
1 ^

A/an R. Miller

MASTERING
CP/M

ALAN R. MILLER

Berkeley • Paris • Dusseldorf

Cover design by Daniel Le Noury
Technical illustrations, book design, and layout by Marlyn Amann

CP/M is a registered trademark of Digital Research, Inc.

Grammatik is a trademark of Aspen Software Co.
Lifeboat is a trademark of Lifeboat Associates.

MAC is a trademark of Digital Research, Inc.

MACRO-80 is a trademark of Microsoft Corporation.

MBASIC is a trademark of Microsoft Corporation.

SID is a trademark of Digital Research, Inc.

Spellguard is a trademark of Sorcim Corporation.

WordStar is a trademark of MicroPro International Corporation.

Z80 is a registered trademark of Zilog, Inc.

Sybex is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, Sybex assumes no
responsibility for its use, nor for any infringements of patents or other rights of third parties which would
result.

© 1983 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710. World rights reserved. No part of this publica-

tion may be stored in a retrieval system, transmitted, or reproduced in any way, including but not Umited to

photocopy, photograph, magnetic or other record, without the prior agreement and written permission of

the pubUsher.

Library of Congress Catalog Card Number: 82-62006

ISBN 0-89588-068-7

Printed in the United States of America

10 98765432

CONTENTS

Preface xi

^ CP/M Organization and Operation 1

Introduction 1

Memory Organization 2
Operation of CP/M 5

First Executable Program 1

1

Summary 13

2 Duplicating and AlteringCP/M Disks 15

Introduction 15

Formatting and Duplicating Disks 16

General Procedure for Altering the BIOS 20

Locating the Working Version of BIOS 21

Assembling the BIOS or USER Source Program 23

Copying the Altered BIOS to Disk 26

Summary 31

vi MASTERING CP/M

Adding Features to BIOS 33

Introduction 33

Assembly Language Programming 34

BIOS Entry Vectors 39

Engaging the Printer with the Debugger 42

A Program to Engage and Disengage the Printer 43

Engaging the Printer with the CP/M lOBYTE 45

Adding a Printer-Ready Routine 50

Directing List Output with the lOBYTE 56

Storing List Output in a Memory Cache 59

Summary 69

^ Beginning a Macro Library 71

Introduction 71

Macros 71

Generating Z80 Instructions with an 8080 Assembler 75

The 8080/Z80 Switch 78

Starting the Macro Library 80

A Macro to Move Information 92

A Macro to Fill Memory with a Constant 109

A Macro to Compare Two Blocks of Information 113

A Macro to Raise Lowercase Letters to Uppercase 118

A Macro to Convert an Ambiguous File Name to an
Unambiguous File Name 121

A Macro to Move the Upper Four Bits to the Lower
Position 123

A Macro to Perform 16-Bit Subtraction 125

Summary 126

UsingBDOS for Nondisic Operations 129

Introduction 129

BDOS Calls 130

A Macro to Perform BDOS Calls 1 3

1

A Macro to Read a Single Console Character 132

A Macro to Write a Single Console Character 135

A Macro to Display a Carriage Return and Line

Feed 136

CONTENTS vii

A Program to Test Macros SYSF, READCH, PCHAR,
and CRLF 137

Printing a String of Ciiaracters 139

A Program to Discover Which CPU Is Being Used 146

A Macro to Convert Binary to Hexadecimal 149

A Macro to Find the CP/M Version Number 153

A Program to Display the lOBYTE Value 1 53

A Program to Go to Any Address in Memory 164

A Program to Eject Pages on the Printer 167

Summary 170

g Reading Disk Files WithBDOS 173

Introduction 173

The File Control Block 173

A Macro to Display an Error Message and Abort the

Program 176

Opening an Existing Disk File 177

A Macro to Set the DMA Address 1 82

A Macro to Read One Disk Sector 182

A Macro to Input a File Name 184

Displaying an ASCII File on the Console 188

A Macro to Abort the Program from the Console 192

Displaying a Binary File on the Console 194

Automatic Envelope Addressing 198

Checking for Paired Control Characters 198

Summary 208

^ Writing Dislc Files WitliBDOS 211

Introduction 211

A Macro to Create a New Disk File 211

Unprotecting a Disk File 212
A Macro to Print an FCB File Name 215

A Macro to Delete a Disk File 216
Investigating Two File Control Blocks with the

Debugger 219

Opening a File When Two File Names Are Given 221

A Macro to Rename a Disk File 225

viii MASTERING CP/M

A Macro to Write a Disk Sector 225

A Macro to Close a Disk File 226

Duplicating a Disk File 229

Encrypting an ASCII File 230

Copying a File by Buffering into Memory 238

A Buffered Copy Program with Verification 245

A Program to Rename Disk Files 251

A Program to Delete Disk Files 252

Saving the Memory Cache on Disk 260

Summary 263

}{ TheCP/M Disk Directory 267

Introduction 267

The Disk Parameters 268

The Disk Parameter Block 270

Viewing the Disk Parameters 274

The Disk Directory Blocks 289

The Block Allocation Map 291

Viewing the Disk Directory Blocks and the Block

Allocation Map 292
Summary 311

Appendices 315

\ The ASCII Character Set 316

Q A 64K MemoryMap 320

C The 8080 Instruction Set (Alphabetic)

D The 8080 Instruction Set (Numeric)

324

328

CONTENTS ix

E The Z80 Instruction Set (Alphabetic) 332

JT The Z80 Instruction Set (Numeric) 341

Q Details of the 8080 Instruction Set 350

U DetaHs of the Z80 Instruction Set 367

I TheCP/MBDOS Functions 392

Index 394

PREFACE

CP/M has become the standard operating system for Z80, 8080, and

8085 microcomputers. As a consequence, there are a large number of pro-

grams that run under CP/M. These include assemblers, editors, spelling

checkers, compilers for the engineering languages BASIC, Pascal, FOR-
TRAN, and APL, as well as general business packages.

SomeCP/M programs can be run automatically so that only a minimal

knowledge of CP/M is necessary. However, other programs require a

greater understanding of the operating system. In either case, certain

routine tasks, such as formatting new disks and making backup copies of

important disks, require a working knowledge of the operating system.

Unfortunately, it is difficult to learn the operation of CP/M from the

documentation that is provided. There are introductorybooks on the sub-

ject,* but these do not discuss the inner workings ofCP/M in great detail.

Furthermore, there are numerous inconsistencies and idiosyncracies in

the operation ofCP/M that are waiting to trap the unwary programmer.

•See R. Zaks, The CP/MHandbook with MP/M, Berkeley: Sybex, 1980.

xii MASTERING CP/M

I have been working with CP/M from its inception (version 1.3). Con-

sequently, I have developed many techniques for improving its usefulness

by altering parts of CP/M itself and by writing auxiliary assembly

language programs. This book describes what I have learned. It is a guide

for the person who wants a deeper knowledge of the inner workings of

CP/M.
Although the operation ofeach program is described, the reader should

have some prior experience with 8080 assembly language programming.

Further information on assembly language programming can be found in

8080/Z80 Assembly Language and Programming the Z80. * To gain the

fullest benefit of the book, it will be necessary to have a computer with

CP/M, a system editor, a macro assembler such asMAC or MACRO-80,
and an assembly language debugger such as SID or DDT.
Thebook begins with a detailed description ofthe organization and oper-

ation ofCP/M. The topics include the system parameter area, TPA, CCP,
BDOS, and BIOS. Use of the built-in commands, control characters, and

trjmsient programs is also covered. Routine tasks such as formatting new
disks and making backup copies are discussed in Chapter 2. The opera-

tion of COPY, SYSGEN, and SAVEUSER are also considered, leading

to the discussion of procedures for altering the CP/M system and saving

the altered version on disk. In Chapter 3 we actually alter the BIOS to in-

corporate the lOBYTE feature.

The powerful concept ofmacros is introduced in Chapter 4. Macros for

comparing, moving, and filling regions ofmemory are the foundation of

a macro library. The use of BDOS for performing console input and

output is implemented with macros in Chapter 5. Several executable pro-

grams are written.

Chapters 6 and 7 describe theCP/M disk file system. Themacro library

is expanded with BDOS operations for reading and writing disk files, and

additional executable programs are written. The final chapter presents

the details of the CP/M disk directory. A general utility program is

written that can be used to display the disk parameters, a block allocation

map, and a detailed presentation of the directory.

The appendices contain all the reference material needed to write 8080

and Z80 assembly language programs. Appendix A identifies the ASCII
codes in decimal, hexadecimal, and octal. Appendix B presents a

64K-byte memory map. AppendicesC andD summarize the 8080 instruc-

tion set alphabetically and numerically, respectively. Appendices E and F

*A. R. Miller, 8080/Z80 Assembly Language: Techniques for Improved Pro-

gramming, New York: Wiley, 1981.

R. Zaks, Programming the Z80, Berkeley: Sybex, 1980.

PREFACE xiii

give the entire Z80 instruction set according to the official Zilog

mnemonic, with E being ordered alphabetically andF numerically. Those

instructions common to the 8080 set are marked with an asterisk.

The 8080 instruction set is discussed in detail in Appendix G, including

potential pitfalls and interesting techniques. The Z80 mnemonic is also

referenced. Appendix H gives a detailed description of the Z80 instruc-

tion set. Appendix I summarizes the CP/M BDOS calls.

All of the assembly language programs given in this book were

developed on a Z80 microcomputer fitted with three 5-inch disks (drives

A, B, andQ and two 8-inch disks (drivesD and E). The operating system

was the Lifeboat 2.2 version ofCP/M. The source programs Avere written

with MicroPro's WordStar word processing program. The programs

were assembled with both the Digital Research MAC assembler and the

Microsoft MACRO-80 assembler.

The manuscript was created and edited on the same Z80 computer with

WordStar. The manuscript was proofed with Spellguard, a spelling

checker, and Grammatik, a syntax checker. The assembly language

source programs have been incorporated directly into the manuscript

from the original source files. The computer printouts that appear were

also incorporated magnetically into the manuscript. This was ac-

compUshed by altering the CP/M operating system so that printer output

was written into a block of memory. The block was then saved as a disk

file. (This technique is described in Chapter 3.) The final manuscript was

submitted to the publisher in a magnetic form compatible with the

photocomposer.

I am sincerely grateful to Barbara Gordon, editor of the manuscript,

for all of her helpful suggestions. I also want to thank Douglas Hergert,

Jim Compton, Joe Sharp, and Eric Novikoff for reviewing the manu-

script and making additional suggestions. John Wiley& Sons kindly gave

permission to reproduce Appendices A—F and H from my book

8080/Z80AssemblyLanguage: Techniques/orImprovedProgramming.

Alan R. Miller

Socorro, New Mexico

September 1982

CHAPTER 1

CP/M
ORGANIZATION
AND
OPERATION

INTRODUCTION

The purpose of this first chapter is to review the organization and

operation of theCP/M operating system. Firstwe will discuss the various

parts ofCP/M—the system parameter area, the transient program area,

the console command processor, the basic disk-operating system, and the

basic input/output system. Then we will summarize the operation of

CP/M, including the use of built-in commands, control characters, and

transient programs. (Additional details on these subjects can be found in

The CP/MHandbook.*) After reviewing standard executable programs

such as STAT and PIP, we will create a new command, CONTIN, and

look at how and why it works.

*R. Zaks, The CP/MHandbook withMP/M, Berkeley: Sybex, 1980.

2 MASTERING CP/M

MEMORY ORGANIZATION

The hardware of a computer can be divided logically into several parts.

These include the central processing unit (CPU), the main or random
access memory (RAM), and the peripherals, such as the console, printer,

phone modem, and disks. The disk-operating system (DOS) is a software

program that coordinates the operation of the computer. CP/M is the

most widely used DOS for the 8080, 8085, and Z80 CPUs. Let us review

the operation of CP/M.
The 8080, 8085, and Z80 CPUs are very similar. The concepts

developed in this chapter apply equally to all three. TheCPUs can directly

address a maximum of 64K bytes ofRAM (actually 2" or 65,536 bytes).

Each byte ofRAM is assigned an address from to 65,535. CP/M divides

this memory into five regions. Beginning with the lowest memory address,

the regions are as follows:

• The system parameter area. This area contains key items of in-

formation such as the current disk and user number, peripheral

assignments, the addresses of the basic input/output system and
the basic disk-operating system, the restart locations, and the

default buffer.

• The transientprogram area (TPA). This is the working area of

memory. Executable programs and their data are located here.

• The console commandprocessor (CCP) . This area contains the

programs for the built-in commands DIR, ERA, REN, SAVE,
TYPE, and USER.

• The basic disk-operating system (BDOS) . This area contains the

general programs for the operation of peripherals.

• The basic input/output system (BIOS). This area contains the

customized routines that operate the actual peripherals.

The BDOS and BIOS regions are known collectively as the full disk-

operating system (FDOS). The five regions of RAM are summarized in

Figure 1.1.

The System Parameter Area

The system parameters, shown in Figure 1.2, begin at address 0. The
first three bytes (bytes to 2) contain a jump into the BIOS warm-start

entry. When this instruction is executed, CP/M is restarted. This causes a

CP/M ORGANIZATION AND OPERATION 3

High memory
BIOS

BDOS

CCP

TPA
100 hex

System parameters

Low memory

Figure 1.1: Memory Partitions of the CP/M Operating System

High memory

FF hex

80 hex
Buffer

Default FCB
5C hex

Restart area
8 hex

Jump to BCXDS

5 hex

Current drive and
user number

4 hex

lOBYTE 3 hex

Jump to BIOS
hex

Low memory

Figure 1.2: The System Parameter Area: to FF Hex

4 MASTERING CP/M

fresh copy of the CCP and the BDOS to be copied into memory from the

system disk. The disks are also reset at this time.

The fourth byte of the system parameter area (address 3) is called the

lOBYTE. It indicates the current memory assignments of the four logical

peripherals: console, reader, punch, and list (printer). The next location,

address 4, contains two items: the current disk drive and the current user

number. Beginning at address 5, the next three bytes contain ajump into

the BDOS. This instruction is executed when console, printer, and disk

operations are desired.

The region from address to 38 includes eight locations referenced by
the 8080 instructions RST through RST 7:

These instructions generate subroutine calls to the correspondingmemory
locations. The instructions can be activated by hardware interrupts as well

as by normal subroutine calls. RST 6 and RST 7 are used by the debuggers
DDT and SID. Execution of an RST instruction will perform a warm
start, because it causes a branch to address 0.

When a program is executed from the command level ofCP/M, one or
two file names may be given on the command line. For example, along
with the command EDIT, the user might include two parameters:

EDIT FIRST.FIL BrSECOND.FIL

The region ofmemory beginning at 5C hex is called the default file con-
trol block (DFCB) because the CCP automatically selects this region for

the file control block area. A file control block is a 32-byte block describing

each disk file. The CCP takes the first parameter, FIRST.FIL in this

example, for the first FCB. TheCCP also initializes a secondFCB starting

at 6C hex. The second parameter, B:SECOND.FIL in this example, is used
this time.

The region from 80 to FF hex is a general buffer area. The command
line tail, all characters typed after the command itself, is placed in this

Instruction Hex address

RSTO
RSTl
RST 2

RST 3

RST 4

RST 5

RST 6

RST 7

8

10

18

20

28

30

38

CP/M ORGANIZATION AND OPERATION 5

region. In the above example, the command Une tail is the two file names.

This region is also used as the default area for transferring data to and

from disks.

The system parameter area is described further in Chapter 3.

The TPA and the CCP

The transient program area usually contains the largest portion of the

memory. Beginning at 100 hex, it is the region where executable programs

reside.

The console command processor contains instructions for processing

commands typed from the console. The area ofmemory belonging to the

CCP is not needed after an executable program has begun operations.

Consequently, executable programs may enlarge the TPA to overlap this

region. Awarm start at the conclusion ofthe program will reload theCCP
along with the BDOS.

The BDOS and the BIOS

The basic disk-operating system contains the device-independent

routines for interacting with the console, printer, and disk drives. This

region is generally the same for all CP/M computers. We will study its

operation in detail in Chapters 5, 6, and 7.

The basic input/output system contains instructions for operating the

peripheral devices: the console, printer, phone modem, disks, and so

forth. Each BIOS must be customized for the particular set of physical

devices actually attached to the computer. Therefore, the BIOS for two

identical computers will be different if different peripherals are used. We
will learn more about the BIOS in Chapters 2 and 3.

OPERATION OF CP/M

When CP/M is first started up (booted), the CCP, the BDOS, and the

BIOS are copied into memory from the system disk (usually driveA) . This

operation is called a cold start. After loading the system into memory, the

cold-start loader transfers control to BIOS. BIOS then fills in the system

parameter area at addresses to 7. This includes the jump to BIOS (ad-

dresses to 2), the lOBYTE (address 3), the current disk drive and user

number (address 4), and the jump to BDOS (bytes 5 to 7).

6 MASTERING CP/M

At this pointCP/M displays aprompt symbol to indicate that it is ready
to accept a command from the console:

A>

Built-in Commands

CP/M can control up to 16 separate disks. These are designated by the

first 16 letters ofthe alphabet (A- P). The letterA in the prompt indicates

that disk drive A is the current or default drive. The console commands
that are buih into the CCP can be executed at this time. The following are

built-in commands:

Command Function

DIR List the disk directory

ERA Erase a disk file

REN Rename a disk file

SAVE Create a new disk file from memory
TYPE Display an ASCII file on console

USER Change the user number

These commands may not be preceded by a disk name, because they are

not associated with any particular disk drive. In other words, thecommand

ArDIR

is improper. Some of these commands, however, may take parameters
that are disk names. For example:

DIR A:

The command DIR is given to obtain a Usting of the files on the default

disk. The listing is arranged across the screen in four columns. All of the

files are displayed if no parameter is given.

A whole class of files can be selected by using one of the ambiguous
symbols, * or ?. For example, the command

DIR *.ASAA

will show the names of all files on the default disk that have the typeASM.
The asterisk refers to all possible combinations of characters, including

blanks. The double asterisk, * . * , refers to all of the files on the disk. For
many CP/M commands, the asterisk can be used as an ambiguous file

name.

The question mark is used to indicate a single ambiguous character.

CP/M ORGANIZATION AND OPERATION 7

including a blank. Thus, the file name SORT7.BAS refers collectively to

the following files:

SORTl.BAS

SORT2.BAS

SORT3.BAS

SORT.BAS

A file or group of files can be erased with the command ERA.

Ambiguous symbols may be used (carefully!) in the parameter of ERA.

For example:

ERA NEW.ASM
ERA *.ASM
ERA *.*

The third example erases all files. In this case, however, CP/M asks for

verification of the command before erasing all the files on a disk:

ALL (Y/N)?

You must enter a Y if you want to continue.

We can use the REN command to rename individual files. REN requires

two unambiguous file names; that is, the * and ? symbols must not be

used. The new file name is given first, followed by an equal sign and the

old file name. For example, the command

REN NEW.ASM= OLD.ASM

changes the name of OLD.ASM to NEW.ASM.
The SAVE command makes a disk file from a memory image. SAVE

takes two parameters. The first parameter is the number of 256-byte

blocks to be saved. The second parameter is the file name. For example,

the command

SAVE 4 NEWFIL

creates a disk file called NEWFIL from the first IK bytes of the transient

program area.

An ASCII disk file can be viewed on the console with the TYPE com-

mand. The single parameter must be an unambiguous file name. Scrolling

can be stopped by typing control-S. (The task is terminated if any other

key is pressed during scrolling.) Scrolling is resumed by pressing any key,

but it is wise to use control-S so that you do not unintentionally terminate

the command.
The user number can be changed with theUSER command. The single

8 MASTERING CP/M

parameter is a decimal number from to 15. CP/M can keep track of 16

different users, numbered from to 15. User is normally selected when
CP/M is initialized. Whenever a new disk file is created, it is coded with

the current user number. Therefore, each disk file is associated with a

particular user number. Only files belonging to the current user are nor-

mally accessible.

Control Characters

Several console keys have special meanings to CP/M; following are the

control-character commands:

Warm Start

A warm start is performed when control-C is typed and the cursor is in

the//r5/ position of a line. This action is similar to a cold start. The CCP
and BDOS are copied from disk drive A into memory. The jumps into

BIOS andBDOS at the beginning ofmemory are also reinitialized, but the
memoryimage oftheBIOS is not altered. The current disk drive and drive

A are logged in at this time.

When CP/M first accesses a disk drive, it makes a copy of the disk

directory and certEiin characteristics of the disk. You can observe this

operation with floppy disks by accessing each one in turn. For example,

when you give the command

Command Function

control-C

control-E

control-H

control-I

control-J

control-M

control-P

control-R

control-S

control-U

control-X

Perform a warm start

Move to next Une

Back up cursor to previous character

Tab key

Execute line (line feed)

Execute line (carriage return)

Engage or disengage printer (toggle)

Reprint current line

Freeze scrolling

Cancel current line, start new Hne
Cancel current line, restart line

B:

the head of disk drive B will be loaded. This is usually indicated by a red

CP/M ORGANIZATION AND OPERATION 9

activity light on the front of the disk drive. The system prompt will change

to B>. Ifyou have additional drives, you can go to each one in turn by giv-

ing its name followed by a colon. Ifyou return to driveA with thecommand

A:

the system prompt will change back toA> . However, no disk activity will

be apparent because drive A has already been logged in. CP/M assumes

that the diskette has not been changed since the last time drive A was

accessed.

The disk directory is not reread on subsequent references to a disk.

Thus, if you remove a floppy diskette from a drive and replace it with

another diskette, you should perform a warm start with the control-C

command. This forces a reading of the directory of the new disk. If

you neglect to perform a warm start after changing diskettes, CP/M
may be able to read the disk. However, if you try to write on this disk,

CP/M will refuse to perform the write operation and will issue an error

message:

BDOS ERROR ON A: R/O

CP/M will wait until you type a carriage return. It then automatically per-

forms a warm start, even though you have not typed control-C. Because

the new disk is read at this time, it is now possible to write on it.

Transient Programs

The number ofcommands built into theCCP is limited. Consequently,

additional operations are provided by separate, executable programs that

are stored as COM files on one of the disk drives. We execute these pro-

grams by typing the disk drive and the file name (without the extension

COM). The drive name may be omitted if the program is on the default

drive. When the name of a transient program is entered, CP/M copies the

file from disk into memory and then branches to it.

Programs stored on disk are referenced by a file name. A CP/M file

name consists of a primary name and an extension. The primary name

contains from one to eight alphabetic or numeric (alphanumeric)

characters. Characters other than the lettersA—Z and the digits0—9 can

be used in certain cases, but it is better to avoid them ifyou are unsure. For

some applications a file type or file name extension is required. In other

cases it is not. If an extension is required, it contains from one to three

characters. The file type is usually a mnemonic suggesting the nature of

10 MASTERING CP/M

the file. For example:

Extension Meaning

ASM AccpiTiHIv IfinoiifiD'P flip

POM £ZiACLUtd.DlC ^^CUllUllallUy lllC

HEX T-TpYaHf*rima1 flip

BAK Backup file

BAS BASIC file

FOR FORTRAN file

PAS Pascal file

REL Relocatable binary file

ASC ASCII text file

LST ASCII listing file

Several transient programs are supplied with the CP/M operating

system. These are independent executable programs that have a file type

of COM:

File name Program function

ASM Assembler

DDT Debugger

DUMP Program to examine executable files

ED System editor

LOAD Convert HEX file to COM file

MOVCPM Change CP/M size

PIP Copy files

STAT View disk directory in detail

SYSGEN Copy system tracks to another disk

SUBMIT Process a collection of commands
XSUB Extension of SUBMIT

Following are other common executable programs that are available

commercially:

File name Program function

BADLIM Program to isolate bad disk sectors

COPY Track-to-track copier

FILEFIX Disk utility program to undelete files

FORMAT Initialize a disk

MAC Digital Research macro assembler

MACRO-80 Microsoft macro assembler

MBASIC Microsoft BASIC

CP/M ORGANIZATION AND OPERATION 11

SAVEUSER
SID
WS

Lifeboat utility to save BIOS on disk

Digital Research symbolic debugger

WordStar text editor

Many other executable programs can be purchased or written. We will

write many useful programs in this book.

Let us begin by creating a very simple executable program. BootCP/M
if it is not already in place. When the process is complete there will be a

prompt of

on the console. Give the built-in DIR command to see what programs are

available on drive A. If the executable program STAT.COM appears in

the listing, execute it with the command

STAT *.*

Like DIR, the STAT command produces a Hsting of all programs on the

disk. In addition, STAT arranges the files in alphabetical order.

If you have a printer, turn it on. Then type control-P (to send console

output to the printer) and give theSTAT command again. The printer will

duplicate the output ofthe console. Type control-P again to disengage the

printer. Tear off the printer output and place this directory Usting into the

diskette envelope for future reference.

STAT gives additional information about the files on the disk. Con-

sider, for example, the following lines:

58 8K 1 R/O A: PI P.COM
266 34K 3 R/W A:WSOVLYl .OVR

The first Une indicates that the file PIP.COM is located on drive A. This

file can only be read (indicated by R/O); that is, it is write protected.

Furthermore, the program consists of 58 (128-byte) records that are

stored in 8K bytes. The file is referenced by one physical extent.

Smaller files can be referenced by a single disk-directory entry called a

physical extent (a 16K block of space on the diskette). If more than one

extent is needed for a file, all the extents have the same file name.

However, only one ofthese entries is shown in theSTAT andDIR listings

.

The second file in the above example, WSOVLY.OVR, is also located

on drive A. This file can be both read and written over (indicated by

FIRST EXECUTABLE PROGRAM

A>

12 MASTERING CP/M

R/W); it is not write protected. It contains 266 records stored in 34K bytes

and requires three physical extents. At the end of the STAT listing, the

remaining space on the diskette is given.

Often it is convenient to have a method of returning to a previous com-

mand after a warm start has been performed. We will create such a

method now. Give the built-in command

SAVE CONTIN.COAA

This puts a new directory entry on the drive currently logged in. However,

because the file size is specified as zero, no actual data are saved. If you

execute STAT again, the remaining space on the disk should be the same

as before. The listing will indicate that the new entry, CONTIN.COM,
has zero bytes. We will find that this empty "program" is actually very

valuable.

Whenever the command CONTIN is given, CP/M will attempt to load

the corresponding program, CONTIN.COM, then branch to the beginning

of the TPA at 100 hex. Because the program CONTIN has no data, this

command simply restarts the previous program. To see how this works,

give the command

PIP

This will direct CP/M to load PIP.COM into memory and branch to it at

100 hex. PIP responds with an asterisk. You will normally give PIP a

command at this point. But in this case, simply type a carriage return.

This action will terminate PIP, returning control back to CP/M. CP/M
performs a warm start and gives the system prompt, awaiting another

command. Now type

CONTIN

Because this dummy program has no data, the effect is simply to branch

to address 100 hex, the beginning ofPIP. Thememoryimage ofPIP is still

intact, so the PIP star should appear again. You can verify this by giving

PIP a command. For example, type

PIP2.COM ==PIP.COM[V]

PIP willmake acopy of itself calling the new copyPIP2.COM . Theparam-

eter V enclosed in brackets causes PIP to verify that the new copy is correct.

This technique will work with many but not all executable programs.

For example, it will not work with STAT because data areas are not prop-

erly reinitialized when the progreun is restarted. It will, however, work

with MBASIC.

CP/M ORGANIZATION AND OPERATION 13

Let us investigate this phenomenon with Microsoft BASIC. Execute

BASIC by typing its name. Then write the following BASIC program:

10 FOR I
= 1 TO 9

20 PRINT I; 1*1, 1/1, SQR(I)

30 NEXT I

40 END

Try out the program with thecommand RUN. This program only exists in

memory, so you will lose it if you leave BASIC. Therefore, you will nor-

mally want to make a permanent copy with the BASIC command

SAVE "FIRST"

But suppose that you inadvertently typed the BASIC command
SYSTEM before saving your program (try it). You will find that you are

back at the CP/M system level. Apparently you have lost your BASIC
program. Now give the command

CONTIN

and you will return to BASIC and the program you wrote with it. Give the

command LIST to see that the source program is still there. Then give the

RUN command to see that it still works. You can now issue the SAVE
command if you want to save your original BASIC program.

SUMMARY
In this chapter we briefly reviewed the fundamentals of CP/M

organization and operation. This included a discussion of the system

parameter area, the TPA, the CCP, the BDOS, and the BIOS. The built-

in commands, control characters, and some standard executable programs

were also considered. We then wrote a short executable program called

CONTIN that can be used to restart most executable programs.

In the next chapter we will learn how to copy and alter the disk version

of the CP/M system.

CHAPTER 2

DUPLICATING
AND
ALTERING
CP/M DISKS

INTRODUCTION

In Chapter 1 we studied the fundamental CP/M operations and learned

how the memory is organized. Because CP/M is a disk-operating system,

the disk plays an important role in the operation. Let us therefore focus

our attention in this chapter on the orgEuiization of the disk.

In this chapter we will learn how to duplicate CP/M disks by formatting

a new diskette, copying the data, and copying the system tracks. We then

learn how to alter the BIOS or USER routines of the CP/M system, how
to assemble and test the new version, and finallyhow to write a copy ofthe

new version to the disk.

16 MASTERING CP/M

FORMATTING AND DUPLICATING DISKS

Floppy disks are one of the most important devices used to store micro-

computer information. The surface of the disk is a magnetic material that

is read and altered by a read/write head. (The operation is similar to soimd

recording with magnetic tape.) Physically, floppy disks are formatted with

concentric rings called tracks. Each track is divided into regions called

sectors.

It is common practice to place theCP/M system disk with the executable

programs in drive A, and a working disk in drive B. Information can be

safely stored on disks provided some precautions are observed. For example,

the disks should not be placed near magnetic fields or in a dusty environ-

ment. Even when you are careful, an electrical failure during a write

operation can result in lost data. Therefore, it is a good idea to make

backup copies of all important disks. Let us consider several methods for

duplicating the information on disks.

New disks must be formatted before they are used. There are two com-

mon floppy-disk sizes—8-inch diameter and 5-inch diameter. In addition,

there are disks that are hard or soft sectored, single or double density,

and single or double sided. The number of tracks per disk and sectors per

track also varies from one version to another.

When you buy floppy disks, you must select the correct diameter

(8-inch or 5-inch) and sectoring format (soft or hard). Ifyou require hard-

sectored disks, you must also choose the correct number of sectors per

track. Many different floppy-disk formats are obtainable from a par-

ticular type of disk. Consequently, it will usually be necessary to format a

new diskette before it is used for the first time.

Formatting a New Diskette

Floppy disks are formatted by executing a program that is named

FORMAT.COM, FORMAT5.COM, or FORMAT8.COM. This program

should be included on your original CP/M disk. Format programs have

to be specifically tailored to the type of disk you are using. Do not try to

format a disk with a program taken from a different computer, because it

is not likely to work.

When you use a floppy diskette for the first time, place it into drive B
for the formatting operation. In Chapter 1 we saw that a warm start must

be performed when changing disks. But this is an exception. Do not per-

form a warm start after inserting a new, unformatted diskette.

IfdriveA is not the default drive, give thecommand 'A: ' so that driveA
will be the default drive. Be sure that the diskette in driveA contains your

DUPLICATING AND ALTERING CP/M DISKS 17

formatting program. Execute this program by typing its name. You may
have to answer several questions during program execution. These will

deal with whether the diskette should be formatted in single or double

density, and whether the drive is single sided or double sided. Some
systems can figure these things out automatically, so there may be no
questions.

If you open a new box of diskettes, it will be convenient to format all of
the disks at once. The FORMAT program is usually written with this in

mind. After the first disk has been formatted, change to a fresh disk and
press RETURN. The program will usually repeat the previous operation.

Remember, do not try to write on a new disk until it has been formatted,

or you might get a BDOS error. In the next section we will consider a
general technique for making copies of disks using SYSGEN and PIP.

Duplicating a Diskette witli SYSGEN and PIP

CP/M disks are partitioned into two regions. These are known as the

system tracks and the data tracks. The system tracks contain the CP/M
operating system, including the CCP, the BDOS, and the BIOS. This

region of the diskette is not usually accessible. The data tracks are divided

into the directory area and the program-storage area.

Because the system tracks are not normsdly accessible to the user, the

built-in command

ERA *.*

will erase all of the regular user files stored on the data tracks of the disk,

but it will not alter the system tracks.

However, you will need to access the system tracks to make a backup of
your system diskette or to alter the BIOS. After a new diskette has been
formatted, all of the regular files can be copied from the original diskette

to the new one with the PIP program. If the original diskette is on driveA
and the new diskette is on drive B, give the command

PIPB:=A:*.*[V]

Now the new diskette contains all the files from the original diskette. The
new diskette can be used in drive B, but it cannot yet be used in drive A.
This is because the system tracks, which contain the CCP, BDOS, and
BIOS, have not yet been recorded on the new diskette.

A program called SYSGEN can be used to copy the system tracks from
one diskette to another. However, SYSGEN cannot do this task directly.

It must first copy the system tracks from the source disk into memory.

18 MASTERING CP/M

Then it can copy the memory image to the system tracks of another disk.

Let us see how this works.

Execute SYSGEN and follow its directions. There will be sUght varia-

tions from one version of the program to another, but the general approach

is the same. When you executeSYSGEN it might respond with something

like this:

SYSGEN Version 3.0

Distributed by Lifeboat Associates

for CP/M2 on quad North Star.

Source drive NAME (or RETURN to skip)

Enter the name ofthe source drive but do not include the colon. This is the

drive where the original disk is located, normally drive A. SYSGEN
repeats your response and then asks for a second carriage return. For ex-

ample, if you respond with drive A, it will display the following line:

Place SOURCE disk on A, then type RETURN

When you enter a second carriage return, the response is as follows:

Function connplete

CP/M image in RAM at 900H is ready to write

or reboot and "SAVE 40 CPMxx.COM"
Destination drive NAME (or RETURN to reboot)

During this step SYSGEN copies theCP/M system tracks from the source

drive into memory. There are now two copies of CP/M in memory (see

Figure 2.1). The working version is at the top of memory and the

SYSGEN version is near the bottom, just above SYSGEN itself.

The next step is to write the SYSGEN version of CP/M to the system

tracks of a floppy disk. SYSGEN first must know where (on which drive)

to write the system. Give the drive name of the new diskette. This will

usually be drive B. Again, do not include the colon. SYSGEN responds

with the following:

Place destination disk on B, then type return

When you enter a carriage return SYSGEN copies the system from

memory to the system tracks of the new diskette. That completes the pro-

cess. SYSGEN then prints the following lines:

Function complete

Destination drive NAME (or RETURN to reboot)

At this point you can place copies of CP/M onto the system tracks of

additional formatted diskettes. Remove the new diskette and insert

DUPLICATING AND ALTERING CP/M DISKS 19

High memory

USER

BIOS

BDOS

CCP

USER

BIOS

BDOS

CCP

SYSGEN

Working version

of CP/M

SYSGEN version

of CP/M

100 hex

Low memory

Figure 2.1: The SYSGEN Version and the Working Version ofCP/M

another formatted diskette into drive B. Type the letter B and a carriage

return. SYSGEN will displaythe requested driveand ask for another carriage

return. SYSGEN will then copy the system from memory to the system

tracks of this diskette. In this way you c£m easily write the system tracks to

a number of diskettes, one after the other. Ifyou only want a single copy,

simply type a carriage return and the program will terminate. In the next

section we will consider another method for duplicating diskettes.

20 MASTERING CP/M

Duplicating a Diskette with Copy

We used PIP and SYSGEN in the previous section to make a duplicate

copy of a diskette. In this section we wdll consider a second method that is

simpler and quicker. However, this approach requires a nonstandard

program called COPY that may not be provided. Check whether you

have an executable program called COPY.COM, COPY5.COM, or

COPY8.COM. Usually such a program can perform the three tasks of

formatting a new diskette, copying the system tracks, and copying the

data tracks all in one operation.

Put the original diskette in driveA and a new, unformatted diskette in

drive B. Be careful not to perform awarm start. Execute theCOPY program

and follow its instructions. Answer the questions about the name of the

source and destination drives. In this example, the source drive is A and

the destination drive is B. This may be the default option. Before giving

the final carriage return, you can change the source disk in driveA if you

want to copy a different disk.

If this operation is successful, you have discovered a convenient

method of dupUcating diskettes. However, the operation may fail if your

version ofCOPY requires a formatted destination disk. Even so, this is a

convenient way to copy a disk. Although you must format the new

diskette separately, you can copy both the system tracks and the data

tracks with the COPY program. We will now learn how to alter the infor-

mation stored on the system tracks of a disk.

GENERAL PROCEDURE FOR ALTERING THE BIOS

In the previous examples of this chapter we considered methods of

duplicating a diskette, including the system tracks. In the next chapter we
will want to be able to alter parts of the CP/M system stored on these

system tracks. This is an awkward procedure, because the system tracks

are not normally accessible. Therefore, in the remainder of this chapter

we will discuss three methods for accessing the CP/M system tracks so

they can be revised. (Be sure to make a dupUcate copy of the system

diskette and alter the copy rather than the original.)

The revisions we will perform in the next chapter will be made to the

BIOS area of CP/M. The alterations will require an assembly language

source program named BIOS.ASM, BIOS.MAC, USER.ASM, or

USER.MAC. This program should be provided on your original CP/M
diskette. After altering the BIOS source program, we will assemble it,

then copy it over the original working version of BIOS. When we are

satisfied that the new version performs properly, we will need to save a

permanent copy on the system tracks of a floppy disk.

DUPLICATING AND ALTERING CP/M DISKS 21

Although we will not actually change BIOS in this chapter, we will

cover the necessary steps for moving the altered BIOS into the CP/M
system in memory, testing the new BIOS, and saving it on the system

tracks of a diskette. These steps are as follows:

1 . Alter the BIOS.ASM or USER.ASM source program.

2. Create the corresponding HEX or REL file with the assembler.

3. Copy the HEX or REL file into place with DDT or SID.

4. Try out the new features to see if they work.

5. Copy the new version to the system tracks.

At this timewe will assemble the original version ofBIOS. Thenwe will

install it in memory to try it out. Finally, we will copy the "new" version

to the system tracks of a floppy disk. Because we have not altered the

original BIOS, you should not notice any change in the operation ofyour

CP/M. The purpose of this step is to learnhow to test an altered version of

BIOS and how to make a permanent copy of it on a system disk. First we
must determine the location of the working version ofBIOS in memory.

LOCATING THE WORKING VERSION OF BIOS

We saw in Chapter I that the BIOS region ofCP/M contains the tailor-

made routines needed to operate the particular peripherals cormected to

the computer. These routines will be different from one computer to the

next. However, the remainder ofCP/M, such as the BDOS and the CCP,
is universal—that is, it is independent of any particular computer. There

is therefore a series ofjump instructions, called vectors, at the beginning

of the BIOS, which gives the addresses of the important routines within

the BIOS. Thus it is possible to change the BIOS instructions without

affecting the remainder of CP/M operations.

Sometimes these routines reside in a separate region ofmemory known
as the USER area, a subset of BIOS. In either case, a permanent copy of

these routines is present on the system tracks and a temporary working

copy is present in memory. We can make alterations to thememory image
ofthese routines to see whether anew version does whatwe want. Oncewe
are satisfied that the operation is correct, wemustmake apermanent copy

of the new version on the system tracks of drive A.

Let us now use thedebugger to locate the working version ofBIOS, that

is, the version at the top of memory. Thejump instruction at the begiiuiing

of memory references the BIOS warm-start address. Execute the debugger

and give the command

LO (the letter L followed by a zero)

The letter L is a mnemonic for list. This command is used to disassemble

22 MASTERING CP/M

8080 instructions, that is, to display them in mnemonic form. The param-

eter zero is the memory address. The first line of the response might be

JMP D303

The symbolJMP is the 8080 mnemonic for an unconditional branch instruc-

tion and D303 is the operand, the target of the branch. This instruction

refers to the BIOS warm-start entry. However, we want the previous cold-

start entry at location D300 hex in this example.

The next step will investigate the working BIOS region in memory. Being

careful to substitute 3 less than the value you found, give the command

LD300

The response will be a series ofjump instructions. For example:

D300 JAAP D380 (initial cold start)

D303 JMP D39F (warm-start reset)

D306 JMP DA06 (console status)

D309 JMP DA09 (console input)

D30C JMP D4E6 (console output)

D30F JMP DAOF (printer output)

D312 JMP DAI 2 (punch output)

D315 JMP DAI 5 (reader input)

D318 JMP D4CA (beginning of disk routines)

D31B JMP D499

D31E JMP D4CC

We must now determine whether there is a separateUSER area in addi-

tion to the regular BIOS region. If there is only a BIOS region, then all of

the jump vectors will be pointing to nearby memory locations, that is,

within about 800 hex of each other. Notice that in the above list the first

two vectors branch to locations near the beginning ofthe BIOS (D380 and

D39F hex). However, several of the other vectors refer to an area that is

farther away (DA06, DA09, and so forth).

Let us examine this second areawith the debugger. Ifwe givethecommand

LDAGG

the response might be as follows:

DAGO JMP DA1B (initial cold start)

DA03 JMP DA41 (warm-start reset)

DA06 JMP DA7E (console status)

DA09 JMP DA96 (console input)

DAOC JMP DAB6 (console output)

DAOF JMP DACC (printer output)

DUPLICATING AND ALTERING CP/M DISKS 23

DAI 2 JMP DB8B (punch output)

DA15 JMP DBD6 (reader input)

We have found another set of vectors. In this case, all the vectors refer to

the immediate memory region. We have located the auxiliary region

known as the USER area, a subset of the BIOS routines.

Notice that there is a one-to-one correspondence between many of the

vectors for the BIOS region and the corresponding vectors for the USER
area. That is, some of the vectors in the BIOS area refer to the same

relative positions in a different memory area. For example, address D306

contains a jump to address DA06. One apparent exception in the above

list is the console output vector at address D30C. It references address

D4E6. However, if this reference is traced with the system debugger, it

will ultimately point to the corresponding address DAOC. Disk routines

are not usually placed in theUSER area, so we do not expect USERjump
vectors beyond XXI 5 hex.

It is important to determine whether your system has a USER area. If

there is no USER area, we will make all the changes in the BIOS region

using a source program named BIOS.ASM or BIOS.MAC. But if the

USER area exists, we will perform the alterations in that area. The source

program will be named USER.ASM or USER.MAC.

ASSEMBLING THE BIOS OR USER
SOURCE PROGRAM

In this section we will assemble the original source program for the

BIOS orUSER routines. (Ifyou cannot find the source program, you will

not be able to make the revisions we discuss in Chapter 3.) We will then

compare the assembled code with the version used by CP/M. This will

ensure that your source program matches the version in use.

Assembling the BIOS or USER Source Program with

Digital Research MAC
Look on your original CP/M diskette for a program called BIOS.ASM

or USER.ASM, and copy it to a working disk. Look at the beginning of

this program with the command TYPE or with the system editor. Locate

the ORG instruction that establishes the address of BIOS or USER. Be

sure that it matches the value you found in the previous step. For our ex-

ample, the statement is as follows:

ORG ODAOOH ;beginning of USER

24 MASTERING CP/M

On the other hand, the operand of the ORG statement may be an expres-

sion such as

ORG MSIZE*400H - 600H

In this case, the BIOS location is calculated by the assembler according to

the memory size (MSIZE). Locate theEQU statement that defines MSIZE
and see if it will give the correct value during assembly. Alternatively, you

can inspect the assembly listing to see what value the assembler assigned it.

Assemble the source program with the command

AAAC BIOS

or

MAC USER

This step will generate three files with extensions HEX, SYM, and PRN.
The HEX file contains the assembled instructions coded in ASCII hex.

The SYM file lists the program symbols and their values. The PRN file

gives the original source program with the corresponding addresses and

assembled code.

Examine the resulting assembly Usting with the TYPE command.
Find the jump vectors near the beginning of the listing. Compare the

addresses of the jump vectors with the values found by the debugger for

the actual working copy of BIOS. If these addresses are different, you

must change the operand of the ORG statement (or the value of MSIZE
in the operand expression) so that the assembled code matches the value

you found for the working version of BIOS.

Also compare the targets of the jump vectors to see if they have the

same values as the working version of BIOS. If the vector addresses are

correct but the target addresses are different, your source program does

not match the working version. It still may be possible to use this version,

however.

If the jump vectors in the assembly listing match the values you found

for the working version, we can try out the assembled version by copying

it into place over the working version of BIOS. Give the command

SID BIOS. HEX

or

DDT USER. HEX

This will execute the debugger and direct it to copy the HEX file of BIOS
orUSER into place. CP/M is now using the "new' ' version ofBIOS. You
may want to explore the new version with the L command of the debugger.

However, you will find that this command no longer works. The debugger

DUPLICATING AND ALTERING CP/M DISKS 25

has loaded BIOS into an address larger than itself. Whenever this happens,

the debugger Lcommand is automatically disabled. The solution is simple.

Return to CP/M with control-C. Then execute the debugger once again.

Assembling the BIOS or USER Source Program
with Microsoft MACRO-80

If you use the Microsoft assembler, it will be a bit more difficult to in-

stall the assembled BIOS. One method is to replace the ORG directive

with a PHASE directive such as

.PHASE ODAOOH ;absolufe code

Here the operand ODAOOH is the beginning of BIOS or USER. Notice

that the symbol PHASE is preceded by a decimal point.

Be sure that the source file has a type of MAC rather than ASM.
Assemble the program with the command

AA80 =BIOS/L

In this example, the L switch will direct the assembler to create aPRN file

in addition to the usual REL file.

Inspect the resulting PRN file as described in the previous section.

Compare the addresses for the jump vectors in the listing to the location

of the working version of BIOS. When they agree, you can install the

assembled version using the linking loader Link-80 and the debugger.

Start with the command

L80 BIOS/E

This command will convert the file BIOS.REL into an executable version

and place it at the beginning ofthe TPA. TheE switch causes the loader to

exit to theCP/M operating system after it has created the memory image.

The situation is now very unusual. The newly assembled BIOS is sitting

in low memory starting at 100 hex. However, the first instruction contains

ajump to the beginning ofBIOS (DAOO hex in this case) . The program we
want actually begins at address 103 hex.

Link-80 has displayed three numbers enclosed in brackets. For example:

[DAOO 39F 3]

The first number (DAOO hex) is the address of the beginning ofBIOS. The
second number is the location of the end of the TPA memory image of

BIOS. The third number, 3, is the program size, that is, the number of

256-byte blocks needed to save the program. Make a disk copy of the

memory image by giving the CP/M command

SAVE XX BIOS.COM

26 MASTERING CP/M

where XX is the number of blocks to save.

Load the new file back into memory with the debugger command

SID BIOS.COAA

Remember, the first three bytes starting at address 100 hex contain an un-

wanted jump instruction. The actual program begins at address 103 hex.

We found that the end of the image is at 39F hex.

Move the image into place with the debugger, being careful to start at

address 103 hex rather than address 100 hex. As an example, the move
command might look like this:

M103,39F,DA00

The "new" version ofBIOS has now been installed in memory, overlaying

the original copy. Of course, we have not yet made any alterations to

BIOS or USER.

COPYING THE ALTERED BIOS TO DISK

In the previous example, we assembled the original version ofBIOS or

USER and copied the assembled version over the working version. In the

next chapter, we will add features to the BIOS source program before

assembly. We can then test the new features after the assembled version

has been installed over the original working version. But if you now turn

off the computer, the original version will be loaded next time CP/M is

booted. It will be necessary to copy the revised working version of BIOS
from memory to the system tracks of a diskette so that you will have a per-

manent copy. In this example, we have notmade any changes to theBIOS

.

However, let us go through the process of copying the working version to

the system tracks to ensure that you understand the process.

There are three different ways to install a revised version ofBIOS onto

the system tracks of a diskette. We will begin with the easiest method.

Copying BIOS to Disk with SAVEUSER
The simplest method of copying the working version of BIOS to the

CP/M system tracks is to run a program called SAVEUSER. However,

SAVEUSER is not a regularCP/M program, soyoumay not have a copy.

SAVEUSER directly copies the current working version of the USER
area ofBIOS to the system tracks of the disk in driveA. To save the current

version of USER, type the name SAVEUSER and answer the questions.

Ifyou cannot locate a copy of SAVEUSER, then you must use one of the

other methods for saving an altered copy of the system.

DUPLICATING AND ALTERING CP/M DISKS 27

Copying the Altered BIOS from a HEX FUe
to Disk Using SYSGEN

We saw previously in this chapter thatSYSGEN can be used to copy the

system tracks from one disk to another. The operation is actually performed

in two steps. The system tracks are copied from the source disk into

memory, then the memory image is copied to the destination disk.

SYSGEN can also be used to revise the system tracks of a disk. How-
ever, in this case the process is stopped in the middle, after the system has

been copied from the source disk to the SYSGEN position of memory.

The revised copy of BIOS is placed over the SYSGEN position of the

original BIOS. Then the revised system is copied to the destination disk

with SYSGEN. Let us consider the first part of the SYSGEN operation.

When copying the system tracks from one disk to another, we saw that

SYSGEN produces the following message after the system is copied into

memory from drive A:

CP/AA image in RAM at 900H is ready to write

or reboot and "SAVE 40 CPMxx.COAA"

Destination drive NAME {or RETURN to reboot)

Previously, we gave the name of the destination disk. This time, however,

we terminateSYSGEN with a carriage return. Thenwe save theSYSGEN
image (along with SYSGEN itself) as a regular CP/M disk file. In this ex-

ample, SYSGEN tells us that 40 blocks of256 bytes are needed to save the

system image, but this number may vary from one system to another.

After SYSGEN loads the image into memory, we can simply type a car-

riage return to go back to the system level. When the prompt symbol A>
appears, give the command

SAVE40CPAA2.COM

to save the system image as a file named CPM2.COM. This file contains

the completeCP/M system and aboot loader ifnecessary. It also contains

a copy of SYSGEN at the beginning.

(Remember that file types are chosen to suggest the nature of a file.

CP/M uses the file type COM for executable programs. However, the

system image we just saved is not an executable program, because it con-

tains a copy of SYSGEN at the beginning and the remaining parts are in

the wrong place. Consequently, it would be more appropriate to choose a

file type of SYS. This is possible if you use SID, but DDT requires the

extension COM.)
We now have a regular CP/M disk file containing an image of the

original CP/M. We must now reload this system image back into memory

28 MASTERING CP/M

with the debugger DDT, so that we can alter it. We are going to load the

file into memory starting at 100 hex, because that is the normal working

area of memory. Of course, this is not where the system resides when we
are using it.

When the debugger is executed, it copies the system image into memory.
There arenow two copies oftheCP/M system inmemory (see Figure 2. 1).

The regular working version resides at the top of memory. The duplicate

version, generated by the SYSGEN operation, temporarily resides in the

TPA just above SYSGEN. We will refer to these two copies as the working

version and the SYSGEN version.

The next step is to place the revised copy of the BIOS over the original

copy ofBIOS in the SYSGEN position. But we first have to determine the

address of the BIOS orUSER area in theSYSGEN version. The debugger
can help find the location.

Execute the debugger with a parameter so it will load a copy of the

system image into memory. Give the command

DDT CPM2.COM

Be careful that CPM2.COM is on the defauh drive when using DDT.
That is, the command

A:DDT CPM2.COM

is acceptable but the following command is not:

DDT B:CPM2.COM

This is not a problem with SID.

When the debugger copies the system image into memory starting at

100 hex, it gives three numbers. For example:

NEXT PC END
2900 0100 ACFF

Record the number given under the word NEXT (2900 hex in this case).

This marks the location of the end of the system image.

The SYSGEN version of theCP/M system we loaded at address 100 hex

should be the same as the working version. We determined the location of

the working version of BIOS or USER in the previous section. Now we
must find the corresponding region for the SYSGEN version. We will use

the L command for this purpose.

When the memory image was loaded with the debugger, the NEXT
address was displayed on the screen. Because this address references the

end of BIOS, start at 100 hex less than this address. If you do not find the

vectors, try a smaller address. For example, if the NEXT address was

DUPLICATING AND ALTERING CP/M DISKS 29

given as 2900, give the command

L2800

The response might be as follows:

2800

2803 PUSH H

2804 PUSH B

2805 LXI H,DB18

2808 MVI B,16

280A MOV CM
280B CALL DAC4
280E INX H

280F DCR B

2810 JNZ DBOA
2813 POP B

We are looking for a set ofjump vectors into BIOS or USER. Obviously,

this is not it. The jump addresses will be identical to the values we found

previously for the working version of BIOS. Repeat the operation with an

address that is 100 hex smaller. For example, if we try

L2700

we might find the following:

2700 JMP DAIB
2703 JMP DA41

2706 JMP DA7E

2709 JMP DA96
270C JMP DAB6
270F JMP DACC
2712 JMP DB8B

2715 JMP DBD6
2718 JMP DAFC

This is the set we are looking for. The addresses ofthejump vectors match

the USER addresses we found previously.

The next step is to calculate the offset (the difference) between the

SYSGEN location and the working location of BIOS or USER. We use

the H (for hexadecimal arithmetic) command ofDDT or SID. This is an

undocumented DDT instruction. For this example, the command is

H2700,DA00

This command subtracts DAOO hex from 2700 hex. The debugger

30 MASTERING CP/M

responds with both the sum and the difference:

0100 4D00

It is the difference that we want, the second value of4IX)0 hex. This is the

value we have to add to the address of the regular assembled code (DAOO
hex) to place the new BIOS or USER instructions into the proper

SYSGEN area (2700 hex).

After altering the BIOS.ASM or USER.ASM program, we assemble it

to produce a corresponding BIOS.HEX or USER.HEX file. We need to

install this new version in place of the original. The debugger automatically

loads the HEX file of instructions in its proper place (over the working

version) if the following two commsmds are given:

I USER. HEX
R

(The I command initializes anFCB with the filenameUSER.HEX. TheR
command reads the corresponding disk file into memory.)

However, in this case we want to load the file into the SYSGEN area

rather than the working area. We therefore give the R command with the

calculated offset:

lUSER.HEX

R4D00

The debugger will now place the HEX file into the desired SYSGEN area

rather than the working area.

At this point we have a copy of the original CP/M system in the

SYSGEN position, except that a revised copy of BIOS has replaced the

original BIOS. Return to theCP/M system level by typing control-C. You
can now save the revised memory image with the command

SAVE40CPAAREV.COM

(Be sure to choose a different name than last time so you can distinguish

the original version from the revised version.)

Alternatively, you can execute SYSGEN by typing its name. The
SYSGEN version of CP/M is already in memory. Therefore, just give a

carriage return to the first SYSGEN question:

Source drive NAAAE (or RETURN to skip)

This will skip the first part of SYSGEN, which reads the system tracks into

memory. Put the desired diskette into drive B, for example, and type the

letter B in response to the next question:

Destination drive NAAAE (or RETURN to reboot)

DUPLICATING AND ALTERING CP/M DISKS 31

SYSGEN then repeats your answer:

Place DESTINATION disk on B, then type RETURN

When you type another carriage return, the new system image will be written

onto the system tracks of the diskette in drive B. Of course, any other

drive can be used. Be sure that the disk has been formatted.

You can test whether your alteration of the system tracks has been suc-

cessful by turning offthe computer and booting up using the new diskette.

Copying the Altered BIOS from the Working Version

to Disk Using SYSGEN

The third method of writing the system tracks of a diskette is similar to

the second method. In this casewe do not use aBIOS orUSER file directly.

Instead, we move a working copy ofUSER or BIOS down to the SYSGEN
position. For the above example, we would load the debugger and the

SYSGEN memory image as before with the command

DDTCPM2.COAA

We must determine the BIOS orUSER address oftheSYSGEN version

as we did in the previous section. Then give theM (move) command:

MDACX),DDFF,2700

This operation will block move a copy ofBIOS orUSER from the regular

working position (DAOO-DDFF) down to the SYSGEN location

(2700- 2A00). We return to the CP/M system by typing control-C, and

then we execute SYSGEN. Proceed as in the previous section to save the

memory image of the system on the system tracks of a disk.

Now that you have a working copy ofyour BIOS orUSER routines, we

can begin to add some new features. Besure to keep a copy ofthe original.
Then ifyour current copy refuses to work, you can go back to the original

and begin again.

SUMMARY
In this chapter we have seen how to duplicate a diskette. The steps in-

cluded formatting a new diskette, copying the data regions onto it, and

copying the system tracks onto it. We also learned how to alter the BIOS
orUSER area ofCP/M and how to make the change permanent by writing

the new version onto the system tracks. We will now be able to add the

features discussed in the next chapter.

CHAPTER 3

ADDING
FEATURES
TO
BIOS

INTRODUCTION

In Chapter 1 we learned that the CP/M basic input/output system

(BIOS) contains the software needed to operate the peripherals, such as

the console, the printer, and the disks. In Chapter 2 we learned how to

access the BIOS or USER area so that it can be modified. In this chapter

we will study the BIOS in more detail, andwe will modify it to incorporate

several useful features. These include the ability to direct the console out-

put to the printer and to check that the printer is turned on.

Because only a small amount ofmemory is allocated for BIOS routines,

it is necessary to write the programs in assembly language rather than in a

higher-level language such as BASIC or Pascal. Let us therefore review

the operation of assemblers.

34 MASTERING CP/M

ASSEMBLY LANGUAGE PROGRAMMING
Assembly language is a low-level computer language in which the in-

structions of a particular CPU are selected directly by a mnemonic opera-

tion code (opcode). The 8080 CPU has three general-purpose, 16-bit

registers. They are given the names HL, DE, and BC. The complete instruc-

tion sets for both the 8080 and the Z80 CPUs are given in the Appendices.

Consider, for example, the following operation code:

JMP D303

This instruction tells the CPU to branch to address D303 hex. The
assembler generates the corresponding binary code. Thus there is a one-
to-one correspondence between an assembly language instruction and the

CPU operation it generates.

By contrjist, a single instruction in a high-level language, such as Pascal

or BASIC, usually generates more than one CPU instruction. Although
each compiler operates differently from the next, the line

1 = 1-1-5

might be converted into the following CPU instructions:

LXI D, 5

LHLD 1%

DAD D

SHLD 1%

This sequence of instructions loads the DE register with the value of 5

and theHL register/rom the location of I% . The values inDE andHL are

added together and the result is placed in HL. The result is then stored in

the memory location referenced by 1%.
Assembly language programs are written and altered with one of the

manyCP/M editors, such as ED, WordStar, WordMaster, MagicWand,
PMATE, or Benchmark, among others. The resulting source program is

assembled with an assembler program, then converted into executable

binary code. The CP/M operating system provides an assembler called

ASM. This assembler is not suitable for many of the programs in this

book, however, because it does not incorporate a macro processor. (We
will begin discussing macros and macro processors in Chapter 4.) There
are two common CP/M assemblers that do contain a macro processor.

These are the Microsoft MACRO-80 assembler and the Digital Research
MAC assembler. Both of these macro assemblers accept the standard Intel

8080 mnemonics. The Microsoft assembler can also use the Zilog Z80

ADDING FEATURES TO BIOS 35

mnemonics directly. The Digital Research assembler can only generate

the Z80 opcodes with macros.

A Simple Assembly Language Program

To ensure that you understand the operation ofyour assembler and the

associated programs, we will assemble and execute a very simple program

in 8080 assembly language. Use aCP/M editor to generate the source pro-

gram shown in Figure 3.1, and give it a file name of BELL. The file type

should be eitherASM for the Digital Research assemblers orMAC for the

Microsoft assembler. If you are using the Microsoft assembler, omit the

ORG statement and the apostrophes enclosing the TITLE statement.

This is one of the few programs you can assemble with the Digital

ResearchASM assembler. Use the file type ofASM, but omit the first line

beginning with the word TITLE.

Notice that there are generally four different columns ofinformation in

the listing of the source program. It is common practice to use the ASCII

tab character to align these four columns. The Digital Research and

Microsoft assemblers do not require such an alignment, but it makes the

source program easier to understand. For a regular operation code, the

four columns are as follows:

LABEL: MNEMONIC OPERAND ;comment

The label consists of alphanumeric characters and is terminated by a

colon. (The colon is optional for the Digital Research assemblers but re-

quired for the Microsoft assembler.) Program control can be transferred

to the label from any other part of the program. The mnemonic cor-

responds to the desired CPU instruction; its spelling may differ from one

assembler to another. The operand is the parameter for the CPU instruc-

tion; it can refer to a CPU register, a constant, or a memory address. The

comment, which is preceded by a semicolon, documents the instruction.

Not all lines in the source program contain opcodes. Some lines contain

assembler directives or pseudo operation codes (pseudo ops) instead.

These lines do not generate CPU instructions; rather, they are used to

create constants, set aside memory locations, or give directions to the

assembler. For example, the first line,

TITLE 'Ring the console bell'

directs the assembler to place the indicated title at the top of each page of

the assembly listing. The directive

ORG lOOH

36 MASTERING CP/M

TITLE 'Ring the console bell'

;(Put current date here)

ORG lOOH ;Dlgital Research version

/

BEL EQU 7 ;ASCII bell char.

BDOS EQU 5 ;DOS entry point

TYPEF EQU 2 ;fype char, on console

START:

LXI SPJOOH
MVI CTYPEF
MVI E,BEL

CALL BDOS
JMP
END START

Figure 3.1: Program BELL to Ring the Console Bell

sets the address of the assembled code to 100 hex. The next three lines are

called equates. They define the values of the symbols BEL, BDOS, and
TYPEF. For example,

BEL EQU 7

defines the value ofBEL to be 7
.
We omit the colon at the end of a defini-

tion label because it does not represent a memory location.

Five Hnes of the source program in Figure 3.1 actually generate com-
puter instructions. The first instruction sets the stack pointer to 100 hex:

LXI SPJOOH

(The stack pointer is a CPU register that refers to a particular region

of memory. In this example we are initializing the pointer to a value of
100 hex. However, its value is altered by instructions such as PUSH,
POP, CALL, and RET.) The second instruction places the value of 2
(TYPEF) in the C register:

MVI CJYPEF

The third instruction loads the E register with the value of 7 (BEL):

MVI E,BEL

ADDING FEATURES TO BIOS 37

The fourth instruction generates a subroutine call to address 5 (BDOS).

The fifth instruction branches to address 0.

The final statement in the program declares the starting address to be

the label START.

Program Assembly

After you have created your source program wdth the editor, obtain a

listing and compare it to Figure 3.1. Correct any errors, then assemble the

program. Ifyou are using the Digital ResearchMAC orASM assemblers,

give the command

MAC BELL

or

ASM BELL

For the Microsoft assembler, type

M80 =BELL/L

An assembly listing file named BELL.PRN will be created at this step.

Compare your assembly Usting to Figure 3.2 for the Digital Research

assemblers or Figure 3.3 for the Microsoft assembler.

The assembly listing gives the original source program along with the

corresponding instructions and the addresses where the instructions will

reside during execution. The instructions and addresses are given in hex-

adecimal notation. Instructions such as JMP and CALL, which refer to

memory locations, are three bytes long. The second and third bytes contain

the memory address. The low half of the address is stored in the second

byte and the high half is stored in the third byte. That is, the two bytes of

the address appear to be reversed. The Digital Research assembler gives

the address in this reversed order. For example, a call to BDOS at address

0005 looks Uke this:

CD0500 CALL BDOS ;Digital Research version

However, it is more natural to think of a two-byte address as the high byte

followed by the low byte. As a consequence, the Microsoft assembler

gives the address with the high byte shown first. Thus a call to BDOS
looks like this:

CD 0005 CALL BDOS ;Microsoft version

It must be remembered that the sequence of bytes in memory matches the

Digital Research order rather than the Microsoft order.

38 MASTERING CP/M

TITLE 'Ring the console bell'

;(Current date)

0100 ORG lOOH ;Digital Research version

0007 =
/

BEL EQU 7 ;ASCII bell char.

0005 = BDOS EQU 5 ;DOS entry point

0002 = TYPEF EQU 2 ;type char, on console

START:

0100 310001 LXI SP,100H

0103 0E02 MVI CJYPEF
0105 1E07 MVI E,BEL

0107CD0500 CALL BDOS
010AC30000 JMP

01 OD END START

Figure 3.2: Digital Research Assembly Listingfor Figure 3.

1

The next step is to run the program. However, we cannot do this just

yet, because the assembler has not created an executable file. The Digital

Research assembler has generated an ASCII hexadecimal file called

BELL.HEX. This HEX file can be converted into an executable file named
BELL.COM by giving the command

LOAD BELL

(LOAD is a program that is included with the CP/M operating system.)
Now give the command

BELL

to execute the program. The console bell should sound, and control will

return to the CP/M operating system.

The Microsoft assembler, on the other hand, creates a REL file, which
must be processed differently. It is possible to create a HEX file from
a Microsoft REL file, but it is simpler to convert the REL file into an
executable file with the linking loader L80. For example, the program
BELL.REL can be executed with the command

L80 BELL/G

This command will generate a binary file, starting at memory location 100

ADDING FEATURES TO BIOS 39

TITLE Ring th 3 console bell

;(Current date)

0007 BEL EQU 7 ;ASCII bell char.

0005 BDOS EQU 5 ;DOS entry point

0002 TYPEF EQU 2 ;type char, on console

nnofi' START:

0000' 31 0100 LXI SP,100H

0003' 0E02 AAVI CJYPEF
0005' IE 07 MVI E,BEL

0007' CD 0005 CALL BDOS
OOOA' C3 0000 JMP

END START

Figure 3. 3: Microsoft Assembly Listingfor Figure 3.

1

hex, and execute it. After the program has finished execution and the

CP/M prompt is displayed, type

SAVE 1 BELL.COM

(We learned in Chapter 2 that L80 tells us the number of blocks to save.)

This will save the executable memory image. The program can be run

again by typing thenameBELL. In Chapter 1 we created a program called

CONTIN, which we can execute to rerun BELL since the memory image

is still intact.

It is also possible to create a COM file with L80. For example, the

command

L80 BELL/N, BELL/E

will generate a disk file named BELL.COM and then exit to CP/M. The

program can be run by typing the name BELL.

We can now prepare to alter the BIOS.

BIOS ENTRY VECTORS

We learned in Chapter 2 that there is a series ofvectors at the beginning

of the BIOS that gives the addresses of the corresponding routines within

40 MASTERING CP/M

the BIOS. We also learned that some versions of CP/M incorporate an
extension to the BIOS called USER. In those cases the BIOS contains the

disk operation routines and the USER area contains the remaining

routines. There is one set of vectors at the beginning of the BIOS and a

second set of vectors at the beginning of the USER area. The vectors at

the beginning of the BIOS that relate to disk operations will point into

BIOS. The remaining vectors, which refer to console and printer opera-

tion, will generally refer to a matched set of vectors at the beginning of
the USER area.

Vectors at the beginning ofBIOS are shown in Figure 3.4. The first vec-

tor is called the cold-start entry. It is used during the initial startup of
CP/M. The second vector is used at the completion of major tasks; it is

called the warm-start vector. Vectors for the four logical devices, the con-

sole, reader, punch, and list, appear next. These four devices are referenced

by the following symbols:

CON: Console (input and output)

RDR: Reader (input)

PUN: Punch (output)

LST: List or printer (output)

Notice that the symbolic names for logical devices end in a colon. This is

consistent with the naming of disk drives as A:, B:, etc. By this means, a
device name can be distinguished from a disk file name. For example, the

name PUN refers to a disk file, whereas PUN: refers to the logical punch
device.

Exploring the BIOS Vectors with the Debugger

In Chapter 2 we located the BIOS jump vectors by using the debugger.
Ifyou have not already performed this task, you should do so at this time.

Recall that we executed the debugger and gave the command

LO (the letter L follov»/ed by a zero)

The expected response is something hke this:

0000 JMP D303

0003 NOP
0004 NOP
0005 JMP ADOO

The branch at address references the warm-start entry into BIOS.
Thus, for this system BIOS begins at address D300 hex. The branch at

ADDING FEATURES TO BIOS 41

BIOS JMP COLD ;lnltlal cold start

BIOS+3 JMP WARM ;warm-start reset

BIOS+ 6 JMP CSTAT ;console status

BIOS+9 JAAP CON IN ;console input

BIOS+12 JMP CONOUT ;console output

BIOS+15 JMP LIST ;printer output

BIOS+18 JMP PUNCH ;punch output

BIOS +21 JMP READER (•alternate Input device

Figure 3.4: ne First Eight CP/MBIOS Vectors

address 5 is usually the BDOS entry; we used this location to ring the con-

sole bell in the program BELL. Now, however, the address stored at loca-

tion 5 has been altered by the debugger. That is, the normalBDOS address

for this system is C506 hex, but in this example the debugger changed it to

ADOO hex.

When DDT (or SID) is executed, CP/M copies the program into

memory at the beginning of the TPA and branches to it. The debugger

then relocates itself into high memory. This allows another program (the

one to be debugged) to be loaded into the TPA and run under the control

of the debugger. However, the debugger needs to intercept BDOS calls

made by the program it is studying. Consequently, it changes the BDOS
address stored at location S.

After finding the location of BIOS, we can disassemble the vectors at

the beginning ofBIOS by giving (in this example) the debugger command
LD3(X). The response might be as follows:

D300 JMP D380 (initial cold start)

D303 JMP D39F (warm-start reset)

D306 JMP DA06 (console status)

D309 JMP DA09 (console input)

D30C JMP D4E6 (console output)

D30F JMP DAOF (printer output)

D312 JMP DAI 2 (punch output)

D315 JMP DAI 5 (alternate input device)

D318 JMP D4CA (beginning of disk routines)

D31B JMP D499

D31E JMP D4CC

We saw in Chapter 2 that there might be a second set ofjump vectors in

42 MASTERING CP/M

a separate region of memory known as the USER area. For the above ex-

ample, theUSER area starts at address DAOO hex. Ifwe examine this area

with the debugger command LDAOO, the following response might appear:

DAOO JMP DAIB (initial cold start)

DA03 JMP DA41 (worm-start reset)

DA06 JMP DA7E (console status)

DA09 JMP DA96 (console input)

DAOC JMP DAB6 (console output)

DAOF JMP DACC (printer output)

DAI 2 JMP DB8B (punch output)

DAI 5 JMP DBD6 (alternate input device)

In the following sections we will be interested in the vectors at addresses

DAOC and DAOF, which branch to the routines that operate the console

and the printer.

ENGAGING THE PRINTER WITH THE DEBUGGER
Sometimes it is desirable to reproduce console output on the CP/M

printer (list device). This can be accomplished by typing control-P during

console input. However, an executing program cannot engage a printer in

this way. Nevertheless, it is sometimes desirable for a program to be able

to engage the printer. In the next section we will write a short program to

accomplish this task; but first we will perform the feat more directly, using

the debugger.

Notice that the vector pointing to the printer routine (at address DAOF
in the above list) immediately follows the vector for console output (at ad-

dress DAOC). By changing the console outputjump instruction to a call

instruction, we can activate console emd printer output simultaneously.

We will make this change with the debugger. This type of operation is

sometimes called apatch. You must be very careful with this step, because

you are actually changing the BIOS. You are only going to change one

byte, but you must not use the wrong value or change the wrong byte.

Otherwise, CP/M will not respond to your commands or it may do
strange things.

Use the debugger commandA (for assemble) to change the location of

DAOC (in this example):

ADAOC (you type this)

DAOC CALL DAB6 (you type CALL DAB6)

DAOF (you type a carriage return)

ADDING FEATURES TO BIOS 43

In this example, we used the debugger to engage the printer by changing a

jump instruction to a call instruction. Any executing program (except

Microsoft BASIC) can also use this technique.

Alternatively, we can use the debugger command S (for set) to change

the jump instruction (C3 hex) to a call instruction (CD hex). The com-
mands are as follows:

SDAOC (you type this)

DAOC C3 CD (you type CD)

DAOD B6 . (you type a period)

From now on, the printer should display the same information as the con-

sole screen. We can return the BIOS to its original condition by changing
the call instruction back to a jump instruction. (If something has gone
wrong and CP/M no longer works, just perform a cold boot. You may
have to turn the computer off and on again to get it working.) Let us now
automate this patching operation.

A PROGRAM TO ENGAGE AND DISENGAGE
THE PRINTER
We canmake the process ofengaging and disengaging the printer under

computer control easier by using two programs to do the patching.

Because these programs are so short, we will create them with the debugger

rather than with the assembler. Load the debugger and give the command
AlOO to assemble a program starting at 100 hex. Then type the following

instructions:

LHLD 1

LXI D,9

DAD D

MVI AA,CD

RET

Type an extra carriage return to terminate this step.

After this short program has been written, disassemble it by giving the

command LIOO. The result should look like this:

0100 LHLD 0001

0103 LXI D,0009

0106 DAD D

0107 MVI AA,CD

0109 RET

44 MASTERING CP/M

Return to CP/M by typing control-C. Save the program:

SAVE 1 LISTON.COM

Before you run this program, create the complementary program to restore

the BIOS vector to its original state. Load LISTON with the debugger:

DDT LIST0N.COM

Change the call instruction at location 108 hex, the second operand of the

MVI instruction, to a jump instruction (C3 hex). (Use an S108 command
to deposit the value of C3 or enter the instruction 'MVI M,C3' with an

A107 command.) Return to CP/M and save the second program with the

command

SAVE 1 LISTOFF.COM

When LISTON is executed, the first instruction loads the BIOS warm-

start address into the HL register. (Recall that address contains the jump
instruction and addresses 1 and 2 contain the warm-start address.) The

second instruction loads the DE register with the value of 9, the difference

between the warm-start entry and the console-output entry. The third in-

struction adds the HL and DE registers, placing the sum in HL. The HL
register now refers to the console-output vector. The fourth operation

places a call instruction (CD hex) over the console-output jump instruc-

tion. The final instruction returns to the system level of CP/M.
Because hexadecimal is the default mode of the debugger, we can enter

hex data without the suffix H. By contrast, decimal is usually the default

mode for an assembler.

To test these programs, turn on the printer and give theCP/M command

LISTON

followed by

DIR

The directory listing should appear at both the console and the printer.

Then give the commands

LISTOFF

DIR

The directory listing should appear only at the console.

These two short programs are more useful for the insight they give into

the workings of CP/M than for their actual operation. In fact, they will

not always work as expected. In particular, they will not operate with

ADDING FEATURES TO BIOS 45

Microsoft BASIC. We will now alter the BIOS so the printer can be

engaged by changing the value of the lOBYTE. (Refer to Chapter 2 for a

review of how to access and alter the BIOS or USER routines.)

ENGAGING THE PRINTER WITH THE CP/M lOBYTE
We learned that the BIOS provides vectors to the operation of the four

logical peripherals: console, reader, punch, and printer. CP/M provides

a mechanism for mapping these four logical devices to 16 physical

devices. That is, each of the four logical devices can be assigned to as

many as four different actual devices. At any time, the current

assignments for the four logical devices are coded in a single byte located

at address 3 . The two low-order bits hold the console assignment, the next

two refer to the reader, the two after that refer to the punch, and the two
high-order bits hold the printer assignment.

While the lOBYTE feature can be used to map the four logical

peripherals to 16 actual devices, it is not necessary to implement all these

capabilities. Each part can be added as a single step, greatly simplifying

the process. The lOBYTE feature can be useful even ifthe console and the

printer are the only peripherals.

Let us begin with a simple implementation of the lOBYTE—engaging
and disengaging the printer. We will designate the low-order bit of the

lOBYTE at address 3 as a printer switch. If this bit has a value of 1, the

printer will display console output. Otherwise, the printer will not respond
to console output. Of course, the printer can still be engaged by typing

control-P in the usual way. Furthermore, the video screen will always

display the console output, whether or not the printer is engaged.

The first thing we have to do is ensure that the lOBYTE is properly ini-

tiaUzed. Look at the BIOS assembly listing and locate the firstjump vector.

This will be the first executable statement near the beginning of the pro-

gram. Now find the referenced address and follow the instructions until a
return statement is encountered. Somewhere in this section there may be
statements like the following:

COLD
MVI

STA

A,0

3

or

COLD
MVI

STA

AJNITAL

lOBYTE

46 MASTERING CP/M

In the second example the value of INITAL is defined as and the

lOBYTE is set to a value of 3 . Ifyou cannot find such a passage, insert the

equivalent instructions with the system editor. Be sure to define the sym-

bols INITAL and lOBYTE if you use the second form. For example:

INITAL EQU
lOBYTE EQU 3

The next step is to alter the console-output routine. Look at the BIOS

assembly listing and locate the console-output vector (XXOC hex) and the

list-output vector (XXOF hex). These are the fifth and sixth vectors in the

list. Note the labels used as the operands. They might be something like

this:

XXOC JMP CONOUT
XXOF JMP LIST

Go to the location ofCONOUT and insert the following code at the very

beginning:

CONOUT: ;console output

The first instruction loads the accumulator frommemory address 3 , the

location of the lOBYTE:

LDA lOBYTE

The second instruction performs a logicalAND with the accumulator and

the value of 1

:

This masking AND operation resets (zeros) all but the low-order bit

(bit 0) of the accumulator. The operation also alters the zero flag of the

CPU accordingly. That is, the zero flag is set if the low-order bit is zero. It

is reset otherwise.

The third instruction tells the CPU to call the printer subroutine at

LISTT if the zero flag is reset (the low-order bit is not zero):

CNZ Lisn

LDA lOBYTE

ANI 1

CNZ Lisn

;get the value

;mask for bit

;printer output

C0N02: ;regular console output

ANI

Be sure to include the label C0N02. We will need it for a later program

in this chapter. Also notice that the branch to the printer routine is called

ADDING FEATURES TO BIOS 47

LISTT. This is necessary to distinguish the logical list from the physical

list. Find the location of the label LIST. Ifan opcode also appears on this

line, split the line in two so that the label is on a line by itself. Add the label

LISTT: on the Une immediately following the label LIST.

Put today's date as a comment statement near the beginning of the

source program.

Changing the lOBYTE with the System Debugger

Assemble the new version and load it into memory with the debugger.

Check the lOBYTE at address 3 to see that it has a value of 0. Give the

debugger command S3. The response will be

0003 X

whereX is the value ofthe lOBYTE. If this value is 0, enter a period to ter-

minate this step. Otherwise, enter the value of 0. Turn on the printer, and
with the S command ofthe debugger, change memory address 3 to a value

of 1:

S3 (you type this)

0003 1 (type a 1

)

0004 0. (type a period)

The last line above should be displayed on the printer as well as on the con-

sole screen, because the lOBYTE is now 1. Try some other commands,
such as

DO

The printer should again follow the console screen. Change the lOBYTE
back to with the S command. The printer should no longer repeat the

console output. You must now copy the new BIOS version to the system
tracks ifyou want to make it permanent. Of course, it should still be possi-

ble to turn on the printer with a control-P command.

Changing the lOBYTE in BASIC

Now we will try out this method with Microsoft BASIC. Load BASIC
and write a short program such as the one we used in Chapter 1:

10 FOR K = 1 TO 9

20 PRINT K, 1/K, K*K
30 NEXT K

40 END

48 MASTERING CP/M

Then run the program. The results will appear on the console. Turn on the

printer and give the following commands:

POKE 3,1

RUN

The BASIC POKE command will change the lOBYTE to a value of 1.

When the program is run, output will appear at the printer as well as the

console.

We have already noted that Microsoft BASIC will not allow the printer

to be engaged with control-P or with the LISTON program. Now we have

a method of performing this task. The printer can be disengaged with the

BASIC command

POKE 3,0

Return to CP/M with a SYSTEM command.

Changing the lOBYTE with STAT

We have learned how to change the lOBYTE at address 3 with the

system debugger or in BASIC. It is also possible to change the lOBYTE
with STAT.
We have seen that the four logical devices CON:, RDR:, PUN:, and

LST: are each allocated two bits of the lOBYTE. Four separate physical

devices can be assigned to each of these logical devices through changes in

the lOBYTE. STAT has 16 names coded into it for this purpose. The 16

names are given in Table 3.1. You can get STAT to display this table by

giving the command

STAT VAL:

The lOBYTE can be changed from to 1 by typing the command

STAT CON: = CRT:

STAT will change the lOBYTE back to with the command

STAT CON: =TTY:

Changing the STAT Device Names The names for the four logical

devices were chosen years ago when teletypewriters (TTY) werecommon.

It might be more meaningful now to change them to something else. For

example, TTY: could be changed to CRT: and CRT: could be changed to

LST:. This change is easily accomplished with the system debugger.

ADDING FEATURES TO BIOS 49

Table 3.1: STA T's Namefor the Four LogicalDevices

Bits

00 01 10 11

CON: TTY: CRT: BAT: UCl:
RDR: TTY: PTR: URl: UR2:
PUN: TTY: FTP: UPl: UP2:
LST: TTY: CRT: LPT: ULl:

Copy STAT into memory with the command

DDT STAT.COM

Look at the first part of STAT with the command

DlOO

The ASCII representation of the data on the right side of the screen shows
the four logical device names, CON: , RDR: , PUN: , and LST: , starting at

address 139 hex. The 16 physical device names are encoded starting at ad-

dress 159 hex. You can change the names of the first two physical devices

with the SID command:

SI 59 (you type this)

159 54 "CRT:LST (you start typing with the quote)

160 3A . (you type a period)

Ifyou are usingDDT, you will have to enter the hexadecimal equivalent

of the ASCII characters with the S command. The ASCII characters and
their corresponding hexadecimal values are as follows:

ASCII CRT: LST
Hex 43 52 54 3A 4C 53 54

You type the command S159 as with SID. Then you type the seven hex

numbers in the following display:

159 54 43

15A 54 52

15B 59 54

15C 3A 3A
15D 43 4C
15E 52 53

15F 54 54

160 3A (you finish with a period)

50 MASTERING CP/M

Return to CP/M and save the correct amount of memory with a new

name such as STAT2.COM. Try changing the lOBYTE from to 1 by

giving the command

STAT2 CON: = LST:

Printer output should now dupHcate the console. Disengage the printer

with the complementary command

STAT2 CON:= CRT:

We could use this method to change some of the other device names in

STAT.
We will now add some new features to the printer routine in BIOS.

ADDING A PRINTER-READY ROUTINE

Computers communicate with peripherals through input/output

registers or ports. A common arrangement uses a bidirectional data

register for transferring the information and a separate, bidirectional

status register to indicate the state of readiness. With this technique, the

status register is automatically reset to a not-ready condition each time the

CPU places a byte in the data register.

Sometimes the CPU incorporates a special signal line for servicing

peripherals. Using this line a peripheral can interrupt the CPU to request

service. A morecommon method for communicating with the peripherals

is called the looping method. With this technique, the computer checks

the status register to see if the device is ready. The status register is

repeatedly checked by looping through the necessary statements. When
the status register indicates that the peripheral is ready, the computer per-

forms the transfer and then goes on to something else.

Let us consider the looping method for a printer-output routine. The

instructions in BIOS might look like this:

LIST:

LISH:

IN 5

ANI 1

JZ Lisn

In this example, the status register has an address of 5 and the least

significant bit is used as the ready flag. The 8080 instruction IN 5 reads

the status port. The following instruction, ANI 1, performs a logical

ADDING FEATURES TO BIOS 51

operation on the accumulator. The result is zero if the peripheral is not

ready. Consequently, the third instruction, JZ LISTT, causes a branch to

the top of the three-instruction loop. Looping around the above three

instructions continues until the peripheral is ready. When the ready

bit indicates that the peripheral has finished its task, the instructions

following JZ LISTT are executed. The computer sends another byte to

the data port and then returns. The computer operates much faster than

the peripheral, so much of its time is spent looping around the above three

instructions.

The looping method works satisfactorily ifthe printer is actually turned

on. Unfortunately, if the printer is turned off, the data-ready flag will

usually tell the computer to send more data anyway. The computer then

sends the data to a printer that is not doing anything. Therefore, we must

consider two separate items—whether the printer is turned on and

whether the last byte has been printed. We have been considering the latter;

now we must consider the former.

There may be an easy solution to this problem. We have been looking at

only one of the eight bits of the status register, the one that indicates

whether the printer buffer is empty. Many computers use another bit of

the status register to indicate whether the peripheral is turned on. This is

called the data-terminal-ready (DTR) bit.

Locating the Bit for Data Terminal Ready

The assembly language program given in Figure 3.5 can be used to

determine whether your printer status port has aDTR bit. For the standard

RS-232 serial port, theDTR signal is usually assigned to pin 20. However,

pin 1 1 is sometimes used for this purpose. Consequently, you may have to

move one of the wires in the printer cable.

Create a source file with the program given in Figure 3.5. Check your

BIOS or USER hsting to find the address ofyour printer's status register,

and change the value ofPORT to the address ofyour printer' s status port.

Assemble the program and execute it. Remember to omit the ORG state-

ment if you are using the Microsoft assembler. The program will read

the status port and display the value on the console in binary notation. If

your printer is off, turn it on; if it is on, turn it off. If any of the bits

change, the new value will be printed on the screen. For some printers, it

may take as long as one minute for the bit to change after the printer

switch is turned off.

Continue in this way, alternately turning the printer on and off. If you

find a bit changing, make a note of which bit changes and the sense of its

52 MASTERING CP/M

TITLE 'Display I/O port In binary'

;(Put current date here)

ORG lOOH

/

PORT EQU 5

BDOS EQU 5

TYPEF EQU 2 •^oncrtlo f\\ itrM if

CSTATF EQU 1

1

CR EQU 13 ' r'CWTxcxry^ roti irn

LF EQU 10 , 1 1 1 ic? 1 c?c;u

START:

LXI SP,STACK

IN PORT *r6Qcj

AAOV H,A ^SOV©

CALL BITS

NEXT:

IN PORT

MOV L,A

CMP H •different?
f \ji III ^71 III*

JNZ SHOW /yes

PUSH l-l

MVI C CSTATF ,console stotus

CALL BDOS
POP H
RRC ;check bit

JC ;quit

JMP NEXT

SHOW:
CALL BITS ,snow Dinary

MOV H,L ;switch

JMP NEXT

BITS: ;convert binary to ASCII

MOV C,A

MVI B,8 ;8 bits

BIT2:

MOV A,C

Figure 3.5: Program to Locate the Bitfor Data Terminal Ready

ADDING FEATURES TO BIOS 53

ADD A ;shift left

MOV C,A

MVI A,0 ;zero

ACI '0' ;carry + ASCII

CALL oun
DCR B ;count

JNZ BIT2 ;8 times

CRLF:

MVI

CALL

MVI

A,CR

oun
A,LF

/carriage return, line feed

oun:
PUSH
PUSH
PUSH

H

B

PSW

;console output

MVI CJYPEF ;console print

MOV E,A

CALL BDOS
POP PSW
POP B

POP H

RET

DS 12 ;stack space

STACK:

END START

Figure 3.5 (continued)

logic (0 or 1) when the printer is off. For example, suppose that the result

is as follows:

10110111 (printer on)

00110111 (printer off)

In this example, bit 7 (the high-order bit) indicates that the printer is

ready (DTR) when it is set to 1 . The bit is reset to when the printer is off.

For this port, bit indicates whether the printer buffer is empty. If the

printer is turned on but busy, the bit pattern is

10110110 (printer on)

When the printer is ready to receive another byte, the pattern is

10110111 (printer on)

54 MASTERING CP/M

You can terminate the program by pressing any console key.

Let us see how this program works. We begin with the usual TITLE,

ORG, andEQU directives. The status register in this example has a value

of 5.

The actual instructions begin with the label START. The stack is placed

at the end of the program, rather than at 100 hex as in the program shown

in Figure 3.1. The status register is read into the accumulator and then

moved into theH register. The value is displayed on the console by calUng

subroutine BITS.

The port is then read again, but this time the value is placed into the L
register. The two values are compared. Ifthey are different, the new value

is displayed by calling subroutine BITS again. Then the new value is moved
into the H register. If the values are the same, nothing is displayed.

However, the console status is checked to see if the program is to be ter-

minated. If not, the program loops repeatedly.

Subroutine BITS converts a binary number in the accumulator to a string

of eight ASCII zeros and ones and then displays the result on the console.

The routine moves the byte into theC register and initializes register B to a

value of 8, the number of characters to be displayed.

The loop beginning at BIT2 is then executed eight times. On each pass

through the loop, the current value of the byte is added to itself with the

ADD A instruction. This action performs a logical shift left. The bits of

the accumulator are each moved one position. The original high-order bit

moves into the carry flag. The low-order bit is zeroed. The new value is

saved in the C register for the next step.

At this point, the carry flag is set to 1 if the original high-order bit had a

value of 1 . It is reset to if the value was 0. We will display the value of 1 if

the carry flag is set; we will display a otherwise. This is accomplished by

zeroing the accumulator. We then add an ASCII zero and the carry flag.

The instructions are as follows:

MVI A,0 ;zero accumulator

ACI 'C ;carry + ASCII zero

Let us go through the first two loops of the algorithm with an example.

Consider the binary number 10101010 (AA hex). When this number is

added to itself, the result is 01010100 and the carry flag is set to 1.

Our algorithm will display a 1. The next addition will produce the

binary number 10101000 and reset the carry flagtoO. The routine displays

a this time.

This algorithm can be used with both an 8080 and a Z80CPU, but it can

be implemented more effectively on a Z80 computer by performing the

logical shift directly in the C register. All of the common algorithms for

ADDING FEATURES TO BIOS 55

base conversion can be found elsewhere.*

If you found a printer-ready bit, the next section will show you how to

incorporate a test for DTR into your BIOS.

Checking for Printer Ready

As noted above, not all computers incorporate a DTR bit. However, if

you have discovered a printer-ready bit, you can include a test in your

BIOS that will notify you when there is printer output but the printer is

turned off. This test checks the printer-ready flag. If it indicates that the

printer is off, the console bell will sound and an appropriate message will

be displayed. When the printer is turned on, the instruction following this

portion (the usual test that the printer buffer is empty) will be executed.

Suppose that the printer status port is given the name LSTATP, the

data-terminal-ready mask is given the name DTRMSK, and the regular

port-ready mask is called LMSK. The physical console-output routine is

referenced as C0N02, because we want to distinguish physical console

output from logical console output. The original list routine might look

like that in Figure 3.6, while the new version will look like that in Figure 3.7.

The first three lines of the new version define the symbols CR (carriage

return), LF (line feed), and BEL (console bell). Then the executable code

begins. The printer status port (LSTATP) is read. All of the bits, except

for the DTR bit, are zeroed with the ANI DTRMSK instruction. If this

bit is set, the zero flag will be reset. The instruction

JNZ LIST2

bremches to LIST2, the original printer-output routine.

But if the DTR bit is reset to 0, it indicates that the printer is turned off.

In this case the console bell sounds and the message

TURN PRINTER ON

is displayed on the console. The status port is monitored again starting

with the label LIST3. The program continually loops around the next

three instructions until the printer is turned on. At that time, the program

continues with the printer-output routine.

Incorporate the new passage into your BIOS. Assemble it and load it

with the debugger. Engage the printer with control-P and give the DIR
command. While the printer is working, turn it off. The console bell will

*A. R. Miller, 8080/Z80 Assembly Language: Techniques for Improved Pro-

gramming, New York: Wiley, 1981.

56 MASTERING CP/M

LIST:

LISH:

;logical list output

IN

AN I

JZ

MOV
OUT
RET

LSTATP

LAASK

LISTT

AC

;check status

;mask for output

;loop until ready

LDATAP ;send

Figure 3.6: Original Version ofa Typical Printer Routine

sound and the message

TURN PRINTER ON

will appear on the console. When the printer is turned on again, the output

should take up where it left off. This routine will work correctly even

within programs such as WordStar and BASIC (except, of course, that

different commands are used to engage the printer).

DIRECTING LIST OUTPUT WITH THE lOBYTE

Earlier in this chapter we incorporated the lOBYTE into the console-

output routine. That feature used the two low-order bits of the lOBYTE.
We will now add several new features to the logical Ust output using the

two high-order bits of the lOBYTE.
One of the features we will add is relatively easy to install. Sometimes

called a "bit bucket," this routine is useful when a program with a long

output must be tested, but the output itself is not wanted. In addition to

this, we will be able to direct the list output to the printer, as is usually the

case, to the console, or to a separate memory area.

We reserve an lOBYTE value of for the usual output to the printer.

The value of40 hex sends list output to the console, and the value of80 hex

discards the data—that is, the data disappear. An lOBYTE value of CO
hex will be allocated at this time for storing list output in a separate

memory area called a cache. However, we will not actually add the routine

until later. The list assignments follow; they should be coded into the

ADDING FEATURES TO BIOS 57

CR EQU 13 ;carrlage return

LF EQU 10 ;llne feed

BEL EQU 7 ;ASCII bell

;

LIST:

LISH:

IN LSTATP ;check status

ANI DTRMSK ;prlnter on?

JNZ LIST2 ;yes

PUSH H ;prlnter off

PUSH B

LXI H,MESG (•location

MVI B,AROUND-MESG ;length

LLOOP:

MOV CM
CALL C0N02 ;send to console

INX H ;polnter

DCR B ;count

JNZ LLOOP ;keep going

POP B

POP H

JMP AROUND ;the message

MESG:

DB BEL,CR,LF

DB 'TURN PRINTER ON ',CR,LF

AROUND:
LIST3:

IN LSTATP

ANI DTRMSK ;printer on?

JZ LISTS ;no

LIST2:

IN LSTATP ;check status

ANI LMSK ;mask for output

JZ Lisn ;loop until ready

MOV A,C

OUT LDATAP ;send

RET

Figure 3. 7: Revised Version ofa Typical Printer Routine

V
58 MASTERING CP/M

BIOS source program as comments.

lOBYTE Action

00

40

80

CO

Printer output

Console output

Bit bucket

Memory cache

The list output routine begins with the following statements:

LIST:

LISH:

IN LSTATP

;logical

;physlcal

;check status

LIST refers to the logical output and LISTT refers to the physical printer.

We will now insert instructions between these two labels.

We must include a test of the lOBYTE at the beginning of the list-

output routine, just as we did for the console-output routine. The new in-

structions will be placed between the labels LIST and LISTT. First we
read the lOBYTE. Then, because we are only interested in the two high-

order bits, we perform a masking AND with the value of CO hex. This

operation zeros the six low-order bits. If the result is 0, output is sent to

the printer. If the result is 40 hex, output is sent to the console. Ifthe result

is 80 hex, the subroutine simply returns to the caUing program—that is, no

action is performed. The last possibility, CO hex, indicates that list output

is to be stored in a memory cache. We will not incorporate this feature

now, so we will simply return to the calling program. The source program

for this feature is shown in Figure 3.8.

Notice that when the value of the lOBYTE is 40 hex, the list output is

sent to the label C0N02 rather than to the logical console-output label of

CONOUT. This ensures that list output destined for the console will not

be diverted back to the printer if the low-order bit of the lOBYTE is set.

Assemble these instructions into your BIOS or USER area. Load the

new version into memory with the debugger and try it out. Change the

lOBYTE with the debugger, setting it to a value of40 hex. Engage the list

output with control-P. Each character should now be displayed twice on

the console, because both the logical console and logical list are directed to

the physical console. Disengage the list with another control-P. Ifyou are

satisfied with the new version, use SAVEUSER or SYSGEN to save a

copy on the system tracks of a diskette.

We will now add a routine to store the list output in a memory cache.

ADDING FEATURES TO BIOS 59

LIST: ;logical list output

LDA lOBYTE

ANI OCOH ;mask for bits 6,7

JZ Lisn (•printer output

CPI 40H

JZ C0N02 /console output

CPI 80H

RZ ;bit bucket

;acld memory cache routine here

RET ;(for now)

LISH: /physical list output

Figure 3.8: Incorporating thelOBYTE into Printer Output

STORING LIST OUTPUT IN A MEMORY CACHE
There are times when it is desirable to store the list output in a memory

buffer or cache rather than send it to the printer. The result can then be

saved as a disk file for editing or for incorporation into a report. In fact,

all of the computer outputs in this book were obtained in this manner.

The operation of the memory cache is managed with two pointers. The

first pointer indicates where the next byte is to be placed. This pointer is

initially set to the beginning of the buffer and is incremented each time a

byte is added to the buffer. At the conclusion of the task a 1A hex, end-of-

file mark is placed at the end ofthe text, the second pointer is set to the end

of the file, and the first pointer is reset to the beginning of the buffer. The

two pointers are stored immediately in front of the buffer; they are each

two-byte values.

We must choose a region for the buffer area that will never be used by

the CP/M operating system. Otherwise, the cache may be accidentally

overwritten. There are several ways to accomplish this. For example, a

North Star Horizon computer uses the region from E800 to EBFF hex for

the disk-controller memory. Because CP/M requires a contiguous block

of memory, the maximum CP/M address for this machine is E7FF hex.

Therefore, the memory region from FOOO to FFFF hex is free. Another

60 MASTERING CP/M

possibility is to create a smaller CP/M system with MOVCPM. The

region of memory above CP/M can then be used for the memory cache.

In the previous section we allocated the lOBYTE value ofCO hex to in-

dicate that list output will be stored in amemory buffer. We willnow write

the routines necessary for this feature. We select the region FOOO to FFFF
(the top 4K bytes) as the memory block. The two pointers are stored at

FOOO and F002 hex. The memory buffer itself begins at F004 hex.

There is another complication we should consider. The buffer will

overflow if too many bytes are entered into it. The pointer will attempt to

go beyond the end of the buffer, address FFFF hex in this case. When
FFFF hex, the largest 16-bit number, is incremented, the result is 0. Thus,

the pointer now refers to the beginning of memory rather than the end.

(This phenomenon is known as wrap around.) As we saw in Chapter 1

,

CP/M maintains several important items at the beginning of memory.

Consequently, we must ensure against wrap around and the consequent

alteration of important CP/M information.

We will reset the pointer to the beginning of the buffer and ring the con-

sole bell if wrap around is imminent. This action protects the CP/M
system. Of course, the information initially placed into the cache is then

lost, but this is not likely to be a problem. You will find that a 4K-byte

buffer will be sufficiently large for most purposes.

At the end of the task, we can use the system debugger to move the in-

formation from the memory cache down to the TPA at 100 hex. We then

return to CP/M with control-C and save the information in a disk file. In

Chapter 7 we will write a program that can automatically write a disk file

directly from the memory cache. This program uses the buffer pointers to

determine the file size.

We need two separate sets of instructions to implement the memory
cache. One portion initializes the pointers and sets the end-of-file marker.

These instructions are placed in the warm-start and cold-start areas of

BIOS or USER. Instructions for the second part place each byte into the

memory cache and increment the main pointer. This portion is located

with the list-output routines. We begin with the routines that initialize the

pointers.

Initializing the Memory Cache Pointers

In this section we alter the warm-start and cold-start areas of BIOS or

USER to insert the instructions for initializing the cache pointers and

adding the end-of-file marker. We first define four symbols—the names
of the two pointers, the name of the buffer, and the end-of-file reference.

ADDING FEATURES TO BIOS 61

Place the following four lines near the top of the source program:

Locate the warm start vector of your BIOS or USER. Remember, this

can be found from the second jump vector. Follow the warm-start in-

structions until the final return statement is encountered. Place the

instructions shown in Figure 3.9 just before this return statement.

Let us see how this segment works. We begin by checking whether the

logical list output is being directed to the memory cache option. This in-

formation is coded into the two high-order bits of the lOBYTE. The first

new instruction copies the value of the lOBYTE into the accumulator:

LDA lOBYTE

All but the two high-order bits are zeroed with the instruction

AN I OCOH

If the result is not CX) hex, then we complete the warm start with a return

instruction.

On the other hand, if the result is CO hex, the cache option has been

selected. The HL and DE registers are then saved with PUSH instruc-

tions. Then we determine if the pointer is already reset to the beginning of

the buffer. If so, the task is complete. The HL and DE registers are

restored by POP instructions and a return is executed.

If the pointer has not been reset, it points to the buffer end. An end-of-

file marker (1A hex) is placed at this point. The address ofthe buffer end is

saved in the second pointer (MMAX) and the main pointer (MPOINT) is

reset to the beginning of the buffer. The registers are restored and a return

is executed.

It will also be necessary to initialize the buffer pointer during the cold

start, so we must locate the cold-start entry. It is referenced by the first

vector at the beginning of the BIOS or USER. In an earlier section of this

chapter, we added two instructions to initialize the lOBYTE during a cold

start. Place the following two instructions immediately after these.

Now we will incorporate the remainder of the cache instructions.

AAPOINT

AAAAAX

AABUFF

EOF

EQU
EQU
EQU
EQU

OFOOOH ;pointer to beginning

MPOINT -1-2 ;pointer to end

AAMAX-l-2 ;buffer start

lAH ;end-of-file mark

COLD:

LXI

SHLD

H,MBUFF

MPOINT

62 MASTERING CP/M

WARM:

MEM3:

MEAA4:

LDA lOBYTE

ANI OCOH ;mask for list

CPI OCOH ;memory?
RNZ ;no, leave alone

PUSH H ;save registers

PUSH D
LXI D,MBUFF ;buffer start

LHLD MPOINT ;pointer

AAOV A,L ;check low

CMP E ;pointers reset?

JNZ MEM3 ;no

MOV A 1 1A,H ;cneck nigh

CMP D ;reset?

JZ MEM4 ;yes

;reset pointers

MVI M,EOF ;end of file mark
SHLD AAMAX ;save last address

LXI H,MBUFF ;buffer start

SHLD MPOINT ;save pointer

POP D .restore

POP H
RET /original

Figure 3.9: Setting up the Memory Pointers

Instructions for Storing List Output in Memory
Now that we have added the instructions for initializing the memory

pointers, we can incorporate the code for actually storing the data in

memory. The new instructions, shown in Figure 3. 10, are placed between
theRZ and RET instructions in the list-output region shown in Figure 3.8.

This section has two parts. The first part stores each byte in memory
and advances the memory pointer. The second part checks for wrap
around. We begin by saving the contents of the HL register with a PUSH
instruction. The main pointer is retrieved and used to deposit the byte in

memory. The pointer is incremented and then checked to ensure that it is

not wrapping around zero.

If wraparound did not occur, the pointer is updated and a return is

executed. On the other hand, if the pointer has a value of 0, it is reset to

the beginning of the buffer and the console bell sounds.

ADDING FEATURES TO BIOS 63

;sencl list output to a memory cache

PUSH H ;save

LHLD MPOINT ;pointer

MOV M,C ;put byte in memory

INX H ; Increment pointer

MOV A,H ;see if

ORA L ;passing zero

JNZ MEM2 ;ok to continue

;buffer is wrapping around zero; reset it

;and sound console bell as a warning

PUSH D

MVI CBEL
CALL C0N02 ;ring bell

POP D

LXI H,MBUFF ;start

MEM2: ;update pointer

SHLD MPOINTER ;save it

POP H

RET

Figure 3.10: Storing List Output in Memory

Incorporate the remainder of the instructions for the memory cache into

the BIOS. Assemble the new version and test it. Load the program into

place with the debugger.

It is extremely important that the main pointer is correctly set before

you use the cache. Otherwise, CP/M will deposit bytes in the wrong place

with unpredictable results. The two instructions we added to the cold-

start section will initialize the main pointer each time you start up CP/M.
However, we want to test the routines before they are written to the

system tracks of the disk. Therefore, for this one time, we will have to

initialize the main pointer.

Use the debugger S command to set the main pointer to F004 hex. The

instructions are as follows:

SFOOO (you type this line)

FOOO XX 4 (you type 4)

FOOl XX FO (you type FO)

F002XX. (you type a period)

64 MASTERING CP/M

Set the lOBYTE to a value of CO hex, again using the S command:

Perform a warm start by typing control-C. You are now at the CP/M
system level. Engage the Ust output by typing control-P, then give the

command DIR. No output should appear at the printer, because we are

diverting list output to the memory cache. Perform another warm start by
typing control-C. This disengages the Ust output and resets the pointers.

Load the debugger and inspect the beginning of the buffer with the D
command:

DFCX)0,F03F

The ASCII representation of the previous DIR output should appear on
the right side of the screen. Look at the second pointer stored at F002 and
F003. This pointer references the end of the text. The corresponding

memory location should contain a lA hex end-of-file mark.
You can now use the debuggerM command to move the information in

the cache down to 100 hex. Perform a warm start and save the informa-

tion on a disk file. You should now use SAVEUSER or SYSGEN to write

the current version of BIOS or USER to the system tracks of a floppy

diskette. Turn the computer off and on again; perform a cold boot with

the new version. Use the debugger to check the main cache pointer, to be
sure that it is properly initialized.

An assembly listing of a set ofUSER routines is shown in Figure 3.11.

This listing incorporates all the features described in this chapter. It

operates on a Lifeboat version 2.2 CP/M running on a 56K-byte North
Star system. Several key features will have to be changed if it is to be used
on other systems.

TITLE 'Sample BIOS/USER program'

;(Current date)

DAGO ORG ODAOOH

0003 = lOBYTE EQU 3

S3

0003 X CO
0004 X.

(you type this line)

(you type CO)

(you type a period)

Figure 3.11: USER Routinesfor a S6K-Byte Lifeboat Version 2.2

CP/Mfor North Star

ADDING FEATURES TO BIOS 65

0003 = CSTATP EQU 3 console status

0002 = CDATAP EQU CSTATP-

1

console data

0001 = COAASK EQU 1 console-output mask

0002 = CIMSK EQU 2 console-input mask

0005 = LSTATP EQU 5 list status

0004 = LDATAP EQU LSTATP-

1

list data

0001 = LMSK EQU 1 list-output mask

0080 = DTRMSK EQU BOH list-ready mask

FOOO = MPOINT EQU OFOOOH pointer to beginning

F002 = AAAAAX EQU MPOINT -1-2 pointer to end

F004 = MBUFF EQU /\AMAX-l-2 buffer start

000D = CR EQU 13 •carriage return

000A = LF EQU 10 ;line teed

0007 = BEL EQU 7 ;AoCII bell

001A= EOF EQU 1AH ;end-of-file mark

START:

DAOO C399DA JMP COLD ;initial cold start

DA03 C3A5DA JMP WARM ;warm-start reset

DA06 C3CDDA JMP CSTAT ;console status

DA09 C3D5DA JMP CONIN ;console input

DA0CC318DA JMP CONOUT ;console output

DAOF C32BDA JMP LIST ;printer output

DA12C3E0DA JMP PUNCH ;punch output

DA15C3E1DA JMP READER ;alternate input device

CONOUT: ;console output

DA18 3A0300 LDA lOBYTE ;get the value

DAI B E601 ANI 1 ;mask for bit

DAI D C455DA CNZ LISTT ;printer output

CON02: ;regular console output

DA20 DB03 IN CSTATP ;read status

DA22 E601 ANI COMSK ;mask for output

DA24 CA20DA JZ C0N02 ;loop until ready

DA27 79 MOV AC ;get byte

DA28 D302 OUT CDATAP ;send

DA2A C9 RET

Figure 3.11 (continued)

66 MASTERING CP/M

LIST: ;logical list output

DA2B 3A03(X) LDA lOBYTE

DA2E E6C0 ANI OCOH
DA30 CA55DA JZ Lisn ;printer output

DA33 FE40 CPI 40H
DA35 CA20DA JZ C0N02 /console output

DA38 FE80 CPI BOH
DA3A C8 RZ ;bit bucket

;send list output to a mennory cache

DA3B E5 PUSH H ;save

DA3C 2A00F0 LHLD MPOINT /MV 1 1 1 1 XSl

DA3F 71 MOV M,C ;put byte in memory
DA40 23 INX H /increment pointer

DA41 7C MOV AH ;see if

DA42 B5 ORA L /passing zero
DA43 C250DA JNZ MEM2 ;ok to continue

;buffer is wrapping around zero; reset it

;and sound console bell as a warning

DA46 D5 PUSH D
DA47 0E07 MVI C,BEL

DA49 CD20DA CALL C0N02 ;ring bell

DA4C Dl POP D
DA4D2104F0 LXI H,MBUFF /start

AAEM2: /update pointer

DA50 2200F0 SHLD MPOINT /save it

DA53 El POP H
DA54 C9 RET

LISH: /physical printer output
DA55 DB05 IN LSTATP /check status

DA57 E680 ANI DTRMSK /printer on?
DA59 C28EDA JNZ LIST2 /yes

DA5C E5 PUSH H /printer off

DA5D C5 PUSH B

DA5E2171DA LXI H,MESG /location

Figure 3.11 (continued)

ADDING FEATURES TO BIOS 67

DA61 0616 MVI B,AROUND-MESG ;length

LLOOP:

DA63 4E MOV CM
DA64 CD20DA CALL C0N02 ;sencl to console

DA67 23 INX H ;polnter

DA68 05 DCR B ;count

DA69 C263DA JNZ LLOOP ;keep going

DA6C CI POP B

DA6D El POP H

DA6E C387DA JMP AROUND ;the nnessage

MESG:

DA71 070D0A DB BEL,CR,LF

DA74 205455 DB ' TURN PRINTER ON ',CR,LF

AROUND
LIST3:

DA87 DB05 IN LSTATP

DA89 E680 ANI DTRMSK (•printer on?

DA8B CA87DA JZ LIST3 ;no

LIST2:

DA8E DB05 IN LSTATP ;check status

DAW E601 ANI LMSK ;nnask for output

DA92 CA55DA JZ LISTT ;loop until ready

DA95 79 MOV AC
DA96 D304 OUT LDATAP ;send

DA98 C9 RET

COLD: ;cold-start entry

DA99 3E00 MVI AO
DA9B 320300 STA lOBYTE ;reset

DA9E2104F0 LXI H,MBUFF

DAAl 2200F0 SHLD MPOINT ;reset

DAA4C9 RET

WARM: ;warm-start entry

DAA5 3A0300 LDA lOBYTE

DAA8 E6C0 ANI OCOH ;mask for list

DAAA FECO CP! OCOH ;memory?

DAACCO RNZ ;no, leave alone

DAADE5 PUSH H ;save registers

Figure 3.11 (continued)

68 MASTERING CP/M

DAAED5 PUSH D
DAAF 1104F0 LXI D,MBUFF ;buffer start

DAB2 2A00F0 LHLD MPOINT ;pointer

DABS 7D MOV A,L ;check low

DAB6 BB CMP E ;pointers reset?

DAB7 C2BFDA JNZ MEM3 ;no

DABA 7C MOV AH ;check high

DABB BA CMP D ;reset?

DABC CACADA JZ MEM4 ;yes

MEM3: ;reset pointers

DABF361A MVI M,EOF ;mark end of buffer

DACl 2202F0 SHLD AAAAAX ;save lost address
1 YlLAI U AADI IPCn,/V\[3Urr ;bUTter start

DAC7 2200F0 SHLD MPOINT ;save pointer

MEM4:
DACA Dl POP D ;restore

DACB El POP H
DACC C9 RET ;original ret.

;necessary routines not discussed in text

CSTAT: ;conso!e input status

DACD DB03 IN CSTATP ;read status

DACF E602 AN! CIMSK ;mask for input

DAD1 C8 RZ ;not ready

DAD2 3EFF MVI AOFFH
DAD4 C9 RET ;ready

CONIN:
DADS CDCDDA CALL CSTAT
DADS CADSDA JZ CONIN ;not ready

DADB DB02 IN CDATAP ;get byte

DADD E67F AN! 7FH ;mask parity

DADF C9 RET

PUNCH:
DAEO C9 RET

READER:

DAEl C9 RET

DAE2 END

Figure 3.11 (continued)

ADDING FEATURES TO BIOS 69

SUMMARY
In this chapter, we have explored the CP/M BIOS and USER routines

in greater detail. We have developed and implemented severd useful

features to increase the power of our CP/M operating system, including

routines to engage and disengage the printer, a printer-ready routine, and

a routine to direct the list output to a memory cache. In addition to these,

you may consider incorporating other features such as sending logical

punch output to a telephone modem or taking console input from the

printer keyboard. These will be left as exercises.

BEGINNING
A MACRO
LIBRARY

INTRODUCTION
In this chapter we will introduce the concept ofmacro instructions, also

cjilled macros. We will develop several powerful macros that will be used

in the remainder of this book. We begin with housekeeping macros that

incorporate the version number and save and restore the stack pointer. We
will then write macros that move information, fill memory with a constant,

compare information, convert lowercase letters to uppercase, perform

16-bit subtraction, and convert an ambiguous file name to an unam-
biguous name.

MACROS
A macro instruction, or macro, is an assembler directive that defines a

collection of other commands, instructions, or macros. A macro actually

consists oftwo parts—the definition and one or more implementations or

72 MASTERING CP/M

expansions. Tbe name ofthe macro is associated with the set of instructions

it defines. Whenever the macro name appears in a computer program, the

macro assembler substitutes the corresponding instructions. This is called

the macro expansion. For example, the following sequence of instruc-

tions can be defined by a macro named SAVE:

PUSH H
PUSH D

PUSH B

PUSH PSW

Then, whenever the name SAVE appears in the computer program, the

corresponding four instructions will be substituted. A complementary

macro named UNSAVE can perform the inverse operations:

POP PSW
POP B

POP D

POP H

The macro definition is placed near the top of the program or in a

separate disk file called a macro library. The first line of the macro defines

the macro name. The middle portion, which contains the instructions, is

usually called the macro body. The last line terminates the macro with the

statement ENDM. You must always remember to include the ENDM
statement at the conclusion of the macro definition. IfENDM is omitted,

the remainder of the program is incorrectly interpreted as part of a very

large macro. Most macro assemblers are confused by this omission and
issue cryptic error statements.

Macro definitions for the above examples would look like this:

SAVE AAACRO
PUSH H

PUSH D

PUSH B

PUSH PSW
ENDM

UNSAVE AAACRO
POP

POP
POP
POP
ENDAA

B

D

H

PSW

BEGINNING A MACRO LIBRARY 73

Macro Parameters

Macros become more versatile with the addition of parameters. For ex-

ample, suppose we want to interchange the contents of the H and L
registers using the accumulator as a working register. A macro to perform

this task might appear as follows:

INTER AAACRO
PUSH PSW
AAOV A,H

MOV H,L

MOV L,A

POP PSW
ENDM

Now whenever the macro name INTER appears in the program, the

assembler substitutes the corresponding five instructions:

PUSH PSW
MOV A,H

MOV H,L

MOV L,A

POP PSW

Notice that this macro will always generate instructions to interchange

theH and L registers. However, ifwe change the macro slightly by adding

two parameters, the macro becomes more versatile. For example, the

following macro is similar to INTER except that thedummy parameters*

REGl? and REG2? are given on the first line. (The question marks in the

parameters are considered to be regular characters.)

INTER2 AAACRO REG1?,REG2?

The assembler substitutes the actual parameters for the dummy

PUSH
MOV
MOV
MOV
POP
ENDM

PSW
A, REGl?

REG1?,REG2?

REG2?,A

PSW

*Dummy parameters are sometimes called formal parameters. However, there appears to be

some confusion in tWs usage, as the actual parameters are also sometimes referred to as formal

parameters.

74 MASTERING CP/M

parameters. For example, the statement

INTER2 H,L

is assembled into the same five statements we got with the previous macro.

However, the expression

INTER2 D,E

will generate the following instructions:

PUSH PSW
MOV A,D

MOV D,E

MOV E,A

POP PSW

Macros and Conditional Assembly

Conditional assembly statements further increase the power ofmacros.
For example, the following pair of statements can be used to test for the

presence of an optional parameter corresponding to the dummy
parameter PARAM?:

IF NUL PARAM?

ENDIF

The expression NUL PARAM? is true if a parameter is not provided; it is

false otherwise. Of course, the complementary expression

IF NOT NUL PARAM?

can be used to reverse the sense of the expression; that is, the expression is

true if a parameter is provided.

The Microsoft assembler also accepts the alternate forms

IFDEF PARAM?

ENDIF

and

IFNDEF PARAM?

ENDIF

BEGINNING A MACRO LIBRARY 75

for IF NOT NUL and IF NUL. The expressions IFDEF and IFNDEF
respectively mean "if defined" and "if not defined."

For some programs we will want to execute a return statement when we
are finished. On other occasions, however, we will branch to a specific

address. For example, consider the following fragments of macro EXIT,
which we will develop shortly:

EXIT AAACRO WHERE?

IF NUL WHERE?
RET

ELSE

JMP WHERE?
ENDIF

ENDM

Parameter WHERE? is optional in this example. Suppose that macro
EXIT is used without this parameter:

EXIT

A simple return statement willbe created in this case, because the expression

IF NUL WHERE? is true. However, if a parameter is included, then a

branch to the parameter is generated. Thus the macro reference

EXIT BOOT

will generate the instruction

JMP BOOT

Before we begin our macro library, let us first consider the generation

of Z80 intructions by using macros and an 8080 macro assembler.

GENERATING Z80 INSTRUCTIONS
WITH AN 8080 ASSEMBLER
The Z80CPU can execute all of the 8080 instructions; consequently, an

8080 assembler is commonly used for generating assembly language pro-

grams to run on a Z80 computer. The Digital Research macro assembler.

76 MASTERING CP/M

called MAC, uses the Intel 8080 mnemonic instructions. The Microsoft

macro assembler, MACRO-80, can assemble either the Intel 8080 or the

Zilog Z80 mnemonics. Throughout this book we will use primarily the

8080 mnemonics. Consequently, either of these macro assemblers will be

suitable.

However, there are several powerful Z80 instructions that are

sometimes useful when writing assembly language programs. An 8080

assembler can generate these instructions with macros. In fact, the Digital

Research macro assembler is suppUed with a set ofmacros for this purpose.

For example, suppose thatwe must subtract one number from another.

This operation can be performed by taking the two's complement of the

first number and then adding the result to the second number. There is a

Z80 instruction that can perform this operation; the mnemonic is NEG.
The 8080 instruction set does not explicitly incorporate this operation,

but it can be performed by combining two 8080 instructions. The two's

complement can be obtained by incrementing the one's complement.

Because there is an 8080 mnemonic for performing a one's complement

and another for incrementing the result, we can combine these two opera-

tions into a macro. The macro definition is as follows:

Whenever the two's complement is needed, the macro

NEG

is placed into the source program. The 8080 assembler will substitute the

corresponding instructions:

CMA
INR A

Notice that the comment in the first statement begins with two

semicolons rather than the usual one:

CAAA ;;one's complement

This has a special meaning in macro definitions. When a comment begin-

ning with a single semicolon appears in a macro definition, the comment is

reproduced at each expansion of the macro. However, if a comment

begins with a double semicolon, it is not written at each expansion.

Because the first and last lines of the macro are not reproduced at each

NEG AAACRO

CAAA

INR

ENDM

;two's complement

;;one's complement

A

BEGINNING A MACRO LIBRARY 77

expansion, the comments on these lines can be written with one semicolon.

Again, notice how the above macro becomes more versatile with the

addition of a parameter. Suppose that we change the definition of the

previous macro to look like this:

NEG AAACRO REG? ;two's complement

IF

PUSH

MOV
ENDIF

CAAA

INR

IF

MOV
POP
ENDIF

ENDM

NOT NUL REG?

PSW
A,REG?

NOT NUL REG?

REG?,A

PSW

;;save A
;;get register

;;one's complement

;;return value

;;restore A

The macro reference NEG will generate the same two instructions as the

previous version did, because no parameter was included in the macro
reference. However, ifa parameter is included in the expression, the result

is different. For example, the expression

NEG C

contains the parameter C. This time the resulting assembly code will be as

follows:

PUSH
MOV
CAAA

INR

MOV
POP

PSW
A,C

A
C,A

PSW

That is, the single macro statement NEG C produces six lines of instruc-

tions rather than two. During the macro expansion, the dummy parameter

REG? is replaced with the parameter C. The conditional passage

IF NOT NUL REG?

ENDIF

will generate instructions only if a parameter is included in the calling

statement. Otherwise, the section between IF and ENDIF will be omitted.

78 MASTERING CP/M

THE 8080/Z80 SWITCH

Even though the Z80 computer is very popular, there are many 8080

and 8085 computers in use. There is also a combination CPU card that

contains both an 8085 and an 8088 CPU. (The 8085 CPU can execute all

of the 8080 instructions but none of the Z80 instructions that are not com-

mon to the 8080.) Consequently, it may be necessary to use 8080 code on

one occasion, while the more efficient Z80 code can be used at other times.

This is easily accomplished with macros and conditional statements.

A Z80 flag can be defined at the begiiming of the program. For example,

the statement

Z80AA EQU TRUE ;Z80 mode flag

is used to indicate that Z80 code is desired. Otherwise, the statement

Z80M EQU FALSE ;Z80 mode flag

is used. (Of course, the symbols TRUE and FALSE must be defined

separately.) The macro will generate either Z80 or 8080 code, depending

on the definition of the Z80M flag.

As an example, let us consider the unconditional relative jump.

Sometimes we need to transfer control (branch) to a different portion of a

program. In this case we use an unconditionaljump instruction. With the

Z80 we have a choice of either a relative unconditional branch to a location

a certain distance away from the present position or an absolute uncondi-

tional branch to a fixed address. The relative jump is usually preferred

because the instruction is shorter than the absolute jump. However, the

8080 CPU cannot perform the relative jump. Thus we might wish to use

the relative jump with a Z80 but an absolute jump with an 8080.

We can write a dual macro using conditional assembly statements so

that we can generate the Z80-compatible instruction for one application

and the 8080-compatible instruction on other occasions. For example, we

can define a relative jump macro as follows:

JR AAACRO ADDR?
IF

DB

Z80M
18H, ADDR? -$-1

ELSE

JMP
ENDIF

ENDM

ADDR?

If the Z80 flag is true, then the macro reference

JR DONE

BEGINNING A MACRO LIBRARY 79

will generate the two bytes corresponding to the desired Z80 code:

DB 18H, DONE-$-l

Otherwise, the three-byte 8080 instruction

JMP DONE

will be generated.

As another example, consider the Z80 mnemonic DJNZ. This instruc-

tion decrements the B register, then jumps relative to the operand if the

zero flag is reset.* The dual macro might look like this:

DJNZ AAACRO ADDR?

The Z80 version of the macro reference

DJNZ LOOP

will assemble into

DB 1 OH, LOOP -$-1

for the corresponding Z80 instruction. On the other hand, the 8080 mode
produces the lines

DCR B

JNZ LOOP

The resulting assembled code is fixed. It will perform the same way each

time it is executed. This is a very different concept from a Pascal or

BASIC expression such as

IFA = BTHEN . . .

With this BASIC statement, one set of instructions might be executed if

the statement is true. However, another set could be executed ifthe statement

is false.

Before beginning the macro library, let us briefly summarize the concept

IF

DB
Z80M
10H, ADDR? -$-1

ELSE

DCR
JNZ

ENDIF

ENDM

B

ADDR?

•Remember that a flag is reset or false when zero and set or true otherwise.

80 MASTERING CP/M

ofmacros. A macro assembler will analyze the source program by reading

it several times. Each reading is called a pass. On one pass, the part of the

assembler that processes the macros converts the macro references into

the desired instructions. For example, we saw that the macro NEG
generates the following two instructions:

CAAA

INR A

On the next pass, the assembler analyzes the instructions created by the

macro processor as though the instructions had been included in the

original source program. The resulting binary code will be the same

whether or not macros were used.

STARTING THE MACRO LIBRARY

In this chapter and those that follow we are going to create a disk file of

useful macros. This macro "library" will be used in many of the programs

we will develop. Ifwe place a copy of each macro in each program, there

will be much duplication. Therefore, we will find it more convenient to

place £ill the macros in a separate macro library. We can then simply refer

to them from each progrsmi.

Another advantage of the macro library is that it can greatly simplify

program revision. Suppose you have to change a macro that is used in

many different programs. If the macro were coded into each program,

you would have to change each occurrence. However, if the macro appears

only once in the macro library, only that one copy has to be changed.

Let us begin our macro library with a heading and some useful symbols.

Commonly Used Constants

There are several values we will need in almost all our programs. These

include the characters such as carriage return, line feed, and blank. It will

be more convenient to refer to these values symbolically rather than

through the corresponding decimal or hexadecimal value. We could

give a set of symbolic constants at the beginning of each program, but it

will be more convenient to place the definitions in the macro library. If

yon are using the Digital Research assembler, use your system editor to

create a disk file with the name

CPAAyV\AC.LIB

BEGINNING A MACRO LIBRARY 81

If you are using the Microsoft assembler, name the file

CPMAAAC.AAAC

We will add each new macro to this disk file. Each assembly language pro-

gram that references this file will contain the following statement near the

beginning:

AAACLIB CPMAAAC

The MACLIB statement instructs the macro assembler to search the disk

file named CPMMAC for the required macro definitions.

Notice that the Digital Research assembler requires an extension of
ASM for the assembly language program and an extension of LIB for the

macro library. On the other hand, the Microsoft assembler expects an ex-

tension of MAC for both.

Enter the information given in Figure 4.1 into the disk file

CPMMAC.LIB (or CPMMAC.MAC if you use the Microsoft
assembler). Notice that the library begins with a brief description on the

first line, and the current date is placed on the second line. Change this

date wheneveralterations aremade to thefile. The third item in the library

is a directory listing of the macros defined in the file. Of course, there are

no macros at this time. However, this library will contain about40 macros
by the time we have completed this book, so we should document the con-

tents carefully. The symbolic constants are added next.

We will now place our first macro in the library. This macro will code
the version number into each program we write.

A Macro to Code the Version Number

In Figure 3.11 we placed a creation date near the beginning of the

source program so we could distinguish the new version from previous

versions. However, this date is not actually coded into the binary form of
the program. After a program is assembled into binary code, it is difficult

to determine exactly when it was created. If there are two programs with

similar names, it may not be possible to choose the more recent version.

For this reason we will code a version number into each program we write

from now on. We will write the information in ASCII so that it will be easy

to decipher. To make matters simple, we will code the date and theprogram
name. Then we can easily identify the name of the program and the most
recent date. To accomplish this we will use an inhne macro called VERSN.
The lines of a computer program are normally executed in sequence,

one after the other. Therefore, one programming technique is to place the

82 MASTERING CP/M

main part of the program at the beginning and the subroutines at the end.

For example:

AAAIN:

CALL SUBl

CALL SUB2

SUBl:

RET

SUB2:

RET

With this method, the main program with its subroutine calls can be written

first. The subroutines then follow the main program.

An alternate technique is to place the subroutines directly in the path of

the main program. In this case we must use a branch to get around the

obstruction. For example:

AAAIN:

CALL

JAAP

SUBl:

RET

AROUND:

CALL

JAAP

SUB2:

RET

OVER:

While this approach appears to be less organized than the previous

method, it has an important advantage—the subroutine is written into the

nuiin program (inline) where it is needed. Furthermore, this method can

be implemented easily with macros. Within this book we shall refer to a

macro of this type as an inline macro.

Our first macro, shown in Figure 4.2, is called VERSN (for version

number). This inline macro is placed near the beginning of the program.

SUBl

AROUND

SUB2
OVER

BEGINNING A MACRO LIBRARY 83

;Macro library for CP/AA system routines

;(Put current dote here)

:AAacros in this library:

(List each macro name at this point)

EOF EQU lAH ;end of file

ESC EQU IBH ;escape

CR EQU 13 ;carriage return

LF EQU 10 ;line feed

TAB EQU 9 ;control-l

BLANK EQU 32 ;space

PERIOD EQU 46 /decimal point

COAAAAA EQU 44

;;(place macros here)

Figure 4.1: The Beginning ofa Macro Library: Frequently Used Symbols

VERSN AAACRO NUM
;(Put current date here)

;lnline macro to embed version number.

;NUAA is enclosed in quotes.

;Usage: VERSN 'XX.XX.XX.NAME'

LOCAL AROUND
JMP AROUND
DB 'Ver ',NUM

AROUND: ;;VERSN
ENDM

Figure 4.2: Macro VERSN to Code the Version Number

84 MASTERING CP/M

The macro reference

VERSN '9.23.82.FIRST'

will generate three statements:

JMP
DB

??0001

'Ver ','9.23.82. FIRST'

??0001:

This macro can be used to embed information, such as the date and

program name, directly into the binary code. The data statement "Ver

9.23 .82.FIRST' ' is embedded in the program and ajump instruction is used

to get around the expression. The labelAROUND is declared to be a local

variable in the macro definition. This means that it has meaning only

within the macro definition. The Digital Research assembler assigns the

symbol ??0001 to the first use of a local variable (AROUND in this

case). Other macro assemblers may use a different symbol.

If this macro is used more than once in the same program, a different

label will be generated each time. Thus the wordAROUND does not actually

appear in the assembly listing. The labelAROUND can be used elsewhere

in the program, or as a variable in another macro, without producing a

duplicate-name error. Notice that the symbol NUM is a dummy param-

eter. It too can be used outside the macro without producing a conflict.

The second statement generated by macro VERSN defines the data to

be embedded in the program. (The assembler directive DB stands for

"define byte.") The operand in this example consists of a string of

alphanumeric characters enclosed in apostrophes. However, byte-sized

symbols can also be used. The third statement generated by macro
VERSN is the label ??0001 , which is the target of the jump instruction.

Now create another file calledTESTVER.ASM. We will use this program

to test our first macro. Type in the information shown in Figure 4.3.

Notice that this program references our macro library. Put today' s date at

the beginning ofthe program and also in the parameter to macroVERSN.
If you are using the Microsoft assembler, you have to make a few

changes. First, remove the apostrophes enclosing the title on the first line.

Second, be sure that the MACLIB statement is written in uppercase

letters.* Third, remove theORG statement. Fourth, place a .XLIST state-

ment just before the MACLIB statement and a .LIST afterward. This

•Uppercase letters are not necessary in the Digital Research version, but they are shown
here to clearly differentiate program Hnes from comment lines. To highlight the macro
references, we set them in boldface type in this book.

BEGINNING A MACRO LIBRARY 85

TITLE 'TESTVER to test macro VERSN'

;Mar. 3, 82

BOOT
TPA

EQU
EQU

;warm boot

lOOH ;where programs go

/

ORG
AAACLIB

TPA

CPAAAAAC

;omit for AAicrosoft version

START:

VERSN
JAAP

'3.3.82.FIRST'

BOOT

END START

Figure 4.3: Program to Test Macro VERSN

tells the Microsoft assembler not to print out the macro library.

Assemble the program and compare your assembly listing to the one

given in Figure 4.4. (Assemblers consider lowercase and uppercase letters

to be equivalent. However, if you use lowercase letters, the Digital

Research assembler converts them to uppercase.) The first instruction

shown in the assembly listing follows the label START. It is a jump
around the coding of the program name and date. Notice that the first two

lines of code contain plus symbols between the address and the corre-

sponding code. This is the method Digital Research uses to indicate lines

that are generated by macros.

Load the assembled file into memory and examine it with the debugger.

For the Digital Research version, this is done with the command

SID TESTVER. HEX

Display the first part of memory with the D command:

DIOOJIF

The result will be as follows:

0100: C3 13 01 56 65 72 20 33 2E 33 2E 38 32 2E 46 49 ...Ver 3.3.82. FI

0110: 52 53 54 C3 00 00 00 00 00 00 00 00 00 00 00 00 RST

86 MASTERING CP/M

TITI F
1 1 1 'TESTVER to test macro VERSN'

•Mar. 3, 82

0000 =
0100 =

BOOT
TPA

EQU
EQU

;warm boot

lOOH ;where programs go

0100 ORG
AAACLIB

TPA
CPAAAAAC

;omit for AAicrosoft version

START:

0100+C31301
0103+566572

0113C30000

VERSN
JAAP

DB
JAAP

'3. 3. 82. FIRST'

??0001

Ver ','3.3.82. FIRST'

BOOT

0116 END START

Figure 4.4: Assembly Listingfor Figure 4.3

There are three parts to this display. The first number on each line is the

address (100 hex for the first line in this example.) The second part of the

line gives the contents of 16 bytes of memory expressed in hexadecimal.

The third part shows the ASCII representation ofthe same 16 bytes. Ifthe

bytes are not printable ASCII characters, they are shown as decimal

points. You can branch to this program with the command GIOO.
However, this simple program does not actually do anything; we only

wrote it test the assembler operation.

Macros to Save and Restore the Incoming Stack

When a program is executed from the CP/M operating system, it is

loaded from disk into the transient program area (TPA) starting at address

ICQ hex. CP/M then br2mches to ICQ hex. At the conclusion of the pro-

gram, it is possible to return to CP/M by one of two different methods.

The simplest approach is to perform a warm start with ajump to address

0, as we did in Figure 4.3.

Another method of returning to CP/M is to save the incoming stack

pointer and set up anew stack for the program to use. At the conclusion of

the program, the original stack pointer is restored and a return instruction

BEGINNING A MACRO LIBRARY 87

is executed. This method of termination is faster and therefore preferable

to the previous method, because it does not reload the CCP and BDOS
from disk. We will use this approach for most of the programs in this

book.

Sometimes, however, a program is so large that it destroys the CCP. In

this case the program /wusfterminate with awarm start. A new copy ofthe
CCP and BDOS is then loaded from the system disk.

Saving and restoring the stack pointer is easily accompUshed with a Z80

CPU. The Z80 mnemonics are as follows:

LD (OLDSTK),SP

LD SP,STACK

DONE:

LD SP,(OLDSTK)

RET

The first two instructions are placed at the beginning of the program.

The stack pointer is saved in amemory location calledOLDSTK. The new
stack is placed at the location defined by STACK. Two other instructions

are placed at the end of the program. The first instruction restores the

original stack pointer from the memory location OLDSTK. The final

instruction returns to CP/M.
The 8080CPU does not have instructions for directly saving and restoring

the stack pointer. Consequently, the 8080 version is more complicated.

The usual method is to copy the incoming stack pointer into the HL
register pair and save this directly in memory. The instructions are as

follows:

At the conclusion of the program, the original stack pointer is loaded

from memory into the HL register and then transferred into the stack

pointer register. A return is then executed. The instructions look like this:

DONE:

LHLD OLDSTK ;orig stack

SPHL

RET

START:

START:

LXI

DAD
SHLD

LXI

H,0

SP

OLDSTK

SP,STACK

;clear

;add pointer

;save

;new one

88 MASTERING CP/M

With either the Z80 or 8080 version, we also have to allocate the storage

place for the original stack pointer and the new stack area. Thus we in-

clude the following lines:

OLDSTK: DS 2 ;incoming stack

DS 34

STACK:

For most of the programs in this bookwe will want to save theincoming

stack pointer and restore it at the end. Consequently, it will be convenient

to perform these operations with two macros. The macro at the beginning

of the program will be called ENTER and the one at the end will be called

EXIT. (Wemust be careful that the symbols we choose are not reserved by
the assembler. For example, we cannot select the symbol END.)
Add the macros shown in Figure 4.5 to the macro library(CPMMAC).

If you place them before macro VERSN, the three macros will be in

alphabetical order. Be sure to place the names ENTER and EXIT in the

directory near the beginning of the macro library.

The ENTER macro generally will be placed immediately after the label

START; the EXIT macro is placed at the end of the program. Notice that

macro ENTER has no parameters, but macro EXIT has two dummy pa-

rameters. There are also two conditional assembly blocks within macro

EXIT. With this arrangement, it is possible to generate many different

sets of instructions from the same macro definition.

If no parameters are included in the reference to macro EXIT, the two

dummy parameters WHERE? and SPACE? will be defined as NUL. The
conditional expressions

IF NUL WHERE?

and

IF NUL SPACE?

will be true and the first part of the conditional block, down to the ELSE
statement, will be assembled. The instruction between the ELSE and the

ENDIF statements will not be assembled. The resulting code will include

a return instruction after the incoming stack pointer is restored, and 34

bytes of stack space will be provided.

Notice that the stack is placed at the end of the program. It might seem

more logical to place the stack at the beginning. However, the resulting

program will then be much larger, because the stack space must be included

with the program. The stack need not be saved when it is placed at the end.

Make a copy of the test program given in Figure 4.3 and alter it to look

BEGINNING A MACRO LIBRARY 89

ENTER AAACRO
;;(Put current date here)

;;inline macro to save the incoming stack

LXI H,0 ;clear

DAD SP ;add pointer

SHLD OLDSTK ;save

LXI SP,STACK

;;ENTER

ENDAA

EXIT AAACRO WHERE?,SPACE?

;;lnline macro to restore the Incoming stack

;;and branch to location WHERE?
;;lf WHERE? is omitted, execute a return instruction.

;;SPACE? sets stack space; default Is 34.

LHLD OLDSTK
SPHL

IF NUL WHERE?
RET

ELSE

JAAP WHERE?
ENDIF

OLDSTK: DS 2 ;incomlng stack

IF NUL SPACE?
DS 34

ELSE

DS SPACE?
ENDIF

STACK: EQU $;omlt EQU $ for AAicrosoft

;;EXIT

ENDAA

Figure 4.5: Macros ENTER andEXIT to Save and Restore the Incoming

Stack Pointer

90 MASTERING CP/M

TITLE 'TESENT to test macros ENTER and EXIT'

;AAar. 3, 82

BOOT
TPA

EQU
EQU

;warm boot

lOOH ;where programs go

;Digital Research version

AAACLIB CPMAAAC

ORG TPA

START:

ENTER

VERSN
EXIT

'3. 3. 82.SECOND'

END START

Figure 4.6: Program to Test Macros ENTER andEXIT

like the program shown in Figure 4.6. If you are using the Microsoft

assembler, make the same changes you made in Figure 4.3. In addition,

you must remove the expression EQU $ following the label STACK in

macro EXIT. For the Microsoft version, the end of macro EXIT looks

like this:

STACK:

;;EXIT

ENDM

Notice that the reference to macro EXIT has no parameters. Assemble
the program and compare the assembly listing to Figure 4.7. This program
can be executed, but it will not do anything.

Using Parameters in Macro EXIT

In the previous program, the reference to macro EXIT did not contain

parameters. But consider the program fragment shown in Figure 4.8. In

BEGINNING A MACRO LIBRARY 91

TITLE 'TESENT to test macros ENTER and EXIT'

/

;/\Aar. 3, 82

0000 = BOOT EQU ,'warm boot

0100 = TPA EQU lOOH /where programs go

/Digital Research version

AAACLIB CPMMAC

0100 ORG TPA

START:

Erl 1 EK

0100+210000 LXI H,0 /clear

0103+ 39 DAD SP /odd pointer

0104+ 222301 SHLD OLDSTK /save

0107+ 314701 LXI SP,STACK

VERSN '3. 3. 82.SECOND'
010A+C31E01 JMP ??0001

01 0D+ 566572 DB Ver ','3. 3. 82.SECOND'
EXIT

011E+2A2301 LHLD OLDSTK

0121 +F9 SPHL

0122+C9 RET

0123+ OLDSTK: DS 2 /incoming stock

0125+ DS 34

0147+ = STACK: EQU $ /omit EQU $ for Microsoft

0147 END START

Figure 4. 7: Assembly Listingfor Figure 4.6

this example, the reference to macro EXIT contains two parameters:

EXIT BOOT,20

During assembly, the dummy parameterWHERE? is defined as the label

BOOT and the dummy parameter SPACE? takes on the value of 20.

92 MASTERING CP/M

EXIT BOOT, 20

0nE+ 2A2501 LHLD OLDSTK

012H-F9 SPHL

0122+C300(X) JMP BOOT
0125+ OLDSTK: DS 2 ;incoming stack

0127+ DS 20

013B+ = STACK: EQU $

Figure 4.8: Using Parameters in Macro EXIT

Thus the expressions

IF NUL WHERE?

and

IF NUL SPACE?

are false. The assembled code includes a jump to BOOT and provides 20

bytes of stack space.

Of course, other combinations of parameters are possible. For example,

the statement

EXIT ,20

contains only the second parameter. The comma in front of the 20 in-

dicates that the first parameter is omitted and is therefore defined as

NUL. This statement will generate a return instruction and provide 20

bytes of stack space.

A MACRO TO MOVE INFORMATION
From time to time we will find it necessary to move information from

one part of the computer's memory to another. This is called a block

move. We will now write a macro to perform this task. Both the 8080 and

the Z80 CPUs incorporate 16-bit registers that can be used as pointers

during themove. TheZ80 also contains instructions for directly performing

block moves. The block move can be greatly simplified, therefore, if a

program is designed to run on aZ80 CPU. However, we will only consider

the 8080 version at this time.

Add theMOVE macro given in Figure 4.9 to your macro library. Place

BEGINNING A MACRO LIBRARY 93

MOVE AAACRO FROM, TO, BYTES

;;(Put current date here)

;;inline macro to move text

LOCAL AROUND
PUSH H

PUSH D

PUSH B

LXI H FROM
LXI D,TO

LXI B BYTES
AAn\/F9?

PDP D
LJ

POP n

r\Jr LJn
J/V\r

/

hAOV A,M ;get it

CTAVolAA U ;put it

INX H ;from

INX D ;to

DCX B ;byte count

MOV A,C

ORA B

JNZ MOVE2? ;not done

RET

AROUND: ;;MOVE

ENDM

Figure 4.9: Macro MOVE, Version 1

it between macros EXIT and VERSN to maintain alphabetic order. Be

sure to add the nameMOVE to the directory at the beginning ofthe macro

library. The MACLIB directory should now list the following macros:

ENTER

EXIT

MOVE
VERSN

94 MASTERING CP/M

The organization of macroMOVE is typical ofmany of the macros we
will write in this book. There will be an initialization section, a subroutine

call, a jump around the subroutine, and the subroutine itself.

Let us examine the details of macro MOVE. There are three dummy
parameters: FROM, TO, and BYTES. As the names imply, FROM refers

to the address of the source block, TO refers to the destination block, and
BYTES gives the number of bytes to be moved. The macro begins by saving

the CPU registers withPUSH instructions. Then theHL register is loaded

with the source address, the DE register is loaded with the destination ad-

dress, and the BC register is loaded with the number of bytes to be moved.
(Remember that the X in the mnemonic refers to the extended or double

register. Thus, the operand H means HL, and so forth.)

The main part of the macro calls subroutine MOVE2? to perform the

actual move. A byte is moved from the original memory location to the

accumulator with aMOV A,M instruction. The byte is then moved to the

destination with a STAX D instruction. The HL and DE pointers are

incremented and the byte count in register BC is decremented. The
subroutine continues in this way until the byte count in register BC
reaches zero.

Testing a double register for zero is more complicated than testing a
single register, because the CPU flags are not affected by double-register

increment or decrement instructions. Thus, the instructions

DCX B

JZ MOVE2?

will not work. The macro performs the test for zero by moving one half of

the register to the accumulator and executing a logical OR with the other

half. At the conclusion ofthe block move, control returns to the main part

of the macro.

For the first expansion ofmacroMOVE, subroutineMOVE2? is coded
inline, immediately after the main part of the macro. Consequently, there

is a jump instruction to skip over this subroutine. The local label

AROUND is used for this purpose. Notice that the name of subroutine

MOVE2? has not been declared as a local variable; rather, it is a global

variable. It can therefore be called from other parts of the main program.
Create a disk file named MOVEl .ASM and enter the program shown in

Figure 4.10. We will use this program to test the operation of macro
MOVE.
Our test program begins with macroVERSN and continues with macro

MOVE. The instructions terminate with ajump to BOOT followed by an
arrow that points to this jump. The source string begins at the labelTEXT

BEGINNING A MACRO LIBRARY 95

TITLE 'TESTMOVE to test macro MOVE'

;Dec. 16, 81

FALSE

TRUE

EQU
EQU NOT FALSE

BOOT
BDOS
TPA

EQU
EQU
EQU

;system reboot

5 ;BDOS entry point

100H (-transient program area

AAACLIB CPMAAAC

ORG TPA

START:

VERSN
MOVE
JMP

'12.16.81.TESTMOVE.r

TEXT, NEWTEX, TEXEND-TEXT

BOOT

TEXT:

TEXEND:

DB

DB A test of macro MOVE

ORG 400H

NEWTEX: DS 1

END START

Figure 4.10: Program to Test Version 1 ofMacro MOVE

and continues to the label TEXEND. The destination address is

NEWTEX.
Assemble the program and compare the assembly Usting to Figure 4. 1 1

.

Take note of the final jump instruction at address 13A hex. (The address

in your program may be different, depending on how you coded the date.)

96 MASTERING CP/M

TITLE 'TESTMOVE to test macro MOVE'

;Dec. 16, 81

0000 = FALSE EQU
FFFF = TRUE EQU NOT FALSE

0000 = BOOT EQU ;system reboot

0005 = BDOS EQU 5 ;BDOS entry point

0100 = TPA EQU lOOH ;transient program areo

AAACLIB CPAAAAAC

0100 ORG TPA

START:

VERSN '12.16.81.TESTMOVE.r
0100+C31A01 JMP ??0001

0103+566572 DB Ver ','1 2. 1 6.81 .TESTMOVE. 1

'

MOVE TEXT, NEXTEX, TEXEND-TEXT

011A+E5 PUSH H
011B+ D5 PUSH D
011C+ C5 PUSH B

OllD+ 214201 LXI H,TEXT

0120+110004 LXI D,NEWTEX
0123+011400 LXI B,TEXEND-TEXT

0126+CD2F01 CALL MOVE2?
0129+Cl POP B

012A+ D1 POP D
012B+ E1 POP H
012C+C33A01 JMP ??0002

012F+7E MOV A,M ;get It

0130+12 STAX D ;put It

0131 +23 INX H ;from

0132+13 INX D ;to

01 33+ OB DCX B ;byte count

0134+79 MOV A,C

01 35+ BO ORA B

Figure 4. 11: Assembly Listingfor Figure 4. 10

BEGINNING A MACRO LIBRARY 97

0136+C22F01 JNZ AAOVE2? ;not done

0139+C9 RET

01 3A C30000 JMP BOOT

013D3C3D3D DB
TEXT:

0142 412074 DB 'A test of macro MOVE'
TEXEND:

0400 ORG 400H

0400 NEWTEX: DS 1

0401

/

END START

Figure 4.11 (continued)

We will need this location in our next step. Load the hex file into memory
with the debugger command

SID MOVE 1. HEX

Display the first part ofmemory with the command DlOO, 15F. The result

will be as follows:

0100: C3 1A 01 56 65 72 20 31 32 2E 31 36 2E 38 31 2E ...Ver 12.16.81.

0110: 54 45 53 54 4D 4F 56 45 2E 31 E5 D5 C5 21 42 01 TESTH0VE.1 . . . !B.

0120: 11 00 04 01 14 00 CO 2F 01 CI 01 El C3 3A 01 7E / :."

0130: 12 23 13 OB 79 80 C2 2F 01 C9 C3 00 00 3C 30 3D .#../../ <==

0140: 30 30 41 20 74 65 73 74 20 6F 66 20 60 61 63 72 ==A test of macr

0150: 6F 20 40 4F 56 45 00 00 00 00 00 00 00 00 00 00 o MOVE

The text that was coded with macro VERSN (near the beginning of the

program) is plainly visible in the ASCII representation. On the fourth

line, the left-pointing arrow indicates the location of the final jump in-

struction at 13A hex. Run the program by giving the command

G100,13A

This command begins execution of the program at address ICQ and ter-

minates it with a return to the debugger at address 1 3A hex. The debugger

sets a breakpoint (an automatic return to itself) at address 1 3A. It does this

98 MASTERING CP/M

by changing the jump instruction at 13A hex to restart 7. The debugger

will respond with the statement

*013A

indicating that it stopped execution at address 13A.

Give the debugger command D400,41F to display the destination

block. The result will be as follows:

0400: 41 20 74 65 73 74 20 6F 66 20 6D 61 63 72 6F 20 A test of macro
0410: 4D 4F 56 45 00 00 00 00 00 00 00 00 00 00 00 00 MOVE

The program has moved the text "A test of macro MOVE" from the

source block to the destination block.

If you want to repeat this test, zero the destination memory with the

debugger fill command:

F400,41F,0

Then repeat the original command G100,13A.

Macro MOVE, Version 2

For our second version of macro MOVE, we will introduce a technique

that is applicable to many of the macros we will be writing in this book.

We saw previously that our inline macros contain four parts—an initial-

ization section, a subroutine call, ajump around the subroutine, and the

subroutine itself. This arrangement is used for the first expansion of the

macro. However, on subsequent macro expansions, only the first two

parts of the macro are needed. The subroutine generated during the first

expansion of the macro is referenced by the other expansions.

We will use a special symbol to indicate whether the macro has been

referenced more than once in a program. There are some important

reasons for this feature. On the first reference to macro MOVE, a copy of

subroutine MOVE2? will be generated. The second reference to macro
MOVE will generate another copy of the MOVE2? subroutine. That is, a

separate copy of subroutine MOVE2? will be generated for each call to

macro MOVE. This is an unnecessary duplication of code. Furthermore,

the label MOVE2? is a global variable. When it appears more than once,

your assembler will report a phase error, meaning that a symbol has been

assigned two different values.

We need a method for generating a copy of the MOVE2? subroutine

the first time macro MOVE is referenced in a program, but not on

BEGINNING A MACRO LIBRARY 99

subsequent references. There are several ways to do this, but we will

choose the one that can be used by all assemblers.

We will define the symbol MVFLAG to indicate whether a copy of

subroutine MOVE2? has been generated. The symbol will have one of

two values: true or false. This kind of symbol is called Siflag. This flag is

initially defined as FALSE by the statement

MVFLAG SET FALSE

The flag must be defined with a SET statement rather than the usualEQU
statement so that it can be changed during assembly. (EQU expressions

cannot be changed.) The ideal location for this flag is at the beginning of

the macro library. However, the Digital Research assembler does not

allow this construction. Consequently, we will place the flag at the beginning

of each program that references the macro.

Alter macro MOVE to look like the version shown in Figure 4.12.

Notice that just before the JMP AROUND statement there is a condi-

tional expression for testing the state ofMVFLAG. On the first reference

to macro MOVE, the flag will be false and the expressionNOTMVFLAG
will be true. Consequently, the next instructions down to the ENDIF
statement will be assembled. These instructions generate a copy of

subroutine MOVE2?. There is also a very important statement just prior

to the ENDIF statement. This is the expression that changes the state of

the flag:

MVFLAG SET TRUE

The next time macro MOVE is referenced within the same program, the

flag will be true and the expression NOT MVFLAG will be false. There-

fore, the assembler will not create another copy of the M0VE2? subrou-

tine. The jump around the subroutine will not be necessary, either.

Make a copy of the source program given in Figure 4. 10 and alter it to

look like Figure 4.13. Give the new version the name MOVE2.ASM.
Assemble the new test program and compare the last portion of the

listing to the one shown in Figure 4. 14. Notice that the first call to macro

MOVE, at address 1 1A hex, generates a copy of subroutine MOVE2? at

address 12F hex. The JMP AROUND becomes JMP ??0002 (when the

Digital Research assembler is used) because it is a local variable. The

second reference to macro MOVE, at address 13A hex, does not gener-

ate another copy of subroutineMOVE2? , but calls the copy generated by

the first reference.

Load the program into memory with the debugger command

SID MOVE2.HEX

100 MASTERING CP/M

Display the program with the command D100,17F to give the following:

0100: C3 1A 01 56 65 72 20 31 32 2E 31 36 2E 38 31 2E ...Ver 12.16.81.
0110: 54 45 53 54 4D 4F 56 45 2E 32 E5 05 C5 21 54 01 TESTH0VE.2. . . ! T.

0120: 11 00 04 01 14 00 CD 2F 01 CI 01 E1 C3 3A 01 7E / :."

0130: 12 23 13 OB 79 BO C2 2F 01 C9 E5 D5 C5 21 68 01 .#..y../ !h.

0140: 11 14 04 01 10 00 CD 2F 01 CI D1 El C3 00 00 3C / <

0150: 3D 3D 3D 3D 41 20 74 65 73 74 20 6F 66 20 6D 61 ====A test of ma
0160: 63 72 6F 20 4D 4F 56 45 2E 20 41 20 73 65 63 6F cro MOVE. A seco
0170: 6E 64 20 4D 4F 56 45 2E 00 00 00 00 00 00 00 00 nd MOVE

As with the previous version, we can see the ASCII characters at the

beginning of the program. The left-pointing arrow is also visible,

although now it is pointing to the jump instruction at address 14C hex.

Zero the destination block with the command

F400,42F,0

and execute the program with the statement

G100,14C

This sets a breakpoint at location 14C hex, the new location of the final

instruction. The debugger responds with

*014C

Display the destination area with the debugger command D400,42F.
Verify that the two separate calls to macroMOVE generated the following

composite string:

0400: 41 20 74 65 73 74 20 6F 66 20 6D 61 63 72 6F 20 A test of macro
0410: 4D 4F 56 45 2E 20 41 20 73 65 63 6F 6E 64 20 40 MOVE. A second M
0420: 4F 56 45 2E 00 00 00 00 00 00 00 00 00 00 00 00 OVE

MOVE AAACRO FROM, TO, BYTES

;;(Put current date here)

;;inline macro to move text

LOCAL AROUND
PUSH H
PUSH D
PUSH B

LXI H,FROM

Figure 4.12: Macro MOVE, Version 2

BEGINNING A MACRO LIBRARY 101

LXI DJO
LXI B, BYTES

CALL MUV r

POP B

POP D

POP H

IF NOT MVFLAG
JMP AROUND

MOVE2?:
MOV AM ;get byte

STAX D ;new place

INX H ;from

INX D ;to

DCX B ;byte count

MOV A,C

ORA B

V r
•not Hon^

RET

MVFLAG SET TRUE ;;one copy

ENDIF ;;not MVFLAG

AROUND: ;;MOVE

ENDM

Figure 4.12 (continued)

TITLE 'TESTMOVE to test macro MOVE'

;Dec.l6, 81

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH ;transient program area

Figure 4.13: Program to Test Version 2 ofMacro MOVE

102 MASTERING CP/M

MVFLAG SET FALSE ;block move

AAACLIB CPMAAAC

ORG TPA

START:

VERSN
MOVE
MOVE
JMP

'12.1 6.81.TESTMOVE.2'

TEXT, NEWTEX, TEXT2-TEXT

TEXT2, NEWTEX+ TEXT2-TEXT, TEXEND-TEXT2

BOOT

TEXT:

TEXT2:

TEXEND:

DB

DB

DB

<= = = =

'A test of macro MOVE'

'. A second MOVE.'

ORG 400H

NEWTEX: DS 1

END START

Figure 4.13 (continued)

MOVE TEXT, NEWTEX, TEXT2-TEXT

011A+E5 PUSH H
011B+ D5 PUSH D
011C+C5 PUSH B

Oil D+ 21 5401 LXI H,TEXT

0120+110004 LXI D,NEWTEX
0123+011400 LXI B,TEXT2-TEXT

0126+CD2F01 CALL MOVE2?

Figure 4.14: Partial Assembly Listing ofFigure 4.13

BEGINNING A MACRO LIBRARY 103

0129+Cl POP B

012A+ D1 POP D
012B+ E1 POP H

012C+C33A01 JAAP ??0002

012F+7E MOV A,M ;get byte

0130+12 STAX D ;new place

0131 +23 INX H ;from

0132+13 INX D ;to

0133+OB DCX B ;byte count

0134+79 MOV AC
01 35+ BO ORA B

0136+C22F01 JNZ MOVE2? ;not done
0139+C9 RET

MOVE TEXT2, NEWTEX +TEXT2-TEXT, TEXEND-TEXT2

013A+ E5 PUSH H
013B+ D5 PUSH D
013C+ C5 PUSH B

013D+ 216801 LXI H,TEXT2

0140+111404 LXI D,NEWTEX+ TEXT2-TEXT

U 1 4o -ru 1 1 uuu 1 VI R TFYPKin TFYTO

0146+CD2F01 CALL M0VE2?
0149+Cl POP B

014A+ D1 POP D

014B+ E1 POP H
014CC30000 JMP BOOT

UD

TEXT:
m '^y^ A 1 0CS7A M leST OT macro nnV-'VC

TEXT2:
m AD ocon>i 1 HDUd . A SGCOna AA^JVt.

TEXEND:

0400 ORG 400H

0400 NEWTEX: DS 1

0401 END START

Figure 4.14 (continued)

104 MASTERING CP/M

Macro MOVE, Version 3

Sometimes we will find it necessary to move a particular string of

characters into a memory location. Because the string will not exist prior

to the move, the two previous versions of the MOVE macro will not be

suitable. Therefore, for our third version we will add a new feature. This

version will accept a string, rather than the usual memory pointer, as the

first parameter to the macro reference. Thus we can write

MOVE "THIRD", FCB2+ 1

if we want to write the string "THIRD" into the memory location that is

one byte beyond the beginning of FCB2. Notice that the third parameter

(the number of bytes) and the second comma are omitted in this example.

The assembler will automatically calculate the length we need. We will use

this method to signal to the macro that the first parameter is a literal

variable rather than an address pointer.

The literal parameter is not Umited to a quoted string of characters.

Variables and constants can also be included if the entire parameter is

enclosed in angle brackets. For example, the expression

MOVE <2,"FIFTH">, FCBl

will place six bytes in memory starting at the location FCBl (5C hex). The

first byte is the binary number 2; the ASCII string "FIFTH" is placed im-

mediately following it. Of course, symbols such as EOF (end of file), CR
(carriage return), and LF (line feed) can be included as well. Notice that

there is a comma separating the constant 2 from the string "FIFTH".
Alter macro MOVE so that it looks like Figure 4. 15. This third version

of macro MOVE begins as before by saving the registers. We then en-

counter a new feature. When the assembler finds the expression

IF NOTNULTO
LXI DJO
ENDIF

it checks to see ifthe second parameter, the destination address, is actually

supplied in the macro reference. If this parameter is omitted, it is assumed

that the program has loaded the DE register with the destination address

prior to the macro reference. The expression IF NOT NUL TO is false.

On the other hand, if the second parameter is provided, the expression IF

NOT NUL TO is true. The instruction LXI D,TO is then included.

With the previous versions, the destination address always had to be in-

cluded in the macro reference as a parameter. But sometimes the destina-

tion address is not known at assembly time. This new version of macro

BEGINNING A MACRO LIBRARY 105

MOVE allows us to obtain the destination address from a memory loca-

tion or from the result of a calculation performed during execution of the

program. Suppose, for example, that the destination address is stored at

location DEST. The following instructions will move 20 bytes starting at

address FROM into the memory area whose address is stored at location

DEST:

PUSH H ;save

LHLD DEST ;get it

XCHG ;into DE

POP H ;restore

MOVE FROAA„20

The next portion of macro MOVE checks to see whether the third

parameter, the number of bytes to move, is present. If this parameter is

omitted, a literal move is indicated. The instructions between IF NUL
BYTES and the ELSE statement are then included. With this version, the

assembler generates code to copy the literal first parameter into mem-
ory at the location referenced by the symbol MESG. This label is located

near the end of the macro. Note thatMESG is defined as a local variable.

Thus there can be one copy in each expansion of the macro.

The alternate passage between ELSE and ENDIF is assembled when
the third parameter is supplied in the macro reference. The first parameter

can be omitted in this case as well. Thus the command

MOVE , ,20

will move 20 bytes from the address referenced by HL to the address

referenced by DE.
The macro continues with the usual call to subroutine MOVE2? and

then restores the registers. The JMP AROUND instruction is embedded
in a conditional block that checks for two things: the state ofMVFLAG
£md whether the third parameter, BYTES, is present.

IF NOT MVFLAG OR NUL BYTES

JMP AROUND
ENDIF

IfNOTMVFLAG is true, subroutineMOVE2? will be needed and so will

the jump instruction. Also, whenever a string move is indicated by a

missing third parameter, we need a jump around the string. Otherwise,

subroutine MOVE2? and the jump instruction are omitted.

It is important to notice that the two expressions on either side of the

logicalOR operation, NOTMVFLAGandNUL BYTES, must appear in the

106 MASTERING CP/M

MOVE AAACRO FROM, TO, BYTES

;;(Put current date here]

;;inline macro to move text

Dl ICLIrUon un
Dl ICLJ U
Dl ICU QD

Ir
M/^T KM II Tr\

1 VILAI

cNUIr

Ir
KM II DVTCCNUL dYIco ••ctrinn mou^

LXI n,AAEoG -test

LXI B,AROUND-MESG
ELSE ••not strina movp^^11 1 will* I^J 111 V ^7

IF NOT NUL FROM
LXI H, FROM
ENDIF

LXI B,BYTES
ck. irM cENDIF ;;strlng/not string

CALL MOVE2?
POP B

POP D
rvjr H

Ir NOT MVFLAG OR NUL BYTES
1 AADJMr AROUND

irM cENDIF

IF NOT MVFLAG
M0VE2?:

MOV A,M ;get byte

STAX D ;new place

INX H ;from

INX D ;to

DCX B ;byte count

AAOV A,C
ORA B

JNZ MOVE2? ;not done

RET

Figure 4.15: Macro MOVE, Versions

BEGINNING A MACRO LIBRARY 107

AAVFLAG SET

ENDIF

IF

TRUE

NUL BYTES

;;one copy

;;not MVFLAG

MESG:

DB FROM ;;fext

ENDIF

AROUND:
ENDM

;;AAOVE

Figure 4.15 (continued)

order shown. They cannot be interchanged or the assembler will interpret

the combination differently. This is due to the order of evaluation of the

NUL and OR operators. The expression

NUL BYTES OR NOT AAVFLAG

is interpreted as

NUL (BYTES OR NOT AAVFLAG)

This is not the same as

(NUL BYTES) OR NOT AAVFLAG

which is the desired result.

To test this third version of macro MOVE, create a new file named
MOVE3.ASM and copy file MOVE2.ASM into it. Alter MOVE3.ASM
to look like Figure 4.16. Assemble the program and load it into memory
with the debugger. Display the first part of the program with the command
DIOO.IAF. Notice that the final jump is located at address 17C hex:

0100: C3 1A 01 56 65 72 20 31 32 2E 31 36 2E 38 31 2E ...Ver 12.16.82.
0110: 54 45 S3 54 4D 4F 56 45 2E 33 E5 05 C5 11 75 00 TESTH0VE.3 u.
0120: 21 3A 01 01 03 00 CD 2F 01 CI D1 El C3 30 01 7E !: /

0130: 12 23 13 OB 79 BO C2 2F 01 C9 24 24 24 E5 05 C5 .#../../..$$$...
0140: 11 5C 00 21 52 01 01 06 00 CD 2F 01 CI 01 El C3 .\.!R /

0150: 58 01 02 46 49 46 54 48 E5 05 C5 11 00 04 21 84 X.. FIFTH !.

0160: 01 01 14 00 CD 2F 01 CI 01 El E5 05 C5 11 14 04 /

0170: 21 98 01 01 10 00 CO 2F 01 CI 01 El C3 00 00 3C ! / <
0180: 30 30 30 30 41 20 74 65 73 74 20 6F 66 20 60 61 ====A test of ma
0190: 63 72 6F 20 40 4F 56 45 2E 20 41 20 73 65 63 6F cro HOVE. A seco
01 AO: 6E 64 20 40 4F 56 45 2E 00 00 00 00 00 00 00 00 nd MOVE

108 MASTERING CP/M

TITLE 'TESTMOVE to test macro MOVE'

;Dec. 16, 81

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry pomt

TPA EQU 1CX)H (-transient program area

FCBl EQU 5CH ;lnput FCB

FCB2 EQU 6CH ;2nd parameter

MVFLAG SET FALSE ;block move

AAACLIB CPMAAAC

ORG TPA

START:

VERSN '12.1 6.81.TESTMOVE.3'

MOVE '$$$', FCB2+9
MOVE <2/FIFTH'>,FCBl

MOVE TEXT, NEWTEX, TEXT2-TEXT

MOVE TEXT2, NEWTEX +TEXT2-TEXT, TEXEND-TEXT2

JMP BOOT

DB '<= = = ='

TEXT:

DB 'A test of macro MOVE'
TEXT2:

DB '. A second MOVE.'

TEXEND:

ORG 4CXDH

t

NEWTEX: DS 1

END START

Figure 4.16: Program to Test Version 3 ofMacro MOVE

BEGINNING A MACRO LIBRARY 109

Execute the third version with the command G100,17C. Display the

region from 50 to 7F hex with the command D50,7F. The resuh shows
that the three dollar signs were moved to address 75 hex, a binary 2 was
placed at 5C hex, and the string "FIFTH" was deposited immediately

afterward:

0050 : 00 00 00 00 00 00 00 00 00 00 00 00 02 46 49 46 FIF
0060: 54 48 00 00 00 00 00 00 00 00 00 00 00 00 00 00 TH
0070: 00 00 00 00 00 24 24 24 00 00 00 00 00 00 00 00 $$$

A check can also be made of the region starting at 400 hex to see that the

other two parts worked properly. All three versions of theMOVE macro
are coded inline; that is, the macro statement is placed wherever it is needed.

The macro includes the JMP AROUND statement to skip over sub-

routine MOVE2? at the first reference.

A MACRO TO FILL MEMORY WITH A CONSTANT
The MOVE macro we just developed can be used to deposit a string of

characters in memory. As an example, we placed three dollar signs in the

second file control block with the macro statement

MOVE '$$$', FCB2+ 9

However, the MOVE macro is not convenient if we want to fill a large

number of locations with a particular value. So we will now develop a
companion macro named FILL. With this macro we can fill any portion

ofmemory with a particular constant. This macro is coded directly inline,

just as the MOVE macro was.

Incorporate macro FILL, shown in Figure 4.17, into your macro
library. Also add the name FILL to the directory at the beginning of the

macro library. This is the second macro in the library to use a flag. Many
of the macros we will add to the library will use flags, so we will add a new
column to the directory hsting to identify the associated flag. The direc-

tory should now look Uke this:

:;Macros in this library Flags

/ENTER AAACRO (none)

;EXIT AAACRO SPACE? (none)

;FILL AAACRO ADDR, BYTES, CHAR FLFLAG

;AAOVE AAACRO FROAA, TO, BYTES AAVFLAG
;VERSN AAACRO NUAA (none)

110 MASTERING CP/M

FILL AAACRO ADDR, BYTES, CHAR
;;(Put current date here)

;;lnline macro to fill byte memory

;;locafions with CHAR starting at ADDR
;;Usage: FILL FCB+1, BLANK, 8

/ /
FILL FCB+9, '?', 3

/ /

LOCAL AROUND
PUSH H

PUSH B

IF NOT NUL ADDR
LXI H,ADDR
ENDIF

MVI C,BYTES

AAVI A,CHAR
CALL FILL2?

POP B

POP H

IF NOT FLFLAG

JAAP AROUND
FILL2?:

MOV M,A ;put into memory

INX H ;pointer

DCR C ;count

JNZ FILL2? ;keep going

RET

FLFLAG SET TRUE

ENDIF

AROUND: ;;FILL

ENDM

Figure 4.17: Macro FILL to Fill a Block ofMemory with a Byte

Notice that the address of the area to be filled is the first parameter to

macro FILL. Because of the conditional expression

IF NOT NUL ADDR
LXI H,ADDR

ENDIF

the first parameter in the macro reference may be omitted. The second

BEGINNING A MACRO LIBRARY 111

parameter, the number of bytes in the block, is loaded into the C register.

Because this is an 8-bit register, the block size is limited to 256 bytes. (A
value of fills a block of 256 bytes.) Ifa larger block is needed, the macro
can be referenced more than once. Alternatively, the macro could be

rewritten to use the BC double register rather than the C register. We will

do this in Chapter 8.

Make a copy of the test program in Figure 4.16 and give it the name
TESTFILL.ASM. Alter the program so it looks Hke the version shown in

Figure 4. 18. Notice that FLFLAG is set to FALSE near the beginning of

the source program. This flag serves the same purpose asMVFLAG did in

the previous macro. The flag is initially set to FALSE so that a copy of
subroutine FILL2? is generated when the macro is first referenced. The
flag is then set to TRUE in the macro so that no additional copies of
FILL2? are made on subsequent references.

Assemble the program and load it into memory with the debugger.

Display the program with the command

D100,16F

The resulting output contains the familiar arrow pointing to an important
jump instruction at 156 hex. Notice that macros ENTER and EXIT are in-

cluded in this version. The FILL macro is used three times in this program.

On the first reference, macro FILL deposits dollar signs in the second file

control block. This performs the same task as the first reference to macro
MOVE in the previous program. The next reference to macro FILL sets

40 hex bytes to blanks and the final reference sets the next 40 hex bytes to

binary zeros.

0100: 21 00 00 39 22 63 01 31 87 01 C3 22 01 56 65 72 ! . .9"c.1 . . .".Ver
0110: 20 31 32 2E 32 34 2E 38 31 2E 5A A5 53 54 46 49 12. 24.81 .TESTFI
0120: 4C 4C E5 C5 21 75 00 OE 03 3E 24 CO 33 01 CI El LL. . ! u. . .>$.3. .

.

0130: C3 3A 01 77 23 OD C2 33 01 C9 E5 C5 21 00 08 OE .:.w#..3 !...
0140: 40 3E 20 CD 33 01 CI El E5 C5 21 40 08 OE 40 3E a> .3 !a..a>
0150: 00 CD 33 01 CI El C3 5E 01 3C 3D 3D 30 3D 2A 63 ..3 -.<====*c
0160: 01 F9 C9 00 00 00 00 00 00 00 00 00 00 00 00 00

Fill the 800 hex block with the constantA5 using the debugger command
F800,8FF,A5. Execute the new program with the debugger command
GlOO, 156. Then display the file control blocks with the command D50,7F
and verify that the three dollar signs are present:

0050 : 00 00 00 00 00 00 00 00 00 00 00 28 00 20 20 20 (.

0060: 20 20 20 20 20 20 20 20 00 00 00 00 16 00 00 00
0070 : 00 00 00 00 00 24 24 24 00 00 00 00 00 00 00 00 $$$

112 MASTERING CP/M

TITLE 'TESTFILL to test macro FILL'

;Dec. 24, 81

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH ;transient program area

FCB1 EQU 5CH ;lnputFCB

FCB2 EQU 6CH ;2nd parameter

;

FLFLAG SET FALSE ;FILLflag

;

AAACLIB CPMAAAC

ORG TPA

START:

ENTER

VERSN '12.24.81. TESTFILL'

FILL FCB2+9, 3,
'$'

FILL 800H, 40H, BLANK
FILL 800H+40H, 40H,

JMP DONE
DB

DONE:
EXIT

END START

Figure 4.18: Program to Test Macro FILL

A final display of the 800 hex block will show the results of the second

and third macro references. Give the command D800,88F. The results

should look like this:

0800: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0810: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0820: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0830: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0840: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

BEGINNING A MACRO LIBRARY 113

0850: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0860: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0870: GO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0880: A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5

Return to CP/M by typing control-C. Now we will develop a pair of

macros for comparing one region of memory to another.

A MACRO TO COMPARE TWO BLOCKS
OF INFORMATION
We will often need to determine whether a particular memory area

matches another memory area or string of characters. For example, in

Chapter 6 we will write a program to display an ASCII disk file on the

video screen. A binary COM file cannot be displayed in this way, so we
will want to compare the file type the user has entered to the string COM.
The program can be terminated when a COM file is given.

As a second example, suppose a program needs a file name, but the user

enters an ambiguous file name such as

SORT. *

The CCP converts the asterisk to three question marks. The program is

looking for a single file name but the CCP gives

SORT.???

In this case the program may have to deal with many different files rather

than a single file. To be prepared for this possibility, we must compare the

input file name to a string of question marks.

The inline macro COMPAR, shown in Figure 4.19, can be used to

make general comparisons ofblocks up to 256 bytes in length. Ifyou want
to compare two memory regions, give the addresses of each block as the

first and second parameters. The number ofbytes in each block is given as

the third parameter. The maximum block size is 256 bytes, because the C
register counts the block size. Copy this macro into your macro library,

placing it in alphabetic order.

The conditional blocks

IF NOT NUL FIRST

and

IF NOT NUL SECOND

allow either or both of the first two parameters to be omitted. If the

114 MASTERING CP/M

COMPAR AAACRO FIRST, SECOND, BYTES

;;(Put current date here)

;;lnline macro to compare 2 memory areas.

;;Zero flag is set If both are the same,

;;first and second may be addresses,

;;third parameter Is number of bytes.

;;Flrst parameter may be a quoted string,

;;ln which case there Is no third parameter.

;;Any of the parameters may be omitted.

;;Reglster A Is altered.

•Usage: COAAPAR FCBl, FCB2, 12

COAAPAR '???', FCBH-9
COAAPAR , , 5

LOCAL AAESG, AROUND
PUSH H
PUSH D

PUSH B

IF NUL BYTES

LXI H,AAESG ;quoted text

AAVI CAROUND-AAESG ;length

ELSE

IF NOT NUL FIRST

H,FIRSTLXI

ENDIF

IF NOT NUL BYTES

C,BYTESAAVI

ENDIF

ENDIF

IF NOT NUL SECOND
D,SECOND

;nul bytes

LXI

ENDIF

CALL

POP
POP
POP
IF

COAAP2?

NOT CAAFLAG OR NUL BYTES

AROUND

B

D
H

JAAP

Figure 4.19: Macro COMPAR to Perform a Binary Comparison

BEGINNING A MACRO LIBRARY 115

ENDIF

IF NOT CMFLAG ;one copy

COAAP2?: ;compare routine

LDAX D ;get char

CMP M ;same?

RNZ ;no

INX H

INX D ;po inters

DCR C ;and count

JNZ COMP2? ;keep going

RET

CMFLAG SET

cNUlr

IF

TRUE

NUL BYTES

;only one

MESG: DB
ENDIF

FIRST ;;text

AROUND:
ENDM

;;COMPAR

Figure 4.19 (continued)

parameters are missing, the registers must be loaded prior to referencing

the macro. The macro call might look like this:

COMPAR , , 8

If you want to determine whether the first and second parameters of a

CP/M command line are identical, use the following macro reference:

COMPAR FCB1,FCB2, 12

This will compare the 12 bytes starting at the first file control block to the

12 bytes in the second. The macro will set the zero flag ifthe two blocks are

identical. The zero flag will be reset otherwise.

If you want to compare a memory block to a particular string of text,

you can omit the third parameter. The first parameter then contains the

text itself. The assembler finds the length of the block from the length of

the first parameter. For example, the macro reference

COMPAR '???', FCBl +9

will set the zero flag if the three characters starting at FCBl +9 are all

question marks. (FCBl +9 contains the file type of the first parameter of

a CP/M command line.)

116 MASTERING CP/M

An ASCII Comparison

Although each byte contains eight bits, the ASCII character set uses only

the lower seven bits (0—6). Since the high-order bit, bit 7, is not needed in

this case, it can be used to convey other information. Thus one 8-bit byte

can be divided into a 1-bit flag followed by a 7-bit ASCII character. The

byte does double duty. The CP/M system uses this method to denote file

protection and thus reduce the likelihood of accidentally erasing important

files. For example, CP/M file names consist of aprimaryname and an ex-

tension of up to three characters. The extension often suggests the kind of

information contained in the file (FOR forFORTRAN, BAS for BASIC,
and so on). If the high-order bit of the first character of the extension is

set, CP/M considers the file to be write protected. On the other hand, if

. this bit is reset, the file can be deleted or altered. The remaining seven bits

contain the ASCII character.

Suppose we want to ensure that a given file has the extension COM. It

appears that we could use the macro reference

COMPAR 'COM', FCBl +9

for this purpose. However, this approach will fail whenever the given file

is write protected. For example, the ASCII representation ofthe letterC is

100 0011

which we can write as

0100 0011

when the high-order bit is zeroed. However, if the file is write protected,

the high-order bit is set. The pattern is as follows:

1100 0011

We therefore need a different version ofthe comparison macro, so that

we can compare only the lower seven bits ofeach byte. The macro given in

Figure 4.20 can be used for this purpose. Enter this macro into your library.

COMPRA AAACRO FIRST, SECOND, BYTES

;;(Put current date here)

;;ASCII version (high bit is zeroed).

;;lnline macro to compare two memory areas.

;;Zero flag is set if both ore the same.

Figure 4.20: Macro COMPRA to Perform an ASCII Comparison

BEGINNING A MACRO LIBRARY 117

;first and second may be addresses,

;third parameter is number of bytes,

first parameter may be a quoted string,

;ln which case there is no third parameter.

All three parameters may be omitted.

iRegister A is altered.

;Usage: COMPRA FCB1,FCB2, 11

COMPRA 'COM', FCBl +9
; COMPRA , FCBl +1,11

LOCAL MESG, AROUND
PUSH H

PUSH D
PUSH B

IF NUL BYTES

LXI H, MESG ;quoted text

MVI CAROUND-MESG ;length

ELSE

IF NOT NUL FIRST

LXI H, FIRST

ENDIF

IF NOT NUL C
MVI C, BYTES

ENDIF

ENDIF ;nul bytes

IF NOT NUL SECOND
LXI D,SECOND
ENDIF

CALL COMP2?
POP B

POP D

POP H
IF NOT CMFLAG OR NUL BYTES

JMP AROUND
ENDIF

IF NOT CMFLAG ;one copy

COMP2?: ;compare routine

LDAX D ;get char

Figure 4.20 (continued)

118 MASTERING CP/M

ANI 7FH ;mask bit 7

PUSH B

MOV C,A

MOV AM
ANI 7FH

CMP C ;same?

POP B

RNZ ;no

INX H
INX D (•pointers

DCR C ;and count

JNZ COMP2? ;keep going

RET

CMFLAG SET

ENDIF

IF

TRUE

NUL BYTES

;only one

MESG: DB
ENDIF

FIRST ;;text

AROUND:
ENDM

;;COMPRA

Figure 4.20 (continued)

A MACRO TO RAISE LOWERCASE LETTERS
TO UPPERCASE

Any lowercase letters given on a CP/M command line are automatically

raised to uppercase. However, ifthe user inputs information while aprogram

is executing, uppercase and lowercase letters remain distinctly different.

For example, suppose that a program displays the statement

DELETE ALL FILES?

It is not sufficient to test the user response with the statement

CPI 'Y'

because the input might be either uppercase or lowercase. Of course, it is

possible to consider both possibilities with additional instructions. For

example:

CPI 'Y'

JZ

CPI 'y'

JZ

BEGINNING A MACRO LIBRARY 119

A more efficient approach, however, is to use the macro given in Figure

4.21 to raise a lowercase letter to uppercase. The macro is referenced just

before the comparison is made:

We can understand the operation of this macro by considering the

ASCII coding of alphabetic characters. For example, the uppercase letter

Y and the lowercase letter y differ by only one bit. The lower seven bits of

each are as follows:

Y 101 1001 (uppercase)

y 111 1001 (lowercase)

UCASE AAACRO REG

;;(Put current date here)

;;lnline macro to convert a character in any

;;register to uppercase.

;;Omit parameter for register A.

UCASE
CPI

JZ

;;Usage: UCASE
UCASE C

PUSH
MOV
ENDIF

CPI

LOCAL
IF

NOTUP?
NOT NUL REG
PSW
A, REG

;save

;get value

JC

AN!

'Z'+7

NOTUP?
5FH

(•uppercase?

;no

;make uppercase

NOTUP?

MOV
POP
ENDIF

IF NOT NUL REG
REG,A

PSW
;put back

;restore

;;UCASE

ENDM

Figure 4.21: Macro UCASE to Convert Lowercase Letters to Uppercase

120 MASTERING CP/M

The patterns for the other alphabetic characters are similar. The example

shows that we can convert a lowercase letter to uppercase by resetting bit

5. The operation we want is a logical AND with the value of 5F hex.

y 111 1001 (lowercase)

AND 5F 101 1111

Y 101 1001 (uppercase)

This approach works properly for lowercase letters. It also gives the

desired smswer when applied to uppercase letters:

Y 101 1001 (uppercase)

AND 5F 101 1111

Y 101 1001 (uppercase)

That is, we can use the same operation on either uppercase or lowercase

letters and we will get uppercase letters. Remember that this technique is

designed to work only for letters.

Consider, for example, what would happen if we performed a logical

AND with the value 5F hex and the ASCII number 8. The bit patterns are

as follows:

8 011 1000 (number 8)

AND 5F 101 nil

001 1000 (control-X)

We have converted the number 8 into the character control-X. We must

therefore be careful to apply the conversion routine only to letters. (There

are several special characters, such as the braces, that are located with the

lowercase letters. However, this is not likely to be a problem.)

The macro contains the following instructions:

CPI 'Z'+7

JC

The CPI instruction determines whether the character is lowercase. The

value of the lowercase letter 'a' is seven greater than the value ofan upper-

case letter Z. So if the character has a value less than a lowercase letter 'a'

,

the JC instruction causes a branch around the logicalAND operation. (If

we consider it important enough, we could add a second test to the program

for characters that have values greater than z. This would ensure that the

program would only try to convert characters from 'a' to 'z'. However,

this is a minor point, because there are only a few characters in the ASCII

range beyond z.)

A second feature ofUCASE is the optional parameter. Ifthe parameter

BEGINNING A MACRO LIBRARY 121

is omitted, the character is expected to be in the accumulator. However, if

a register is given as a parameter, the assembler will insert additional in-

structions to operate on the character in the given register. For example,

the macro reference

UCASE C

will generate the additional instructions

PUSH PSW
MOV A,C

at the beginning of the macro expansion and the instructions

MOV C,A

POP PSW

at the end.

We will usually include macro UCASE in programs that require input

from the operator.

A MACRO TO CONVERT AN AMBIGUOUS FILE
NAME TO AN UNAMBIGUOUS FILE NAME

In Chapter 7 we will write a program for renaming disk files. The pro-

gram will allow ambiguous file names, and the original file name will be

given before the new file name.

If we give the command

RENAME SORT. PAS *.BAK

we want the result to be the same as if we had given the command

RENAME SORT. PAS SORT.BAK

That is, the file name *.BAK must be changed into SORT.BAK. This

conversion occurs in two steps.

TheCP/M system will convert the first parameter to a slightly different

form and place it in the file control block at 5C hex. This location is given

the symbolic name FCBl (or sometimes simplyFCB) in this book. CP/M
removes the decimal point separating the primary name from the exten-

sion. It then fills out the four characters of the primary name to eight

characters by using blanks, and it places them in memory starting at 5D
hex. The extension name is placed immediately after the primary name.

The second parameter is placed into memory starting at 6C hex. The

symbolic name FCB2 refers to this location. CP/M converts the asterisk

into eight question marks and puts them into memory starting at 6D hex.

122 MASTERING CP/M

The extension name is placed after the primary name. The second param-

eter becomes ????????.BAK.

At some point, the question marks in the second file name will have to

be converted by our program into the four letters 'SORT' and four blanks

corresponding to the first file name.

MacroAMBIG, given in Figure 4.22, can be used to convertanambiguous

AMBIG AAACRO OLD, NEW
;(Put current date here)

;lnline macro to change ambiguous file name
;at FCB NEW to match FCB OLD.

;Usage: AMBIG FCBl, FCB2

PUSH H
PUSH D

PUSH B

LXI H,NEW+1
LXI D,OLD+l
AAVI C,ll ;number of char

AMB2?:
MVI A/?'

CMP M ;question mark?

JNZ AMB3? ;no

copy one char from original to new

LDAX D ;get old char

MOV M,A ;put into new
AMB3?:

INX H ;new

INX D ;orig

DCR C ;count

JNZ AMB2?
POP B

POP D
POP H

;;AMBIG

ENDM

Figure 4.22: MacroAMBIG to Convert an Ambiguous File Name to an

Unambiguous File Name

BEGINNING A MACRO LIBRARY 123

file name located at one address to an unambiguous file name located at

another address. In this example, the address of the unambiguous file

name is the first parameter (OLD) and the address of the ambiguous file

name is the second parameter (NEW). Each character is examined, one at

a time. Whenever a question mark is found in the ambiguous file name, it

is replaced by the corresponding character ofthe unambiguous file name.

For example, the first question mark is replaced by S, the second by O,

and so forth. Copy this macro into your macro library.

Macro AMBIG begins by saving the original contents of the HL, DE,

and BC registers. ThenHL andDE are given the addresses corresponding

to the parameters NEW and OLD. Register C is loaded with the value of

1 1 , the file name length (8 + 3).

The accumulator is loaded with a question mark. Then each character

in the new name is compared to the question mark in the accumulator.

The instruction is

CMP M

If a question mark is discovered, the corresponding character is copied

from the old name. The instructions are as follows:

LDAX D

MOV M,A

After each comparison, the count in register C is decremented. When the

value reaches zero, the routine is finished. The original contents of the

registers are restored by POP statements.

A MACRO TO MOVE THE UPPER FOUR BITS

TO THE LOWER POSITION

The three methods of representing numbers in a computer are ASCII,

binary, and binary-coded decimal (BCD). ASCII numbers require seven

bits, so each byte can store a maximum of one ASCII character (digit).

With binary representation, we can code values from to 255 decimal

(one less than 2') in a single byte. WithBCD mode, each digit is coded with

four bits. Thus, a byte can represent BCD numbers from to 99.

The BCD method is nothing more than a hexadecimal coding, except

that the hex digitsA-F are not used. Therefore, a routine that converts a

binary number to hexadecimal can also be used to decode aBCD number.

In the next chapter we will write a macro for converting a binary number

to two hexadecimal characters.

There will be occasions, however, whenwe are only interested in the left

124 MASTERING CP/M

character (or nibble) of a BCD or hexadecimal number (for example, in

macroOUTHEX in Chapter 5). Therefore, we will now write a macro for

obtaining this upper half of the byte. Macro UPPER, shown in Figure

4.23, first rotates the upper four bits down to the lower four bits (by per-

forming the RAR instruction four times), and then zeros the new upper

four bits by performing a logical AND with the value OF hex. If the op-

tional parameter is provided, the operation is performed on the register

name (including memory) given as the parameter. Incorporate this macro

into your library and enter the name in the directory.

UPPER MACRO REG
;;(Put current date here)

;;Macro to move the upper 4 bits of the

;;accumulator to the lower 4 bits. The

;;new upper 4 bits ore zeroed.

;;Use this macro to isolate the left

;;character of packed BCD numbers.

;;Usage: UPPER ;rotate dov^n

OUTHEX ;print

IF NOT NUL REG

PUSH PSW ;save A
MOV A, REG ;move to A
ENDIF

RAR ;move to

RAR ;low half

RAR
RAR
ANI OFH ;mask upper

IF NOT NUL REG
MOV REG,A ;put back

POP PSW ;restore A
ENDIF

;;UPPER

ENDM

Figure 4.23: Macro UPPER to Move the Upper Four Bits ofa Byte to the Lower
Four Bits

BEGINNING A MACRO LIBRARY 125

A MACRO TO PERFORM 16-BIT SUBTRACTION

Both the 8080 and Z80 CPUs can perform 8-bit addition and 8-bit sub-

traction with and without considering the carry flag. In addition, the Z80

can perform 16-bit subtraction with carry. It is important to note,

however, that the Z80 double-register subtraction always includes the

carry in the subtraction. Therefore, we must reset the carry flag before we

do the subtraction. Of course, the carry flag reflects the resuh of the

subtraction.

The final macro in this chapter is given in Figure 4.24. It can be used to

perform 16-bit subtraction without considering the carry flag. We will

need to use macro SBC in several programs to calculate the distance from

one memory location to another.

This 8080 version of a double-register subtraction calculates the differ-

ence between the value in HL and the value in DE. The result is placed in

HL. The state of the carry flag at the beginning of the calculation is not

used, but the carry flag at the end of the process correctly reflects the

result. That is, if the original value in DE is larger than that in HL, the

carry flag will be set at the conclusion of the calculation. This macro is

SBG AAACRO

;;(Put current date here)

;;lnline macro to subtract DE from HL.

;;The result is in HL. This is almost

;;the Z80 SBC HL,DE opcode.

;; Usage: SBC
SBC HL,DE

MOV
SUB
MOV
MOV
SBB

MOV

A,L

E

L,A

A,H

D
H,A

;;SBC

ENDM

Figure 4.24: Macro SBC to Perform 16-Bit Subtraction without Carry

126 MASTERING CP/M

equivalent to the two Z80 instructions

OR A
SBC HL,DE

SUMMARY
In this chapter, we have explored the importance of macro processing

and we have developed several elementary macros. We will incorporate

these macros in the programs we write in later chapters. It should be noted

that these macros all have a common feature—they do not perform

BDOS calls. In the next three chapters we will consider macros that use

BDOS calls, and we will write programs that incorporate these macros.

The directory of your macro library should now look like this:

;,•Macros in this library Flags

;;AMBIG AAACRO OLD, NEW (none)

;;COMPAR AAACRO FIRST, SECOND, BYTES CAAFLAG

;;COMPRA AAACRO FIRST, SECOND, BYTES CAAFLAG

;;ENTER AAACRO (none)

;;EXIT AAACRO SPACE? (none)

;;FILL AAACRO ADDR, BYTES, CHAR FLFLAG

;;MOVE AAACRO FROAA, TO, BYTES AAVFLAG
;;SBC AAACRO (none)

;;UCASE AAACRO REG (none)

;;UPPER AAACRO REG (none)

;;VERSN AAACRO NUAA (none)

CHAPTER 5

USING BDOS
FOR
NONDISK
OPERATIONS

INTRODUCTION

In this chapter we will learn how to perform console input, console out-

put, and list output by using the CP/M basic disk-operating system

(BDOS). We will develop a number of useful macros to make these tasks

easier. Along the way, we will write macros that convert binary numbers

to decimal and hexadecimal characters, and hexadecimal characters to

binary numbers. Finally, we will incorporate these macros into four exe-

cutable programs that show us more about CP/M's organization. The

program CPU determines whether an 8080 or a Z80 CPU is being used;

lOBYTE displays and alters the CP/M lOBYTE feature we designed in

Chapter 3; GO branches to an absolute address in memory; PAGE ejects

one or more pages on the printer.

130 MASTERING CP/M

BDOS CALLS

As we saw in Chapter 1, the CP/M operating system divides the com-

puter memory into several distinct regions. The upper portion ofmemory
is called the full disk-operating system (FDOS) and is further divided into

two regions. The basic input-output system (BIOS) occupies the upper

part of FDOS, and the basic disk-operating system (BDOS) occupies the

lower part of FDOS. In Chapter 3 we studied the organization of the

BIOS and added several new features. We will now consider the BDOS.
The BIOS contains the primitive routines for operating the console, the

printer, and the disks. These routines must be specifically programmed
for the actual physical devices that are attached to the computer. Dif-

ferent computers will have different versions of BIOS. It is possible for

CP/M executable programs to perform input and output operations by
communicating directly with the BIOS. However, it is easier to use the

BDOS as an intermediate to BIOS. All console, printer, and disk opera-

tions can be performed through the BDOS by using a special location in

memory. Because BDOS is device independent, programs that operate on
one CP/M computer will also operate on any other CP/M computer,

even though the hardware and BIOS routines may be different.

Using BDOS to perform peripheral operations is not only more ver-

satile, it is also more convenient. Recall that the first three bytes in

memory, starting at address 0, contain a jump instruction to the warm-
start vector of the BIOS. The next byte, at address 3, contains the

lOBYTE. The following byte, address 4, indicates two things: the current

disk drive and the current user number. The next three bytes, starting at

address 5, contain a jump into the BDOS. This is the location that can

always be called when console, printer, and disk operations are needed.

Contrast this singlejump address into BDOS to the multiplejump vectors

at the beginning of the BIOS. The BIOS uses a separate entry point for

each different operation.

We will now consider some simple BDOS operations.

Nondisk BDOS Function Numbers

When an executable program interacts with the peripherals through the

BDOS, it calls the BDOS entry point at address 5. At this time, the C
register ofthe 8080 or Z80CPU contains a function number indicating the

desired operation. The information sent by the program is placed in theE
register if the value is byte size, or in the DE register pair if it is two bytes.

Information is usually sent back to the calling program in the accumu-

lator if byte size or in HL if it is two bytes.

USING BDOS FOR NONDISK OPERATIONS 131

Table 5.1: The Nondisk BDOS Functions

Function

number

(inQ Operation Value sent Value returned

1 Read console character in A
2 Write console character in E

3 Read reader character in A
4 Write punch character in E

5 Write list character in E

6 Direct console I/O FF (input) = not ready or

character (output) character inA
7 Determine lOBYTE byte in A
8 Set lOBYTE inE

9 Print buffer address in DE
10 Read buffer address in DE
11 Return console status byte in A
12 Return CP/M version byte in A and L

We can perform many different operations with BDOS calls. We can

divide the functions into two groups. One group deals with the console,

reader, punch, and list devices. The other group performs disk opera-

tions, which willbe considered in the next chapter. Herewe will look at the

nondisk functions. Table 5.1 summarizes the first 12 BDOS functions.

These functions deal with the four logical devices—the console, the

printer, the list, and the punch—as well as operations involving the

lOBYTE and the CP/M version number. We will be explaining these

operations as the chapter proceeds. Let us now consider a macro for per-

forming general BDOS calls.

A MACRO TO PERFORM BDOS CALLS
The BDOS functions all work in the same way. Address 5 is called with

the function number in register C. Information is sent in the E or DE

register and returned in the accumulator or HL. Because the contents of

the CPU registers change during the BDOS operations, it is usually

necessary to save the registers on the stack before calling the BDOS. The

registers are then restored after the return from BDOS. One note of cau-

tion, however: if we save the accumulator and flag register with a PUSH

PSW instruction and then restore them with POP PSW, we will lose any

132 MASTERING CP/M

information that was returned from BDOS in the accumulator.

Therefore, the accumulator should not be saved during input operations.

The macro shown in Figure 5.1 will be referenced by several other

macros we will write. Add it to your macro library in alphabetic order. Be

sure to enter the name into the directory at the beginning of the Ubrary.

Our macros are usually designed for direct, inline use. If a subroutine

or a line of text must be included, there is a branch to get around the

obstruction. Macro SYSF, however, is always referenced as a subroutine.

We do not have to include a branch around the routine, because macro
SYSF will generally be called by another macro that already includes the

branch. However, if you use macro SYSF directly in the line of instruc-

tions, you must provide a branch around the routine.

Macro SYSF has two dummy parameters. The first parameter is the

function number, which is loaded into register C. The second parsuneter

is optional. It will be used only when we must transfer a byte from the

accumulator to register E prior to calling BDOS for output (see macro
PCHAR in Figure 5.3).

The macro begins by saving the HL, DE, and BC registers on the stack

and loading the function number (the first parameter) into register C. If

the optional second parameter is provided, the value in the accumulator is

moved into registerE and the accumulator is saved withPUSH PSW. The
BDOS address is called to perform the desired function. After returning

from BDOS, the accumulator is restored with POP PSW if it was
previously saved. The other registers are restored and control returns to

the calling program.

A MACRO TO READ A SINGLE
CONSOLE CHARACTER
The first two BDOS functions are very important. Function 1 is used to

read a single character from the console, and function 2 is used to write a

single character on the console. Actually, these two functions are not

complementary. When a console character is read with function 1, it is

also displayed on the terminal at that time. Function 3 is similar to func-

tion 1 except that the character is obtained from the logical reader rather

than from the console.

We can obtain a single character from the console by placing the func-

tion number 1 in register C and calling address 5. The 8080 instructions

are as follows:

AAVI C,1

CALL 5

USING BDOS FOR NONDISK OPERATIONS 133

SYSF AAACRO FUNC, AE

;;(Put current date here)

;;AAacro to generate BDOS calls.

;;FUNC is BDOS function number for C.

;;THIS IS NOT AN INLINE AAACRO.

;;AAove A to E if there is a second parameter.

••Usage: OPEN: SYSF 15

PCHAR: SYSF 2,AE

PUSH H

PUSH D

PUSH B

AAV! CFUNC
IF NOT NUL AE

AAOV E,A

PUSH PSW
CALL BDOS
POP PSW
ELSE

CALL BDOS
ENDIF

POP B

POP D

POP H
RET

;;SYSF

ENDAA

Figure 5.1: Macro SYSF to Generate a BDOS Call

We can generate these instructions by using macro SYSF with the ap-

propriate parameter. When the instructions are executed, BDOS calls the

BIOS vector that performs console input. The next character entered

from the console is read by the BIOS. Control then returns to the calling

program through BDOS. The character is available in the accumulator.

Occasionally we will need to check the console status to determine

whether the user has pressed a console key. We will then place function

number 11 in register C and call the BDOS address. On return from

BDOS, the accumulator contains a value ofFF hex if a console character

;console and list

;save A

134 MASTERING CP/M

has been typed. The accumulator contains a value of otherwise.

When console input is performed with theBDOS function 1 , the system

waits until the console is ready. Because this function automatically per-

forms a status check, it is not necessary to determine the console status by

first making a call to BDOS function 11. On the other hand, if no

character is typed, program execution ceases until a character is typed.

WhenBDOS function 1 is used, printableASCII characters, such as the

letters and digits, are displayed on the video screen as they are entered.

Control characters such as the carriage return, line feed, tab (control-I),

backspace (control-H), and control-C can also be read in this way, but

they are not displayed on the screen.

MacroREADCH is given in Figure 5.2. Add it to your macro library. If

no parameter is given, this macro generates instructions to read one

character from the console and then return the character in the accu-

mulator. However, if a parsuneter is provided, the character is returned in

the register given by the parameter.

READCH AAACRO REG
;;(Put current date here)

;;lnline macro to read one character from

;;the console; character is returned in register

;;A unless a second parameter is given.

;,'Macro needed: SYSF

;;Usage: READCH
READCH C

LOCAL

CALL

IF

AROUND
RDCH?
NOT NUL REG

REG, AMOV
ENDIF

IF NOT CIFLAG

AROUND
RDCH?:

CIFLAG

JMP
SYSF

SET

ENDIF

TRUE ;only one copy

AROUND ;;READCH

ENDM

Figure 5.2: Macro READCH to Read One Console Character

USING BDOS FOR NONDISK OPERATIONS 135

A MACRO TO WRITE A SINGLE
CONSOLE CHARACTER

A program can perform console output by putting the character into

register E, the value of 2 in register C, and calling the BDOS entry at

address 5. Functions 4 and 5 are similar to function 2, the only difference

being where the output is sent. Ifthe function number in registerC is 4, the

byte in register E is sent to the punch device. If the function number is 5,

the value is sent to the list device.

Macro PCHAR, shown in Figure 5.3, performs the BDOS function 2.

We will use it frequently to send individual characters to the console,

referencing it from other macros we write. Incorporate this macro into

your library. Notice that macro SYSF is required.

MaCTO PCHAR can be used to display the byte that is present in the accu-

mulator. The macro name is placed in the source program as though it were

an operation code. This macro can also be used to display a particular

constant that is known at assembly time. The constant is given as a

PCHAR AAACRO PAR

;(Put current date here)

;lnline macro to print one console char.

;Parameter, if present, is loaded into A.

;AAacro needed: SYSF

;Usage: PCHAR
PCHAR

LOCAL AROUND
IF NOT NUL PAR

MVI A, PAR

ENDIF

CALL PCH2?

IF NOT COFLAG
JAAP AROUND

PCH2?: SYSF 2,AE

COFLAG SET TRUE ;only one copy

ENDIF

AROUND: ;;PCHAR

ENDM

Figure 5.3: Macro PCHAR to Display Single Characters on the Console

136 MASTERING CP/M

parameter to the macro reference. For example, if we want to print an

asterisk, we can use the expression

PCHAR

When the assembler encounters the parameter, it generates an additional

instruction to move the parameter into the accumulator. It thus generates

the same instructions as the two lines

MVI A,'*'

PCHAR

If two identical characters are needed, it is not necessary to give the

parameter the second time:

PCHAR '$' ;print dollar sign

PCHAR ;second dollar sign

These instructions will display two dollar signs. There is a potential prob-

lem, however, because the origin2d value in the accumulator is lost. For

example, suppose you want to print a particular character, then display

the original value in the accumulator. You will first need to save the value

that was originally in the accumulator. The program might look Uke this:

PUSH PSW
PCHAR '*' ;print asterisk

POP PSW
PCHAR ;original character

A MACRO TO DISPLAY A CARRIAGE RETURN
AND LINE FEED

PCHAR can be used to display single characters, but frequentlywe will

find it necessary to display a carriage return followed by a line feed.

Because this combination requires two references to PCHAR, we will

write a very short macro called CRLF to make the task easier. Copy the

macro shown in Figure 5.4 into your macro library.

Macro CRLF uses no parameters. It is referenced in a program

wherever a carriage return and Une feed are needed. The beginning of the

macro calls the global subroutine CRLF2? to perform the desired opera-

tion. The subroutine first saves the accumulator on the stack, then

references macroPCHAR twice. The accumulator is restored and control

is returned to the beginning of the macro. A jump instruction allows the

subroutine to be coded inline.

Two flags are needed with macroCRLF—COFLAG for macroPCHAR

USING BDOS FOR NONDISK OPERATIONS 137

CRLF AAACRO

(Put current date here)

Inline macro to send a

carriage return, line feed to console.

All registers saved including A.

Macro needed: PCHAR

CRLF2?:

CRFLAG

AROUND:

LOCAL AROUND
CALL CRLF2?

IF NOT CRFLAG

JMP AROUND

PUSH PSW
PCHAR CR
PCHAR LF

POP PSW
RET

SET TRUE

ENDIF

ENDM

;just one

;only one copy

;;CRLF

Figure 5.4: Macro CRLF to Generate a Carriage Return and Line Feed

and CRFLAG for this macro. The latter flag ensures that there will only

be one copy of subroutine CRLF2? and the corresponding jump instruc-

tion. Each additional reference to macroCRLF will only generate a call to

subroutine CRLF2?.

A PROGRAM TO TEST MACROS SYSF, READCH,
PCHAR, AND CRLF

The program shown in Figure 5.5 can be used to test macros SYSF,

READCH, PCHAR, and CRLF. Type in the program, assemble it, and

run it. The program begins with the usual macros ENTER and VERSN.

Then macro CRLF is used to begin a new Hne. Macro PCHAR prints a

colon for a prompt symbol and macro READCH waits for user input.

As soon as a single console character is typed, the progrjun continues.

An ASCII zero is subtracted from the user input. This operation converts

the ASCII digits 0-9 to the corresponding binary digits. Of course, all

138 MASTERING CP/M

TITLE 'TEST PCHAR'

;(Put current date here)

FALSE EQU
TRUE EQU NOT FALSE

1

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH ;program start

CIFLAG SET FALSE ;for READCH

CRFLAG SET FALSE ;tor CRLr

COFLAG SET FALSE ;for PCHAR

AAACLIB CPAAAAAC

ORG TPA

START:

ENTER

VERSN '(current date)'

NEXT:

CRLF

PCHAR ;prompt

READCH ;number of char

SUI '0' ;make binary

JZ DONE ;quit on zero

MOV C,A

PCHAR BLANK

LOOP:

PCHAR
DCR C
JNZ LOOP
JMP NEXT

DONE:

EXIT

END START

Figure S.S: Program to Test Macros SYSF, READCH. PCHAR, and CRLF

USING BDOS FOR NONDISK OPERATIONS 139

other input characters are altered also. If the user inputs a value of 0, the

program is terminated; otherwise, the value is saved in the C register. A
blank is printed and the number of asterisks corresponding to the user input

is displayed. The program then starts again.

An input in the range of 1—9 will produce as many asterisks. The

uppercase letter A will give 17 asterisks and the lowercase letter 'a' will

give 49 asterisks. Characters such as the dollar sign and percent symbol

have ASCII values less than the digits, but because they are altered by the

subtraction ofan ASCII zero, they will produce several lines of asterisks.

PRINTING A STRING OF CHARACTERS
In the previous section, we used BDOS function 2 to display individual

characters on the console, one at a time. However, frequentlywe will need

to display a string of characters such as the expression

?FILE NOT FOUND

This is easily accomplished with BDOS fimction 9. The string is placed into

memory and terminated with a dollar sign. The address of the beginning

of the string is loaded into theDE register and the value of9 is placed into

register C. When BDOS is called, the string is displayed on the console.

The dollar sign, of course, is not included in the display.

The program shown in Figure 5.6 demonstrates the use ofBDOS func-

tion 9 to print a string of characters on the console. The program uses

macro SYSF. Type in the program, assemble it, and execute it. The

resulting console output should be as follows:

A test of BDOS function 9

In this program, the desired string begins with a carriage return and line

feed. These two characters are embedded in the console buffer in this exam-

ple. Previously we used macro CRLF for this purpose.

The remaining text, including the terminal dollar sign, is enclosed by

apostrophes. The assembler places the text in memory immediately after

macro SYSF, which is implemented as a subroutine. The JMP DONE
statement provides a branch around both the subroutine and the string of

characters.

A Macro to Print a String of Characters

Using function 9 to display a string of characters is more efficient than

displaying individual characters with function 2. Nevertheless, we still

140 MASTERING CP/M

TITLE 'Print console buffer'

;(Put current date here)

ROOT ;system reboot

Dr\OCdUUo coi 1 5 ;BDOS entry point

TDA COI 1 100H ;transient program area

/

AAAL-LID CPAAAAAC

/

TDA
1 rA

CT A DT.b 1 AK 1

:

CKITCD

VERSN '(current date).CONSOLE BUFFER'

LXI DJEXT
CALL SEND
JMP DONE

SEND:

SYSF 9

TEXT:

DB CR,LF,'A test of BDOS'

DB ' function 9$'

DONE:

EXIT BOOT ;warm start

END START

Figure 5.6: Printing the Console Buffer

have to provide a branch around the string and a call to subroutineSEND.
In this sectionwe will write a new macro to further simpUfy the printing of

strings. Our goal will be a macro called PRINT. Its use will be as simple as

the following instruction:

PRINT 'A test of BDOS function 9'

That is, the parameter to the macro will be the string enclosed in

apostrophes.

Make a copy of the program shown in Figure 5 .6 and alter it to look Uke

Figure 5.8. We will use this program to test macro PRINT shown in

USING BDOS FOR NONDISK OPERATIONS 141

PRINT AAACRO TEXT

;(Put current date here)

;lnline macro to print a literal string.

;Macro needed: SYSF

;;Usage: PRINT 'message'

PRINT <CR,LF, 'message'>

LOCAL MESG, AROUND
PUSH D

LXI D,MESG
CALL PBUF?

POP D

JMP AROUND
IF NOT PRFLAG

;print message on console up to $

PBUF?:

SYSF 9

PRFLAG SET

ENDIF

TRUE

MESG: DB TEXT/$'

AROUND:

ENDM

;print message

;need subroutine

;no more copies

;;PRINT

Figure 5. 7: Macro PRINT, Version 1

Figure 5.7. You can incorporate this macro into your macro library now,

but we will be writing a more general version in the next section. Conse-

quently, you may want to temporarily insert this version into Figure 5.8,

the program to test the macro, rather than into your macro library. In that

case, place it directly after the MACLIB CPMMAC statement.

When the assembler encounters the PRINT macro, it places the desired

string into memory starting at the location MESG. A dollar sign is

automatically placed at the end of the string so that CP/M will know

where the buffer terminates. The original value in theDE register is saved

on the stack with a push statement, then the DE register is loaded with the

142 MASTERING CP/M

TITLE 'Print console buffer'

;(Put current date here)

FALSE

TRUE

EQU
EQU NOT FALSE

BOOT
BDOS
TPA

EQU
EQU
EQU

5

lOOH

;system reboot

;BDOS entry point

;transient program area

PRFLAG

/

SET

MACLIB

FALSE

CPMAAAC

;print console buffer

/

ORG TPA

START:

DONE:

ENTER

VERSN
PRINT

EXIT

'(current date)'

<CR,LF,'A test of BDOS function 9'>

BOOT ;warnn start

/

END START

Figure 5.8: Program to Test Macro PRINT

address of MESG, the start of the string. Subroutine PBUF? is called to

print the string. The DE register is restored with a POP command; a

branch around both the subroutine and the string concludes the PRINT

macro.

Several features should be noticed in this example. The symbol

PRFLAG is initially set to FALSE so that only one copy of subroutine

PBUF? is generated. PBUF? is a global variable, while the labels MESG
andAROUND are local variables. They will appear in each expansion of

the macro, but they will be different symbols. Finally, in the main program

we have surrounded the parameter to macro PRINT with angle brackets:

<CR,LF/A test of BDOS function 9'>

USING BDOS FOR NONDISK OPERATIONS 143

This step tells the assembler that the carriage return and line feed are to be

included in the text.

Assemble the new program and execute it. The result should be the

same as before.

Macro Print, Version 2

The macro we wrote in the previous section can be used to print strings

of characters embedded in the source program, but we cannot print a

dollar sign in this way. There will also be cases where we want to print a

string stored at a particular memory location. We might not even know
the location until execution time. We could adapt the previous macro for

this purpose ifwe place a dollar sign at the end of the string, but this may
not always be convenient. We will now rewrite macro PRINT so it can

display a string located anywhere in memory or given as the macro
parameter.

We will abandon the previous reference to BDOS function 9, which

prints a string of characters, and we will use function 2 instead. We will

print the characters one at a time using macro PCHAR. Macro PRINT
calculates the string length and then determines the number of times to

call the subroutine created by PCHAR. This may seem to be a step

backward, but it is not really. This version has the ability to print strings

from any memory location, and dollar signs can be embedded in the strings

as well.

Incorporate the second version of macro PRINT, shown in Figure 5.9,

into your macro library. Alter the test program in Figure 5.8 to look like

Figure 5.10, using the file name PRN2. Notice that two flags, COFLAG
and PRFLAG, are required. Also notice that no regular 8080 operation

codes are shown in this example. There are only macro references. Assemble

this program and execute it. Give the following CP/M command line:

PRN2 TEST OF PRINT

The program will respond with the following two lines:

The first 12 characters of the command line tail are:

TEST OF PRIN

This program contains three references to macro PRINT. The first two

are similar to the previous uses. The desired string is printed on the console:

The first 12 characters of the command line tail are:

The third reference, however, is different. The presence of the second

parameter in the macro reference is a signal to the assembler that the first

144 MASTERING CP/M

parameter contains the address of the string rather than the string itself.

The first parameter references the beginning of the string at DBUFF+2.

When any program is executed, CP/M places the command line tail in

memory starting at 82 hex. The HL register is therefore loaded with the

address of 82 hex (DBUFF+2).

Let us see how macro PRINT works by writing an executable program.

PRINT AAACRO TEXT, BYTES

;;(Put current date here)

;;lnline macro to print string on console.

;;TEXT is address of string, BYTES is length.

;;TEXT may be in quotes if BYTES is omitted.

;;Macro needed: PCHAR

;;Usage: PRINT FCB1+1, 11

PRINT 'end of file'

PRINT <CR,LF, 'message'>

PRINT , 12

LOCAL AROUND, MESG
PUSH H

PUSH B

IF NUL BYTES

LXI H,MESG
MVI B,AROUND-MESG

ELSE

IF NOT NUL TEXT

LXI H,TEXT

ENDIF

AAV! B, BYTES

ENDIF

CALL PBUF?

POP B

POP H

IF NOT PRFLAG OR NUL BYTES

JMP AROUND
ENDIF

IF NOT PRFLAG

Figure 5.9: Macro PRINT, Version!

USING BDOS FOR NONDISK OPERATIONS 145

PBUF?: MOV A,AA

PCHAR
INX H

DCR B

JNZ PBUF?

RET

PRFLAG SET TRUE

ENDIF

IF NUL BYTES

AAESG: DB TEXT

ENDIF ;;PRINT

AROUND:
ENDM

Figure 5.9 (continued)

TITLE 'Print console buffer'

(Put current dote here)

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH ;transient progronn area

DBUFF EQU 80H ;default buffer

COFLAG SET FALSE ;console output

PRFLAG SET FALSE ;print console buffer

/

AAACLIB CPMAAAC

/

ORG TPA

/

START:

ENTER

Figure 5.10: Program to Test Version 2 ofMacro PRINT

146 MASTERING CP/M

VERSN
PRINT

PRINT

PRINT

'(current date)'

<CR,LF/The first 12 characters of >
<'the command line tail are: ',CR,LF>

DBUFF+2, 12

DONE:
EXIT BOOT ;warm start

END START

Figure 5.10 (continued)

A PROGRAM TO DISCOVER WHICH CPU
IS BEING USED

The 8080 (and 8085) instruction set is incorporated into themuch larger

set of instructions used by the Z80 CPU. Consequently, 8080 executable

programs can usually be run on a Z80 computer. However, computer

programs that use the special features ofthe Z80, such as block moves and

relative jumps, will not run on an 8080 computer.

Because of this difference, it may be necessary for a computer program

to determine which CPU is being used. For example, if a program requires

the special Z80 instructions, it could terminate execution when it is run on

an 8080. Alternatively, two different sets of algorithms could be provided.

The more efficient version could be used when the program is run on a

Z80. Otherwise, the 8080 version could be selected.

Because the 8080 and Z80 CPUs respond differently to arithmetic

operations, they can be distinguished easily. The difference lies in the

behavior of the parity flag. The flag correctly reflects the result of logical

operations for both the 8080 and the Z80 CPUs. However, for arithmetic

operations the results are different. For the 8080, the flag reflects the parity

of the result, just as for logical operations. The Z80, however, sets the

parity flag only if there is overflow (from bit 6 to 7) during an arithmetic

operation. For this reason, the parity flag on the Z80 is called a parity/

overflow flag.

We can distinguish the 8080 and Z80 CPUs by using the following three

instructions:

XRA A
DCR A
JPE NOTZ80

USING BDOS FOR NONDISK OPERATIONS 147

The first ofthese instructions performs an exclusiveOR on the accumu-

lator with itself. This logical operation zeros the accumulator. It also sets

the parity flag (meaning parity is even) on both the 8080 and the Z80

CPUs, because there is an even number of ones (zero) in the result.

The next instruction decrements the accumulator, giving a value ofFF

hex. This arithmetic operation will leave the 8080 parity flag set, because

there is an even number of ones (eight). However, the Z80 parity/overflow

flag is reset by the decrement operation because there is no overflow. The

8080 CPU will branch at the JPE instruction because the 8080 parity flag

is set. The Z80 CPU, however, will not branch because the parity/overflow

flag is reset.

The above three lines could be incorporated into a Z80-only program

to detect when it was run on an 8080 CPU. Let us see how this works

by writing a short assembly language program.

The program given in Figure 5.11 will print the expression

CPU is Z80

when run on a Z80 computer. Otherwise the expression

CPU is 8080

will be displayed. Create a disk file named CPU. Type in the program,

assemble it, and execute it.

The program begins with the usual ENTER and VERSN macros. The

PRINT macro displays the beginning of the message. The CPU type is de-

termined by the next three lines. If theCPU is 8080, the program branches

to the label NOTZ80 and prints the message '8080'
. Otherwise the program

continues and prints the message 'Z80'.

Before we write our next executable program we will need to add two

macros to our library. The first macro converts binary numbers to hexa-

decimal characters and displays them on the console. The second macro

determines the CP/M version number.

TITLE 'CPU tells if 8080 or Z80'

;(Put current date here)

;Usage: CPU

Figure 5. 11: Program CPU to Determine whether CPU Is 8080 or Z80

148 MASTERING CP/M

FALSE EQU
TRUE EQU NOT FALSE

ROOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

FCBl EQU 5CH ;input FCB

FCB2 EQU 6CH ;2nd parameter

DBUFF EQU 80H ;default buffer

TPA EQU lOOH ;transient program area

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before AAACLIB call.

COFLAG SET FAI 'console outout

PRFLAG SET FALSE ;print console buffer

;end of flags

AAACLIB CPAAAAAC

ORG TPA

START:

ENTER

VERSN '(current date).CPU'

PRINT 'CPU is'

XRA A ;zero

DCR A
JPE NOTZ80
PRINT 'Z80'

JAAP DONE
NOTZ80:

PRINT ' 8080'

DONE:

EXIT

END START

Figure 5.11 (continued)

USING BDOS FOR NONDISK OPERATIONS 149

A MACRO TO CONVERT BINARY
TO HEXADECIMAL
A binary-to-hexadecimal conversion is needed in many of the programs

in this book. Any eight-bit binary value can be represented as two hexa-

decimal characters; the resulting hex number is in the range 0—FF hex.

As you know, information is stored in a computer as a sequence of

binary digits (0 or 1), with each digit being called a bit, and a group ofeight

bits being called a byte. Sometimes we need to determine the value of a

particular byte. However, we cannot simply transfer the byte to the con-

sole, because the console uses ASCII, a seven-bit code. For example, the

binary number

0100 ion

has a hexadecimal value of 4B. However, this bit pattern corresponds to

the ASCII letter K. So if this byte were sent to the console, we would see

the letter K. We need a routine to transmit the ASCII numeral 4 and then

the ASCII letter B. This is called a binary-to-hexadecimal routine.

Notice that for the above binary nimiber, the upper four bits correspond

to the left hex character (4) and the lower four bits correspond to the right

hex character (B):

Nibble ASCIIpattern Character

0100 00110100 4

1011 01000010 B

Notice that we need to display the left character before the right

character. Consequently, we must rotate the upper four bits to the lower

position. The new upper bits are then zeroed. When this happens, the pattern

0100 1101

becomes

1101 0100

and then

00000100

We must be careful to save the original byte prior to the rotation and zeroing,

or the right nibble will be lost.

Copy macroOUTHEX, showninFigure5.12, intoyour macro library.

This macro is used to convert a binary number to two hex characters that

are printed on the console screen. Ifthe optional parameter is omitted, the

150 MASTERING CP/M

OUTHEX AAACRO REG

;(Put current date here)

;lnline macro to convert binary number in

;REG to two hex characters and print them.

;Byte initially in A if REG omitted.

;Macro needed: PCHAR

LOCAL AROUND, HEXl ?,HEX2?

IF NOT NUL REG
AAOV A, REG

CINL'ir

OUTHX?
IPIr NOT CXFLAG
lAAP AROUND

OUTHX?: rUon B

/V\v./V C,A ;save

PAP
PAP

RAR
PAP
PAI 1 HEXl? ;high byte

AAOV A,C
CA\ 1 HEXl? ;low byte

AAOV A,C ;restore

POP B

RET

HEXl?: ANI OFH ;output hex byte

ADI '0' ;make ASCII

CPI '9'+l ,0-9?

JC HEX2? ;yes

ADI 'A'-'9'-l ;make A-F

HEX2?:

PCHAR ;to console

RET

CXFLAG SET TRUE

ENDIF

AROUND: ;;OUTHEX

ENDM

Figure 5.12: Macro OUTHEX to Display a Binary Byte in Hexadecimal

USING BDOS FOR NONDISK OPERATIONS 151

binary number in the accumulator is converted. If the binary number is

located in another register or in memory, the parameter references the

location.

Two different algorithms can be used to convert a four-bit nibble to an

ASCII character. The basic problem is to convert binary numbers from

0- 15 to the ASCII digits 0-9 and the ASCII letters A-F. We need to

convert the binary numbers to their ASCII equivalent expressed in hexa-

decimal notation, that is, to the base 16.

Let us study the bit patterns for the first ten numbers. The following list

gives the values in decimal, binary, ASCII, and hex:

:imal Binary ASCII Hex

0000 00110000

1 0001 00110001 1

2 0010 0011 0010 2

3 0011 0011 0011 3

4 0100 00110100 4

5 0101 00110101 5

6 0110 0011 Olio 6

7 0111 0011 0111 7

8 1000 0011 1000 8

9 1001 0011 1001 9

You can see from this Ust that there is a constant difference between these

binary numbers and their ASCII counterparts. The ASCII zero has a

hexadecimal value of 30 and the binary zero is 0, leaving a difference of

30 hex. We call this difference the ASCII bias. Thus a binary number in

the range 0—9 can be converted to its ASCII equivalent by adding the

ASCII bias. If the number is in the accumulator, the following instruc-

tion makes the conversion:

ADI '0'

If the nibble has a value greater than 9, the binary-to-hex conversion is

different. The patterns for this group are as follows:

Decimal Binary ASCII Hex

10 1010 0100 0001 A
11 1011 01000010 B
12 1100 01000011 C
13 1101 01000100 D
14 1110 0100 0101 E
15 nil 0100 0110 F

152 MASTERING CP/M

By studying this list, we can see that the offset between the binary and

ASCII values is 37 hex. Thus, we can make the conversion by adding the

offset of 37 hex to this second group of numbers.

We perform the binary-to-hex conversion by first adding the ASCII

bias of 30 hex. We use theADI '0' instruction for this. If the original nibble

was in the range 0—9, the result is the corresponding ASCII value from

0—9. However, if the original nibble was in the range 10—15, we add an

additional 7, the remainder of the larger bias. This produces the corre-

sponding ASCII charactersA- F. This additional amount is one less than

the difference between an ASCIIA and an ASCII 9. Therefore we use the

following instruction:

ADI 'A'-'9'-l ;makeA-F

The assembler determines that the operand has a value of 7 . In this way, a

binary two (0010) becomes the ASCII numeral 2. However, a binary ten

(1010) becomes the ASCII letter A.

A shorter and faster algorithm is sometimes used for the binary-to-

ASCII conversion, but it is more difficult to follow. The instructions

from ADI '0' to ADI 'A' - '9' - 1 are replaced by the following:

ADI 90H

DAA
ACI 40H

DAA

This approach uses the decimal adjust accumulator (DAA) operation.

The DAA command is designed for BCD arithmetic. After each add

instruction, the DAA command is given. This operation adds 6 to each

nibble if the value is greater than 9.

Let us consider this method of binary-to-ASCII hex conversion for a

binary two and a binary ten (hexadecimal A):

Binary Two Binary Ten

Original value 0000 0010 00001010

90 hex 1001 0000 1001 0000

ADI 1001 0010 1001 1010

DAA 1001 0010 0000 0000

40 hex 01000000 01000000

ACI 1101 0010 0100 0001

DAA 0011 0010 0100 0001

ASCII value 2 A

For the binary two, the first DAA operation does not change the value.

USING BDOS FOR NONDISK OPERATIONS 153

The second DAA instruction converts the 1101 of the left nibble to a

001 1 by adding the value of 6. The result is 32 hex, the ASCII numeral 2.

In the case of the binary ten, the first DAA operation converts 1001 1010

to 0000 0000 and sets the carry flag. The second DAA instruction does

nothing. The result is 41 hex, the ASCII letter A.

We will now develop a macro to determine the CP/M version number.

A MACRO TO FIND THE CP/M VERSION NUMBER
The original CP/M was given the version number 1.3. Subsequent ver-

sions are labeled 1.4, 2.0, 2.1, 2.2, and so forth. Many CP/M programs

will run on all versions. However, several powerful features were in-

troduced with version 2, and any program that uses these new features

cannot be executed on version 1. In fact, we will write a program in

Chapter 8 that uses the built-in disk-parameter tables, and it will not run

on version 1 for this reason. Programs that use the features of version 2

should determine the version number of the CP/M they are running on

and terminate if it is less than 2.

The CP/M version number is obtained with BDOS function 12. For

version 2 and above, the version number is multiplied by 10 and returned

in both the accumulator and register L as a packed BCD number. For

example, version 2.2 is represented by the number 22 hex. A value of

is returned for versions prior to 2.0.

MacroCPMVER can be used to determine whether version 2.0 or later

is being used. The macro is shown in Figure 5.13. Add it to your macro

library.

A PROGRAM TO DISPLAY THE lOBYTE VALUE
In Chapter 3 we learned how to map the four logical devices—console,

reader, punch, and list—into 16 physical devices. Then we incorporated

the lOBYTE feature into several BIOS routines. For example, by changing

the lOBYTE to 1 we can send console output to the printer.

We learned that it is possible to change the lOBYTE with the debugger,

with STAT, or with BASIC. However, it will be more convenient to

dedicate an executable program to reading and changing the lOBYTE.

We will develop the program in two parts.

We begin with a program to determine the current lOBYTE value and

display it in hexadecimal. As an added feature, the program will also

display the CP/M version number. Several of the macros we have written

are required.

154 MASTERING CP/M

CPAAVER AAACRO

;(Put current date here)

;lnline macro to determine the CP/M version.

;Accumulator has version in BCD times 10.

;A = 22 for version 2.2, A = for ver 1 .4.

PUSH H

PUSH D
PUSH B

AAV! C,12

CALL BDOS
MOV A,L

POP B

POP D

POP H

ENDM

;;not necessary

;CPMVER

Figure 5.13: Macro CPMVER to Determine the CP/M Version Number

Make a copy of the program shown in Figure 5.14, giving it the name

lOBYTE. Assemble it and execute it. The program will give the current

hex value of the lOBYTE and the CP/M version number. The program

obtains the CP/M version number with macro CPMVER. The version

number is obtained as a packed BCD number. However, we use macro

OUTHEX, our binary-to-hexadecimal converter, to display the results.

The original value is saved in the C register. Macro UPPER moves the

upper character to the lower position and zeros the upper four bits. A
logicalOR with an ASCII zero converts the binary digit to ASCII so it can

be printed by macro PCHAR. A decimal point is printed with PCHAR.
Then the original byte is retrieved from the C register and the lower

character is similarly converted to ASCII and printed.

Before completing our lOBYTE program we must add two more

macros.

A Macro to Read the Console Buffer

Earlier in this chapter we considered two kinds of output routines. One

type, usingBDOS function 2, displays individual characters one at a time.

An alternative approach, using BDOS function 9, prints an entire buffer

USING BDOS FOR NONDISK OPERATIONS 155

TITLE 'Show lOBYTE and Version'

also show CP/M version

(Put current date here)

Usage: lOBYTE

=ALSE EQU
TRUE EQU NOT FALSE

lOBYTE EQU 3

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

FCBl EQU 5CH ;input FCB

TPA EQU lOOH ;transient program area

Set flags in main progrann so only one

;copy of certain subroutines will be generated.

;Place set ines before AAACLIB call.

COFLAG SET FALSE ;console output

CXFLAG SET FALSE ;binary to hex

HXFLAG SET FALSE ;hex to binary in HL

PRFLAG SET FALSE ;print console buffer

RCFLAG SET FALSE ;read console buffer

;end of flags

AAACLIB CPAAAAAC

ORG TPA

START:

ENTER
VERSN '(current date).IOBYTEl'

PRINT ' lOBYTE is

'

AAVI C,7 ;get lOBYTE

CALL BDOS
OUTHEX

Figure 5.14: Program to Display thelOBYTE Value and the CP/M
Version Number

156 MASTERING CP/M

PRINT 'hex'

DONE:
PRINT ' for CP/M version

'

CPMVER
MOV r A ,*SQve

UPPER ;move down
ORI '0' /convert to decimal

PCHAR ;left digit

r\.riAK PERIOD

MOV A,C

ANI OFH

ORI '0' ;convert to decimal

PCHAR ;right digit

EXIT

END START

Figure 5.14 (continued)

of characters at one time. Similarly, we can input console characters one

at a time by using BDOS function 1, or we can read an entire line of

characters with BDOS function 10.

Macro READCH can be used to read single characters. We will now
use BDOS function 10 to develop a macro to input an entire line of

characters from the console.

When console characters are read with function 10, they are placed into

a memory region known as the console buffer. This buffer area must be

established prior to making the BDOS call. Two auxiliary bytes, located

immediately in front of the buffer, are associated with the buffer. The

first of these two bytes defines the buffer length, the maximum number

of characters it can hold. The second byte gives the actual number
of characters present in the buffer.

To use BDOS function 10, theDE register is loaded with the address of

the first auxiliary byte, register C gets the value of 10, and BDOS is called.

As each character is typed, CP/M places it in the buffer and also displays

it on the console screen. The function terminates when a carriage return is

entered or when the number of characters equals the maximum number

specified by the first auxiliary byte. CP/M also sets the second auxiliary

byte to the number of characters that were read. The following CP/M

USING BDOS FOR NONDISK OPERATIONS 157

control characters also can be used with this mode of data entry:

Character Meaning

E Begin new line

H Backspace

I Tab
P Engage/disengage printer

R Reprint Une

U Cancel line

X Cancel line

We will now develop macro READB, shown in Figure 5 . 1 5 , to read the

console buffer. The instructions at the beginning of the macro implement

the BDOS call to fill the console buffer. The buffer itself is located at the

end of the macro; it is given the label RBUF. The auxiliary bytes are called

RBUFM and RBUFC.

RBUFM: DB RBUFE-RBUF ;maximum count

RBUFC: DS 1 ;actual count

RBUF: DS 16 ;buffer start

RBUFE: ;buffer end

The DE register is loaded with the address of RBUFM, the location of

the maximum buffer length. Notice that the assembler calculates this

length by subtracting the address of the buffer beginning (RBUF) from

the address of the buffer end (RBUFE). When the buffer operation is

completed and control returns to the calling program, the locationRBUFC

READB AAACRO
;(Put current date here)

;lnline macro to input a line from console.

;Buffer is located at end of macro.

;Get characters from buffer by calling

;global subroutine GETCH in this macro.

;Buffer pointer RBUFP is also global.

LOCAL AROUND, RBUFM, RBUF, RBUFC, RBUFE

CALL RDB2?

IF NOT RCFLAG

Figure 5.15: Macro READB to Read the Console Buffer

158 MASTERING CP/M

JMP AROUND
RDB2?:

PUSH H
PUSH D

PUSH B

LXI D,RBUFM
AAVI C,10

CALL BOOS
LXI H, RBUFAA+ 2

SHLD RBUFAA-2
POP B

POP D

POP H
RET

(•global routine to get char from buffer

GETCH:

LDA RBUFC ;get count

SUI 1 ;decr with carry

RC ;no more char

STA RBUFC
PUSH H

LHLD RBUFP

MOV A,AA ;gef char

INX H ^next

SHLD RBUFP

POP H
RET

RCFLAG SET TRUE ;only one copy

RBUFP: DW RBUF ;buffer pointer

;console buffer address

RBUFAA: DB RBUFE-RBUF ;max length

RBUFC: DS 1

RBUF: DS 16 ;buffer start

RBUFE: ;buffer end

ENDIF

AROUND ;;READB

ENDAA

Figure 5.15 (continued)

USING BDOS FOR NONDISK OPERATIONS 159

contains the actual number of characters read during the input step.

After a line of characters has been placed in the console buffer with

BDOS function 10, it is necessary to get the characters from the buffer.

The middle portion of macro READB contains a separate global sub-

routine called GETCH for this purpose. Each time subroutine GETCH is

called, it returns with the next character in the accumulator.

When subroutine GETCH takes a character from the buffer, it decre-

ments the count of remaining characters stored at location RBUFC. To

make this task easier, a buffer pointer, RBUFP, is used. This pointer is set

to the first character when the buffer is initially filled. Each timeGETCH
removes a character, it increments the pointer.

The carry flag is reset each time GETCH returns a valid character.

However, if there are no rem£iining characters whenGETCH is called, the

carry flag is set. Thus, it is important to check the carry flag immediately

after a return from subroutineGETCH. The buffer pointer, RBUFP, is a

global symbol. It can therefore be accessed by any other part of the pro-

gram. Incorporate macro READB into your macro library.

A Macro to Convert Hexadecimal to Binary

Earlier in this chapter we considered a macro to convert a binary

number to a hexadecimal number; we will now consider a complementary

program to convert a hexadecimal number to a binary number. Macro

HEXHL, shown in Figure 5.16, reads ASCII characters from the console

buffer and converts them to a 16-bit binary number in the HL register.

The characters must first be read, so macro READB must be referenced

before macro HEXHL. This macro also requires macro UCASE.

MacroHEXHL operates on a series ofvalid ASCII-coded hex numbers.

A blank character or the end of the buffer normally terminates the opera-

tion. If a nonhexadecimal character is encountered, the carry flag is set.

Thus, you should check the state of the carry flag at the end of this step.

Copy macro HEXHL into your macro library.

HEXHL AAACRO
;;(Put current date here)

;;lnline macro to convert ASCII hex characters

;;in buffer to a 16-bit binary number in HL.

Figure 5.16: Macro HEXHL to Convert a String ofASCII Hex Characters to a

16-Bit Binary Number

160 MASTERING CP/M

;;Character string is addressed by POINTR

;;Carry flag set if invalid hex character found.

;;AAacros needed: READB, UCASE

LOCAL AROUND, RDHL2, NIB?

CALL RDHL?

IF NOT HXFLAG ;one copy only

JMP AROUND
RDHL?:

LXI H,0 ;start with

RDHL2:

;get character from console buffer

CALL GETCH
CMC
RNC ;end of line

UCASE ;make uppercase

CALL NIB? 1 \\J vjW lUt y

RC
DAD H ^ 1 1 1 1 ^

DAD H ^ 1 1 1 1 *T

DAD H
DAD H f\\\ 1 1 \j

ORA L

MOV L,A •ni it hor'l^'

JMP RDHL2 ;next

;convert ASCII to binary

NIB?: SUI '0' ;ASCII bias

RC ;<
CPI 'F'-'O'+l

CMC
RC ;>F
CPI 10

CMC
RNC ;a nunnber 0-9

SUI 'A'-'9'-l

Figure 5.16 (continued)

USING BDOS FOR NONDISK OPERATIONS 161

CPI 10

RET

HXFLAG SET

ENDIF

TRUE ;only one copy

AROUND:
ENDM

;;HEXHL

Figure 5.16 (continued)

lOBYTE, Version 2

The program we wrote previously can be used to display the current

value of the lOBYTE at address 3. We will now add a new feature to this

program—the ability to alter the value of the lOBYTE.

Make a copy of the first lOBYTE program (Figure 5. 14) and alter it to

look like Figure 5. 17. Assemble the new version and execute it. If the pro-

gram is executed as before, without a parameter on thecommand line, the

TITLE 'lOBYTE: show or change'

;also show CP/M version

;(Put current date here)

;Usage: lOBYTE

lOBYTE CO

(performs warm start to reset memory pointer

FALSE EQU
TRUE EQU NOT FALSE

lOBYTE EQU 3 ;memory location

BOOT EQU ;system reboot

BDOS EQU ^ 5 ;BDOS entry point

FCBl EQU 5CH ;input FCB

FCB2 EQU 6CH ;2nd parameter

Figure S.17: Program lOBYTE to Display and Change the lOBYTE

162 MASTERING CP/M

DBUFF EQU 80H ;default buffer

TPA EQU lOOH ;transient program area

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before AAACLIB call

COFLAG SET FALSE ;console output

CXFLAG SET FALSE ;binary to hex

HXFLAG SET FALSE ;hex to binary in HL

PRFLAG SET FALSE ;prlnt console buffer

RCFLAG SET FALSE ;read console buffer

;end of flags

AAACLIB CPAAAAAC

ORG TPA

START:

ENTER

VERSN '(current date).IOBYTE

'

LXI H,FCB1+1 ;parameter if any

AAOV AAA ;first byte

CPI BLANK ;anything?

JZ NOPAR ;no

;use FCB as buffer

SHLD RBUFP

LDA 80H /buffer length + 1

DCR A ;skip the blank

STA RBUFP+ 3 ;save the count

AGAIN:
HEXHL ;hex to binary

JC BADPAR ; input error

AAOV E,L

AAVI C,8 ;set lOBYTE

CALL BDOS
JAAP DONE

Figure 5.17 (continued)

USING BDOS FOR NONDISK OPERATIONS 163

BADPAR:
PRINT 'Enter the hex value:

'

READS ;try again

JMP AGAIN

NOPAR:
PRINT ' lOBYTE Is

'

MVI C,7 ;get lOBYTE

CALL BDOS
OUTHEX
PRINT 'hex'

DONE:
PRINT ' for CP/AA version

'

CPMVER
AAOV C,A ;save

UPPER ;move down

ORI '0' ;convert to binary

PCHAR ;left digit

PCHAR PERIOD

AAOV A,C

ANI OFH

ORI '0' ;convert to decimal

PCHAR ;right digit

EXIT BOOT ;warm start

END START

Figure 5.17 (continued)

current value of the lOBYTE and the CP/M version wiU be displayed.

Alternatively, if a valid hexadecimal character is given as a parameter, the

lOBYTE is changed to the desired value. Finally, if an invalid hexa-

decimal number is entered, the value is requested again.

If your BIOS incorporates the lOBYTE feature, you can test the new

version of this program. (Adding the lOBYTE feature to BIOS is described

in Chapter 3.) Suppose, for example, that the current value of the

lOBYTE is and a value of 1 sends console output to the printer. Change

the lOBYTE to 1 with the command

lOBYTE 1

Console output should now appear at the printer. To return to the

164 MASTERING CP/M

previous state, give the command

lOBYTE

The program begins with macrosENTER and VERSN. Then a check is

made to see if a parameter was included on the command line. CP/M
places the first parameter, if present, in the first file control block (FCBl)

starting at 5C hex. If there is no disk-drive parameter, as in the present

application, the byte at 5C hex is automatically zeroed. The parameter

then begins at the next location, 5D hex. If no parameter was entered on

the commemd line, there will be a blank at location 5D hex (FCBl 4- 1).

The program then prints the current value of the lOBYTE and the CP/M
version.

If a parameter was entered on the command line, then the byte at

FCBl + 1 will not be blank. The next step is to convert the one or two

ASCII characters to a binary number and store the result in the lOBYTE
location at address 3. Macro HEXHL is used for this purpose. Re-

member, however, that this macro was written to obtain its characters

from the console buffer. Therefore, we set the console buffer pointer

(RBUFP) to the beginning of the file control block (FCBl -I- 1).

We also need to set the number of characters in the buffer. This is ob-

tained from the default console buffer at 80 hex. The first parameter

begins at address 82 hex, and the number of characters that was entered

appears at address 80 hex. This count is actually one character too large,

because it includes the space in front of the parameter. Consequently, the

following instructions get the character count, decrease it by one to account

for the blank, and store the value in our console buffer at locationRBUFC:

LDA 80H ;buffer length -|- 1

DCR A ;skip the blank

STA RBUFP-l-3 ;save the count

Macro HEXHL is now executed to convert the parameter to a binary

number. If an invalid hexadecimal character is encountered, a new value

is requested from the user. In this case, macro READB is called to get the

desired value. We will now use macro HEXHL in another program to

branch to an arbitrary memory location.

A PROGRAM TO GO TO ANY ADDRESS IN MEMORY
A program can be executed under CP/M by typing its name and any

parameters. TheCP/M system copies the executable image from disk into

memory starting at the TPA (address 100 hex). CP/M then branches to

USING BDOS FOR NONDISK OPERATIONS 165

address 100 hex to start the program. Sometimes, however, we may need

to go to an address other than 100 hex. For example, there may be a boot-

strap loader or a monitor at a high memory location. Suppose that we

have two different versions of BIOS, each one saved on a different system

disk. We could change from one system to another simplyby changing the

diskette and branching to the bootstrap loader. We can execute the

debugger DDT or SID in this case, using the debugger G command to

force a branch to the desired address.

Alternatively, the program shown in Figure 5.18 can be used to branch

TITLE 'GO anywhere in mennory'

(Put current date here)

;Usage: GO (address)

GO
*(acld ress)

;macro ibrary for CP/AA system cal Is

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

FCBl EQU 5CH ;input FCB

FCB2 EQU 6CH ;2nd parameter

DBUFF EQU 80H ;default buffer

TPA EQU lOOH ;transient program area

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before AAACLIB call.

COFLAG SET FALSE ;console output

HXFLAG SET FALSE ;hex to binary in HL

PRFLAG SET FALSE ;print console buffer

Figure 5.18: Program GO to Branch Anywhere in Memory

166 MASTERING CP/M

RCFLAG SET

;encl of flags

ORG
/

START:

FALSE ;read console buffer

AAACLIB CPAAAAAC

TPA

VERSN '(current date).GO

'

LXI H,FCB1 +1 ;parameter if any
MOV A,M ;first byte

CP! BLANK /anything?

JZ NOPAR ;no

as buffer

SHLD RBUFP ;save pointer

LDA 80H ;console buffer le

DCR A ;skip the blank

STA RBUFP+ 3 ;save the count

HEXHL ;hex to binary

JC NOPAR ; input error

AGAIN:

PCHL

Improper parameter, try again

NOPAR:

;go to address

PRINT 'Enter the hex address:

'

READB ; input console line

JMP AGAIN ;try again

END START

Figure 5.18 (continued)

to any memory address. The desired hexadecimal address can be given on
the command Une, or it can be given after the program has started. For
example, the command

GOE800

will cause a branch to the address E800 hex.

USING BDOS FOR NONDISK OPERATIONS 167

This program is very similar to lOBYTE version 2. Macros VERSN,

HEXHL, READB, and PRINT are required. Notice that we did not save

the incoming stack pointer in this program.

Create a file named GO. Type in the program, assemble it, and run it. If

you have a monitor in memory, branch to it with theGO command. Even

if you have nowhere else to go, you can test the program. Give the com-

mand ofGO without a parameter. When the program requests an address,

give a value of 0. This will cause CP/M to perform a warm start.

A PROGRAM TO EJECT PAGES ON THE PRINTER
The last program in this chapter will allow us to eject one or more pages

on the printer. We will need a new macro, called LCHAR, for this program.

MacroLCHAR performs the same task on the printer that macroPCHAR
does on the console. In fact, it would be relatively easy to combine the two

macros into one, but referencing the combination macro would then be

more complicated. Consequently, we will keep the two separate.

Place a copy of macro LCHAR (Figure 5.19) in your macro library.

The easiest way to do this may be to make a dupUcate of macro PCHAR.

Then change every occurrence of the three letters PCH to LCH on the

copy. Also, change the first parameter in the reference to macro SYSF

from the value of 2 to the value of 5.

Create a file named PAGE. Type in the program shown in Figure 5.20

and assemble it. The program begins with macros ENTER and VERSN.

Then the file control block is tested to see if a parameter was entered on

the command line. This time, however, we use the command

LDA FCBl+1

for this purpose. If this location is blank, no parameter was entered and

one page will be ejected. Ifa parameter was included in the command, it is

used to determine how many pages are ejected. To avoid getting too many

pages, only the lower three bits of the input value are used. This allows a

maximum of seven pages to be ejected.

There are two loops in the main part of the program. The outer loop

counts the number of pages. The inner loop counts the number of lines.

Macro LCHAR is used to send line feeds to the printer. This program is

very simple, but it demonstrates several important features. For example,

in previous programs we checked the location 5D hex (FCB+l) to see

whether a filename was given as a parameter on the command line. In this

program, however, we expect the parameter to be a decimal number.

168 MASTERING CP/M

LCHAR AAACRO PAR
;(Put current date here)

;lnline macro to send one char to list.

;Optional PAR is loaded into A.

;Macro needed: SYSF

;Usage: LCHAR
LCHAR CR

LCHAR

AROUND
IF NOT NUL PAR
MVI A, PAR
ENDIF

CALL LCH2?

IF NOT LOFLAG
JMP AROUND

LCH2?: SYSF 5, AE ;list char

LOFLAG SET TRUE

ENDIF

AROUND: ;;LCHAR

ENDM

Figure 5.19: Macro LCHAR to Print Characters on the Printer

TITLE 'PAGE: eject pages on printer'

;(Put current date here)

;Usage: PAGE

; PAGE 3

FALSE EQU
TRUE EQU NOT FALSE

Figure 5.20: Program PAGE to Eject Pages on the Printer

USING BDOS FOR NONDISK OPERATIONS 169

BDOS EQU 5 ;BDOS entry point

TPA EQU 1CX)H ;transient program area

FCBl EQU 5CH ;parameter

LPAG EQU 66 ;lines per page

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set ines before AAACUB coll.

LOFLAG SET FALSE ;list output

;end of flags

CPAAAAAC

/

ORG TD A

START:

ENTER
'(current date). PAGE

'

MVI C,1 ;set for one page

LDA FCBl +

1

;parameter?

CPI BLANK
JZ NPAGE ;no

ANI 3 ;maximum number

MOV C,A

NPAGE:
MVI B,LPAG

LINES:

LCHAR LF

DCR B

JNZ LINES

DCR C ;more pages?

JNZ NPAGE ;yes

DONE:
EXIT

1

END START

Figure 5.20 (continued)

170 MASTERING CP/M

SUMMARY
We began our macro library in Chapter 4 with several general-purpose

routines. In this chapter we have added macros that interact with the

peripherals through the CP/M BDOS. These include macros to write

characters on the console, read characters from the console, read and

write the console buffer, and make base conversions. We wrote four ex-

ecutable programs, primarily to learn more about howCP/M is organized.

Of course, these programs are useful in their own right.

The directory of your macro library should now look like this:

;Macros in this library Flags

•AMBIG AAACRO OLD, NEW (none)

•COMPAR MACRO FIRST, SECOND, BYTES CAAFLAG

•COMPRA AAACRO FIRST, SECOND, BYTES CAAFLAG

;CPMVER AAACRO (none)

;CRLF AAACRO CRFLAG, COFLAG
;ENTER AAACRO (none)

;EXIT AAACRO SPACE? (none)

;FILL AAACRO ADDR, BYTES, CHAR FLFLAG

;HEXHL AAACRO POINTR HXFLAG, RCFLAG

;LCHAR AAACRO PAR LOFLAG

;MOVE AAACRO FROAA, TO, BYTES AAVFLAG

;OUTHEX AAACRO REG CXFLAG, COFLAG
;PCHAR AAACRO PAR COFLAG
;PRINT AAACRO TEXT, BYTES PRFLAG, COFLAG
;READB AAACRO BUFFR RCFLAG

;READCH AAACRO REG CIFLAG, COFLAG
;SBC AAACRO (none)

;SYSF AAACRO FUNC, AE (none)

;UCASE AAACRO REG (none)

;UPPER AAACRO REG (none)

;VERSN AAACRO NUAA (none)

CHAPTER 6

READING
DISK
FILES
WITH BDOS

INTRODUCTION

In Chapter 5 we developed macros and programs for performing

CP/M operations using BDOS calls. However, we did not consider disk

operations. In this chapter we will expand our capabilities to include

reading disk files. We will learn how to write disk files in Chapter 7. We
begin by summarizing the organization of the disk and the way CP/M
stores information on it. Then we will develop several important macros

for disk operations. To demonstrate the use of these macros, we will write

several executable programs: SHOW to display ASCII files on the console,

DUMP to display aCOM disk file inASCII and hexadecimal, ADDRESS
to address an envelope from an existing letter file, and PAIR to count

pairs of control characters.

THE nLE CONTROL BLOCK
The disk surface is partitioned into concentric tracks, which eire further

subdivided into sectors. The disk hardware is able to address these sectors

174 MASTERING CP/M

individually. However, CP/M accesses a larger unit called a block. A
single-density disk has a block size of 1024 (IK) or 2048 (2K) bytes.

Double-density disks have a block size of 2K, 4K, 8K, or 16K bytes. There

are 128 bytes of information on each sector. Therefore, a IK block con-

tains 8 sectors and a 2K block contains 16 sectors.

Each file on a CP/M disk is described by a 32-byte file control block

(FCB) that is written into the disk directory. The first 16 bytes of theFCB
give the name of the file, its length, and other characteristics. The remain-

ing 16 bytes of the FCB specify the disk location of each block contained

in the file.

Before a disk file can be accessed, a second copy of the FCB must be

created in memory. As the disk file is altered, the memory version of the

FCB changes. At the end of a write operation, the disk version ofthe FCB
will be updated from the memory version. We must be able to distinguish

the two versions of the FCB, because they are sometimes different.

Unfortunately, there is no standard terminology for this distinction.

However, in this book we will use the expressions memory FCB and disk

FCB when this distinction is necessary. We will use the unqualified ex-

pression FCB when both versions are the same.

Before we look at the details of the FCB, let us review binary coding.

Data are written onto the disk as a sequence of binary digits (0 or 1),

just as in memory. As we saw in Chapter 5, information is represented

sometimes in regular binary form and other times in ASCII. For example,

the bit patterns for a binary five and an ASCII five are as follows:

Binary Five ASCII Five

00000101 00110101

Some of the bytes of the FCB are coded in regular binary; other bytes

are in ASCII. We generally express regular binary numbers in hexa-

decimal form. Thus a binary three would be shown as 03. We could also

express the ASCII characters in hexadecimal form, but it is more useful to

show them in ASCII. Therefore, an ASCII three is shown as 3 rather than

its hexadecimal value of 33.

We now turn to the details of the FCB. The first byte of the disk FCB
contains the user number. This is a binary number from —F hex. By con-

trast, the first byte of the memory FCB specifies the disk drive. This is a

binary number from 0— 10 hex. Drives A, B, and C correspond to values

of 1, 2, and 3. The maximum allowable value is 10 hex, corresponding to

drive P. A vEilue of in this first position refers to the default or currently

logged-in drive. The next eight bytes of the FCB (bytes 1—8) contain the

file name in ASCII. This field is filled out with blanks if necessary. The

READING DISK FILES WITH BDOS 175

file name extension is stored in the next three bytes (bytes 9—11). This is

an optional field that is used to describe the nature of the file. We have

seen that the extensionBAS is used for BASIC files, FOR forFORTRAN
files, BAK for backup files, and so forth. This field is also filled with

blanks if necessary.

Large files require more than oneFCB for the complete specification of

all the blocks. In this case there will be more than one FCB with the same

file name. The next byte (12) distinguishes FCBs with the same file name.

The number in this position is called the extent. It will be zero for small

files. The next two bytes need not concern us. The last byte in this half of

the FCB (15) gives the number of records (128-byte sectors) in the FCB.

The remaining 16 bytes of the FCB give the location of each block of sec-

tors on the disk.

Five sample diskFCBs are shown in Figure 6.1. Remember, the informa-

tion is actually present as a sequence of bits. However, in this figure the

file names are shown in ASCII, while the other information is given in

hexadecimal notation. Three columns of space have also been added for

clarity.

00 CPMIO ASn 00000055 02030405060708090A0B0C0000000000
00 CPMIO HEX OOOOOOOC CD000000000000000000000000000000
00 SORT COM 00000080 1213141 5161 71 81 91 A1B1C1D1E1F2021
00 SORT COM 01000080 22232425262728292A2B2C2D2E2F3031
00 SORT COM 0200000A 32330000000000000000000000000000

Figure 6. 1: Five File Control Blocksfor Three Files

The initial byte of each entry is zero, indicating that all of these files

were saved by user zero. The first file, CPMIO.ASM, contains 55 (85

decimal) records and is found on blocks 02—OC. The next file,

CPMIO.HEX, contains OC records and is located entirely in block OD.

The third, fourth, and fifth entries in the figure are named
SORT.COM; they all refer to the same file. Each of these entries has the

same file name but a different extent number. The file is so large that one

FCB is not sufficient to describe it. The first 80 records (blocks 12—21)

are referenced by the first extent (0). Blocks 22— 3 1 are referenced by the

second extent (1). The remaining OA records (blocks 32 and 33) are

referenced by the third extent (2).

Later in this chapter we will write macros to activate and read disk files.

However, we must consider the possibility of a misspelled file name. We
will therefore add a macro to handle error messages.

176 MASTERING CP/M

A MACRO TO DISPLAY AN ERROR MESSAGE
AND ABORT THE PROGRAM
Each time a program requests data from the console, a check should be

made to see that the information is meaningful. An error message should

be given if it is not. For example, suppose that an alphabetic character is

given when a decimal number is needed. The operator should be informed

of the problem.

There is a second matter we must consider. The statements of a com-

puter program are normally executed in order. However, when an error is

discovered, we will want to execute an alternate set of instructions and

perhaps terminate the program. Let us combine these two ideas—displaying

an error message and branching to an alternate location—into a macro

called ERRORM.
We previously wrote macro PRINT to send messages to the console.

We will reference macro PRINT to display the error message. (We have

seen that one macro can reference another.) Then we will branch to our

alternate location. MacroERRORM is given in Figure 6.2. Add it to your

macro library. Macros PRINT and CRLF are referenced within it.

This macro has two parameters. The first ptirameter is the text of the error

message. The second parameter is the branch address after the error

message is printed. If this parameter is omitted from the macro reference,

a warm start is performed by a branch to the address of BOOT.
Notice that the parameter in the reference to macro PRINT is enclosed

in angle brackets. This construction is necessary if the first parameter to

ERRORM is enclosed in angle brackets. The macro assembler removes

one set of angle brackets each time a macro is expanded. Thus, one pair of

brackets is removed when macroERRORM is expanded and a second pair

of brackets is removed when macro PRINT is expanded. The angle

brackets are necessary because commas are sometimes used in the text of

the parameter as well as in separating one parjuneter from another. The

assembler interprets commas as parameter separators unless they are

within angle brackets. For example, the expression

ERRORM <CR,LF/?Fileexists'>

contains only one parameter. However, the expression

ERRORM CR,LF/?File exists'

contains three parameters.

Now that we have reviewed the fundamentals ofCP/M file organization

and written a macro to display error messages, we can learn how to access

an existing disk file.

READING DISK FILES WITH BDOS 177

ERRORM AAACRO TEXT, WHERE
;(Put current date here)

;AAacro to print message on console.

;AAessage is enclosed in apostrophes.

;Optional second parameter has branch address.

;lf no second parameter, go to BOOT.

;Macros needed: PRINT, CRLF

;Usage: ERRORM 'Message'

CRLF

PRINT <TEXT>

IF NUL WHERE
JMP BOOT ;quit

ELSE

JMP WHERE
ENDIF ;,ERRORM
ENDM

Figure 6.2: Macro ERRORM to Display an Error Message

andAbort the Program

OPENING AN EXISTING DISK FILE

An existing disk file must be opened with BDOS function 15 before it

can be referenced. A memory FCB must be allocated and partially filled

out prior to the function call. The open operation fills out the remainder

of the memory FCB from the disk FCB. The necessary information is as

follows:

Byte Data

Disk drive number
1—8 Filename
9—11 File name extension

12 Extent (set to zero)

32 Record number (set to zero)

We saw earlier in this chapter that the memory FCB contains the drive

number at position 0. The value is set to for the default drive, 1 for drive

A, 2 for drive B, and so on. The file name and extension are placed in the

178 MASTERING CP/M

next 1 1 bytes; they have the usual ASCII form. The extent byte at position

12 is set to zero. If the usual sequential access is desired, the record

number byte at position 32 must be zeroed as well.

It will usually be necessary to provide all of the above information each

time we open an existing disk file. Consequently, we will want to write a

macro to make this task easier. But before we do this, let us see how

CP/M can help us construct the memory FCB.

Constructing a Memory FCB with CP/M

When a program is executed from the command level of CP/M, there

may be one or more parameters. The parameters given on the command

line areknown collectively as the tail. They are automatically placed in the

console buffer starting at address 82 hex. CP/M also begins a memory

FCB for the first parameter, including the disk drive, file name, and file

type (bytes 0-11). The FCB is located at address 5C hex. If a second

parameter is given on the command line, CP/M also begins a secondFCB
at address 6C hex.

We can useDDT or SID to see howCP/M sets up the memory FCB. We
will execute the debugger with a single parameter. Thenwe can display the

^propriate regions of memory to see what CP/M has done. When the

debugger is executed with a parameter, it will attempt to access the re-

quested file. However, if the debugger finds the requested file, it will be

loaded into memory and theFCB will be deleted. Therefore, you must use

a nonexistent disk file for this example.

Suppose that DDT is located on drive A. Go to drive B and give the

command

A:DDT FIRST.EXT

or

A:SID FIRST.EXT

(Remember that there must be no file named FIRST.EXT on drive B.)

The conunand may be entered in either uppercase or lowercase letters.

This command instructs CP/M to loadDDT into memory and execute it.

CP/M also begins amemoryFCB for the file named FIRST.EXT, starting

at address 5C hex. When DDT gets control, it will attempt to copy

FIRST.EXT into memory. A question mark will appear because the file

does not exist.

At this point, CP/M has started anFCB at 5C hex and placed the com-

mand line tail in the console buffer at 82 hex. Examine this region of

READING DISK FILES WITH BDOS 179

memory with the command

D50,8F

The following display should appear:

0050 00 00 00 00 00 00 00 00 00 00 00 00 00 46 49 52 FIR

0060 53 54 20 20 20 45 58 54 00 00 00 26 00 20 20 20 ST EXT... 8.

0070 20 20 20 20 20 20 20 20 00 00 00 00 00 00 00 00

0080 OA 20 46 49 52 53 54 2E 45 58 54 00 00 00 00 00 . FIRST. EXT

Remember, the debugger display has three parts. The first number on

each line is the address in hexadecimal. The next 16 bytes are the contents

of the corresponding memory expressed in hexadecimal. The ASCII rep-

resentation of these same bytes is then given if it is printable. A dot is

shown if a character is not printable.

Look at the last line in the display. From the ASCII representation, we

can see that thecommand taU, FIRST.EXT, has been placed in the console

buffer at 82 hex. The length of the command tail (OA hex in this case) is

placed at location 80 hex. There will always be a blank (20 hex) at location

81 hex. Ifyou type the command line in lowercase letters, CP/M will convert

the characters to uppercase. The result will be the same.

Now consider the FCB at 5C hex. The first byte designates the disk

drive. It has a value of in this example, indicating that the default drive

has been selected. The file name, FIRST, appears next. Because it contains

less than eight characters, the remainder of the field is filled out with

blanks. The decimal point separating the file name from the file type is ap-

parent in the console buffer, but it does not appear in the FCB. The file

type is in its proper place starting at position 9 of the FCB. If less than

three characters are given for the file type, the field is filled with blanks.

Let us try a slight variation of the previous example. Return to CP/M
with control-C and give the command

A:DDTB:FIRST.EXT

or

A:SID B:FIRST.EXT

This conmiand is functionally equivalent to the previous one, except that

drive B is specifically included. Examine thememory region from 50 to 8F

hex again with the command

D50,8F

In the resulting display, the command tail starting at address 82 hex shows

180 MASTERING CP/M

that drive B was specifically requested:

0050 00 00 00 00 00 00 00 00 00 00 00 00 02 A6 49 52 FIR

0060 53 54 20 20 20 45 58 54 00 00 00 26 00 20 20 20 ST EXT... 8.

0070 20 20 20 20 20 20 20 20 00 00 00 00 00 00 00 00

0080 OC 20 42 3A 46 49 52 53 54 2E 45 58 54 00 00 06 . B:FIRST.EXT. .

.

In the previous example the drive was omitted, so the memory FCB
began with the value of 0. In this example, specifying drive B causes the

first byte of the memory FCB at address 5C hex to have a value of 2.

A Macro to Open a Disk File

The previous examples demonstrate that CP/M can construct a

memoryFCB ifthe filename is given as a parameter on thecommand Une.

In order to access the file, we must still zero the extent byte and the record

number byte, and then we must open the file with BDOS function 15.

After the return from BDOS, the accumulator contains the value ofFF
hex if the requested file could not be found. We must be ready to either

continue with the program or display an error message and terminate the

program.

We will now write a macro to construct a memory FCB and call BDOS
function 15. Add macro OPEN (shown in Figure 6.3) to your library and

place the name in the directory at the beginning.

Let us look at the details of macro OPEN. The first opcode loads DE
with the FCB address:

LXI D,POINTR

The symbol POINTR is a dummy parameter. The corresponding

parameter in the macro reference is required. The next three instructions

store aOat positions 12and32 ofthememoryFCB. The global subroutine

OPEN2? is then called to perform BDOS function 15. After returning

from BDOS, the accumulator contains FF hex if the file could not be

opened. The next instruction increments the accumulator. This will reset

the zero flag ifthe filewas opened. The program then branches to the local

label AROUND and continues. However, if the file could not be found,

the remaining code is executed.

The macro reference to OPEN will normally omit the second parameter

corresponding to WHERE, because we want to ensure that the file name
in question actually exists. In this case, the expression IF NUL WHERE
will be true and macro ERRORM will be referenced. It will generate the

error message

?No source file

READING DISK FILES WITH BDOS 181

OPEN AAACRO POINTR, WHERE

;;{Put current date here)

;;lnline macro to open an existing disk file.

;;POINTR refers to file control block.

;;Extent and current recorc number are zeroed.

;;Branch to location WHERE if file not found or

;;print error message and branch to DONE otherwise.

;,-Macros needed: SYSF, ERRORM

LOCAL AROUND
LXI D,POINTR

XRA A ;zero

STA POINTR+ 12 ;extent

STA POINTR+ 32 /current record

CALL OPEN2?

INR A ;0=ok, FF means error

JNZ AROUND
IF NUL WHERE
ERRORM 'No source file' , DONE
ELSE

JMP WHERE
ENDIF

IF NOT OPFLAG

OPEN2?: SYSF 15 ;open disk file

OPFLAG SET TRUE ;only one copy

ENDIF

AROUND: ;;OPEN

ENDM

Figure 6.3: Macro OPEN to Open a Disk File

and then terminate the program with a branch to the global label DONE.
Sometimes, however, we will want to ensure that a particular file does

not exist. Thenwe include a second parameter in the reference. For example,

consider the following macro references:

OPEN FCBl,CONT2

ERRORM '?File name exists'

C0NT2:

In this case, FCBl refers to thememoryFCB. However, the expression IF

182 MASTERING CP/M

NULWHERE is false, so macroERRORM is omitted from the expansion

of macro OPEN. The program branches to the label CONT2 if the file is

not found. If the file is located, an error message is printed and the program

is terminated.

We need to create three additional macros to facilitate disk operation

before we can write the next program. One will set the location of the

memory buffer for reading a disk file, the second will actually read the

file, and the third will request a file name and then create amemory FCB.
We begin with macro SETDMA.

A MACRO TO SET THE DMA ADDRESS
BDOS function 20 is used to read a sector (128 bytes) from disk to

memory. We saw previously that a IK or larger block of sectors is the

smallest amount of information that CP/M can read from a disk. How-
ever, when a sector is requested, CP/M finds the block in which it is

located and copies the desired sector to a 128-byte sector buffer. The

memory location of the sector buffer is called theDMA (disk memory ac-

cess) address.

Each time a warm start occurs, theDMA address is automatically reset

to 80 hex. However, this will not always be a convenient location. We saw

earlier in this chapter that CP/M places the console buffer at 80 hex, and

the debugger initially places its stack in this region as well. Furthermore,

we will sometimes want to read an entire disk file into memory starting at

100 hex. In that case we will want theDMA address to be 100 hex for the

first sector, 1 80 hex for the second sector, 200 hex for the third sector, and

so forth. Therefore, we must be able to alter the DMA address. We may
also want to reset theDMA address to 80 hex, in case the previous program

set it somewhere else.

Macro SETDMA, given in Figure 6.4, uses BDOS function 26 to set the

DMA address. The macro reference will usually give theDMA address as

a parameter, in which case the assembler loads the DE register with the

parameter. However, sometimes it will be more convenient to load theDE
register from a memory location prior to the macro reference, in which

case the parameter will be omitted. Copy the macro into your librsiry.

Let us now construct a macro to read a disk sector.

A MACRO TO READ ONE DISK SECTOR
Before a disk file can be read, it is necessary to construct amemoryFCB

containing the file name and open the file with BDOS function 15. It may

READING DISK FILES WITH BDOS 183

SETDAAA MACRO POINTR

;;(Put current date here)

;;lnline macro to set the DAAA address where

;;next sector will be read or written.

;;Macro needed: SYSF

LOCAL AROUND
IF NOT NUL POINTR

LXI D, POINTR

ENDIF

CALL DAAA2?

IF NOT DMFLAG
JMP AROUND

DAAA2?:

SYSF 26 ;set DAAA address

DMFLAG SET TRUE ;only one copy

ENDIF

AROUND: ;;SETDAAA

ENDM

Figure 6.4: Macro SETDMA to Set theDMA Address

also be necessary to set theDMA address with BDOS function 26. At this

point, a 128-byte sector can be read from the disk using BDOS function 20.

The information is placed intomemory starting at the currentDMA address.

We will use macro READS, shown in Figure 6.5, whenever we need to

read a disk sector. Copy the macro into your library. There are two

parameters for this macro. The first parameter is the address of the

memory FCB. The assembler loads this address into the DE register if the

parameter is present. In this book the first parameter will usually be given

the symbol FCBl . Ifthe parameter is omitted from the macro, it is assimied

that DE has been previously loaded.

The second parameter, if present, is printed after each sector is read.

This will allow us to watch the action during the loading ofa large file, but

it also greatly slows the process.

Our next macro will request a file name and set up a memoryFCB after

a program has begun operation.

184 MASTERING CP/M

READS AAACRO POINTR, STAR

;;(Put current date here)

;;lnline macro to read a disk sector.

;;POINTR refers to file control block.

;;Optional second parameter is symbol

;;to be printed after sector is read.

;;Zero flag is reset if end of file.

;;AAacros needed: SYSF, PCHAR

//

usage. FCBl

FCBS,
'*'

//

LOCAL AROUND
Ir NOT NUL STAR

PCHAR STAR ;to console

ENDIF

IF NOT NUL POINTR

LXI D, POINTR

ENDIF

CALL READ2?

ORA A ;set flags

IF NOT RDFLAG
JMP AROUND

READ2?: SYSF 20 ;read disk sector

RDFLAG SET TRUE ;only one copy

ENDIF

AROUND: ;;READS

ENDM

Figure 6.5: Macro READS to Read a Disk File into Memory

A MACRO TO INPUT A FILE NAME
We saw at the beginning of this chapter that a iile name entered as a

parameter on the command line is placed in the default console buffer at

82 hex. The parameter is edso converted into amemoryFCB at address 50
hex. The first byte of this FCB refers to the requested drive. For example,

avalue of at this location refers to the default drive, driveA is referenced

by 1, drive B is 2, and so on. CP/M also raises any lowercase letters to

READING DISK FILES WITH BDOS 185

uppercase, fUls out the file name and file type with blanks, and removes

the decimal point in the file name.

However, once a program has begun execution, CP/M cannot convert

a file name into an FCB. Many of the programs we will write in this book

expect a filename to be entered. If the parameter is given on thecommand

line, CP/M creates the necessarymemory FCB. However, ifthe file name

was not given on the command line, the program must request one. The

program itself must now process the characters that are entered. That is,

byte of the FCB must be set to if no drive was specified, or set to 1 if

driveA was specified. Lowercase letters must be converted to uppercase,

and so forth.

The macro GFNAME, shown in Figure 6.6, asks for a file name and

then sets up amemory FCB. The instructions it generates will only be used

after a program has begun execution. Copy the macro into your library.

The memory FCB is referenced through the parameter. This will usually

be 5C hex, but we will sometimes use another address. The file name may
be entered in either uppercase or lowercase letters. A disk drive also may
be specified if desired.

We will now use the macros we have created to write a program to

display ASCII files on the console.

GFNAME AAACRO FCB

;;(Put current date here)

;;lnline macro to get file name from console

;;and place in FCB. Lowercase raised to uppercase.

;;Macros needed: READB, FILL, UCASE, PRINT, CRLF

;;Subroutine GETCH is part of macro READB.

LOCAL AROUND, PNAAAE,ENAME, EXTEN,GNAM2
PUSH H

PUSH D

PUSH B

LXI H,FCB

SHLD FCBS?

CALL GNAM?
POP B

Figure 6.6: Macro GFNAME to Input a File Name after a Program

Has Begun Executing

186 MASTERING CP/M

POP D

POP H
IF NOT FNFLAG

JMP AROUND
FCBS?: DS 2 ;save orig pointer

GNAM?:
CRLF

GNAAA2:

PRINT <' ',CR>

PRINT 'Enter file name:

'

LHLD FCBS?

XRA A ;zero

MOV M,A ;default drive

INX H

FILL , 11, BLANK
XCHG
READB ;console buffer

CALL GETCH ;first char

JC GNAAA2 ;try again

CPI BLANK

JZ GNAAA2 ;try again

UCASE
STAX D ;maybe first

CALL GETCH ;second char

RC ;short name
CPI BLANK
RZ ;ditto

MVI B,7 ;name length-1

UCASE
CPI PERIOD

JZ ENAME
CPI ;drive?

JNZ PNAME ;no

LDAX D ;get drive

SUI 'A'-l ;make binary

STAX D ;put it

CALL GETCH ;start file name
JC GNAAA2 ;drive only

Figure 6.6 (continued)

READING DISK FILES WITH BDOS 187

UCASE
INR B

DCX D

PNAME: ;prlmary name

INX D

STAX D

CALL GETCH

RC
CPI BLANK

RZ

UCASE
CPI PERIOD

JZ ENAME
DCR B

JNZ PNAME ;ok

JMP GNAM2 ;lf 9 char

ENAME:
LHLD FCBS? ;get FCB

LXI D,9 ;ext offset

DAD D

XCHG
AAVI B,3

EXTEN: ;flle name extension

CALL GETCH

RC
CPI BLANK
RZ

UCASE
STAX D

INX D

DCR B

JNZ EXTEN

RET ;done

FNFLAG SET TRUE

ENDIF

AROUND: ;;GFNAME

ENDAA

Figure 6.6 (continued)

188 MASTERING CP/M

DISPLAYING AN ASCH FILE ON THE CONSOLE
We have seen that information is stored on disk and in memory as a se-

quence of bits. However, there are several different coding schemes.

Source files are coded entirely in ASCII. Executable files are primarily

binary with messages in ASCII. The distinction is important ifwe want to

look at a file. An ASCII file can be sent directly to the console or printer,

because these are ASCII devices. However, if we transmit a binary file to

the console, it will be largely unintelligible.

An ASCII file can be viewed on the console screen by giving theCP/M
conunand TYPE followed by the file name. But there are several disad-

vantages to this command. First, the file may scroll so quickly that the

desired location is missed. Control-S can be pressed to freeze the screen,

and any key can be pressed to resume scrolling. Control-S can be pressed

again to freeze the screen. Ifany key other than control-S is pressed during

scrolling, the command is terminated and we must start over.

Another disadvantage is that TYPE is a built-in CCP command. It can-

not be given from the no-file level of a word processor such as WordStar.

Program SHOW, given in Figure 6.7, solves both of these problems.

SHOW displays an ASCII file on the console one screenful at a time.

Each time the space bar is pressed, the next screen is displayed. Pressing the

carriage return key will display the next line. The program is terminated

by pressing any other key.

SHOW is an executable program. Consequently, it can be run from the

no-file level ofWordStar. For example, to display the source program for

SHOW, give the command

SHOW SHOW.ASM

Disk drive names can be used as needed. If the executable file is on driveA
and the source file is on drive B, you can give the command

A:SHOW B:SHOW.ASM

SHOW can also be executed without a parameter. The program will

then request the filename. Ifan error is made in entering the filename (too

many characters or no characters), the request will be repeated. If the re-

quested filename does not exist or ifan attempt is made to display aCOM
file, the appropriate error message is printed and the program is terminated.

SHOW is designed for the usual video screen of 24 Unes. If your video

screen has a different number of lines, change the definition ofthe symbol

LMAX from 24 to the proper number.

Type in the program given in Figure 6.7, assemble it, and execute it by

displaying the source program ofSHOW. If only the commandSHOW is

READING DISK FILES WITH BDOS 189

TITLE 'SHOW ASCII file on console'

;(Put current dote here)

;Usage: SHOW DISKFILE.EXT

;Press space bar to display next screen.

;Carriage return to scroll up one line

;performs some function as TYPE, but

;SHOW can be executed from WordStar.

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

FCBl EQU 5CH ;input FCB

DBUFF EQU 80H ;default buffer

TPA EQU 100H /transient program area

LAAAX EQU 24 ;lines per screen

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before AAACLIB coll.

CIFLAG SET FALSE ;input console char

CMFLAG SET FALSE ;ASCII compare

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/l i ne-feed

DMFLAG SET FALSE ;set DAAA

FLFLAG SET FALSE ;fill characters

FNFLAG SET FALSE ;read file name
OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE ;print console buffer

RCFLAG SET FALSE ;read console buffer

RDFLAG SET FALSE ;read disk file

;end of flags

AAACLIB CPAAAAAC

Figure 6. 7: Program SHOW to Display an ASCII File on the Console

190 MASTERING CP/M

ORG TPA

START:

ENTER

VERSN '(current date).SHOW

'

LDA FCBl+1
CP! BLANK ;file nome?
JNZ OPEND ;yes

GFNAME FCBl ;get file name
OPEND:

COMPRA 'COM', FCBl +9 ;COMfile?

JZ NOCOM ;yes

OPEN FCBl ;source file

SETDAAA DBUFF * 1 ICA It,Uo6 aSTQUIT

LXI H,100H ,*s©t pointer

NEXTSC:

CALL SCREEN
FREE2:

READCH ;wQit for input

CPI BLANK ;space?

JZ NEXTSC •next screen

CP! CR
JNZ DONE ;abort

PCHAR CR
AAVI B,l ;set one line

CALL LINE ;one line

JMP FREE2

/routine to fill console screen

SCREEN:

MVI B,LAAAX ;line count

PCHAR CR
NEXTLN:

CALL LINE

DCR B ;count

JNZ NEXTLN ;keep going

RET

Figure 6. 7 (continued)

READING DISK FILES WITH BDOS 191

;routine to display one line

LINE:

LIN3:

LIN2:

MOV A,H ;check pointer

ORA A ;stlll 80-FF?

JZ LIN3 ;yes

READS FCBl ;reacl a sector

JNZ EOFILE ;end of file

LXI H,DBUFF ;reset pointer

JMP LINE

AAOV AM
INX H

ANI 7FH ;mask parity

CPI EOF ;file end

JZ EOFILE ;yes

MOV D,A ;save

CPI CR ;line end?

JNZ LIN2 ;no

MOV A,B ;check position

CPI 1 ;last line?

RZ ;yes, skip CR

MOV AD /retrieve CR

PCHAR ;send to console

MOV AD ;restore

CPI CR ;line end?

JNZ LINE ;no

RET

NOCOM:
ERRORM 'Use DUMP for a COM file',DONE

EOFILE:

READCH ;last page

DONE:
EXIT

END START

Figure 6. 7 (continued)

192 MASTERING CP/M

given, the program will request the file name. Press the space bar to view

the next screen or the carriage return key to see the next Une. Press any
other key to terminate the program.

When SHOW begins execution, it checks the second byte ofFCBl (the

first character of the file name) to see if a file name was entered on the

command Une. A blank in this position indicates that no file name was
given. In that case, a file name is requested. Macro GFNAME is used for

this purpose.

Then the file type is checked to ensure that it is not a COM file. If

everything is all right, the requested file is opened. The default buffer at 80

hex is used to read the disk sectors, but we specifically set theDMA address

to this address just in case it was set to some other location by the previous

program.

We need to add one more macro to our library before we are ready to

write the next program.

A MACRO TO ABORT THE PROGRAM
FROM THE CONSOLE
Sometimes it is necessary to prematurely terminate a program for one

reason or another—perhaps a number was entered incorrectly from the

console, or perhaps the program provided enough information at the

beginning that the remainder of the program is not needed. For these

reasons, many operating systems allow an executing program to be
prematurely terminated. Unfortunately, the CP/M operating system

does not provide this feature. Let us therefore write macro ABORT to

prematurely terminate a program. Enter the macro shown in Figure 6.8

into your macro library.

Let us see how macroABORT works. The macro reference is placed in

a program where you would like to check for termination. The console

status is determined with BDOS function 11 . On return from this function,

the accumulator has a value ofFF hex ifa console keywas pressed; the ac-

cumulator is zero otherwise. The macro then generates instructions to

rotate the accumulator into the carry flag and check the carry flag. If the

status indicates that no console key was pressed, the program branches

around the remainder of the macro.

If the carry flag is set, then a console key has been pressed. If the

parameter was omitted from the macro reference, then the program will

terminate. However, if a parameter was included in the macro reference,

then the character typed at the console is compared to this parameter. If

they match, the program is terminated by a branch to the label DONE.

READING DISK FILES WITH BDOS 193

ABORT AAACRO CHAR
;(Put current date here)

Inline macro to abort program when
;console key given by CHAR is pressed.

Any key will do if CHAR omitted.

;Branch to DONE on abort.

;Usage: ABORT ESC

;Macro needed: READCH

AROUND:

LOCAL AROUND
PUSH H

PUSH D

PUSH B

AAVI c,n
CALL BDOS
POP B

POP D

POP H
RRC
JNC AROUND
READCH
IF NUL CHAR
JMP DONE
ELSE

CP! CHAR
JZ DONE
ENDIF

ENDM

;console status

;no character

;get char

;;ABORT

Figure 6.8: Macro ABORT to Terminate a Programfrom the Console

Let us use an example to clarify this. We will always use the macro

reference

ABORT ESC

for the programs in this book. The macro will then generate instructions

to terminate the program only if the escape key has been pressed. Any

other key will be ignored.

We are now ready to write our next program.

194 MASTERING CP/M

DISPLAYING A BINARY FILE ON THE CONSOLE
The program in Figure 6.7 will display an ASCII file on the video

screen, but it cannot be used for a binary file. Sometimes, however, it is

necessary to study a binary executable (COM) file. This can be accom-
plished with the program given in Figure 6.9. Of course, this program can
also display an ASCII file, but the output is not as readable as the output
from SHOW. Type the program using the file name DUMP. Assemble it

and execute it. The command line is the same as that used for SHOW.
The output from DUMP is similar to that from DDT. Each line begins

with the corresponding memory location (starting at the beginning of the
TPA). Then 16 bytes are given in hexadecimal. The ASCII equivalents of
the characters are also given if they are printable; a decimal point is shown
otherwise. The display freezes after the screen is filled. Pressing the space
bar displays the next screen, while a carriage return shows the next line.

Press the escape key to terminate the program. (We check for termination
at the end of each line.)

The remaining two programs in this chapter further demonstrate the

use of our disk-related macros. Both programs use our new macro to read
existing disk files.

TITLE 'DUMP binary file to console'

;(Put current date here)

;Usage: DUMP (file name)
;space bar = next screen

;<CR> = next line

;<ESC> = obort

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

FCBl EQU 5CH ;input FCB
DBUFF EQU 80H ;default buffer

TPA EQU lOOH ;program start here
LAAAX EQU 23 ;maxinnum lines

Figure 6. 9: Program DUMP to View a Binary File

READING DISK FILES WITH BDOS 195

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set ines before AAACLIB call.

CIFLAG SET FALSE ;input console char

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/lme-feed

CXFLAG SET FALSE ;binary in C to hex

DMFLAG SET FALSE ;set DAAA

FLFLAG SET FALSE ;fill characters

FNFLAG SET FALSE ;read file name

GTFLAG SET FALSE ;get char from buffer

OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE ;print console buffer

RCFLAG SET FALSE ;read console buffer

RDFLAG SET FALSE ;read disk sector

;end of flags

/

AAACLIB CPAAAAAC

/

ORG lOOH

START:

ENTER
VERSN '(current date).DUAAP'

LDA FCBl +

1

CPI BLANK ;file name?

JNZ OP3 ;yes

GFNAME FCBl ;get file name

0P3:

OPEN FCBl ;input disk file

SETDMA DBUFF ;sector location

LXI H,TPA ;display pointer

SHLD PNTR

PRINT 'Space bar for next screen,
'

PRINT '<CR> next line, <ESC> to abort'

NEWLN: ;start new line

Figure 6.9 (continued)

196 MASTERING CP/M

CRLF

PUSH H (•buffer pointer

LHLD PNTR ;dlsplay pointer

OUTHEX H ;show address

OUTHEX L

LXI D,10H ;next line

DAD D
SHLD PNTR ;save

POP H ;buffer pointer

PCHAR BLANK
NEXT:

MOV A,H ;check pointer

ORA A ;still 80-FF hex?
JZ NEXT2 ;yes

READS FCBl ;read a sector

JNZ DONE ;end of file

LXI H,DBUFF
NEXT2:

OUTHEX
INX

MOV

M
H

A,L

ANI OFH ;line end?
JZ PASC ;yes

ANI 3 ;space

JNZ NEXT ;no

PCHAR BLANK
JMP NEXT

PASC:

PRINT / /

;ASCII dump

PUSH H ;buffer pointer

LXI D,-10H
DAD D ;back up pointer

PAS2:

MOV
INX

A,M
H

CPI 7FH ;high bit on?
JNC PAS3 ;yes

CPI BLANK ;control char?

Figure 6.9 (continued)

READING DISK FILES WITH BDOS 197

JNC PAS4 ;no

PAS3:

AAVI A, PERIOD ;change

PAS4:

PCHAR ;print it

AAOV A,L

ANI OFH ;llne end?

JNZ PAS2 ;no

POP H ;buffer pointer

ABORT ESC ;quit?

LDA LINE

DCR A
STA LINE

JNZ NEWLN
MVI ALAAAX
STA LINE

;freeze line until space bar pressed

FREEZ:

READCH ;wait for input

CPI BLANK ;space bar?

JZ NEWLN
ANI IFH ;convert to control

CPI CR ;next line?

JNZ FREZ2 ;no

MVI A,1 ;one line

STA LINE

JMP NEWLN
LINE:

DB LAAAX ;llne count

FREZ2:

CPI ESC ;abort?

JNZ FREEZ ;no

DONE:
EXIT

PNTR: DS 2 ;display pointer

END START

Figure 6.9 (continued)

198 MASTERING CP/M

AUTOMATIC ENVELOPE ADDRESSING
If you use a word processor such as WordStar to write letters, you can

print the letter on the computer list device. However, you will still need a
typewriter to address the envelope. With the program given in Figure 6. 10,

you can automatically print the envelope after you have printed the letter.

A WordStar-compatible file for the beginning of a letter might look
like this:

..Name of sender

.op (omit page numbers)

(blank line)

Today's date

(blank line)

Name of addressee

Street address

City, State Zip code

(blank line)

Salutation

Word processors typically interpret a special character in column 1 as
the beginning of a command line. This character is frequently a period,
because a period will not otherwise appear in the first column. The first

line of this file begins with two periods, the WordStar symbol for a com-
ment line.

The program given in Figure 6. 10 can extract the recipient's name and
address and print it onto an envelope. If the originator's name is included
at the beginning of the file as a comment, it will be printed in the return-
address area. Create a file named ADDRESS and enter the text shown in

Figure 6.10. Assemble the program and run it.

The ADDRESS program is executed by typing its name and the name
of the letter file. Alternatively, the file name can be given after the program
has started. This program has an additional feature. The originator's
name is normally placed in the upper left corner of the envelope. If,

however, a separate letter L is given after the file name, then the sender's
name is aligned with the recipient's name and address. This form is more
suitable for addressing labels.

CHECKING FOR PAIRED CONTROL CHARACTERS
Our final program will check for paired control characters in disk files.

We use macro GFNAME to input a file name from the console, macro

READING DISK FILES WITH BDOS 199

TITLE 'ADDRESS envelope from letter'

;(Put current date here)

;Usage;

; ADDRESS DISKFILE.EXT (for envelope)

; ADDRESS DISKFILE.EXT L (for label)

;Letter file has the fornn:

;.. Author (for return address)

;.op and other dot commands (optional)

;blank line (optional)

;Date (one line)

;blank line (one or more)

;Address

;blank line

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

FCBl EQU 5CH ;first parameter

FCB2 EQU 6CH ;second parameter

DBUFF EQU 80H ;default buffer

TPA EQU lOOH ;transient program area

BEL EQU 7

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before AAACLIB call.

CMFLAG SET FALSE ;ASCII compare

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/l i ne-feed

FLFLAG SET FALSE ;fill characters

FNFLAG SET FALSE ;get file name

LOFLAG SET FALSE ;list output

OPFLAG SET FALSE ;open disk file

Figure 6. 10: Program ADDRESS to Automatically Address an Envelope

200 MASTERING CP/M

PRFLAG SET FALSE /printer output

RCFLAG SET FALSE ;read console
RDFLAG SET FALSE ;read disk file

;end of flags

/

AAACLIB CPAAAAAC

/

ORG TPA

START:

ENTER
VERSN '(current date).ADDRESS

'

LDA FCBl+1
CP! BLANK
JNZ OPEND ;y©S

GFNAME FCB1 ;get file name
OPEND:

COMPRA 'COM', FCBH-9 •COM fit«a?

JZ NOCOM
MVI A, 35

STA INDNC *sn\/f* ffii int

LDA FCB2+1 ;2nd parameter?
CPI BLANK
JZ NOPAR ;no

MVI A,14

STA INDNC ;label indentation

NOPAR:
OPEN FCBl ;source file

READS FCBl ;f irst sector

LXI H,DBUFF ;text buffer

;find period with author

MOV AM
CPI PERIOD

JNZ NOPER ;no author

INX H
MOV A,M
CPI PERIOD ;second dot?

JNZ FPER ;no

INX H ;skip dots

MVI B,14 ;indentation

Figure 6.10 (continued)

READING DISK FILES WITH BDOS 201

CALL PLINE ;for author

CDCDO>rrcKz:

MOV A,M
CPI

JNZ FBLNK

CALL LINE

JMP FPER2

;no author, process other dot commands

rr tl^.

CALL LINE ;next line

CPI PERIOD

JZ FPER

NOPER:

MVI B,l

CALL LINEFD ;skip author

FBLNK: ;flnd blank

MOV A,M
CPI BLANK+1
JNC FDATE ;not blank or CR

CALL LINE

JMP FBLNK

FDATE: ;find date

CALL LINE ;sklp to blank

MOV A,M
CPI BLANK+1

JC FDATE ;addltlonal blanks

;space down to address

MVI B,9

CALL LINEFD

;print address

ADDR2:
MOV A,M
CPI BLANK+1 ;addltlonal

JC DONE
LDA INDNC ;indentatlon

MOV B,A ;for address

Figure 6.10 (continued)

202 MASTERING CP/M

CALL PLINE

JMP ADDR2

;send line feeds to printer, B has number

LINEFD:

LCHAR LF

DCR B

JNZ LINEFD

RET

;output line to printer and console

PLINE:

CALL INDEN
MOV A,M ;flrst character

PCHAR
LCHAR

PLINE2:

CALL CPOINT ;check pointer

MOV A,M ;next character

PCHAR
LCHAR
ANI 7FH ;mask parity

CPI LF

JNZ PLINE2 /yes

INX H
RET

;move to beginning of next line, after LF

LINE:

CALL CPOINT ;check pointer

MOV A,M ;next character

ANI 7FH ;mask parity

CPI LF

JNZ LINE ;yes

INX H
RET

(•Increment HL pointer, see if past 80+ 80 hex.

;Read a nother sector If so.

Figure 6.10 (continued)

READING DISK FILES WITH BDOS 203

t

CPOINT:

INX H ;pointer

AAOV A,H ;check pointer

ORA A ;<100H?
RZ ;yes, ok

READS FCBl ;next sector

JNZ DONE ;end of file

LXI H,DBUFF ;reset pointer

RET

INDEN:

MVI A,BLANK

PCHAR
1 AD

OCR B

JNZ INDEN2

RET

NOCOM: ERRORM '?COMfile',DONE

boNE:
EXIT

INDNC: DS 1 (•indentation

END START

Figure 6.10; (continued)

OPEN to open a disk file, and macroERRORM to print an error message

and terminate the program. We also introduce the inline macros REPT,
IRP, and IRPC.

Some word processors use paired control characters to indicate special

operations during printing. For example, in WordStar files, a passage to

be underlined is enclosed in control-S characters. Other control

characters are used for boldface, superscript, and subscript indicators. If

the second member of the pair is inadvertently omitted, the resulting

document will be unusual. For example, ifthe second underline character

is omitted, all of the remaining words will be underlined.

The program given in Figure 6.11 can be used to check a document for

paired control characters. The program is designed for use with WordStar,

but it can be altered easily for use with other word processing programs.

204 MASTERING CP/M

TITLE 'PAIR checks pairs of control char'

;(Put current date here)

;Usage: PAIR DISKFILE.EXT

;Checks that control-B, -D, -S, -T, -V, and -X are paired

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU ;system reboot

BDOS EQU 5 ;BDOS entry point

FCBl EQU 5CH ; input FCB
DBUFF EQU 80H ;defauit buffer

TPA EQU 100H /transient program area

;Set flags in main program so only one
;copy of certain subroutines will be generated.

;Place set lines before AAACLIB call.

CIFLAG SET FALSE ;inpuf console char

CMFLAG SET FALSE ;ASCII compare

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/l ine-feed

DMFLAG SET FALSE ;set DAAA

FLFLAG SET FALSE ;fill characters

FNFLAG SET FALSE ;read file name
OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE ;print console buffer

RCFLAG SET FALSE ;read console buffer

RDFLAG SET FALSE ;read disk file

;end of flags

AAACLIB CPAAAAAC

ORG TPA

START:

Figure 6.11: Program PAIR to Count Pairs of Control Characters

READING DISK FILES WITH BDOS 205

ENTER

VERSN '(current dote). PAIR'

LDA FCBl+l
CPI BLANK ;flle name?
JNZ OPEND ;yes

GFNAME FCB1 ;get file name
OPEND:

COMPRA 'COM', FCBl +9 ;COMfile?

JZ NOCOM ;yes

PRINT <CR,LF/Looklng for unbalanced '>

PRINT '^B, "D, % "1, V, *X'

OPEN FCBl ;source file

SETDMA DBUFF ;use default

LXI H,100H ;set pointer

LINE:

MOV A,H ;check pointer

ORA A ;stlll 80-FF?

JZ LIN3 ;yes

READS FCBl ;read a sector

JNZ EOFILE ;end of file

LXI H, DBUFF ;reset pointer

JMP LINE

LIN3:

MOV A,M
INX H
ANI 7FH ;mask parity

CPI EOF ;file end

JZ EOFILE ;yes

;;inline macro to count occurrences of control chor

IRPC X?, BDSTVX
LOCAL AROUND

CTR&X? EQU '&X?' - '@'

CPI aR&x?
JNZ AROUND
LDA CNT&X?
INR A
STA CNT&X?
JMP LINE

Fiptre 6.11 (continued)

206 MASTERING CP/M

CNT&X?: DB
AKUUiNU:

ENDM
JMP LINE ;no

NOCOAA:

ERRORM 'COAAflle?',DONE

UFLAG: DB

/

EOFILE:

;;inline macro to show unbalanced control char

IRPC X?, BDSTVX
LOCAL AROUND
LDA CNT&X?
RAR ;;odd?

JNC AROUND ;;no

PRINT <CR,LF/Unbalanced

PCHAR '&X?'

LDA UFLAG
INR A
STA UFLAG

AROUND:
ENDM
LDA UFLAG
ORA A ;ok

JNZ DONE ;no

PRINT <CR,LF,'No unbalanced pairs'>

DONE:

EXIT

END START

Figure 6.11 (continued)

In particular, the program counts the number of control-B, -D, -S, -T, -V,

and -X characters. If there is an odd number of any of these, an error is

reported. If the count is even, the message 'No unbalanced pairs' is given.

Of course, iftwo terminal control characters ofthe same type are omitted,

the program will not notice it.

This program, like the others in this chapter, is executed by giving its

name and the name of the file to be read. The instructions are similar, but

READING DISK FILES WITH BDOS 207

we introduce a new feature. Two indefinite repeat macros, IRPC, are used.

These macros make it easy to program sets of instruction that differ only

in one letter.

The macros we have used previously are defined at the beginning of the

program or in a separate macro library. Then the macro name and any

parameters are placed in the program wherever they are needed. The

repeat macros are different. They are defined directly within the program

as they are needed.

The inline macros begin with thename REPEAT, IRP, or IRPC and end

with the usual ENDM statement. There is no other name associated with

this type of macro. Following is the first of the two repeat macros:

;;inline macro to count occurrences of control char

CTR&X?

IRPC X?, BDsry/x

LOCAL AROUND
EQU '&X?' - '@'

CPI CTR&X?

JNZ AROUND
LDA CNT&X?
INR A
STA CNT&X?
JMP UNE
DB

ENDAA

CNT&X?:
AROUND:

This macro generates six slightly different sets of instructions. The first

parameter, X?, is a dummy variable. The second parameter contains the

reference parameters—six characters, the letters B, D, S, T, V, and X.

The macro is therefore expanded six times. For the first copy, the param-

eter B replaces the X? symbol. The ampersand is a linking character. Its

occurrence next to the original dummy parameter indicates that the

reference parameter is to be joined with the adjacent text. For example,

the first expansion will produce the following passage:

0002+ = CTRB EQU 'B' -

0396+ FE02 CPI CTRB

0398+ C2A603 JNZ ??0037

039B+ 3AA503 LDA CNTB

039E+ 3C INR A
039F+ 32A503 STA CNTB
03A2+C36903 JMP UNE
03A5+00 CNTB: DB

208 MASTERING CP/M

There will be five similar sections following this one. At each macro ex-

pansion, the ampersand characters are removed by the assembler after

joining the actual parameter. Some macro assemblers leave the ampersand

character in the final listing. The JNZ ??0037 instruction causes a branch

to the end of this passage, address 3A6. Notice that control-B, binary two,

is obtained by subtracting the at-sign from the letter B. The other control

characters are created similarly.

SUMMARY
In this chapter we have learned how the file control block describes and

manages files on the disk, and we have learned how to read a disk file. We
wrote a macro to print an error message, one to open an existing disk file,

one to set theDMA address, one to read a disk sector, one to input a file

name after aprogram has begun executing, and another to abort aprogram

from the console. We also looked briefly at the inline repeat macro IRPC.

We wrote several executable programs that demonstrate uses for these

macros. SHOW prints an ASCII file on the console; DUMP displays a

binary file in hex and ASCII; ADDRESS copies the address from a letter

file onto an envelope; and PAIR checks a text file for balanced control

characters. In the next chapter we will develop macros and programs that

deal with writing disk files.

Your macro library directory should now look like this:

;;AAacros in this library Flags

;;ABORT AAACRO CHAR CI FLAG, COFLAG
;;AAABIG AAACRO OLD, NEW (none)

;;COMPAR AAACRO FIRST, SECOND, BYTES CAAFLAG

;;COAAPRA AAACRO FIRST, SECOND, BYTES CAAFLAG

;;CPMVER AAACRO (none)

;;CRLF AAACRO CRFLAG, COFLAG
;;ENTER AAACRO (none)

;;ERRORAA AAACRO TEXT, WHERE COFLAG, CRFLAG, PRFLAG

;;EXIT AAACRO SPACE? (none)

;;FILL tMCRO ADDR, BYTES, CHAR FLFLAG

;;GFNAME AAACRO FCB FNFLAG, FLFLAG, REFLAG

COFLAG, CRFLAG, PRFLAG

;;HEXHL AAACRO POINTR HXFLAG, RCFLAG

;;LCHAR AAACRO PAR LOFLAG

;;MOVE AAACRO FROAA, TO, BYTES AAVFLAG

;;OPEN AAACRO POINTR, WHERE OPFLAG, COFLAG, PRFLAG

READING DISK FILES WITH BDOS 209

;;OUTHEX AAACRO REG CXFLAG, COFLAG
;;PCHAR AAACRO PAR COFLAG
;;PRINT AAACRO TEXT, BYTES PRFLAG, COFLAG
;;READB AAACRO BUFFR RCFLAG

;;READCH AAACRO REG CIFLAG, COFLAG
;;READS AAACRO POINTR, STAR RDFLAG, COFLAG
;;SBC AAACRO (none)

;;SETDAAA AAACRO POINTR DAAFLAG

;;SYSF AAACRO FUNC, A,E (none)

;;UCASE AAACRO REG (none)

;;UPPER AAACRO REG (none)

;;VERSN AAACRO NUAA (none)

"""HUH

CHAPTER 7

WRITING
DISK
FILES
WITH BDOS

INTRODUCTION

The programs we have written so far have not changed the disk itself.

We have developed programs for reading disk files, but not for writing

them. In this chapter we will write macros MAKE, UNPROT, PFNAME,
DELETE, SETUP2, RENAME, CLOSE, and WRITES for creating

and altering disk files. We will also write several executable progrEuns:

COPY for duplicating an existing disk file, CRYPT for encrypting a file,

RENAME for renaming files, andDELETE for deleting files. Notice that

we use RENAME and DELETE both as program names and macro

names. CP/M uses the program name and the assembler uses the macro

name, so there is no conflict. Let us begin with macro MAKE.

A MACRO TO CREATE A NEW DISK FILE

We saw in Chapter 6 that it is necessary to open an existing disk file with

BDOS function 15 before it can be read. To create a new disk file, we must

use BDOS function 22. The first part of a file control block (FCB) is

212 MASTERING CP/M

created in memory, just as it is when opening an existing disk file. Tlie first

byte of the memory FCB designates the disk drive. A value of indicates

the default drive, 1 is driveA, 2 is drive B, and so on. The filename and file

type are placed in the next 1 1 bytes. The DE register is loaded with the

FCB address, and register C is given the value of 22. A call to address 5

completes the operation.

Macro MAKE, shown in Figure 7.1, can be used to create a new disk

file by allocating an FCB in the disk directory. The parameter POINTR
references the location of the memory FCB. Add macro MAKE to your

macro library.

One or more blocks of sectors on each disk are allocated to the disk

directory. The exact number is fixed, but it will differ from one disk format

to another. The number of directory entries is also fixed, because there

are four disk FCBs for each 128-byte sector. At some point, all of the

allocated directory spacemay be in use. Consequently, whenBDOS func-

tion 22 is used to create a new disk file, it determines whether there is

room for another FCB.
On return from BDOS function 22, the accumulator is set to a value of

FF hex if the directory is filled. Macro MAKE therefore checks the ac-

cumulator after return from BDOS. If the directory is full, an error

message is printed and the program branches to location DONE. The flag

MKFLAG ensures that only one copy of subroutineMAKE2? is created.

Macro SYSF performs the BDOS call, and macro ERRORM prints the

appropriate error message if there is no directory space.

Our next macro changes the read-only attribute of a disk file to

read/write.

UNPROTECTING A DISK FILE

CP/M disk files can be protected against accidental erasure by setting

the read-only feature. Ifwe want to alter or erase a file, we mustmake sure

that it is set to read/write. This feature is implemented in CP/M version 2

by coding the first character of the file type. If the high-order bit of this

character is set to 1 , then the file is considered to be write protected. If this

bit is reset to 0, the file can be altered or erased.

Let us observe this phenomenon with DDT or SID. Go to driveA and

determine the attributes of the executable files with the command

STAT *.COM

This will list allCOM files in alphabetical order. The symbol R/O will ap-

pear in front of those files that are protected (read only). If the symbol

WRITING DISK FILES WITH BDOS 213

AAAKE AAACRO POINTR

;;(Put current date here)

;;lnline macro to create a new disk file.

;;POINTR refers to file control block.

;;Extent and current record number are zeroed.

;;Macros needed: SYSF, ERRORAA

LOCAL AROUND
LXI D,POINTR

AKM A ;zero

STA POINTR+12 ;extent

STA POINTR+ 32 ;current record

CALL AAAKE2?

INR A ;0=ok, FF means error

JNZ AROUND
ERRORM 'No directory space', DONE
IF NOT MKFLAG

AAAKE2?: SYSF 22 ;make new disk file

MKFLAG SET TRUE ;only one copy

ENDIF

AROUND: ;;AAAKE

ENDM

Figure 7.1: Macro MAKE to Create a New Disk File

R/W (read/write) is shown instead, the file is not protected. The listing

might look like this:

Recs Bytes Ext Acc

6 2k 1 R/OA:SAVEUSER.COAA

6 2k 1 R/WA:SHOW.COM
42 6k 1 R/OA:STAT.COAA

10 2k 1 R/O A:SUBMIT.COAA

12 2k 1 R/O A:SYSGEN.COM
Bytes Remaining On A: 6k

We will need a protected file for the next step. If all of the files are un-

protected, use STAT to change the protection of one of them—STAT
itself, for example. Give the command

STAT STAT.COM $R/0

214 MASTERING CP/M

Be sure to place a space in front of the dollar sign but not afterward. Give

the STAT command again to ensure that STAT is protected.

Execute the debugger DDT or SID by typing its name, but do not give

any parameters at this time. We will now write a small program in

memory starting at 4000 hex, using the A command:

A4000

4000 LXI D,5C

4003 MVI C,OF

4005 CALL 5

4008 RST 7

(Type an extra carriage return to finish the program.) Do not execute this

program just yet. When it is executed, it will open the disk file named in

the FCB at address 5C hex, the value in register DE. Register C is loaded

with the value OF hex (15 decimal), the BDOS open function. After

returning from theBDOS call, the routine branches to restart 7 at address

37 hex, the normal return to the debugger.

We will now create the first part of an FCB at location 5C hex. The
debugger is used for this step. Give the command

ISTAT.COM

The I command initializes a memory FCB for file name STAT.COM on
the default disk. Observe the results by displaying theFCB region with the

command D50,6F:

0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 53 54 41 STA
0060: 54 20 20 20 20 43 4F 4D 00 00 00 00 00 20 20 20 T COM

Notice that the four remaining characters in the file name STAT are

blanks. Now give the debugger command G4000. This will execute the

program we wrote at 4000 hex. The default drive will start up, and then

control will return to the debugger. Examine memory again with the

debugger command D50,6F:

0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 53 54 41 STA
0060: 54 20 20 20 20 C3 4F 4D 00 00 80 2A 06 07 08 00 T .OM...*

In this example we see that the ASCII representation of the file name has

been changed from

STAT COM

to

STAT .OM

WRITING DISK FILES WITH BDOS 215

When the BDOS open function (15) was executed, CP/M changed the

file type of the memory FCB to match the file type of the disk FCB. The

first character of the file type, the letter C, has been changed. Now look at

the hexadecimal representation of this character (address 65 hex). The

original value of43 hex has been changed to C3 hex. The hexadecimal and

corresponding ASCII values are as follows:

43 4F 4D COM
C3 4F 4D .OAA

Comparing the two, we see that they differ in the high-order bit used to

indicate write protection:

Hex Binary

43 0100 0011

C3 1100 0011

You can return to the system level of CP/M, change the protection at-

tribute ofSTAT, and repeat the above steps. In this case, the file extension

will remain COM after the open function is executed.

We will now write macro UNPROT (shown in Figure 7.2) to unprotect

a disk file with BDOS function 30. This BDOS function can set the four

file attributes—read only (R/O), read/write (R/W), system (SYS), and

directory (DIR). We will only use it to unprotect a file. This macro resets

the high-order bit of the memory FCB referenced by the parameter

POINTR. The accumulator is loaded with the first character of the file

type in position 9. The high-order bit is reset by performing a logicalAND
with the value of 7F hex (0111 1111). The result is put back into place.

Macro SYSF is used to perform BDOS function 30, which changes the

extension of the disk FCB to match the memory FCB.

Add macroUNPROT to your library. The flag UNFLAG ensures that

only one copy of subroutine UNPR2? will be created. Our next macro

displays the file name of a memory FCB on the console screen.

A MACRO TO PRINT AN FCB FILE NAME
We have seen that the first part of a memory FCB specifies the disk

drive in position and the file name in positions 1 — 8 . Names shorter than

eight characters are filled out with blanks. Positions 9-11 contain the file

type. Thus the file name LONGNAME.EXT is actually stored as

LONGNAMEEXT. A shorter name, such as A.TYP, will be coded as

A TYP (the underline characters represent blanks). Because

we will occasionally need to display the file name associated with an FCB,

let us now write a macro for this purpose.

216 MASTERING CP/M

UNPROT AAACRO POINTR

;;(Put current date here)

;;lnline macro to convert R/O file to R/W.

;;POINTR refers to file control block.

;;Macro needed: SYSF

LOCAL AROUND
LXI D,POINTR

LDA POINTR+9 ;load from file type

ANI 7FH ;set for R/W
STA POINTR+9 ;store at beginning of file type

CALL UNPR2?
IF NOT UNFLAG
JMP AROUND

UNPR2?:

SYSF 30 ;set file attributes

UNFLAG SET TRUE ;only one copy

ENDIF

AROUND: ;;UNPROT

ENDM

Figure 7.2: Macro UNPROT to Unprotect a Disk File

Macro PFNAME, shown in Figure 7.3, displays the referenced file

name in its usual CP/M form rather than the way it is stored in the FCB.
Blank characters are removed and a period is placed between the primary
name and the extension. Macros PRINT and PCHAR are used. Add macro
PFNAME to your library.

A MACRO TO DELETE A DISK FILE

We have seen that the first byte of the memory FCB begins with the

drive type, while the first byte of the disk FCB contains the user number.

To delete a file, the initial byte ofthe disk FCB must be changed to a value

of E5 hex. The remainder of the FCB and the actual file are not altered.

This new value allows the disk space allotted for that file to be written

over. Only when this happens is the file actually changed.

BDOS function 19 is used to delete a disk file. We will perform this

operation with macro DELETE, shown in Figure 7.4. The macro begins

WRITING DISK FILES WITH BDOS 217

PFNAME AAACRO FCB

;(Put current date here)

;lnline macro to print file name as

; FIRST. EXT

;FCB is file control block.

;Macros needed: PCHAR, PRINT

PFNA3?:

PFNA2?:

LOCAL PFNA2?, PFNA3?

PUSH H

PUSH B

MVI B,8 ;name length

LXI H,FCB + 1 ;start

MOV A,AA ;get char

CPI BLANK
JZ PFNA2? ;end

PCHAR ;print

INX H

DCR B

JNZ PFNA3?

POP B

POP H
PCHAR
PRINT FCB +9, 3 ;exten

;;PFNAME

ENDM

Figure 7.3: Macro PFNAME to Print the File Name Associated with an FCB

DELETE AAACRO POINTR, WHERE
;(Put current date here)

;lnline macro to delete an existing disk file.

;POINTR refers to file control block.

;lf file is protected, branch to WHERE or DONE.

•AAocrOs needed: SYSF, UNPROT, READCH,

Figure 7.4: Macro DELETE to Delete a Disk File

218 MASTERING CP/M

;; PFNAME, PRINT, UCASE, CRLF

/ r

LOCAL AROUND, DEL3?

LXI D,POINTR

LDA POINTR+9
ANI 80H /protected?

JZ DEL3? ;no

CRLF

PFNAME POINTR

PRINT ' is READ ONLY. Delete?
'

READCH
UCASE
CPI 'Y'T

IF NOT NUL WHERE
JNZ WHERE
ELSE

JNZ DONE ;quit

ENDIF

UNPROT POINTR
DEL3?:

CALL DEL2?

IF NOT DEFLAG
JMP AROUND

DEL2?:

SYSF 19 /delete disk file

DEFLAG SET TRUE ;only one copy

ENDIF

AROUND: ;;DELETE

ENDM

Figure 7.4 (continued)

by loading the DE register with the FCB address. Then the first character

of the file type (at FCBl +9) is inspected to see whether the file is write

protected. If it is, the file name is displayed on the console and permission

to delete it is requested. If the user enters a Y, the file is unprotected with

macro UNPROT. If any other character is entered, the macro terminates

with a branch to the second parameter WHERE if it has been provided.

Otherwise, the program branches to DONE. Notice that macroDELETE

WRITING DISK FILES WITH BDOS 219

references several other macros in our library. Add this macro to the

library.

There is a further complication if the file is protected. An unprotected

file can be deleted without first performing an open function, but a protected

file cannot. We saw previously in this chapter that the first character of

the file type is altered if the file is protected. It is very important that a

CP/M open command be issued prior to executing the delete function, or

BDOS will not be able to find the file. For example, ifyou want to delete a

protected file called FIRST.COM, you must search for a file that looks

like FIRST..OM. The open function will convert the requested file name

to the form needed by BDOS. The open function is not incorporated into

macro DELETE, but in our programs we will always be careful to open a

file prior to using macro DELETE.

INVESTIGATING TWO FILE CONTROL BLOCKS
WITH THE DEBUGGER
We have already learned how CP/M can help us construct a memory

FCB from a parameter given on the command line. We used the debugger

DDT or SID in this investigation. Let us continue this study by using two

parameters on the command line. Be sure to choose file names that do not

exist, or the debugger will load the requested files and delete the memory
FCBs. Give the command

A:DDT FIRST. EXT SECOND.TYP

or

A:SID FIRST.EXT SECOND.TYP

Look at the results with the command

D50,9F

The console screen should look like this:

0050 00 00 00 00 00 00 00 00 00 00 00 00 00 46 49 52 FIR

0060 53 54 20 20 20 45 58 54 00 00 00 00 00 53 45 43 ST EXT SEC

0070 4F 4E 44 20 20 54 59 50 00 00 00 00 00 FF 00 BF OND TYP

0080 15 20 46 49 52 53 54 2E 45 58 54 20 53 45 43 4F . FIRST.EXT SECO

0090 4E 44 2E 54 59 50 00 00 00 00 00 00 00 00 00 00 ND.TYP

Notice that the first parameter, FIRST.EXT, appears as anFCB starting

at 5C hex. The first byte is a binary zero, specifying the default drive,

because no disk drive was included in the file name. The primary name

220 MASTERING CP/M

FIRST appears next in uppercase letters. Three blanks fill out the eight-

character field. The three letters of the extension appear next.

The second parameter, SECOND.TYP, has been treated similarly. The
first part of another FCB begins at 6C hex. The command line tail con-

taining both parameters begins at location 82 hex. The length of this tail,

15 hex, is stored at location 80 hex.

Return to CP/M by typing control-C; then type the command

A:DDT B:FIRST.EXT B:SECOND.TYP

or

A:SID BrFIRST.EXT BrSECOND.TYP

Again, examine the beginning of memory with the debugger. The result

should look like this:

0050 00 00 00 00 00 00 00 00 00 00 00 00 02 46 49 52 FIR

0060 53 54 20 20 20 45 58 54 00 00 00 00 02 53 45 43 ST EXT SEC
0070 4F 4E 44 20 20 54 59 50 00 00 00 00 00 FF 00 BF OND TYP
0080 19 20 42 3A 46 49 52 53 54 2E 45 58 54 20 42 3A . B:FIRST.EXT B:

0090 53 45 43 4F 4E 44 2E 54 59 50 00 DO 00 00 00 00 SECOND.TYP

Notice that the conmiand line tail shows that drive B was specifically

requested. Furthermore, the drive types at addresses 5C and 6C hex con-

tain a value of 2, indicating that drive B was requested.

Return toCP/M with control-C, and for the third test give thecommand

DDT FIRST.EXT *.TYP

or

SID FIRST.EXT *.TYP

Examine memory from 50 to 9F hex:

0050 00 00 00 00 00 00 00 00 00 00 00 00 00 46 49 52 FIR
0060 53 54 20 20 20 45 58 54 00 00 00 00 00 3F 3F 3F ST EXT ???
0070 3F 3F 3F 3F 3F 54 59 50 00 00 00 00 00 FF 00 BF ?????TYP
0080 10 20 46 49 52 53 54 2E 45 58 54 20 2A 2E 54 59 . FIRST.EXT *.TY
0090 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 P

In this example the first FCB, starting at address 5C hex, looks as it did in

the previous tests. However, the first part of the second FCB, starting at

address 6C hex, is filled with question marks. When an asterisk appears in

a file name, CP/M expands the field in the FCB with question marks, the

wild-card character. However, the command tail starting at 82 hex still

shows the asterisk.

WRITING DISK FILES WITH BDOS 221

OPENING A FILE WHEN TWO
nLE NAMES ARE GIVEN

Later in this chapter we will write a program to create a new file that

is a duplicate of an existing file. When the command line

COPY FIRST SECOND

is typed, CP/M will automatically set up the beginnings oftwoFCBs starting

at 5C and6C hex. Another program we will write compares two files. The

command line will be as follows:

VERIFY FIRST SECOND

The programs we have written up to now require a single parameter. We
have used an FCB at 5C hex for the file. However, when there are two

parameters the situation is more complicated.

CP/M has created the beginning of two FCBs starting at 5C hex and

6C hex. However, if our program opens the first file at this point, the sec-

ond file name will be destroyed. Remember, a complete FCB is 32 bytes

long. The programmer constructs the first part of the FCB, and CP/M
fills in the remainder when the file is actually opened. Thus, if the first

FCB begins at address 5C hex, it will extend to address 7B hex after the

open function is executed. The second half of the firstFCB will overwrite

the first part of the second FCB.

You can investigate this problem with the debugger. Execute DDT or

SID but do not provide a parameter. Then give the command

ISTAT.COM

as we did previously in this chapter. This command will initialize an FCB
for STAT.COM at address 5C hex. The second FCB at address 6C hex is

automatically filled with blanks because a second parameter was not

given. Fill the second FCB area with the value of40 hex, an ASCII @, by

giving the command

F6C,7F,40

Observe the results with the command

D50,7F

The results should look like this:

0050: EG D9 00 FF 00 FF 00 FF 00 FF 00 00 00 53 54 41 STA

0060: 54 20 20 20 20 43 4F 4D 00 00 00 00 40 40 40 40 T COM 3333

0070: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3333333333833333

Notice that the at-signs coincide with the second FCB starting at 6C hex.

222 MASTERING CP/M

Using the debugger A command, write the following short program:

A4000

4000 LXI D,5C

4003 AAVI COF
4005 CALL 5

4008 RST 7

Execute this program with the command G4000. The program calls

BDOS function 15 to open a disk file. After control returns to the debugger,

display memory with the commeuid

D50,7F

Notice that the asterisks in the second FCB are gone. The open operation

destroyed the information in the second FCB.
The solution to this problem is to relocate the second FCB before the

first file name is opened. Macro SETUP2, given in Figure 7.5, is designed

for this purpose.

Macro SETUP2 expects to find two parameters in the program command
line—one will be found at 5C hex and the other at 6C hex. For example,

suppose we want to alter a file in some way. The first parameter gives the

name ofthe existing file. The second parameter is thename ofthe new file.

Macro SETUP2 will open the first file and create a directory entry for the

second file.

For some applications, it will be convenient for the user to enter only

one parameter. For example, suppose we want to encrypt a file named
PAYROLL.AUG. The encrypted file will be given the name of the original

file and the original file will be named PAYROLL.BAK.
Macro SETUP2 begins by setting flag S2FLAG true. Macro CLOSE,

which we will write later in the chapter, uses this flag. The flag signals the

assembler when generating macro CLOSE to look for the DUPL flag.

Macro SETUP2 then checks to be sure that a second parameter was
entered. If not, the first file name is duplicated into the second FCB at

location 6C hex. Macro SETUP2 then checks for question marks in the

second file name. Remember, question marks are used for ambiguous
characters in the file name. If an asterisk is typed in a parameter, CP/M
fills out the remainder of the field with question marks. Macro SETUP2
uses macro AMBIG to replace question marks in the second parameter

with the corresponding characters of the first parameter.

The next step is to see whether the source and destination file names are

identical. This of course includes the case where only one file name was
originally given. In this case, the file type for the destination file is changed

to $$$, the standard CP/M temporary file type. A duplicate-name flag,

DUPL, is also set at this time.

WRITING DISK FILES WITH BDOS 223

SETUP2 AAACRO
;;(Put current date here)

;;lnline macro to open two disk files.

;;lnput file is the first parameter of command

;;line. The file control block is FCBl at 5C hex.

;;The output file is the second parameter.

;;The file control block is initially FCB2 at

;;6C hex. The destination file name is moved into

;;the macro area.

;;lf only one file is entered or both are the same,

;;the second file is typed $$$. Macro CLOSE

;;will rename original file BAK and give original

;;name to the destination file when S2FLAG is true.

iother macros needed: MOVE, OPEN, AAAKE, DELETE,

;; ERRORM, AMBIG, COMPAR

LOCAL

S2FLAG SET

AROUND, SET2?, SET3?, SET4?

TRUE ;used by macro CLOSE

;dupli

SET4?:

SET2?:

SET3?:

LDA FCB2+1
CPI BLANK
JNZ SET4?

cote file name and type, keep disk

MOVE FCBl+1, FCB2+1, 11

AMBIG FCBl , FCB2

COMPAR FCBl, FCB2, 12

JZ

MOVE
OPEN
OPEN

DELETE

MAKE
JMP

DUPNM?

FCB2, DFCB, 16

FCBl

DFCB, SET3?

DFCB

DFCB
AROUND

;second parameter

(anything?

name
;keep disk

;fix ??? in name?
;both same?
;yes

;new destination

;source file

;desti nation

;existing file name
;new one

;error messages

Figure 7.5: Macro SETUP2 to Handle Two Disk Files

224 MASTERING CP/M

DUPNAA?:

AAVI

STA

MOVE
JAAP

AJRUE
DUPL
'$$$', FCB2+ 9

SET2?

;set dup flog

;source file

;continue

DUPL: DB FALSE ;duplicafe-name flog

;file control block for destination file

DFCB: DS 33 ;file2FCB

AROUND:

ENDAA

;continue main code
;SETUP2

Figure 7.5 (continued)

Macro CLOSE will check the DUPL flag to see if only one file name
was given or if identical names were given. In this case, macro CLOSE
changes the file type of the first name to BAK. It also changes the file type
of the second name from $$$ to the type of the first name.
The second parameter is now moved from location 6C hex to a default

file control block named DFCB, which is located within macro SETUP2.
The directive DS (define storage) 33 sets aside 33 bytes for the FCB. Now
that the way is clear, the first file name can be opened safely. Macro
OPEN, which we wrote in the previous chapter, is used for this purpose. It

will terminate the program and give the appropriate error message if the
source file cannot be found.

The next step is also very important. Whenwe save a file wdth theCP/M
command SAVE, any existing file with the same name is automatically
erased. However, we are going to create a disk FCB from a memory FCB
using BDOS function 22. In this case CP/M will allow us to create a disk
file name that duplicates an existing file name. There would then be two
identical names in the directory. So beforeyou create a new disk FCB, you
must ensure that another file with the same name does not exist. This is

most easily accomplished by using the BDOS delete function. This step

will delete the file name if it exists. If the name does not exist, no harm is

done. (The delete command does not alter the memory FCB.) Macro
SETUP2, therefore, deletes the file name given as the second parameter.

WRITING DISK FILES WITH BDOS 225

A MACRO TO RENAME A DISK FILE

Each CP/M file is referenced by one or more FCB entries in the disk

directory. We can change the name of a file by changing the FCB. BDOS

function 23 is used for this purpose. This operation does not alter the file

itself. It only changes the disk FCB. The programmer sets up the first 12

bytes of a memory FCB for the original file name and then opens the file

withBDOS function 1 5 . AmemoryFCB for the new filename is placed 1

6

bytes beyond the original name. The drive code for the original file name

is the usual value, for default, 1 for driveA, and so on, but the drive code

for the new name is set to 0. IftheFCB for the original file name is located

at address 5C hex, theFCB for the new name is located at address 6C hex.

The macro shown in Figure 7.6 can be used to rename a disk file. Add

macro RENAME to your library. The parameter POINTR refers to the

memory FCB for the original file name. The programmer must open the

original file and then place a memory FCB for the new name 16 bytes

beyond the original name. At this point, macroRENAME canbe referenced.

Notice that the new name must not be in place before the original file

name is opened, or the new name will be destroyed by the open function.

BDOS function 23 locates a disk FCB that matches the memory FCB

referenced byPOINTR. It then changes the diskFCB to match thememory

FCB referenced by POINTR+ 16.

Macro RENAME first checks to see whether the original file is pro-

tected. If so, the file is unprotected with macro UNPROT. BDOS is then

called to rename the file. Macro RENAME displays both file names on

the console. A right-pointing arrow indicates that the original name was

changed to the new name. For example, if SORT.ASM is renamed to

SORT.BAK you will see the following statement on the console:

SORT ASM ==> SORT BAK

A MACRO TO WRITE A DISK SECTOR

In Chapter 6 we wrote macro READS to read a sector from disk into

memory. The sector is placed in the default buffer area starting at address

80 hex, unless theDMA address has been redefined byBDOS function 26.

The complementary operation, writing a disk sector from the console

buffer, is similar. It is performed with BDOS function 21. The default

memory location is again 80 hex unless it is changed byBDOS function 26.

Add macro WRITES, given in Figure?.?, to your macro library. There

are two parameters to this macro, both of which are optional. The first

parameter, POINTR, references the FCB where the file name is given. If

this parameter is omitted, the macro assumes thatDE has been previously

226 MASTERING CP/M

RENAME AAACRO POINTR
;(Put current date here)

;lnline macro to renanne an existing disk file.

;POINTR refers to original name.
;New name is at POINTR + lOH.

;Macros needed: SYSF, PRINT, UNPROT, CRLF

REN2?:

RENAM?:
RNFLAG

AROUND:

LOCAL AROUND, REN2?
LXI D, POINTR
LDA POINTR+9
OR! 80H ;;file R/O?
JZ REN2? ;;no

UNPROT POINTR ;;make R/W

CALL RENAM?
CRLF

PRINT POINTR+1, n
PRINT '

PRINT POINTR+1 IH, 11

IF NOT RNFLAG
JMP AROUND
SYSF 23 ;rename file

SET TRUE ;only one copy
ENDIF

;;RENAME
ENDM

Figure 7.6: Macro RENAME to Rename a Disk File

loaded with the FCB address.

The second parameter, STAR, is the ASCII character to be printed on
the console after each sector is written. This allows the user to follow the

operation when several sectors are written. (As we learned from the op-
eration of macro READS, printing a symbol after each sector is written

greatly slows the process.) Ifthere is no room on the disk, macroERRORM
prints the appropriate error message.

A MACRO TO CLOSE A DISK FILE

When a disk file is created, it is written sector by sector from the

memory image. As each sector is written to the disk, the memory FCB is

WRITING DISK FILES WITH BDOS 227

WRITES AAACRO POINTR, STAR

;;(Put current date here)

;;lnline macro to write a disk sector.

;;POINTR refers to file control block.

;;STAR is symbol to print for each sector.

;;AAacros needed: SYSF, PCHAR, ERRORM

LOCAL AD^I iKir*

IF
M/^T Kll II CTADNUI iNUL olAK

PCHAR STAR

ENDIF

IF
Mr\T Ml II DOIKITD

LXI D, POINTR

ENDIF

CALL WKI

1

Z i

ORA A ;set flag

IF WRFLAG
JNZ NROOM?
ELSE ;first time

JZ AROUND ;ok

NROOM?:
ERRORM 'No disk space', DONE

WRIT2?: SYSF 21 ;write disk sector

WRFLAG SET TRUE ;only one copy

ENDIF ;;WRFLAG

AROUND: ;;WRITES

ENDM

Figure 7. 7: Macro WRITES to Write a Disli Sector

updated to show where the sector is located. The disk FCB, however, is

not altered at this time. After the final sector has been written, you must

close the file withBDOS function 16. This action will update the diskFCB

from the memory FCB.
Macro CLOSE, shown in Figure 7.8, can be used to close a disk file.

While this macro can be used by itself, it is also used in conjunction with

macro SETUP2. In particular, ifa source file name but no destination file

name is given in the original command, macroCLOSE will take care of all

the necessary details. For example, if the original file name is

COPY.ASM

228 MASTERING CP/M

then macro SETUP2 creates the temporary file COPY.$$$. Macro
CLOSE will delete the file COPY.BAK if it exists. Then it will rename
COPY.ASM to COPY.BAK. Finally, COPY.$$$ will be renamed to

COPY.ASM.
Add macro CLOSE to your library. This macro references seven other

macros: SYSF, ERRORM, OPEN, PRINT, MOVE, DELETE, and
RENAME.

CLOSE AAACRO POINTR
;;{Put current date here)

;;lnline macro to close a new file.

;;POINTR refers to file control block.

•;lf file is not found, branch to DONE.
;lf S2FLAG from SETUP2 is true, check If

(•duplicate file name flag DUPL is set. Change
;source file to BAK and new file to orig name.
;Set S2FLAG false at beginning.

;Usage: CLOSE DFCB

;Macros needed: SYSF, ERRORM, OPEN,

; PRINT, MOVE, DELETE, RENAME

LOCAL AROUND, CLOSE3
IF NOT NUL POINTR
LXI D, POINTR
ENDIF

CALL CLOS2?
INR A ;FF hex is error

IF NOT S2FLAG ;SETUP2 macro
JNZ AROUND ;ok

ELSE

JZ CLOS3?

LDA DUPL ;duplicate name?
ORA A
JZ AROUND ;no

MOVE 'BAK', FCBl +10H+9
MOVE FCBl+9, DFCB+lOH+9, 3

MOVE FCBl, FCBl+lOH, 9

Figure 7.8: Macro CLOSE to Close a Disk File

WRITING DISK FILES WITH BDOS 229

MOVE DFCB, DFCB+IOH, 9

DELETE FCBl+lOH ;BAK name if any

RENAME FCBl ;orlg to BAK

RENAME DFCB ;$$$ to orig

MOVE 'BAK', FCBl +9 ;restore

OPEN FCBl

JMP AROUND
ENDIF ;S2FLAG

IF NOT CLFLAG ;one copy

CLOS3?: ERRORM rFile not tound? , UUNb

CLOS2?: SYSF 16 ;close disk file

CLFLAG SET

ENDIF

TRUE ;only one copy

;CLFLAG

AROUND:
ENDM

;,-CLOSE

Figure 7.8 (continued)

DUPLICATING A DISK FILE

We are ready to write a program for copying disk files . We have created

an extensive macro library to make this task easier. This program is not in

itself very useful, because the CP/M program PIP can be used for this

purpose. Nevertheless, such a program will be a starting point for other

useful programs, such as a program to encrypt a file.

OurCOPY program will expecttwo parameters on thecommand line—

a

source file and a destination file. For example, the command line might

look like this:

COPY FIRST SECOND

Program COPY will then generate a new disk file called SECOND that is

an exact copy of an existing file called FIRST. Notice that the command

line is more natural than the one used by PIP. The source file name is

given first, followed by the destination file name. Furthermore, there is

no equal sign between the two file names.

In Chapter 6 we saw that it is necessary to open an existing disk file

before it can be accessed. We therefore will need an instruction to open

the source file called FIRST.

The destination file is handled differently from the source file. The pro-

grammer must ensure that the file with the name SECOND does not exist

on the disk. If it does exist, it must be erased.

230 MASTERING CP/M

If we look ahead to possible variations of our copy program, we will

want to consider the possibility of a single parameter such as

COPY FIRST. EXT

In this example, the given file name is both the source file and the destina-

tion file. A temporary destination file will be created to receive the result.

At the conclusion of the program, the file type of the source file will be
changed to BAK, and the temporary name given to the destination file

will be changed to the original file name.
Make a copy of the source program given in Figure 7.9. Give it the file

name COPYS.ASM or COPYS.MAC, depending on your assembler

(COPYS stands for copy sector). You might want to start with a copy of
one of the programs from the last chapter, altering it to match Figure 7.9.

Most of this program consists of definitions of symbols and flags. The
actual instructions and macros occupy only the last dozen or so lines of the
program. Assemble the program and try it out. Use COPY to duplicate its

own source program, using STAT first to ensure that there is sufficient

space on the diskette. Give the command

COPYS COPYS.ASM CRYPT.*

Look at the new copy by using SHOW, which we wrote in Chapter 6, or
use the CP/M command TYPE. Do not erase this copy; we will use it in

the next section.

When COPYS is executed, it reads one sector (128 bytes) into memory
and prints an * symbol. It then writes that sector to the new disk file and
prints a # symbol. These two symbols will be printed alternately across the

console, giving you a report on the progress. Alternately reading and
writing a single sector is an inefficientway tomake a copy, but it does have
one advantage—the size of the file is not limited by the available memory
space. It would be faster to read the entire source file, then write the entire

new file. We will consider this method shortly.

We have incorporated the macro ABORT, so you can mterrupt the copy-
ing process at any point by pressing the escape key. The new file will not be
created in this case. There will be a directory entry, but it will be empty
because the program did not perform the close function.

ENCRYPTING AN ASCH FILE

With a few modifications to the copy program we just wrote, we can
convert it to an encrypting (coding) program. Such a program can be very
useful. For example, if you have a computer in a public place, you may

WRITING DISK FILES WITH BDOS 231

TITLE 'Copy file sector by sector'

;(Put current date here)

Usage: COPYS SOURCE DESTINATION

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU
BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH

FCBl EQU 5CH ;first file name

FCB2 EQU 6CH ;second file name

DBUFF EQU 80H ;default buffer

;Set flogs in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before AAACLIB ca II.

CIFLAG SET FALSE ;input console char

CLFLAG SET FALSE ;close disk file

CMFLAG SET FALSE ;compare

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/l i ne-feed

DEFLAG SET FALSE ;delete disk file

AAKFLAG SET FALSE ;create new disk file

MVFLAG SET FALSE ;block move

OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE ;print console

RDFLAG SET FALSE ;read disk sector

RNFLAG SET FALSE ;rename disk file

S2FLAG SET FALSE ;SETUP2 macro

UNFLAG SET FALSE ;unprotect

WRFLAG SET FALSE ;write disk sector

;end of flags

Figure 7.9: Program COPYS to Duplicate a Disk File

232 MASTERING CP/M

AAACLIB CPMAAAC

ORG TPA

START:

ENTER

VERSN '(current date).COPYS

'

SETUP2 ;input and output files

COPY: ;file 1 to file 2

READS FCB1/*' ;read a sector

JNZ EOFILE ;done

ABORT ESC ;quit?

WRITES DFCB/r ;write new sector

JMP COPY ;yes, next sector

CLOSE DFCB ;desti nation file

DONE:

EXIT

END START

Figure 7.9 (continued)

want to ensure the privacy of certain files (such as those dealing with

payroll or other personnel matters). If these files are coded, they cannot
be inspected by someone who does not know how to decode them.
Use the copy of the source program we made in the previous section,

and give the new copy the file name CRYPT.ASM orCRYPT.MAC. Alter

the program to look like that in Figure 7. 10.

Near the beginning of the instructions we add a reference to macro
GFNAME. This will £isk the user for a file name ifnone was entered on the

command line. Macro SETUP2 prepares two memory FCBs using the pa-

rameters given on the command line. Then macros PRINT andREADCH
are used to request the encrypting key. This can be any keyboard character.

One sector of the source file is read into memory. Then each byte of the
sector is coded by performing an exclusive OR with the desired key. This

converts the file into an unreadable form. The advantage of the exclusive

OR operation is the ease of decoding. A second exclusive OR operation,

using the same coding key, returns the byte to its original form. Thus the

encrypting program is also the decrypting program.

After each byte of a sector is coded (or decoded), the sector is written

WRITING DISK FILES WITH BDOS 233

TITLE 'Encrypt fil e with XOR'

Feb 8.0, 1982

Usage: CRYPT SOURCE DESTINATION

=ALSE EQU
TRUE EQU NOT FALSE

BOOT EQU
BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH

FCB1 EQU 5CH ;first file name
FCB2 EQU 6CH ;seconcl file name
DBUFF EQU 80H ;default buffer

Set flags in main program so or ly one

copy of certain subroutines will be generated.

Place set lines before AAACLIB call.

:iFLAG SET FALSE ;input console char

CLFLAG SET FALSE ;close disk file

CAAFLAG SET FALSE ;compare

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/l i ne-feed

DEFLAG SET FALSE ;delete disk file

FLFLAG SET FALSE ;fill characters

FNFLAG SET FALSE ;read file name
AAKFLAG SET FALSE ;create new disk file

MVFLAG SET FALSE ;block move
OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE ;prlnt console

RCFLAG SET FALSE ;read console

RDFLAG SET FALSE ;read disk sector

RNFLAG SET FALSE ;rename disk file

S2FLAG SET FALSE ;SETUP2 macro

UNFLAG SET FALSE ;set file attributes

WRFLAG SET FALSE ;write disk sector

Figure 7.10: Program CRYPT to Encrypt a File with theXOR Operation

234 MASTERING CP/M

;end of flags

/

AAAr~l IR CPAAAAAC

/

TDA
1 rA

START:

ENTER
VERSN '2. 08. 82. CRYPT'

LDA FCBl +

1

CP! BLANK ;flrst file name?
JNZ PIRN ;yes

GFNAME FCBl ;get file name
FIRM:

SETUP2 ;input and output files

;get encrypting character fronn console

PRINT <CR,LF/ Press ESC to abort',CR,LF,LF>

PRINT 'Input one letter for encoding key:
'

READCH ;console char

ANI 7FH ;strip parity

CPI ESC

JZ DONE
STA KEY ;save

CRLF

COPY: ;file 1 to file 2

READS FCBl,'*' ;read a sector

JNZ EOFILE ;done

ABORT ESC ;quit?

;perform XOR with key for each byte

;HL is pointer to sector buffer

PUSH H ;save pointer

LXI H,DBUFF ;disk buffer

LDA KEY ;get it

MOV B,A ;save in B

Figure 7.10 (continued)

WRITING DISK FILES WITH BDOS 235

MVI C,80H ;sector length

CODE:

MOV A,M ;get byte

XRA B ;XOR with key

MOV M,A ;put byte back

INX H ;increment pointer

DCR C ;count

JNZ CODE ;keep going

POP H ;restore

WRITES DFCB/r ;write new sector

JMP COPY ;next sector

EOFILE:

CLOSE DFCB ;destination file

PRINT <CR,LF,' Delete original file? >
READCH
UCASE
CPI 'Y'

JNZ. DONE
DELETE FCBl ;gone

DONE:

EXIT

KEY: DS 1 ;encrypting key

END START

Figure 7.JO (continued)

to the destination file. Another sector is then read from the source file.

The program continues in this way until the entire file has been coded or

until the escape key is pressed, aborting the program.

If only one file name was entered at the beginning of the program, the

new file is given the original file name and the file type of the source file is

changed to BAK. At the conclusion of the program, the user is given the

option of deleting the original file.

Encrypt a copy of the source file using the letter M. Give the coded

copy the file name CRYPT.COD. The execution will be faster if the new

copy is on a different drive. For example:

CRYPT CRYPT.ASM B:*.COD

236 MASTERING CP/M

Be careful not to delete the original file, although if you do, you can

regenerate it by running CRYPT again and giving the same encrypting

character:

CRYPT B:CRYPT.COD *.ASM

Ifyou examine the coded file withSHOW or theCP/MTYPE command,
the console screen will be filled with meaningless information. However,

you can use the program DUMP, which we wrote in Chapter 6, to study

the result. For example, the command DUMP B:CRYPT.COD will give

you something like this:

Space bar for next screen, <CR>

0100 39243921 28A46A08 232E3F34
0110 2421286D 3A243925 6D15021F
0120 4047766D 0B282F6D 6D75637D
0130 757FA047 76404776 60183E2C
0140 08030E1F 141D196D 6D1E0218
0150 6D09081E 1904030C 19040203
0160 472B2C21 3E284428 3C38447D
0170 38284428 3C384423 22396D2B
0180 40477640 472F2222 3944283C

next Line, <ESC> to abort

3D396D2B 9$9 ! (D j . » . ?4=9m+

6A404776 $! (m : $9%m. . . j BGv
616D7C74 aGvm. (/mmuc>am|

t

2A28776D u.aGvSGvm.>,*(wm
1F0E086D mm m

40477640 m aGvS
4047393F G+, ! >(D (<8D>aG9?
2C213E28 8(D(<8D#"9m+,l>(
38447D40 aGvaG/""9D(<8D>a

On the other hand, if you examine the original file with the command
DUMP CRYPT.ASM, you will see the following:

Space bar for next screen, <CR>
0100 5449544C 45092745 6E637279
0110 696C6520 77697468 20584F52
0120 0D0A3B20 46656220 20382E30
0130 38320D0A 3B000A3B 20557361
0140 454E4352 59505420 20534F55
0150 20444553 54494E41 54494F4E
0160 0AA6414C 53450945 51550930
0170 55450945 5155094E 4F 542046
0180 0D0A3B0D 0A424F4F 54094551

next Line, <ESC> to abort

70742066 TITLE. ' Encrypt f

270D0A3B iLe with XOR'..;
2C203139 ..; Feb 8.0, 19

67653A20 82 Usage:
52434520 ENCRYPT SOURCE
0D0A3B0D DESTINATION..;.
0D0A5452 . FALSE. EQU . 0. . TR

414C5345 UE. EQU. NOT FALSE
5509300D .BOOT. EQU. 0.

Examining the ASCII representation of the coded file, you can see that

the lowercase letter m appears frequently. Remember that the uppercase

letter M was used as the encrypting key. Obviously, it would not be too

difficult to discover the encrypting character by studying the coded file.

If a more secure encryptation is desired, the process can be repeated

using a different key. For example, encrypt the coded file a second time

with the uppercase letter A. Give the command CRYPT CRYPT.COD.
Look at the result with the command

A:DUMP CRYPT.COD

WRITING DISK FILES WITH BDOS 237

The result now will be as follows:

Space bar for

0100 78657860
0110 6560692C
0120 0106372C
0130 343E0106
0140 49A24F5E
0150 2C48495F

0160 066A6D60
0170 79690569
0180 01063701

next screen, <CR>

69052B49 626F7E75
7B657864 2C54435E
4A696E2C 2C34223C
37010637 2C597F6I)

555C582C 2C5F4359
5845424D 58454342

7F690569 7D79053C
7D790562 63782C6A
066E6363 7805697D

next Line,

7C782C6A
2B010637
202C3D35
6B69362C
5E4F492C
01063701
0106787E
6D607F69
79053C01

<ESC> to abort

xex" i .+Ibo"u| x,j

e" i,{exd,TC"+..7
..7,Jin,,4"< ,=5

4>..7..7,Y.mki6,
IBO"U\X,,_CY"OI,
,HI_XEBMXECB. .7.

.jm" .i.i>y.<..x

yi .i>y.bcx,jm" .i

. .7. .nccx . i>y .<

.

This file was first coded with the letter M, then it was coded a second time

with the letter A. Neither of these characters is prominent in the ASCII

representation. This file must be decoded twice, once with the letterM and

once with the letter A. However, it does not matter which key is given first.

When you encrypt a file by giving only the source file name, for example,

CRYPT.COD, the program fully demonstrates its operation. At the end

ofthe process there will still be only one file with this name. During opera-

tion the console will display the following lines:

Press ESC to abort

Input one letter for encoding key: M
* ^* j^* ffm ^tf^i,^if^t,^tt^it^tt^it^it^*

CRYPT COD = ==> CRYPT BAK
CRYPT $$$==> CRYPT COD
Delete original file? y

Both CRYPT from this section and COPY from the previous section

print an interlaced sequence of * and # symbols as the file sectors are being

read or written. Because the printing of these characters is very time con-

suming for larger files, you may want to remove the second parameter

from macro READS and WRITES after you become familiar with the

operation of these programs. That is, change

READS FCB1, ;read a sector

to

READS FCBl ;read a sector

and change

WRITES DFCB/#' ;write nev*/ sector

to

WRITES DFCB ;write new sector

We will now consider a more efficient way to read a disk file.

238 MASTERING CP/M

COPYING A nLE BY BUFFERING INTO MEMORY
The COPY and CRYPT programs we just wrote use macro READS to

read one disk sector and macro WRITES to write one disk sector. Alter-

nately reading and writing one sector at a time is an easy way to program

disk operations, and it does not require a large amount of memory.
However, a disk file can be copied more rapidly if the entire file is read into

memory at one time. A new file is then written from memory all at once.

The disadvantage of this technique is that very large files cannot be loaded

into memory, at least not all at once. However, this limitation is not

serious. Most commercial executable programs are smaU enough to fit into

a moderately sized memory. Furthermore, it is better to Umit text files to a

size that will fit into memory, as this will speed up the editing process.

To enable us to copy files more efficiently, we must add two macros to

our library. One will read an entire disk file into memory at once, and the

other will perform the complementary operation—it will write an entire

disk file from a memory image.

Reading an Entire File into Memory

Macro LDFILE, shown in Figure 7. 1 1 , is used to read a disk file into

memory. Add it to your macro library. This macro has three parameters.

The first parameter gives the location of the memory FCB for the file

to be read. The second parameter is the pointer to the memory image of

the file itself. The third parameter is the character to be displayed on the

console as each sector is read.

It appears that the first parameter, FCB, is required, but in fact it is not.

This parameter is simply passed along to macro READS. If the actual

parameter is omitted, macro READS will assume that the DE register is

already loaded with the address of the FCB.
The second parameter to macro LDFILE is required, but you can rewrite

the macro to make it optional. The optional third parameter is also passed

along to macro READS. If it is omitted, no character is displayed while

the sectors are being read.

LDFILE MACRO FCB, POINTR, CHAR
;;(Put current date here)

;;lnline macro to load a disk file Into

;;memory starting at POINTR.

Figure 7.11: Macro LDFILE to Read an Entire File into Memory

WRITING DISK FILES WITH BDOS 239

;;POINTR initially points to memory buffer.

;;Place buffer at end of program.

;;HL points to end of loaded program.

;;Optiono 1 3rd parameter is printed after

;;each sector is read.

;;CCP area may be overlaid but

;;FDOS is protected.

;;Carry flag is set if file is too big.

;;DAAA address is reset to 80H on exit.

;;Mocros needed: SETDAAA, READS

;;Usage: LDFILE FCBl, DBUFFP, '*'

LDFILE FCBl, BUFFP

LOAD2?:

LHLD POINTR

XCHG ;move to DE

SETDMA ;set next sector

READS FCB, CHAR
JNZ LOADS? ;done if nonzero

LHLD POINTR

LXI D,80H ;one sector

DAD D ;DE has pointer

SHLD POINTR ;save pointer

;see If file is entering CCP area

LDA 7 ;FDOS

SUI 2 ;2 blocks down
CMP H ;file too big?

JNC LOAD2? ;no keep going

LOAD3?: ;done

PUSH PSW
SETDMA 80H ;reset

POP PSW
;;LDFILE

ENDM

Figure 7.11 (continued)

240 MASTERING CP/M

Macros SETDMA and READS are needed by macro LDFILE. We have

lejirned that CP/M reads disk sectors into amemory region designated by

theDMA address, and that this location is automatically reset to the value

of80 hex each time awarm start is performed. We used this location in the

two previous programs. We also learned that theDMA address can be set

to any desired memory location with BDOS function 26.

A program that uses macro LDFILE will set up the memory buffer at

the end ofthe program. Macro LDFILE initially sets theDMA address to

the beginning of this buffer. After each sector is read into memory, macro

LDFILE advances theDMA address by 80 hex, the length of a sector. In

this way, the entire file will be read sequentially into memory. At the end

of the load step, macro LDFILE resets the DMA address to the usual

value of 80 hex.

Most of the executable programs we have written save the incoming

stack pointer and set up a new one. At the conclusion of the program, the

original stack pointer is restored and a return instruction is executed. This

approach is faster than performing a warm start when the program is

finished. However, a different method must be used for larger programs.

Large executable programs can use the memory space occupied by the

console command processor (CCP). In this case, however, a warm start

must be performed when the program is finished. This will reload the

CCP and the BDOS. We use this technique whenever we need macro

LDFILE, because it may have to overlay the CCP.
The address for the beginning ofBDOS is coded at memory locations 6

and 7. For example, BDOS begins at the address 3C00 hex for a 20K-byte

system; for a 64K system BDOS starts at FAOO hex. Thus, any executable

program can determine the size of the CP/M that is currently being used.

Macro LDFILE reads the high-order byte oftheBDOS address at location 7

.

This value is compared to the high-order byte of the pointer as each sector

of the file is read into memory. Macro LDFILE will allow the CCP to be

overwritten, but it will protect the remainder of the CP/M system.

If a file is so large that is begins to overlay the BDOS, macro LDFILE
will stop reading the file and set the carry flag. No error message is

printed, however, so the programmer must test the state of the carry flag

after the file has been loaded to see if the file is too large. We will now con-

sider the complementary macro WRFILE.

Writing an Entire File from Memory

Macro WRFILE, shown in Figure 7.12, is similar to macro LDFILE.
The three parameters are the same as those for macro LDFILE. Add this

macro to your library.

WRITING DISK FILES WITH BDOS 241

WRFILE AAACRO FCB, POINTR, STAR
;;(Put current date here)

;;lnline macro to write a disk file from

;;a memory image. Buffer starts at POINTR+2.
;;POINTR marks end of file.

;;Optional star symbo 1 Is printed for each sector.

;;Macros needed: WRITES, SBC, SETDAAA, ERRORM
/ /

LOCAL WRFIL?,EVEN?

LHLD POINTR ;end

XCHG ;to DE

LXI H, POINTR+ 2 ;start

SHLD POINTR ;reset

XCHG
SBC HL,DE ;program length

MOV A,L

MOV L,H ;just upper part

MVI H,0

DAD H ;double= # sectors

ORA A ;odd # of sectors?

JZ EVEN? ;no

INX H
EVEN?:

PUSH B

MOV B,H

MOV C,L

WRFIL?:

LHLD POINTR

XCHG ;move to DE

SETDMA ;next sector

WRITES FCB,STAR

LHLD POINTR

LXI D,80H ;one sector

DAD D ;next location

SHLD POINTR

DCX B ;number of sectors

MOV A,C

Figure 7.12: Macro WRFILE to Write an Entire Filefrom Memory

242 MASTERING CP/M

ORA
JNZ
POP

B

WRFIL?

B

;;WRFILE

ENDAA

Figure 7.12 (continued)

After macro LDFILE has loaded a file into memory, the pointer will

reference the end ofthememory image ofthe file. MacroWRFILE begins

by copying this pointer to the DE register. The pointer is then reset to the

beginning ofthememory image. The length ofthe file is computed by sub-

tracting the address of the beginning of the file from the address at the

end. Macro SBC is used for the 16-bit subtraction.

The Copy Program, Version 2

The program shown in Figure 7.13 uses macros LDFILE andWRFILE
to copy disk files more rapidly. Duplicate the copy program in Figure 7.9

(COPYS), giving the new version the file name COPYB (for buffered

copy). The command is as follows:

COPYS COPYSASM COPYB.*

Alter the new version to look like Figure 7.13. Assemble the program and

execute it. Test COPYB by using it to make a copy of itself.

You will find that this version runs much faster than the previous one,

which copies one sector at a time. A further increase in speed will occur if

you remove the * and # symbols from macros

IDFILE FCB1,BUFFP/*'

WRFILE DFCB,BUFFP,'#'

Macro LDFILE is programmed to terminate reading if a disk file is too

large. You can test this feature in the following way. Create a very large

file by giving the command

SAVE 220 DUMMY

(The informationwe are saving is simply the contents ofmemory.) Be sure

that there is enough room on the disk (about 55K bytes). Try to copy this

and

WRITING DISK FILES WITH BDOS 243

file with the command

COPYB DUAAMY

The copy program will begin to read the file, but it should terminate with

the error message

?File too big

TITLE 'Copy f i le with buffer'

;{Put current date here)

Usage: COPYB SOURCE DESTINATION

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU
BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH

FCB1 EQU 5CH ;first file name

FCB2 EQU 6CH ;second file name

DBUFF EQU 80H ;default buffer

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before AAACLIB coll.

CIFLAG SET FALSE ;input console char

CLFLAG SET FALSE ;close disk file

CMFLAG SET FALSE ;compare

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/l i ne-feed

DEFLAG SET FALSE ;delete disk file

DMFLAG SET FALSE ;set DMA address

MKFLAG SET FALSE ;create new disk file

Figure 7.13: Program COPYB to Copy a Disk File by Buffering in Memory

244 MASTERING CP/M

MVFLAG SET FALSE ;block move
OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE ;print console

RDFLAG SET rMLOt ,'read disk sector

RNFLAG SET FALSE ;rename disk file

S2FLAG SET FALSE ;SETUP2 macro

UNFLAG SET FALSE ;unprotect

WRFLAG SET FALSE ;wrlte disk sector

;end of flags

AAACLIB CPAAMAC

ORG TPA

START:

ENTER

VERSN '(current date).COPYB

'

SETUP2 ;lnput and output files

LDFILE FCBl, BUFFP,'*'

JNC EOFILE ;file ok

ERRORM <CR,LF/?File too big'>

EOFILE:

LHLD BUFFP /pointer

MVI M,EOF ;just in case

ABORT ESC

WRFILE DFCB, BUFFP, '#'

CLOSE DFCB ;desti nation file

DONE:

JMP BOOT ;warm start

OLDSTK: DS 2

DS 34

STACK:

BUFFP: DW BUFFER

BUFFER: DS 1

/

END START

Figure 7.13 (continued)

WRITING DISK FILES WITH BDOS 245

A BUFFERED COPY PROGRAM
WITH VERIFICATION

Our copy program needs two more features before we can begin to use

it seriously. After we make a copy of a file, we should read back the new

file to verify that it was written correctly. We should also be able to

designate that the new file is write protected if the original file was.

Comparing Two Disk Files

Before we add the verification feature to the copy program, we will

write another executable program. Makea duplicate ofthe previous program

and give it the name VERIFY. Alter the text to look like Figure 7.14.

TITLE 'VERIFY two files'

(Put current date here)

iusage: VERIFY SOURCE DESTINATION

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU
BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH

FCBl EQU 5CH ;first file name
FCB2 EQU 6CH ;second file name
DBUFF EQU 80H ;default buffer

Set flags in main program so only one

copy of certain subroutines will be generated.

Place set lines before AAACLIB call.

CIFLAG SET

CMFLAG SET

COFLAG SET

CRFLAG SET

FALSE

FALSE

FALSE

FALSE

;input console char

/compare

;output console char

;carr-ret/l i ne-feed

Figure 7.14: Program VERIFY to Verify That Two Disk Files Are Identical

246 MASTERING CP/M

DAAFLAG

MVFLAG
OPFLAG
PRFLAG

RDFLAG

SET

SET

SET

SET

SET

;end of flags

AAACLIB

FALSE

FALSE

FALSE

FALSE

FALSE

CPAAAAAC

;set DAAA address

;block move
;open disk file

;print console

;read disk sector

ORG TPA

START:

EOFILE:

NSECT:

DONE2:

ENTER
VERSN
LDA

CPI

JZ

AMBIG
MOVE
OPEN
OPEN
LDFILE

JNC
ERRORM

LHLD

MVI
LXI

ABORT
READS
ORA
JNZ
COMPAR
JNZ
LXI

DAD
JAAP

PRINT

'(current date).VERIFY'

FCB2+1 ;second parameter

BLANK
NOSEC
FCB1,FCB2

FCB2,DFCB,16 ;destination

FCBl

DFCB
FCB1,BUFFP

EOFILE ;file ok

<CR,LF,'?Filetoo big'>

BUFFP

M,EOF
H, BUFFER

ESC

DFCB
A
DONE2
,DBUFF,128

DIFFER

D,80H

D
NSECT

(pointer

;just in case

;zero means more

;one sector

;next sector

<CR,LF,'Files are identical'>

Figure 7.14 (continued)

WRITING DISK FILES WITH BDOS 247

DONE:
JMP BOOT ;warm start

NOSEC:
ERRORM <CR,LF/?Seconcl file omitted'>

DIFFER:

ERRORM <CR,LF, rFiles are different >

OLDSTK: DS 2

DS 34

STACK:

DFCB: DS 33 ;second file

BUFFP: DW BUFFER

BUFFER: DS 1

END START

Figure 7.14 (continued)

Assemble the program and try it out. Thecommand line looks like the one

for the copy program except that both parameters are source files. For

this program the order of the parameters is immaterial. Give a command

in which both parameters are the same:

VERIFY VERIFY.ASM VERIFY.ASM

You should get the statement

Files are identical

Then give file names for files that are different:

VERIFY VERIFY.ASM VERIFY.COM

You will get the message

?Files are different

When this program is executed, the first file is read into memory. The

second file is then read into the default buffer at 80 hex, one sector at a

time. The program then compares this sector with the corresponding sector

of the first file. Thus the TPA is used only by the first file.

The asterisk and question mark symbols can be used as ambiguous

characters in the second file name. For example, the following command

is valid:

VERIFY VERIFY.ASM *.BAK

248 MASTERING CP/M

A Macro to Protect Disk Files

You may have noticed that if our copy program is used to duplicate a

write-protected file, the copy is not write protected. That is, the new file is

not designated as read only. We are going to fix this problem for the next

version, so that the new file will have the same protection attribute as the

original file.

Macro PROTEC, given in Figure 7.15, can be used to protect a disk file

using BDOS function 30. We previously wrote macro UNPROT to un-

protect a disk file using the same BDOS function 30. Recall that the high-

order bit of the first character of the file type specifies the protection

attribute. If this bit is set, the file is protected. If this bit is reset, the file

can be altered or erased. Add macro PROTEC to your library.

The Copy Program, Version 3

Our final version of the copy program will read the entire source file into

memory. It will then write the new file from this memory image. The new
copy is verified by reading the new file sector by sector and comparing

each sector to the memory image. If a difference is found, the program

PROTEC AAACRO POINTR
;;(Put current date here)

;;lnline macro to protect FCB at POINTR.

;;Macro needed: SYSF

LOCAL AROUND, PROT2?
LXI D,POINTR
LDA POINTR-l-9 ;;extension

ORI 80H ;;set for R/O
STA POINTR+9
CALL PROT2?

JMP AROUND
PROT2?:

SYSF 30

AROUND: ;;PROTEC

ENDM

Figure 7.15: Macro PROTEC to Protect a Disk File

WRITING DISK FILES WITH BDOS 249

terminates and the error message

?Files are different

is displayed on the console. The console bell also sounds.

This version of the copy program also transfers the protection attribute

of the source file to the destination file. The memory FCB of the source

file is checked to see whether the file is protected. If it is, instructions

created by macro PROTEC set the protection attribute of the new file.

Make a copy ofprogram COPYB. Give it the nameCOPYV (copy with

verification). Use program VERIFY to ensure that the copy is correct.

Alter COPYV to look like Figure 7.16. Assemble the program and try it out.

TITLE 'COPY and verify file'

;(Put current date here)

Usage: COPYV SOURCE DESTINATION

FALSE

TRUE

EQU
EQU NOT FALSE

BOOT
BDOS
TPA

EQU
EQU
EQU

5

lOOH

;BDOS entry point

FCBl

FCB2

DBUFF

BEL

EQU
EQU
EQU
EQU

5CH
6CH
80H

7

;first file name
;second file name
;default buffer

;Set flags in main program so only one

;copy of certain subroutines will be generated.

Place set lines before AAACLIB call.

CIFLAG

CLFLAG

SET

SET

FALSE

FALSE

;input console char

;close disk file

Figure 7.16: Program COPYV to Copy Disk Files with Verification

250 MASTERING CP/M

CAAFLAG SET FALSE

COFLAG SET FALSE /output consols char

CRFLAG SET FALSE ;carr-ret/l ine-fsed
DEFLAG SET FALSE ;dGl6te disk file

DMFLAG SET FALSE ;set DAAA address

MKFLAG SET FALSE 'create new disk file

MVFLAG SET FALSE ;block move
OPFLAG SET FALSE

PRFLAG SET FALSE ;prlnt console

RDFLAG SET FALSE ;read disk sector

RNFLAG SET FALSE ;rename disk file

S2FLAG SET FALSE ;SETUP2 macro
UNFLAG SET FALSE ;unprotect

WRFLAG SET FALSE ;write disk sector

;end of flogs

/

AAACLIB CPAAAAAC

ORG TPA

START:

ENTER
VERSN '(current date).COPYV

'

SETUP2 ;input and output files

LDA FCBl +9
ANI 80H ;protected

STA PROTFL (•protection flag

LDFILE FCB1,BUFFP

JNC EOFILE ;file ok
ERRORM <CR,LF,'?Filetoo big'>

EOFILE:

LHLD BUFFP ;pointer

AAV! AA,EOF ;just in case

ABORT ESC

WRFILE DFCB, BUFFP

CLOSE DFCB (•destination file

;verify that file is identical with originol

OPEN DFCB
LXI H, BUFFER

Figure 7.16 (continued)

WRITING DISK FILES WITH BDOS 251

SETDMA DBUFF

NSECT:

ABORT ESC

READS DFCB

ORA A ;zero means more

JNZ DONE2
COMPAR ,DBUFF,128 ;one sector

JNZ DIFFER

LXI D,80H

DAD D ;next sector

JMP NSEa
DONE2:

LDA PROTFL ;protected?

ORA A
JZ DONE ;no

PROTEC DFCB

DONE:
JMP BOOT ;warm start

DIFFER:

ERRORM <BEL/?Files are different'>

PROTFL: DS 1 ;protection flag

OLDSTK:

DS 2

34

STACK:

BUFFP: DSN BUFFER

BUFFER: DS 1

/

END START

Figure 7.16 (continued)

A PROGRAM TO RENAME DISK FILES

Disk files can be renamed with the CP/M built-in command REN.

However, ambiguous file names are not allowed in this command. Thus,

ifyou want to change all BASIC files to backup status, that is, ifyou want

to change the extension from HAS to BAK, you must specifically rename

each separate file.

The program shown in Figure 7. 17 can be used to rename CP/M disk

252 MASTERING CP/M

files, either individually or in groups. The command line is similar to the

other programs in this chapter. For example, the command

RENAME OLDNAME NEWNAME

changes the name ofOLDNAME to NEWNAME. If a file with the new
name already exists, the program asks for permission to delete it. Further-

more, if this file is write protected, additional permission is requested to

unprotect it before deletion.

The usefulness of this program lies in its ability to rename several files

with a single command. For example, the command

RENAME *.BAS *.BAK

will change the file type of all BASIC files to BAK. Ifyou discover an error

in the conunand, you can terminate the operation by pressing the escape key.

A single RENAME command can combine a delete operation with a

renaming step. For example, if you want to delete the backup copy and
rename the main copy as the backup copy, you can give the following two
CP/M commands:

ERA AAAIN.BAK

REN AAAIN.BAK=MAIN.ASM

However, the same result can be obtained with a single conmiand using

our RENAME program. Give the command

RENAME AAAIN.ASM *.BAK

Of course, RENAME will request permission to delete the program
MAIN.BAK.

Because macro RENAME is used by this program, each renaming step

is indicated graphically by right-pointing arrows. An open operation is

performed on the original file name to ensure that the name exists. Then
an open operation is performed on the new file name to see whether that

name is in use. After each file is renamed, an open operation is performed
to locate the next occurrence of the requested file name. This method
generally works very well. However, it will fail ifyou decide not to rename
one of a group of files. Each succeeding open command will locate the

same file. As a consequence, RENAME is programmed to terminate if

you decide not to delete a particular file.

A PROGRAM TO DELETE DISK FILES

The program shown in Figure 7 . 1 8 can be used to delete disk files . Files

that are not write protected can be deleted with theCPM built-incommand

WRITING DISK FILES WITH BDOS 253

ERA, but protected files cannot be deleted this way. DELETE can be used

to delete protected files, although permission is requested for deletion.

Also, the requested file name can contain asterisks and question marks,

the CP/M ambiguous reference characters.

TITLE 'RENAME disk file with ambiguous reference'

:(Put current date here)

;Abort program with ESC.

Program quits when a system file is found.

;Usage: RENAME OLD NEW
RENAME OLD.EXT *.BAK

RENAME OLD. EXT NEW.*

RENAME OLD.* NEW.*

RENAME *.EXT *.BAK

FALSE EQU
TRUE EQU NOT FALSE

BOOT EQU
BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH

FCB EQU 5CH ;file control block

FCBl EQU 5CH ;first file name

FCB2 EQU 6CH ;second file name
DBUFF EQU 80H ;default buffer

;Set flogs in main program so only one

;copy of certain subroutines will be generated.

Place set lines before AAACLIB coll.

CIFLAG SET FALSE ;input console char

CMFLAG SET FALSE ;compare

CRFLAG SET FALSE ;carr-ret/l i ne-feed

COFLAG SET FALSE ;output console char

DEFLAG SET FALSE ;delete disk file

Figure 7.17: Program RENAME to Rename Disk Files

254 MASTERING CP/M

MVFLAG SET FALSE -block mov(=

OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE 'rvrint ^"/^r*c/^lo• nil

RNFLAG SET FALSE ;rename disk file

UNFLAG SET ' /^i-wt ,561 Tlie uTTriDUTeS

;end of flags

AAACLIB CPAAAAAC

ORG TPA

/

START:

ENTER

VERSN '(current date). RENAME

'

LDA FCBl+1
CPI BLANK
JZ NOSOUR
LDA FCB2+1
CPI BLANK
JZ NODEST
COMPAR FCBl+1, FCB2+1,11
JZ SAMEN
COMPAR '9???'?9?9'?'??' FCBl+1
JZ IMPROP
COMPAR "ffffPffffff FCB2+1
JZ IMPROP
XRA A ;zero

STA FIRSTF ;reset flag

PRINT <LF, 'Press ESC to abort',CR,LF>

;save original parameters

MOVE FCB1, FCOPY, 20H
MOVE FCBl, OFCB, 20H

NEXTN: ;next name
OPEN FCB1,FPASS ;sourcefile

ABORT ESC ;quit?

MVI A,OFFH

Figure 7.17 (continued)

WRITING DISK FILES WITH BDOS 255

STA FIRSTF ;multiple pass

LDA FCBl+10 ;system file

ANI 80H ;bit 7

JNZ SYSFIL ;skip

UNPROT FCBl

MOVE FCBl, OFCB, 12 ;original

LDA FCBl ;drive code

STA DFCB

;check for ambiguous original file name

COMPAR FCBl+1, FCOPY+ 1, 8

JZ NOQl ;no

MOVE FCBl +1, OFCB+1, 11 ;acfual name

MOVE FCBl+1, DFCB+1, 8 ;new primary

MOVE F2COPY+9, DFCB +9, 3 ;ext

JMP CHEK2

NOQ1:

;check for ambiguous original extension

COMPAR FCBl +9, FCOPY+9, 3

JZ NOQ3 ;no

MOVE FCBl+1, OFCB+1, 11 ;actual name

MOVE FCBl +9, DFCB +9, 3 ;new ext

MOVE F2COPY+1, DFCB+1, 8 ;primary

JMP CHEK2

;check for ambiguous new name

NOQ3:
AMBIG FCBl, DFCB

CHEK2:

OPEN DFCB, RENAM
CRLF

PFNAME DFCB

PRINT ' exists. Delete?
'

READCH

Figure 7.17 (continued)

256 MASTERING CP/M

UCASE
CPI 'Y'

JNZ DONE
LDA FCB1 ;drlve code
STA DFCB
DELETE DFCB

RENAM:
RENAME OFCB
MOVE FCOPY+1, FCB+1, 11 ;reset

JMP NEXTN
FPASS:

LDA FIRSTF ;get pass flag

ORA A ;first pass?

JNZ DONE ;no

ERRORM 'File not found', DONE
NOSOUR:

ERRORM 'No source file', DONE

ERRORM 'No destination file', DONE

ERRORM 'Same name', DONE
lAAPROP:

ERRORM 'Improper name', DONE

FIRSTF: DB /first pass

O YOrlL. ;found system file

CRLF

PFNAME FCB

PRINT ' is a system file'

DONE:
EVITCAI

1

FCOPY: DS 10H /dll^lliLli ^UflliilUiiU

F2COPY: DS lOH ;with second name
OFCB: DS lOH /original name
DFCB: DS lOH ;new name

END START

Figure 7.17 (continued)

WRITING DISK FILES WITH BDOS 257

TITLE 'DELETE disk file with ambiguous reference'

(Put current date here)

Usage: DELETE NAME
DELETE NAME. EXT

DELETE NAME *

DELETE *.EXT

=ALSE EQU
TRUE EQU NOT FALSE

BCXDT EQU
BDOS EQU 5 ;BDOS entry point

TPA EQU 1CX)H

FCBl EQU 5CH ;first file name
FCB2 EQU 6CH ;second file name
DBUFF EQU 80H ;default buffer

•Set flags in main program so only one

•copy of certain subroutines will be generated.

•Place set lines before AAACLIB call.

CIFLAG SET FALSE ;input console char

CMFLAG SET FALSE ;compare

CRFLAG SET FALSE ;carr-ret/l i ne-feed

COFLAG SET FALSE ;output console char

DEFLAG SET FALSE ;delete disk file

AAVFLAG SET FALSE ;block move

OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE ;print console

UNFLAG SET FALSE ;unprotect file

;end of flags

AAACLIB CPAAAAAC

ORG TPA

Figure 7. 18: Program DELETE to Delete Disk Files

258 MASTERING CP/M

START:

ENTER

VERSN '(current date). DELETE

'

LDA FCB1 + 1

CPI BLANK
JZ NOSOUR
PRINT <LF,' Press ESC to abort',CR,LF>

LDA FCB2+1
STA QUERY ;ask about delete

COMPAR "PfPfffPffff FCBl+l
JNZ ALLNAM
PRINT 'Delete all? (Y/N)

'

REAOCH
UCASE
CPI 'Y'

JNZ DONE
ALLNAM:

LXI D,FCB1

*n^t firct filo n/^maf^^' iiiai IIIC7 iiuiiio

MVI C 17 /searcri Tor iiie nom©
CALL BDOS
CPI OFFH

JZ NOSOUR ;no

CALL GETNAM
NNAME:

LXI

MVI

CALL

D,FCB1

C,18

BDOS

;get next file name

CPI OFFH ;more?

JZ NNAM2 ;no

CALL GETNAM
JMP NNAME

NNAAA2:

LXI

SHLD
H,FNAMES-12
FPNTR

NEXTN: ;next name
LHLD FPNTR ;polnter

LXI D,12

DAD D
SHLD FPNTR ;save

MOV A,M

Figure 7.18 (continued)

WRITING DISK FILES WITH BDOS 259

CPI BLANK

JZ DONE
MOVE , FCBl, 12

OPEN FCBl ;source file

ABORT ESC ;quit?

LDA QUERY ;ask

CPI 'Q'

JNZ NOASK
PRINT <CR,LF/ Delete '>

PFNAME FCBl

PCHAR '?'

PCHAR BLANK

READCH
UCASE
CPI 'Y'

JNZ NEXTN

NOASK:
DELETE FCBl, NEXTN

CRLF

PFNAME FCBl

PRINT ' deleted'

JMP NEXTN

GETNAM: ;copy name to work area

RRC ;3 bits right = 5 left

RRC ;0 = 0, 1 = 20H

RRC ;2 = 40H, 3 = 60H

ANI 60H ;mask

MOV E,A

MVI D,0

LXI H,DBUFF

DAD D

XCHG
LHLD FPNTR /destination

XCHG ;to DE

MOVE , , 12

LXI H,12

DAD D

SHLD FPNTR ;next name

MVI M, BLANK ;mark end

RET

Figure 7.18 (continued)

260 MASTERING CP/M

NOSOUR
ERRORM 'No source file', DONE

FPNTR:

QUERY:
DW
DS

FNAMES ;name pointer

;if Q, ask before delete

DONE:

EXIT

FNAMES: DS ;stack of file names

END START

Figure 7.18 (continued)

Ifthe letterQ (for query) is given as a second parameter, DELETE requests
permission to delete each file name, whether or not it is write protected.
This is particularly useful in deleting improper directory entries.
Sometimes, for example, a file name contains a nonprinting character or
a lowercase character. In this case, the file cannot be specifically deleted
with the CP/M command ERA. The troublesome file can be deleted by
giving the command

DELETE *.* Q

This is a command to delete all files on the disk, but only with permission.
You will then be presented every file on the disk, one at a time, whether
write protected or not. Ifyou answer each case with any character besides
a Y, the particular file will not be deleted. The next file name will then appear.
If you answer Y and the fUe is protected, you will be asked permission to
unprotect the file.

In this program we use BDOS function 17 to find the first file and
BDOS function 18 to find subsequent files. When using function 18, all of
the file names must be copied initially into a buffer area. Then the program
can work with each file name, one at a time.

SAVING THE MEMORY CACHE ON DISK
In Chapter 3 we altered the BIOS so that printer output could be saved

in amemory cache. We thenmoved the resulting information down to the
TPA and created a disk file with the built-in SAVE command. We will
now write a program to make this task easier. The program shown in
Figure 7.19 can write the information contained in the memory cache

WRITING DISK FILES WITH BDOS 261

directly to a disk file. The main part ofthe source program is very short. It

uses the macros ENTER, VERSN, and EXIT in the usual way. In addi-

tion, macroGFNAME is supplied so that a file name can be entered after

program execution has begun.

Recall that we set up two pointers at the beginning of the memory

cache. The first points to the beginning of the text and the second refers to

the end of the text. The first pointer is FOOO hex. MacroWRFILE directly

writes the disk file from the memory buffer. The command

CACHE (file name)

will create a disk file with the requested file name using the information

contained in the memory cache.

TITLE 'CACHE to save memory on disk'

;(Put current date here)

iusage: CACHE DISKFILE

FALSE EQU
TRUE EQU NOT FALSE

MFOINT EQU OFOOOH main pointer

AAAAAX EQU AAPOINT+ 2 end of text

AABUFF EQU MFOINT+ 2 buffer

BOOT EQU system reboot

BDOS EQU 5 BDOS entry point

FCBl EQU 5CH input FCB

DBUFF EQU 80H •default buffer

TPA EQU lOOH •transient program area

;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before AAACLIB call.

FLAG SET FALSE ;input console char

CLFLAG SET FALSE ;close disk file

Figure 7.19: Progam CACHE to Create a Disk Filefrom the Memory Cache

262 MASTERING CP/M

COFLAG SET FALSE ;output console char
CRFLAG SET FALSE ;carr-ret/l i ne-feed
DEFLAG SET FALSE ;delete disk file

DMFLAG SET FALSE ;set DAAA
FLFLAG SET FALSE ;fill characters

FNFLAG SET FALSE ;get file name
AAKFLAG SET FALSE ;create new disk file

MVFLAG SET FALSE ;block move
OPFLAG SET FALSE ;open disk file

PRFLAG SET FALSE ;print console buffer

RCFLAG SET FAI V /'read console buffer

RNFLAG SET FALSE ;rename disk file

S2FLAG SET FAIrMLoC ,otiUrz macro not used
UNFLAG SET FALSE ;unprotect

WRFLAG SET FALSE "write cJi^lc filp

;end of flags

AAACLIB

ORG TPA

START:

ENTER
VERSN '(current date).CACHE'
LDA FCBl+1
CPI BLANK ;file name?
JNZ OP3 ;yes

GFNAME FCBl ;get file name
OP3:

DELETE FCBl ;existing name
MAKE FCBl ;new one

;make disk file starting at AAMAX

WRFILE FCBl, AAMAX
CLOSE FCBl

DONE:

EXIT

END START

Figure 7.19 (continued)

WRITING DISK FILES WITH BDOS 263

SUMMARY
In this chapter we added several significant macros to our library:

MAKE, UNPROTECT, PFNAME, DELETE, SETUP2, RENAME,
CLOSE, WRITES, LDFILE, WRFILE, and PROTEC. We then wrote

several executable programs to copy, code, verify, rename, and delete

disk files.

Your macro library directory should now look like this:

;;Macros in this library Flags

;;ABORT AAACRO CHAR CIFLAG, COFLAG

;;AMBIG AAACRO OLD, NEW (none)

;;CLOSE AAACRO POINTR CLFLAG, COFLAG, CRFLAG

1

1

PRFLAG, OPFLAG, AAVFLAG,

1

1

DEFLAG, CIFLAG, UNFLAG,

1

1

RNFLAG, S2FLAG

;;CO/\APAR AAACRO FIRST, SECOND, BYTES CAAFLAG

;;COMPRA AAACRO FIRST, SECOND, BYTES CAAFLAG

;;CPAAVER AAACRO (none)

;;CRLF AAACRO CRFLAG, COFLAG

;;DELETE AAACRO POINTR, WHERE DEFLAG, CIFLAG

COFLAG, PRFLAG, UNFLAG

;;ENTER AAACRO (none)

;;ERRORM AAACRO TEXT, WHERE COFLAG, CRFLAG, PRFLAG

;;EXIT AAACRO SPACE? (none)

;;FILL AAACRO ADDR, BYTES, CHAR FLFLAG

;;GFNAME AAACRO FCB FNFLAG, FLFLAG, RCFLAG

COFLAG, CRFLAG, PRFLAG

;;HEXHL AAACRO POINTR HXFLAG, RCFLAG

;;LCHAR AAACRO PAR LOFLAG

;;LDFILE AAACRO FCB, POINTR, CHAR COFALG, DAAFLAG

RDFLAG

;;AAAKE AAACRO POINTR AAKFLAG, COFLAG, CRFLAG,

PRFLAG

;;AAOVE AAACRO FROAA, TO, BYTES AAVFLAG

;;OPEN AAACRO POINTR, WHERE OPFLAG, COFLAG, PRFLAG

CRFLAG

;;OUTHEX AAACRO REG CXFLAG, COFLAG

;;PCHAR AAACRO PAR COFLAG

;;PFNAME AAACRO FCB COFLAG, PRFLAG

;;PRINT AAACRO TEXT, BYTES PRFLAG, COFLAG

;;PROTEC AAACRO POINTR (none)

;;READB AAACRO BUFFR RCFLAG

264 MASTERING CP/M

;READCH

/READS

/RENAME

;SBC

;SETDAAA

;SETUP2

;SYSF

;UCASE

;UNPROT

;UPPER

;VERSN

;WRITES

;WRFILE

AAACRO
MACRO
AAACRO

AAACRO
AAACRO
AAACRO

AAACRO
AAACRO
AAACRO
AAACRO
AAACRO
AAACRO

REG

POINTR, STAR

POINTR

POINTR

FUNC, AE
REG

POINTR

REG

NUM
POINTR, STAR

AAACRO FCB, POINTR

CI FLAG, COFLAG
RDFLAG, COFLAG
RNFLAG, COFLAG
PRFLAG, CRFLAG
(none)

DMFLAG
S2FLAG, CI FLAG, COFLAG,
CRFLAG, CMFLAG, DEFLAG,

MKFLAG, MVFLAG, OPFLAG,

PRFLAG, UNFLAG
(none)

(none)

UNFLAG
(none)

(none)

WRFLAG, COFLAG
PRFLAG

COFLAG, CRFLAG
DMFLAG, WRFLAG

A

THE CP/M
DISK
DIRECTORY

INTRODUCTION

In Chapter 6 we briefly looked at the organization of the CP/M disk

directory. We will now study the directory in more detail by developing a

program that displays several directory functions. These include a display

of the disk parameters, an extended listing of the directory with its block

numbers, and the block allocation map.

268 MASTERING CP/M

THE DISK PARAMETERS
CP/M was originally written for use with the standard IBM 8-inch

floppy disk. This disk's format is single density, single sided, and soft sec-

tored. There are 77 tracks with 26 sectors per track. Each sector contains

128 data bytes. The block size, the smallest amount of data that can be

allocated on the disk, is 1024 (IK) bytes. These disk parameters are coded

into the BDOS area ofCP/M version 1 .4. Consequently, it is difficult to

alter this version ofCP/M to incorporate disks with different parameters.

CP/M version 2 is organized differently. The disk parameters are written

into the BIOS rather than the BDOS. Consequently, it is relatively easy to

alter this version ofCP/M to accommodate any type of disk. The charac-

teristics for each different disk drive are located in an area of memory
known as the disk parameter block (DPB). This region can be located

with BDOS function 31. Let us investigate this area.

Go to diskA and reset the disk drives by typing control-C. Execute the

debuggerDDT (or SID) and write the following short program with theA
command:

AlOO

0100 MVI C,1F

0102 CALL 5

0105 RST 7

The first instruction of this program loads the C register with 31 (IF hex).

This is the BDOS function that locates the disk parameters. The second

instruction calls BDOS and the third instruction returns to the debugger.

Execute this program with the command GIOO. Now display the registers

with the debugger X command. The result might look like this:

-Z-E- A=8A B= D400 D=0000 H = D48A S==0100 P=0105 RST 07

The first part of this line gives the state oftheCPU flags. In this example,

the zero flag (Z) and the parity flag (E for even parity) are set. The three

minus signs indicate that the other flags (carry, half-carry, and sign) are

reset. The next six items give the state of the CPU registers, including the

stack pointer (S) and program counter (P). The final item is the last in-

struction that was executed prior to returning to the debugger.

We are interested in the value contained in the HL register, because it

contains a pointer to the beginning ofthe disk parameter block. In this ex-

ample, the disk parameters begin at address D48A hex for the currently

logged-in drive. However, before we look at these parameters, let us consider

THE CP/M DISK DIRECTORY 269

other disk formats. You may have more than one kind of disk drive. For ex-

ample, one drive might be single sided and another might be double sided.

Another possibility is that a double-density drive might be able to read

single-density format as well as double-density format. In either of these

cases, there will be a different set of disk parameters for each disk format.

Let us assume that driveA reads double-density format and drive B can

read either double-density or single-density format. Put a single-density

diskette into drive B. Write the following program at 200 hex with the A
command:

A200

0200 MVI E,l

0202 MVI C,E

0204 CALL 5

0207 RST 7

This program performs BDOS function 14 (OE hex), which changes the

default drive. Register E refers to the new drive. A value of indicates

drive A, 1 refers to drive B, and so on. In this case we load register E with

the value of 1 because we are going to change the default drive to B.

Register C is given the value ofOE hex. The third instruction calls BDOS,
and the final instruction returns to the debugger.

Execute this program with the command G200. The head of disk drive

B should load and the activity light on the front of the drive should turn

on. Rerun the first program with the command GIOO. Then display the

registers with the X command. The result might look like this:

-Z-E- A=7B B=D43F D=003F H= D47B S=0100 P=0105 RST 07

This time, the HL register refers to a different memory location. That

is, a different set of disk parameters is referenced this time. Notice that the

address of the first DPB is exactly 15 bytes larger than the second DPB.
The DPBs can be placed anywhere in BIOS, but it is logical to group them

together. Because each DPB is 15 bytes long, successive addresses for

adjacent DPBs will usually differ by 15 bytes.

We will now study theDPB area. We found aDPB at address D47B hex

and another at address D48A hex. However, there might be additional

DPBs for other disk formats. These will usually be given in the same

general area. Therefore, we will start the display a few Unes prior to the

DPB area we found. Give the debugger command

DD450

270 MASTERING CP/M

The resulting output might look Uke Figure 8.1. There are actually five

different DPBs given in this figure. The boldface numbers designate the

first byte of each DPB. We will study them in more detail shortly. But first

we will consider the information given in the DPB.

0450: 00 00 00 00 00 00 DC 5D D4 08 DO F2 DC 28 00 04] (..

D460: OF 01 A9 00 3F 00 80 00 10 00 02 00 14 00 03 07 ?

D470: 00 4F 00 3F 00 CO 00 10 00 03 00 28 00 03 07 00 .0.? (

D480: A4 00 3F 00 CO 00 10 00 02 00 28 00 04 OF 01 51 ..? (Q

D490: 00 3F 00 80 00 10 00 02 00 u 00 03 07 00 F2 00 .?

D4A0: 3F 00 CO 00 10 00 02 00 9

Figure 8. 1: Five Different Disk Parameter Blocks

THE DISK PARAMETER BLOCK
Nine items describing the format of the disk are specified in the disk

parameter block. Some of the entries are one byte long; others are two

bytes long. Table 8 . 1 summarizes these items . The value given in the offset

column is the address relative to the beginning of the DPB. That is, the ad-

dress ofeach item is the value ofthe offset plus theDPB address contained

in the HL register after BDOS call 31.

Table 8. 1: Items Specified in the Disk Parameter Block

Offset Symbol Bytes Explanation

SPT 2 Logical sectors per track

2 BSH 1 Block shift

3 BLM 1 Block mask

4 EXM 1 Extent mask

5 DSM 2 Maximum number of blocks

7 DRM 2 Maximum directory entries

9 ALO.l 2 Directory allocation

11 CKS 2 Directory sectors to check

13 OFF 2 Track offset

Let us consider the disk parameters in more detail. The first entry, SPT,
gives the number of logical 128-byte sectors per track. It is a two-byte

value, with the low-order byte stored first. Many disk controllers are

THE CP/M DISK DIRECTORY 271

programmed for sectors that are larger than 128 bytes. For example, the

North Star double-density format uses 512-byte sectors. There are 10 of

these sectors per track. The SPT value for this disk, however, is 40 rather

than 10. That is, the number of logical, 128-byte sectors per track is given.

Both the second and the third entries, theBSH and theBLM, are functions

of the block size. Remember, this is the minimum amount of information

that can be referenced on the disk. The BSH is the logarithm, base 2, of

the number of 128-byte sectors in the block. For example, the standard

IBM single-density, 8-inch format uses eight sectors per block. Conse-

quently, the BSH is 3 (since 2' = 8). TheBLM is one less than the number

of 128-byte sectors per block. The possible values for BSH and BLM are

summarized in Table 8.2.

Table 8.2: Possible ValuesforBSHandBLM

Block Number of

size sectors BSH BLM

IK 8 3 7

2K 16 4 15

4K 32 5 31

8K 64 6 63

16K 128 7 127

We have seen that disk files are described by a 32-byte FCB. The first 16

bytes contain the name and size of the file. The remaining 16 bytes give the

location of each block of sectors on the disk. The single-density, 8-inch

disk has a IK block size. EachFCB on this disk can reference a maximum
of 16K bytes of data, because each pointer is one byte in size.

With double-density disks, the situation is different. We have seen that

a double-density disk can have a block size of 2K, 4K, 8K, or 16K bytes.

Consider, for example, a disk with a 2K block size. The 16 pointers can

now reference 32K bytes. Because CP/M is programmed to handle a 16K

extent, each FCB is divided into two 16K byte extents. In a similar way,

there can be four 16K extents in one FCB when the block size is 4K bytes.

The terminology is sometimes confusing when anFCB is referred to as an

extent. For example, we may read about a format that has four logical ex-

tents in each physical extent. The writer meems that there can be 64K bytes

in each FCB.
The situation is further complicated if a disk has more than 255 blocks.

In this case the pointers are two bytes in length. Consequently, there can

272 MASTERING CP/M

be no more than eight pointers in an FCB. A disk with a2K block size and

two-byte pointers can only reference 16K bytes in each FCB.
Themany possible formats are decoded with the help ofthe fourth item

in the disk parameter block. This is the extent mask, EXM, a one-byte

value. This entry is a function of both the block size and the total number

of blocks on the disk. It is one less than the maximum number of extents

that can fit into each FCB. Table 8.3 shows this relationship. Small disks

have less than 256 blocks; large disks have more.

Table 8.3: Possible ValuesforEXM

Extent mask

Block Small Large

size disk disk

IK

2K 1

4K 3 1

8K 7 3

16K 15 7

The fifth entry gives the largest block number on the disk. It is identi-

fied by the symbol DSM. The two-byte value is stored with the low byte

first. Because block numbers begin with zero, the actual number ofblocks

is one larger than the value given as the DSM.
The sixth entry, DRM, has a value that is one smaller than themaximum

number of directory entries. It is a two-byte value that is stored with the

low byte first. Directory entries are 32 bytes long. Consequently, there are

four directory entries for each logical 128-byte sector.

The CP/M directory occupies the first one or more data blocks on the

disk. Consequently, these blocks must always be allocated so that data are

not accidentally written onto them, destroying the directory. The seventh

entry is used for this purpose. The two bytes are considered together as a

16-bit map. Starting at the left side, each bit that is set to 1 reserves one

block for the directory. The binary representation in Table 8.4 shows the

directory allocation.

When a diskette is removed from the drive and replaced by another,

it is necessary to perform a warm start before data can be written on the

new diskette. Whenever a write operation is requested, CP/M checks

the directory to see if the diskette has been changed. The eighth entry

in the DPB specifies the number of directory sectors that should be

THE CP/M DISK DIRECTORY 273

Table 8.4: 16-Bit Map Determining Directory Allocation

Number of

directory Binary value Hex value

blocks ALO ALl ALO ALl

1 10000000 00000000 80

2 11000000 00000000 CO
3 11100000 00000000 EO
4 11110000 00000000 FO

checked prior to each write operation.

For floppy disks or other removable media, the CKS will be the number
of directory entries, DRM plus one, divided by four (the number of entries

per sector). If the disk medium cannot be changed, as a hard disk cannot,

then there is no need to make such a check. In that case, the value is set to

0, greatly speeding up the warm-start operation.

The ninth and last entry in the DPB is the track offset. This two-byte

value is added to the track number requested by BDOS (the logical track

number) to obtain the actual (physical) track number. This parameter can
be used to partition one large disk into several logical disks. Each logical

disk will have a different track offset. For example, suppose one large

disk is partitioned into logical disks A, B, and C. The offsets could be 0,

100, and 200 for drives A, B, and C.

The DPB for a standard 8-inch, single-density floppy disk is given in

Table 8.5.

Table 8.5: The DBPfor a Standard 8-lnch Floppy Disk

Address Symbol Hex Decimal Meaning

D499 SPT lA 26 Logical sectors per track

D49B BSH 3 3 Block shift

D49C BLM 7 7 Block mask
D49D EXM Extent mask
D49E DSM F2 242 Number of Blocks- 1 (243 actual)

D4AO DRM 3F 63 Directory entries— 1 (64 actual)

D4A2 ALO CO Directory allocation (1 1000000)

D4A4 CKS 10 16 Directory sectors to check

D4A6 OFF 2 2 Track offset

274 MASTERING CP/M

Consider theDPB for driveA starting at address D48A (line4 of Figure

8. 1). ThisDPB describes a double-density, 5-inch drive that has 40 sectors

per track (28 hex). There are 82 blocks (51 hex -I- 1), each with a size of2K
bytes (ELM is 15). There are 64 directory entries (3F hex + 1), so one

block is reserved for the directory (ALl is 80 hex or 10000000 binary). The

track offset is 2.

VIEWING THE DISK PARAMETERS
Before we can write an executable program for displaying the disk

parameters, we must add five new macros that will make it easier to program

displays of binary numbers, 16-bif base conversions, and multiplication

and division.

A Macro to Display a Binary Number in Binary

All information, whether alphanumeric characters, decimal numbers,

or hexadecimal nimibers, is stored in a computer as a sequence of bits

—

binary zero or binary one. We have already written routines to convert

binary numbers to ASCII and hexadecimal. Sometimes, however, we

want to consider the bits themselves. To represent this pattern for a byte,

we must display a sequence of eight ASCII zeros and ones. The routine

that performs this task is called a binary to ASCII binary program.

In Chapter 3 we used this routine to determine whether our printer in-

corporates aDTR bit. Let us now use that routine in the form of a macro.

Copy macro BINBIN, shown in Figure 8.2, into your macro library.

Notice that it uses the flag BNFLAG.

A Macro to Display a 16-Bit Binary Number in Decimal

Sometimes we need to determine the decimal equivalent of a binary

number. The largest 8-bit number is 255 . Therefore, in converting an 8-bit

binary number to decimal, we must consider three powers of ten— 10°,

10', and 10^. But we are going to convert a 16-bit number to decimal, and

in this case the largest number is 65,535. We must therefore consider five

powers of ten— 10°, 10', 10^ 10', and 10*.

The algorithm we use subtracts powers of ten from the original number

until the result becomes negative. Then we add back the most recent term.

The net number of subtractions is the decimal power. We continue in this

way with 1000, 100, and 10.

THE CP/M DISK DIRECTORY 275

BINBIN AAACRO
;;(Put current date here)

;;lnline macro to convert binary number in A
;;to a string of ASCII-coded binary characters.

LOCAL BIT2,AR0UND

CALL BINB2?

IF NOT BNFLAG

JMP AROUND
BINB2?:

PUSH B

AAOV C,A

AAVI B,8

BIT2:

MOV A,C

ADD A ;;set carry

MOV C,A

MVI A,'0'/2

ADC A
PCHAR
DCR B

JNZ BIT2

POP H

RET

BNFLAG SET TRUE

ENDIF

AROUND:
;;BINBIN

ENDM

Figure 8.2: Macro BINBIN to Display a Binary Number as a Sequence of
ASCIIZeros and Ones

We have seen that the 8080 CPU cannot directly perform a 16-bit sub-

traction. We therefore wrote macro SBC for this purpose. We also noticed

that we could subtract one number from another by adding the two's

complement. Our algorithm uses this technique. We begin by repeatedly

adding —10,000, the two's complement of 10,000. When the result

becomes negative, we add back that last subtraction by subtracting the

two's complement. We use macro SBC for this purpose.

276 MASTERING CP/M

A second complication is the matter of leading zeros. Ifa number is less

than 10,000, the left digit will be 0. If the number is less than 1000, there

will be another in the next position. However, it is customary to omit

leading zeros in decimal numbers, so we will delete the leading zeros from

our resulting decimal number.

Macro HLDEC, shown in Figure 8.3, converts a 16-bit binary number
in HL to a string ofASCII-coded decimal digits and displays the result on
the console. Add this macro to your library.

A Macro to Display a 16-Bit Binary Number in Hexadecimal

In Chapter 5 we wrote macro OUTHEX to convert an 8-bit binary

number to two hexadecimal characters and display them on the console.

For the programs in this chapter we will need to convert a 16-bit binary

number in HL to hexadecimal characters. We will use macro OUTHEX
for this purpose. If the value in HL is larger than 255, we will reference

HLDEC AAACRO
;;(Puf current date here)

;;lnline macro to print HL as decimal.

;;Macros needed: SBC, PCHAR

LOCAL AROUND,SUBTR,SUBT2,NZERO
CALL HLDC2?

IF NOT DEFLAG
JMP AROUND

HLDC2?:

PUSH H

PUSH D

PUSH B

MVI B,0 ;;leading-zero flag

LXI D,- 10000 ;two's complement
CALL SUBTR ;ten thousands

LXI D,-1000
CALL SUBTR ;thousands

LXI D,-100
CALL SUBTR ;;hundreds

Figure 8.3: Macro HLDEC to Display a 16-Bit Binary Number in Decimal

THE CP/M DISK DIRECTORY 277

LXI D,-10
CALL SUBTR ;;tens

AAOV A,L

Am '0' ••ASCII bias

PCHAR
POP B

POP D

POP H

RET

;;subtract power of ten and count

SUBTR: AAVI C/O'-l ;;ASCII count

SUBT2: INR C
DAD D ;;add neg number

JC SUBT2 ;;keep going

;;one too many, odd one bock

;;by subtracting complement

SBC HL,DE

AAOV A,C ;;get count

;;check for zero

CPI 'T ;;<i?

JNC NZERO ;;no

AAOV A,B ;,•check zero flag

ORA A ;;set?

AAOV A,C ;,-restore

RZ ;;skip leading

PCHAR
RET

;;set flag for nonzero character

NZERO:

AAVI B,OFFH

PCHAR
RET

DEFLAG SET TRUE

ENDIF

AROUND: ;;HLDEC

ENDAA

Figure 8.3 (continued)

278 MASTERING CP/M

macro OUTHEX twice. This will produce four ASCII characters. If the

value in HL is less than 256, the value in H is 0. In this case, we will

reference macroOUTHEX only once. MacroOUTHL is shown in Figure

8.4. Add it to your macro library.

A Macro to Multiply a 16-Bit Number by a Power of 2

The 8080 and Z80 CPUs have instructions for addition and subtraction,

but they do not have instructions for multiplication and division. We will

now write a macro to multiply a 16-bit number inHL by apower of 2, using

addition and rotation. Restricting the multipUer to a power of 2 greatly

simplifies the algorithm without Hmiting our applications, because our

appUcations always need a multiplier of this type.

We consider two special cases at the beginning of the macro. If the

multiplier is 0, the result inHL is set to 0. Ifthe multiplier is 1 , the original

value in HL is returned. We place other multipliers into register B and

then add HL to itself. This doubles the original multiplicand. We then

rotate the multipUer in B and check the carry flag. If the carry flag is set,

the multiplier is 2 and the task is finished. However, if the carry flag is

reset, the original multiplier was larger than 2. We continue adding HL to

itself and rotating B to the right into the carry flag.

Add macro MULT, shown in Figure 8.5, to your macro library. This

macro has one optional parameter—the multiplier. If the parameter is

omitted in the reference, it is assumed that the multipUer is already loaded

in the accumulator.

A Macro to Divide a 16-Bit Number by a Power of 2

The complement of the previous macro is a routine to divide a 16-bit

number inHL by a power of 2. When we double the value inHL by adding
it to itself, the result is the same as shifting the double register to the left.

Division is accomplished by shifting to the right. However, there is no
16-bit shift or rotation instruction, so we must perform two 8-bit rota-

tions instead.

Macro DIVIDE is shown in Figure 8.6; add it to your Ubrary. There is

one optional parameter, the divisor. If it is omitted from the macro
reference, a value of 2 is assumed. Division by zero is undefined, but this

macro wiU leave the dividend unchanged in this case. The result is also un-

changed if the divisor is 1

.

Now that we have added the necessary macros, we can write a program

that will display the disk parameters.

THE CP/M DISK DIRECTORY 279

OUTHL AAACRO
;;(Put current date here)

;;lnline macro to display HL in hex.

;;Macro needed: OUTHEX

OVER:

LOCAL OVER
MOV A,H

ORA A
JZ OVER
OUTHEX H

OUTHEX L

ENDM
;;OUTHL

Figure 8.4: Macro OUTHL to Display a 16-Bit Binary Number in Hexadecimal

MULT AAACRO TIMES

;;(Put current date here)

;;lnline macro to multiply value in HL by TIMES.

;;Parameter should be a power of 2.

;;Oand 1 are valid operands.

;;Parameter is omitted when A has multiplier.

LOCAL LOOP, AROUND, NOTZ
PUSH B

IF NUL TIMES

MOV B,A

ELSE

MVI B,TIMES

ENDIF

CALL MULT2?

POP B

IF NOT MLFLAG
JMP AROUND

MULT2?:

Figure 8.5: Macro MULT to Multiply a 16-Bit Number in HL by a Power of2

280 MASTERING CP/M

MOV A,B

ORA A ;zero

JNZ NOTZ ;no

MOV L,A

MOV H,A ;HL=0
RET

NOTZ:

RAR
RC

MOV B,A

;times 1

LOOP:

DAD H ;times 2

MOV A,B

RAR
MOV B,A

LOOP
RET

AALFLAG SET

ENDIF

TRUE ;;one copy

AROUND:
ENDM

;;MULT

Figure 8.5 (continued)

DIVIDE AAACRO DENOM
;;(Put current date here)

;;lnline macro to divide HL register by DENOM.
;;Denom should be power of 2 (2, 4, 8, 16).

;;HL unaltered if DENOM is or 1

.

LOCAL AROUND, SHFTR?, DIV3?

PUSH B

IF NUL DENOM
MVI B,2 ;default

ELSE

MVI B,DENOM
ENDIF

Figure 8.6: Macro DIVIDE to Divide a 16-Bit Number in HL by a Power of2

THE CP/M DISK DIRECTORY 281

CALL DIV2?

POP 6

IF NOT DVFLAG

JAAP AROUND
DIV2?:

AAOV A,B

ORA A ;clear carry

RZ ;divide by zero?

RAR
RC ;divide by 1 ?

MOV B,A

DIV3?:

CALL SHFTR? ;shift HL right

MOV A,B ;get divisor

RAR
MOV B,A

JNC DIV3?

RET

SHFTR?: ; 16-bit shift right

XRA A
MOV A,H

RAR
MOV H,A

MOV A,L

RAR
MOV L A
RET

DVFLAG SET TRUE ;;one copy

ENDIF

AROUND: ;;DIVIDE

ENDM

Figure 8.6 (continued)

A Program to Display the Disk Parameters

The program shown in Figure 8.7 can be used to determine the disk

parameters for anyCP/M disk. TheCP/M version must be 2.0 or greater

for this program to run. The program begins in the usual way with macros

ENTER and VERSN. Then macro CPMVER is used to determine the

282 MASTERING CP/M

CP/M version. Ifthe version is less than 2, the program is terminated with

the appropriate error message.

The memory FCB at 5C hex is checked next to see whether a disk drive

was specified on the command line. If a specific drive was indicated,

subroutine SETDSK is called. This subroutine selects the desired disk

with BDOS function 14. If no disk drive was specified, the default drive is

used. Subroutine SETDSK concludes in an interesting way—with ajump
to BDOS rather than the usual call. The more obvious construction

CALL BDOS
RET

performs the same task. However, it requires more code and more stack

space than the instruction

JAAP BDOS

The next step is to determine the address ofthe disk parameter block using

BDOS function 3 1 . The disk parameters are then moved to the end of the

program so they can be altered slightly. For example, the greatest block

number (DSM) is incremented so that it becomes the total number of

blocks. The number of directory entries (DRM) is incremented and then

divided by four to find the corresponding number of directory sectors.

This is saved as DIRMAX.
The allocation bytes (ALO and ALl) are interchanged so that the low

byte will be in the H register after an LHLD operation. Repeated DAD
H instructions will then shift the HL register left into the carry flag. This

flag will be set each time there is a corres^ponding bit set in ALO and

ALl . Remember, each bit corresponds to one reserved directory block.

The number of reserved directory blocks is determined in this way. The
result is subtracted from the total number of blocks to find the number of
data blocks. This is stored as NETBL. The number of directory blocks is

converted from binary to ASCII and saved as ALLOCA. This value

will be used later.

Type in the program shown in Figure 8.7 and assemble it. The macro
librarywe have developed is needed in the program. First try this program
on the default drive with the command

DIREC

Then try it on another drive by giving a peu-ameter:

DIREC B:

The second example will display the disk parameters for drive B.

THE CP/M DISK DIRECTORY 283

TITLE 'DIREC, directory utility'

;(Put current date here)

/

/

TRUE EQU NOT FALSE

BOOT EQU
BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH

FCB EQU 5CH file control block

FCB1 EQU 5CH first file name

FCB2 EQU 6CH second file name

DBUFF EQU 80H default buffer

ABUFF EQU DBUFF actual buffer

UNUSED EQU 0E5H dir entry

LAAAX EQU 24 max lines/screen

;Set flags in moin program so only one

;copy of certain subroutines will be generated.

;Place set ines before AAACLIB call.

BNFLAG SET FALSE ;binary to ASCII bin

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/line-feed

CXFLAG SET FALSE ;binary to hex

DEFLAG SET FALSE ;binary to decimal

DVFLAG SET FALSE ; 16-bit divide

MLFLAG SET FALSE ; 16-bit multiply in HL

MVFLAG SET FALSE ;block move

PRFLAG SET FALSE ;print console

;end of flags

/

AAACLIB CPAAAAAC

ORG TPA

Figure 8. 7: Program to Display the Disk Parameters

284 MASTERING CP/M

START:

ENTER

VERSN '(current date). DIRECT
CPMVER ;check version

CPI 20H

JC ERRVER ;wrong version

LDA FCB1

ORA A ;drive specified?

CNZ SETDSK ;yes

CALL GETDPH ;disk parameters

CALL XAMINE
JMP DONE

;block move disk parameters to end of program

GETDPH:

MVI C,31 ;disk param address

CALL BDOS
MOVE ,DPARM,15 ;copy to end

LHLD BLKMAX ;maximum # blocks

INX H

SHLD BLKAAAX /starts at zero

LHLD DIRENT ;# of directory entries

INX H ;starts at zero

DIVIDE 4 .•convert to # sectors

;Save number of directory sectors as 16 bits

SHLD DIRAAAX ;and save

SHLD DIRAAX2 ;count.

Directory block allocation is stored as

1 000 0000 for 1 block, 1 1 00 0000 for 2, etc.

But we wan^ left byte in H.

LHLD ALLOC ;reverse bytes

MOV A,L

MOV L,H

MOV H,A

SHLD ALLOC
;get number of directory blocks as ASCII

Figure 8. 7 (continued)

THE CP/M DISK DIRECTORY 285

XRA A ;zero A
XAM3:

DAD H ;shift left

JNC XAM4
INR A
JMP XAM3

XAM4:
MOV E,A ;# dir blocks

MVI D,0

LHLD BLKAAAX ;blocks

cue Ml

SHLD NETBL ;net data blocks

MOV A,E

ORI '0' ;ASCII bias

STA ALLOCA ;save

RET

;display disk parameters

XAMINE:
PRINT <CR,LF/Sectors/track: '>

LHLD NUMSEC
HLDEC ;decimal

PCHAR BLANK
PCHAR '('

OUTHL
PRINT <' hex)',CR,LF, 'Sectors/block: '>

IDA BLM
INR A
MOV L,A

MVI H,0

HLDEC
PCHAR BLANK
PCHAR '('

OUTHEX L

PRINT ' hex)'

PRINT <CR,LF/Block size: '>

DIVIDE 8

MOV B,L ;save block size

Figure 8. 7 (continued)

286 MASTERING CP/M

HLDEC
PRINT 'K bytes'

LHLD NETBL ;# data blocks

AAOV A,B ;block size

MULT
PRINT <CR,LF,'Disk size: >
HLDEC
PRINT 'K bytes'

PRINT <CR,LF/Extents/entry: >
LDA EAAASK

INR A
AAOV L,A

AAVI H,0

HLDEC
PRINT <CR,LF/Number of blocks: '>

LHLD BLKAAAX

HLDEC
PCHAR BLANK
PCHAR '('

OUTHL
PRINT <' hex)',CR,LF,'AAax directory entries: '>

LHLD DIRENT

INX H
HLDEC
PCHAR BLANK
PCHAR '{'

OUTHL
PRINT <' hex)',CR,LF, 'Directory blocks: '>

LDA ALLOCA
PCHAR
PCHAR BLANK
PCHAR '('

LDA ALLOC+1
BINBIN ;alloc in binary

LDA ALLOC
ORA A
JZ XAAA2

BINBIN ;2nd if needed
XAAA2:

Figure 8. 7 (continued)

THE CP/M DISK DIRECTORY 287

PRINT <')',CR,LF, 'Track offset: '>

LHLD TRKOFF

HLDEC
MOV A,H

ORA A
JZ XAM5 ;skip hex

PCHAR BLANK
PCHAR '('

OUTHL
PRINT ' hex)'

XAM5:
CRLF

RET

SETDSK: ;set disk drive

DCR A ;0= A, 1 =B
MOV E,A

MVI C,14 ;select nev/ drive

JMP BDOS

ERRVER:

ERRORM '?CP/M version must be 2 or greater'

DONE:
EXIT

DPARAA: ;copy of disk parameters

NUMSEC: DS 2 ;sectors per track

BSHIFT: DS 1 ;block shift

BLM: DS 1 ;block mask

EAAASK: DS 1 ;extent mask

BLKAAAX: DS 2 ;max # blocks on disk

DIRENT: DS 2 ;max # dir entries

ALLOC: DS 2 ;AL1 , ALO reversed

CKS: DS 2 ;check size

TKKUrr: ncUo 2 ;track offset

rMDAA A Uo 2 ;max # directory sectors

NETBL: DS 2 ;number of data blocks

ALLOCA: DS 1 ;directory blocks (ASCII)

DIRMX2: DS 2 /remaining dir sectors

END START

Figure 8. 7 (continued)

288 MASTERING CP/M

The results for an 8-inch, single-density floppy will look like Figure 8.8.

The display shows that there are 26 sectors per track and 8 sectors per

block of IK bytes. There are 64 directory entries that are stored in 2

blocks. The disk can hold a maximum of241K bytes of data, exclusive of

the directory. The track offset is 2; that is, the first two tracks are reserved.

On the other hand, a 5-inch, double-density, double-sided, hard-

sectored floppy might give the results shown in Figure 8.9. In this example,

there are 40 logical sectors per track and 16 sectors per 2K block. The disk

can store a maximum of 338K bytes, exclusive of the one block reserved

for the directory.

Sectors/track: 26 (lA hex)

Sectors/block: 8 (8 hex)

Block size: IK bytes

Disk size: 241 K bytes

Extents/entry: 1

Number of blocks: 243 (F3 hex)

AAax directory entries: 64 (40 hex)

Directory blocks: 2 (1 1000000)

Track offset: 2

Figure 8.8: The Disk Parametersfor an 8-Inch Floppy

Sectors/track: 40 (28 hex)

Sectors/block: 16 (10 hex)

Block size: 2K bytes

Disk size: 338K bytes

Extents/entry: 2

Number of blocks: 170 (AA hex)

Max directory entries: 64 (40 hex)

Directory blocks: 1 (10000000)

Track offset: 2

Figure 8.9: The Disk Parametersfor a 5-Inch Floppy

THE CP/M DISK DIRECTORY 289

THE DISK DIRECTORY BLOCKS

The first one or more data blocks on each CP/M disk contain a direc-

tory of the files that are present on the remainder of the disk. As we saw in

Chapter 6, each directory entry is 32 bytes long. Consequently, a logical

128-byte sector can reference a maximum of four disk files.

We saw that the first byte of each directory entry refers to the user who

created the file. This is a binary number from to 1 5 . A value ofE5 hex in

this position indicates that the file has been deleted. The file name and extent

are coded in ASCII in the next 1 1 bytes. Then there are four bytes that

contain the extent number and the number of records.

The actual location of the file is indicated by the remaining 16 bytes.

For smaller disks, each block is identified as a one-byte binary number.

Larger disks use two-byte block numbers with the low-order byte given first.

Let us now see how a group of files is stored on three different types of

disks. The three disk types are as follows:

• IK-byte block size, 1-byte block addresses

• 2K-byte block size, 1-byte block addresses

• 2K-byte block size, 2-byte block addresses

Our last program in the book will investigate the FCB. For a IK block

size we might obtain a listing as follows:

00 CPAAIO ASAA 00000055

00 DUMP COAA 00000007

00 GO COAA 00000002

00 LOAD COAA OOOOOOOE

00 CPAAIO HEX 00000007

00 WSOVLY1 OVR 00000080

00 WSOVLYl OVR 01000080

00 WSOVLYl OVR 0200000A

01 TIAAE COAA OOOOOOOA

02 SORT BAS 00000009

02 SORT BAK OOOOOOOF

E5 SORTA BAS 00000008

E5 PRIN STR OOOOOOOC

02030405060708090A0B0C00

ODOO

OEOO

OFIOOO

1100

12131415161718191 A1B1C1D1E1F2021

22232425262728292A2B2C2D2E2F3031

323300

343500

363700

383900

3A00

3B3C00

The first FCB, CPMIO.ASM, belongs to user 0. It contains 55 (85

decimal) records stored in blocks 02 to DC. The block numbers refer to

the actual regions on the disk where the file is stored. The next file,

DUMP.COM, has seven records; they all fit into blockCD. Lines 6, 7, and

8 of the directory listing refer to the same file, WSOVLYl .OVR. This file

290 MASTERING CP/M

is so large that it requires three FCBs (called physical extents). The first

and second FCBs (designated and 1) contain 80 records. The third FCB
is designated as extent 2; it has OA records. The block numbers run from
12 to 33 hex. For this disk format, each FCB can reference a maximum of
one extent of 80 records (16K bytes).

The block size for the previous example is IK bytes. However, CP/M
disks may have block sizes of2K, 4K, 8K, or 16K bytes. The next disk for-
mat we will consider has 2K bytes per block. With this format each FCB
can contain a maximum of two 16K logical extents. Let us see how the
previous files are stored with this format:

00 CPMIO ASM 00000055 01020304050600
00 DUMP COM 00000007 0700
00 GO COM 00000002 0800
00 LOAD COM OOOOOOOE 0900
00 CPAAIO HEX 00000007 OAOO
00 WSOVLYl OVR 01000080 0B0C0D0E0F101112131415161718191A
00 WSOVLYl OVR 0200000A IBOO
01 TIME COM OOOOOOOA ICOO
02 SORT BAS 00000009 IDOO
02 SORT BAK OOOOOOOF lEOO

The files in this example are the same size as in the previous example.
However, fewer blocks are needed for the longer files because the block
size is twice as large. Notice that WSOVLYl .OVR needs only two FCBs
rather than three. However, the first ofthese twoFCBs shows an extent of
1, meaning that extents and 1 are both contained in one FCB. Each of
the two extents has 80 records. The third extent, extent 2, is contained in
the second FCB. It hasOA records. The block numbers run fromOB to 1 B.
As a third example, consider a high-density disk that also has a 2K-byte

block size but uses two-byte block addresses. The same files are shown
again. However, the block addresses now appear as 0200, 0300, 0400, and
so on:

00 CPMIO ASM 00000055 020003000400050006000700
00 DUMP COM 00000007 0800
00 GO COM 00000002 0900
00 LOAD COM OOOOOOOE OAOO
00 CPMIO HEX 00000007 OBOO
00 WSOVLYl OVR 00000080 OCOOODOOOEOOOFOOl 0001 1 001 2001 300
00 WSOVLYl OVR 01000080 1 4001 5001 6001 7001 8001 9001 AOOl BOO
00 WSOVLYl OVR 0200000A ICOO

THE CP/M DISK DIRECTORY 291

THE BLOCK ALLOCATION MAP
When awarm start is performed by typing control-C, all disk drives are

reset and the directory on drive A is read. If a drive other than A is cur-

rently the default drive, the disk directory for that drive is also read at this

time. A block allocation map is constructed during this initialization step.

This map uses a single bit to represent each block. Blocks that are cur-

rently in use are given a value of 1 . Unused blocks have a value of0. CP/M

searches the map for unused blocks when a new file is to be created.

The third part of our last program constructs a block map not from the

CP/M version, but by actually locating each block address in the disk

directory. Our technique will show when there are multiple references to a

particular block.

Themap for a newly formatted disk might look like that in Figure 8. 10.

In this example, the first block, block 0, is located in the upper-left corner.

The value of 1 means that the block is in use. The remaining positions

have a value of 0, indicating that they are not in use. The first block of this

disk is reserved for the directory. The directory itself will always occupy

the first one or more blocks at the beginning of the data area. Thus there

will always be values of 1 at the beginning of this map. The number of

blocks given in the summary at the bottom of the display does not include

those reserved for the directory.

Each time a file is saved on a disk, the corresponding blocks will be set

to 1 . As more and more files are saved, the block map gradually becomes

filled in. If some files are erased, holes will open up in the table. After a

while, the map might look like that in Figure 8.11.

The allocation map also can indicate whether there are multiple links to a

file. For example, consider the allocationmap in Figure8.12. In this example,

several blocks (41 , 42, 47, and others) are marked with a value of 2. This

01234567 89ABCDEF 01234567 89ABCDEF

00 10000000 00000000 00000000 00000000

20 00000000 00000000 00000000 00000000

40 00000000 00000000 00000000 00000000

60 00000000 00000000 00000000 00000000

80 00000000 00000000 00000000 00000000

AO 00000000 00

169 total blocks, in use, 169 remoining

Figure 8. 10: Block Allocation Map for a Newly Formatted Disk

292 MASTERING CP/M

01234567 89ABCDEF 01234567 89ABCDEF
00 : 11111111 11111111 11111111 11111111

20 : 11111111 11111000 01 1 1 1 1 1

1

11111111

40 : 11111111 11111111 10000001 11111111

60 : 11111111 00000000 00000000 00000000

80 : 00000000 00000000 00000000 11111111

AO • 11111000 00

169 total blocks, 63 In use. 106 remaining

Figure 8.11: Block Allocation Mapfor a Disk with Files

01234567 89ABCDEF 01234567 89ABCDEF
00 11111111 11111111 11111111 11111111

20. 11111111 11111111 11111111 11111111

40: 12211112 21111111 11111111 11111111

60: 221 1 1 1 1

1

11111110 11111111 11111121

80: 11101222 21111111 11111111 11111111

AO: 11111101 11

169 total blocks. 166 in use, 3 remaining

Figure 8.12: Block Allocation Map Indicating Multiple Links
to a File

indicates that there are two different files that refer to these blocks. This
can occur with a disk utility program such as BADLIM or RECLAIM.
These programs read the entire disk looking for bad sectors. If bad sec-

tors are found, they are collected into a special file so that they will not be
used. Of course, if the original program is still present, it will also refer to

these sections.

VIEWING THE DISK DIRECTORY BLOCKS
AND THE BLOCK ALLOCATION MAP

In this section we will extend our directoryprogram so it will display the
actual directory entries. The user number and block addresses will be
shown. A separate feature will construct a block allocation map for the

disk. Before we develop this progrjun, however, we need to add one more
macro to our library.

THE CP/M DISK DIRECTORY 293

A Macro to Fill Large Blocks

In Chapter 4 we wrote a macro to fill an area of memory with a partic-

ular byte. The area was limited to 256 bytes, because a single register was

used to count the number of locations to fill. For the next programwe will

need to fill an area larger than 256 bytes. Consequently, we will alter

our FILL macro so that a double register is used to count the number of

locations.

Make a copy of macro FILL and give it the name FILED (for double

precision) . Alter the new macro so it looks like Figure 8 . 1 3 . Notice that the

same flag, FLFLAG, is used for this version. This means that you should

only use one of these two macros for any particular program.

We are now ready to add two new features to our directory program.

The DIREC Program, Version 2

Make a copy of the first version of the directory program shown in

Figures.? and alter it to look like the version shown in Figure 8. 14. Macro

FILED is needed. Assemble the program and try it out. As with the

previous version, if you execute this program without a parameter, the

currently logged-in disk is used. However, if you want to select another

disk, give the disk name followed by a colon.

This new version begins by printing out the disk parameters, just as the

previous version did. But then if you press any console key, the program

will continue. Each directory entry is shown on a separate line. The user

number, extent, number of records, and block addresses are included in

this listing. Pressing any console key a second time will display the third

part of the program—a block allocation map for the disk. Blocks that are

in use will be designated by a value of 1 in the map. Blocks that are free

are shown by zeros.

Program DIREC begins like the previous one with macros ENTER,

VERSN, and CPMVER. Subroutine CDISK is called to determine the

default disk drive. BDOS function 25 is used for this task.A check is made

to see if a disk drive was specified on the command line. If so, subroutine

SETDSK is called as before. If no drive was specified, the default drive is

coded in location FCBl . The drive name is also displayed on the console

at that time.

The disk parameters are displayed, as they were with the previous ver-

sion. The program then waits for any key to be pressed. This causes the

complete disk directory with the block addresses to be shown. When any

other key is pressed, the block allocation map is displayed.

294 MASTERING CP/M

FILLD AAACRO ADDR, BYTES, CHAR
;(Put current date here

)

;(double precision version)

;lnline nnacro to fill BYTES memory
;locations with CHAR starting at ADDR.
;Usage: TILL rCB+ 1, 8, blank

TILL K,B+9, 3, ?

1 r\r^ A

1

AROUND, FILLS?
Dl ICUrUon H
PI KUrUon DD

Ir NOT NUL ADDR
LAI

1 1 A rNPN

n

H,ADDR
CINUIr

Ir
M^^T Kll II OV/Trf*NOT NUL BYTES

1 YlLAI D DVTCCd,dY ICO

ciNL-'ir

/VlV 1
A ^LJ A DA,CrlAK

(~AI 1CMLL Pll 1 oo

POP DD
POP LIn
IP
Ir NOT FLFLAG
lAADJ/Vvr AROUND

FILL2?:

Dl ICI_IrUbn D
MOV D,A

FILL3?:

MOV M,D
INX H
DCX B

MOV AC
ORA B

JNZ FILL3?

POP D
RET

FLFLAG SET TRUE

ENDIF

AROUND: ;;FILLD

ENDM

Figure 8.13: Macro FILLD to Fill a Large Portion ofMemory

THE CP/M DISK DIRECTORY 295

TITLE 'DIREC, directory utility'

(Put current date here)

=ALSE EQU
TRUE EQU NOT FALSE

BOOT EQU
BDOS EQU 5 ;BDOS entry point

TPA EQU lOOH

FCB EQU 5CH •fil^ mntrni hlork

FCB1 EQU 5CH ;first file name

FCB2 EQU 6CH ;second file name

DBUFF EQU 80H ;default buffer

ABUFF EQU DBUFF ;actual buffer

UNUSED EQU 0E5H ;dir entry

•Set flags in main program so only one

•copy of certain subroutines will be generated.

;Place set ines before MACLIB coll.

BNFLAG SET FALSE ;binary to ASCII bin

CIFLAG SET FALSE ;input console char

COFLAG SET FALSE ;output console char

CRFLAG SET FALSE ;carr-ret/line-feed

CXFLAG SET FALSE ;binary to hex

DEFLAG SET FALSE ;binary to decimal

DVFLAG SET FALSE ;16-bit divide

FLFLAG SET FALSE ;fill characters

MLFLAG SET FALSE ;1 6-bit multiply in HL

MVFLAG SET FALSE ;block move
PRFLAG SET FALSE ;print console

;end of flags

/

AAACLIB CPAAAAAC

ORG TPA

Figure 8.14: Program DIREC to Display Disk Parameters and the

Block Allocation Map

296 MASTERING CP/M

START:

ENTER

VERSN '(current date).DIREC.2'

CPMVER ;check version

CPI 20H

JC ERRVER ;wrong version

PRINT 'For disk drive
'

CALL CDISK ;get current disk

LDA FCBl

ORA A ;drive specified?

CNZ SETDSK ;yes

LDA CURD2 (•requested drive

STA FCBl ;binary

ADI 'A' ;convert to ASCII

PCHAR
CALL GETDPH ;disk parameters

CALL XAMINE ;show them

PRINT 'Press any key to continue:
'

READCH ;wait for character

CALL REPEAT ;reset parameters

CALL BLOCK ;block map
JMP DONE

;block move disk parameters to end of program

GETDPH:

MVI C,31 ;disk param address

CALL BDOS
MOVE ,DPARM,15 ;copy to end

LHLD BLKAAAX ;maximum # blocks

INX H

SHLD BLKAAAX ;starts at zero

LHLD DIRENT ;# of directory entries

INX H ;starts at zero

DIVIDE 4 ;convert to # sectors

;Save number of directory sectors as 16 bits

SHLD DIRAAAX ;and save

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY 297

SHLD DIRMX2 ;count.

Directory block allocation is stored as

1000 0000 for 1 block, 1 100 0000 for 2, etc.

But we want left byte in H.

LHLD ALLOC ;reverse bytes

MOV A,L

MOV L,H

MOV H,A

SHLD ALLOC
;get number of directory blocks as ASCII

XRA A ;zero A
XAM3:

DAD H ;shift left

JNC XAM4
INR A
JMP XAM3

XAM4:
MOV E,A ;# dir blocks

MVI D,0

LHLD BLKAAAX ;blocks

SBC HL,DE ;deduct for directory

SHLD NETBL ;net data blocks

MOV A,E

ORI '0'
;ASCII bias

STA ALLOCA ;save

select disk and setup disk parameter header

LDA FCB

MOV C,A

CALL SELDSK ;select drive

MOV A,H ;HL has DPH

ORA L

JZ ILDISK ;error, no disk

MOV E,M ;get translate table

INX H ;address

Figure 8.14 (continued)

298 MASTERING CP/M

MOV D,M
XCHG
SHLD DPH ;save address

RET

/display disk parameters

XAMINE:

PRINT <CR,Lr, Sectors/track: >
LHLD

K tt t h A ^^^^NUMSEC
HLDEC 1 1

;decimal

PCHAR BLANK
PCHAR '('

OUTHL
PRINT < hex) ,CR,LF, Sectors/block: >
1 r\ ALDA BLM
INR A
MOV L,A

MVI H,0

HLDEC
PCHAR Dl A K 11/BLANK
D^UAP

(

^1 ITUCVSJU 1 rIBA L

PRINT hex)

PRINT <CR,LF/Block size: '>

DIVIDE 8

MOV B,L ;save block size

HLDEC
PRINT 'K bytes'

LHLD NETBL ;# data blocks

MOV A,B ;blocksize

MULT
PRINT <CR,LF/Disk size: >
HLDEC
PRINT % bytes'

PRINT <CR,LF, 'Extents/entry: '>

LDA EAAASK

INR A

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY 299

AAOV L,A

MVI H,0

HLDEC
PRINT <CR,LF/Number of blocks: '>

LHLD BLKMAX
HLDEC
PCHAR BLANK
PCHAR '('

OUTHL
PRINT <' hex)',CR,LF,'Max directory entries: '>

LHLD DIRENT

INX H
HLDEC
PCHAR BLANK
PCHAR '('

OUTHL
PRINT <' hex)',CR,LF, 'Directory blocks: '>

LDA ALLOCA
PCHAR
PCHAR BLANK

PCHAR '('

LDA ALLOC+1
BINBIN ;alloc in binary

LDA ALLOC

ORA A
JZ XAM2
BINBIN ;2ncl if needed

XAM2:
PRINT <')',CR,LF, 'Track offset: >
LHLD TRKOFF

HLDEC
MOV A,H

ORA A
JZ XAM5 ;skip hex

PCHAR BLANK
PCHAR '('

OUTHL
PRINT ' hex)'

Figure 8.14 (continued)

300 MASTERING CP/M

XAM5:

CRLF

RET

setd*;k- ;set disk drive

DCR A ;0=a, l=b
STA CURD2 ;save

MOV E,A

MVI CJ4 ;select new drive

JMP BDOS
/

REPEAT: ;reset parameters
rILLD SECTOR, HERE-SEaOR,0
LHLD TRKOFF
SHLD TRACK ;reset track offset

LHLD DIRAAAX ;# directory sectors

SHLD DIRA/\X2

RET

;show block allocation map

BLOCK:

;Set reserved directory blocks in map
;by shifting alloc to left.

PRINT <CR,LF,LF/disk allocation map',CR,LF>
LHLD BLKAAAX ;number of blocks

MOV B,H

MOV C,L ;put in BC
FILLD BMAP, , ;zero map area
LHLD ALLOC ;both bytes

LXI D,BAAAP (location

C14A:

XCHG
INR M ;set bit

INX H
XCHG
DAD H ;shift left

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY 301

MOV A,L

ORA H ;zero

JNZ C14A ;no

BLOCK3:

CALL NXTSEC

JZ BLOCK4 (•finished

CALL BPROG
JMP BLOCK3

(•display disk allocation map

BLOCK4:

PRINT 'Press any key to continue:

'

;wait for character

PRINT <CR,LF,LF/ 01 234567 89ABCDEF'>

PRINT '01 234567 89ABCDEF'

LHLD BLKAAAX

MOV B,H

MOV C,L

LXI H,BAAAP ;start of map
BAAAP2:

MOV A,L

ANI OFH ;mask upper 4 bits

JNZ BAAAP6

MOV A,L

ANI 1FH

JZ BAAAP7 ;mask 4 bits

PCHAR BLANK ;even

JMP BAAAP5

BMAP7:
ABORT
CRLF

ESC

;start new line

OUTHEX L ;show address

PCHAR
PCHAR BLANK
JMP BAAAP5

BAAAP6:

CPI 8

Figure 8.14 (continued)

302 MASTERING CP/M

JNZ BAAAP5

PCHAR BLANK
BAAAP5:

MOV AM ;aet entrv/ ' Willi
J

ORA A ;zero?

JZ BAAAP8 'ves

XCHG ;save HL in DE

LHLD BLKCNT
INX H ;use count

SHLD BLKCNT
XCHG ;restore HL

BAAAP8:

CP! 10

JNC BAAAP3 ;<9

ORI '0' ;make ASCII

JMP BAAAP4

BAAAP3:

AD! 'A'— 10 ;make hex

BA/\AP4:

PCHAR ;print

INX H
DCX B ;count

MOV A,C ;clone?

ORA B

JNZ BAAAP2 ;no

;show total number of blocks and number in use

CRLF

LHLD NETBL ;net # blocks

HLDEC
PUSH H ;save HL

PRINT ' total blocks,
'

LHLD BLKCNT

LDA ALLOCA ;dir blocks

SUI '0' ;make binary

MOV E,A

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY 303

AAVI D,0

SBC HL,DE

HLDEC
PRINT ' in use,

'

POP H

SBC HL,DE (•difference

HLDEC
PRINT <' remaining',CR,LF>

RET

;code for setting up block allocation map

BPROG:

CALL E5AREA ;found E5?

MOV A,M ;first byte

CP! 17 ;user > 16?

JNC BKINCD ;yes

PUSH H ;save pointer

OUTHEX ;user number
PCHAR BLANK
INX H ;file name
PRINT ,11 ;display file name
PCHAR BLANK
LXI D,ll ;move post file name
DAD D ;first entry

MVI C,4 ;next 4 bytes

;next 4 bytes have extent and number of sectors

LOOP2:

OUTHEX M
INX H
DCR C
JNZ LOOP2
PCHAR BLANK

Figure 8. 14 (continued)

304 MASTERING CP/M

MVI C,16 ; 16 blocks/extent

;See if there are more than 255 blocks.

;A 16-bit block address is used if so.

LDA BLKAAAX-l-1 ;high half

ORA A ;zero?

JNZ BNEXT6 ;no, 16 bits

;code for 8-bit block addresses

BNEXT8:

MOV A,M ;get byte

OUTHEX ;display block number

ORA A ;zero?

JZ BPRT2 ;last block

PUSH H

LXI H,BAAAP ;start

MOV E,A

MVI D,0

DAD D ;offset

INR M ;show use

POP H
INX H

MOV A,L

ANI OFH ;end of line

JNZ BNEXT8 ;no

JMP BPRT2

;1 6-bit block addresses

BNEXT6:

MOV E,M ;low byte

OUTHEX E ;block number, low

INX H

MOV A,M ;high

OUTHEX ;block number, high

ORA E ;zero?

Figure 8, 14 (continued)

THE CP/M DISK DIRECTORY 305

JZ BPRT2 ;yes, quit

MOV D,M
PUSH H ;save pointer

LXI H,BAAAP ;map start

DAD D ;add address

INR M ;show use

POP H (•restore pointer

INX H ;next location

MOV A,L

ANI OFH ;end of line?

JNZ BNEXT6 ;no

BPRT2:

POP H (•beginning of FCB

CRLF (•new line

CALL DECCNT
JZ CKDONE
LXI D,32 ;FCB length

DAD D (•next entry

JMP BPROG

/increment count, decrement sector number

CKDONE:
LHLD DIRMX2
DCX H (•sector count

SHLD DIRMX2
LHLD SECTOR (•16 bits

INX H

SHLD SECTOR

XCHG (•save in DE

LHLD NUMSEC (•sectors/track

;see if we need a nother track

SBC HL,DE (•difference

MOV A,L

ORA H (•difference zero?

Figure 8. 14 (continued)

306 MASTERING CP/M

SHLD SECTOR ;set to zero

LHLD TRACK
INX H ,incr TracK

SHLD TRACK
RET

;Read next sector (4 directory entries).

;Return with zero flog set if no more.

NXTSEC:

LDA E5FLAG ;uninitlalized found?

CPI 1

RZ ;yes

NXTSF:

LHLD DIRAAX2 ;more sectors?

MOV A,L

ORA H ;set flags

RZ ;no

CALL SEHRK ;set track

LHLD SECTOR ; 16 bits

MOV B,H

MOV C,L

CALL TRANSL
CALL SETSEC ;set sector

CALL READ
MVI A 4 fXSi III Ic5/ aowlUi

STA ECOUNT ;reset

LXI H,ABUFF ;DAAA address

AN! 1

XRI 1 /invert error flag

RET ;zero if bad flag

;Decrement number of remaining entries In sector

;(4 maximum). Zero flag set If no more.

DECCNT:

LDA ECOUNT ;entries/sector

DCR A

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY 307

STA ECOUNT
RET

;look for E5 uninitialized area, set E5FLAG = 1 if so

E5AREA:

INX H ;1st char

INX H ;2nd char

MOV A,M
CP! UNUSED
DCX H

DCX H

RNZ ;not found

MVI A,l

STA E5FLAG

RET

;find currently logged-in disk

CDISK:

MVI C,25

CALL BDOS
STA CURD2 ;A= 0, B=l
ADI 'A' /convert to ASCII

STA CURDSK
RET

;translate BCfrom logical to physical

;sector number BC =>HL =>BC

TRANSL:

LHLD DPH /translate table

XCHG
CALL SEaRN
MOV B,H

MOV C,L

RET

f

Figure 8.14 (continued)

308 MASTERING CP/M

;sef track to 16-bit value in BC

LHLD TRACK ,16 bits

AAOV B H ;may be zero

MOV C L

1 HI D BOOT -t-

1

;warm boot

PUSH

LXI D 3*9 ;offset

DAD n

POP n

PTHI

SETSEC- ;select sector in BC
IHIDLriLL/ BOOT -1-

1

;warm boot

PUSH n

1 yi ;offset

HA Pi

POP

PCHL

SELDSK: ;select disk in C
LHLD ROTiT-H ;warm boot

PUSH n

LXI ;offset

DAD n

POP n

PCHL

;read sector, A= 1 if ci if*^"^««'f 1 il

READ:

LHLD BOOT+l ;warm boot

PUSH D

LXI D,3 12 ;offset

DAD D
POP D

PCHL

;write sector, A= If successful

WRITE:

LHLD BOOT-l-1 ;warm boot

PUSH D

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY 309

LXI D,3*13 ;offset

DAD D

POP D

PCHL

;Sector translation from logical sector in BC
;to physical sector in HL, DE has translate table.

i IXIN

.

LnLU BOOT+1 ;warm boot

rUon D
1 YlLAI D,3*15 ;offset

r»AnUf\U D
POP D
prm

cpm/cD.CKKVCK.

CKKwKfVI '?CP/M version must be 2 or greater'

ILDISK:

ERRORM '?lllegaldiskd rive'

EVITCAI i

DPARM: ;copy of disk parameters

NUMSEC: OS 2 ;sectors per track

BSHIFT: DS 1 ;block shift

BLM: DS 1 ;block mask

EAAASK: DS 1 ;extent mask

BLKAAAX: DS 2 ;max # blocks on disk

DIRENT: DS 2 ;max # dir entries

ALLOC: DS 2 ;A1 1,A10 reversed

CKS: DS 2 ;check size

TRKOFF: DS 2 ;track offset

DPH: DS 2 ;disk parameter header

biRAAAX: DS 2 ;max # directory sectors

NETBL: DS 2 ;number of data blocks

ALLOCA: DS 1 /directory blocks (ASCII)

Figure 8.14 (continued)

310 MASTERING CP/M

DIRAAX2- DS 2 ;remaining direct sectors

CURDSK- DS 1 ;current disk (ASCII)

CURD2: DS 1 ;current disk (binary)

ECOUNT: DS 1 ;entries In sector (0-3)

o
f\,\Ji 1 C7I II dC7^I Ul

TRACK: DS 2 ;current track

E5FLAG: DS 1 ;found uninitialized if 1

BLKCNT: DS 2 ;blocks in use

HERE: (•replace with ASEG:

ORG (here o nclOFF(X)H) + lOOH ;ORG OAOOH for Microsoft

BAAAP: DS 1 ;block allocation map

END START

Figure 8.14 (continued)

This program will perform several disk operations by directly calling

the BIOS rather than the BDOS. Recall that the BIOS begins with a se-

quence ofjump vectors. In this case we are interested in the vectors that

are 8, 9, 10, 12, 13, and 15 positions from the warm-start vector. These

are the following vectors:

Select disk drive from register C
Set track number to value in BC

Set sector number to value in BC

Read a sector into memory at DAAA address

Write a sector from memory at DAAA address

SECTRN Translate from logical to physical sector

The location of BIOS changes with each different size of CP/M. Conse-

quently, the exact addresses cannot be coded directly into our program.

The address of the warm-start vector is stored at address 1 . We can re-

trieve this address, add the offset to the desired vector, then branch to it.

For example, the vector to select the disk is eight vectors past the warm-

start vector, and each vector is three bytes long. Consequently, we need to

add 3 times 8 to the warm-start vector. The instructions are as follows:

SELDSK: ;select disk in C
LHLD BOOT -I- 1 ;warm boot to HL

JAAP SELDSK

JAAP SETTRK

JAAP SETSEC

JAAP READ

JAAP WRITE

JAAP SECTRN

THE CP/M DISK DIRECTORY 311

PUSH
LXI

DAD
POP
PCHL

D

D,3*8

D

D

;save DE

;put offset in DE

;add to HL

(•restore DE

;branch to HL address

The other five routines operate in a similar way.

Each time a disk is logged in, CP/M constructs a bit map of the sectors

in use. However, we will not use this map in our program. Rather, we will

construct a separate table. A block of memory starting at BMAP at the

end of the program is set aside for this purpose. We saw previously that

CP/M allocates one bit for each block. However, in this case we will use

one byte for each block. The map area is zeroed initially. Then each time

a block number is encountered, the corresponding location in the block

is incremented.

We start with the blocks allocated to the directory. Then each directory

entry is scanned for blocks that are in use. When a block is found to be in

use, the corresponding entry in the table is incremented.

In this chapter we studied the CP/M disk directory in detail. We
developed a disk program to list the disk parameters, show an expanded

directory with the block addresses, and generate a block allocation map.

We can add more features to this program to further increase its

usefulness. For example, an accidentally deleted file can be recovered if

the value at the beginning of the FCB can be changed from E5 to 0.

Creating multiple links to a single file is another useful feature if more
than one user area is active. Ifa particulsir program is needed in more than

one user area, it is usually necessary to save a separate copy of the program

for each user. But this requires additional disk space. On the other hand,

disk space can be saved by creating multiple FCBs to the same file. One
FCB is designated for each user according to the initial byte of the FCB.
However, the remainder of each FCB is the same. Thus all of these FCBs
refer to the same file. (All of these features are incorporated into a disk

utility program called FILEFIX, available commercially.)

The directory of your macro library should now look like this:

SUMMARY

;;AAocros in this library

:;ABORT AAACRO CHAR
:;AMBIG AAACRO OLD, NEW

Flags

CIFLAG, COFLAG
(none)

312 MASTERING CP/M

,,DHNDIIN AAAPPO

AAAPPO PTMMTP ^-LrLMVj, V^^rLMv?, V^KrLMVj

/ f ri\rLn\jf \JrrLr\\jf /VWrLMvj,

/ /
DFFI Af^ (~IFI Af^ 1 IMFI A(^L'CrLAWJ?, ^IrLMVJ, UlNrLMw,

/ /
PNIFI An ^OFI Af^

AAAPPr^ riKol, OCV-VJINU, DTI Co PAAFI An
AAAPPO PI pCT CFPPiMH RVTFQ PAAFI An

• •PDAA\/CP;;v-r/v\vtK AA Ar^PP* (none)

;;LKLr v-KrLAo, (_UrLA(j

;;L)tLtlb AA Ar*D/^ nJlNIK, WntKc
LvJrLAC:;, PKrLAvj, UNPLAG

. .rM\/ir\c AAA^PO r\CMi^AA
UtlNVj/V\

f 1^ ^\ \^none
)

••FPPnPAA TFYT WHFPF POFI Ari PPFI Af^ PPFI AfXV-V-TLMVJ, v-I\rLMw, rrxrLMVj?

AAAPPn

"FILL//TILL AAACPO ADDR RYTF^ THAP FLFLAfi

••Fii 1 n AHDP RYTF^ PHAP Fl Fl An
../^FWAAAF AAAPPn FPR FMFI Ar; Fl Fl An PPFI Al^riNrLMVJ*, rLrLMO, KV^rLMo

POEI A/^ PDCI An PDFr APv^VJrLAo, V_KrLAo, rKrLAvj
• •UFYUI,,ntAnL AA APPl^ PP^IMTPrvJIlN 1 K UVFI AC DPFI AC

AAAPPO HFFI AC Cr\C\ AC
AA A^D<^ DA DrAK 1 CiC\ ACLUrLAG

;;LUrlLc AA A^DO K-D, rUINTK, LHAK f^/^Cl A/^ r\AACI A^

/ f

nr\r| a/^

• -AAA^F AA APP/^ AA^FI AP P/^CI AC ^DCI A^
/V\l\.rLA(j, v_UrLAvj, CKrLAG,

/ /
DDCI AC

;;AftUVt AA A^P/^ rKUAA, lU, DTlbo AA\/CI AC
• 'AAI II T AAAPPO Tl AAECll/V\tO AAI El AC

AAAPPP* PPVIMTP XA/UIFPF CiDCt AC CCiC\ AC DDCI ACvJrrLAO, v-UrLAvj, rKrLAvj
fPFI An

• ni ITMFY
ff\j\j 1 ncA AAAPPO PF^Z PYFI An POFI An

f,\j\j t riL AAAPPr^ PYFI An PPlFI An
AAAPPO PAPrAK ("OFI An

..pFMAAAF AAAPPO FPRrV-D CCtP\ An DDFI An
AAAPPO 1TYT RYTFQ

1 CA
1
, D T 1 Co PPFI An cctP\ An

;;PROTEC AAACRO POINTR (none)

;;READB AAACRO BUFFR RCFLAG
;;READCH AAACRO REG CIFLAG, COFLAG
;;READS AAACRO POINTR, STAR RDFLAG, COFLAG
;;RENAME AAACRO POINTR RNFLAG, COFLAG

PRFLAG, CRFLAG

THE CP/M DISK DIRECTORY 313

;SBC

;SETDAAA

;SETUP2

;SYSF

;UCASE

;UNPROT

;UPPER

;VERSN

;WRITES

;WRFILE

AAACRO
AAACRO
AAACRO

AAACRO
AAACRO
AAACRO

AAACRO
AAACRO
AAACRO

POINTR

FUNC, AE

REG

POINTR

REG

NUAA

POINTR, STAR

AAACRO FCB, POINTR

(none)

DAAFLAG

S2FLAG, CIFLAG, COFLAG,

CRFLAG, CAAFLAG, DEFLAG,

AAKFLAG, AAVFLAG, OPFLAG,

PRFLAG, UNFLAG
(none)

(none)

UNFLAG
(none)

(none)

WRFLAG, COFLAG
PRFLAG

COFLAG, CRFLAG
DAAFLAG, WRFLAG

illllllllll lillllllllllililllllllll APPENDIX A

The ASCII

Character Set

The ASCII character set is listed here in numeric order with the corre-

sponding decimal, hexadecimal, and octal values. The control characters

are indicated with a caret (f^). For example, the horizontal tab (HT) is

formed with control-I ('^I).

ASCII Decimal Hex Octal Control

symbol value value value character Meaning

NUL 00 000 ^@ Null

SOH 1 01 001 ^A Start of heading

SIX 2 02 002 ^B Start of text

ETX 3 03 003 ^C End of text

EOT 4 04 004 End of transmission

ENQ 5 05 005 ^E Inquiry

ACK 6 06 006 Acknowledge

BEL 7 07 007 BeU

BS 8 08 010 ^H Backspace

HT 9 09 Oil ^I Horizontal tab

LF 10 OA 012 Line feed

VT 11 OB 013 Vertical tab

FF 12 OC 014 Form feed

CR 13 OD 015 Carriage return

THE ASCII CHARACTER SET 317

Decimal riex

symbol vElue value value *-%V\O T'O Afcnaracier iVlcalllllg

SO 14 OE 016 AxTN Shift out

SI 15 OF 017 O anitt m

DLE 16 10 020
Ap Data link escape

DCl 17 11 021
Aq Device control 1

DC2 18 12 022 ar Device control 2

DC3 19 13 023 '^S Device control 3

DC4 20 14 024 Device control 4

NAK 21 15 025
A* T

'^U Negative acknowledge

SYN 22 16 026 V Synchronous idle

ETB 23 17 027 A^ End of transmission block

CAN 24 18 030 Cancel

EM 25 19 031
Ay End of medium

SUB 26 lA 032 Substitute

LI Id All Af
L Escape

ra 'SO 034
A\

File separator

Oa 2y ID 035 Al
J Group separator

RS 30 lb 036
AA Record separator

US 31 Ir 037
A Unit separator

SP 32 20 040 Space

! 33 21 041

34 22 042

35 23 043

$ 36 24 044

% 37 25 045

& 38 26 046
>

39 27 047 Apostrophe

(40 28 050

) 41 29 051
* 42 2A 052

+ 43 2B 053

44 2C 054 Comma
45 2D 055 Minus

46 2E 056 Period

/ 47 2F 057

48 30 060

1 49 31 061

2 50 32 062

3 51 33 063

318 MASTERING CP/M

ASCII Decimal Hex Octal Control

symbol value value value character Meaning

4 52 34 064

5 53 35 065

6 54 36 066

7 55 37 067

8 56 38 070

9 57 39 071

58 3A 072

> 59 3B 073

< 60 3C 074
= 61 3D 075

> 62 3E 076

7 63 3F 077

@ 64 40 100

A 65 41 101

B 66 42 102

C 67 43 103

D 68 44 104

E 69 45 105

F 70 46 106

G 71 47 107

H 72 48 110

I 73 49 111

J 74 4A 112

K 75 4B 113

L 76 4C 114

M 77 4D 115

N 78 4E 116

O 79 4F 117

P 80 50 120

Q 81 51 121

R 82 52 122

S 83 53 123

T 84 54 124

U 85 55 125

V 86 56 126

w 87 57 127

X 88 58 130

Y 89 59 131

THE ASCII CHARACTER SET 319

ASCII Decimal Hex Octal Control

symbol value value value character Meaning

z 90 5A 132

[91 5B 133

\ 92 5C 134

]
93 5D 135

A 94 5E 136

— 95 5F 137

96 60 140

a 97 61 141

b 98 62 142

c 99 63 143

d 100 64 144

e 101 65 145

f 102 66 146

g 103 67 147

h 104 68 150

i 105 69 151

j 106 6A 152

k 107 6B 153

1 108 6C 154

m 109 6D 155

n 110 6E 156

111 6F 157

P 112 70 160

q 113 71 161

r 114 72 162

s 115 73 163

t 116 74 164

u 117 75 165

v 118 76 166

w 119 77 167

X 120 78 170

y 121 79 171

z 122 7A 172

{
123 7B 173

1

124 7C 174

I
125 7D 175

126 7E 176

DEL 127 7F 177

Underline

Delete

APPENDIX B
A64K
Memory Map

The 8080 and Z80 microprocessors can directly address 64K bytes of
memory. The memory area is mapped out in the chart that follows. Each
entry represents a 256-byte block. The high-order byte of the address is

given first as a hexadecimal value, then as an octal value. For example, the

entry

Hex Ocl K m
20 040 32

represents an address range of 2000 to 2FFF hex, or 040-000 to 040-777

octal. The third column gives the decimal number of IK blocks. The
fourth column is the decimal number of 256-byte blocks starting at ad-

dress 100 hex. As an example, suppose that a CP/M program runs from
100 hex to 3035 hex. The 30 hex entry in the table shows that the program
contains 48 decimal blocks of 256 bytes. The program can be saved with
the CP/M command

A>SAVE48(file name)

Hex Oct K Bl

00 000

01 001 1

02 002 2

03 003 1 3

04 004 4

05 005 5

06 006 6

07 007 2 7

08 010 8

09 Oil 9

OA 012 10

Hex Oct K Bl

OB 013 3 11

OC 014 12

OD 015 13

OE 016 14

OF 017 4 15

10 020 16

11 021 17

12 022 18

13 023 5 19

14 024 20

15 025 21

A 64K MEMORY MAP
321

Hex Oct K Bl
Hex

16

17

18

19

lA
IB

IC
ID
IE

IF

20

21

22

23

24

25

26

27

28

29

2A
2B
2C
2D
2E
2F

30

31

32

33

34

35

36

37

38

39

3A
33
3C

026

027

030

031

032

033

034

035

036

037

22

23

24

25

26

27

28

29

30

31

040 32

041 33

042 34

043 9 35

044 36

045 37

046 38

047 10 39

050 40

051 41

052 42

053 11 43

054 44

055 45

056 46

057 12 47

060

061

062

063 13

064

065

066

067 14

070

071

072

073 15

074

48

49

50

51

52

53

54

55

56

57

58

59

60

3D 075

3E 076

3F 077 16

40

41

42

43

44

45

46

47

48

49

4A
4B
4C
4D
4E
4F

50

51

52

53

54

55

56

57

100

101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

17

18

19

20

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

58 130

59 131

5A 132

5B 133

5C 134

5D 135

5E 136

5F 137

60 140

61 141

62 142

63 143

21

22

23

24

25

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

322 MASTERING CP/M

Hex Oct K Bl Hex Oct K Bl

64 144 100 8B 213 35 139

65 145 101 8C 214 140
66 146 102 8D 215 141

67 147 26 103 8E 216 142

68 150 104
8F 217 36 143

69 151 105 144
6A 152 106 91 221 145

6B 153 27 107 92 222 146

6C 154 108 93 223 37 147
6D 155 109 94 224 148

6E 156 110 95 225 149
6F 157 28 111 96 226 150

70 160 112
97 227 38 151

71 161 113 98 230
72 162 114 99 231 153

73 163 29 115 9A 232 154

74 164 116 9B 233 39 155

75 165 117 9C 234 156

76 166 118 9D 235 157

77 167 30 119 9E 236 158

78 170 120
9F 237 40 159

79 171 121 AO
7A 172 122 Al 241 161

7B 173 31 123 A2 242 162
7C 174 124 A3 243 41 163

7D 175 125 A4 244 164
7E 176 126 A5 245 165

7F 177 32 127 A6 246 166

A7 247 42 167

81 201 loo

82 202 130 A9 251 169

83 203 33 131 AA 252 170

84 204 132 AB 253 43 171

85 205 133 AC 254 172

86 206 134 AD 255 173

87 207 34 135 AE 256 174

88 210 136
AF 257 44 175

89 211 137 BO 260 176

8A 212 138 Bl 261 177

A 64K MEMORY MAP 323

Hex Oct

B2
B3

B4

B5

B6
B7

B8

B9
BA
BB
BC
BD
BE
BF

CO
CI

C2
C3

C4
C5
C6
C7

C8

C9
CA
CB
CC
CD
CE
CF

DO
Dl
D2
D3
D4
D5
D6
D7

D8

262

263

264

265

266

267

270

271

272

273

274

275

276

277

300

301

302

303

304

305

306

307

310

311

312

313

314

315

316

317

320

321

322

323

324

325

326

327

330

45

46

47

48

49

50

51

52

53

54

Bl

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

Hex Oct A. Bl

D9 oil 217
DA 332 o
DB 333 55 219
DC 334 220
DD 335 221
DE 336 222
DF 337 56 223

cU 340 224
341 225

E2 226
E3 343 57 227
E4 344 228
E5 345 229
E6 346 230
E7 347 58 231

E8 350 232
E9 351 233
EA 352 234
EB 353 59 235
EC 354 236
ED 355 237
EE 356 238
EF 357 60 239

FO 360 240
Fl 361 241
F2 362 242
F3 363 61 243
F4 364 244
F5 365 245
F6 366 246
F7 367 62 247

F8 370 248
F9 371 249
FA 372 250
FB 373 63 251
FC 374 252
FD 375 253
FE 376 254
FF 377 64 255

Illlllllllllllllllllllllllllllllllli APPENDIX C
The 8080
Instruction Set
Alphabetic

The 8080 instruction set is listed alphabetically with the correspond-
ing hexadecimal code. The following representations apply:

nn 8-bit parameter

nnnn 16-bit parameter

Hex Mnemonic Hex Mnemonic

CE nn ACI nn 86 ADD M
8F ADC A C6 nn ADI nn
88 ADC B A7 ANA A
89 ADC C AO ANA B
8A ADC D Al ANA C
8B ADC E A2 ANA D
8C ADC H A3 ANA E
8D ADC L A4 ANA H
8E ADC M A5 ANA L
87 ADD A A6 ANA M
80 ADD B E6 nn ANI nn
81 ADD C CD nnnn CALL nnnn
82 ADD D DC nnnn CC nnnn
83 ADD E FC nnnn CM nnnn
84 ADD H 2F CMA
85 ADD L 3F CMC

THE 8080 INSTRUCTION SET (ALPHABETIC) 325

Hex Mnemonic Hex Mnemonic

BF CMP A 24 INR H
B8 CMP B 2C INR L
B9 CMP C 34 INR M
BA CMP D 03 INX B
BB CMP E 13 INX D
BC CMP H 23 INX H
BD CMP L 33 INX SP

BE CMP M DA nnnn JC nnnn

D4 nnnn CNC nnnn FA nnnn JM nnnn

C4 nnnn CNZ nnnn C3 nnnn JMP nnnn

F4 nnnn CP nnnn D2 nnnn JNC nnnn

EC nnnn CPE nnnn C2 nnnn JNZ nnnn

FE nn CPI nn F2 nnnn JP nnnn

E4 nnnn CPO nnnn EA nnnn JPE nnnn

CC nnnn CZ nnnn E2 nnnn JPO nnnn

27 DAA CA nnnn JZ nnnn

09 DAD B 3A nnnn LDA nnnn

19 DAD D OA LDAX B
29 DAD H lA LDAX D
39 DAD SP 2A nnnn LHLD nnnn

3D DCR A 01 nnnn LXI B.nnnn

05 DCR B 11 nnnn LXI D.nnnn

OD DCR C 21 nnnn LXI H.nnnn

15 DCR D 31 nnnn LXI SP.nnnr

ID DCR E 7F MOV A,A
25 DCR H 78 MOV A,B

2D DCR L 79 MOV A,C

35 DCR M 7A MOV A,D
OB DCX B 7B MOV A,E

IB DCX D 7C MOV A,H
2B DCX H 7D MOV A,L

3B DCX SP 7E MOV A.M
F3 DI 47 MOV B.A

FB EI 40 MOV B,B

76 HLT 41 MOV B,C

DB nn IN nn 42 MOV B.D

3C INR A 43 MOV B,E

04 INR B 44 MOV B,H

OC INR C 45 MOV B.L

14 INR D 46 MOV B,M

IC INR E 4F MOV C.A

326 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

48 MOV C.B 71 MOV M.C
49 MOV C,C 72 MOV M,D
4A MOV CD 73 MOV M,E
4B MOV C,E 74 MOV M.H
4C MOV C,H 75 MOV M,L
4D MOV C,L 3E nn MVI A,nn
4E MOV CM 06 nn MVI B,nn
57 MOV D,A OE nn MVI C,nn
50 MOV D,B 16 nn MVI D,nn
51 MOV D,C IE nn MVI E,nn
52 MOV D,D 26 nn MVI H,nn
53 MOV D,E 2E nn MVI L,nn
54 MOV D,H 36 nn MVI M,nn
55 MOV D.L 00 NOP
56 MOV D,M B7 ORA A
5F MOV E,A BO ORA B
58 MOV E,B Bl ORA C
59 MOV E,C B2 ORA D
5A MOV E,D B3 ORA E
5B MOV E,E B4 ORA H
5C MOV E,H B5 ORA L
5D MOV E,L B6 ORA M
5E MOV E.M F6 nn ORI nn
67 MOV H,A D3 nn OUT nn
60 MOV H,B E9 PCHL
61 MOV H,C CI POP B
62 MOV H,D Dl POP D
63 MOV H,E El POP H
64 MOV H.H Fl POP PSW
65 MOV H,L C5 PUSH B
66 MOV H,M D5 PUSH D
6F MOV L,A E5 PUSH H
68 MOV L,B F5 PUSH PSW
69 MOV L.C 17 RAL
6A MOV L.D IF RAR
6B MOV L,E D8 RC
6C MOV L,H C9 RET
6D MOV L,L 07 RLC
6E MOV L,M F8 RM
77 MOV M.A DO RNC
70 MOV M,B CO RNZ

THE 8080 INSTRUCTION SET (ALPHABETIC) 327

Hex Mnemonic Hex Mnemonic

FO RP 32 nnnn STA nnnn

E8 RPE 02 STAX B

EO RPO 12 STAX D
OF RRC 37 STC
CI RST 97 SUB A
CP RST 1 90 SUB B
D7 RST 2 91 SUB C
DP RST 3 92 SUB D
E7 RST 4 93 SUB E
EP RST 5 94 SUB H
P7 RST 6 95 SUB L

FF RST 7 96 SUB M
C8 RZ D6 nn SUI nn

9F SBB A EB XCHG
98 see B AF XRA A
99 SBB C A8 XRA B

9A SBB D A9 XRA C
9B SBB E AA XRA D
9C SBB H AB XRA E
9D SBB L AC XRA H
9E SBB M AD XRA L

DE nn SBI nn AE XRA M
22 nnnn SHLD nnnn EE nn XRI nn

F9 SPHL E3 XTHL

APPENDIX D
The 8080
Instruction Set

Numeric

The 8080 instruction set is listed numerically with the corresponding

hexadecimal code. The following representations apply:

nn 8-bit parameter

imnn 16-bit parameter

Hex Mnemonic Hex Mnemonic

00 NOP 16 nn MVI D,nn
01 nnnn LXI B,nnnn 17 RAL
02 STAX B 18 <not used>
03 INX B 19 DAD D
04 INR B lA LDAX D
05 DCR B IB DCX D
06 nn MVl B,nn IC INR E
07 RLC ID DCR E
08 <not used> IE nn MVI E,nn
09 DAD B IF RAR
OA LDAX B 20 <not used>
OB DCX B 21 nnnn LXI H.nnnn
OC INR C 22 nnnn SHLD nnnn
OD DCR C 23 INX H
OE nn MVI C,nn 24 INR H
OF RRC 25 DCR H
10 <not used> 26 nn MVI H,nn
11 nnnn LXI D.nnnn 27 DAA
12 STAX D 28 <not used>

13 INX D 29 DAD H
14 INR D 2A nnnn LHLD nnnn
15 DCR D 2B DCX H

THE 8080 INSTRUCTION SET (NUMERIC) 329

Hex Mnemonic Hex Mnemonic

2C INR L 55 MOV D,L

2D DCR L 56 MOV D,M
2E nn MVI L,nn 57 MOV D,A
2F CMA 58 MOV E,B

30 <not used> 59 MOV E,C

31 nnnn LXI SP.nnnn 5A MOV E,D

32 nnnn STA nnnn 5B MOV E,E

33 INX SP 5C MOV E,H

34 INR M 5D MOV E,L

35 DCR M 5E MOV E,M
36 nn MVI M,nn 5F MOV E,A

37 STC 60 MOV H.B

38 <not used> 61 MOV H,C

39 DAD SP 62 MOV H,D
3A nnnn LDA nnnn 63 MOV H,E

3B DCX SP 64 MOV H,H
IP INR A 65 MOV H,L

DCR A 66 MOV H,M
^F nn MVI A,nn 67 MOV H,A
^F CMC 68 MOV L,B
An MOV B,B 69 MOV L,C

HI MOV B,C 6A MOV L,D

MOV B.D 6B MOV L,E

•J MOV B,E 6C MOV L.H

44 MOV B,H 6D MOV L,L

45 MOV B,L 6E MOV L,M
46 MOV B.M 6F MOV L,A

47 MOV B,A 70 MOV M,B

48 MOV C,B 71 MOV M,C
49 MOV C,C 72 MOV M,D
4A MOV CD 73 MOV M,E

4B MOV C.E 74 MOV M,H
MOV C,H 75 MOV M,L
MOV C,L 76 HLT

4E MOV CM 77 MOV M,A
MOV CA 78 MOV A,B

50 MOV D,B 79 MOV A,C

51 MOV D,C 7A MOV A,D

52 MOV D.D 7B MOV A,E

53 MOV D,E 7C MOV A,H

54 MOV D,H 7D MOV A.L

330 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

7E IVlw V A7 AM AAISA AA
7F JVllJV A A A8 YP A IS

80 A rAP\AUU 15 A9 YD AAKA
81 AUU AA YD AAKA U
82 AUU U AB YD AAKA tj

Ei

83 t:
Jb AC YD AAKA rl

84 AUU rl AD YD AAKA T
1^

85 AUU T
L, AE YP AAKA \A]V1

86 AUU iVl AF YD AAKA AA
87 Anr>/\uu A

/\ BO r>p AwKA T>D
88 D Bl OKA
89 ADP B2 OR A nXJ
8A ADC n B3 ORA
8B ADC j_i B4 ORA rx

8C ADC Xl. B5 T1^

8D ADP T
Li B6 OP A IVl

8E Anp iVl B7 OP A AA
8F AUy^ A B8 D
90 oUo I> B9
91 CT TnoUo BA u
92 U BB Pli>fD I?

93 b BC t-Mr T T
rl

94 CT TOSUB T TH BD T

95 CT TTJ TL BE ^\AD M
96 CT TTJ M BF P\>fTJ AA
97 CT TTJ AA CO DMT
98 CTJTJ D CI POP Tka
99 CURODD C2 nnnn TM7 nnnn

9A ijDD r\L> C3 nnnn JMP nnnn
9B CT%RODD C4 nnnn CNZ nnnn

9C ^RR rl C5 PUSH B
9D ^RRODD T C6 nn ADI nn

9E SBB M C7 RST
9F <iRRODD A C8 RZ
AO ANA B C9 RET
Al ANA C CA nnnn JZ nnnn

A2 ANA D CB <not used>

A3 ANA E CC nnnn CZ nnnn

A4 ANA H CD nnnn CALL nnnn

A5 ANA L CE nn ACI nn

A6 ANA M CF RST 1

THE 8080 INSTRUCTION SET (NUMERIC) 331

Hex Mnemonic Hex Mnemonic

DO RNC COCO RPE
Dl POP D mnhy PCHL
D2 nnnn JNC nnnn rlA nnnn JPE nnnn

D3 nn OUT nn XCHG
EM nnnn CNC nnnn EC nnnn CPE nnnn

D5 PUSH D bD <not used>

D6 nn SUI nn EE nn XRI nn

D7 RST 2 EF RST 5

D8 RC FO RP
D9 <not used> rl POP PSW
DA nnnn JC nnnn F2 nnnn JP nnnn

DB nn IN nn r3 DI

DC nnnn CC nnnn r4 nnnn CP nnnn

DD <not used> r5 PUSH PSW
Db nn SBI nn ro nn ORI nn

Dr RST 3 r / RST 6
OAbu RPO TTQro RM
El POP H F9 SPHL
E2 nnnn JPO nnnn rA nnnn JM nnnn

E3 XTHL FB EI

E4 nnnn CPO nnnn FC nnnn CM nnnn

E5 PUSH H FD <not used>

E6 nn ANI nn FE nn CPI nn

E7 RST 4 FF RST 7

11 APPENDIX E

The Z80
Instruction Set

Alphabetic

The Zilog Z80 instruction set is listed alphabetically with the cor-

responding hexadecimal values. The following representations apply:

nn 8-bit parameters

nnnn 16-bit parameters

dd 8-bit signed displacement

* Instructions common to the 8080

Hex Mnemonic Hex Mnemonic

8E * ADC A,(HL) 81 * ADD A,C
DD 8Edd ADC A,(IX+ dd) 82 * ADD A,D
FD 8Edd ADC A,(IY+dd) 83 * ADD A,E

8F * ADC A,A 84 * ADD A,H
88 * ADC A,B 85 • ADD A,L

89 * ADC A,C C6 nn * ADD A,nn

8A * ADC A,D 09 * ADD HL.BC
8B * ADC A,E 19 • ADD HL.DE
8C * ADC A,H 29 * ADD HL.HL
8D * ADC A,L 39 * ADD HL.SP
CE nn * ADC A,nn DD 09 ADD IX.BC

ED 4A ADC HL.BC DD 19 ADD IX.DE
ED 5A ADC HL.DE DD 29 ADD DC.IX

ED 6A ADC HL.HL DD 39 ADD DC.SP

ED 7A ADC HL.SP FD 09 ADD lY.BC

86 * ADD A,(HL) FD 19 ADD lY.DE

DD 86dd ADD A,(IX-|-dd) FD 29 ADD lY.IY

FD 86dd ADD A,(IY+dd) FD 39 ADD lY.SP

87 * ADD A,A A6 * AND (HL)

80 * ADD A,B DD A6dd AND (IX+dd)

THE Z80 INSTRUCTION SET (ALPHABETIC) 333

Hex Mnemonic Hex Mnemonic

FD A6dd AND (lY+dd) CB 5F BIT 3,A

A7 * AND A CB 58 BIT 3 BJ,XJ

AO * AND B CB 59 BIT 3,C

Al * AND c CB 5A BIT 3 D
A2 * AND D CB 5B BIT 3 E
A3 * AND E CB 5C BIT 3 HJ,rx

A4 * AND H CB 5D BIT 3,L

A5 * AND T CB 66 RTT tfyrLL^)

E6 nn * AND nn DD CBdd66 RTT A ('TX4-Hf^^H,^^XyVT^UU^

CB 46 RTT n CHT "» FD CBdd66 RTTox X d CTY

+

DD CBdd46 BIT CB 67 RTTox X 4 A
FD CBdd46 RTT CB 60 RTTXJX X X R
CB 47 BIT n A CB 61 RTTIJX X 4 C
CB 40 BIT 0,B CB 62 BIT 4 n
CB 41 BIT o,c CB 63 RTTXJX X i, F
CB 42 BIT 0,D CB 64 BIT 4 T4

CB 43 BIT 0,E CB 65 BIT 4,L

CB 44 BIT 0,H CB 6E BIT 5 CHT ^

CB 45 BIT 0,L DD CBdd6E BIT
CB 4E BIT FD CBdd6E BIT 5 dY+ dd')vfy^X J. 1 \X\Xf

DD CBdd4E BIT 1 fIX + ddl CB 6F BIT 5 A
FD CBdd4E BIT 1 flY+ ddl CB 68 BIT 5 Bj,o

CB 4F BIT 1 A CB 69 BIT 5 C
CB 48 BIT 1 B CB 6A BIT 5 D
CB 49 BIT I c CB 6B BIT 5 E
CB 4A BIT CB 6C BIT 5 H
CB 4B BIT 1 F CB 6D BIT < IJyXj

CB 4C RTT 1 T-I CB 76 RTTXJX X

CB 4D RTT 1 T DD CBdd76 RTT

CB 56 RTT 7 ^HT ^ FD CBdd76 RTTi3X X 0,(_1 1 \X\x}

DD CBdd56 RTT CB 77 RTTul I (\ A

FD CBdd56 RTT J ^TV-I- HH'»I KlKl) CB 70 RTTox 1 A R

CB 57 RTT A CB 71 RTT

CB 50 BIT 2,B CB 72 BIT 6,D

CB 51 BIT CB 73 BIT 6,E

CB 52 BIT 2,D CB 74 BIT 6,H

CB 53 BIT 2,E CB 75 BIT 6,L

CB 54 BIT 2,H CB 7E BIT 7,(HL)

CB 55 BIT 2,L DD CBdd7E BIT 7,(IX+dd)

CB 5E BIT 3,(HL) FD CBdd7E BIT 7,(IY+ dd)

DD CBddSE BIT 3,(IX+dd) CB 7F BIT 7,A

FD CBdd5E BIT 3,(IY+dd) CB 78 BIT 7,B

334 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

CB 79 BIT 7,C 25 DEC H
CB 7A BIT 7,D 2B DEC HL
CB 7B BIT 7.E DD 2B DEC TVIX

CB 7C BIT 7,H FD 2B DEC ll

CB 7D BIT 7,L 2D DEC L

DC nnnn * CALL C.nnnn 3B DEC SP

FC nnnn * CALL M.nnnn F3 DI

D4 nnnn * CALL NC.nnnn 10 dd DJNZ dd

CD nnnn * CALL nnnn FB * EI

C4 nnnn • CALL NZ.nnnn E3 It EX (SP),HL

F4 nnnn * CALL P.nnnn DD E3 EX (SP),IX

EC nnnn * CALL PE.nnnn FD E3 EX (SP),IY

E4 nnnn * CALL PO.nnnn 08 EX AF.AF'

CC nnnn * CALL Z,nnnn EB EX DE.HL

3F * CCF D9 EXX
BE * CP (HL) 76 HALT
DD BEdd CP (IX+dd) ED 46 IM

FD BEdd CP (lY+dd) ED 56 IM 1

BF * CP A ED 5E IM 2

B8 * CP B ED 78 IN A,(Q

B9 * CP C DB nn • IN A,(nn)

BA * CP D ED 40 IN B,(Q

BB * CP E ED 48 IN C,(Q

BC * CP H ED 50 IN D,(Q

BD * CP L ED 58 IN E,(Q

FE nn * CP nn ED 60 IN H,(C)

ED A9 CPD ED 68 IN L,(Q

ED B9 CPDR 34 * INC (HL)

ED Al CPI DD 34dd INC (IX+dd)

ED Bl CPIR FD 34dd INC (lY+dd)

2F * CPL 3C • INC A
27 * DAA 04 * INC B

35 * DEC (HL) 03 INC BC
DD 35dd DEC (IX+dd) OC * INC C
FD 35dd DEC (lY+dd) 14 INC D
3D * DEC A 13 • INC DE
05 * DEC B IC • INC E

OB * DEC BC 24 • INC H
OD * DEC C 23 • INC HL
15 • DEC D DD 23 INC IX

IB « DEC DE FD 23 INC lY

ID * DEC E 2C * INC L

THE Z80 INSTRUCTION SET (ALPHABETIC) 335

Hex Mnemonic Hex Mnemonic

33 * INC SP FD 71dd LD flY+ddl C
ED AA IND FD 72dd LD (IY+dd),D
ED BA INDR FD 73dd LD flY+ddl E
ED A2 INI FD 74dd LD riY+dd) HyX X 1 uuyjXX

ED B2 INIR FD 75dd LD flY+ddl L
E9 * JP FD 36ddnn LD nY+ dd1 nn\X X) UUfyllX

DD E9 JP (IX\ 32 nnnn * LD
FD E9 JP (VT\ ED 43nnnn LD
DA nnnn • JP nnnn ED 53nnnn LD (r\r\r\-n\ FiF

FA nnnn * JP \A nnnn 22 nnnn * LD ^TifiTin^ T-TT

D2 nnnn * TP ^Jf"* nnnn DD 22nnnn T n
C3 nnnn • TP nnnn FD 22nnnn T rj /nnnn'^ TV

C2 nnnn * TP W7 nnnn ED 73nnnn T n
F2 nnnn * JP P nnnn OA * I n
EA nnnn * JP PP nnnn lA * T n
E2 nnnn * JP Pf^ nnnn 7E * LD
CA nnnn • JP 7 nnnn DD 7Edd LD A (1X4-

38 dd IT? FD 7Edd T n A /"TY-t- HH'^

18 dd JR dd 3A nnnn * LD A ^nnnn^

30 dd TTJ 7F * T n A A

20 dd TT! TSI7 HH 78 • T n A n

28 dd JR Z,dd 79 * LD A,C
02 * T n 7A • T n A n
12 * LD (DE),A 7B * LD A,E
77 * LD 7C * LD A H
70 • LD ED 57 LD A I

71 * LD 7D * LD A,L
72 * LD 3E nn * LD A,nn

73 * LD (HL),E ED 5F LD A,R
74 * LD CHI 1 H 46 « LD
75 * LD cm » T DD 46dd LD B fix+ ddl

36 nn * LD (W 1 nn FD 46dd LD
DD 77dd LD 47 * LD B A
DD 70dd LD (IX+dd),B 40 * LD b!b

DD 71dd LD 41 * LD B,C

DD 72dd LD (IX+dd),D 42 * LD B,D
DD 73dd LD (IX+dd),E 43 * LD B,E

DD 74dd LD (IX+dd),H 44 « LD B,H
DD 75dd LD (IX+dd),L 45 * LD B,L

DD 36ddnn LD (IX+dd),nn 06 nn * LD B,nn

FD 77dd LD (IY+dd),A ED 4Bnnnn LD BC,(nnnn)

FD 70dd LD (IY+dd),B 01 nnnn * LD BC.nnnn

336 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

4E Ik LD C,(HL) 63 LD H,b

DD 4Edd LD C,(IX+dd) 64 LD T T XTH,H

FD 4Edd LD C,(IY+dd) 65 LD H,L

4F LD C,A 26 nn LU H,nn

48 * LD C,B 2A nnnn LD HL,(nnnn)

49 * LD C,C 21 nnnn LD HL.nnnn

4A * LD C,D ED 47 LD I.A

4B * LD C,E DD 2Annnn LD DC,(nnnn)

4C LD C,H DD 21nnnn LD IX.nnnn

4D LD C,L FD 2Annnn LD lY,(nnnn)

OE nn * LD C,nn FD 21nnnn LU lY.nnnn

56 LD D,(HL) 6E T F\L,U L,(HL)

DD 56dd LD D,(IX+dd) DD 6Edd T

FD 56dd LD D,(IY+ dd) FD 6Edd T

57 LD D,A 6F 41 LU T A

50 LD D,B 68
1^ LD T DL,D

51 LD D,C 69
III LD L,C

52 LD D,D 6A LD L,D

53 * LD D,E 6B LD L,E

54 * LD D,H 6C LD L,H

55 * LD D,L 6D * LD L,L

16 nn * LD D,nn 2E nn * LD L,nn

ED SBnnnn LD DE,(nnnn) ED 4F LD R,A

11 nnnn * LD DE.nnnn ED 7Bnnnn LD SP,(nnnn)

5E * LD E.(HL) F9 LD SP.HL

DD 5Edd LD E,(IX+dd) DD F9 LD SP.IX

FD 5Edd LD E,(IY+dd) FD F9 LD SP.IY

5F LD E,A 31 nnnn LD SP.nnnn

58 LD E,B ED A8 LUL)

59 LD E,C ED B8

5A * LD E,D ED AO LDl

5B LD E,E ED BO LDIR

5C LD E,H ED 44 NtO
5D * LD E,L GO * NOP
IE nn LD b,nn B6 * (tiL)

66 * LD H,(HL) DD B6dd OR (IX+dd)

DD 66dd LD H,(IX+dd) FD B6dd OR (lY+dd)

FD 66dd LD H,(IY+dd) B7 * OR A
67 * LD H,A BO * OR B

60 * LD H,B Bl OR C
61 * LD H,C B2 • OR D
62 * LD H,D B3 * OR E

THE Z80 INSTRUCTION SET (ALPHABETIC) 337

ncA Mnemonic riex Mnemonic

TiA * OR H CB on89 RES 1,C

DJ * OR L CB O A8A RES 1,D

ro nn * OR nn CB on8B RES l.E

hu BB OTDR CB 8C RES 1,H

ED B3 OTIR CB OT^8D RES 1,L

OUT (Q.A CB RES 2,(HL)

b,D 41 OUT (Q.B DD CBcidyo RES 2,(IX+dd)

bU OUT (Q.C rD ^HAA{\£CBudyo RES 2,(IY+dd)

bD 51 OUT (Q,D CB yl RES 2,A

bu CO OUT (Q.E CB on RES 2,B

bu Ol OUT (Q,H CD oiyi RES 2,C

biJ Oy OUT (Q.L CB yZ RES 2,D

Uj nn • OUT (nn),A CB yi RES 2,E

t,u Ad OUTD CB QAy'* RES 2,H

bLl OUTI Cd o<yj RES 2,L
171 * POP AF CD yb RES 3,(HL)

CI * POP BC DD CBuuyb RES 3,(IX+dd)

DI * POP DE FD CBda9b RES 3,(IY+dd)

El * POP HL CB 9F RES 3,A

DD El POP IX CB 98 RES 3,B

FD El POP lY CB 99 RES 3,C

F5 * PUSH AF CB 9A RES 3.D

C5 • PUSH BC CB 9B RES 3,E

D5 * PUSH DE CB 9C RES 3,H

E5 * PUSH HL CB 9D RES 3,L

DD E5 PUSH IX CB Ao RES 4,(HL)

FD iceE5 PUSH lY DD CBaoAo RES 4,(IX+dd)

CB 00 RES 0,(HL) rD CBUOAO RES 4,(IY+dd)

DD CBacliSo RES 0,(IX+dd) CB ATA/ RES 4,A
L,<l \rD CBctuoo RES 0,(IY+dd) CD AU RES 4,B

CB 87 RES 0,A CB A 1Ai RES 4,C

CB RES O.B CB A '>AZ RES 4,D

CB 81 RES 0,C CB A 1A3 RES 4,E

CB 82 RES O.D CB A AA4 RES 4,H

CB 83 RES 0,E CB A eA5 RES 4,L

CB 84 RES 0,H CB AE RES 5,(HL)

RES 0,L uu RES 5,(IX+ dd)

CB 8E RES 1,(HL) FD CBddAE RES 5,(IY+dd)

DD CBddSE RES l,(IX+dd) CB AF RES 5,A

FD CBddSE RES l,(IY+dd) CB A8 RES 5.B

CB 8F RES 1,A CB A9 RES 5,C

CB 88 RES 1,B CB AA RES 5,D

338 MASTERING CP/M

Hex Mnemonic riCA Mnemonic

CB AB RES 5.E l*f RL H
CB AC RES 5.H

1

«

I

J

RL L

CB AD RES 5.L 171 /
* RLA

CB B6 RES 6 (HL) y^o ru:UO RLC (HL)

DD CBddB6 RES 6 fIX+dd) uu CDUUUv RLC (IX+dd)

FD CBddB6 RES 6,(IY+dd) CoUUUO RLC (lY+dd)

CB B7 RES 6,A .

fl7U/ RLC A
CB BO RES 6,B PR fin RLC B

CB Bl Ul RLC c
CB B2 Cd VZ RLC D
CB B3 (\ F CB 03 RLC E

CB B4 RF<t A 14 CB 04 RLC H
CB B5 RFS CB AC05 RLC L

CB BE RFS 07 RLCA
DD CBddBE RF<^ crvnL/ or RLD
FD CBddBE RF<\ 7 nY+ dd"> Co RR (HL)

CB BF RF9 7 A UU CUuulC RR (IX+dd)

CB B8 RF<! 7 R rJJ cuaciic RR (lY+dd)

CB B9 RF<s 7 C CB Ir RR A
CB BA RF^ 7 n CB IB RR B

CB BB RF^ 7 F CB 1 O RR C

CB BC RF<; 7 H CB 1 AlA RR D
CB BD RF^ 7 1 CB IB RR E

C9 RFT Cd IC RR H
D8 * RET Co 1 RR L

F8 * RFT ir * RRA
DO * RET NC RRC (HL)

CO * RFT NZ DU CouaUc RRC (IX+dd)

FO • RFT p rU Cijuauc RRC (lY+dd)

E8 * RFT PF Ur RRC A
EO * PPT PD Cd Uo RRC B

C8 * RFT 7 CB AA09 RRC c
ED 4D RFTI CB A AOA RRC D
ED 45 RETN CB RRC E

CB 16 RL (HL) Cd uc RRC H
DD CBddl6 RL (IX+dd) CB OD RRC L
T7nru RL (lY+dd) OF • RRCA
CB 17 RL A ED 67 RRD
CB 10 RL B C7 * RST

CB 11 RL C CF * RST 8

CB 12 RL D D7 * RST lOH

CB 13 RL E DF * RST 18H

THE Z80 INSTRUCTION SET (ALPHABETIC) 339

Hex Mnemonic Hex Mnemonic

E7 * RST 20H FD CBddD6 SET 2,(IY+ dd)

EF * RST 28H CB D7 SET 2,A

F7 RST 30H CB DO SET 2,B

FF * RST 38H CB Dl SET 2,C

9E SBC A,(HL) CB D2 SET 2,D

DD 9Edd SBC A,(IX+dd) CB D3 SET 2,E

FD 9Edd SBC A,{IY+ dd) CB D4 SET 2,H

9F * SBC A,A CB D5 SET 2,L

98 * SBC A,B CB DE SET 3,(HL)

99 * SBC A,C DD CBddDE SET 3,(IX+dd)

9A * SBC A,D FD CBddDE SET 3,(IY+ dd)

9B • SBC A,E CB DF SET 3,A

9C • SBC A,H CB D8 SET 3,B

9D * SBC A,L CB D9 SET 3,C

DE nn * SBC A,nn CB DA SET 3,D

ED 42 SBC HL.BC CB DB S>E1

ED 52 SBC HL.DE CB DC SET 3,H

ED 62 SBC HL.HL CB DD SET 3,L

ED 72 SBC HL.SP CB E6 SET 4,(HL)

37 SCF DD CBddE6 SET A /TV 14,(1X+ dd)

CB C6 SET 0,(HL) FD CBddE6 bEr A /TV 1 AA\
4,(1Y+dd)

DD CBddC6 SET 0,(IX+dd) CB E7 SET 4,A

FD CBddC6 SET 0,(IY+dd) CB EO SET 4,B

CB C7 SET 0,A CB El SET 4,C

CB CO SET 0,B CB E2 SET 4,D

CB CI SET 0,C CB E3 SET 4,E

CB C2 SET 0,D CB E4 SET 4,H

CB C3 SET 0,E CB E5 SET 4,L

CB C4 SET O.H CB EE SET 5,(HL)

CB C5 SET 0,L DD CBddEE SET 5,(IX+dd)

CB CE SET 1,(HL) FD CBddEE SET 5,(IY+dd)

DD CBddCE SET l,(IX+dd) CB EF SET 5,A

FD CBddCE SET l,(IY+dd) CB E8 SET 5,B

CB CF SET 1,A CB E9 SET 5,C

CB C8 SET 1,B CB EA SET 5,D

CB C9 aril CB EB
CB CA SET l.D CB EC SET 5,H

CB CB SET 1.E CB ED SET 5,L

CB CC SET l.H CB F6 SET 6.(HL)

CB CD SET l.L DD CBddF6 SET 6,(IX+dd)

CB D6 SET 2,(HL) FD CBddF6 SET 6,(IY+dd)

DD CBddD6 SET 2,(IX+ dd) CB F7 SET 6,A

340 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

CB FO SET 6,B CB 2C SRA H
CB Fl SET 6,C CB 2D SRA L
CB F2 SET 6,D CB 3E SRL (HL)

CB F3 SET 6,E DD CBdd3E SRL (IX+dd)

CB F4 SET 6,H FD CBdd3E SRL (lY+dd)

CB F5 SET 6,L CB 3F SRL A
CB FE SET 7,(HL) CB 38 SRL B
DD CBddFE SET 7,(IX+dd) CB 39 SRL C
FD CBddFE SET 7,(IY+ dd) CB 3A SRL D
CB FF SET 7,A 3B SRL E
CB F8 SET 7.B CB 3C SRL H
CB F9 SET 7,C CB 3D SRL L
CB FA SET 7,D 96 * SUB (HL)

CB FB SET 7,E DD 96dd SUB (IX+dd)
CB FC SET 7,H FD 96dd SUB (lY+dd)
CB FD SET 7,L 97 * SUB A
CB 26 SLA (HL) 90 * SUB B
DD CBdd26 SLA (IX+dd) 91 * SUB C
FD CBdd26 SLA (lY+dd) 92 * SUB D
CB 27 SLA A 93 * SUB E
CB 20 SLA B 94 * SUB H
CB 21 SLA C 95 * SUB L
CB 22 SLA D D6 nn * SUB nn
CB 23 SLA E AE * XOR (HL)

CB 24 SLA H DD AEdd XOR (IX+dd)
CB 25 SLA L FD AEdd XOR (lY+dd)
CB 2E SRA (HL) AF * XOR A
DD CBdd2E SRA (IX+dd) AS * XOR B
FD CBdd2E SRA (lY+dd) AQ * XOR C
CB 2F SRA A AA * XOR D
CB 28 SRA B AB * XOR E
CB 29 SRA C AC * XOR H
CB 2A SRA D AD * XOR L
CB 2B SRA E E nn * XOR nn

llllllillllllllllliilllM APPENDIX F

The Z80
Instruction Set

Numeric

The Z80 instruction set is listed numerically with the corresponding

hexadecimal values. The following representations apply:

nn 8-bit parameter

nnnn 16-bit parameter

dd 8-bit signed displacement

Instructions common to the 8080

Hex Mnemonic Hex Mnemonic

00 * NOP 13 * INC DE
01 nnnn * LD BC.nnnn 14 * INC D
02 * LD (BC),A 15 * DEC D
03 * INC BC 16 nn * LD D,nn

04 * INC B 17 * RLA
05 * DEC B 18 dd JR dd

06 nn * LD B,nn 19 * ADD HL.DE
07 • RLCA lA * LD A,(DE)

08 EX AF.AF' IB • DEC DE
09 * ADD HL.BC IC * INC E
OA * LD A,(BC) ID • DEC E
OB * DEC BC IE nn • LD E,nn

OC * INC C IF * RRA
OD * DEC C 20 dd JR NZ.dd

OE nn * LD C,nn 21 nnnn • LD HL.nnnn

OF * RRCA 22 nnnn * LD (nnnn),HL

10 dd DJNZ dd 23 * INC HL
11 nnnn * LD DE.nnnn 24 * INC H
12 * LD (DE),A 25 * DEC H

342 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

ZD nn * LD H,nn * LD D,B

11 * DAA CI
31 * LD D,C

zts JR Z,dd <0jZ * LD D,D
» ADD HL.HL SI * LD D,E

1 A nnnn * LD HL,(nnnn) 54 * LD D,H
* DEC HL 55 * LD D,L
* INC L 50 * LD D,(HL)

llJ * DEC L en57 * LD D,A
Zr. nn * LD L,nn 58 * LD E,B

Zr * CPL 5y * LD E,C
if\jU AAua JR NC.dd C A5A * LD E,D

nnnn * LD SP.nnnn enJD * LD E,E

JZ nnnn * LD (nnnn),A 5C * LD E,H
* INC SP jU * LD E,L
* INC (HL) DC * LD E,(HL)
* DEC (HL) jr * LD E,A

nn * LD (HL),nn fj[\ou * LD H,B
J /

* SCF 01 * LD H,C
IQ AA JR C,dd oz * LD H,D

* ADD HL,SP bi * LD H,E
^ A3A nnnn * LD A,(nnnn) 64 * LD H,H
3B • DEC SP 65 * LD H,L
3C * INC A 66 * LD H,(HL)
3D * DEC A 67 * LD H,A
3b nn * LD A,nn * LD L,B
3F * CCF 69 * LD L,C
Af\4U * LD B,B a AOA • LD L,D
HI * LD B,C AT)01$ • LD L.E
*I-Z

* LD B,D Oi-^ * LD L.H
Hj * LD B,E • LD L,L
AA • LD B,H OiZ> * LD L,(HL)
4^ * LD B,L ATTOr * LD L,A
4A * LD B,(HL) nc\fU * LD (HL),B
47 * LD B,A 71 • LD (HL),C
484o * LD C,B 77/z * LD (HL),D
49 * LD C,C 73 * LD (HL),E

4A * LD CD 74 * LD (HL),H
4B * LD C,E 75 * LD (HL),L

4C * LD C,H 76 * HALT
4D * LD C,L 77 * LD (HL),A
4E * LD C,(HL) 78 * LD A,B
4F * LD C,A 79 * LD A,C

THE Z80 INSTRUCTION SET (NUMERIC) 343

Hex Mnemonic Hex Mnemonic

7 A * LD A,D * AND H
/o * LD A,E * AND L
7P • LD A,H * AND (HL)
in * LD A,L A7 • AND A
IV/sz * LD A,(HL) AK * XOR B
7T7 * LD A,A AO * XOR C
RCio\J

* ADD A,B A A * XOR D
ol * ADD A,C AR • XOR E
89oZ * ADD A,D AP * XOR H
OD • ADD A,E Ar» • XOR L
HA * ADD A,H AF * XOR (HL)

* ADD A,L AP * XOR A
oO * ADD A,(HL) Ttn * OR B
R7 * ADD A,A R1Dl * OR C
OO * ADC A,B * OR D
O-F

* ADC A,C DJ * OR E
RAo/\ * ADC A,D * OR H
oD * ADC A,E RS * OR L
oV--

* ADC A,H RA OR (HL)

oU • ADC A,L * OR A
Olllf

* ADC A,(HL) iSo * CP B
or * ADC A,A * CP C

* SUB B R A * CP D
Ol * SUB C RR * CP E

* SUB D RP * CP H
* SUB E Rr> * CP L

QA * SUB H RTh * CP (HL)
Q<yj • SUB L RT7 * CP A
OA * SUB (HL) * RET NZ
y/ * SUB A * POP BC
OQ * SBC A,B L'Z nnnn * JP NZ.nnnn
OO * SBC A,C nnnn • JP nnnn
OA * SBC A,D C4 nnnn * CALL NZ.nnnn
OPtyu * SBC A.E * PUSH BC
or*yv^ SBC A,H v^D nn ADD A,nn

9D • SBC A,L C7 * RST
9E * SBC A,(HL) C8 * RET Z
9F * SBC A,A C9 • RET
AO * AND B CA nnnn * JP Z.nnnn

Al * AND C CB 00 RLC B
A2 * AND D CB 01 RLC C
A3 * AND E CB 02 RLC D

344 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

CB 03 RLC E CB 2D SRA L
CB 04 RLC H CB 2E SRA (HL)

CB 05 RLC L CB 2F SRA A
CB 06 RLC (HL) CB 38 SRL B
CB 07 RLC A CB 39 SRL c
CB 08 RRC B CB 3A SRL D
CB 09 RRC c CB 3B SRL E
CB OA RRC D CB 3C SRL H
CB OB RRC E CB 3D SRL L
CB OC RRC H CB 3E SRL (HL)

CB OD RRC L CB 3F SRL \
CB OE RRC CB 40 RTT f) R
CB OF RRC CB 41 RTT

CB 10 RL B CB 42 BIT
CB 11 RL c CB 43 BIT F
CB 12 RL D CB 44 RTT

CB 13 RL E CB 45 BIT 0,L

CB 14 RL H CB 46 BIT (HL)

CB 15 RL L CB 47 BIT 0,A

CB 16 RL (HL) CB 48 BIT l.B

CB 17 RL A CB 49 BIT 1,C

CB 18 RR B CB 4A BIT 1 D
CB 19 RR c CB 4B BIT 1,E

CB lA RR D CB 4C BIT 1,H

CB IB RR E CB 4D BIT l.L

CB IC RR H CB 4E BIT l.(HL)

CB ID RR L CB 4F BIT l.A

CB IE RR (HL) CB 50 BIT 2 B
CB IF RR \ CB 51 BIT ') c
CB 20 SLA B CB 52 RTT 7 n
CB 21 SLA CB 53 RTT 7 FZ,E

CB 22 SLA D CB 54 RTT 7 T4

CB 23 SLA E CB 55 RTT 7 T

CB 24 SLA H CB 56 BIT 2,(HL)

CB 25 SLA L CB 57 BIT 2,A
CB 26 SLA (HL) CB 58 BIT 3,B

CB 27 SLA A CB 59 BIT 3,C

CB 28 SRA B CB 5A BIT 3,D

CB 29 SRA C CB 5B BIT 3,E

CB 2A SRA D CB 5C BIT 3,H

CB 2B SRA E CB 5D BIT 3,L

CB 2C SRA H CB 5E BIT 3,(HL)

THE Z80 INSTRUCTION SET (NUMERIC) 345

Hex Mnemonic Hex Mnemonic

CB 5F BIT 3,A CB 89 RES l.C

CB 60 BIT 4,B CB 8A RES l.D

CB 61 BIT 4,C CB 8B RES 1,E

CB 62 BIT 4,D CB 8C RES 1,H

CB 63 BIT 4,E CB 8D RES 1,L

64 BIT 4,H CB 8E RES l.(HL)

UJ BIT 4,L CB 8F RES 1,A

oo BIT 4,(HL) CB 90 RES 2,B

0/ BIT 4,A 01 RES 2,C

Oo BIT 5,B PR 07 RES 2,D

BIT 5,C PR Q'1yj RES 2,E

PR AA BIT 5,D PR 04 RES 2,H
AR BIT 5,E PR OS RES 2,L

PR AP BIT 5,H CB 96 RES 2,(HL)

PR fin BIT 5,L CB 97 RES 2,A

CB 6E BIT 5,(HL) CB 98 RES 3,B

CB 6F BIT 5,A CB 99 RES 3,C

CB 70 BIT 6,B CB 9A RES 3,D

CB 71 BIT 6,C CB 9B RES 3,E

CB 72 BIT 6,D CB 9C RES 3,H

CB 73 BIT 6,E CB 9D RES 3,L

CB 74 BIT 6,H CB 9E RES 3,(HL)

PR 75 BIT 6,L CB 9F RES 3,A

PR 76 BIT 6,(HL) CB AO RES 4,B

PR 77 BIT 6,A CB Al RES 4.C

PR 78 BIT 7,B CB A2 RES 4,D
PR 70 BIT 7,C CB A3 RES 4,E

PR 7A BIT 7,D CB A4 RES 4,H
7R BIT 7,E PR RES 4,L

7r' BIT 7,H PR Afi RES 4,(HL)

7r4 BIT 7,L PR Al RES 4,A
/^R 7P BIT 7,(HL) PR RES 5,B

PR 7F BIT 7,A CB A9 RES 5,C

CB 80 RES 0,B CB AA RES 5,D

PR 81 CB AB RES 5 E
CB 82 RES O.D CB AC RES 5,H

CB 83 RES 0,E CB AD RES 5,L

CB 84 RES 0,H CB AE RES 5.(HL)

CB 85 RES 0,L CB AF RES 5,A

CB 86 RES 0,(HL) CB BO RES 6,B

CB 87 RES O.A CB Bl RES 6,C

CB 88 RES 1,B CB B2 RES 6,D

346 MASTERING CP/M

rlcx Mnemonic riex Mnemonic

CB B3 RES 6,E CB DD SET 3,L

CB B4 RES 6,H CB DE SET 3,(HL)

CB B5 RES 6,L CB DF SET 3,A

CB B6 RES 6,(HL) CB EO SET 4,B

CB B7 RES 6,A CB El SET 4,C

CB B8 RES 7,B CB E2 SET 4 D
CB B9 RES 7 C CB E3 SET 4 E
CB BA RES 7 D CB E4 SET 4 H
CB BB RES 7 F1,12, CB E5 SET 4 I

CB BC RES 7 H CB E6 SET 4 fHLI

CB BD RES 7.L CB E7 SET 4 A
CB BE RES 7 ^HO CB E8 SET 5 B
CB BF RES 1 A CB E9 SET 5.C

CB CO SET 0,B CB EA SET 5,D

CB CI SET 0,C CB EB SET 5,E

CB C2 SET 0,D CB EC SET 5,H

CB C3 SET 0,E CB ED SET 5,L

CB C4 SET 0,H CB EE SET 5,(HL)

CB C5 SET 0,L CB EF SET 5.A

CB C6 SET 0,(HL) CB FO SET 6,B

CB C7 SET 0,A CB Fl SET 6,C

CB C8 SET 1 B CB F2 SET
CB C9 SET 1 C CB F3 SET 6,E

CB CA SET 1,D CB F4 SET 6,H
CB CB SET 1 E CB F5 SET 6,L

CB CC SET 1 H CB F6 SET 6 fHL)

CB CD SET 1 L CB F7 SET 6,A
CB CE SET CB F8 SET 7 B
CB CF SET 1 A CB F9 SET 7 C
CB DO SET 2 B CB FA SET 7 D
CB Dl SET 1 C CB FB 7 F

CB D2 SET 2 D CB FC SET 1 H
CB D3 SET 2 E CB FD SET 7 I

CB D4 SET 2,H CB FE SET 7,(HL)

CB D5 SET 2,L CB FF SET 7,A

CB D6 SET 2,(HL) CC nnnn CALL Z.nnnn
CB D7 SET 2,A CD nnnn * CALL nnnn
CB D8 SET 3,B CE nn * ADC A,nn
CB D9 SET 3,C CF • RST 8

CB DA SET 3,D DO * RET NC
CB DB SET 3,E Dl • POP DE
CB DC SET 3,H D2 nnnn * JP NC.nnnn

THE Z80 INSTRUCTION SET (NUMERIC) 347

Hex Mnemonic Hex Mnemonic

D3 nn (r\n\ A DD B6dd ^l-/V I uu/

D4 nnnn A T T i>ii^,nnnn DD BEdd CP ^1^ UuJ

D5 * 13T TQUrUorl DD CBdd06 RT P /TY4-flH"»^1^ UU/

D6 nn nn DD CBddOE ^1^ KXKX)

D7 lUrl DD CBddl6 RT

D8 Kt. 1 DD CBddlE RR ^1^ UU^

D9 DD CBdd26 \^lyv VAX)

DA nnnn * TDJf C,nnnn DD CBdd2E <;r a /TY-t-Hf1'>^1^ WX)

DB nn * TXJ A tnr\\A,(.nn) DD CBdd3E ^1^ r Uu^

DC nnnn * A T T C,nnnn DD CBdd46 v,^lyV uu^

DD 09 nLfU TV R/^ DD CBdd4E RTT

DD 19 AUU DD CBdd56 RTT131

1

DD 21nnnn T r\ DC,nnnn DD CBddSE RTT131

1

DD 22nnnn TLU (nnnn), 1

A

DD CBdd66 RTTol 1 A ^TY -I- HH^

DD 23 INC TVlA DD CBdd6E RTT < /TY -l-HHA

DD 29 ADD TV TViX.lA DD CBdd76 RTT131

1

A /TY-i-rlrl^

DD 2Annnn TLD IX,(nnnn) DD CBdd7E RTT13l 1 /^(lAT^aci)

DD 2B TVlA DD CBdd86 IvHo n /'TV4-HH'»u,(iA auj

DD 34dd IXNC /TV(lA+uu; DD CBddSE Ivljo i,(1At^uu^

DD 35dd /TV _L AA\ DD CBdd96 RP^ 9 CTY 4- HHI

DD 36ddnn (iAT^uu),nn DD CBdd9E RPS

DD 39 A r\r\ TV Cl> DD CBddA6 RPS

DD 46dd T DD CBddAE RES 5 CTX+ dd"!

DD 4Edd T r>LjLf DD CBddB6 RES 6 fix+ dd>

DD 56dd I r> DD CBddBE RES 7 fIX+dd)

DD 5Edd I r> Elf ^l-ZV^ UU^ DD CBddC6 SET fix+ ddt

DD 66dd T-f /"TV-i-HH^ DD CBddCE cpT 1 CTX-l-dd'i

DD 6Edd T /TY-UHH^ DD CBddD6 cpT

DD 70dd T F\ /TY-LHH^ Ti DD CBddDE cpT J,_l^ \ \Ji\X)

DD 71dd L,\J /"TY-LHH^(lA-rau),\^ DD CBddE6 CPT tjyiyv~ \x\x)

DD 72dd T r\LU /TV -1_ r1/4A F\ DD CBddEE QPTolj 1

DD 73dd TLD /TV 1 Tj(lA+ da),Ji DD CBddF6 CPT1
DD 74dd T 1~\LD /TV 1 T T

(lX+ dd),rl DD CBddFE SJC 1

DD 75dd LD (IX+dd),L DD El POP IX

DD 77dd LD (IX+dd),A DD E3 EX (SP),IX

DD 7Edd LD A,(IX+dd) DD E5 PUSH IX

DD 86dd ADD A,(IX+dd) DD E9 JP (IX)

DD 8Edd ADC A,(IX+dd) DD F9 LD SP.IX

DD 96dd SUB (IX+dd) DE nn * SBC A,nn

DD 9Edd SBC A,(IX+dd) DF * RST 18H

DD A6dd AND (IX+dd) EO * RET PO
DD AEdd XOR (IX+dd) El * POP HL

348 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

E2 nnnn * JP PO.nnnn ED 69 OUT (Q,L
E3 * EX (SP),HL ED 6A ADC HL.HL
E4 nnnn * CALL PO.nnnn ED 6F RLD
E5 PUSH HL ED 72 SBC HL.SP
E6 nn * AND nn ED 73nnnn LD (nnnn),SP

E7 * RST 20H ED 78 IN A,(C)

E8 * RET PE ED 79 OUT (C),A

E9 * JP (HL) ED 7A ADC HL.SP
EA nnnn * JP PE.nnnn ED 7Bnnnn LD SP,(nnnn)

EB * EX DE.HL ED AO LDI
EC nnnn * CALL PE.nnnn ED Al CPI
ED 40 IN B,(Q ED A2 INI

ED 41 OUT (Q,B ED A3 OUTI
ED 42 SBC HL.BC ED A8 LDD
ED 43nnnn LD (nnnn),BC ED A9 CPD
ED 44 NEC ED AA IND
ED 45 RETN ED AB OUTD
ED 46 IM ED BO LDIR
ED 47 LD I,A ED Bl CPIR
ED 48 IN C,(C) ED B2 INIR

ED 49 OUT (Q.C ED B3 OTIR
ED 4A ADC HL.BC ED B8 LDDR
ED 4Bnnnn LD BC,(nnnn) ED B9 CPDR
ED 4D RETI ED BA INDR
ED 4F LD R,A ED BB OTDR
ED 50 IN D,(Q EE nn * XOR N
ED 51 OUT (C).D EF * RST 28H
ED 52 SBC HL.DE FO * RET P
ED 53nnnn LD (nnnn),DE Fl * POP AF
ED 56 IM 1 F2 nnnn • JP P.nnnn

ED 57 LD A,I F3 * DI

ED 58 IN E,(C) F4 nnnn * CALL P.nnnn

ED 59 OUT (Q.E F5 * PUSH AF
ED 5A ADC HL.DE F6 nn * OR nn

ED 5Bnnnn LD DE,(nnnn) F7 • RST 30H
ED IM 2 * RET M
ED 5F LD A,R F9 * LD SP.HL
ED 60 IN H,(Q FA nnnn * JP M.nnnn
ED 61 OUT (O.H FB * EI

ED 62 SBC HL.HL FC nnnn * CALL M.nnnn
ED 67 RRD FD 09 ADD lY.BC

ED 68 IN L,(C) FD 19 ADD lY.DE

THE Z80 INSTRUCTION SET (NUMERIC) 349

Hex Mnemonic Mex Mnemonic

FD 21nnnn T F)l-iU TV nnnti
i. X J 11111111 FD CBddlE RR (lY+dd)

FD 22nnnn /rinnn^ TV_llllllil^ , 1

1

FD CBdd26 SLA (lY+dd)

FD 23 IMP TV FD CBdd2E SRA (lY+ dd)

FD 29 Ann TV TV11)11 FD CBdd3E SRL (lY+ dd)

FD 2Annnn T n TV r'nnnn'i FD CBdd46 BIT flY+ddl

FD 2B TV1

1

FD CBdd4E BIT 1 riY+ dd>X^_XX 1 vtuy

FD 34dd nV-i-HH^\L I ^UU^ FD CBdd56 BIT 2 CIY+ dd">

FD 35dd \L I -rutl^ FD CBddSE BIT 3 CIY+ ddt

FD 36ddnn T r» nV-l-HH'i tin FD CBdd66 BIT 4 flY+dd^

FD 39 Ar»n TV FD CBdd6E BIT 5 flY+ dd)

FD 46dd T D FD CBdd76 BIT 6,(IY+ dd)

FD 4Edd LD FD CBdd7E BIT 7,(IY+ dd)

FD 56dd LD D flY+ dd"> FD CBdd86 RES 0,(IY+ dd)

FD 5Edd LD E (lY+ dd) FD CBddSE RES l,(IY+ dd)

FD 66dd LD FD CBdd96 RES 2,(IY+ dd)

FD 6Edd LD T rTY+ dd"> FD CBdd9E RES 3,(IY+ dd)

FD 70dd T n FD CBddA6 RES 4,(IY+ dd)

FD 71dd T n aV-t-dd^ CVI 1 f vlU/)V^ FD CBddAE RES 5 flY+ dd)

FD 72dd T n FD CBddB6 RES 6 flY+ dd^

FD 73dd T r> FD CBddBE RES 7 fIY+dd">

FD 74dd T F) nV-l-dd^ 14 FD CBddC6 SET HY+ddl

FD 75dd T n ^v-i-l^/^^ t FD CBddCE X ~ uu^

FD 77dd T n \l I -ruu^,/\ FD CBddD6 Jd 1 9 nV-l-dd'^

FD 7Edd T n FD CBddDE CFT Jt\i 1 ~ UU/

FD 86dd Ann FD CBddE6 JCj I 4 rTV-l-dd'i

FD 8Edd Anp A i'TV-i-HH'i FD CBddEE CFTJL2, I 1 ~u.u.^

FD 96dd SUB (lY+dd) FD CBddF6 SET 6,(IY+ dd)

FD 9Edd FD CBddFE CFT

FD A6dd AND (lY+dd) FD El POP lY

FD AEdd XOR (lY+dd) FD E3 EX (SP),IY

FD B6dd OR (lY+dd) FD E5 PUSH lY

FD BEdd CP (lY+dd) FD E9 JP (lY)

FD CBdd06 RLC (lY+dd) FD F9 LD SP.IY

FD CBddOE RRC (lY+dd) FE nn * CP nn

FD CBddl6 RL (lY+dd) FF * RST 38H

iiiiiii mill li APPENDIX G
Details of the 8080
Instruction Set

A summary of the 8080 instruction set is given in this appendix. The
mstructions are listed alphabetically by the official Intel mnemonic. The
Zilog (Z80) version of the mnemonic is shown in angle brackets.

The letters A, B, C, D, E, H, L, and SP are used for the standard 8080

register names. In addition, the symbols BC, DE, andHL are used for the

register pairs. The following symbols are used for general parameters:

r, r2 8-bit CPU register

nn General 8-bit constant

nnnn 16-bit constant

The flag bits are represented by the following symbols:

C Carry

H Half carry

N Add/subtract

P Parity

S Sign

Z Zero

For the Zilog mnemonic, pointers to memory or input/output addresses

are enclosed in parentheses.

DETAILS OF THE 8080 INSTRUCTION SET 351

ACI nn <ADC A,nn>

Add the constant nn to the accumulator and the carry flag. The resuh is

placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADC M <ADC A,(HL)>

Add the memory byte referenced by the HL register to the accumulator

and the carry flag. The result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADC r <ADC A,r>

Add the value in register r to the accumulator and the carry flag. The

result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADD AA <ADD A,(HL)>

Add the memory byte referenced by the HL register to the accumulator.

The result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADD r <ADD A,r>

Add the value in register r to the accumulator. The result is placed in the

accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADI nn <ADD A,nn>

Add the constant nn to the accumulator. The result is placed in A.

352 MASTERING CP/M

Flags affected: C, H, O, S, Z
Flag reset: N

ANA M <AND (HL)>

Perform a logical AND with the accumulator and the memory location

referenced by the HL register. The result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C, N
Flag set: H

ANA r <AND r>

Perform a logicalAND with the accumulator and register r. The result is

placed in the accumulator. The instructionANA A is an effective way to

test the parity, sign, and zero flags, because this instruction does not alter

the value in A.

Flags affected: P, S, Z
Flags reset: C, N
Flag set: H

ANI nn <AND nn>

Perform a logical AND with the accumulator and the constant given as

the parameter. The result is placed in the accumulator. This instruction

can be used to selectively reset bits of the accumulator. For example, the

instruction ANI 7FH will reset bit 7.

Flags affected: P, S, Z
Flags reset: C, N
Flag set: H

CALL nnnn <CALL nnnn>

Unconditional subroutine call to address nnnn. The address of the

following instruction is pushed onto the stack.

Flags affected: none

DETAILS OF THE 8080 INSTRUCTION SET 353

cc nnnn <CALL C,nnnn>

CM nnnn <CALL M,nnnn>

CNC nnnn <CALL NC,nnnn>

CNZ nnnn <CALL NZ,nnnn>

CP nnnn <CALL P,nnnn>

CPE nnnn <CALL PE,nnnn>

CPO nnnn <CALL PO,nnnn>

CZ nnnn <CALL Z,nnnn>

Conditional subroutine call to address nnnn. The address ofthe following

instruction is pushed onto the stack. The conditions are as follows:

c Means carry flag set (Carry)

M Means sign flag set (Minus)

NC Means carry flag reset (Not carry)

NZ Means zero flag reset (Not zero)

P Means sign flag reset (Plus)

PE Means parity flag set (Parity even)

PO Means parity flag reset (Parity odd)

Z Means zero flag set (Zero)

CAAA <CPL>

Complement the accumulator. This instruction performs a one's comple-

ment on the accumulator; that is, each bit that has a value of is changed

to 1, and each bit that has a value of 1 is changed to 0.

Flags set: H, N

CMC <CCF>

Complement the carry flag. This instruction can be given after an STC

command to reset the carry flag.

Flag affected: C
Flag reset: N

CMP M <CP (HL)>

Compare the byte in memory referenced by the HL register to the

accumulator, which is an implied operand. The zero flag is set if the ac-

cumulator is equal to the operand. The carry flag is set if the accumulator

354 MASTERING CP/M

is smaller than the operand.

Flags affected: C, H, O, S, Z
Flag set: N

CMP r <CP r>

Compare register r to the accumulator, which is an implied operand. The
zero flag is set if the accumulator is equal to the operand. The carry flag is

set if the accumulator is smaller than the operand.

Flags affected: C, H, O, S, Z
Flag set: N

CPI nn <CP nn>

Compare the constant given in the operand to the accumulator, which is

an implied operand. The zero flag is set if the accumulator is equal to the

operand. The carry flag is set if the accumulator is smaller than the

operand.

Flags affected: C, H, O, S, Z
Flag set: N

DAA <DAA>

Decimal adjust the accumulator. This instruction is used after each addi-

tion with BCD numbers. The Z80 performs this operation properly for

both addition and subtraction. The 8080, however, gives an incorrect

result for subtraction.

Flags affected: C, H, O, S, Z

DAD B <ADD HL,BC>
DAD D <ADD HL,DE>

DAD H <ADD HL,HL>

DAD SP <ADD HL,SP>

Add the specified double register to theHL register. The result is placed in

HL. This is a double-precision addition. The carry flag is set ifthe result is

greater than 16 bits (if overflow occurs). The instruction DAD H per-

forms a 16-bit arithmetic shift left, effectively doubling theHL value. The

DETAILS OF THE 8080 INSTRUCTION SET 355

DAD SP instruction can be used to save an incoming stack pointer:

LXI H,0

DAD SP

SHLD OLDSTK

Flags affected: C, H, O, S, Z
Flag reset: N

DCR M <DEC (HL)>

Decrement the memory byte referenced by the HL register.

Flags affected: H, O, S, Z
Flag set: N
Flag not affected: C

DCR r <DEC r>

Decrement register r. Do not try to decrement a register past zero while

executing a JNC loop. The carry flag is not affected by this operation.

Flags affected: H, O, S, Z
Flag set: N
Flag not affected: C

DCX B <DEC BO
DCX D <DEC DE>

DCX H <DEC HL>

DCX SP <DEC SP>

Decrement the indicated double register. Do not try to decrement a double

register to zero in a JNZ loop. It will not work because this operation does

not affect any of the PSW flags. Instead, move one byte of the double

register into the accumulator and perform a logicalOR with the other byte:

REPEAT:

MOV A,C

ORA B

JNZ REPEAT

Flags affected: none

356 MASTERING CP/M

Dl <DI>

Disable interrupt request.

El <EI>

Enable interrupt request.

HLT <HAL7>

Suspend operation of the CPU until a reset or interrupt occurs.

IN nn <IN A,(nn)>

Input a byte to the accumulator from the port address nn.

Flags affected: none

INR AA <INC (HL)>

Increment the memory byte referenced by the HL register.

Flags affected: H, O, S, Z
Flag set: N
Flag not affected: C

INR r <INC r>

Increment the 8-bit register. Do not try to increment a register past zero
while executing a JNC loop. It will not work because the carry flag is un-
affected by this instruction.

Flags affected: H, O, S, Z
Flag set: N
Flag not affected: C

INX B <INC BO
INX D <INC DE>
INX H <INC HL>
INX SP <INC SP>

Increment the specified double register.

DETAILS OF THE 8080 INSTRUCTION SET 357

Flags affected: none

JMP nnnn <JP nnnn>

Unconditional jump to address nnnn.

Flags affected: none

JC nnnn <JP C,nnnn>

JM nnnn <JP M,nnnn>

JNC nnnn <JP NC,nnnn>

JNZ nnnn <JP NZ,nnnn>

JP nnnn <JP P,nnnn>

JPE nnnn <JP PE,nnnn>

JPO nnnn <JP PO,nnnn>

JZ nnnn <JP Z,nnnn>

Conditional jump to address nnnn where:

c Means carry flag set (Carry)

M Means sign flag set (Minus)

NC Means carry flag reset (Not carry)

NZ Means zero flag reset (Not zero)

P Means sign flag reset (Plus)

PE Means parity flag set (Parity even)

PO Means parity flag reset (Parity odd)

Z Means zero flag set (Zero)

LDA nnnn <LD A,(nnnn)>

Load the accumulator from the memory byte referenced by the 16-bit

pointer nnnn.

LDAX B <LD A,(BC)>

LDAX D <LD A(DE)>

Move the memory byte referenced by the specified double register BC or

DE into the accumulator. (See STAX B.)

LHLD nnnn <LD HL,(nnnn)>

Load register L from the address referenced by the 16-bit value nnnn.

358 MASTERING CP/M

Load register H from the address nnnn + 1

.

LXI B,nnnn <LD BC,nnnn>
LXI D,nnnn <LD DE,nnnn>
LXI H,nnnn <LD HL,nnnn>
LXI SP,nnnn <LD SP,nnnn>

Load the specified double register with the 16-bit constant nnnn.

MOV M,r <LD {HL),r>

Move the byte in register r to the memory byte referenced by the HL
register.

MOV r,M <LD r,(HL)>

Move the byte referenced by the HL register into register r.

MOV r,r2 <LD r,r2>

Move the byte from register r2 to r.

MVI M,nn <LD (HL),nn>

Move the data byte nn into the memory location referenced by the HL
register.

MVI r,nn <LD r,nn>

Load register r with the 8-bit data byte nn.

NOP <NOP>

No operation is performed by the CPU.

Flags affected: none

ORA M <OR (HL)>

Perform a logical OR with the accumulator and the memory byte

referenced by the HL register. The result is placed in the accumulator.

DETAILS OF THE 8080 INSTRUCTION SET 359

Flags affected: P, S, Z
Flags reset: C, H, N

ORA r <OR r>

Perform a logical OR with the accumulator and register r. The result is

placed in the accumulator. An instruction ofORAA is an efficient way to

test the parity, sign, and zero flags, because this instruction does not alter

the value in A.

Flags affected: P, S, Z
Flags reset: C, H, N

ORI nn <OR nn>

Perform a logical OR with the accumulator and the data byte nn. The

result is placed in the accumulator. This instruction can be used to set

individual bits of the accumulator. For example, ORI 20H will set bit 5 to

a logical 1

.

Flags affected: P, S, Z
Flags reset: C, H, N

OUT nn OUT (nn),A>

Output the byte in the accumulator to the port address nn.

Flags affected: none

PCHL <JP (HL)>

Copy the HL register into the program counter, then retrieve the next

instruction from the address referenced by HL. This instruction causes a

branch to the address referenced by HL.

Flags affected: none

POP B <POP BO
POP D <POP DE>

POP H <POP HL>

Copy two bytes of memory into the appropriate double register as

follows. The memory byte referenced by the stack pointer is moved into

360 MASTERING CP/M

the low-order byte (C, E, or L), then the stack pointer is incremented. The
memory byte referenced by the new stack-pointer value is then moved
into the high-order byte (B, D, or H). The stack pointer is incremented a

second time.

Flags affected: none

POP PSW <POP AF>

Move the byte at thememory location referenced by the stack pointer into

the flag register (PSW), and increment the stack pointer. Then move the

byte at the location referenced by the new stack-pointer value into the

accumulator and increment the stack pointer a second time.

Flags affected: all

PUSH B <PUSH BO
PUSH D <PUSH DE>
PUSH H <PUSH HL>

Store the referenced double register in memory as follows. The stack

pointer is decremented, then the byte in the specified high-order register

B, D, or H is copied to the memory location referenced by the stack

pointer. The stack pointer is decremented a second time. The byte in the

low-order register C, E, or L is moved to the byte referenced by the current

value of the stack pointer.

Flags affected: none

PUSH PSW <PUSH AF>

Store the accumulator and flag register in memory as follows. The stack

pointer is decremented, then the value in the accumulator is moved to the

memory byte referenced by the stack pointer. The stack pointer is

decremented a second time. The flag register is copied to the byte at the

memory address referenced by the current stack-pointer value.

Flags affected: none

DETAILS OF THE 8080 INSTRUCTION SET 361

< c
1 1 1 1 1 1 1

1 1 i 1 1 1 1

Carry Register

RAL <RLA>

This instruction rotates bits to the left through carry by one position. The

byte in the accumulator is rotated left through carry. The carry flag moves

to bit 0. Bit 7 of the accumulator moves to the carry flag.

Flags affected: C
Flags reset: H, N

1
4 — 4

1 1 1 1 1 1
1

7-*-6-!^5-^4-»-3-^2-^l-^0
1 1 1 1 1 1 1

C

Register Carry

RAR < RRA>

This instruction rotates bits to the right through carry by one position.

The accumulator is rotated right through carry. The carry flag moves to

bit 7. Bit moves to the carry flag.

Flag affected: C
Flags reset: H, N

RET <RET>

Return from a subroutine. The top ofthe stack is moved into the program

counter. The stack pointer is incremented twice.

362 MASTERING CP/M

RC <RET C>
RM <RET AA>

RNC <RET NO
RNZ <RET NZ>
RP <RET P>
RPE <RET PE>

RPO <RET PO>
RZ <RET Z>

Conditional return from a subroutine. If the condition is met, the top of

the stack is moved into the program counter. The stack pointer is

incremented twice.

c Means carry flag set (Carry)

M Means sign flag set (Minus)

NC Means carry flag reset (Not carry)

NZ Means zero flag reset (Not zero)

P Means sign flag reset (Plus)

PE Means parity flag set (Parity even)

PO Means parity flag reset (Parity odd)

Z Means zero flag set (Zero)

C
1 1 1 1 1 1 1

7-i-6-«-5-^4-«-3-«-2-*-l •-0
1 1 1 1 1 1 1

Carry Register

RLC <RLCA>

This instruction rotates bits to the left by one position. The accumulator is

rotated left circularly. Bit 7 moves to both the zero bit and the carry flag.

Flags affected: C
Flags reset: H, N

DETAILS OF THE 8080 INSTRUCTION SET 363

1 1 1 1 1 1 1

7-*-6-*-5-*-4-»-3 -*'2 -^O
1 1 1 1 1 1 1

C

Carry

RRC <RRCA>

This instruction rotates bits to the right by one position. The accumulator
is rotated right circularly. Bit moves to both the carry flag and bit 7.

Flag affected: C
Flags reset: H, N

RST <RST 00H>
RST 1 <RST 08H>
RST 2 <RST 10H>
RST 3 <RST 18H>
RST 4 <RST 20H>
RST 5 <RST 28H>
RST 6 <RST 30H>
RST 7 <RST 38H>

These restart instructions generate one-byte subroutine calls to the address

given in the Z80 operand. For example, RST 7 calls address 38 hex.

SBB M <SBC A,{HL)>

Subtract the carry flag and the memory byte referenced by theHL register

from the accumulator. The result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

SBB r <SBC A,r>

Subtract the carry flag and the specified CPU register from the accumula-

tor. The result is placed in the accumulator.

364 MASTERING CP/M

Flags affected: C, H, O, S, Z
Flag set: N

SBI nn <SBC A,nn>

Subtract the data byte nn and the carry flag from the accumulator. The

result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

SHLD nnnn <LD (nnnn),HL>

Store register L at thememory address imnn. Store registerH at the address

nnnn + 1.

SPHL <LD SP,HL>

Load the stack pointer from the HL register. This instruction can be used

to retrieve a previously saved stack pointer.

LHLD nnnn

SPHL

STA nnnn <LD (nnnn),A>

Store the accumulator in the memory location referenced by nnnn.

STAX B <LD (BC),A>

STAX D <LD (DE),A>

Move the byte in the accumulator to the memory byte referenced by the

specified register pair. (See LDAX B.)

STC <SCF>

Set the carry flag. There is no equivalent reset command. However, the

carry flag can be reset with the XRAA instruction or with the pair of in-

structions STC and CMC.

Flag set: C
Flags reset: H, N

DETAILS OF THE 8080 INSTRUCTION SET 365

SUB M <SUB (HL)>

Subtract the memory byte referenced by the HL register from the accu-

mulator. The result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

SUB r <SUB r>

Subtract the specified CPU register from the accumulator. The result is

placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

SUI nn <SUB nn>

Subtract the data byte nn from the accumulator. The result is placed in the

accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

XCHG <EX DE,HL>

Exchange the double registers DE and HL.

Flags affected: none

XRA AA <XOR {HL)>

Perform a logical exclusive OR with the accumulator and the byte

referenced by the HL register. The result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C, H, N

XRA r <XOR r>

Perform a logical exclusive OR with the accumulator and register r. The

result is placed in the accumulator. TheXRAA instruction is an efficient

way to zero the accumulator, although all flags are then reset. XRA A is

also frequently used to reset the carry flag, because there is no single

366 MASTERING CP/M

instruction for this operation.

Flags affected: P, S, Z
Flags reset: C, H, N

XRI nn <XOR nn>

Perform a logical exclusive OR with the accumulator and the data byte

nn. The result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C, H, N

XTHL <EX (SP),HL>

Exchange the byte in memory referenced by the stack pointer with register

L. Exchange the byte referenced by the stack pointer + 1 with register H.

Flags affected: none

Illlllllllllllllllllllillllllllllllllll mil APPENDIX H

Details oftheZSO
Instruction Set

A summary of the Z80 instruction set is given in this appendix.* The in-

structions are listed alphabetically by the official Zilog mnemonic. If

there is a corresponding 8080 instruction, the Intel mnemonic is shown in

angle brackets; refer to Appendix G for the details of this instruction. If

there is no 8080 equivalent, "no 8080" is shown in angle brackets. The
Z80 mnemonics are listed in numeric order in Appendix F. The Z80
equivalent of an 8080 mnemonic can be found from the cross reference

given in Appendix G.

The letters A, B, C, D, E, H, I, L, IX, lY, R, and SP are used for the

standard Z80 register names. In addition, the symbols BC, DE, and HL
are used for the register pairs. The following symbols are used for general

parameters:

r, r2 8-bit CPU register

dd 8-bit signed displacement

nn General 8-bit constant

nnnn 16-bit constant

The flag bits are represented by the following symbols:

C Carry

H Half carry

N Add/subtract

P/O Parity/overflow

S Sign

Z Zero

Pointers to memory and input/output addresses are enclosed in paren-

theses.

More details can be be obtained from the Zilog programmer's manual, Z80
Assembly Language Programming Manual, Zilog, Inc., 1977.

368 MASTERING CP/M

ADC A(HL) <ADC M>

ADC A,(IX+ dd) <no8080>
ADC A,(IY+ dd) <no8080>

Add the memory byte referenced by the sum of the specified index register

and the displacement to the accumulator and the carry flag. The result is

placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADC A,r <ADC r>

ADC Ann <ACI nn>

ADC HL,BC <no8080>
ADC HL,DE <no8080>
ADC HL,HL <no8080>
ADC HL,SP <no8080>

Add the indicated double register to the HL register and the carry flag.

The result is placed in HL.

Flags affected: C, H, O, S, Z
Flag reset: N

ADD A,(HL) <ADD M>

ADD A(IX+dd) <no8080>
ADD A,(IY+dd) <no8080>

Add the memory byte pointed to by the sum of the specified index register

and the displacement to the accumulator. The result is placed in the ac-

cumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADD Ar <ADD r>

DETAILS OF THE Z80 INSTRUCTION SET 369

ADD A,nn <ADI nn>

ADD HL,BC < DAD B>
ADD HL,DE < DAD D>
ADD HL,HL < DAD H>
ADD HL,SP <DAD SP>

ADD IX, BC <no8080>
ADD IX, DE <no8080>
ADD IX, IX <no8080>
ADD IX,SP <no8080>
ADD IY,BC < no 8080>
ADD IY,DE <no8080>
ADD IY,IY <no8080>
ADD IY,SP <no8080>

Add the indicated double register to the specified index register. The
result is placed in the index register. The HL register pair does not par-

ticipate in this group of instructions. Notice that there is no equivalent

series ofADC instructions.

Flags affected: C, O, S, Z
Flag reset: N

AND (HL) <ANA AA>

AND (IX+dd) <no8080>
AND (lY+dd) <no8080>

Perform a logical AND with the accumulator and the memory byte

referenced by the sum of the index register and the displacement. The
result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C, N
Flag set: H

AND r <ANA r>

AND nn <ANI nn>

370 MASTERING CP/M

BIT

BIT

BIT

b,(HL)

b,(IX+dd)

b,(IY+dcl)

<no8080>
<no8080>
<no8080>

Test bit b of the memory byte referenced by the second operand. Bit b can

range from through 7. The zero flag is set ifthe referenced bit is a logical

1, otherwise it is reset. Thus the zero flag becomes the complement of the

selected bit.

Flag affected: Z
Flag set: H
Flag reset: N

BIT b,r <no8080>

Test bit b of register r , where b can range from through 7 . The zero flag is

set if the referenced bit is a logical 1 . It is reset otherwise.

Flag affected: Z
Flag set: H
Flag reset: N

CALL nnnn <CALL nnnn>

CALL C,nnnn <CC nnnn>

CALL M,nnnn <CM nnnn>

CALL NC,nnnn <CNC nnnn>

CALL NZ,nnnn <CNZ nnnn>

CALL P,nfinn <CP nnnn>

CALL PE,nnnn <CPE nnnn>

CALL PO,nnnn <CPO nnnn>

CALL Z,nnnn <CZ nnnn>

CCF <CMC>

CP (HL) <CMP AA>

CP (IX+ dd) <no8080>
CP (lY+dd) <no8080>

Compare the memory location referenced by the sum of the index register

DETAILS OF THE Z80 INSTRUCTION SET 371

and the displacement to the accumulator, which is an implied operand.

The zero flag is set if the accumulator is equal to the operand. The carry

flag is set if the accumulator is smaller than the operand.

Flags affected: C, H, O, S, Z
Flag set: N

CP r <CMP r>

CP nn <CPI nn>

CPD <no 8080>

CPDR <no 8080>

CPI <no 8080>

CPIR <no 8080>

Compare the memory byte pointed to by HL to the accumulator. Decre-

mentHL (ifD) or incrementHL (if I) . Decrement the byte count in theBC
register. Repeat the operation forCPDR and CPIR until a match is found

or until theBC register pair has been decremented to zero. The zero flag is

set if a match is found. The parity flag is set if BC is decremented to 0.

Flags affected: H, S

Flag set: N, Z ifA = (HL), P if BC =

CPL <CAAA>

DAA <DAA>

DEC (HL) <DCR M>

DEC (IX+ dd) <no8080>
DEC (lY+dd) <no8080>

Decrement the memory byte pointed to by the sum of the index register

and the displacement.

Flags affected: H, O, S, Z
Flag set: N
Flag not affected: C

372 MASTERING CP/M

DEC r <DCR r>

DEC BC <DCX B>
DEC DE <DCX D>
DEC HL <DCX H>
DEC SP <DCX SP>

DEC IX <no8080>
DEC lY <no8080>

Decrement the index register.

Flags affected: none

Dl <DI>

DJNZ dd <no8080>

Decrement register B andjump relative to displacement dd ifB register is

notO.

Flags affected: none

El <EI>

EX {SP),HL <XTHL>

EX (SP),IX <no8080>
EX (SP),IY <no8080>

Exchange the 16 bits referenced by the stack pointer with the specified index

register.

Flags affected: none

EX AF,AF' <no8080>

Exchange the accumulator and flag register with the alternate set.

Flags affected: all

DETAILS OF THE Z80 INSTRUCTION SET 373

EX DE,HL <XCHG>

EXX <no8080>

Exchange BC, DE, and HL with the alternate set.

Flags affected: none

HALT <HLT>

IM <no8080>
IM 1 <no8080>
IM 2 <no8080>

Sets interrupt mode 0, 1 , or 2. Interrupt mode is automatically selected

when a Z80 reset occurs. The result is the same as the 8080 interrupt

response. Interrupt mode 1 performs an RST 38H instruction. Interrupt

mode 2 provides for many interrupt locations.

IN r,(C) <no8080>

Input a byte from the port address in register C to register r.

Flags affected: P, S, Z
Flags reset: H, N

IN A,(nn) <IN nn>

INC (HL) <INR M>

INC (IX+dd) <no8080>
INC (lY+dd) <no8080>

Increment the memory byte pointed to by the sum of the index register

and the displacement.

Flags affected: H, O, S, Z
Flag set: N
Flag not affected: C

374 MASTERING CP/M

INC r <INR r>

INC BC <INX B>
INC DE <INX D>
INC HL <INX H>
INC SP <INX SP>

INC IX <no8080>
INC lY <no8080>

Increment the specified index register.

Flags affected: none

IND <no8080>
INDR <no8080>
INI <no8080>
INIR <no8080>

Input a byte from the port address in register C to the memory byte

pointed to by HL. Decrement register B. The HL register is incremented

(if I) or decremented (if D). For INDR and INIR the process is repeated

until the 8-bit register B becomes 0.

Flag affected: Z (if B = 0)

Flag set: N

JP (HL) <PCHL>

JP (IX) <no8080>
JP (lY) <no8080>

Copy the contents of the specified index register into the program

counter; then retrieve the next instruction from the address referenced by

IX or lY.

Flags affected: none

JP nnnn <JMP nnnn>

DETAILS OF THE Z80 INSTRUCTION SET 375

JP C,nnnn <JC nnnn>

JP M,nnnn <JAA nnnn>

JP NC,nnnn <JNC nnnn>

JP NZ,nnnn <JNZ nnnn>

JP P,nnnn <JP nnnn>

JP PE,nnnn <JPE nnnn>

JP PO,nnnn <JPO nnnn>

JP Z,nnnn <JZ nnnn>

JR nn <no8080>

Unconditional relative jump with a signed displacement nn. The jump is

Umited to 129 bytes forward and 126 bytes backward in memory.

Flags affected: none

JR C,nn

JR NC,nn

JR NZ,nn

JR Z,nn

<no8080>
<no8080>
<no8080>
<no8080>

Conditional relative jump to address nn where:

C Means carry flag set (Carry)

NC Means carry flag reset (Not carry)

NZ Means zero flag reset (Not zero)

Z Means zero flag set (Zero)

LD (BC),A

LD (DE),A

LD (HL),r

LD (HL),nn

LD (IX+dd),r

LD (IX+dd),nn

LD (IY+dd),r

LD (IY+dd),nn

<STAX B>
<STAX D>

<MOV M,r>

<MVI M,nn>

<no8080>
<no8080>
<no8080>
<no8080>

376 MASTERING CP/M

Move the bjrte in register r or the immediate byte rm into the memory byte

referenced by the sum of the index register plus the displacement. These

instructions can be used to load relocatable binary code.

LD (nnnn),A <STA nnnn>

LD (nnnn),BC <no8080>
LD (nnnn),DE <no8080>

Store the low-order byte (C or E) of the specified double register at the

memory location nnnn. Store the high-order byte (B or D) at nnnn -I- 1

.

LD (nnnn),HL <SHLD nnnn>

LD (nnnn), IX <no8080>
LD (nnnn),IY <no8080>
LD (nnnn),SP <no8080>

Store the low-order byte of the specified register IX, lY, or SP at the loca-

tion nnnn. Store the high-order byte at nnnn + 1 . The instruction LD
(nnnn),SP can be used to temporarily save an incoming stack pointer. It

can later be restored by an LD SP,(nnnn) operation.

LD A,(BC) <LDAX B>
LD A,(DE) <LDAX D>

LD A, I <no8080>

Load the accumulator from the interrupt-vector register. The parity flag

reflects the state of the interrupt-enable flip-flop.

Flags affected: P, S, Z
Flags reset: H, N

LD A,R <no8080>

Load the accumulator from the memory-refresh register. The parity flag

reflects the state of the interrupt-enable flip-flop. This is an easy way to

obtain a fairly decent random number.

Flags affected: P, S, Z
Flags reset: H, N

DETAILS OF THE Z80 INSTRUCTION SET 377

LD I,A <no8080>

Copy the accumulator into the interrupt-vector register.

Flags affected: none

LD R,A <no8080>

Copy the accumulator into the memory-refresh register.

Flags affected: none

LD r,(HL) <AAOV r,AA>

LD r,(iX+dd) <no8080>
LD r,(IY+dd) <no8080>

Move the byte at the memory location referenced by the sum of the index

register and the displacement into register r.

LD r,r2 <AAOV r,r2>

LD r,nn <MVI r,nn>

LD A,(nnnn) <LDA nnnn>

LD BC,(nnnn) <no8080>
LD DE,(nnnn) <no8080>

Load the low-order byte (C or E) from the location referenced by the

16-bit pointer nnnn. Load the high-order byte (B or D) from nnnn -I- 1.

LD HL,(nnnn) <LHLD nnnn>

LD BC,nnnn <LXI B,nnnn>

LD DE,nnnn <LXI D,nnnn>

LD HL,nnnn <LXI H,nnnn>

LD SP,nnnn <LXI SP,nnnn>

LD IX,nnnn <no8080>
LD IY,nnnn <no8080>

378 MASTERING CP/M

Load the specified double register with the 16-bit constant nnnn. Be

careful not to confuse LD HL,(nnnn) with LD HL.nnnn.

LD IX, (nnnn) <no8080>
LD IY,(nnnn) <no8080>
LD SP,(nnnn) <no8080>

Load the low byte of IX, lY, or SP from thememory location nimn. Load

the high byte from nnnn -I- 1 . The LD SP,(nnnn) instruction can be used

to retrieve a previously saved stack pointer.

LD SP,HL <SPHL>
LD SP,IX <no8080>
LD SP,IY <no8080>

Load the stack pointer from the specified 16-bit register. The SPHL in-

struction can be used to retrieve a previously saved stack pointer when the

8080 CPU is used.

LHLD nnnn

SPHL

LDD <no8080>
LDDR <no8080>
LDI <no8080>
LDIR <no8080>

Move the byte referenced by the HL pair into the location pointed to by

the DE register pair. Decrement the 16-bit byte counter in BC. Increment

(if I) or decrement (if D) both HL and DE. Repeat the operation for

LDDR and LDIR until the BC register has been decremented to zero.

NEG <no8080>

This instruction performs a two's complement on the accumulator. It ef-

fectively subtracts the accumulator from zero. To perform this task on an
8080 use a CMA command followed by an INR A commemd.

Flags affected: all

NOP <NOP>

DETAILS OF THE Z80 INSTRUCTION SET 379

OR (HL) <ORA AA>

OR (IX+dd)

OR (lY+dd)

<no8080>
<no8080>

Perform a logicalOR with the accumulator and the byte referenced by the

specified index register plus the displacement. The result is placed in the

accumulator.

Flags affected: P, S, Z
Flags reset: C, H, N

OR r <ORA r>

OR nn <ORI nn>

OTDR <no8080>
OTIR <no8080>

Output a byte from the memory location pointed to by the HL pair. The

port address is contained in register C. Register B is decremented. TheHL
register pair is incremented (if I) or decremented (if D). The process is

repeated until register B has become zero.

Flags set: N, Z

OUT (C),r <no8080>

Output the byte in register r to the port address contained in register C.

Flags affected: none

OUT (nn),A <OUT nn>

OUTD <no8080>
OUTI <no8080>

Output a byte from the memory location pointed to by the HL pair. The

port address is contained in register C. Register B is decremented. TheHL
register pair is incremented (if I) or decremented (if D).

380 MASTERING CP/M

Flag affected: Z
Flag set: N

POP AF <POP PSW>

POP BC <POP B>
POP DE <POP D>
POP HL <POP H>

POP IX <no8080>
POP lY <no8080>

Copy the top of the stack into the specified index register. Increment the

stack pointer twice.

Flags affected: none

PUSH AF <PUSH PSW>

PUSH BC <PUSH B>
PUSH DE <PUSH D>
PUSH HL <PUSH H>

PUSH IX <no8080>
PUSH lY <no8080>

The indicated index register is copied to the top of the stack. The stack

pointer is decremented twice.

Flags affected: none

RES b,(HL) <no8080>
RES b,(IX+dd) <no8080>
RES b,(IY+dd) <no8080>

Reset bit b of the memory byte referenced by the second operand. Bit b

can range from through 7.

Flags affected: none

Flag reset: N

DETAILS OF THE Z80 INSTRUCTION SET 381

RES b,r <no8080>

Reset bit b of register r to a value of 0. Bit b can range from through 7.

Flags affected: none

Flag reset: N

RET <RET>

RET C <RC>
RET M <RAA>
RET NC <RNC>
RET NZ <RNZ>
RET P <RP>
RET PE <RPE>
RET PO <RPO>
RET Z <RZ>

RETI <no8080>

Return from maskable interrupt.

RETN < no 8080>

Return from nonmaskable interrupt.

The following RL and RLA instructions rotate bits to the left through

carry.

C
1 1 1 1 1 1 1

Carry Register

382 MASTERING CP/M

RL (HL) <no8080>

The memory byte referenced by theHL pair is rotated left through carry.

The carry flag moves into bit 0. Bit 7 moves to the carry flag.

Flags affected: C, P, S, Z
Flags reset: H, N

RL (IX+dd) <no8080>
RL (lY+dd) <no8080>

The memory byte referenced by the sum of the index register and the

displacement is rotated left through carry. The carry flag moves into bit 0.

Bit 7 moves to the carry flag.

Flags affected: C, P, S, Z
Flags reset: H, N

RL r <no8080>

The byte in register r is rotated left through carry. The carry flag moves into

bit 0. Bit 7 moves to the carry flag. Note: the instruction RLA performs

the same task that instruction RLA does, but instruction RLA is twice as

fast.

Flags affected: C, P, S, Z
Flags reset: H, N

RLA <RAL>

The following RLC and RLCA instructions rotate bits to the left.

c
1 1 1 1 1 1 1

7-^6-^5-^4-^3-^ 2'*- 1-^0
1 1 1 i 1 1 1

Carry Register

DETAILS OF THE Z80 INSTRUCTION SET 383

RLC (HL) <no8080>

The byte referenced by theHL pair is rotated left circularly. Bit 7 moves to

both the zero bit and the carry flag.

Flags affected: C, P, S, Z
Flags reset: H, N

RLC (IX+dd) <no8080>

RLC (lY+dd) <no8080>

The byte referenced by the specified index register plus the displacement is

rotated left circularly. Bit 7 moves to both the zero bit and the carry flag.

Flags affected: C, P, S, Z
Flags reset: H, N

RLC r <no8080>

The byte in register r is rotated left circularly. Bit 7 moves to both the zero

bit and the carry flag. Note: RLC A performs the same task that instruc-

tion RLCA does, but instruction RLCA is twice as fast.

Flags affected: C, P, S, Z
Flags reset: H, N

RLCA <RLC>

4 bits 4 bits 4 bits 4 bits

Accumulator Memory

RLD <no8080>

A four-bit rotation over 12 bits. The low four bits ofA move to the low

384 MASTERING CP/M

four bits of the memory location referenced by the HL pair. The original

low four bits ofmemorymove to the high four bits. The original high four

bits move to the low four bits of A. This instruction is used for BCD
operations.

Flags affected: P, S, Z
Flags reset: H, N

The following RR and RRA instructions rotate bits to the right through

carry.

1 1 1 1 1 1 1

7-^6-^5 -^4-^3-^2-^1 -^0
1 1 1 1 1 1 1

C

Register Carry

RR (HL) <no8080>

Thememory byte pointed to by theHL pair is rotated right through carry.

Carry moves to bit 7. Bit moves to the carry flag.

Flags affected: C, P, S, Z
Flags reset: H, N

RR (IX+dd) <no8080>
RR (lY+dd) <no8080>

The memory byte pointed to by the specified index register plus the offset

is rotated right through carry. The carry flag moves to bit 7 . Bit moves to

the carry flag.

Flags affected: C, P, S, Z
Flags reset: H, N

RR r < no 8080>

The byte in register r is rotated right through carry. Carry moves to bit 7.

Bit moves to the carry flag. Note: RR A performs the same task that

DETAILS OF THE Z80 INSTRUCTION SET 385

instruction RRA does, but instruction RRA is twice as fast.

Flags affected: C, P, S, Z
Flags reset: H, N

RRA <RAR>

The following RRC and RRCA instructions rotate bits to the right.

1 1 1 1 1 1 1

1 1 1 1 1 1 J—
C

Register Carry

RRC (HL) <no8080>

The memory byte pointed to by the HL pair is rotated right circularly. Bit

moves to both the carry flag and bit 7.

Flags affected: C, P, S, Z
Flags reset: H, N

RRC (IX+dd) <no8080>

RRC (lY+dd) <no8080>

The memory byte pointed to by the index register plus the offset is rotated

right circularly. Bit moves to both the carry flag and bit 7.

Flags affected: C, P, S, Z
Flags reset: H, N

RRC r <no8080>

The byte in register r is rotated right circularly. Bit moves to both the

carry flag and bit 7. Note: RRC A performs the same task that instruc-

tion RRCA does, but instruction RRCA is twice as fast.

386 MASTERING CP/M

Flags affected: C, P, S, Z
Flags reset: H, N

RRCA <RRC>

»
1

4 bits 4 bits 4 bits 4 bits

Accumulator

<

Memory

1

RRD <no8080>

A four-bit rotation over 12 bits. The low four bits ofA move to the high

four bits of the memory location referenced by theHL pair. The original

high four bits ofmemory move to the low four bits. The original low four

bits move to the low four bits of A. This instruction is used for BCD
operations.

Flags affected: P, S, Z
Flags reset: H, N

RST OOH <RST 0>
RST 08H <RST 1>
RST lOH <RST 2>
RST 18H <RST 3>
RST 20H <RST 4>
RST 28H <RST 5>
RST 30H <RST 6>
RST 38H <RST 7>

SBC A,(HL) <SBB AA>

SBC A,(IX-l-dd) <no8080>
SBC A,(IY-l-dd) <no8080>

DETAILS OF THE Z80 INSTRUCTION SET 387

Subtract the carry flag and the memory byte pointed to by the sum of the

index register and the displacement from the accumulator. The result is

placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

SBC A,r <SBB r>

SBC A,nn <SBI nn>

SBC HL,BC <no8080>
SBC HL,DE <no8080>
SBC HL,HL <no8080>
SBC HL,SP <no8080>

Subtract the specifiedCPU double register and the carry flag from theHL
register pair. The result is placed in HL. You may need to reset the carry

flag with an OR A operation before using these instructions.

Flags affected: C, H, O, S, Z
Flag set: N

SCF <STC>

SET b,(HL) <no8080>

SET b,(IX+dd) <no8080>
SET b,(IY+ dd) <no8080>

Set bit b of the memory byte referenced by the second operand. Bit b can

range from through 7.

Flags affected: none

Flag reset: N

SET b,r <no8080>

Set bit b of register r. Bit b can range from through 7.

Flags affected: none

Flag reset: N

388 MASTERING CP/M

The following SLA instructions shift bits to the left.

Carry

"T-T—I I I I I7^ b-^ b-*- A-*- 3-^ 2-*- 1-^0
_J I I I_J I L_

Register

SLA (HL) <no8080>

Perform an arithmetic shift left on the memory byte pointed to by theHL
pair. Bit 7 is moved to the carry flag. A zero is moved into bit 0. This

operation doubles the original value.

Flags affected: C, P, S, Z
Flags reset: H, N

SLA (IX+dd) <no8080>
SLA (lY+dd) <no8080>

Perform an arithmetic shift left on thememory byte pointed to by the index
register plus the displacement. Bit 7 is moved to the carry flag. A zero is

moved into bit 0. This operation doubles the original value.

Flags affected: C, P, S, Z
Flags reset: H, N

SLA r < no 8080>

Perform an arithmetic shift left on register r. Bit 7 is moved to the carry

flag. A zero is moved into bit 0. This operation doubles the original value.

Note: SLAA performs the same task that instructionADD A,A does, but

instruction ADD A,A is twice as fast.

Flags affected: C, P, S, Z
Flags reset: H, N

The following SRA instructions shift bits to the right.

DETAILS OF THE Z80 INSTRUCTION SET 389

1 1 1 1 1 1 1

1 1 1 1 1 1 1

C

Register Carry

SRA (HL) <no8080>

Perform an arithmetic shift right on the memory byte pointed to by the

HL pair. Bit moves to the carry flag. Bit 7 is copied into bit 6.

Flags affected: C, P, S, Z
Flags reset: H, N

SRA (IX+dd) <no8080>
SRA (lY+dd) <no8080>

Perform an arithmetic shift right on the byte pointed to by the index

register plus the displacement. Bit moves to carry and bit 7 is copied into

bit 6.

Flags affected: C, P, S, Z
Flags reset: H, N

SRA <no8080>

Perform an arithmetic shift right on register r . Bit moves to carry and bit

7 is copied into bit 6. The operation effectively halves the register value.

The carry flag represents the remainder. The carry flag is set ifthe original

number was odd.

Flags affected: C, P, S, Z
Flags reset: H, N

The following SRL instructions shift bits to the right.

I I I I I I I

/-•6-^5-»-4-^3-^2-»-l-^0
_J I I I I I I

Register Carry

390 MASTERING CP/M

SRL (HL) <no8080>

Perform a logical shift right on the byte pointed to by theHL register pair.

A zero bit is moved into bit 7. Bit moves to the carry flag.

Flags affected: C, P, Z
Flags reset: H, N, S

SRL (IX+dd) <no8080>
SRL (lY+dd) <no8080>

Perform a logical shift right on the byte pointed to by the index register

plus the displacement. A zero bit is moved into bit 7. Bit moves to the

carry flag.

Flags affected: C, P, Z
Flags reset: H, N, S

SRL r <no8080>

Perform a logical shift right on register r .A zero bit ismoved into bit 7 . Bit

moves to the carry flag.

Flags affected: C, P, S, Z
Flags reset: H, N

SUB (HL) <SUB M>

SUB (IX+dd) <no8080>
SUB (lY+dd) <no8080>

Subtract the memory byte referenced by the index register plus the

displacement from the value in the accumulator. The result is placed in A.

Flags affected: C, H, O, S, Z
Flag set: N

SUB r <SUB r>

SUB nn <SUI nn>

DETAILS OF THE Z80 INSTRUCTION SET 391

XOR (HL) <XRA AA>

XOR (IX+dd) <no8080>
XOR (lY+dd) <no8080>

Perform a logical exclusive OR with the accumulator and the byte

referenced by the sum of specified index register and the displacement.

The result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C, H, N

XOR r <XRA r>

XOR nn <XRI nn>

APPENDIX I

The CP/M
BDOS Functions

The Nondisk BDOS Functions

Function

number
(inQ Operation Value sent Value returned

1 Read console character in A
2 Write console character in E
3 Read reader character in A
4 Write punch character in E
5 Write list character in E
6 Direct console I/O FF (input) = not ready o

character (output) character in A
7 Determine lOBYTE byte in A
8 Set lOBYTE in E
9 Print buffer address in DE
10 Read buffer address in DE
11 Return console status byte in A
12 Return CP/M version byte in A and L

THE CP/M BDOS FUNCTIONS 393

The Disk-RelatedBDOS Functions

Function

number

(inQ Operation Value sent Value returned

13 Reset disks

14 Select disk E = disk

15 Open file DE = FCB A = error code

16 Close file DE = FCB A = error code

17 Search for first DE = FCB A = error code

18 Search for next A = error code

19 Delete file DE = FCB A = error code

20 Read sequential DE = FCB A = error code

21 Write sequential DE = FCB A = error code

22 Make new file DE = FCB A = error code

23 Rename file DE = original FCB A = error code

24 Determine logged-in drives HL == vector

25 Find default drive A = drive

26 Set DMA address DE = address

27 Get allocation vector HL := vector

28 Write protect disk

29 Find R/O drives HL = vector

30 Set file attributes DE = FCB
31 Get disk parameter block HL := block

32 Get or set user number E =

E =
: FF
= new user number

A = user numb

33 Read randomly DE = FCB A = error code

34 Write randomly DE = FCB A = error code

35 Get file size DE = FCB
36 Set random record DE = FCB

NDEX

Aborting a program, 192

ADDRESS program, 199-203

Alphjinumeric chjiracters, 9, 35

Altering BIOS, 17, 20
Ambiguous symbols, 6, 113, 121

AND, logical, 46, 50, 120, 124

Angle brackets, enclosing parameters, 104

Argument. See Parameter
ASCII bias, 151

ASCII character set, 316-319

ASCII coding, 116, 149, 174

changing lowercase to upper, 118

converting to binary, 54

ASM assembler, 34

Assembler directives, 35

Assemblers

Digital Research, 23-25, 34, 80-81, 84
Microsoft, 25-26, 34, 74, 81, 84

AssembUng with ASM, 23, 37

Assembling with a debugger, 42
Assembling with MAC, 24, 37

Assembling with MACRO-80, 25, 37

Assembly language, 34

Assembly listing, 37

Base conversion

binary to ASCII binary, 54, 275

binary to BCD, 123

binary to decimal, 276
binary to hexadecimal, 149, 279

hexadecimal to binary, 159

BCD coding, 123

BDOS, 2, 5, 130

BDOS calls, 130

to change default drive, 282
to change lOBYTE, 161

to close a disk file, 226

to create a disk Hie, 211

to delete a disk file, 216, 252

to determine console status, 133, 192

BDOS calls {continued)

to determine CP/M version, 153

to determine default drive, 293
to determine lOBYTE value, 153

to find next file, 260
to locate the disk parameter block, 270
to open a disk file, 177

to perform console input, 132, 154

to perform console output, 135

to perform printer output, 167

to read console buffer, 154

to print a string, 135

to read a sector, 182

to rename a disk file, 225, 251

to set the DMA address, 182

to set file attributes, 215, 248
to write a disk sector, 225

BDOS function numbers, 130

for disk operations, 393

for nondisk operations, 131, 392
Binary numbers, 174

converting to ASCII, 151

BIOS, 2, 5, 130

altering, 20

assembUng, 23

cold start, 22, 40, 60
copying to disk, 26
locating, 21

logical devices, 4, 40, 45

mapping printer output in, 58
source program for, 64
USER area in, 21,40
vectors for, 21, 39, 130, 310
warm start, 22, 28, 40, 44, 60, 86, 130,

291

Bit setting and resetting, 46, 79
Bit bucket, 56

Block allocation map, 291-292
program to display, 294-310

INDEX 395

Block move, 92

Block numbers, 174-175, 289

Block size, 174, 271

Boot
cold, 22

warm. See Warm start

Branch, absolute vs. relative, 78

Breakpoint, 97

Buffer

console. See Console buffer

general, 4
sector, 182

Built-in commands, 6-8

Cache, memory, 59

Carry flag, 125, 159

CCP, 2, 5. See also Built-in commands
Closing a disk file, 226-228

Cold boot, 22

Colon
in device name, 40

in label, 35

Command file, 9

displaying, 194

Command Une tail, 4, 178

Commands, 6, 9

Comments, 35, 76

Comparing disk files, 245, 247

Comparison, ASCII, 116

Comparison, binary, 113, 115

Complement, two's, 76
Conditional assembly, 74-75

Console buffer, 139, 143, 156-157, 159,

164, 178

getting characters from, 156-157, 159

printing characters from, 139, 143

reading characters into, 154, 156

Console command processor, 2, 5

Console, 144

BIOS vectors for, 22, 41-42

BDOS calls for, 132

logical vs. physical, 55

status, BDOS call for, 134

Constants, in macro library, 80

CONTIN program, 12

Control characters, 8, 157

check for paired, 198

Conversion, base. See Base conversion

COPY program, 20

Copying BIOS to disk, 26-31

Copying a diskette

with COPY, 20

with PIP and SYSGEN, 17-19

Copying a file

with PIP, 17

with COPYV, 248-249

Copying all files, 17

Copying system tracks, 17-20

CP/M
altering, 17, 20-21

finding the version number, 153

organization of, 2-5

SYSGEN version of, 18, 28

working version of, 18, 28

CPU, distinguishing 8080 from
Z80, 146-147

CRYPT program, 233-235

DAA operation, 152-153

Data port, 50

Data terminal ready, 51

encorporating a check for, 55

program to find the flag for, 52

Data tracks, 17

DDT, 24. See also Debugger

Debugger
loading a file with an offset, 30

loading a hex file with, 24

return to, 97, 214

setting up an FCB wdth, 30

Defauh FCB, 4, 164

DELETE program, 257-260

Device names, 40

DIR command, 6

DIREC program, 283-287, 294-310

Directive, assembler, 35

Directory, disk, 8, 17, 174, 212

blocks, 289-290

Directory allocation, 272
Disassembly, 21 , 40
Disk

block numbers, 174-175, 289

block size, 174, 271

copying, 17-20

data tracks on, 17

formatting, 16

organization, 173-174, 212, 268-274

program storage area on, 17

resetting. See Warm start

system tracks on, 17

Disk directory, 8, 17, 174, 212

blocks, 289-290

Disk FCB, 174

Disk file

closing, 226-228

creating, 211-212

deleting, 216, 218-219, 252-253, 260
duplicating, 229

opening, 177-182, 221-222, 224

protecting, 116, 213, 248

reading, 238, 240

reading a sector of, 182-183

renaming, 9, 225, 251-252

unprotecting, 212-215

396 MASTERING CP/M

Disk file (continued)

writing, 240, 242

writing a sector of, 225-226

Disk-operating system, 2

Disk parameters, 268-270

directory allocation, 272

for 8-inch floppy, 273, 288

extent mask, 272

program to display, 281-282, 288

Disk parameter block, 270-274

Display

of ASCII file, 188

of binary file, 194

Division, macro for, 278

DMA address, 182, 240

DTR bit, 57

Dummy parameter, 73

DUMP program, 194-197

Editor, 34

Encrypting a file, 230, 232, 235-237

End of file, 59, 61

Engaging the printer

with control-P, 11

with the debugger, 42-43

with an executing program, 43-45

with the lOBYTE, 45-47

Envelope addressing, 198

Erase file, 7, 17, 252-253, 260
Error messages, macro for, 176

Escape key, termination with, 192-193

Executable file, 38-39

Extension, file name, 10

Extent, 11, 175

Extent mask, 272

FCB. See File control block

FDOS, 2, 130

File control block, 4, 173-175, 212

block numbers, 174-175

block size, 174, 271

default, 4, 164

disk, 174

example, 175

extent, 11, 175

file name, 174

file type, 174

from command line, 164

initializing, 30, 178-180, 214, 219

memory, 174, 177

multiple, 11, 175,290
updating disk, 227

File name, 9

ambiguous, 113, 121, 220

extension, 10

macro to delete, 216, 218-219

macro to input, 184

File protection, 116, 215

File type, 10

Filling memory with a constant, 109-112,

293

Flags

assembly time, 99

carry, 125, 159

data ready, 50

data terminal ready, 51

distinguishing 8080 from Z80 with, 146

file protection, 116

macro, 99

overflow, 146

parity, 146

ready, 50

resetting and setting, 79

status, 50
write protection, 212

zero, 46
zero for double register, 94

Z80, 78

Floppy disk. See disk

Formatting a disk, 16

Function number, BDOS, 130-131,

392-393

Global variable, 98

GO program, 165-166

HEX file, 37-38

converting to COM file, 38

loading with debugger, 24

Hexadecimal numbers
converting to binary, 159

converting from binary, 149, 151-153,

High-level language, 34

Inline macro, 82, 94, 207

Instruction set

8080, alphabetic Usting of, 324-327

8080, details of, 350-366

8080, numeric Usting of, 328-331

Z80, alphabetic Usting of, 332-340

Z80, details of, 367-391

Z80, numeric listing of, 341-349

Interrupts, 4, 50
lOBYTE, 4, 130

changing with BASIC, 47-48

changing with a debugger, 47

changing with an executable program,

161

changing with STAT, 48

engaging the printer with, 45-47

program to display, 153-154

directing printer output with, 56-58

Jump, absolute vs. relative, 78

Jump vectors, 21, 39, 130, 310

Label, assembly-language, 35

Leading-zero suppression, 276

Library, macro, 80. See also Macros,

Ubrary of

Linking loader, 25, 38

INDEX 397

List device. See Printer

Literal parameter, 104

Loader, 25, 38

Local variable, 84, 94, 99

Logical AND, 46, 50, 120, 124

Logical device, 4, 40, 153

mapping to actual device, 45-48

Logical OR, 94

Logical shift, 54

Looping method, 50
Lowercase, conversion to upper, 118-121

MAC assembler, 23-25, 34, 80-81, 84

Macro, 71

definition of, 72

directory of, 81

dummy variable in, 73

expansion of, 72
global variable in, 98

inUne, 82, 94, 207
library, 80. See also Macros, library of
local variables in, 84, 94, 99
missing parameters in, 74, 104

for Z80 instructions, 75

DJNZ, 79

NEG, 76

Macro assembler, 72

MACRO-80 assembler, 25, 34, 74
Macro parameters, 73, 84

angle brackets around, 104, 176

omitted, 74, 104

Macros, library of

ABORT, 193

AMBIG, 122

BINBIN, 275

CLOSE, 228-229

COMPAR, 114-115

COMPRA, 116-118

CPMVER, 154

CRLF, 137

DELETE, 217-218

DIVIDE, 280-281

ENTER, 89

ERRORM, 177

EXIT, 89

FILL, 110

FILLD, 294

GFNAME, 185-197

HEXHL, 159-161

HLDEC, 276-277

LCHAR, 168

LDFILE, 238-239

MAKE, 213

MOVE, 93, 100-101, 106-107

MULT, 279-280

OPEN, 181

OUTHEX, 150

Macros, Ubrary of (continued)

OUTHL, 279

PCHAR, 135

PFNAME, 217
PRINT, 141, 144-145

PROTEC, 248

READB, 157-158

READCH, 134

READS, 184

RENAME, 226

SBC, 125

SETDMA, 183

SETUP2, 223-224

SYSF, 133

UCASE, 119

UNPROT, 216
UPPER, 124

VERSN, 83

WRFILE, 241-242

WRITES, 227
Mapping

disk block numbers, 291-292
lOBYTE, 45

logical to physical devices, 45, 48
Masking AND, 46, 58

Memory allocation, 3,19
Memory cache, 59

saving on disk, 260-261

Memory FCB, 174

Memory map, 64K, 320-323

Mnemonic, 22, 34

Moving information in memory, 92-95,

97-100, 104-105, 107, 109

Multiplication, macro for, 278
NUL, 74, 104

Offset, calculation of, 29-30

One's complement, 76
Opening a disk file, 177-182, 221-222, 224
Operand, 35

Operating system, 2
Operation code, 34

OR, logical, 94
Order of evaluation, 105, 107

ORG directive, 22, 35, 84
Overflow flag, 146

PAGE program, 168-169

PAIR program, 204-206

Parameter

actual, 73

angle brackets around, 104, 176

command line, 178-180, 219-220

dummy, 73, 88

formal, 73

literal, 104

macro, 73

Parity flag, 146

398 MASTERING CP/M

Patch, 42

Peripheral device, 4, 45

Physical device, 45, 153

PIP program, 12, 17

Pointer, memory cache, 60-61

Port, peripheral, 50

Printer

engaging with BASIC, 47-48

engaging with control-P, 1 1 , 55

engaging with the debugger, 42-43

engaging with an executable program,

43-45

engaging with the lOBYTE, 45-47

mapping output, 56, 58

directing output to console, 56

directing output to memory cache,

59-60

Printer ready, 50

Printing a string, 139-144

Program storage area, 17

Reading a sector, 182-183

Reading a file, 238

Ready flag, 50

Record, 11, 175,289
Register

data, 50
saving CPU, 131

status, 50

testing double, 94

REL file, execution of, 38-39

RENAME program, 253-256

Renaming a file, 251-252

Repeat macro, 203, 207-208

Resetting a bit, 46
Restart instructions, 4, 97, 214

SAVEUSER program, 26
Saving a program, 7

ScroIUng, 7

Sector, 16

Semicolon
double, 76

single, 35

Sending a character, 50

Setting a bit, 79

SHOW program, 189-191

SID, 24. See also Debugger
Size of file, 11, 320

Stack pointer, 36

saving and restoring, 86-88, 90

STAT, 11,213

changing the lOBYTE with, 48

changing names of devices, 49

Status flags, 50

Status port, 50

Subtraction, 76

16-bit, 125, 275

SYM file, 24

Symbol table, 24

SYSGEN program, 17-19, 27-31

System boot, 22

System diskette, 16

System parameter area, 2

System tracks

copying, 17-19

revising, 26-31

Tail, command line, 4, 178

Terminating programs, 192-193

TPA, 2, 5, 164

Tracks, 16

data, 17

system, 17

Transient command, 9

Transient program area, 2, 5, 164

Two's complement, 76, 275

USER area of BIOS, 21.

source program for, 64-68

See also BIOS
User number, 130, 174

Variable

dummy, 73

global, 98

local, 84, 94, 99
Vectors, 21, 39, 130

Verification, 245, 247

Version

CP/M, 153

coding with macro, 81-82, 84

Warm start, 2, 8, 22, 40, 44, 60, 86, 130,

291

Working version

of BIOS, 21

of CP/M, 18

Wrap around, 60
Write-protected file, 212

Writing a disk file, 240, 242

Writing a sector, 225-226

Zero, testing double register for, 94

