This example is
part of a subroutine to pass one ASCII character to the Console
'Output function in BDOS.

Note that the POPs are a mirror image of the PUSHes. The
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stack is a LIFO mechanism, so the last in (H) must be the first out.
We could have also saved the contents of A, but this will seldom be
necessary. We loaded A with the data to be passed to the system,
so our program must know what that data was. Often, we will be
done with it at this point anyway. And we can expect the operating
system to return an error code in A indicating whether or not the
output operation was a success. We will leave it up to the calling
program to decide what to do about any errors reported.

Other subroutines with similar saves and restores will handle
other device I/0, so our programs can expect to always have full
access to all the working registers at all times.

Calling BDOS

Assume that some user program loaded an ASCII character into A,
and called CO: expecting that character to output to the console.
We know, from having accomplished exactly that function in our
example program, that BDOS wants the character to be in E, and a
function code (WCONPF) to be in C, when BDOS is called. So after
pushing all the registers onto the stack, all we need to complete
subroutine CO: is:

MV I C,WCONF ; SELECT FUNCTION
MOV E,A ; CHAR TO E
CALL BDOS

inserted between the pushes and pops above. That three lines of
assembly language programming should be pretty familiar to you
by now. '

Returning to CP/M

The console output subroutine just developed will be one of the
library of subroutines we will be assembling in the next section.
We have seen it grow out of the simple program example first
presented in the Introduction. That example has now become a
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usable subroutine that provides the desired interfacing between
the user’s register requirements and the operating system. By
making use of similar subroutines for all system interfacing, we not
only preserve the user’s registers, but also provide a mechanism
for easily adapting our programs to any other operating system, in
the unlikely event that ever becomes necessary.

At the conclusion of every program, we will want to return to
the operating system in an orderly manner, not by pressing the
RESET switch. In the preceding chapter we saw how that could be
accomplished with a RET instruction if the CCP stack pointer was
maintained intact. This is never necessary, since CP/M has pro-
vided a reboot vector at location zero, and our programs can always
terminate with a simple JMP 0 instruction. This is always the safe
way, since then the operating system will be reloaded before it is
reentered.

If there are any questions in your mind about the meaning of
any of the instruction mnemonics and pseudo-ops used so far in
these simple examples, you should refer to the 8080/8085 program-
ming manual and/or Appendix B for an explanation before proceed-
ing to the next section. You are now well on your way to becoming
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