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Preface

Microprocessors have evolved from units that handled data in

4-bit slices vwth radimentary instruction sets into devices that rival,

or suqjass, minicomputers in architecture and software instruction

repertoire. The Zilog Model Z-80 represents a microprocessor that is

extremely sophisticated from both a hardware implementation and
software implementation viewpoint. The Z-80 microprocessor is

truly a computer on a chip that requires only a few external compo-
nents-a 5-volt power supply, a simple oscillator, and read-only
memoi-y—to construct a complete computer system. The instruction
set of the Z-80 includes that of the Intel 8080A as a subset, making
the Z-80 an ideal software replacement for the 8080A; the Z-80 has
many new instructions and addressing modes to supplement the
8080A instructions. A search of a string of characters, for example,
can be implemented with one instruction after initialization, the one
search instruction replacing four equivalent instructions in other
microprocessors.

In addition to the Z-80 microprocessor itself, Zilog has imple-
mented other devices to supplement the power of the Z-80. A PIO
provides parallel I/O with two 8-bit ports, software configured I/O,
vectored-interrupt capability, and automatic priority interrupt en-
coding. A CTC, or Counter-Timer-Circuit, provides programmable
counting and timing functions for real-time events. Other major
devices are also available. Zilog and other manufacturers have de-
veloped microcomputer systems based on this family of Z-80 devices,

and the systems have played their role in narrowing the gap between
"minicomputer systems" and "microcomputer systems," a division

that becomes less and less distinct from month to month.
The purpose of this book is threefold, to acquaint the reader with

the hardware of the Z-80, to discuss the almost overwhelming (in

number of instructions ) software aspects of the Z-80, and to describe
microcomputer systems built around the Z-80.



Section I discusses Z-80 hardwai-e. The architecture, interface sig-

nals, and timing are discussed in the first three chapters. Addressing
modes and instructions are covered in the next two chapters; both
addressing and instruction repertoire are fairly easily grouped and
explained, although they may appear confusing at first glance. The
effect of arithmetic operations and other operations on CPU flags is

presented in Chapter 6. The powerful intermpt sequences of the

Z-80 are discussed in the next chapter. Chapter 8 describes interfac-

ing examples of I/O and memory devices.

Section II describes Z-80 software. A representative Z-80 assembler

program is introduced in the first chapter of the section. An assem-

bler is almost a necessity with a microprocessor having such a large

instmction set, but machine language aspects are also covered.

Chapters 10 through 15 present the common programming opera-

tions of moving data, arithmetic operations, shifting and bit opera-

tions, list and table procedures, subroutine use, and I/O functions in

relation to instruction set groups. Many examples of each kind of

operation are provided. The last chapter of the section details some
commonly used subroutines written in Z-80 assembly language.

The third section discusses microcomputers built around the Z-80.

Chapter 17 covers Zilog products including the microcomputer
board products in the Z-80 family and development systems. Four
other Z-80 microcomputer manufacturers are described in the last

chapter. Technical Design Labs, Inc., Cromemco, Inc., The Digital

Group, Inc., and Radio Shack. The hardware and software aspects

of all five manufacturers are presented.

The Z-80 will prove attractive to many users, not only as a succes-

sor to the 8080A, but as a powerful computer in its own right.

The Z-80 will soon have a successor, in this dynamic microcom-
puter development environment, but for the time being it represents

microcomputer "state-of-the-art." The author hopes that the reader

will derive a great deal of benefit from the book and that the Z-80

vsdll solve a few hardware and software implementation problems.

Much credit for this book goes to my wife, Janet, who has solved

my major software implementation problems—manuscript prepara-

tion.

William Barden, Jr.

To Bill and Norma and
the Little Green Onions.
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SECTION I

Z-80 Hardware





CHAPTER 1

IntrodMction

In 1971, Intel Coqjoration introduced the first microcomputer on
a chip, the Intel 4004. Although the 4004 was tmly not a self-con-

tained computer on a single Large-Scale-Integration ( LSI
)

chip, it

contained a great deal of logic associated with computer central

processing unit implementation. One LSI chip replaced hundreds of
circuits that were to be found in conventional minicomputers at the
time. Although tlie 46-instiuction repertoiie was not large, it was
adequate for control applications which required decision making
that could not easily be implemented in programmable-logic arrays
and in which extensive mathematical processing was not required.
The 4004 handled data 4 bits at a time and could perfoim 100,000
additions of two 4-bit operands per second.
The next generation of microprocessors from Intel retained the

PMOS (P-channel metal-oxide semiconductor) fabrication tech-
niques of the 4004, but offered an 8-bit wide data bus and a larger
instruction repertoire of 48 instructions. Designated the 8008, the
microprocessor had a faster instruction cycle time than the 4004 as

data for both instruction execution and decoding and for operands
could be handled in 8-bit slices. In addition, the 8008 could address
16,384 memory locations of 8 bits each, contained seven 8-bit regis-

ters, had memory stack capability, and had a single-level interrupt
capability. The 8008 c-ould perform approximately 80,000 additions
of two 8-bit operands per second. The instruction set of the 8008 was
not compatible with the 4004.

The 8008 and 4004 had achieved widespread usage through the
electronics industry in a very short time after their introduction,
primarily because there was little else available in the way of micro-
processors. To achieve compatibility vdth the 8008 insofar as instruc-
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tion repertoire, the Intel 8080, introduced in late 1973, included

the instruction set of the 8008 and supplemented it with 30 more
instructions. Users of the 8008 could now change to a faster, more
versatile microprocessor while not discarding 8008 software pro-

grams, since all 8008 software would presumably execute on the

8080. The 8080 was an NMOS ( N-channel metal-oxide semiconduc-

tor) microprocessor that allowed faster clock rates. Additions of two
8-bit operands could now be carried out at rates of 500,000 per sec-

ond. In addition, all other instruction times were much shorter than

the 8008 as the 8080 was built around a 40-pin chip, requiring the

CPU to do much less time sharing of the data bus between data

transfers and instruction implementation.

The 8080 supplemented the hardware features of tlie 8008. In

place of 16,384 (J6K) memory addresses, the 8080 could address

65,536 {64K). Rather than a limited 7-level memory stack, the 8080

offered a memory stack in external memory itself instead of the CPU.
A binary-coded decimal or bed capability was built into the arith-

metic and logic unit in the CPU; additions of two bed operands

could now be implemented. Expanded addressing modes to permit

direct addressing of external memory was oflFered. Although the 78

instructions of the 8080 still seemed strange to many programmers,

the instmction set decidedly had moved away from one for pri-

marily control applications to one that was more general purpose in

nature.

In 1976, Intel brought out several variations on the 8080. The
Intel 8085 included a serial input/ output capability on the micro-

processor chip itself. In addition, the 8085 had a requirement of

only a single-phase clock ( the 8008 and 8080 were two-phase clocks

)

and a single 5-volt power supply (the 8008 and 8080 required two
and three voltages, respectively). As the number of supporting

packages had grown impressively (such chips as a programmable
peripheral interface, interrupt controller, and crt controller) Intel

provided very powerful computing capability at faster and faster

speeds (770,000 8-bit adds per second), while still retaining com-
patability with existing software written for the 8008 and 8080.

Although the 8085 was an improvement over the 8080 in many
features, the instruction set remained very similar to the 8080. Only

two new instmctions were added, one to read serial and interrupt

data, and one to wiite serial and interrupt data. Many of the inherent

inadequacies of the 8008 and 8080 remained.

The Zilog, Inc. Z-80 microprocessor chip has provided another

level of sophistication for the widely used 8008/8080 base. Bearing

in mind that the super computer of today is the surplus bargain of

tomorrow, the Z-80 has supplemented the instruction set and capa-

bilities of the 8080 in the same fashion as the 8080 increased the

12



capabilities of the 8008. In addition, Zilog has produced a family
of support chips that supplement the Z-80. The Z-80 is software
cx)mpatible with the 8080, allowing existing 8008 and 8080 software
to be executed on the Z-80. Wliile the limitations of the 8008 and
8080 instructions and architecture must of necessity be retained in
the Z-80, the Z-80 offers new instructions, new addressing modes,
and new hardware features that provide more capability and versa-
tility than ever before.

8008/8080

Fig. 1-1. Register comparison 8008,
8080, and Z-80.

A REGISTCR FLAGS A' FLAaS'

B C B' C
D E D' E'

H L H' L'

INTERRUPT
VECTOR I

MEMORY
REFRESH R

INDEX REGISTER IX

lY

STACK POINTER SP

PROGRAM COUNTER PC
J 8008/8080

In addition to providing the eight 8-bit CPU registers of the 8080,
the Z-80 duplicates the eight registers to offer sixteen registers. Two
index registers offer indexing capability not provided in the 8080.
An interrupt-vector register and memory-refresh register provide
special interrupt functions and dynamic memory-refresh capability.
Fig. 1-1 shows the basic register arrangement of the 8008, 8080, and
Z-80.

80 Z-80

INSTRUCTIONS

30 8080

INSTRUCTIONS

48 8008

INSTRUCTIONS

Fig. T-2. Instruction comparison 8008, 8080, and Z-80.

The 78 instructions of the 8080 are provided in the Z-80, but the
total number of instmctions comes to 158. Many of these are logical

extensions of 8080 instructions, but many are extremely powerful
and a complete departure from the 8080. Fig. 1-2 shows the relative

differences between the 8008, 8080, and Z-80.
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All Input/Output and interrupt capability of the 8080 is retained

in the Z-80. I/O is expanded, however, to operate from any CPU
register and to operate in "block" fashion, that is, to facilitate transfer

of many bytes at a time over a programmed (non-DMA) I/O chan-

nel. Interrupts include the standard external internipt capability of

the 8080, but supplement this vs'ith a separate "nonmaskable" inter-

rupt similar to the Motorola MC6800 and MOS Technology MCS
6502. Other interrupt capability allows for interrupt vectoring any-

where in memory, rather than just to eight locations in page 0, and

for up to 128 levels of interrupts, rather than eight.

The Z-80 Microcomputer Handbook is divided into thi-ee sections.

Section I covers the hardware aspects of the Z-80. Architecture, in-

terface signals and timing, addressing modes, instruction set. Hags,

interrupt sequences, interface of memory and I/O devices, and DMA
operation are discussed. When applicable, differences between the

8080 and Z-80 are discussed. Section II discusses Z-80 software,

grouped in similar manner to Zilog Z-80 documentation. Section II

also provides programming examples of Z-80 code. Many times, a

short section of a program will greatly clarify the somewhat pedantic

descriptions of individual instiuctions. Section III discusses five

microcomputer manufacturers that have built microcomputers

around the Z-80 microprocessor chip. Appendix A provides complete

electrical specifications for the Z-80. Appendix B cross-references

8080 instructions to the Z-80 instruction set and Appendix C provides

a short description of each Z-80 instruction. Appendix D reviews

binary and hexadecimal representation while Appendix E lists

ASCII character codes. The last appendix, Appendix F, lists Z-80

Microcomputer manufacturers.

14



CHAPTER 2

Z-80 Architecture

The architecture of the Z-80 is shown in Fig. 2-1. Thirteen CPU
and system control signals are sent to or generated in the instruction

decode and CPU control portion of the microprocessor. The data bus
is eight bits wide and is the path for all data transfen-ed between
external memory and input/ output devices and CPU registers. The
address bus is sixteen bits wide. Normally the address bus would
specify an external memory address of to 65535 ( to 64K — 1

)

since the Z-80 has a full complement of input/ output instructions

and no "memory-mapped" input/ output would be required. (In

memory-mapped input/ output, a portion of the memory addresses

must be dedicated to addresses of input/ output devices).

The main path for data within the CPU is an internal data bus
which connects the CPU registers, arithmetic and logical ixnit, data
bus control, and instruction register. The arithmetic and logical unit

performs addition, subtraction, logical functions of ANDing, ORing,
and exclusive ORing, and shifting operations between two 8-bit

operands. In addition, binary-coded decimal (bed) operations may
be performed under control of a Decimal Adjust Accumulator in-

struction.

GENERAL-PURPOSE REGISTERS

The Z-80 registers consist of fourteen general-purpose 8-bit regis-

ters designated A, B, C, D, E, H, and L and A', B', C, D', E', H',

and L'. Only one set of seven registers and the corresponding flag

register F or F' can be active at any given time. A special Z-80 in-

struction selects A and F or A' and F', while a second instruction

selects B, C, D, E, H, L, or B', C, D', E', H', or L'. The possible com-

15



Z-80 MICROPROCESSOR

SYSTCM
CONTROL

-

SIGNALS

INTERNAL
DATA BUS

ALU

CPU
REGISTERS

INSTRUCTION

REGISTER

CPU
SYSTEM
CONTROL
SIGNALS

DATA

BUS
CONTROL

ADDRESS
BUS

CONTROL

INTERNAL

CONTROL

8-BIT

DATA

BUS

16-BIT

ADDRESS
BUS

A FUGS A' FUGS'

B C B' C
D E D' E'

H L H' L'

1 R

IX

lY

SP

PC

Fig. 2-1. Z-80 Microprocessor architecture.

binations of A and F and the remaining six general-purpose registers

are shown in Fig. 2-2.

The advantage in two blocks of general-purpose registers is that

a programmer may rapidly switch from one block to another. In the

simplest case, this provides more register storage in the CPU. Reg-

ister storage in the CPU is to be preferred over storage in memory
as data can be accessed by a program much more rapidly from CPU
registers than from external memory. In a more sophisticated use of

the block switching capability, the unused set of registers may be

used to hold the environment after receiving an interrupt. This con-

cept will be discussed in a later chapter in this section.

Just as in the 8080, the general-purpose registers are somewhat
specialized in function. Eight bits of data may be moved between
memory and any of the seven registers or from one register to the

next. Arithmetic and logical operations, however, such as adding

two operands or exclusive ORing two operands can only be done

using the A register ( or A' ) and another register or memory location.
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A F

B C

D E

H L

A F_

B'

D' E^

I
H'

I
L'

Fig. 2-2. Register block combinations.

A' [" F'

B C__

D E_

H L

A' F'

B' C
D' E'

H' L'

NON PRIME
PRIME

PRIME

NON PRIME

The result of the operation always goes into the A register. In gen-
eral, then, the currently selected A register is the main register for
perfonning arithmetic and logical operations as shown in Fig. 2-3.

The remaining six registers are gi-ouped into register pairs B,C;
D,E; and H,L. For many operations in the 8008, 8080, and Z-80 the
data within the diree register pairs represents a memoiy addi-ess.

The H,L registers, for example, originally specified a High memory
address of eight more significant bits and a Low memory address of
eight less significant bits as shown in Fig. 2-4. The same is true of
the B,C and D,E registers. In the 8080, the capabihty also was pro-
vided to allow the B,C and D,E to specify a memory address, giving
three register pairs that could hold a memory addi-ess pointer to

data in memory. In general, the three register pairs wall hold mem-
017 addresses as shown in Fig. 2-4, although a second use for them
is to allow double-precision arithmetic.

ARITHMETIC OR
LOGICAL RESULT

ALU

OPERAND 1

AlORA'l

OPERAND 2

FLAGS

-MEMORY OPERAND

B (OR B1 CIC'I

DID'l E(E'l

H(H') LIL'I

OTHER GEN-

ERAL PURPOSE
REGISTERS

Fig. 2-3. Arithmetic and logical operations.
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16-BIT MEMORY ADDRESS
OR DOUBLE -PRECIS ION VALUE

REGISTER PAIR
| bIBI

I
C(cT

REGISTER PAIR
| pip, | pE')

REGISTER PAIR
I HIHI I ULI

H,L

8 H IGH-ORDER B ITS 8 LOW-ORDER B ITS

Fig. 2-4. Register pairs.

Double-precision arithmetic involves adding, subtracting, incre-

menting (adding one), or decrementing (subtracting one) a 16-bit

value. Most arithmetic and logical operations in the Z-80 are oriented

towards 8-bit operations, but the Z-80 allows limited operations be-

tween the register pairs and the stack pointer and index registers IX
and lY. The general philosophy for this probably evolved from the

requirement to manipulate memory address pointers in some con-

venient fashion, since all external memory addresses are 16-bit ad-

dresses and two 8-bit operations would have to be performed if 16-

bit arithmetic were not implemented. Fig. 2-5 shows the use of the

register pairs in double-precision operations.

16-BIT RESULT

ALU
ADD. SUBTRACT,

INCREMENT, DECREMENT

OPERAND 1
I

—

T

OPERAND 2

B,C REGISTER PAIR

D,E REGISTER PAIR

H,L REGISTER PAIR

SP

FLAGS

Fig. 2-5. Register pair double-

precision operation.

FLAG REGISTER

The flag register is selected along with the A register. At any given

time A and F or A' and F' are selected. Although the flag register is

a register of eight bits as are the other seven CPU registers, it is more

a collection of eight bits conveniently grouped into one register than

a general-purpose register. The bits within the flag register specify

various CPU conditions that have occurred after an arithmetic, logi-

cal, or other CPU operation. For example, it is convenient to Icnow

if the result of the addition of two operands resulted in a zero result.

18



a positive (zero or greater) result, or a negative result. A zero flag

and a sign flag in the flag register may be tested by the program after

the add to determine the nature of the result. Other flags are the
carry flag (C), the carry from the high order bit of the accumulator,
tlie parity/overflow flag (P/V), specifying a parity or overflow con-
dition, the half carry flag (H), which is essentially a bed carry or
borrow from the low order bed digit, and the subtract flag (N), set

for bed subtract operations. The flag register format is shown in Fig.
2-6. The interaction of CPU operations and tlie flags is discussed in

BIT BIT

7 6 5 4 3 2 1

FLAG

REGISTER
S z X H X P/V N C

-CARRY FLAG

LsUBTRACTFLAG

[DUAL PURPOSE PARITY/
OVERFLOW FUG

L INDETERMINATE

LbCD half CARRY FLAG

HNDErERMINATC

l-ZERO FUG

-SIGN FUG

Fig. 2-6. Flag register format.

detail in a later cliapter in this section. Throughout this book the

term flags, flag register, and condition codes will be used inter-

changeably.

SPECIAL-PURPOSE REGISTERS

The remaining CPU registers that are available to the programmer
are the I, R, IX, lY, SP, and PC registers. Two of these registers are
exactly the same as they are in the 8080, the SP, or Stack Pointer, and
PC, or Program Counter. The PC register is a 16-bit register that
holds the location of the current instruction being fetched from mem-
ory. Instructions in the Z-80 are one, two, three, or four bytes long.

If a sequence of eight instructions is being executed, as shovm in

Fig. 2-7, the PC will hold the indicated values. Note that the PC
always points to the start of the next instruction, and that the CPU
will automatically increment the PC by one, two, three, or four
depending on the length of the instruction being executed. The PC
is available to the programmer only in the sense that it may be
loaded or stored. No arithmetic or logical operations on the PC are
permitted.
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Whereas the PC is a pointer to external memory that specifies

the address of the next instruction to be executed, the SP is a

pointer to an external memory stack. The concept of a memory
stack is not unique to microprocessors, but virtually every micro-

processor does have stack capability. The external memory stack is

simply an area of memory set aside for temporaiy storage of CPU
registers, the flag register, and the program counter. Certain instiiic-

tions cause transfer of conti'ol from the current jump or branch in-

EXTERNAL
MEMORY J.
LOCATION *

0100

0101

0103

0106

0107

0108

0109

OlOB

INSTRUCTION 1 (1 BYTE]

INSTRUCTION 2 (2 BYTES)

CONTENTS OF
PC AT END OF
INSTRUCTION

0101

0103

INSTRUCTION 3 (3 BYTESI

INSTRUCTION 4 (1 BYTE!

INSTRUCTION 5I1BYTE1

INSTRUCTION 6 (IBYTEI

INSTRUCTION 7 12 BYTESI

INSTRUCTION 8 (2 BYTESI

0106

0107

0108

0109

OlOB

OlOD

Fig. 2-7. Program counter operation.

OlOD

* ALL VALUES HEXADECIMAL

stmction to another instruction and cause the cmrent contents of the

program counter (pointing to the instruction after the jump or

branch) to be automatically saved in the stack area. This saves the

location so that at some later time a return may be made back to the

next instniction in sequence after the jump or branch.

Not only is the PC saved for certain types of jumps or branches,

but it is automatically saved for interrupts. Here, the address of the

current instruction being executed is saved in the stack as the inter-

rupt occurs and a special interrupt processing routine is entered.

This action will be discussed in detail in a later chapter in this sec-

tion. Lastly, CPU registers and the flag register may be saved and

retrieved from the stack under program control using special stack

instructions.

As data is entered or pushed into the stack area, the stack pointer

is decremented by one count. As data is retrieved from the stack or

pulled, the stack pointer is incremented by one count. A good anal-

ogy to stack operation is a poker hand that is laid down on the table

in a pile consisting of King of Hearts, Jack of Spades, and Ace of

Diamonds with the King at the bottom. When the cards are re-

trieved, the first card picked up is the last laid down, the Ace of

Diamonds, followed by Jack of Spades and King of Hearts. This type

20



of stack operation is a LIFO operation, or last in, /irst out. The con-
tents of the SP during a typical instraction sequence is shown in
Fig. 2-8. Note that the stack builds from higher numbered memory
to lower numbered memory as more data is stored in the stack.

The remaining registers of the Z-80 are not contained in the 8080.
The index registers IX and lY are two 16-bit registers that permit
indexed addressing in Z-80 programs. While the 8080 had indexed-
like instructions, it did not permit trae indexing. When an instruction
is executed in an indexed addressing mode, one of the two index
registers is used to calculate the memory address of the operand.

Fig. 2-8. Stack Pointer (SP) operation.
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The effective address of the memory operand is obtained by adding
the contents of the index register and an i8- bit value contained in the
displacement field of the instruction employing the indexed address-
ing mode. Indexed operations of this kind are extremely powerful
for efBcient programming and will be discussed in more detail later.

The Interrupt Vector Register I is an 8-bit register that can be
loaded with 8 bits of data specifying a memory address. This ad-
dress, when combined with a lower-order 8 bits of address supplied
by the interrupting device, represent a memory address whose con-
tents in turn specify the memoiy address of the software interrupt
handling routine for the device. Suppose that a paper-tape reader
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inten-upts the Z-80. After the Z-80 recognizes the interrupt, it signals

the paper-tape-reader controller to pass over the low order 8 bits

of the address. The paper-tape-reader controller then passes over

the 8 least significant bits of the address which are combined with

the 8 higher order bits of the I register. If the paper-tape reader

supplied 14H (A suffix of "H" will represent base 16, or hexadecimal

in all subsequent discussions) and the I register contained FFH,
then the combined address would represent FF14H. The Z-80 con-

trol logic would then go to external memory location FF14H, pick

up its contents and transfer control to the location specified, in this

case EOOOH as shown in Fig. 2-9. In general, the I register holds the

8 most significant bits of an intermpt vector table which may hold

interrupt vectors for 128 interrupting devices.

LOW ORDER 8 BITS

FROM DEVICE

I REGISTER 1
I

1
I

1
I

1
I

1
I

1
I

I
I
1| |o|o|o| i|o| i|o|o|

MEMORY
LOCATION

FFIO

FFll

FF12

FF13

FFW

FF15

FF16

FF17

E005

EOM

E003

E002

EOOl

EOOO

16-BIT MEMORY
ADDRESS =FF14H

J CONTENTS OF FF14

r*^ \ POINTS TO INTERRUPT

I
PROCESSING ROUTINE

AT EOOO

START AT INT ROUTINE

Fig. 2-9. I Register actions.

The I register is used in one of three intermpt modes which the

Z-80 may utilize under program control. One of the other two modes

is identical to the 8080 interrupt action, allowing up to eight vec-

tored interrupts. The last interrupt mode permits a special ninth in-

terrupt. In addition to the three external inteiTupt modes, a non-

maskable (always active) external intermpt permits a high-priority
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interrupt to yet another interrupt location. All four kinds of interrupt
groupings ai-e discussed in a later chapter in this section.

The last special-purpose register is the 7-bit Memory Refresh reg-
ister R. When external memoiy is made up of dynamic memories,
the R register allows automatic refreshing of this kind of semicon-
ductor memory which periodically (typically every 2 milliseconds)
needs to have every cell read or refreshed to retain its contents. The
contents of the R register are incremented by one after every in-

struction fetch and the contents are sent out along the least signifi-

cant 7 bits of the address bus while the Z-80 CPU is not accessing
memory. Every cell of external memory with a predefined configura-
tion of its address bits equal to the R register can now be refreshed
without fear of contention (simultaneous read) of the same memory
cell by the Z-80 CPU. The R register is normally not used by the
programmer.

MICROCOMPUTER COMPONENT PARTS

As in any microcomputer, the microprocessor chip itself does not
constitute the complete computer system. Fig. 2-10 shows the com-
ponent parts of a typical Z-80 system. The Z-80 microprocessor chip

ADDRESS DATA
BUS BUS

Z-80

MICROPROCESSOR
AND ASSOCIATED

LOGIC

CONTROL
PANEL

LOGIC

(IF ANY!

EXTERNAL

MEMORY
(RAM. ROM,

PROM.
EPROM,

ETC. I

I/O DEVICE
CONTROLLER

1

—^1/0 DEVICE 1

—»- I/O DEVICE 2

I/O DEVICE 3

Fig. 2-10. Z-80 Microcomputer system component parts.

along with supporting circuitiy interfaces to external memory. Con-
trol signals are passed between CPU circuitiy and external memory,
memory addresses are passed along the 16-bit address bus, and data
is passed along the 8-bit address bus. External memory may be any

23



combination of the many kinds of external memory available today.

RAM (random access memory) is semiconductor memory that can

be both read and written into. ROM (read only memory) is a pro-

duction-type memory that contains a program or data or both which

can be read but not altered. PROM
(
progiammable read only

memory) may be programmed in the field with inexpensive equip-

ment, but may not be altered once programmed. EPROM ( erasable

programmable read only memory) may be programmed for a read

only operation, but may be periodically erased under ultraviolet

light. Many wags have suggested another type, a WOM or write

only memory, but in most cases the former memory types are com-

monly used.

Tire Z-80 microprocessor and associated CPU circuitry interface

to I/O device controllers along with external memory. I/O device

controllers perform several functions. Firstly, the I/O device con-

trollers buffer data passing between the Z-80 CPU registers or ex-

ternal memory and the I/O device. The buffering matches the high-

speed data-transfer rate of the Z-80 CPU to the relatively low-speed

rate of the I/O device. It is important for the CPU not to have to

wait until the I/O device accepts data, as the wait time may repre-

sent tens of thousands of Z-80 insti-uctions. A Teletype Corxioration

ASR-33 Model, for example, accepts data at the rate of 10 bytes per

second. While waiting for the ASR-33 to accept a byte of data,

the Z-80 microprocessor could be executing 1/10 second worth of

instructions or about 30,000 instructions. The I/O controller allows

the Z-80 to pass a byte in several microseconds and signals the Z-80

when the teletypewriter is done processing the data from the Tele-

type device controller.

Another function performed by the I/O device controller is for-

matting of the data. A floppy disc transmits data as a serial bit

stream. The floppy disc controller, among other functions, converts

the serial bit stream into 8-bit parallel bytes in proper format for

transmission to the Z-80 CPU over the data bus.

A third function of the I/O device controller is that of level con-

version. Data from CPU logic is in TTL (or Transistor-Transistor

Logic) signal levels, which are nominally volts and 5 volts. A Se-

lectric I/O typewriter may require 24 to 48 volts to drive the sole-

noids of the teletypewriters and obviously some voltage level con-

version is required.

Other functions of the I/O device controller are timing, synchro-

nization, control-signal handshaking, and transmission of device

status. A wide range of I/O devices interface to the Z-80 through

their respective device controllers, ranging from 5 character-per-

second teletypewriter equipment, audio cassette equipment, analog-

to-digital converters, and 100,000 byte-per-second graphic display
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equipment, to mention a few of the virtually dozens of devices.
Some of the more common generic types vwll be covered in a later
chapter of this section along with special-purpose LSI chips of the
Zilog Z-80 family which are designed to permit ease of interfacing.
The last fimctional block of Fig. 2-10 is that of tlie control panel.

Many current microcomputers have dispensed with a control panel
except for one sparsely configured with a power switch and a reset
switch. Pressing the reset switch causes a nonmaskable interrupt
which transfers control to a special monitor progi-am in PROM or
ROM memory. The monitor program allows the user to interrogate
memory locations, change the contents of memory locations, modify
registers, load and save programs on I/O devices and other func-
tions. If a control panel is present, it performs the same functions
as the monitor program by allowing the user to manually address,
examine, and change data in CPU registers and memory. Tlie only
advantage that a control panel would have over a monitor program
is that only the CPU, memory, and control panel are required to
execute programs. However, any viable system must have some kind
of I/O device and in almost all cases, the control panel is an added
complexity.

Section III discusses many of the more popular Z-80 microcom-
puter systems and will give the reader an overview of what is avail-
able in current Z-80 microcomputers insofar as system architecture
is concerned.
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CHAPTER 3

Interface Signals and Timing

The Z-80 CPU chip is a 40-pin dual in-Hne package. The pinout

of the chip is illustrated in Fig. 3-1, with the pins logically grouped

according to function, rather than the actual physical representation.

ADDRESS AND DATA BUS

The addi-ess bus is represented by signals A15 through AO, where

A15 is the most significant bit of the address bus and AO is the least

significant bit. A15 dirough AO are active high and are a tri-state

output meaning that when the address bus is inactive, its outputs

are in a high-impedance state. The address bus lines considered to-

gether represent a 16-bit memory or device address. Since ad-

dresses can be held in 16 bits, external memory of 65536io or 64K

may be addressed directly by the Z-80 CPU. When I/O devices

are addressed, the least significant eight Hnes of the address bus,

A7-A0, hold the I/O device address, which may be through 255,o.

In addition to memory or I/O device addresses, the least significant

seven lines of the address bus hold the contents of the R, or Memoiy
Refresh Register, for certain times during execution of each in-

stiaiction.

The data bus, signals D7 through DO, are tii-state active high

signals with D7 representing the most significant bit and DO repre-

senting the last significant bit. The data bus is bidirectional, per-

mitting data to be transferred to CPU registers from external mem-

ory or I/O devices or from CPU registers to external memory or I/O.

BUS CONTROL SIGNALS

Associated with the address bus and data bus are two CPU bus

control signals, the input signal BUSRQ and the output ( acknowl-
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Fig. 3-1. Z-80 interface signals.

edge) signal BUSAK. Signal BUSRQ is an active low signal that is

generated by an external device to gain control of the CPU busses.
During the time the external device has control of the busses, it will
probably perform a direct-memory access (DMA) operation. DMA
permits an external device to go directly to memory and transfer
data between rnemoiy and the device. The CPU must be "locked
out" dming a DMA operation to avoid the conflict of the CPU re-

questing memory service at the same time and from the same mem-
ory location as an external device. When the external device brings
down (logic 0) the BUSRQ, Bus Request signal, the CPU responds
with acknowledge signal BUSAK, Bus Acknowledge. BUSAK is an
active low output that signifies that the address bus, data bus, and
CPU output-control signals are now in the high-impedance state
and can be controlled by an external device for DMA operations.

MEMORY SIGNALS

There are four signals associated with memory operation, MREQ,
RD, WR, and RFSH. The first, MREQ, Memory Request, is a tri-

state active low signal indicating that the address bus holds a valid
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memory address. Essentially, this is part of a chip enable signal for

external memory to inforai external memory to output data for a

memory read or to input data for a memory write. The RD and WR
signals are tri-state active low outputs to external memory indicating

whether the memory operation is to be a read or write. When signal

MREQ goes low, either RD or WR will also be low during a poi-tion

of the machine cycle. When MREQ and RD are both low, an ex-

ternal memoiy read will be performed. When MREQ and WR are

both low, an external memory write will be performed. Both reads

and writes utilize the addi-ess on the address bus and transfer data

along the data bus.

The RFSH signal is not associated with normal memory opera-

tion. It is used only when dynamic memories are used as external

memories. Dynamic memories periodically require a refresh to

maintain the data stored within the memory cell. This is essentially

a memory read operation with the data not being transferred from

the memory. Typical dynamic memories are set up so that a refresh

signal can be input to the memory, along with five or six address line

inputs. To refresh an entire memory, six address line inputs would

require sixty-four separate refreshes (2») with the entire refresh

cycle lasting no longer than 2 milliseconds. When the output signal

RFSH is low and signal MREQ is also low, external dynamic memory

will use the contents of the least significant seven bits of the address

bus to implement one of the refresh cycles. RFSH is active at every

instruction fetch, and since tlie R register is continually being in-

cremented after each fetch, the address lines will continually reflect

a new address for the next refresh cycle. For the above example of

six address line inputs, it will take sixty-four instruction cycles to

refresh dynamic memory or approximately 256 microseconds ( .256

milliseconds) at about 4 microseconds per instraction, average.

INPUT/OUTPUT SIGNALS

Signal lORQ is a tri-state, active low output signal used for Input/

Output Requests. When signal lORQ goes low, the least significant

eight bits of the address bus, A7-A0, hold an I/O device address.

Signals RD and WR must then be used to determine whether the

I/O operation is to be an I/O read or write. Signal lORQ is also

used in conjunction with signal Ml for interrupt responses as dis-

cussed below.

OTHER CPU SIGNALS

Signal Ml is an active low output signal that indicates the micro-

processor is in the fetch cycle of the insti-uction. Every instruction
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has a fetch cycle as the first byte of the instruction, the operation
code, is fetched from memory and then decoded. In the Z-80, unhke
the 8080, several instructions have tvi^o-byte operation codes and
^^g"^' Ml will be low during each of the fetches of one byte.
The RESET signal is an active low input signal that is used as a

master CPU reset. This signal would be brought low immediately
after power up, or at any time when the microcomputer system
was to be reset. When RESET is brought low, the following actions
occur:

1. The interrupt enable flip-flop is disabled, preventing system
interrupts except for NMI (see below).

2. Register I, the Interrupt Vector Register, is set to OOH.
3. Register R, the Refresh Register, is set to OOH.
4. Interrupt mode is set.

5. ITie address bus goes to a high-impedance state.

6. The data bus goes to a high-impedance state.

7. All output-conti-ol signals go to the inactive state.

The WAIT signal is a signal associated with slow memories or
I/O devices. As long as the WAIT signal is low, the CPU will "mark
time," doing nothing, while the external memory or I/O device re-

sponds to a previous memory or I/O request. The WAIT signal en-
ables slow memories or (rarely) slow I/O devices to be interfaced
to the Z-80 without buffering.

The HALT signal is an active low output signal that goes low
during the time that a HALT instruction is being executed. A HALT
instruction in a program is typically used for one of two conditions.
Either the program has performed all of its functions and termi-
nated, or a halt has been reached and the program is waiting for an
intermpt to occur. When the CPU is in a halt state, it performs no-
operations instructions (NOP) to ensure proper memory refresh
activity.

INTERRUPT-RELATED SIGNALS

The remaining logic signals are associated with interrupt process-
ing. Signal NMI is a negative-edge triggered input that specifies a
nonmaskable interrupt is to be performed. When this signal is mo-
mentarily brought low, the CPU will recognize this interrupt at the
end of the current instruction. When the CPU recognizes the NMI
interrupt, the following actions occur:

1. The current contents of the program counter PC is saved in the
memory stack.
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2. The CPU transfers control to memory location 0066H, that is,

instruction execution starts from location 0066H which must

contain an NMI interrupt processing program.

An NMI interrupt of this kind cannot be disabled and will always

be recognized by the CPU at the end of the current instruction cycle.

The exceptions to this are that signal BUSRQ will take precedence

over a NMI signal, and that a continuous WAIT state will prevent

the current instruction from ending and thus prevent the NMI from

being recognized.

The main interrupt request is signal INT, an active low input

signal that is supplied by external devices to cause an interrupt. The

INT signal will be recognized by the CPU at the end of the current

instruction if the intemipt enable flip-flop IFF in the CPU has been

set by the program and if the BUSRQ signal is not active. If these

conditions are met, the CPU accepts the interrupt and acknowledges

the interrupt by sending out an lORQ during the fetch (Ml) time

of the next instruction. Since lORQ never occurs during lAl for an

I/O instruction, the interrupting device recognizes the lORQ and

Ml condition as an interrupt acknowledge. Further actions taken for

this interrupt are discussed later in this section.

CPU ELECTRICAL SPECIFICATIONS

The electrical specifications for the Z-80 microprocessor chip are

shown in Chart 3-1. AU inputs and outputs are TTL compatible

facilitating interfacing. There is only one power-supply voltage, a 5-

volt power supply. The Z-80 microprocessor chip alone requires a

maximum current of 200 milliamps. Unlike the 8080, there is only a

single-phase clock input required, which is also at TTL levels. The

frequency of the clock for the original Z-80 was 2.5 megahertz, how-

ever, faster versions will accept a 4-megahertz clock at this time of

writing. Detailed specifications for other dynamic parameters are

provided in Appendix A.

CPU TIMING

All instruction execution in the Z-80 may be broken down into

a set of basic cycles. There are two kinds of cycles, the most basic

being a clock cycle, or T cycle. If a 4-MHz clock is being used for

the Z-80, each T cycle will be a constant length (period) of 250

nanoseconds as shown in Fig. 3-2. The T cycles are used to control

operations within a larger cycle called the machine cycle, or M
cycle. Every instruction executed within the Z-80 consists of from

one to six machine cycles (with the exception of special block-
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Chart 3-1. Z-80 Electrical Specifications

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias 0°Cto70°C
Storage Temperature —65°C to +150°C
Voltage On Any Pin —0.3V to +7V

with Respect to Ground

Power Dissipation I.IW

® DC CHARACTERISTICS

*Comment
Stresses above those listed under

"Absolute Maximum Rating" may
cause permanent damage to the

device. This is a stress rating only

and functional operation of the

device at these or any other con-

dition above those indicated in

the operational sections of this

specification is not implied. Expo-

sure to absolute maximum rating

conditions for extended periods

may affect device reliability.

Ta = C °C to 70''C, V,,,. = 5V dI 5% unless otherwise specified

Symbol Parameter Min. Typ. Max. Unit Test Condition

V„,o Clock Input Low Voltage —0.3 0.45 V

Vino Clock Input High Voltage V„o V

v„. Input Low Voltage —0.3 0.8 V

Vn, Input High Votlage 2.0 V,M. V

Voi, Output Low Voltage 0.4 V loL = 1 .8 mA
Voii Output High Voltage 2.4 V loH = — 100/iA

Ico Power Supply Current 200 mA t,, =: 400 nsec

Ili Input Leakage Current 10 IJ.A ViN = to Voc

iLori Tri-State Output Leakage

Current in Float

10 {lA VooT = 2.4 to Vcc

Ilol Tri-State Output Leakage

Current in Float

— 10 flA VouT = 0.4 V

Ili> Data Bus Leakage Current

in Input Mode
±10 IxA ^ V,N ^ Vcc

® CAPACITANCE Ta = 25°C, f = MHz

Symbol Parameter Typ. Max. Unit Test Condition

C* Clock Capacitance 20 PF

ClN Input Capacitance 5 pF
Unmeasured Pins

Returned to Ground
CoUT Output Capacitance 10 pF

[1] Clock Driver
vcc

330 Q<

*m— *
Vcc

>
80

An external clock pull-up resistor of (330ft)

quirements.

will meet both the ac and dc clock re-
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TYPICAL

'MOST INSTRUCTIONS, 4-MHz CLOCK

Fig. 3-2. Basic instruction cycles.

related instructions), and each of tlie machine cycles is comprised

of three to six T cycles as shown in the figme.

There are seven basic machine cycles that can occur during Z-80

operation:

1. Operation code fetch cycle (Ml cycle)

2. Memory data read or write cycle

3. I/O read and write cycles

4. Bus Request/ Acknowledge cycle

5. Interrupt Request/Acknowledge cycle

6. Normiaskable InteiTupt Request/ Acknowledge cycle

7. Exit from a HALT instruction

Ml CYCLE

Every instruction execution is made up of one operation code

fetch cycle, or Ml cycle. A few instructions have two bytes for the

operation code and therefore have two Ml cycles. An Ml cycle

allows the CPU to read the operation code byte from external mem-
ory, decode the operation to be performed, and implement a portion

or possibly all of the operation ( for short instructions that are one

machine cycle long. )
Fig. 3-3 shows the timing diagram for an INC

R instruction which will also illustrate the Ml cycle. The INC R
takes only one machine cycle to fully execute the Ml cycle. Four T
cycles are required.

As the CPU enters the Ml cycle, signal Ml falls to indicate that

this cycle is active. The contents of the program counter is gated to

the address bus in preparation for the fetch of the op code of die

next instruction. On the falling edge of Tl signals MREQ and RD
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go low, indicating to the external memory that there is a valid

memory address on the address bus. The external memory will now
gate the contents of the specified memory location onto the data

bus somewhere before the rising edge of T3 (unless it is a slow

memory as discussed later in this chapter). On the rising edge of

T3, the operation code byte on the data bus is clocked into the CPU.
Shortly thereafter, the RD signal goes to an inactive level, along with

MREQ and Ml. The remaining two T cycles of Ml are used to pro-

vide a refresh time for external dynamic memories. Signal RFSH is

brought low and MREQ is again active to indicate to external dy-

namic memory that refresh can proceed. The data bus will now have
the contents of the R register present to provide a refresh address.

*

A0-A15

MREQ

RD

waFt

Ml

DB0-DB7

RFSH

-INCR INSTRUCT ION -

Ml CYCLE

'J \~.

REFRESH ADDR.

J V.

Tl

INCR EXECUTION

Fig. 3-3. Ml (op code fetch) cycle.

During the last two T cycles of Ml the CPU decodes the opera-

tion code of the instruction, which is an INC R. The INC R takes

the contents of the specified general-purpose register R (A, B, C,
D, E, H, or L or their primes

) , increments it by one count, and puts
the result back into the register, setting the appropriate condition
codes. Since no further memory accesses have to be made and the

accesses of CPU registers can easily be made in several hundred
nanoseconds, no further machine cycles are required.
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MEMORY DATA READ AND WRITE CYCLES

The memory read and write cycles will be illustrated with ex-

amples of the execution of two instructions. Fig. 3-4 shows the exe-

cution of an LD R, (HL) instruction which loads the contents of

the memory location pointed to by the H,L register pair into CPU
register R. The Ml cycle is identical to that previously discussed.

At the end of Ml, the CPU has decoded the instruction and initiates

a memory read cycle to obtain the eight-bit operand from memory.
The address bus, MREQ, and RD signals are activated just as in

the case of the Ml cycle. The address bus holds the conlents of the

H,L register pair during this time and external memory gates the

operand onto the data bus. On the falling edge of T3, the memory
operand is clocked into the CPU, loading register R.

- LD R,(HU INSTRUCTION

MEMORY READ CYCLE

Tl T2 T3

-INSTRUCTION FETCH- -LD R,(HL) EXECUTION-

Fig. 3-4. Read cycle.

A memoiy write is shown in Fig. 3-5. The instruction in this case

is an LD (HL), R which takes the contents of the specified CPU
register R and vmtes it into the external memory location pointed

to by the H,L register. The MREQ and address bus outputs are

active as in the previous examples. No RD signal is output, but the

contents of the specified CPU register are gated onto the data bus
after the falling edge of Tl. This data remains on the data bus and
at the falling edge of T2 the WR signal becomes active. With MREQ
and WR active, external memory writes the data on the data bus into

the specified memory location, using address bus outputs A15-A0.
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LD (HU,R INSTRUCTION

A0-A15

MRlQ

RD

WR"

DATA BUS
D0-D7

WAff

Ml CYCLE -MEMORY WRITE CYCLE-

Tl , T2 T3

- INSTRUCTION FETCH- LD (HL),R EXECUTION

-

Fig. 3-5. Write cycle.

I/O READ AND WRITE CYCLES

An I/O Read or Write cycle occurs during an input or out-

put instmction. Input and output instructions generally are three

or four machine cycles long and from 10 to 20 T cycles (2.5 to 5

microseconds long for a 4-MHz clock). The more sophisticated I/O
block-transfer instiaictions (INIR, INDR, OTIR, OTDR) transfer

up to 256 bytes, however, and repeat machine cycles until all bytes

have been transferred, resulting in total instruction times that are

dependent on the number of bytes to be transferred and the speed
of the I/O device. Fig. 3-6 shows an input cycle and Fig. 3-7 shows

<l>

A0-A7

lORQ

RD

DATA BUS

waIt

zx

•I/OREAD CYCLE

-

PORT ADDRESS

Tw

Fig. 3-6. I/O Read cycle.

35



an output cycle. The I/O device addiess is placed on lines A7-AQ
of the address bus at the start of the machine cycle and the lORQ
is enabled after the rising edge of T2. If a read is taking place, sig-

nal RD is enabled at the same time as lORQ. The external device

controller recognizes a read by the lORQ and RD and gates its data

onto the data bus, w^here, on the falling edge of T3, it is clocked

into the CPU.

zx
* -i
A0-A7

lORQ

W
DATA BUS

IaTT

-I/O WRITE CYCLE

-

Tl

PORT ADDRESS

OUT

:r\.

Fig. 3-7. I/O Write cycle.

If a write is taking place, the WR signal is enabled in place of

the RD at the same time as lORQ. Previous to the WR data from
the CPU has been placed in the CPU register (during Tl). This

data is available during the remainder of the write cycle and the

external I/O device controller will input it somewhere in this period.

Note that for both input and output cycles, signal WAIT is inter-

nally enabled after T2. This causes the CPU to defer further I/O
processing until the WAIT line again is deactivated and effectively

adds one clock cycle to the time of the input and output cycle. This

condition is implemented to give the CPU additional time to sample

the external WAIT line to respond to slow I/O devices. Additional

WAIT states may be imposed by the external I/O device controller

for as long as it takes the I/O device controller to execute the I/O
instruction. These would be inserted for n number of T cycles after

the CPU-imposed wait cycle.

BUS REQUEST/ACKNOWLEDGE CYCLE

At any time, an external device can gain control of the address

bus A15-A0, data bus D7-D0, and MREQ, RD, WR, JoEQ, and
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RFSH lines by enabling the input signal BUSRQ. Normally, the

reason for this would be to allow an external device controller to

communicate directly with external memory to transfer data be-

tween high-speed I/O devices and memory without CPU interfer-

ence (Direct Memory Access or DMA). See Fig. 3-8. When signal

BUSRQ is enabled, the CPU detects the signal during the rising

edge of the last T cycle of a machine cycle. The T cycle is then
completed and on the next T cycle the CPU responds to the request

by output signal BUSAK. At the same time, the address bus, data

bus, and other signals are set to the tri-state high-impedance state.

Now any changes to the lines will not be affected by the CPU nor

will the CPU affect the state of the lines. When the I/O device

controller has completed the DMA transfer ( typically one byte
)

,

it will deactivate BUSRQ. This condition will be detected by the

CPU on the next rising edge of a T cycle and it will bring up or

disable BUSAK on the next T cycle after that. Tlie CPU will then

continue processing from the point at which it gave control to the

bus requestor.

- ANY M CYCLE

-

BUSRQ

BUSAK

AO - A15

DO - D7

MREQ, RD^

WR, lORQ,

RFSH

SAMPLf

LASTT
STAII

-BUS AVAILABLE STATES-

SAMPLE

c

FLOATING

Fig. 3-8. Bus Request/Acknowledge cycle.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

If the CPU inteiTupt enable flip-flop has been set to allow ex-

ternal interrupts, and if a bus request action is not taking place,

the CPU is free to recognize external interrupts. An external device

makes the interrupt request by enabling signal INT. During the

rising edge of the last T cycle of the last machine cycle of an in-

struction, the CPU polls the state of the INT line, and, if low, starts

an interrupt cycle as shown in Fig. 3-9. During Tl of the interrupt

cycle, the Ml signal is enabled. T2 and two WAIT states are pro-

vided (the WAIT states are internally generated) to give sufficient

time for external daisy-chained interrupt circuitry to respond to the
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interrupt acknowledge and place an interrupt response vector on
the data bus. The external interrupt logic identifies the interrupt

acknowledge from the CPU by the combination of Ml and lORQ.
After detecting these two signals, the external intemipt circuitry

responds by placing the proper data on the data bus, which is

clocked into the CPU during the rising edge of T3. During T3, the

Ml and lORQ signals are disabled and refresh action is staited.

Further action during the external interrupt cycle is dependent on
the interrupt mode and is discussed later in this section.

LASTM CYCLE
OF INSTRUCTION

* _J

LASTT
STATE ^ Tl T2

\
^

ivi i

T3

INT J
AO - A15 x .PC I REFRESH

Ml /

MREQ

lORQ

DATA BUS —
\ /

?d
WAIT _r~\::

RD

Fig. 3-9. Interrupt Request/Acknowledge cycle.

NONMASKABLE INTERRUPT REQUEST CYCLE

The CPU action during this machine cycle is shown in Fig. 3-10.

The NMI signal cannot be disabled by the CPU interrupt enable

LASTM CYCLE'

LAST-T
TIME Tl

M

T2 T3 T4 Tl

X PC "K REFRESH K

\ /

J—V_\ 1

\ /

\ /

Fig. 3-10. Nonmaskable Interrupt Request cycle.
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flip-flop. The NMI interrupt also takes priority over the external

interrupt. It is recognized during the last T cycle of the last ma-
chine cycle of the current instruction as in the case of the external

interrupt. Fig. 3-10 shows the first portion of this interrupt action.

lORQ is not enabled since on external device needs to be notified

that the interrupt was accepted. The first machine cycle is similar

to a memory read operation, except that no data is read from ex-

ternal memoiy. Refresh operations aie carried on in T3 and T4
as RFSH and MREQ are enabled, and the contents of the R reg-

ister are placed on the address bus A7-A0. The NMI interrupt se-

quence is discussed later in this section.

EXIT FROM HALT INSTRUCTION

When a software HALT instiuction is executed, signal HALT is

enabled automatically by the CPU. The CPU continually generates

Ml cycles for this HALT and does not advance the program counter.

Data from memoiy is ignored. Refresh logic is enabled during the

last two T cycles of Ml as before to enable proper refresh of ex-

ternal memory while the CPU is in the halted state. The HALT
state can only be interrupted by a RESET or receipt of an NMI

HALT INSTRUCTION
IS RECEIVED DURING
THIS MEMORY CYCLE

Fig. 3-1 1. Exit from HALT insHrucHon.

or external interrapt, both of which cause nonnal interrupt pro-

cessing as before and cause the CPU to advance the program coun-
ter to the next instruction before the program counter is stored in

the memory stack. The HALT instruction exit is shovra in Fig. 3-11.

MEMORY OR I/O WAIT STATES

In general, WAIT states may be initiated after any memory or

I/O request. When external memory or I/O receives an RD or WR
signal and an MREQ or lORQ, it can respond by a WAIT input

to the CPU. The CPU will detect the WAIT condition and defer
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further processing until the memory or I/O device controller has

had time to respond. External memories must be capable of re-

sponding in a little over one T cycle, or 250 nanoseconds for a 4-

MHz clock, while input/output device controllers transferring data

to the CPU have about two T cycles or 500 nanoseconds.
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CHAPTER 4

Addressing Modes

The Z-80 has a wide repertoire of instructions, ranging from a
simple instruction to set the interrupt enable flip-flop to a block-
search instruction that searches a string of bytes for a given byte.

Because of the wide range of functions that Z-80 instructions per-
form, instnictions range in length from one byte to fom- bytes. In
addition to differences in length, insti-uctions difi^er in how external

memoiy is addressed. Some instructions require no operand and can
be executed during the last portion of an Ml (fetch) cycle. Other
instructions require an operand from a CPU register and a second
operand either from another CPU register or external memory. The
second operand may be specified in a variety of ways. As an exam-
ple, the ADD instmction adds two 8-bit operands. One of the op-
erands is in the A register, while the second can be in another CPU
register (Register Addressing), an immediate value in the ADD
instruction itself (Immediate Addressing), in memoiy and pointed
to by the contents of the HL register pair (Register Indirect Ad-
dressing), or in a memory location whose address is computed by
adding an 8-bit displacement in the instruction and the contents of

an index register (Indexed Addressing). This chapter will describe

the various addressing modes of the Z-80, using examples of specific

instructions. The next chapter discusses instiuction types and de-

scribes which addi-essing modes are valid for each instruction.

The Z-80 has the following addressing modes, generally ordered
from simple to complex:

1. Implied Addressing

2. Immediate Addressing
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3. Extended Immediate Addressing

4. Register Addiessing

5. Register Indii-ect Addiessing

6. Extended Addressing

7. Modified Page Zero Addressing

8. Relative Addiessing

9. Indexed Addressing

10. Bit Addressing

IMPLIED ADDRESSING

In this kind of addiessing, the operation code of the instruction

is fixed. There are no variable fields within the instruction, and the

instruction always performs exactly the same function. Examples of

this kind are the CPL and LD SP, lY instructions.

The format of the CPL, Complement Accumulator, is shown in

Fig. 4-1. This instruction takes the contents of the A register, forms

the ones complement (changes all zeros to ones and all ones to

zeros) and stores the result back into the A register. No general

condition code bits are affected. The source and destination are fixed

and no other register can be used.

CPL COMPLEMENT ACCUMULATOR

Fig. 4-1. Implied addressing in

' 2-, CPL instruction.
BYTE 1 1 1 1 1 2FH "OPCODE

The format of the LD, SP, lY instruction is shown in Fig. 4-2.

Load SP with lY takes the 16-bit contents of the lY register and

transfers it to the SP register. The contents of the lY register re-

mains unchanged and no condition-code bits are affected. The two-

byte configuration FDF9H will always produce the same action of

loading the SP register from the lY register.

LD SP, lY LOAD SP WITH lY

BYTEO

BYTE 1

1111110 1

111110 1

FDH

F9
"1
H J

OP CODE

Fig. 4-2. Implied addressing in LD
SP.IY instruction.

All of the instructions discussed in the next chapter under General-

Purpose Arithmetic and CPU Contiol are of this kind, as are the

instructions under the Exchange, Block Transfer, and Search Group.

In the latter group, the actions are more elaborate, but the instruc-

tion format is fixed.
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IMMEDIATE ADDRESSING

In the immediate addressing mode, the second or third byte of

the instruction itself is the operand. Immediate addi-essing is valu-

able when it is necessary to load or perform an arithmetic or logical

operation with constant data. The immediate addi-essing instructions

ADD A,N and XOR N are examples of this addi-essing type.

The format of the ADD A,N instmction is shown in Fig. 4-3. The
contents of the A register are added with the contents of the second

ADD A, N ADD VALUE N TO ACCUMULATOR

Fig. 4-3. Immediate addressing in

1 1 1 1
I

C6H = OP CODE~
N

I
IMMEDIATE VALUE

byte of the instruction and the result put into the A register. If two
bytes of the ADD A,N instruction were C633H (ADD A,33H) and
the A register contained 80H, 80H and 33H would be added to

produce a result of B3H and this result would be put into the A
register. The condition codes would also be set on the results of

this instruction.

The format of tlie XOR N instruction is shown in Fig. 4-4. The
contents of the A register are exclusive ORed with the second byte
of the instmction and the result put into the A register. The condi-
tion codes are set on the result of the instruction. If the instruction

were EE35H and the contents of the A register were 33H, 35H and
33H would be exclusive ORed to produce 06H, which would be
put into the A register.

XOR N EXCLUSIVE OR IMMEDIATE AND ACCUMUUTOR

Auu A,N instruction. gyiE o

BYTE 1

BYTEO

BYTE 1

1 I 1 1 1 1 EEH OP CODE

IMMEDIATE VALUE

Fig. 4-4. Immediate addressing in XOR N instruction.

In general, the immediate addressing mode is used for instruc-

tions in the 8-bit Arithmetic and Logical Group discussed in the
next chapter.

EXTENDED IMMEDIATE ADDRESSING

When the instruction is an immediate kind of instruction, but
16 bits of immediate data are required, the instruction format is

of the "extended" inmiediate kind. The extended addressing mode
is used in only a few instructions in the 16-Bit Load Group of in-
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LD lY.NNLOAD lY WITH VALUE N

BYTEO

BYTE 1

BYTE 2

BYTE 3

1 I 1 1 1 1 1

1 1

N LSBYTE

nmsbyte

™ ] OP CODE
21H J

"'^

16-BIT IMMEDIATE VALUE

Fig. 4-5. Extended immediate addressing in LD IY,NN instruction.

structions. An example would be the instruction LD IY,NN which

is shown in Fig. 4-5. Note that the first two bytes comprise the oper-

ation code, and that the next two are the immediate data itself. LD
IY,NN loads the 16 bits of immediate data in bytes two and three

of the instruction into the lY register. The condition-code bits are

not affected. As in the case of all 8080 16-bit data, the data is

grouped least significant byte followed by most significant hyte.

The instruction LD IX,123FH would load the IX register with

123FH and would appear as shown in Fig. 4-6.

LD IX,123FH

BYTEO

BYTEl

BYTE 2

BYTE 3

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

I

OP CODE

3FH

12H

Fig. 4-6. Extended immediate
addressing data arrangement.

REGISTER ADDRESSING

In the register addressing mode, one or more of the CPU registers

is addressed by the instruction. The instruction format would con-

tain a field(s) which would specify which CPU register(s) was to

be utilized in performing the instruction. Examples of this kind of

addressing would be the RL R and AND R instructions.

The RL R instruction format is shown in Fig. 4-7. The least sig-

nificant 3 bits of word 1 of the 2-byte instruction is a 3-bit field that

specifies one of the general-purpose CPU registers A, B, C, D, E, H,

or L. This instruction takes the contents of register R and shifts it

left one bit position. The most significant bit of the register is shifted

into the carry, while the previous contents of the carry are shifted

into the least significant bit position of the register. The condition-

RL R ROTATE LEFT THROUGH CARRY REG ISTER R

BYTEO

BYTE 1

110 10 11
1

CBH " OP CODE

(WOlOj " OP CODE

R - CPU REGISTER CODE

Fig. 4-7. Register addressing in RL R instruction.
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code bits are set according to the results of the shift. Valid values
for the R field of the instruction are as follows:

R Register Shifted

000 B
001 C
010 D
on E

100 H
101 L

111 A

Note that all bit pennutations are possible except 110:;. If 110^
were to be specified in this instruction, the instraction would become
another kind of addressing mode, Register Indirect Addressing and
would shift an external memory location rather than a CPU register.

Strictly speaking, the seven registers that may be specified result in

seven unique instructions, which could be viewed as seven Implied
Addressing instructions.

The AND R instmction is shown in Fig. 4-8. Here the instruction

is a one-byte instruction (because it was an 8080 one-byte instrac-

AND R LOG I CAL AND OF REG I STER R AND ACCUMUUTOR

BYTE
I
1 1 ?| R

I

IOIOO2 OP CODE

R - CPU REGISTER CODE

Fig. 4-8. Register addressing in AND R instrucHon.

tion) with the least significant three bits of the byte specifying the
register to be used in the instruction. The coding of the registers is

identical to the coding used in the RL R. AND R takes the contents
of the specified R register (A, B, C, D, E, H, or L), logically

ANDs it with the contents of the A register, and puts the result

back into the A register. Tlie condition codes are set on the result

of the ANDing operation. As an example, the instruction shown in

Fig. 4-9 would and the contents of the D register with the A reg-
ister contents and put the results in the A register.

AND D

BYTE [To 1
I

1 T] IOIOO2 - OP CODE

OlOj' CODE FORD REGISTER

Fig. 4-9. Register addressing example.

Instruction groups that utilize this addressing mode would in-

clude the 8-Bit Arithmetic and Logical, 16-Bit Arithmetic, Rotate
and Shift, and Bit Set, Reset, and Test groups.
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REGISTER INDIRECT, ADDRESSING

Instmctions in this group include the original 8008 instructions

that utilized the H and L register pair (High and Low) as a mem-
ory address pointer. In the 8008, data in memory could only be ad-

dressed by the HL pointer. The 8080 added the capability to use

register pairs B,C and D,E as pointers and also added the capabil-

ity of Extended Addressing, where each memory location could be

individually addressed. Register Indirect Addressing is a detriment

where data must be addressed in random ( noncontiguous )
memory

locations. When data is grouped in contiguous blocks, such as tables

or strings, however, accessing data by the pointer method is some-

what more efficient. The reason for tlie inefficiency in accessing

random memory locations is that the pointer register must be loaded

with the address of the new byte of data to be accessed before each

instruction of this kind is executed. Access of contiguous data is

made simpler by instructions that automatically increment and dec-

rement by one the register pairs used as pointers. The two proce-

dures for accessing blocks of random and contiguous data are shown

in Table 4-1, along with the relative times. Note that the examples

are for illusti-ative puiposes only to point out the deficiencies in

register indirect addressing; the Z-80 has more efficient ways to ac-

cess data and they will be described later in this chapter.

Table 4-1. Data Access Using Register Indirect Addressing Charts

, CALL & RTN
1

THIRD DATA BYTE

FIRST DATA BYTE

^

SECOND DATA BYTE

FIRST DATA BYTE THIRD DATA BYTE

t FOURTH DATA BYTE

SECOND DATA BYTE

FOURTH DATA BYTE LAST DATA BYTE

RANDOM ACCESS SEQUENTIAL (CONTIGUOUS) ACCESS

1. LOAD DATA POINTER WITH ADDRESS OF

NEXT DATA BYTE (5 UNITS).

2. LOAD BYTE USING REGISTER INDIRECT

ADDRESSING (3.5).

3. PROCESS DATA BYTE (X).

4. DONE? IF NOT, GO TO 1 (7).

5. DONE.

X +15.5UNITS;BYTE

1. LOAD DATA POINTER WITH START OF DATA.

2. LOAD BYTE USING REGISTER INDIRECT

ADDRESSING (3.5).

3. PROCESS DATA BYTE (X).

4. BUMP REGISTER POINTER BY 1(3).

5. DONE? IF NOT, GO TO 2 (7).

• 6. DONE.

X + 13,5 UNITS/BYTE
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Fig. 4-10. Register indirect addressing
in LD A,(BC) instruction.

LD A, IBC) LOAD ACCUMULATOR
WITH LOCATION POINTED TO BY
CONTCNTS OFB.C

BYTE
I 1 1 | OAH • OPCODE

Examples of the instruction format for this way of addressing are

shown for an LD A,(BC) instruction (Fig. 4-10) and an INC (HL)
instruction (Fig. 4-11). llie LD A,(BC) is a one-byte instruction

that loads the contents of the memoiy location pointed to by regis-

ter pair BC into the A register. No condition codes are affected.

The INC (HL ) instruction increments the contents of the memory
location pointed to by the HL register pair by one. The condition

codes are set on the results of the increment.

-.,,,„.,.,. , .. . INC (HL) INCREMENT LOCATION
Fig. 4-11. Register indirect addressing POINTED TO BY CONTENTS OF HL

in INC (HL) instruction. „,„^ „ [ „„,.„ —
BYTE

I
1 1 1 1 34H " OPCODE

When register indirect addressing is employed, the register pairs
utilized as pointers hold the memory address as a 16-bit address as
one would expect:

Register Most Significant Least Significant
Pair Byte Byte

B,C B C
D,E D E

H,L H(igh) L(ow)
SP SP bits 15-8 SP bits 7-0

Register indirect addressing is primarily used for 8008 compatible
instruction groups such as the 8-Bit Load, 8-Bit Arithmetic and
Logical, and Rotate-Shift groups.

EXTENDED ADDRESSING

The extended addressing instructions hold the addi-ess of the data
in the instruction itself, in a fashion similar to many minicomputers
and larger machines. Although this means that the instruction word
is longer, all locations in memory can be addressed directly, and
this mode is many times called direct addressing. The format of

this kind of addressing is shown for an LD A,(NN) instruction and
an LD (NN),HL instruction.

The LD A,(NN) is a classical computer instruction shown in
Fig. 4-12. Bytes 1 and 2 of the instruction specify a location in

memory. The 8-bit contents of this location are loaded into the
accumulator. No condition codes are affected. Byte 1 of the address
is the least significant byte, while byte 2 is most significant.
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The LD (NN),HL instjuction is an extended addressing insteuc-

tion that does the opposite of the first example. It takes tlie contents

of register pair H,L and stores it into the memory location specified

in bytes 1 and 2 of tine instruction (see Fig. 4-13). Just as in all

instructions like this, the address of the memory location is ordered

the least significant byte ( byte 1 ) followed by the most significant

LD A, (NNI LOAD ACCUMULATOR
WITH CONTENTS OF LOCATION NN

BYTEO

BYTE 1

BYTE 2

1110 10
\S BYTE

"MS BYTE

3AH OPCODE

] 16-BIT

I ADDRESS

Fig. 4-12. Extended addressing in

LD A,(NN) instruction.

byte (byte 2). The contents of the L register are stored in memory
location NN and the contents of the H register are stored in memory
location NN-l-1. An interesting thing to note about instructions like

these that move data from CPU registers to memory is that Zilog

chose to refer to them as LDs or Loaf?s, when the usual mnemonic
is ST for Stores. This classification may be rather confusing until

one has worked with the mnemonics for some time.

BYTEO

BYTE 1

BYTE 2

LD (NN),HL LOAD LOCATION

NN WITH CONTENTS OF H,L

22H - OPCODE Fig- 4-13. Extended addressing in LD
Ijj.glj (NN),HL instruction.

I ADDRESS

1 1

^LS BYTE

'MS BYTE

Note that the 16-bit address in the instiuction can address 2'*' or

65,536 memoiy locations. The size of the address field in this instiuc-

tion format togedier with the 16-bit width of the register pairs are

the primary limitations to the size of external memoiy that can be
employed without special memoiy hanking schemes. Extended ad-

dressing is used primarily for instructions in the 8- and 16-bit Load
groups

MODIFIED PAGE ZERO ADDRESSING

This adch-essing mode is used only for one instruction, the RST P
or Restart Page Zero instiaiction. Tlie effect of this instruction is to

cause a branch to one of eight page locations after pushing the

current contents of the program counter into the stack. Page in

the Z-80 as in other computers is defined as the area of external

memory that can be addressed in 8 bits. Since 2" = 256, memoiy
locations through 255 constitute page zero. Tlie format of the

RST P is shown in Fig. 4-14. The T field in the instruction is three

bits wide. Depending on the configuration of bits in the T field, a

branch may be made to locations OH, 8H, lOH, 18H, 20H, 28H,
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RSI P RESTART TO LOCATION P

BYTE
I
1 1

I
T "

I
1 1 T1 lUm^-OPCODE

± T
Fig. 4-14. Modified page zero qoh

addressing in restart instruction. 08H 1

lOH 2

18H 3

20H 4

28H 5

30H 6

38H 7

30H, or 38H as shown. This instruction is discussed more fully in

the next chapter.

RELATIVE ADDRESSING

Relative addressing is primarily used in minicomputers or micro-
computers to shorten instructions and reduce the amount of memory
that programs occupy. If direct ( extended

)
addressing is used to en-

able addressing all of memory, the address portion of the instruction
is two bytes long (16 bits can address 64K). In both page zero and
relative addressing, the address portion of the instruction is one byte
long, reducing the instruction size from three bytes (op code plus
address) to two bytes. Page zero addressing allows addressing only
of page zero; relative addressing allows addressing of 256 memory
locations grouped around the current instruction. Fig. 4-15 shows
how this scheme is implemented. The second byte of the instruction
is a signed value of -128,o to +127io (10000000^ to OIIIIIII2).
When this value is added to the current contents of the program
counter, a memory location -126 to +129 bytes away is addressed
since the program counter points to the instruction after the relative

addressing instruction. As the current instruction moves through

BYTEO

BYTE 1

OP CODE

DISPLACEMENT VALUE -128,(1 TO +127 11

MEMORY

CURRENT
INSTRUCTION

-

LOCATION

-126,n LOCATIONS BACK

+129iQ LOCATIONS FORWARD

Fig. 4-1 S. Relative addressing.
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memory, the block of memory that can be addressed moves (or

floats )
along with the current instruction. The premise for this man-

ner of addressing is that in most cases it is sufficient to address mem-
ory in the immediate area of the current instruction; most programs

will operate on data near the current instruction.

Relative addressing on the Z-80 is used only for the Jump Group
of instructions, allowing conditional and unconditional jumps back

up to 126 locations or forward 129 locations from the current in-

struction. An example of relative addressing for a jump is shown
in Fig. 4-16.

JR Z,E JUMPREUTIVE IF ZERO

LOCATION 0300H

0301H

PC " 0302H

1 1

1 1

28H "OP CODE

VALUE - lOjj AH

INSTRUCTION WILL JUMP TO 0302H + AH 030CH

IF ZERO FLAG SET OR WILL EXECUTE NEXT

INSTRUCTION AT 0302H IF NOT SET

Fig. 4-16. Relative addressing in JR Z,E instruction.

INDEXED ADDRESSING

Indexed addressing is an addressing mode that permits using the

two index registers in the Z-80, IX and lY. Many instruction groups

permit using the indexed addressing mode and it is one of the most

powerful features that the Z-80 offers. The format of this addi-essing

mode is shown in Fig. 4-17. The op code of the instruction is in

bytes and 1; while the third byte holds an 8-bit signed displace-

ment of —128io through -|-127io. This displacement is added to the

contents of the specified index register IX or lY to determine the

effective address of the memory operand.

BYTEO

BYTE 1

BYTE 2

(BYTE 3)

OP CODE

OP CODE

D

(VAR lES OR NONEI

16-B IT S IGNED VALUE -128 TO +127,,

EFFECTIVE ADDRESS- (IX) + D OR

(lY) + D

Fig. 4-17. Indexed addressing.

For example, consider the instruction LD ( lY -I- D ) ,N that uses

the lY index register. This is shown in Fig. 4-18. The LD (lY + D),N
loads (stores) the immediate value N into the memory location

specified by the effective address. If the contents of lY are 1003H
( the index registers are 16-bit registers ) , an LD ( lY -F D ) ,N with a

displacement field of 40H will store N into memory location 1043H.
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The indexing operation is powerful because inany programs must
have the ability to process tables or lists of data in memory. Ex-
amples of the use of indexing are provided in section II. Instruction
groups using the indexed addi-essing mode are the 8-Bit Load, 8-Bit

LD IIY + Dl, N LOAD LOCATION (lY + D) WITH VALUE N

BYTEiO 1 1 1 1 1 1 I

BYTEl 1 1 1 1

BYTE 2 1

BYTES N

OP CODE

D =40H

VALUE TO BE STORED

EFFECTIVE ADDRESS = imi3H

Fig. 4-18. Indexed addressing example.

Alithmetic and Logical, Rotate and Shift, and Bit, Set, Reset, and
Test Groups.

BIT ADDRESSING

The last addressing group is the bit addressing group. Bit address-
ing is used in conjunction with the previous addressing modes to

provide testing, setting, or resetting any one of the 8-bits in an
operand. These operations would have to be performed by as many
as three instructions in the 8080 or other computers. An example
of this is provided for the SET B,(IX-t-D) instruction shown in

Fig. 4-19. Tlie SET instruction sets a specified bit, and in this case
the addi-ess of the byte containing the bit to be set is given by
(IX -f D), an indexed addressing operation. The bit specified in the
B field of the instruction will be set after the instruction has been
executed. No condition codes are affected. The bit to be set is as

follows

:

Field Bit to be Set

000 XXXXXXX1
001 XXXXXX1X
010 XXXXX1XX
01

1

XXXX1XXX
TOO XXX1XXXX
101 XX1XXXXX
110 XIXXXXXX
111 1XXXXXXX

Other examples of the bit addressing mode are shown in Fig. 4-20,

which shows the "hefoie" and "after" condition for various SET B,R
instructions specifying a bit set for CPU register C.
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Chart 4-1. Z-80 Addressing Modes

55

LD R,S

LD S,R

LD S,N

LD A,S

LD S,A

LD A, I

LD A,R

LD l,A

LD R.A

LD DD,S

LD IX,S

LD IY,S

LD HL,(NN)

LD {NN),HL

LD (NNI.DD

LD INN), IX

LD INN),IY

LD SP.HL

LD SP.IX

LD SP.IY

PUSH QQ
PUSH IX

PUSH lY

POP QQ
POP IX

POP lY

EX DE.HL

EX AF.AF'

EXX

EX ISPl.HL

£ EX ISP). IX

3 EX ISP),IY

- LDI

LDIR

LDD

LDDR

CPI

CPIR

CPD
CPDR
ADD A,S

ADC A,S

SUB S

SBC A.S

AND S

OR S

XOR S

CP S

INC S

DEC S

DAA. CPL,

NEC, CCF,

SCF, NOP,

HALT. DJ,

£!, IM 0,

IM 1, IM 2

REGISTER o
PLIED TENDE

MEDIA GISTE

INDIRECT
TENDE

GEO RELATIVI

INDEXED

BIT—J w UJ a_
3: CQ O 00

<;
NOTES

S IS ADDRESSING MODE TYPE

R IS REGISTER A, B, C, D, E, H,

N IS8-BIT IMMEDIATE VALUE

A ISA REGISTER

I IS I REGISTER

R IS R REGISTER

R REGISTER

DD IS BC, DE, ML, SP

I IS ADDRESS FIELD

OR L

QQ IS BC, DE, ML, AF

SEE CHAPTER 5 FOR DETAILS

NOTE --INSTRUCTIONS AND ADDRESSING MODES USED IN

THE 8080 ARE DESIGNATED BY A SINGLE LINE UNDER IHl

DOT. THOSE USED IN THE 8008 AND 8080 ARE DESIGNATED

BY A DOUBLE LINE UNDER THE DOT.
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Chart 4-1. Z-80 Addressing Modes—cont

T

I

ADD HL.SS

ADC HL.SS

SBC HL.SS

ADD iX.PP

ADD lY.RR

INC SS

INC IX

INC lY

DEC SS

DEC IX

DEC lY

RLC A

RU
RRC A

RRA
RLCS
RL S

RRC S

RR S

SU S

SRA S

SRLS
RLD

RRD

BIT B,R

SET B.R

RES B,R

JPNN
JP CC.NN

JRE
JR C,E

JR NC,E

JR Z.E

JR NZ.E

DJ NZ.E

CALL NN
CALL CC.NN

RET

RET CC

RETI

REIN

RSTP
IN A.INI

IN R,(C)

INI

INIR

IND

INDR

OUT IN),

A

OUT (Cl.R

OUTI

OTIR

OUTD

OTDR

REGISTER

PLIED MEDI/ TENDE
MEDIA GISTE

INDIRECT LUO
GEO

LATIVI )EXED

r—J O uj Q.X CQ O on £5
<c
a. a: ^ CD NOTES

DP IS BC, DE, HL, SP

NN IS ADDRESS FIELD

E IS DISPLACEMENT FIELD +2

P ISOOH, 08H, ETC

N IS 8-BIT IMMEDIATE VALUE
C ISC REGISTER

NOTE-INSTRUCTIONS AND ADDRESSING MODES USED IN

THE 8080ARE DESIGNATED BY A SINGLE LINE UNDER THE
DOT. THOSE USED IN THE 8008 AND 8080 ARE DESIGNATED
BY A DOUBLE LINE UNDER THE DOT.
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SET B,(IX+D1 SET B OF LOCATION (IX + D)

I

OPCODE

D VALUE

lyilO^'OP CODE

B =8 IT CODE 0-7

Fig. 4-19. Bit addressing/indexed addressing in SET B,(IX+D) instruction.

As the combinations of addressing modes employed in the various

instructions can be almost overwhelming on first encounter, Chart

4-1 provides a reference chart for instruction groups. The chart fol-

lows the same notation as has been used in the above description

REGISTER C INSTRUCTION

BEFORE AFTER

1 1 "1
1

° 1 1 SET O.C

*

|o o| |o 1 SET 1, C

*

h 1 1 1 1 1 ll h 1 1 1 1 1 1 ll SET 5,C

*

1 1 ll 1 1 SET 7, C

*

IT sn

Fig. 4-20. Bit addressing example.

and that will be used in a discussion of the various instruction meth-

ods in the next chapter. Instructions and addressing modes used in

the 8080 are designated by a single line under the dot. Those used

in the 8008 and 8080 are designated by a double line under the dot.

BYTEO

BYTE 1

BYTE 2

BYTE 3

1 1 1 1 1 1

1 1 1 D 1 1

D

1 1 B 1 1
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CHAPTER 5

Instruction Set

The table of addressing modes given in Chapter 4 cross-references
Z-80 instructions with its addressing modes. For discussion pur-
poses, the instruction repertoire of the Z~80 may be classified into

the groups shown in Chart 4-1. These groups are:

1. 8-Bit Load
2. 16-Bit Load
3. Exchange, Block Transfer, and Search
4. 8-Bit Arithmetic and Logical

5. General-Purpose Arithmetic and CPU Control
6. 16-Bit Arithmetic

7. Rotate and Shift

8. Bit Set, Reset, and Test
9. Jump

10. Call and Return
11. Input and Output

8-BIT LOAD GROUP
The 8-Bit Load Group is shown in Table 5-1. About half of the

instructions in this group load an 8-bit value into a CPU register
from another CPU register, immediate value in the instruction, or
memory location, llie other half of the instructions store an 8-bit

value from a CPU register or immediate value into a CPU register
or memoiy location. In all cases, the source register remains un-
changed after the transfer.

Four of the instructions simply transfer the contents of the I and
R registers into the current A register and vice versa. LD A,I loads

55



00

1-3

Comments

ra

-1. ° — o — o — —"OO — '-OO —Coooo>- —

No.

of

T

Cycles

No.

of

M

Cycles

(NtNio csiT) in coin

No.

of

Bytes r- CO CO r- CO CO c^ ^

Op-Code

76

543

210

oo-l'or-o>l'-o'l'o-o'l''-o-l'o'l'^o^

Flags

X

Z ® @9 # ®0
tn 9 ®0 ® @®
P/V ® 0® ® ®0
N

U

Symbolic Operation

4.44.4, 4. >

Mnemonic

LD

r,r'

LD

r,n

LD

r,(HL)

LD

r,(iX+d)

LD

r,{IY+d)

LD

(HL),r

LD

(IX+d),r

LD

(IY+d),r

LD

CHL),n

LD

(lX+d),n
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the A register with the contents of the interrupt Vector Register I.

LD A,R loads the A register with the contents of the Memory Re-

fresh Register R. LD I,A and LD R,A do the reverse. No condition

codes are affected for the latter two. The former two set the

condition codes as shown. These four instructions do not exist in

the 8080 or 8008 as neither microprocessor had the I or R registers.

The LD R,S instructions load the specified CPU register in the

R field with the contents of another CPU register (LD R,R'), an

8-bit immediate value (LD R,N), or an 8-bit value from a memory
location [LD R,(HL); LD R,(IX+D); LD R,(IY+D)]. None of

the condition-code bits are affected after the load. LD S,R does the

opposite of LD R,S, that is, the contents of a CPU register R is

transferred to a memory location using either an HL register pointer

method of addressing [LD (HL),R] or indexed addressing [LD
(IX-FD),R or LD (IY-1-D),R]- This is in fact a "store" kind of in-

struction (called a MOV in tlie 8080 and 8008). LD S,N is similar

LDA, I
LDA.R

CPU A REG

3 ITS

CPU i REG

1
CPU \ REG

-8BITS

1
CPU R REG

LD l,A

1
CPU REG

8 BITS

1
CPU A REG

LD R,A

1 CPU R REG
1

-8 BITS

1
CPU A REG

1

LDR.S TYPE

LD B,H

CPU B REG

3 ITS

LDC,(HU (HLI = lOOlH

CPU C REG

CPU H REG

MEMORY
1000 H

1001

H

-8 BITS

LD S.R TYPE (STORE)

LD(IX + 30H),D (IX)=101/!H LD IDE). A (STORE! (DEI - 2005

CPU D REG CPU A REG

MEMORY

1043 H

1044 H

\8BITS

MEMORY
2004

2005

2006

•8 BITS

Fig. 5-1. Eight-bit' load group examples.
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except that an immediate value is stored into a memory location
[LD (HL),N; LD(IX+D),N; or LD (IY+D),N]. None of the con-
dition codes ai-e affected by the load (store).

The last instructions of tliis gi-oup load or store the A register

only with a memory location specified by register pointers BC, DE,
or by an extended (direct) addressing. A is loaded by LD A,(BC);
LD A,(DE);orLD A,(NN) and stored by LD (BC),A; LD (DE),
A; and LD (NN),A. No condition codes are affected.

Examples of this group are shown in Fig. 5-1 which illustrates the
various addressing modes and instruction types.

LD HL, 1025H

INSTRUCTION

LD HL.1025H

I
1

I

25 H

10 H

CPU H REGISTER

CPU L REGISTER

8 BITS

LD INN), IX

INSTRUCTION

LD (NN), IX

110 1110 1

I 1

20H

50H
MEMORY ADDRESS 5020H

MEMORY
5020 H

5021

H

HIGH ORDER

LOW ORDER
S.IX REGISTER

8BITS\ i-8BITS

STACK
POINTER
REGISTER

LD SP.HL

CPU H REGISTER

CPU L REGISTER

H IGH ORDER

LOW ORDER

8 BITS

Fig. 5-2. Sixteen-bit load group examples.

16-BIT LOAD GROUP
This group allows any register pair BC, DE, HL, or SP, or the IX

and lY registers to be loaded by an extended immediate instruction
(LD DD,NN; LD IX,NN; or LD IY,NN). See Table 5-2. Here a
16-bit immediate value in the instruction is loaded into the selected
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Comments

= <-> in -' o-
2 cQ Q X t/)

-o O — O
-0 o o —

No.

of

T

States O-^ Tt OO O O -0
r- •— Oi (N CS ^

No.

of

M

Cycles

No.

of

Bytes CO-'T cn-tT -<T ^ CO

Op-Code

76

543

210 8tt°itt°gttitt°itt2itto2tt5||
Q r-O •— O r- ,— r- ^_ O
TIC c — oc C'-oc coc COTlCC — OcCr-occoc c
-o o,„ ^ o— —

Flags

X ©0 ® ®® © ® ®

z #0 ® ®® ® ® ®

®® ® 0® ® ® ®

A/d ®® ® ®® ® ® ®

N ®® ® ®® ® ® ®

O #0 ® ®@ ® ® ®

Symbolic
Operation

j j

3Z

+ '^'c c'c
^ c c c-j-S ££ ,££

i I I ff ^\ +t
? S >: xllll ><2 >E> 11

Mnemonic

LD

dd,nn

LD

lX,nn

LD

IY,nn

LD

HL,{nn)

LD,

dd,{nn)

LD

IX,(nn)

LD

IY,{nn)

LD

(nn),HL
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register pair, IX, or lY. Any register pair IX or lY can also be loaded

or stored directly (extended addressing mode) by LD DD,(NN);

LD IX,(xNN); LD IY,(NN); LD (NN),HL; LD (NN),DD; LD
(NN),IX; or LD (NN),IY.

The contents of HL, IX, or lY can be transferred to the SP regis-

ter by LD SP,HL; LD SP,IX; or LD SP,IY.

The remaining instructions in this group allow 16-bit register pairs

BC, DE, HL, or AF (A register and flags) to be pushed onto or

pulled from the stack. Fig. 5-2 shows examples of the use of these

instructions.

EXCHANGE, BLOCK TRANSFER,
AND SEARCH GROUP

The exchange instructions in this group allow vaiious exchanges

of 16 bits of data between register pairs in the same set of registers

and exchanges between the two sets of registers (see Table 5-3).

CPU D REGISTER

8 BITS--

CPU H REGISTER

L

8 BITS
Fig. 5-3. EX DE, HL instructions.

EX DE,HL simply exchanges the contents of register pairs DE and

HL in the cmrent set of registers as shown in Fig. 5-3. EX AF,AF',

however, exchanges the contents of the A register and flag register

of the current set of registers and the inactive set of registers as

shown in Fig. 5-4. EXX swaps the contents of the current set of BC,

DE, and HL with die inactive set of BC, DE', and HL' as shown

in the same figure. No condition codes are affected in any of the

above instractions. Tliese instnictions permit switching back and

forth between tlie two sets of CPU registers with one or two in-

structions.

ACTIVE CPU REGISTERS

8 BITS

(EX AF.AF')

A F

B C

D E

H L

V INACTIVE CPU REGISTERS
^

A' F'

B' C
0' E'

H' L'

.-8 BITS (EX AF.AF'I

SITS (EX XI

Fig. 5-4. EX AF,AF'; EXX instructions.
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Sams books cover a wide range of technical topics. We are always seek-

ing recommendations from our readers regarding their informational

needs. Please complete this questionnaire and return it to us with your

suggestions. We appreciate your comments.

1. ) Do you own/use a computer?

O No.

Yes, Please specily brand and model:

Apple

Atari

Coleco

Compaq

Commodore

Hewlett-Packard

IBM

MSX

Panasonic

Radio Stiack

Sanyo

Texas Instruments

Timex Sinclair

Other (specily)

2. ) Do you own/use any software,

systems, or languages?

No.

Yes Please specify brand/type:

Word Processing

Spreadsheet

Graphics/Sounds

Games/Entertainment

Data Base Management

Integrated Software

Operating Systems (specily)

Computer Languages (specily)

Other (specify)

Comments

3. ) Are you interested in any of the

following electronics or other

technical topics?

No.

Yes. Please specify:

Acoustics. Speech, Signal Processing

Aerospace and Electronic Systems

Alternative Energy Research

Antennas and Propagation

Communications

Consumer Electronics

Control Systems

EMC/EMI

Inlormalion Theory

Instrumentation and Measurements

Manufacturing Technology

Power Engineering

Robotics and Artificial Intelligence

Security Electronics

Service Guides—Electronics

Solid Stale Circuits. Components, Hybrids

Other

4.
)
Occupation

Bus. Professional (specily)

Engineer (specily)

Technician (specify)

O Scientist

Educator

Military

Health Professional

Programmer/Analyst

student

Hobbyist

Other (specify)

5. ) Education

High School

Technical School

College Graduate

Post Graduate

Name

Street Address

City

State Zip

Daytime Telephone i 1

22456 22444 21500
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The three additional exchange instructions operate using the SP
register as a pointer to the stack ai-ea. The stack pointer is not af-

fected by execution of the instructions. Either HL, IX, or lY may
be exchanged with current top of stack by instructions EX ( SP ) ,HL;
EX (SP),IX; or EX (SP),IY. Examples of the three kinds of ex-

changes are shown in Fig. 5-5.

EX(SP1.HL ISP) = 1025H

CPU H REGISTER

MEMORY
1025H

1026H

EX(SPI,IX (SPI • 2043H

IX HIGH ORDER

IX LOW ORDER

MEMORY
20/13H

2Sm
(TOP OF STACK)

(TOP OF STACK + II

EX (SP), lY (SP) - 128AH

lYHIGH ORDER

lY LOW ORDER

(TOP OF STACK)

(TOP OF STACK + 1

Fig. 5-5. EX (SP) instructions.

LDI, LDIR, LDD, and LDDR are four block transfer instructions
that use register pairs BC, DE, and HL. All four instructions trans-
fer a block of data from one place in memory to another. The block
may be 1 to 64K bytes. Register pair BC must be preset with the
number of bytes to be transferred, register pair HL must point to

the starting address of the source block, and register pair DE must
point to the starting address of the destination block. Instruction
LDI performs the following actions when executed:

1. A byte is transferred from the source block to the destination
block using registers HL and DE as pointers.

MEMORY
128AH

128BH
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2. The HL and DE registers are incremented by one to point to

the next byte of each block.

3. The byte count in BC is decremented by one.

4. If (BC) ^ 0, the P/V bit in the flags is set.

Instruction LDD performs the same functions as LDI except that

the HL and DE registers in step 2 are decremented by one ( LDI =
LoafZ and Increment, while LDD = Load and Decrement). LDI,
therefore, transfers data from block start to block end while LDD
transfers data from block end to block start. The action of LDI and
LDD are shown in Fig. 5-6.

MMORY
SOURCE
BLOCK

MEMORY
DESTINATION

BLOCK

lOOOH

lOOlH

1002H

1003H

1004H

f2000H

2001H

2002H

2003H

2004H

(HLl AFTER LDD

(HL) BEFORE INSTRUCTION

(HU AFTER LDI

IDEl AFTER LDD

IDEl BEFORE INSTRUCTION

(DE) AFTER LDI

LDI ACTIONS

1. TRANSFER BYTE FROM 1002H TO 2002H

2. ADD1TOHLTOPOINTTO 1003H

3. ADD 1 TO DETOPOINTTO 2003H

4. SUBTRACT 1 FROM BC (BYTE COUNT)
5. GO ON TO NEXT INSTRUCTION

LDD ACTIONS

1. TRANSFER BYTE FROM 1002H TO 20O2H

2. SUBTRACT 1 FROM HL TO POINT TO lOOlH

3. SUBTRACT IFROWDE TO POINT TO 2001H

4. SUBTRACT 1 FROM BC (BYTE COUNT)

5. GO ON TO NEXT INSTRUCTION

Fig. 5-6. LDI and LDD instructions.

LDIR and LDDR perform identical functions to LDI and LDD
with a supplemental action. If the byte count is not zero (P/V flag

set), then the instruction continues transferring data until the byte
count is 0. This means that there will be N executions of an LDIR
or LDDR, where N is the initial value of the BC register. LDIR
and LDDR are automatic transfers of a block of data while LDI and
LDD are "semi-automatic," requiring a separate test of the P/V flag
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for completion. Both are useful, as will be demonstrated in section II.

Fig. 5-7 shows the actions of LDIR and LDDR.
The search instructions CPI, CPIR, and CPDR are similar to the

block transfer instructions in that a block of memory locations is

involved and these memory locations are scanned from start to end,

or from end to start. The A register holds an 8-bit search key that

can be to 255. BC, as before, holds a byte count of 1 to 65535 and
HL holds the starting address of the block (CPI or CPIR) or end-

IHU AT START (LDIRl

I
LDIR

flDDR
(HU AT START ILDDRI

• (DDAT START (LDIRl

jLDIR

f LDDR

IHLI AT START (LDDRI

LDIR ACTIONS

1. TRANSFER BYTE

2. ADDITOHL
3. ADDITODE
4. SUBTRACT 1 FROM BC
5. IF(BC)#OGOTOSTEP1
6. GO ON TO NEXT INSTRUCTION

LDDR ACTIONS

1. TRANSFER BYTE

2. SUB TRACT 1 FROM HL

3. SUBTRACT 1 FROM DE

4. SUBTRACT 1 FROM BC
5. IFIBCi; OGOTO STEP 1

6. GO ON TO NEXT INSTRUCT ION J

THESE ACT IONS REPEATED

N TIMES WHERE N=#
INBC INITIALLY

THESE ACTIONS REPEATED

N TIMES WHERE N = #
INBC INITIALLY

Fig. 5-7. LDIR and LDDR instructions.

ing address of the block (CPD or CPDR). When a CPI instruction

is executed, the contents of the memory location addressed by HL
is accessed and compared to the A register. If the memory byte
equals the A register, flag Z is set in the condition codes. The byte
count in BC is then decremented and the pointer in HL is incre-

mented to point to the next memory location. CPD functions in the

same manner except that the pointer in HL is decremented. CPI
and CPD will search a block for a given byte semi-automatically

as a test of the Z flag must be made after every execution of CPI
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or CPD to determine whether the byte was found. Fig. 5-8 shows
the actions of CPI and CPD.
CPIR and CPDR are similar to CPI and CPD except that they

are fully automatic. If the byte count in BC is not equal to zero at

the end of execution of the instruction, and the current memory byte

does not equal the key value, the instruction is again executed for

another comparison. The instruction is continually executed until

either the byte count in BC is zero or untU a memory location

matches the key, as shown in Fig. 5-9.

3005H t HL AT START (CPU

3006H -a HLAFTIRCPI

3007H

3008H

3009H

300AH

300BH HL AFTER CPD

300CH ^ -a HL AT START (CPD)

CPI ACTIONS

1. READ NEXT BYTE

2. ADDITOHL
3. SUBTRACT 1 FROM BC

4 COMPARE BYTE TO (Al AND SET FUGS
5. GO ON TO NEXT INSTRUCTION

CPD ACTIONS

1. READ NEXT BYTE

2. SUBTRACT 1 FROM HL

3. SUBTRACT 1 FROM BC
4. COMPARE BYTE TO (Al AND SET FLAGS
5. GO ON TO NEXT INSTRUCTION

Fig. 5-8. CPI and CPD instructions.

8-BIT ARITHMETIC AND LOGICAL GROUP

The 8-bit arithmetic and logical instructions are used to add, sub-

tract, AND, OR, exclusive or, or compare two 8-bit operands, one
of which must be in the A register. The second operand may be an
immediate operand, may be in another CPU register, or may be in

memory and referenced by HL register indirect addressing or by
indexed addr essing. The two operands are obtained, the designated

function is performed, and the result goes into the A register. The
condition codes are set as presented in Table 5-4.

There are two kinds of adds, ADD A,S and ADC A,S. In the first,

the contents of the A register and the second operand are simply

added and the results put into A; in the second, the contents of the

A register, the second operand, and the current state of the carry

flag are added and the results are put into the A register. The second
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BLOCK TO

BE SEARCHED

llAAH

UABH

UACH

UADH

llAEH

llAFH

IIBOH

IIBIH

L11B2H

33H

-HL AT START (CPIDI

-HL AT END (CPDD)

-HL AT END (CPIDI

-HL AT START (CPDDI

THESE ACTIONS
REPEATED FOUR
TIMES

AT START

(HL) " UAAH FOR CPIR UB2H FOR CPDR
(BCI - 9

(Al 33H
CPID ACTIONS

1. READ NEXT BYTE

2. ADDITOHL
3. SUBTRACT 1 FROM BC
A. COMPARE BYTE TO (Al AND SET FLAGS

5. IFBC^OANDBYTE^ATOSIEPl
6. GO ON TO NEXT INSTRUCTION

CPDD ACTIONS

1. READ NEXT BYTE

2. SUBTRACT 1 FROM HL

3. SUBTRACT 1 FROM BC

4. COMPARE BYTE TO (Al AND SET FLAGS

5. IF BC < AND BYTE | A GO TO STEP 1

6. GO ON TO NEXT INSTRUCTION

Fig. 5-9. CPIR and CPDR instructions.

THESE ACTIONS
REPEATED SIX

TIMES

add permits multiple-precision addition and is discussed in Section

II. Subtracts are analogous to the adds. SUB S subtracts the second
operand from the contents of the A register, while SBC A,S sub-

tracts the second operand and the current state of the cany from
the contents of the A register. The add and subtract instructions are

shown in three addressing mode examples in Fig. 5-10.

There are two additional instructions in this group, the INC S

and DEC S instructions. They increment or decrement the contents

of a CPU register (A, B, C, D, E, H, L) or memory location by one

and set certain condition codes as listed in Table 5-4. As an immedi-
ate instruction makes no sense for this one-operand instruction only

register, register indirect HL, and indexed addressing modes are

permitted as shown in Fig. 5-11.

GENERAL-PURPOSE ARITHMETIC
AND CPU CONTROL GROUP

The instructions in this group are listed in Table 5-5. They are

all implied addressing instructions involving one or no operands.

Two of the instructions involve one operand, CPL and NEC. Both
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GPL and NEG operate on the contents of the A register. CPL ones-
complements the contents of the A register, changing all zeros to
ones and all ones to zeros, as shown in Fig. 5-12. NEG negates the
contents of the A register changing all zeros to ones and all ones
to zeros and adding one as shown in the figure. The effect of CPL
is to find the value - [( A)+l] and NEG to find the value -A, where
(A) is the previous contents of the A register. Condition codes are
set as shown in Table 5-5.

ADDA.B

1^ 8-B IT RESULT

ALU

(ADD)

8 BITS. - J BITS

|CPU A REG
I |cy|

I
CPU B REG

|

ADC A,(HLI

RESULT

HL

SBC A, (IX + D)

8- BIT RESULT

ALU
(SUBTRACT
WITH CARRY)

8 BITS

CPU.

A

REG

8 BITS

I

~' IX + D
I

Fig. 5-10. Add and Subtract' instruction examples.

Two of the instructions in this group operate on the carry (CY)
flag of the condition codes. SCF sets the carry flag to a 1; CCF com^
plements the current state of the carry - a 1 is set to a 0, and a
is set to a 1. These instructions are useful in setting the carry prior to
aiithmetic or shifting operations.

The NOP instruction does notJiing and is used to "pad" a pro-
gram area or is implemented automatically by the Z-80 during a
HALT state to guarantee dynamic-memory refresh.
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INC D

mSTRUCTION r°"°l° 1 °h ° 0|

SPECIFIES

D

,'8 BITS

ALU

(INCREMENT)

;-8BITS

CPU D REG

INC (HU

INC (HU
INSTRUCTION 1° ° 1 1 ° 1 °

[

Fig. 5-1 1. INC and DEC instruction examples.

DI and EI disable or enable external (non-NMI) interrupts by-

resetting or setting the interrupt enable flip-flops IFFl and IFF2.
IM 0, IM 1, and IM 2 set interrupt modes 0, 1, or 2. The meaning
of the various modes is discussed in Chapter 7.

CPL

(A) BEFORE INSTRUCTION

(A) AFTER INSTRUCTION

NEC

(A) AFTIR INSTRUCTION

I' I 1 1 1
°l

Os - Is, Is- Os

1 1 1|

h 1 1 1 1 »l

Os Is- Os

1 1

+

1

1

|o 1 1 1 "1

Fig. 5-12. CPL and NEG instruction examples.
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The last instruction in this group is the DAA instraction. DAA,
or Decimal Adjust Accumulator, allows the Z-80 to perfonn binary-
coded decimal (bed) addition or subtraction. (The 8080 can per-
form only bed addition automatically. ) The DAA is performed di-

rectly after an ADD, ADC, INC, SUB, SBC, DEC, or NEC and
changes the binary results of the operation into bed results. Bed
addition will be discussed in detail in Section II.

1
I

S
I
1 I

I

Fig. 5-13. Sis»een-bil^ arithmetic t=:=i

register encoding. 00 = BC

01 " DE

10 - HL

11 ' SP

16-BIT ARITHMETIC GROUP

All of the instructions in this group operate on 16-bit double-
precision values in either register pairs BC, DE, or HL, or in 16-bit

SBC HL.SP

1 1 i\o 1 1 1

1 1 1|0 1

,- 16 BITS

ALU
(SUBTRACT

WITH CARRY)

16 BITS J

HL
UJ 16 BITS

SP

ADD IX. IX

1 1 0\l 1 1 1

1 1 1 1

ALU

(ADD)

16 BITS
16 BITS

(SECOND OPERANDI

Fig. 5-14. Sisteen-bit arithmetic instruction examples.
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CPU registers IX, lY, or SP. Increments and decrements of BC, DE,
HL, SP, IX, or lY can be performed by INC SS, INC IX, INC lY,

DEC SS, DEC IX, or DEC lY. The SS-type instructions increment
or deciement BC, DE, HL, or SP depending on the SS field of the

instruction as shovra in Fig. 5-13. The remaining increment and
decrements are all implied addressing types.

Three of the instructions in this group permit adding, adding with
carry, or subtracting with carry. The contents of BC, DE, HL, or

SP can operate on the contents of the HL register with the result

going to the HL register. The condition codes are set as shown in

Table 5-6, and an example of the instructions is shown in Fig. 5-14.

ADD IX,PP and ADD IY,RR permit addition of BC, DE, SP, or the

same index register to IX and lY, respectively. The condition codes
are set as listed in the table, and an example of the instruction is

shown in the figure.

ROTATE AND SfflFT GROUP

The instructions in this group include the 8080
( 8008) instruc-

tions that rotated only the A register and new instructions to shift

A, B, C, D, E, H, or L or a memory operand in just about every
possible shift configuration. Table 5-7 shows the rotate and shift

instructions.

RLCA ACTION

Elhpl SHIFT LEFT ONE
,33,^3,

RU ACTION

[HiH- SHIFTIEFTONE
,,^,^3,

RRCA ACTION

SHIFT RIGHT ONE -pi (8BITSI

RRA ACTION

If

(9 BITS)
pH SHIFTRIGHTONE |-»4cy|—

j

Fig. 5-15. RLCA, RLA, RRCA, RRA instructions
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RLD ACTION "BITS

7 4 3
I

7 4 3 i

A UNCHANGED MEMORY OPERAND

4 BITS 4 BITS

RRD ACTION "BITS

7 4 3 I 7
' 4 3

I

*
I
UNCHANGED

I | [ | |
MEMORY OPERAND

4BITS 4BITS

Fig. 5-16. RLD and RRD instructions.

RLCA, RLA, RRCA, and RRA rotate the A register only. The first

letter of the mnemonic stands for Rotate, the last Accumulator, and
the second the direction of the rotate, Zeft or right. RLCA rotates

left with the most significant bit going into the carry (CY) and the
least significant bit position. RRCA performs a similar operation
with a right shift. RLA and RRA perform a nine-bit shift with the

previous contents of the cany shifting into the A register and the
bit shifted out from the A register going into the carry. All four

shifts are shown in Fig. 5-15.

Two shifts of this group RLD and RRD operate on the contents

of a memory location, addressed by register indirect addressing HL,
and the A register, and shifts four bits at a time. These two shifts

are implemented to facilitate bed operations, where each bed digit

is made up of four bits. If the reader considers bits 7-4 of the A
register or memory location bed digit position and bits 3-0 bed
digit position 1, then these shifts are somewhat easier to follow.

RLD shifts the memory operandBCDi into memoiy operand bcdo and
memory operandscDo into Abcdi- The previous contents of memory
operandBCDi are replaced by Abcdi as shown in Fig. 5-16. Instnic-

SRA S

OPERAND
|—) S I SH IFT R IGHT ONE h-lcY)

SLA S

}*-0 OPERAND

SRLM
7,—H SHin RIGHT ONE

Fig. 5-17. SRA, SLA, SRL instructions.
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tion RRD operates in the reverse direction as shown in the illustra-

tion. The condition codes are set as shown in Table 5-7.

The remaining shifts in this group operate either on CPU registers

or on a memory location addressed by register indirect HL addi^ess-

ing or indexed addi-essing. Those with a mnemonic starting with

an R ai-e rotates, and those with a mnemonic starting with an S ai-e

arithmetic (SLA S, SRA S) or logical (SRL S). SLA S and SRA S

perform arithmetic left and riglrt shifts. Arithmetic shifts sign-extend

tlie sign bit to the right on a right shift and sometimes retain the

sign bit on a left shift. The Z-80 SRA S does extend the sign bit on a

right shift as shown in Fig. 5-17, but does not retain it on a left shift.

RLC S OPERAND

SH in LEFT ONE
(8 BITS)

SH in LEFT ONE

>j I9BITSI

RRC S OPERAND

SHIFT RIGHT ONE
f-i-fr|CY] (8 B ITS)

RRM
OPERAND

SHIFT RIGHT ONE
19 BITS)

Fig. 5-18. RLC, RL, RRC, RR instructions.

Any of the seven current CPU registers can be shifted when register

addressing is used with the R field specifying the register as shown
in Fig. 5-17. The condition codes are set as listed in Table 5-6. In-

struction SRL S performs a logical right shift with a zero going into

the sign bit position. Note that for all tlu-ee shifts a zero is shifted

into the operand and that the carry is set by the bit sliifting out of

the operand.

Shifts RLC, RL, RRC, and RR are rotate shifts performing either

an 8-bit shift ( operand without carry ) , or a nine-bit shift ( operand
with caiTy). RLC and RRC rotate in 8-bit fashion, while RL and
RR rotate in 9-bit fashion. All four shifts are shown in Fig. 5-18.
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BIT, SET, RESET, AND TEST GROUP

The instructions in this group set, reset, or test one of the eight

bits in a CPU register ( A, B, C, D, E, H, or L ) or memory operand.

Register, register indirect, or indexed addressing may be used (see

Table 5-8). In all three types, the B field specifies which bit of the

byte is to be operated on as follows:

BIT B

000
1 001
2 010
3 oil
4 100
5 101

6 no
7 111

BIT B,R tests the bit and sets the Z flag if the bit is a zero and
resets the Z flag if the bit is a 1. SET sets the indicated bit and does

SET 7,D

I
1 1 1 1 1 F] D BEFORE INSTRUCTION

1 1 1 1 1 1 1 1
I

D AFTER INSTRUCTION

RES 5,(HLI

HL

MEMORY
OPERAND

XXOXXXXX

THIS BIT RESET

BIT O.dX +DI

BIT O.dX + D)

INSTRUCTION 1 1 1 1 1 1

1 1 1 1 1

D

1 D 1 1

BIT SPECIFIED

MEMORY
OPERAND

X X X X X X X 0/1

SETZ IFBIT-0
RESET Z IFBITM

Fig. 5-19. SET, RES, BIT instruction examples.
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JP107AH

JP107AH

INSTRUCTION 1 I 1 1

7AH

10 H

JP NC, 107AH

JP 107AH

JUMP ON

NO CARRY

Fig. 5-20. JP and JPCC instruction examples.

not change the condition codes, while RES resets the indicated bit

and does not change the condition codes. Fig. 5-19 shows the three

kinds of bit instructions and examples of their use with various ad-

dressing modes.

JUMP GROUP

The instructions in the jump group are shown in Table 5-9. Basi-

cally, these can be divided into jumps, calls, and returns. Jumps
cause a transfer to another location in memory and do not save the

contents of the program counter to mai'k where the jump occurred.

Calh perfomi the same action as a jump, but save the PC in tlie

memory stack so that return may be made to the instruction follow-

ing the call. Returns effect the transfer back to the instruction fol-

lowing the call by popping the stack and restoring the contents of

the top of stack to tlie progi-am counter. Calls and returns are used
for subroutine processing. Subroutines are segments of code ranging

from several instructions to hundreds of instructions that are called

from many parts of a progi'am. This avoids redundancy in writing

the subroutine code many times throughout the program and saves

memory and development time.

Two of the jump instructions JP NN and JP CC,NN exist in the

8080 and 8008 in extended addressing and are shown in Fig. 5-20.

The NN field is the jump address. JP NN jumps unconditionally to

the address, while JP CC,NN jumps to the address if the conditions

CC are met. The encoding of the CC field is as follows:

cc Condition

000 Z = (nonzero)

001 Z= 1 (zero)

010 c = o (no carry)

01

1

C= 1 (carry)

100 P = (parity odd)
101 p= 1 (parity even
no S = (positive)

in S = 1 (negative)
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JRE

JR 103AH

JR 103AH INSTRUCTION

PC—NEXT INSTRUCTION

1 1 1000 H

\^ 3SH lOOlH

1002H

DISPLACEMENT FIELD 103AH - PC

103AH - 1002

38H
Fig. 5-21. JR E instrucHon example.

In addition to extended addessing, the Z-80 allows register indirect
HL and indexed addressing for the JP NN instruction.

The remaining jumps are all of the relative addressing kind. JR E
emulates the former jump. JR E is an unconditional relative jump
to the effective address and is shown in Fig. 5-21. JR C,E; JR NC,E;
JR Z,E; and JR NZ,E are relative conditional jumps that perform the
jump if the caiTy is set or reset or if the zero flag is set or reset, re-

spectively. The DJNZ E instruction is unique in that it decrements
the contents of the B register. If the result is nonzero, the jump is

performed; if zero, the next instruction in sequence is executed.
The two call instructions in this group also appear in the 8080 and

8008. CALL NN is an unconditional call and CALL CC,NN condi-
tionally calls the subroutine at address NN. The conditions CC are
the same as in the previous list. Likewise, RET and RET CC are
also identical to the 8080 and 8008 instructions. RET uncondition-
ally returns to the instruction after the call, while RET CC condi-
tionally returns based on the CC field and the state of the condition-
code register.

RSTP

om
08H

lOH

18H

20H

28H

30H

38H

T FIELD

000

001

010

Oil

100

101

110

111

Fig. 5-22. RST P instruction.
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RETI and RETN are two special instructions that provide for

special actions for returning from an external maskable interrupt

(RETI) and nonmaskable interrupt (RETN). They will be dis-

cussed in Chapter 7.

RST P is also an instruction present in the 8080 and 8008. It is

used for two operations. The primaiy operation is as an instruction

that an interrupting device "jams" onto the data bus to effect a

vectored interrupt. The subordinate function is to allow a special

call to one of eight page locations. The interrupt functions wiU
be discussed in Chapter 7. When the RST P is used to call a page

location, the instruction acts as any unconditional call. The jump is

made to one of eight page locations based on the T field of the

RST P as shown in Fig. 5-22.

INPUT AND OUTPUT GROUP

The last grouping of Z-80 instructions (Table 5-10) is the Input

and Output group. The instructions in this group allow for transfer

of 8-bit bytes of data to and from CPU registers A, B, C, D, E, H, or

L with any of 256 possible I/O device addresses specified in the in-

struction. In addition, block transfers similar to the block transfers

in the previous block transfer group can be implemented. Up to 256

bytes may be transferred semi-automatically or automatically be-

tween an I/O device and a memory block by using the I/O block

transfer instructions (INI, INIR, IND, INDR, OUTI, OTIR, OUTD,
and OTDR) . The I/O instructions will be covered in detail in Chap-

ter 15 of this section.
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CHAPTER 6

Flags and Arithmetic Operations

The Z-80 flags have been briefly mentioned in previous chapters.

This chapter discusses the flags in detail and the operations in the
Z-80 which affect them. The flag register format is shown in Fig. 6-1.

Although the flags exist as individual flip-flops within the CPU, they
are logically grouped to simplify saving and restoring the flags for

interrupts and other functions.

The Z flag, S flag, CY flag, and parity (overflow flag) may be
tested by the conditional jumps described in Chapter 5. The condi-
tional jump effectively tests the results of arithmetic, logical, shift,

I/O or other operations preceding the conditional jump. The H and
N flags are used to facilitate decimal or (bed) arithmetic operations.

Z FLAG

The Z flag (bit position 6) is set if the result of certain instruction

executions was zero. The Z flag will be set if the result is zero and
reset if the result is nonzero for the instructions shown in Table 6-1.

BIT BIT

7 6 5 4 3 2 1

s z
NOT
USED

H
NOT
USED

P/V N c

LcARRYFLAG
I— DAA ADD/ SUBTRACT FUG

'— PARITY/OVERFLOW FUG

'— DAA HALF-CARRY FUG

I— ZERO FUG
— SIGN FUG

Fig. 6-1. Flag register formot.
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Table 6-1. Zero Flag Actions

Group Instruction Action

8-Bit LD A,l Set Z if 1 register—0/ otherwise reset Z

Lo^d Group LD A,R Set Z if R register™0, otherwise reset Z

Search Group CPI, CPIR,

CPD,CPDR
Set if A=(HL), otherwise reset

ADD A,S

ADC, A,S

SUB S

8-Bit SBC A,S

Arithmetic OR S

Group XOR S

CP s
1 Kir c

— .

General- n A A

Purpose

Arithmetic NEG
Group

Set if result—0, otherwise reset
16-Bit ADC HUSS
Arithmetic SBC HUSS
Group

RLC S

RL

RRC S

Rotate and DD Q

Shift Group SLA S

SRA S

SRL S

RLD

RRD

Bit Test Group BIT B,S Set if designated blti^O, otherwise reset

Input and 1NR,(C) Set if input data=0, otherwise reset

Output Group INI,IND, Set if B — 1=0, otherwise reset

INIR.INDR, Set

OUTI,OUTD Set if B — 1 =0, otherwise reset

OTIR,OTDR Set

As the table shows, the Z flag is afi^ected principally for arithmetic,

logical, and shift operations. Loads and stores have no effect on the

Z flag except for tlie two cases of LD A,I and LD A,R. The search

group is essentially a comparison or subtraction and the Z flag is

also afFected here. The bit test group is effectively a logical and
and the Z flag is again set or reset on the result. Note that except

for the instructions shown, no other instructions have an effect on
the Z flag. Once the Z flag is set or reset by an ADD A,S, for exam-

ple, it will not be reset until the next instruction in this group is

encountered. This is an important point as it means that the condi-

tional jumps on the Z flag, JP Z,NN; JP NZ,NN; JR Z,E; and JR NZ,E,
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do not have to be immediately executed after the instiuction that

affects the Z flag. As long as no other instructions in Table 6-1 ap-

pear before the test, the conditional jump may be deferred as long

as desired. In actual practice, the conditional jump will occur close

to the insti-uction setting the flag, however.
The Z flag would normally be tested for a variety of conditions.

Some of the more common ones are shown below:

1. Equality of two operands after a CP (compare).
2. Increment or decrement of an index count down to 0.

3. Bit test result of 0.

4. Result after a shift of 0, signifying no additional data in oper-

and.

5. Zero field after and.

SIGN FLAG

The S flag ( bit-position 7 ) is set if the result of certain instruction

executions are negative and reset if they are positive. Since in two's

complement notation, positive quantities have bit 7 = and nega-

tive quantities have bit 7=1, the sign flag reflects the true sign

of the result. The S flag is affected by the instmctions shown in

Table 6-2.

Sign flag actions are very similar to zero flag actions as shown
in the table. The sign flag is primarily affected by arithmetic and
shift operations, including the comparisons in the search group.

Note that for some instructions the flag is affected, but that the state

is not known. The same ground rules on testing of the sign flag

apply as for testing of the zero flag; the conditional branch must
be performed before an instruction is executed that affects the flag.

Some of the common conditions for which the sign flag is tested are:

1. Comparisons of two operands (greater, less than, etc.)

2. Increment or decrement of an index count past

3. Shift of a 1 (or 0) bit into sign bit position

CARRY FLAG

While the zero and sign flag were associated with arithmetic, shift,

and logical operations, the carry flag is associated principally with
arithmetic and shift operations as shovra in Table 6-3, although it is

reset by the logical instructions.

The carry flag is used to:

1. Test the results of the comparison of two operands
2. Test the results of a shift operation
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3. Provide a means to do multiple-precision arithmetic

When a cariy is tested after a compare of two unsigned operands,

the carry will be reset if in the comparison OPl : OP2 (OPl — OP2),
OPl is greater or equal to the second operand 0P2. Some examples
of this are shown in Fig. 6-2. The comparison couJd also have been
tested by the sign bit, which is a more common way to implement

Table 6-2. Sign Fiag Actions

Group Instruction Action

8-Bit

Load

Group

LD A,l

LD A,R

Set if 1 register is negative, otherwise reset

Set if R register is negative, otherwise reset

Search

Group

CPI,CPIR,

CPD,CPDR

8-Bit

Arithmetic

Group

ADD A,S

ADC A,S

SUB S

SBC A,S

AND S

OR S

XOR S

CP S

INC S

DEC S

Set if result is negative, otherwise reset

General-

Purpose
DAA Set if msb of A 1= 1, otherwise reset

Arithmetic

Group
NEG

16-Bit

Arithmetic

Group

ADC HL,SS

SBC HL,SS

Rotate

and

Shift

Group

RLC S

RL S

RRC S

RR S

SLA S

SRA S

SRL S

Set if result is negative, otherwise reset

RLD

RRD
Set if A is negative after shift, reset otherwise

Bit Test

Group

BIT B,S Unknown

IN R,(C) Set if input data is negative, otherwise reset

Input and

Output

Group

INI,INIR,

IND,INDR,

OUTI,OTIR,

OUTD,OTDR

Unknown
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Table 6-3. Carry Flag Actions

Group Instruction Action

8-Bit

Arithmetic

Group

ADD A,S

ADC A,S
Set if carry from bit 7, otherwise reset

SUB S

SBC S
Set if no borrow, otherwise reset

AND S

OR S

XOR S

Reset

CP S Set if no borrow, otherwise reset

General-

Purpose

Arithmetic

Group

DAA Set if bed carry, otherwise reset

NEG Set if A was not OOH before negate, otherwise reset

CCF Set if CY was before CCF, otherwise reset

SCF Set

16-Bit

Arithmetic

Group

ADD HL,SS

ADC HL,SS
Set if carry from bit 1 5, otherwise reset

SBC HL,SS Set if no borrow, otherwise reset

ADD IX,PP

ADD IY,RR
Set if carry from bit 15, otherwise reset

Rotate

and

Shift

Group

RLCA
RLA

Set from A bit 7

RRCA
RRA

Set from A bit

RLC S

RL S
Set from bit 7 of operand

RRC S

RR S
Set from bit of operand

SLA S Set from bit 7 of operand

SRA S Set from bit of operand

SRL S Set from bit of operand

COMPARE 20:

2

OOOIPIOO (20iqI: 0a00fM10(2l

00010100 120 jg)

CY imillO (-2)

[T] «— 00010010 I +18
iQ
W ITH CARRY, 20 > 2)

Fig. 6-2. Carry comparisons.
' COMPARE 20:20

OMIOIM
(20io):

00010100
{20io)

CY

mmm (2010I

11101100 1-2010)

OOOOOOW 10 WITH CARRY, 20 - 20)



the test. In the shift instmctions, the cany is set or reset by the state

of the bit shifted out of the operand and this provides a convenient

way of testing and conditionally branching on a carry (1 bit) or no
carry (0 bit). Finally, tlie carry is set fiom the high order bit of the

result during multiple-precision adds or subtracts. The first add is

an ADD (without cany) while successive adds of liigher-order oper-

ands are ADC types, which add in the carry from the lower-order

result (see Fig. 6-3).

MULT I PLE-PRECISION ADD

MS BYTE LS BYTE

00011100 OmOlll + 7, 287 (16 BITS)

+ 01011111 11111100 t 24. 572 (16 B ITSI

L*"^ 01110011 + 31,859 (16 BiTSI

oiimoo

MULTIPLE-PRECISION SUBTRACT

MS BYTE LSBYTE

00001010 OOOOlOlO +2570 (16 BITSI

00100000 00000001 -(+8193) (16 BITS)

00001010 00001010 +2570 (16 BITS)

11011111 11111111 -8193 (KBITS)

L. '''^
00001001 -5623 (16 BITS)

moiolo

Fig. 6-3. Carry in multiple-precision operations.

PARITY/OVERFLOW FLAG

The parity/ overflow flag (bit-position 2 in the flag register) is a

dual-pui-pose flag. In the parity case, the flag is set to represent odd
parity of the result of the operation. Even parity occurs when the

sum of the eight bits of the result is even. In this case, the parity

bit is set. If the sum is odd, the parity bit is reset. ( See Fig. 6-4 )

.

When the P/V flag is used to represent overflow, the flag is set if

arithmetic overflow occurs after an arithmetic operation. Aritlimetic

overflow will occur if in an add or subtract operation of two numbers
of like signs the sign of the result changes, indicating that the result

is too large to be held in eight (or sixteen) bits. Examples of over-

flow conditions are shown in Fig. 6-5. Table 6-4 lists the instnrctions

that affect the parity/ overflow flag.

RESULT = 00101011

4 ONE B ITS = EVEN PAR ITY, SET P/V FLAG

Fig. 6-4. P/V flag used as

RESULT = mjmO parity indicator.

5 ONE B ITS = ODD PAR ITY. RESET P/V FLAG
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Table 6-4. Parity/Overflow Flag Actions

Group Instruction Action

8-Bit

Load Group

LD A,l

LD A,R
Contents of IFF2

Block

Transfer and

Search Group

LDI,LDD,

CPl.CPIR,

CPD,CPDR

Set if BC — 1 0, otherwise reset

LDIR.LDDR Reset

8-Bit

Arithmetic

Group

ADD A,S

ADC A,S

SBC A,S

Set if overflow, otherwise reset

AND S

OR S

XOR S

Set if parity even, otherwise reset

CP S Set if overflow, otherwise reset

INC S
Set if operand was 7FH before increment,

otherwise reset

DEC S
Set if operand was 80H before increment,

otherwise reset

General-

Purpose

Arithmetic

Group

DAA Set if (A) parity even, otherwise reset

NEG Set if (A) was BOH before negate, other-

wise reset

16-Bit

Arithmetic

Group

ADC HL,SS

SBC HL,SS
Set if overflow, otherwise reset

Rotate and

Shift Group

RLC S

RL S

RRC S

RR S

SLA S

SRA S

SRL S

RLD S

RRD S

Set if parity even, otherwise reset

Bit Test

Group
BIT B,S L/nknown

Input and

Output Group

IN R,(a Set if parity even, otherwise reset

INI.INIR,

[ND,INDR,

OUTI,OTIR,

OUTD,OTDR

Unknown
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Table 6-5. H and N Flag Actions

Group Instruction H Action N Action

8-Bit Load

Group

LD A,l

LD A,R
Reset Reset

Block

Transfer

and Search

Group

LDI,LDIR,

LDD,LDDR

CFI,CPIR,CPD,

CPDR

Set if no borrow from bit 4,

otherwise reset
Set

8-Bit

Arithmetic

Group

ADD A,S

ADC A,S

Set if no carry from bit 3, other-

wise reset
Reset

SUB S

^Rf A S

Set if no borrow from bit 4,

otherw/ise reset
Set

AND S

OR S

XOR S

Set Reset

CP s
Set if no borrow from bit 4,

otherwise reset
OCT

INC S
Set if carry from bit 3, otherwise

reset
Reset

DEC S
Set if no borrow from bit 4,

otherwise reset
Set

General-

Purpose

Arithmetic

Group

DAA Indeterminate Not affected

oet oet

NEG
Set if no borrow from bit 4,

otherwise reset
Set

CCF Not affected Reset

SCF Reset Set

16-Bit

Arithmetic

Group

ADD HL,SS

ADC HL,SS

Set if carry out of bit 11, other-

wise reset
Reset

SBC HL,SS
Set if no borrow from bit 12,

otherwise reset
Set

ADD IX,PP

ADD IY,RR

Set if carry out of bit 11, other-

wise reset
Reset

Rotate

and Shift

Group

RLCA

RLA

RRCA
RRA
RLG S

RL S

RRC S

RR S

SLA S

SRA S

SRL S

RLD

RRD

Reset Reset
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Table 6-5. H and N Flag Actions—cont

Group Instruction H Action N Action

Bit Test

Group
BIT B,S Set Reset

Input and

Output

Group

INR,(C) Reset Reset

INIJNIR,

INDJNDR,
OUTI,OTIR,

OUTD,OTDR

indeterminate Set

OnUUl +12710

P;v + 01000000 + 6410

[T] lOllllU +191 10 (OVERFLOW, TOO URGE TO HOLD IN 8 B ITS!

10000011 -12510

P/V +10000010 -12610

[T] 00000101 -251io (OVERFLOW, TOO LARGE TO HOLD IN 8 B ITS!

00100000 +3210

P/V 00100000 +32 10

[T] 01000000 +64 10 (NO OVERFLOW)

fig. 6-5. Overflow conditions and P/V flag.

H AND N FLAGS

The H and N flags (bit-positions 4 and 1, respectively) are two

flags that cannot be tested by conditional jump instractions. They
are used by the Z-80 CPU for bed arithmetic operations. H repre-

sents the half-carry from the four least significant bits of the result

(least significant bed digit) and N is the subtract flag, which is set

to indicate whether an add or subtract was last executed. Table 6-5

shows the instructions afl^ecting the H and N flags.

Note that in the general case, an add instruction resets the N flag

and a subtract sets the N flag. This is also true for increments ( adds

)

and decrements ( subtracts ) . When the DAA instruction is executed

after an add or subtract, it senses the N flag and half-carry H flag

and properly adjusts the result from a binary to bed result. For an

add (N = 0), a binary result must be con-ected by adding a six to

the bed digit position under certain conditions. Those conditions

are:

1. If there has been a carry from the bed digit (H = 1 or C = 1).

2. If there was no cany but bed digit position has a value greater

than lOOlo.
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ADD HAND 22 IN BCD

0001 0001 (11 BCD)

0010 0010 (22 BCD)

0011 0011 (33 BCD)

ADD WAND 29 IN BCD

0001 1001 (19 BCD)

0010 1001 (29 BCD)

0100 ~0010 (42 BCD'.

0000 0110 ADJUST

0100 1000 (48 BCD

WRONG) CY-0. H "1

BY +6 TO LOW ORDER BCD DIGIT

CORRECT)

ADD 91 AND 92 IN BCD

CYm
CY

m

1001 0001

1001 0010

^0010 0011

0110 0000

1000 0011

(91 BCD)

(92 BCD)

(23 BCD: WRONG) CY 1, H -0

ADJUST BY +6 TO HIGH ORDER BCD DIGIT

(83 BCD WITH CY = 1 CORRECT)

ADD 99 AND 99 IN BCD

1001 1001 199 BCD)

CY 1001 1001 (99 BCD)

m'^ooii ^0010 (32 BCD'. WRONG) CY 1, H 1

QUO 0110 ADJUST BY +6 TO BOTH BCD DIGITS

m 1001 1000 (98 BCD WITH CY = 1 CORRECT)

Fig. 6-6. Bed addition and use of CY and H.

Some examples of the above are shown in Fig. 6-6. For a subti-act

(N = 1), a binary result must be corrected by subtracting a six from
a bed digit position under certain conditions. If there is a half-carry,

a six is subtracted from the least significant bed digit position. If

there is a carry, a six is subtracted from the most significant bed
digit position. If there are both a cany and half-carry, a six is sub-
tracted from each bed digit position. Fig. 6-7 illustrates the condi-

tions for bed subtract corrections.

Multiple-precision bed arithmetic is easily possible by maintain-
ing the cany from the last bed addition or subtraction.
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SUBTRACT 11 FROM 99 IN BCD

1001 1001 (99 BCD)

-0001 0001 (11 BCD)

1000 1000 188 BCD) CY = 0. H =

SUBTRACT 19 FROM 91 IN BCD

1001 0001

-0001 1001

Olll' 1000

0000 0110

0111 0010

(91 BCD)

(19 BCD)

(78 BCD'. WRONG) CY » 0. H = 1

ADJUST BY -6 TO LOW ORDER BCD DIGIT

(72 BCD WITH CY = 0, CORRECT)

SUBTRACT 91 FROM 19 IN BCD

CY

m-
CY

m

0001 1001

-1001 0001

'1000 1000

-0110 0000

0010 1000

(19 BCD)

(91 BCD)

(88 BCD'. WRONG) CY =1, H -

ADJUST BY -6 TO HIGH ORDER BCD DIGIT

(28BCDWITHCY-0, CORRECT)

SUBTRACT 99 FROM 11 IN BCD

CY

0001

-1001

[T]'~01lf '^000

CY

m
Olio

0001

0001 (11 BCD)

1001 (99 BCD)

(78 BCD'. WRONG) CY = 1, H " 1

DUO ADJUST BY -6T0 BOTH BCD DIGITS

0010 (12 BCD WITH CY = 0, CORRECT)

Fig. 6-7. Bed subtracl-ion and use of CY and H.



CHAPTER 7

Interrupt Sequences

Interrupts in the Z-80 serve tlie same purposes as interrupts in

other microprocessors and computers—they signal the microproces-
sor that an external event has occurred that requires attention. Many
times tlie external event is associated vs^ith the transfer of I/O data
to and from the microcomputer timing functions, or abnormal or

catastrophic external conditions.

When interrupts are associated with transfer of I/O data, the in-

terrupt is a mechanism to overlap CPU processing time vdth the
I/O activity. As an example of this kind of interrapt, let us assume
that a microcomputer system is connected to a "high-speed" paper-
tape reader. The paper-tape reader may be able to read data at the
rate of 500 frames, or bytes, per second. Each new data byte vwll

be available eveiy 1/500 second or 2 milliseconds. If the program
that reads data from the paper-tape reader is implemented without
interrupts, it will read a byte of data by an IN instiuction every 2
milliseconds and the entire read operation will take approximately

2.75 microseconds, as shown in Fig. 7-1. For the remainder of the

time the program is simply continually querying the paper-tape

reader ( by means of another IN instruction to read status informa-

tion) whether the next byte is available. If 500 bytes are to be read,

and if the average CPU instruction time is 2.5 microseconds, then

(1/2.75 X 10-0 _ 500) - 363,136 instruction times are lost while

the CPU is idle awaiting the next byte of data.

Interrupts allow the CPU to make use of the idle time associated

with I/O activity. With proper use of intenupts, the CPU may exe-

cute another poition of the program while the I/O idle time occurs

and be infonned of the availability of the next data byte by inter-
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rupt action. An interrupt sequence will then be entered and the CPU
can quickly pick up the next I/O data, do some minimal processing,
and exit the interrupt sequence to return to the interrupted program.
If multiple I/O activity is required, many I/O devices can operate
in this fashion, signaling the CPU by vectored interrupts which de-
vice requires I/O attention. The Z-80 expands the 8-vectored inter-

rupt capability of tlie 8080 to 128 separate vectored interrupts that
are usable for I/O or other types of functions.

A second use of interrupts is to provide CPU timing functions.
It is convenient to provide measured time intervals to the CPU to

enable the CPU to maintain a real-time clock for system time-out
functions or time-of-day indications. Typically, the time interval is

provided via interrapts, with a programmable counter-timer inter-

face that interrupts the CPU every tenth of a second, or so. The
CPU will recognize the interrupt as a timer interrupt, enter the
proper software interrupt processing routine, and adjust a system
clock and/or perform other timing functions, and exit the interrupt
routine to continue processing at the interrupted point.

A third use of interrupts is to signal abnormal or catastrophic
system conditions. Typical conditions of which the CPU would be
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informed is pending power failure or failure of a redundant portion

of the computer system in a real-time system. Often these functions

are implemented using a nonmaskable interrupt, since the interrupt

must be recognized immediately and not deferred until current pro-

cessing is completed. The Z-80 has provision for this kind of inter-

rupt with a special NMI (nonmaskable interrupt) input that pro-

duces a separate interrupt action from other external interrupts.

Z-80 INTERRUPT INPUTS

As Fig. 3-1 shows, there are two inteiTupt inputs to the Z-8 micro-

processor chip, the NMI, nonmaskable interrupt, and the INT, or

normal external interrupt. The NMI input allows a single NMI
interrupt while the INT allows up to 128 separate vectored inter-

rupts by means of encoding from external device controllers or in-

terrupt logic. The NMI is always recognized by the CPU. If the

NMI becomes active, the automatic NMI actions are unconditionally

implemented. The INT is recognized by the CPU only if an inter-

rupt enable condition is present in the CPU. The interrupt enable

is provided by a programmable flip-flop that can be set ( intenupts

enabled) or reset by the EI or DI instructions. The INT interrupt

action is more complicated than the NMI action, since an external

device must provide encoded data relating to the identification of

the interiaipting device. In addition, there are three different inter-

rupt modes for the maskable INT interrupt, modes 0, 1, and 2, that

are set by instructions IM 0, IM 1, IM 2. Each mode provides a dif-

ferent interrupt action.

NMI INTERRUPT

When an NMI interrupt occurs (NMI goes low to active state),

the interrupt is recognized at the end of the current instiuction.

The CPU then effectively performs a Restart insti-uction to location

0066H. As Chapter 5 describes, a Restart pushes the current con-

tents of the PC into the stack, and transfers control to one of eight

locations 0000, 0008H, . . . 0038H. The NMI action is the same as

a Restart, but the transfer address is always 0066H. As an example

of the stack actions during the NMI, let us assume that the CPU
was executing the instructions shown in Fig. 7-2. The NMI inter-

rupt occurs during the RRCA instruction. At the end of the RRCA,
the contents of the program counter is 102BH. As the NMI interrupt

is implemented by the CPU, the contents of the PC is pushed into

the stack as shown, and the stack pointer decremented by two. The

instruction at location 0066H is then executed.
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We wiU assume in this case that the external condition causing
the inten-upt is not a catastrophic one, and the system will remain
operative. Since the flag register and all CPU registers must be re-

stored exactly as they were at the time the interrupt occurred when
a return to location 102AH is made, the routine at 0066H must some-
how save the environment. The easiest way to do this in the Z-80
is simply to switch to the alternate set of registers by two exchange

(1) MAIN PROGRAM

MEMORY

I.OCATION

1024H

1027H

102AH

102BH

INSTRUCTION

LD A,(2003H)

LD B.IIY + Dl

RRCA-" NMI '2)

CP(IX + D)
IN^RUPT

2BH

lOH

(3)

SAVE RETURN ADDRESS
IN STACK

(1) NMI INTERRUPT PROCESSING

MEMORY

LOCATION

0066H

0067H

INSTRUCTION

EX AF, AF'

EXX

EXCHANGE AF

EXCHANGE OTHERS

SP-

2BH

lOH

RETURN ADDRESS
TO PC

OTHER INTERRUPT
PROCESSING

Fig. 7-2. NMI interrupt processing.

RESTORE AF

RESTORE OTHERS

RETURN

instructions. Interrupt processing now proceeds for the NMI condi-
tion. The size of the intermpt processing routine is dependent on the
amount of processing to be performed. At the end of processing, two
exchange instructions restore the CPU registers and flags to their

status at the time of the intermpt and a special instruction RETN
is executed to return from the NMI interrupt. RETN pops the pro-

gram counter from the stack and causes the CPU to start execution
of the next instraction at 102AH. At this point, all CPU registers

and flags appear as if the NMI interrupt had never occurred.
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There is a subtlety about the NMI that has not been mentioned

previously. There are actually two interrupt flip-flops in the Z-80

CPU, designated IFFi and IFF2. IFFi is the flip-flop associated with

disabling or enabling the maskable interrupt. IFFo is used to tem-

porarily store the state of IFFi when an NMI interrupt occurs. In

addition to storage of IFFi, the NMI resets IFFi so that no mask-

able external interrupt can occur. This avoids the reentranctj prob-

lems of simultaneous NMI and maskable interrupts. When the

RETN is executed, the previous state of IFFi is restored by trans-

ferring the contents of IFF2. The maskable interrupt status (en-

abled or disabled) is now the same as before the NMI interrupt.

If the program can allow an external maskable interrupt to occur

dming the time an NMI interrupt is being processed, an EI instruc-

tion can be executed after storage of the registers and flags. Exter-

nal interrupts would then be enabled during NMI processing time,

although tliis action would probably not be typical in most appli-

cations.

MASKABLE INTERRUPT MODE
Interrupt mode is the default CPU interrupt mode on start up.

When signal RESET initially becomes active, mode is set in the

CPU. Mode may also be set by execution of an IM instruction.

Interrupt mode is identical to the interrupt processing in the 8080.

If mode is set and the inteiTupt enable fhp-flop IFF] is set and

an external maskable interrupt occurs, the following actions take

place:

1. Interrupt occurs (INT goes low)

2. At end of current instruction, CPU recognizes interrupt

3. CPU responds by lORQ and M l signal

4. External device recognizes the lORQ and Ml response and

outputs a Restart instruction to data bus encoded with OOO2

to III2 as T field

5. CPU strobes in Restart and executes the instruction causing

transfer to page location corresponding to T field (0, 8, 10

. . .
,
38H)

6. Instractions defining the interrupt processing routine are exe-

cuted

7. An RETI instmction is executed returning control to next in-

struction after interrupt

Mode inteiTupt processing is similar- to the NMI intemipt pro-

cessing. Both execute a Restart, both transfer to a page location,

and both require an RET instmction at the end of the interrupt

processing. Let us illustrate a maskable interrupt mode by hy-
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pothesizing a paper-tape-reader controller with interrupt capability.

Fig. 7-3 shows the interrupt action. When the next frame of tape
has been read, the paper-tape controller brings the INT line low.
When the interrupt is recognized by the CPU, lines lORQ and HI
are brought low (not to scale in figure). This is decoded by the
controller as an interrupt acknowledge and the controller jams an
RST 20H instruction onto the data bus. The CPU executes the RST
20H, pushing the contents of the program counter (3332H) into the
stack and transferring control to page location 20H. At 20H a JP
OFEEOH is executed to transfer control to the paper-tape interrupt

NEXT

FRAME

1
PAPER TAPE

READER

CONTROLLER
121 CONTROLLER/CPU

INTERRUPT

COMMUNICATION

13)

SAVE LOCATION

OF INTERRUPT

(61

RETURN TO

3332 H

M) INTERRUPT PROCESSING AT 20H

MEMORY

LOCATION INSTRUCTION

JP OFEEOH

151 PAPER TAPE INTERRUPT

PROCESSING ROUTINE

PUSH AF

PUSH BC

PUSH DE

PUSH HL

OTHERS > PROCESSING

POP HL

POP DE

POP AF

El

Fig. 7-3. Mode interrupt processing.
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processing routine at FEEOH. (The interrupts have automatically

been disabled on the receipt of the maskable interrupt and will not

be reenabled untO an EI instruction is executed.) The paper tape

routine saves the contents of the registers and flags by a series of

pushes into the stack (an alternative way to save the environment

from register switching). Instructions are then executed to read in

the character, reset the interrupt states in the paper-tape controller,

and, in general, process the data. At the end of the interrupt pro-

cessing routine, the environment is restored by a series of pops in

reverse order, an EI instruction is executed for the next character

interrupt, and an RETI returns control to location 3332H.

The above example considers only one inten-upting device, the

paper-tape-reader controller. It is possible to have many interrupt-

ing devices in this mode and mode 2 of the Z-80 interrapt sequence.

When many devices are capable of interrupting, some means of pri-

oritizing the devices must be implemented to avoid simultaneous

inteiTupt requests from two or more devices over the same inter-

rupt line. If a prioritizing scheme is not used, confusion will result

as each device thinks that it has received an intenupt acknowledge.

In a prioritizing scheme, each device is assigned a priority from

high to low as shown in Fig. 7-4. The eight devices shown here

connect to a priority interrupt control unit (Intel 8214). The pri-

ority interrapt control unit and associated logic allows only one de-

vice to interrupt at a time and handles all interrapt commimication

between the CPU and interrupting devices in interrupt mode 0.

If several devices have simultaneous interrapt requests, the control

unit vdll determine the highest-priority request, bring down the

INT line, and jam the proper Restart instraction onto the data bug

DECREASING PRIOR ITY-

DEV

D

DEV

1

DEV

3

DEV
4

INTEL

8214

AND OmER
LOGIC

DEV

5

DEV
6

DEV
7

INT

TO
CPU

RESTART
TO
CPU

Ml AND lORQ

Fig. 7-4. Priority encoding for interrupt mode 0.
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after interrupt acknowledge. At any time dming the servicing of

one interrupt, one or more higher-priority inteiTupts may become
active. When this occurs, the intenupt sequences for the higher-

level interi-upts are entered. If the intermpt control flip-flop IFFi
has been properly maintained to prevent interrapts from other de-

vices at critical times, such as saving the environment, there should
be no conflicts in servicing n number of interrapts in nested fashion.

Further examples of prioritizing will be discussed for the mode 3
interrapt sequence.

MASKABLE INTERRUPT MODE 1

The next two interrupt modes, mode 1 and mode 2, are not com-
patible with the Intel 8080. Mode 1 is set by the IM 1 instracHon.

The interrupt acHons of mode 1 aie identical to the nonmaskable
interrupt response, except that the Restart location is location 0038H
rather than 0066H. If mode 1 is set and the maskable interrupts are

enabled, then an interrapt request on INT will cause a Restart to

location 0038H. The contents of the program counter will be saved
in the stack and the interrupt servicing routine at location 0038H
will be entered. Tlie advantage of mode 1, as in the NMI interrapt,

is that no external logic is required to jam the Restart onto the data
bus at the proper time. An external intermpt can be implemented
with only enough logic to bring INT active and recognize the inter -

mpt acknowledge. Of course, only one intermpt level is permitted
in this mode.

MASKABLE INTERRUPT MODE 2

The last and most powerful interrupt mode is interrupt mode 2.

This mode allows up to 128 interrupts from external devices, each
fully vectored to an interrupt location anywhere in memory. Fur-
thermore the peripheral modules in the Zilog family, such as the
Z-80 PIO (parallel I/O), Z80-SIO (serial I/O), and Z-80-CTC
(counter-timer circuit) may easily be connected in daisy-chained
fashion to allow for complete prioritizing of all intermpt levels.

Mode 2 is set by an IM 2 instraction. The heart of this interrupt

mode is an intermpt vector table anywhere in memory. In general,

the table is (2 X N) bytes long, where N is the number of interrupts

in the system and the start of the table is pointed to by IIIIIIII-

OOOOOOOOo, where I is the contents of the Interrupt Vector regis-

ter I. For any interrupt, the I register supplies the eight most sig-

nificant bits of the table address while the intermpting device sup-
plies the eight least significant bits of the table address. The table
has up to 128 entries as shovra in Fig. 7-5. Each entry is two bytes
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long and represents a memory address for the interrupt semcing
routine for a particular device in standard 8008/8080/Z-80 order-

most significant byte last.

I REGISTER
I

I I I I I "l I I
I

LOCATION
IIIIIIIIOOOOOOOO2

+1

+2

+3

+4

+5

+6

+25410

+255,n

ADDRESS OF INTER-
RUPT PROCESSING
ROUTINE DEVICE

127,,

2 BYTES/

ENTRY

UP TO 128

ENTRIES

1256 BYTES!

Fig. 7-5. Interrupt- mode 2 interrupt' vector table.

The general sequence for interrapt mode 2 is this:

1. If IM 2 is set and IFFi = 1 and TNT is active, the CPU recog-

nizes the interrupt at the next Ml cycle.

2. The interrupting device responds to the interrupt acknowledge

with an 8-bit value.

3. The 8-bit value is merged into a memory address with the

contents of the I register.

4. The CPU pushes the contents of the PC into the stack.

5. The contents of the interrupt vector table is accessed using the

address computed in step 3.

6. The PC is loaded with the contents of the interrupt vector

table entry to effectively cause a jump to the interrupt servicing

routine defined by tbe address vector in the table.

Fig. 7-6 shows an example of this process. The interrupt vector

table is located at FOOOH. The table has ten entries of two bytes

each defining ten intenaipt sei-vicing routines for the ten interrupt-

ing devices. Note that two of the addi-esses are identical, indicating

that the same inteiTupt service will be performed for two devices.

The inteiTupt vector register I has previously been loaded with FOH.
When an external interrapt is generated for device number 5 and
the inteiTupt acknowledge is received, the device controller places

an 8-bit vector on the data bus, in this case 02H. The 02H is merged
with the I register to form address F002H. Tlie CPU now reads the

two bytes at locations F002H and F003H to find the address of the

interrupt servicing routine, after pushing the current contents of the
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DEVICE
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(31 MERGE I AND DEVICE - SUPPLIED ADDRESS

I REG ISTER r FOH 02H

FOOOH 8000H

2 8030H

4 8050 H

6 8050H

8 SOAOH

A 8080 H

C 8122H

E 8(10 H

10 8322 H

12 8332 H

J
(ff) PC— STACK

(5) GET VECTOR ADDRESS
AND TRANSFER CONTROL

(6) INTERRUPT PROCESSING
8030H S RETURN TO

INTERRUPTED PROGRAM

8102H (71 STACK—-PC

Fig. 7-6. Interrupt' mode 2 example.

PC into the stack. 'The table entry is 8030H, and the CPU transfers

control to this location for interrupt servicing. The interrupt servic-

ing is then performed and an RETl is executed, terminating the in-

terrupt action and returning control to the interrupted location as

the PC is loaded with the return address from the stack.

Note that the interrupting device could supply any eight bits for

the vector, not necessarily that address associated with its I/O
device addi-ess in the execution of IN and OUT instructions, al-

though it is convenient to have device address associated with
table enhy FOOO, device 1 associated with table entry F002H, etc.

Note also that the interrupting device really supplies only a 7-bit

address. The least significant bit is always 0, since each table entry

is 2 bytes long. Device number n would conveniently supply vector

2 X N, if the table were ordered in this fashion.

In a prioritizing scheme used by Z-80 peripheral devices, each
device has an implicit priority as showii in Fig. 7-7. Here the devices
are Zilog Z-80 PIO (Parallel I/O) modules. Each PIO has automatic
intermpt prioritizing "built-in" and is specifically designed for inter-
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DECREASING PRIORITY-

lEI lEO

PIA

lEI lEO

PIA 1

(El lEO

PIA 2

TO OTHER

DEVICES

INT

- REFI DETECT

(DATA BUS)

Ml AND lORQ

Fig. 7-7. Z-80 interrupt prioritizing interrupt mode 2.

jaipt mode 2 operation. Every PIO is connnected to the Z-80 CPU
INT line in a "wire-or" configuration (INT is directly connected,

without buffering by gating). If the lEI (interrupt enable in) signal

from higher priority devices is high (positive), no higher priority

device has requested service and an interrupt request may be gen-

erated from the PIO. Prior to the interrupt request, the lEO (inter-

rupt enable out) goes low, indicating to lower-priority devices that

they may not request interrapt service by bringing down the INT
line. When the interrupt acknowledge occurs, the PIO automatically

jams the proper 8-bit mode 3 vector onto the data bus to vector the

interrapt to the proper memory location. At the end of interrupt

servicing, the RETI is detected by decoding the instruction op code

and the interrapt for the cunent PIO is completed. lEO for the cur-

rent PIO is brought high, enabling interrupts from lower-priority

devices.

A prioritizing scheme such as the above not only handles the prob-

lem of simultaneity of interrupt requests, but also enables multilevels

of interrupts. To illustrate the operation of nested interrupts let us

HIGHEST
PRIORITY

LOWEST
PRIORITY

MAINLINE
PROGRAM

DEVICE

DEVICE

1

DEVICE

2

DEVICE
PROCESSING

MAINLINE

DEVI GEO
INTERRUPTS

DEVICE 1/\ INTERRUPT'^
PROCESSING

--DEVICE 1

INTERRUPTS

PROCESSING

WICE2 ^
INTERRUPT PROCESSING

DEVICE 2

"INTERRUPTS

TIME >

MAINLINE

PROCESSING

INSTRUCTION MAIN-S| mOri 3000H mm
LOCATIONS LINE i|ETC. ETC. ETC.

300oh|2oooh|Smain-|

ETC. ETC. gLINE

Fig. 7-8. Nested interrupt example.
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use the configuration shown in Fig. 7-8. As before, the interrupt vec-

tor table is at location FOOOH and the interrupt vector register has

previously been loaded with FOH. The interrupting devices are

labeled 0, 1, and 2; and they have priority in that order. Interrupt

mode 2 has been previously set. During execution of main-line pro-

gram location 0A82H, device 2 intermpts. InteiTupt processing rou-

tine 2000H is entei-ed and the environment is saved as shown. After

enabling interrupts, device number 1 interrupts the interrupt proc-

essing routine for device number 2, jumping to location 3000H.
Finally, device interrupts during the middle of the interrupt proc-

essing routine for device number 1, causing interrupt processing

routine at 4000H to be entered. This routine is completed by an
RETI and the processing routine at 3000 is reentered. This routine

is then completed and, after the RETI, the processing routine at

lOOOH is again reentered. Finally, the lowest level processing rou-

tine at lOOOH is completed, an RETI executed, and a return mode
to the main-line program at 0A82H. At one time during the se-

quence, three nested interrupts were involved. Assuming that the

environment was properly saved and restored and the interrupts

were disabled at proper times, no problems should have been en-

countered with this scheme, or even a great deal more complex
interrupt structure.
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CHAPTER 8

Interfacing Memory and

I/O Devices to the Z-80

As the Z-80 requires only a single-phase clock and a single 5-volt

power supply, a minimum Z-80 system can be implemented with few
additional components. This chapter will describe simple interfac-

ing cases of the Z-80 and ROM memory, static RAM memory, dy-

namic RAM memory, and the Zilog Z-80 PIO.

MINIMUM Z-80 SYSTEM

The components required for a minimum Z-80 system are:

1. a 5-volt power supply

2. a single-phase TTL-compatible clock

3. a means to reset (restart) the system

4. ROM or PROM memory to contain the program
5. 1/O interfacing and devices

6. the Z-80 CPU

Fig. 8-1 shows a minimum system with the above components. A
momentary switch resets the CPU and starts program execution at

location by bringing down the RESET signal to a logic 0. As the

reader will recall from Chapter 3, the RESET signal disables inter-

rupts, sets the I and R registers equal to 0, sets interrupt mode 0,

and sets the progi-am counter to 0. A simple timing circuit provides

a square -wave clock input at 2.5 to 4.0 MHz. The clock runs con-

tinuously. The ROM memory is a fast-access
(
greater than 250 nan-

oseconds) 512 X 8 ROM addressable by lines AO - A8 of the Z-80.
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Fig. 8-1. A minimum Z-80 system.

No WAIT conditions aie necessary as the memory will always re-

spond in time for data to be read, even at a 4--MHz clock rate. The
output of the ROM is a three-state output, so that the lines are in

a high-impedance state when the ROM is not being addressed. The
eight output hues connect directly to the Z-80 data bus lines DO-
D7. The output device is a quad latch whose four flip-flops are set

by D0-D3 when an output operation is performed.
When the RESET svwtch is pressed, the RESET input goes low,

initiaHzes the CPU, and starts program execution at location of the
ROM. The ROM program is accessed by making memory requests
MREQ and RDs, as no memory writes are possible, of course, with
a read-only device. For this particular ROM, bringing both chip-
select ( CS

)
inputs to a logic selects the ROM and gates the con-

tents of the memory location addressed by A0-A8. The program is

addressed by addresses XXXXXXXOOOOOOOOO2 through XXXXXXX-
IIIIIIHI2 where X may be any address, as address lines A9-A15
are not connected. (For clarity, all memory addresses would prob-
ably be in the range 0-511io.) The program probably requires
some memory storage for variables, and this is provided by the 14
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CPU registers. No memory stack is implemented, as no external

RAM memory is provided and CPU registers cannot perform a stack

function.

Data output is provided by the quad latch. Since this is the only

I/O device in the system, any I/O instruction with any I/O addr-ess

will address the latch and latch the contents of data bus lines DO-
D3 when signals lORQ and Ml occur during an I/O cycle. Note
that there is also no decoding of RD or WR and that even a read

I/O instruction will output data to the latch. Output lines A, B, C,

and D interface to the outside world.

The above example is admittedly a limited application of the

Z-80, but it does serve to illustrate the simplest usable configura-

tion of a Z-80 system. Even with this simple system, a program
could be implemented to provide a variety of dedicated functions,

such as:

1. Play music via the output latches

2. Provide simple digital-to-analog outputs ( with a few additional

external components

)

3. Provide timing functions of almost any duration

4. Provide automatic telephone dialing (with additional external

logic)

INTERFACING ROM AND RAM

A more usable system with ROM ( or PROM ) and RAM memory
and limited I/O capability is shown in Fig. 8-2. A larger ROM
(IK X 8) is used to provide 1024 bytes of program area. Two 256
X 4 bit high-speed RAMS (no WAITS necessary) are used to pro-

vide 256 bytes of read-write storage of dynamic variables. The RAM
( and all system components ) are three-state devices to enable "wire-

ORing" all inputs and outputs to the data bus lines. One RAM reads

and writes the four least significant bits of data from the data bus
D3-D0, while the second RAM is used for D7-D4. A quad latch

is used as before for I/O communication for 4-bit outputs from the

CPU. In addition, four external input lines are sampled by gates Gl
through G4.

The memory mapping for this configuration is shown in Fig. 8-3.

The ROM memory area is located in locations OOOOH through 3FFH.
The RAM memory area is located at locations FFOOH through
FFFFH (256 locations). Address lines AlO through A14 are not

used. Whenever address line A15 is a 0, ROM memory is being ad-

dressed, and whenever A15 = 1, RAM memory is being accessed.

The I/O addi-esses in the Z-80 are separate from memory addresses

(as opposed to a memory-mapping I/O). As in the previous exam-

118



MREQ

RESET RO

Alt; fln

DO

Ui

D2

D3
nylUH

Z-80 D5

CPU D6

D7

RD

Wr

iORO

Ml

MREQ'1=I>
ADDRESS BUS

WR-

CSl

CS2

A9-A0

1024X

8 ROM

RD-

A0-A7

1/01

1/02

1/03

l/M

A0-A7

R/W
CE

256X4 RAMI

MREQ

Al5

QUAD
LATCH

1/01

1/02

1/03

1/04

A0-A7

R/W

CE

DO A

Dl B

D2 C

D3 D

CP
DISABLE

OUTPUTS
TO

EXTERNAL

DEVICE

01

moo

Ml

RD

INPUTS

FROM
EXTERNAL

DEVICE

TR I -STATE

BUFFERS

Fig. 8-2. Z-80 interfacing with RAM and ROM.
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Fig. 8-3. RAM, ROM
memory mapping.

FEFFH

FFOOH

FFFFH

RAM
256 LOCATIONS

pie, any I/O device address will address either the input or output

I/O devices.

When the RESET switch is pressed, program execution starts at

location in ROM. The program can address RAM by addressing

locations FFOOH through FFFFH and can utilize a stack area by
setting the stack pointer somewhere in this region. The RD signal to

ROM is somewhat redundant in that all memory accesses to ROM
must be reads. The RD/WR input to the RAMs is derived from the

WR signal from the CPU. I/O inputs are handled a similar way as

in the previous example. When an OUT instruction is executed,

lORQ and Ml become active and the WR signal is also active. Data
bus outputs D3-D0 are latched into the output latches during the

output cycle. When an IN instruction is executed, RD goes active,

and enables the program to sample the input data lines 10-13. The
format of the output and input data is shown in Fig. 8-4. Data bits

seven through four are ignored on output. For input, data bits D7-
D4 will be zeros.

The system shown in Fig. 8-2 is an extremely powerful system

even with the minimum memoiy configuration. Because it allows

both the input and output, this system could be used to:

INPUT DATA FORMAT

7

I I I I I I I
• INPUT DATA BITS

OUTPUT DATA FORMAT

Fig. 8-4. Input- and output-data

formats RAM/ROM configuration.

XXXXOOOOl -OUTPUT DATA BITS~
X DON'T CARE
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1. Decode bed inputs and output bed data in sequence after

processing

2. Use the switch inputs for burglar or fire-alarm sensing with
appropriate signal outputs

3. Input pulse-rate data representing instantaneous speed or other

analogs and process the data

4. Provide digital-to-analog input decoding and analog-to-digital

outputs

DYNAMIC MEMORY INTERFACING

Dynamic RAM memoiy is interfaced in much the same fashion as

static RAM memory insofar as memoiy reads and writes for data and
operands are concerned. Due to the electrical requirements of the
RAM, however, every cell in the RAM must be refreshed periodi-

cally. Essentially, this means performing a read cycle for the cell

without accessing the data from the cell about every 2 milliseconds.

Thi-ough the R register in the Z-80, a means is provided to generate
the refresh cycle autoiiiatically. At eveiy Ml time during an instruc-

tion cycle, signals Ml and memoiy request MREQ become active

to signal the external dynamic RAM memoiy that one refresh cycle

may take place. The RAM then performs a refresh utilizing the cur-

rent address on the data bus from the R register. Since the R register

is continually sequencing from to 127 in modulo 2^ fashion every
Ml cycle, a new refresh address is continually available to the
dynamic RAM memory.

Fig. 8-5 shows a 4096-byte memory made up of eight 4096 by 1

dynamic RAMs. Each RAM has 12 address inputs split between six

row inputs and six column inputs. The requirements for refresh ai-e

that within a 2-millisecond period each of the 64 possible rows are

addressed. Since this cannot be assured by random access of the
data, as in program execution, it must be systematically perfonned.
To accomplish this, signals RFSH and MREQ aie ANDed as shown.
When both signals are false, signal CE, chip-enable refresh, goes
active and a read is performed for each of the eight chips, using
address lines A5-A0 as the row address. As 64 refresh cycles must
be performed to refresh all of the cells within a chip, the average
time to perform a complete refresh is 64 X N, where N is the average
instruction time for the Z-80. With N = 2.5 microseconds, it will take

160 microseconds to refresh all 8-K bytes. Signal CE is also enabled
by the normal nonrefresh read or write cycle of the Z-80, when one
of the bytes is accessed for instruction execution, data retrieval or

storage.
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Fig. 8-5. Dynamic RAM refresh.

Z-80 PIO INTERFACING

The Z-80 PIO (Parallel I/O) is a 40-pin Z-80 compatible device

that provides simple interfacing betw^een the Z-80 and peripheral

devices that accept 8-bit parallel data (see Fig. 8-6). Two 8-bit

I/O ports are provided. They can be programmed for either input

or output transfers. In addition to the two sets of eight bidirectional

data lines ( A7 — AO and B7 — BO) there are two sets of two control

lines used for handshaking between the I/O device and the PIO, A
RDY and A STB, discussed later. Data is transferred between the

PIO and the Z-80 CPU by data bus lines D7 - DO. Six control lines

control PIO operations under program control from the Z-80 CPU.
PORT B/A SEL selects port A or B. CONTROL/DATA SEL selects

transfer of either control data or operand data to the PIO. Chip en-
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able is the signal to the PIO indi^ng that the PIO address has been
decoded in an I/O operation. Ml is the CPU machine cycle one
signal. lORQ and RD are the Z-80 signals related to any I/O opera-
tion. Three interrupt-control signals provide tlie intenupt INT, lEI,
and lEO functions discussed in Chapter 7, that is, the eternal inter-

rupt to the CPU and interrupt priority encoding. The clock input
signal, <I), is the clock signal from the Z-80 CPU.

TO CPU
OR

ADDRESS
DECODING
(CHIP
ENABLE)

DATA
BUS

CONTROL
LINES

INTERRUPT
CONTROL

PORT b;a SEL.

CONTIDATA SEL.

CHIP ENABLE.

Ml-
lORQ-

.RD—

INT-

IT

-

lEO-

Z-80 PIO

TT
+5 GND

-*-A0

-<-Al

-*»A2
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-e-A4

-*"A5

-*-A6

->^A7

A ROY

.A STBl]
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PORT A
HANDSHAKE

PORTB
I/O LINES

I RDY .-=*- 1 PORTB

J HANDSHAKE

TO
EXTERNAL
I/O

DEVICE(S)

Fig. 8-6. PIO interface signals.

Internally, the PIO appears as shown in Fig. 8-7. Each port of the
PIO has a number of registers associated with the port. The main
controlling register is the 2-bit mode control register. It is set by
addressing the PIO port and sending a control word from the CPU
with the format shown in Fig. 8-8. The two most significant bits of
the control word determine the mode as follows:

D7, D6 Mode
00 output
01 1 input

10 2 bidirectional

1 1 3 control
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Fig. 8-7. PIO registers.

PIO MODE
Port A may be any mode, through 3. Port B may be mode 0, 1,

or 3. Mode is the output mode of the PIO. In mode 0, the 8-bit

data-output latch is active and the 8-bit data-input register is in-

active. Data may be vi^ritten to the data-output register by address-

ing the port and transferring eight bits of output data via an OUT
instraction. Data may also be read back from the port by an IN in-

struction, although normally this vi^ould not be done as the program
would always be cognizant of what data was written out. Data in

the output register may be ovei-written at any time by another OUT
instruction.

MODE
FIELD

OUTPUT MODE

INPUT MODE

BIDIRECTIONAL MODE

CONTROL MODE

X DON'T CARE

Fig. 8-8. PIO operation mode
control word.
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As data is written out to the PIO, the RDY signal associated with
the port goes high, indicating to the external device that data is

available on the port I/O lines. After the external device has read
the data, it responds vidth signal STB, resetting the port RDY signal

and generating an interrupt ( if the PIO has been programmed for

an intermpt).

PIO MODE 1

PIO mode 1 is the input mode. If a port is in mode 1, the data-in-

put register is active and the data-output register is inactive. The
sequence of operations for inputting data into the PIO from an ex-

ternal device is as follows:

1. External device senses RDY line from PIO. If true, external

device puts data on port I/O lines and momentarily brings

down STB line.

2. Data is strobed into port data-input register. This resets the
RDY line and causes an interrupt (if the PIO has been pro-

grammed for an interrupt).

3. Z-80 CPU reads the data from the PIO using an IN instruction

with an I/O address of the PIO port.

4. RDY line is set by action of IN instruction, causing external

device to ready next byte of data.

The actions in mode 1 are repeated for each byte of data to be
read in. The input operation is initiated by an IN instruction in

which the data is ignored as the RDY line is set for the first time.

PIO MODE 2

PIO mode 2 is the bidirectional data mode. Since mode 3 uses all

four handshake lines, only port A may be used for this mode. The
port A handshake lines are used for output operations and the port
B handshake lines for input operations. When A STB is low, data
from the data-output register of port A is gated onto tlie port I/O
lines. When a A STB is high, data may be input into the data-input
register by B STB. Signals A RDY and B RDY may both be active

at tlie same time, indicating that both output data is available from
the PIO and that the PIO is ready to receive input data from the
device.

PIO MODE 3

Mode 3 operations are set by addressing one of the two ports by
an OUT instruction and transferring a second 8-bit control word
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after the mode 3 contiol word has been transferred. In the second

control word, each bit corresponds to a port I/O hne as shown in

Fig. 8-9. If a bit is one in the control, the corresponding port hne is

an input hne. If a bit is a zero, the corresponding hne will be an

output hne. The second control word sets the 8-bit Input/Output

Select register shown in Fig. 8-7. Once mode 3 is set, data may be

read or written to the port at any time. No handshaking signals aie

active; the STB signal is not used and the RDY signal is always low.

Outputting data to the port will affect those lines programmed as

outputs, while inputting data will read all lines, including those pro-

grammed as outputs.

Each port of the PIO may be programmed to provide an external

interrapt to the Z-80 CPU for input or output operations. When an

OUT instiaiction with the port address is executed and the 8-bit con-

trol word shown in Fig. 8-10 is output to the PIO port, any subse-

quent mode 2 inteiTupts generated from the PIO port will use the

interrapt vector of the contiol word which is stored in the port.

Chapter 7 describes how the Interrapt Vector Table addi-ess is com-
puted using the contents of the I register and the externally sup-

plied vector. In this case, the PIO control word supplies the least

significant 8 bits of that vector. Bit is always a one, as is consistent

with mode 2 interrupt operation. The PIO will only operate in the

CPU mode 2 interrapt function and not in mode 0.

7 6 5 4 3 2 1

CORRESPONDS TO PORT I/O LINED

CORRESPONDS TO PORT I/O LINE 1

CORRESPONDS TO PORT I/O LINE 2

CORRESPONDS TO PORT I/O LINE 3

CORRESPONDS TO PORT I/O LINE 4

CORRESPONDS TO PORT I/O LINE 5

CORRESPONDS TO PORT I/O LINE 6

CORRESPONDS TO PORT I/O LINE 7

Fig. 8-9. PIO mode 3 input/output programming.

PIG INTERRUPTS

7 6 5 4 3 2 1

I
VECTOR FIELD | [

THIS FIELD
SPECIFIES THE

LOWER ORDER
ADDRESS BITS

FOR CPU INTER-

Fig. 8-10. PIO interrupt vector

control word.
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In conjunction with the port interrupt vector address register,

each PIO port has an interrupt control word register of 2 bits and
an interrupt mask register of 8 bits. The interrapt control word reg-

ister holds data relating to the interrupt control word shown in Fig.

8-11. Tlie intenxipt control word is transferred to a port by address-

ing the port with an OUT instixiction and transferring the control

word. Bit seven of the control word controls the Interrupt of the
PIO. If bit seven is a one, the port will generate an inteiTupt; if

reset, the port will not generate an interrupt. As previously dis-

cussed, the interrupt occurs on the rising edge of the STB signal for

modes 0, 1, and 2. Bits six, five, and four are used only for PIO mode
3. Bit five defines the active state for the port I/O lines; if a 1, the

active state is a high state. Bit six specifies either an and or or
function for interrapt operation. If bit six is a 1, all bits must go to

an active set (high or low) before an interrapt is generated. If bit

six is a 0, any bit in the active state will generate an interrupt. The
port lines that are monitored for the and or or condition are fur-

ther defined for a mask. If bit four is a 1 after the interrupt control

word has been received by the PIO, then the next word sent to the

PIO must be a control word mask which is loaded into the port in-

terrupt mask register. If a bit position is a 1 in the mask, then the

corresponding line will be used as an active line for interrupt gener-

ation.

7 6 5 4 3 2 10
|ei|a/o|h/l|m|o 1 1 l"|

' MASK-MASK WORD TO FOLLOW

I
HIGH/LOW-DETERMINES
ACTiVE STATE FOR INTERRUPT

I AND/OR FUNCTION FOR
INTERRUPT DETECT

ENABLE INTERRUPT
1" ENABLE

Fig. 8-1 1. PIO interrupt control word.

PIO INITIAL CONDITIONS

The PIO is initialized on a power-up or Ml condition without
RD or lORQ. The latter condition enables a reset without power-
down and without adding additional signals to the PIO for reset.

The initial PIO conditions are as follows:

1. Port interrupt enable flip-flops, output registers, and mask reg-

isters reset

2. Mode 1 selected

MODE 3

ONLY
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3. Port I/O lines set to high-impedance state

4. Handshake signals low (inactive)

5. Vector address registers not reset

Z-80 PIO CONFIGURATION

Fig. 8-12 shows one PIO replacing the four data-output lines and

four gated input lines of Fig. 8-2, effectively doubling the I/O capa-

bility of the Z-80 system and providing complete inteiTupt control.

Data lines from the Z-80 bus are input to the PIO data line inputs.

Port A output lines are used to write to an external device while

port B input lines are used to read to an external device. The two

sets of handshake lines are used in the same fashion. The INT line

from the Z-80 PIO is input to the CPU directly. Since there is only

one PIO in the system, there is no daisy-chained interrupt priority

and lEI is set to VCC. lEO is not used. Inputs "511, IDTOJ, and

are connected directly to the equivalent Z-80 signals.

TO CPU SIGNALS FIGURE 8-2

A7 A6

DATA
BUS

AO

Al

lYO

lYl

IY2

IY3

OTHER I/O PORTAffi SEL

PIO 1 CONT/DATA SEL

PIO 2 CHIP ENABLE

PIO 3

2-LINE TO

4-LINE DECODER

PIO

PORTA
I/O LINES

PORTA
HANDSHAKE

PORTB
I/O LINES

PORTB
HANDSHAKE

Fig. 8-12. PIO use in minimum configuration system.

TO
EXTERNAL
I/O

DEVICES

As the PIO is the only I/O device in this system, there is no need
to decode the I/O address. However, a decode is shown for larger

systems. The PIO address is determined by the two most-significant

bits of the I/O address A7 and A6. This scheme would allow for four

PIOs or, as shown, three PIOs and other I/O addresses in the range

00000000 through OOXXXXXX,. The output of the two to four de-

multiplexor enables the PIO for I/O address OIXXXXXX2. The port

A/B select line is connected to AO and the control/ data select line

to Al. The address mapping for the addressing configuration is

shown below:
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IN/OUT
lO Address Meaning

Non-PIO addressesOOOOOOOO2

OIXXXXOO
01XXXX01
01XXXX10
OIXXXXI

1

10000000

Port A, data

Port B, data

Port A, command
Port B, command
Other PIO expandability

i
iiniiii

To output and input data to the I/O devices not under interrupt
control, the following steps must be taken:

1. Reset the PIO (power on). This clears the interrupt enable
and PIO interrupt vector registers.

2. Load interrupt control word or 07H into CPU register R. Out-
put to devices 01000010:- and 01000011. with OUT instruc-

tion. This disables PIO interrupts in both ports.

3. Load operating mode control word 00001111^ into CPU regis-

ter R. Output to device OIOOOOIO2 with OUT instruction. This
sets up the A port as an output port.

4. Load operating mode control word 01001111., into CPU regis-

ter R. Output to device 01000011, with OUT instruction. This
sets up the B port as an input port.

5. Input data from device 01000001:.. This inputs data from port
B. Initial data is discarded, but the B RDY line is activated,
informing the external device that the CPU is ready for data.

6. Port A is now ready to output data and port B is ready to in-

put data. Since no interrupts are programmed, output must
be timed so that the external device has sufficient time to re-

spond to the output and to provide input data. A timing loop
must be included in both the read and lorite I/O drivers for
this PIO.

To perform I/O under interrupt control, the intermpt vector reg-
isters must first be output to the PIO and the proper interrupt con-
trol words must be output. If the interrupt processing routine ad-
dress for the output device was at FFOOH and the inteiTupt process-
ing routine address for the input device was at FF02H, then the
CPU I register must have been loaded with FFH before I/O activ-

ity. Next, sometime before the first I/O activity the PIO interrupt
vector registers must have been loaded as follows:

-Load interrupt vector control word OOH into CPU register R.
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Output to device OIOOOOIO2 with OUT instruction. This sets

the port B interrupt vector register to 02H.

Finally, the interrupt control word of 80H must have been output

to device addresses OlOOOOlOo and 0100001 12. This would enable in-

terrupts for both port A and port B. Interrapts would occur on port

A each time the external device strobed into the output data (A
STB went momentarily low) and on port B each time the external

device strobed data into the PIO input register (B STB went
momentarily low). Interrupts for port A would vector to the address

specified in FFOOH and interrupts for port B would vector to the

address specified in FF02H as described in Chapter 7.

The above description illustrates the interfacing for one Z-80 PIO.

The configmation shown could be used for a variety of uses includ-

ing Teletype I/O, keyboard decoding, high-resolution a-to-d or

d-to-a I/O, and 16-line process-control applications. Using similar

procedures to those shown above, the reader can see how multi-PIOs

and additional ROM, PROM, or RAM memoiy can easily be added
to the system. Further examples of microcomputer systems built

around the Z-80 family of components will be provided in Section

III.
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SECTION II

Z-80 Software





CHAPTER 9

Z-80 Assembler

The previous section described the hardware aspects of the Z-80,

including the inherent instraction set of the microprocessor. Section

II describes how to use that instruction set efficiently to build sets of

instructions to perform software functions such as multiplication,

division, double and multiple-precision arithmetic, and table and
string manipulation. To facilitate the writing of software programs,
an assembler program is employed. The assembler provides an easy
way to automatically assemble machine language instructions from
a higher-level symbolic assembly language.

MACHINE LANGUAGE

Machine language is the most rudimentary form of any program.
It consists of the actual machine language operation codes and oper-

ands necessary to implement the instructions of the program, ex-

pressed in binary or hexadecimal numbers. Suppose, for example,

that a short program is required to add the numbers from one to ten.

An extremely inefficient way to perform this task is shown below.

XOR A
ADD A,l

ADD A,2
ADD A,3
ADD A,4
ADD A,5
ADD A,6
ADD A,7
ADD A,8
ADD A,9
ADD A, 10
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The program consists of an instruction to clear the A register ( the

XOR) and a succession of ten immediate instructions to add the

numbers one through ten to the contents of the accumulator. The
program is written in the mnemonics that Zilog uses for the equiva-

lent machine-language code, along with the register to be used and
the immediate 8-bit data value. To assemble the equivalent machine-
language code, one would have to look up the hexadecimal form of

the operation code and the format of the instruction and write it

beside each mnemonic representation of the instruction as shovra

in Fig. 9-1. The figure shows that the XOR A is a one-byte instruc-

tion of the form lOlOlRRRo, where R is the register required. In this

case, R = III2, indicating A. The ADD format is a two-byte instruc-

tion of the form 110001 IO2, followed by an 8-bit field representing

the 8-bit immediate operand. The equivalent machine-language
instruction for an ADD A,8, for example, is the op code 11000110->

or C6H, followed by 00001000. or 08H.
The entire progi'am representing the addition of one through ten

could be loaded into the Z-80 microcomputer by means of a control

panel ( if the microcomputer has one ) or monitor program and then
executed. The actual numbers that would be keyed in are the num-
bers shown in the left-hand column of Fig. 9-1, twenty-one 8-bit

bytes of machine code representing the program.

Let us take another program example to illustrate the machine-
language assembly process once again. This time we will assemble

MACHINE CODE INSTRUCTION FORMAT INSTRUCTION

AFH 1 1 1 1 1 1 1 XOR A

C6 C6H ADDA.l

01 OIH

C6 C6H ADD A,

2

02 02H

C6 06H ADD A,

3

03 03H

06 C6H ADDA,<1

04 04H

C6 C6H ADD A, 5

05 05H

06 06H ADD A,

6

06 06H

06 C6H ADD A, 7

07 07H

06 06H ADD A,

8

08 08H

06 C6H ADD A,

9

09 09H

06 06H ADD A. 10

OA OAH

Fig. 9-1. Manual assembly process program T.
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XOR A CLEAR A
LD B,10 SET COUNT TO 10

ADD A,B ADD NEXT NUMBER
DEC B PREPARE NEXT NUMBER
JP NZ,LOOP JUMP IF NUMBERv^O
HALT HALT

a program to add the numbers from one to ten in a slightly different

implementation. We will use the A register to hold the total as

before, but we will let the B register hold the current number to be

added. Tliis will vary from 10 to 1 as we go in reverse, adding 10,

then 9, then 8, and so forth down to 1. At that point, we will detect

that the next number to be added is and stop. The program in

Zilog mnemonics looks like this:

LOOP

The A register is first cleared by the XOR A instruction. Next, the

B register is loaded with 10 by the LD B,10 instruction. The next

three instructions comprise a loop. As long as B holds a number
from 10 to 1, the contents of B will be added to A (ADD A,B ) , the

contents of B will then be decremented by one ( DEC B ) , and the

jump will be made to the first instraction of the loop which is labeled

"LOOP" as a point of reference of where to return. When the B reg-

ister is decremented, the Z flag is set if the result is zero and reset if

the result is nonzero. If the B register is nonzero ( 9 through 1 ) the

JP NZ,LOOP instruction will detect the nonzero (NZ) and jump
back to LOOP. If the B register holds a 0, the Z flag is set and the

conditional jump back to LOOP will not be made, causing the CPU
to execute the next instruction (HALT).

Manually assembling the machine code for this program is a little

more complicated than the preceding example. First of all, while

the previous program could be relocated or loaded anywhere in

memory, since the instructions contained no addresses, the second

program does contain addresses (JP NZ, LOOP must specify the

addiess of LOOP in bytes two and three of the instmction ) . A deci-

sion must therefore be made where in memoiy this program is to

execute. We will arbitrarily choose location OlOOH as the start. The
next step in the assembly process is to calculate the length in bytes

of each insti-uction and write it opposite each mnemonic. After this

step, the progi^am appears as shown below:

Location Length Instruction

OlOOH 1 XOR A
2 LD B,10

1 LOOP ADD A,B
1 DEC B

3 JP NZ,LOOP
1 HALT
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Now the locations of each instruction can be filled in, using the
length to adjust each location. The location always specifies the first

byte of the instruction.

Location Length

OlOOH 1

OlOlH 2

0103H 1 LOOP
0104H 1

0105H 3

0108H 1

0109H

As a double check on the accuracy of this step, the total length of

the program from the location column ( 0109H-0100H = 9 bytes)
can be compared with the total number of bytes from the length
column, nine. Now the instruction formats can be filled in, as shown
in Fig. 9-2. The only difficult instruction is the JP NZ,LOOP. Tliis

is a three-byte instruction with the last two bytes specifying the con-
ditional jump address. Since the jump is to LOOP, which is at loca-

tion 0103H, this address must go into bytes two and three in reverse
order 03H, OIH, as is the format from time immemorial ( or at least

since the 8008).

LOCATION LENGTH MACHINE CODE INSTRUCTION FORMAT INSTRUCTION

OlOOH 1 AF 10101 ml XOR A
0101

H

2 060A LD B.IO

0103H 1 80 lOOOO 000 LOOP ADDA.B
0104H 1 05 00 000 101 DECB
0105H 3 C203U1 11 000 010 0000 0011 1 0000 0001

1
JP NZ.LOOP

0108H 1 76 0111 Olio HALT

0109H

Fig. 9-2. Manual assembly process program 2.

Although it is feasible to assemble long programs by manual
methods, it is extremely uneconomical. There is too much of a
chance for error in calculating locations, filling in instraction fields,

and formatting addresses. In addition to the certainty of rote errors,

there are several other factors that make machine-language opera-
tions unworkable. The most important of these is relocatability.

Program two could execute only at location OlOOH. To execute at

another location, the address in the JP instruction would have to be
changed. In larger programs, many addresses would have to be re-

figured and manually assembled. A second factor is ease of editing.

Few programs run the first time and most require several iterations

before the program performs the way that was expected. Each itera-

tion involves adding, deleting, or modifying instructions of the pro-

Instruction

XOR A
LD B,10
ADD A,B
DEC B

JP NZ,LOOP
HALT
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gram, necessitating recalculating addresses where they are used in

the program.

THE ASSEMBLY PROCESS

Because of the inherent limitations of manual assembly, all mi-
crocomputer manufacturers offer an assembler program to auto-
matically perform the machine-language function from symbolic
assembly language. Many times the assembler may be run on the
microcomputer itself. In this case, the assembler is a resident as-

sembler. In a few cases, the assembler must be run on another com-
puter, typically an IBM 360/370 configuration. In the latter case,

the assembler is a cross-assembler. In either case, the assembler
quickly assembles programs written in Z-80 or other source assembly
languages, producing an object module representing the machine
code, and a listing of the program in both assembly and machine
language foixn. A few of the features that an assembler provides are:

1. Symbolic representation of locations, operation codes, and
argiiments

2. The ability to intermix comments with the symbolic form of

the instruction

3. Automatic assembly of forward and backward references to

symbolic locations

4. Automatic representation of various number bases
5. Expression evaluation

6. Pseudo-operations or nongenerative assembler instructions

that define locations, equate symbols, reserve memory, and
other convenient features

ASSEMBLY FORMAT
The mnemonic representation of instructions have been used

throughout this text. They are simply a convenient way to write
down the instmction as it is much simpler to write "ADD A,B" than
to write "add the contents of the B register to the contents of the A
register." The mnemonics used for the Z-80 in this text closely follow
the ones used by Zilog. There are some slight differences in repre-
sentation of addi-essing types. The tables in Chapter 5 or Appendix
C list all instruction mnemonics and the possible addressing formats.
Other microcomputer manufacturers described in this book may use
somewhat different mnemonics in their documentation for their

products.

The standard assembly-language format used in this book is

shown in Fig. 9-3. There are four columns, the label column, the
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op code column, the ai-guments column, and the comments column.

Each representation of a Z-80 instiuction must have an operand.

Most instructions have arguments, such as "LD (HL),R" where
"(HL),R" are the two arguments. Instructions such as EI or HALT
have no arguments. The label field is optional. When a label is

present, it may be one to six alphabetic or numeric characters, the

first character of which must be alphabetic. The optional comments

COLUMN
NUMBERS-

LABEL

NAJV1E12

NAME 13

OP
CODE

11

ARGUMENTS
12|13 Zl\2l

HL),R

NZ.STOP

COMMENTS

THIS IS A SAMPLE SOURCE LINE
ENABLE INTERRUPTS

GO TO HALT-WAIT FOR INTERRUPT

HOLDS
OPTIONAL

NAME
OF 1-6

CHAR-

ACTERS

BLANK

OPCODE
OF 2-4

CHAR-
ACTERS

ARGUMENTS
AS REQUIRED

OPTIONAL

COMMENTS

BLANK BLANK

Fig. 9-3. Typical Z-80 assembly language format'.

column describes the action of the instruction as was shown in Fig.

9-2. The four columns make up an assembly language line. In gen-

eral, the length of assembly language lines has been determined by
the length of lines on the input devices such as teletypewriters and
punched-card readers. In actual practice, as in the assemblers dis-

cussed in the manufacturers section of this book. Section III, the

end of tbe line is represented by a carriage return, line-feed code,

or similar device-oriented condition.

In general, each assembly language line (or source line) repre-

sents the complete set of information about one Z-80 instruction.

Each line will generate from one to foiir bytes representing a Z-80

instruction. One of the several exceptions to this rule is a comment
line, which is originated with a semicolon and is nongenerative; it

generates no machine-language code but sei-ves for reference only.
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A partial typical page from an assembler listing is shown in Fig. 9-4.

The infonnation printed to the left represents the source line num-
ber, the memory location for the first byte of the instruction, and up
to eight hexadecimal digits for the machine-language code of the

instruction (two hexadecimal digits represent one byte). Tliis is

information generated and listed by the assembler. The information

printed to the right represents a direct image of the source line itself.

Additional data printed on the listing would consist of diagnostic

106 '' BXASH-00-00
107

;

*

108 ;• FUNCTION:THIS SUBROUTINE CONVERTS AN 8-BIT BINARYVALUE*
109

;
* IN THE C REGISTER TO TWO ASCII HEXADECIMAL DIGITS. *

110
;

•

111 * CALLING SEQUENCE: (HL)=BUFFER AREA POINTER

112 ;» (C)=8-BITVALUET0BE CONVERTCD *

113 . • CALL BXASH *

114
;

* (RTN W/CHARACTERS IN BUFFER, BUFFER +1 *

115
;

• AND HL INCREMENTED BY 2)

117

118 1036 3EF0 BXASH LD A OFOH
119 1038 Al AND C MASK 1

120 1039 OF RRCA
121 103A OF RRCA
122 103B OF RRCA
123 103C OF RRCA ALIGN FOR CONVERSION
124 103D CD4710 CALL CVERT CONVERT
125 1040 3E0F LD A.OFH MASK 2

126 1042 Al AND C GET SECOND CHARACTER
127 1043 CD4710 CALL CVERT CONVERT
128 1046 C9 RET

129

130 1047 C630 CVERT ADD A,30H CONVERT TO 0-15

131 1049 FEOA CP 10 TEST FOR 0-9

Fig. 9-4. Typical Z-80 listing.

messages indicating assembly errors such as a reference to an unde-
fined, or multiply-defined symbol, invalid arguments such as invalid

hexadecimal digits and the like. Since the listing format is dependent
on the microcomputer system and the kind of assembler, this dis-

cussion is meant to provide a general picture of how a typical listing

would appear and is not meant as a detailed guide.

SYMBOLIC REPRESENTATION

The label column of the source line represents the name of the

location. A program could be written with references only to abso-

lute locations such as "LD A,(1234H)." In this case, however, it

would be necessary to know the exact location to be used, necessitat-

ing definitions of numeric addresses to be used for variables and con-
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stants. It is much more convenient to write "LD A, ( RESULT)" than

to specify an absolute location. The assembler will automatically

resolve the symbol "RESULT" into the equivalent machine-code

address. The references to sijmholic rather than absolute locations

may be eitlier backward references to previously defined symbols,

or forward references to yet-to-be-defined symbols. Let's see how
the assembler resolves the symbols with a short program.

The progi-am below compares the contents of the A register to

the contents of the B register by a compare instruction. It then

branches (jumps) out to three addresses dependent on whether

A<B, A=B, or A>B, represented by location LTHAN, EQUAL, or

GREATR. LTHAN is a backward reference, while EQUAL and

GREATR are forward references.

lOAAH LTHAN

1202H CMPARE
1203H
1206H
1209H GREATR

14AFH EQUAL

CP
JP

JP

B

Z,EQUAL
M,LTHAN

COMPARE A:B
JUMP IF A=B
JUMP IF A<B

The arrows represent instructions not defined. The locations to the

left represent the locations after assembly. Most assemblers make
two passes. The first decodes the mnemonics, constiiicts as much of

the instruction as possible, counts the bytes in the instruction, and

constructs a symbol table representing all labels and symbols in the

program. The second pass resolves all addr esses by the symbol table.

The reason for tico passes is that forward references cannot be re-

solved until the symbol is encountered. After the first pass for the

above program, the symbol table will show:

Symbol Value

CMPARE 1202
EQUAL 14AF
GREATR 1209
LTHAN 1 OAA

On the second pass, the values of EQUAL and LTHAN will be

filled into the JP instructions at 1203H and 1206H.

Certain symbols in the Z-80 system are reserved and cannot be

used by the programmer. The assembler has set tliese symbols aside

to define registers or addressing modes. Many of these symbols ap-

pear- in the instruction formats of Appendix C. Reserved words in

the Z-80 system would include:
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Register Names:
Register Pair Names:
Condition Code Flags:

A, B, C, D, E, F, H, L
AF, BC, DE, HL, IX, lY, SP, AF'
C, NC, Z, NZ, M, P, PE, PO

REPRESENTATION OF NUMBER BASES

Another assembler feature present on all assemblers is the ability

to convert from one number base to the other. This means that argu-
ments for instructions may be specified in the most convenient base.

The ADD A,N instruction, for example, adds an 8-bit immediate
value to the contents of the A register. Binary, decimal, or hexadeci-
mal values of N may be specified by a sufiix of B, no suffix, or H to

enable specifying any of the three number bases: "ADD A,100",
"ADD A,64H", and "ADD A,01100100B" all amount to the same
thing, adding lOOio to the contents of the A register. These three

suffixes will be used in the examples of Section II, although the for-

mats actually used in a particular Z-80 assembler undoubtedly will

be different.

EXPRESSION EVALUATION

Most assemblers have limited expression capability. Expressions
may consist of symbolic and literal data and in more sophisticated

assemblers, absolute and relocatable symbols. Expression operators
allow addition, subtraction, multiplication, and in some cases, divi-

sion and shifting. The operators are usually represented by predict-

able symbols, such as "4-", "*", and "/" for addition, subtraction,

multiplication, and division. Elaborate expressions find little use in

assembly language programs and in some cases may overpower the

assembler, but simpler expressions may be used to assemble the
length of a table, calculate system parameters, and create fields

within data words. Examples will be given in this and other chapters.

PSEUDO-OPERATIONS

In each source fine, the portion responsible for generation of the
instruction operation is the op code. There ai-e some assembler oper-
ation mnemonics, however, that do not generate machine-language
instructions but, rather, inform the assembler of special actions to be
taken. These operation mnemonics are called pseudo-ops, since they
are not truly operation codes that represent valid machine-language
instructions. The pseudo-ops discussed here are similar to those in

all assemblers. As they are shown, the parentheses represent an op-
tional label.
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Label (if any)

NAAAEl
(NAME!)
(NAMED
(NAME!)
(NAME!)

Pseudo-Op

ORG
END
EQU
DEFB
DEFW
DEFS
TXT

Argument (if any)

N

NAAAE2
N
N
N
STRING

The ORG pseudo-op establishes the origin of the program. When,
for example, "ORG 1200H" is used before the first source line of

code, the assembler location counter will be set to 1200H. Subse-

quent instructions will advance the location counter by the number
of bytes in each instruction so that the assembler may keep track of

symbol locations and the current instruction location. The ORG may
also be used within a program at any time to start assembly from a

new location.

The END pseudo-op is the last statement in a program and signals

the assembler to start pass two or to end the assembly process.

The EQU pseudo-op equates a label to another label or a numeric

value. The EQU is used for convenience in assigning recognizable

names to constants or expressions. An example of an EQU repre-

senting tlie length of a table is defined below. Here "$" represents

the current assembler location (the contents of the assembler loca-

tion counter).

Location

OlOOH TABLE
OlOlH
0102H
0103H
0104H
0105H

LENGTH EQU $ - TABLE

103FH LD IX,LENGTH

The length of the table in this example will be 0106H ( the current

location counter)—OlOOH (the start of the table) or 6 bytes. The
EQU does not generate code, but makes an entry in the symbol
table under "LENGTH" for a value of 6. Later in the program,

when the 16-bit immediate insti'uction LD IX,LENGTH is en-

countered, the assembler searches the symbol table for the symbol
LENGTH and resolves it with tbe value 6. Execution of LD IX,

LENGTH will then load 6 into the IX register.
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The pseudo-oijs DEFB and DEFW define constants and variables

in the progiam. The argument for the DEFB is a numeric or sym-
boHe expression that can be resolved in eight bits. The argument
for DEFW must be resolved in sixteen bits. Both pseudo-ops are

necessary because without them the assembler could not generate

tables of data, constants, or locations for variables. The follovnng

source lines generate a table of ten bytes, each byte representing

data from 1 to 10.

0100 01 TABLE DEFB 1

0101 02 DEFB 2
0102 03 DEFB 3

0103 0405 DEFW 0504H
0105 06 DEFB 6
0106 0708 DEFW 0807H
0108 09 DEFB lOOlB
0109 OA DEFB AH
01 OA

DEFS is a pseudo-op that reserves a number of bytes. In many
cases, it is necessary to set aside a block of memory without actually

filling it with meaningful data, as in allocation of I/O buffers and
working storage areas. The effect of DEFS is to increment the as-

sembler location counter by the argument, which represents the

number of bytes to be reserved. When the assembled object module
is loaded by the loader program after assembly, the block of storage

allocated by the DEFS vdll not be affected and wdll retain the mean-
ingless data in the memory area before the load. An alternative way
to reserve storage is to use an ORG pseudo-op. Both of the state-

ments below reserve 22H bytes starting at location 1234H.

1234H BUFFER EQU $
1234H DEFS 22H
1256H NEXTI LDD

.

1234H BUFFER EQU $
1256H ORG $ + 22H
1256H NEXTI LDD

The last pseudo-op discussed here, TXT, is similar to the DEFB
and DEFW in that it generates data for use by the program. The
data in this case is ASCII text data. ASCII representation is used
for most I/O devices and is shown in Appendix E. Alphabetic,

numeric, and special characters must be encoded in ASCII format

before being transferred to the I/O device for printing, display, or

punching. The TXT pseudo-op generates one ASCII character for

each text character in the argument string. The argument string is
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started by any character and is ended by the same character. It is

convenient to use unusual characters as the delimiters.

0100 43555253 TXT $CURSE YOU RED BARON$
0104 4520594F V^^^
01 OB 55205245 ——Delimiter-

OlOC 44204241
0120 524F4E00
0124

The pseudo-ops above are some of the most commonly seen and
will be used in the examples of Section II. The actual pseudo-ops

used in Z-80 microcomputers software will vaiy, however, and the

reader must refer to the manufactiuer's literatiue for the mnemonics
and formats used.

ASSEMBLY MECHANICS

Once a program has been wiitten, the actual assembly mechanics
are quite easy. The source statements are entered via the keyboard
and a copy of the source lines is recorded on some type of I/O
medium such as paper tape, magnetic tape, or floppy disc. In many
cases, a utility program called an editor is used to transfer the key-

board input to the storage medium. After the program has been
copied onto the medium, the assembler is loaded into the micro-

computer if a resident assembler is being used, or into the host com-
puter if a cross-assembler is employed. The assembler will then read

the source from the storage medium for the first pass. If paper- or

magnetic-tape cassettes are used as the storage medium, the paper

tape or cassette may then have to be repositioned manually to the

start of the source image; in other cases, the system will automati-

cally restart from the beginning of the input medium. The assembler

then executes the second pass producing a listing such as the one

shown in Fig. 9-3 and an object module. The object module is essen-

tially the machine-language code in a special loader format. The
object module may physically be paper tape, magnetic tape, or

floppy disc. The object module output of the assembler can now be
loaded into microcomputer memory by the loader utility program
and, after the load, be available for execution.

As previously mentioned, few programs run the veiy first time,

and subsequent reassemblies, loads, and executions will undoubtedly

have to be perforaied until a final version is produced. For each

iteration (and in some systems there are dozens), the assembler

greatly simplifies the coding process.
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CHAPTER 10

Moving Data—Load, Block

Transfer, and Exchange Groups

This chapter discusses one of the most basic operations in any
computer system, moving data between CPU registers and external

memory, or between two areas of external memoiy. The moves may
be eight or sixteen bits at a time. The moves may involve transfer-

ring data from one location to another, copying the contents of a

source location to a destination location, or they may involve ex-

changing the contents of both locations. Some of the moves involve

storage and retrieval of data from the portion of external memory
used as a stack. The most sophisticated of the moves transfers up to

64-K bytes in one instruction.

8-BIT MOVES

The 8-bit load group allows data to be moved from a CPU register

to memory or from memory to a CPU register in a variety of ad-

dressing modes. Moving data to, or from, the A register is a special

subset in this group. The A register is given precedence because it

is the primary register used for arithmetic, logical, and shifting op-
erations in the 8080 and 8008; and these uses still carry over to the

Z-80.

Any of the general-purpose CPU registers can be loaded with the

contents of another CPU register or immediate value by a LD R,R'
or LD R,N instruction, respectively. The following code loads A, B,

C, D, and E with through 4, respectively, and then reverses the

order (4 through 0) by LD R,R' instructions.
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LD A,0
LD B,l

LD C,2

LD D,3

LD E,4

LD H,A
LD L,B

LD A,E
LD B,D

LD D,L

LD E,H

LOAD
LOAD 1

LOAD 2

LOAD 3

LOAD 4
SAVE A
SAVE B

ETO A
DTO B

BTO D
ATO E

When data is to be moved from memory to CPU registers, there

are several methods that can be used to implement the move. These
methods are "mirrored" for moving the data from CPU registers

back to memoiy, so that a good vi^ay to illustrate the move is to show
how data can be moved from one block of memory to another.

Obviously, the easiest way to implement a move of this kind is vidth

the block-transfer instructions, but the discussion of this group will

be left until later in the chapter. The general methods for moving
eight bits of data at a time from memory to CPU registers or back
again are:

1. Using any CPU registers and HL as a pointer in register in-

direct mode
2. Using indexed addressing with any CPU registers

3. Using direct (extended type) addressing with the A register

only

4. Using BC or DE register indirect addressing with the A register

only

We will discuss each of these methods in turn and illustrate 8-bit

data movement to and from CPU registers with a short program for

each method.

The following program loads the A, B, C, and D registers wiih
four variables from memory labeled VARl, VAR2, VAR3, and VAR4.
Register pair HL is first set up as a pointer by a 16-bit load instruc-

tion that loads the start of the 4-byte block into HL. Each time the

next variable is loaded, the HL register is incremented by one to

point to the next byte of the block.

8-BIT MOVES USING HL

LD HL,START
LD A,(HL)

INC HL
LD B,(HL)

POINT TO START
LOAD VARl
POINT TO START + 1

LOAD VAR2
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IMP HI

IMP m

START EQU $
VARl DEFS 1

VAR2 DEFS 1

VAR3 DEFS 1

VAR4 DEFS 1

POINT TO START + 2

LOAD VAR3
POINT TO START + 3
LOAD VAR4

THIS EQUATES START TO VARl
THESE VARIABLES FILLED

IN WITH VALUES SOME-
TIME DURING PROGRAM
EXECUTION

Note that the above method worked quite well as the four vari-

ables were in one contiguous block. If the variables were in random
locations, a little more work is involved as shown next in a short

program that stores the contents of A, B, C, and D in four locations

labeled STORl, STOR2, STOR3, and ST0R4. Each time a new
register is stored, the HL register pair must be loaded with a new
address since it cannot simply be incremented or decremented.
Although there are many other ways to implement this problem in

the Z-80, programs written for the 8008 had to use this method to

access random data, as only the HL register pair was available as

a pointer.

STORl ADDRESS
STORE A
STOR2 ADDRESS
STORE B
STOR3 ADDRESS
STORE C
STOR4 ADDRESS
STORE D

THESE VARIABLES INITIALLY SET
TO BY DEFB. THEY WILL
BE FILLED WITH A-D.

LD HL,STORl
LD (HL),A

LD HL,STOR2
LD (HL),B

LD HL, STOR3
LD (HL),C

LD HL,STOR4
LD (HL),D

V
STORl DEFBO

STOR2 DEFBO

STOR3 DEFBO

STOR4 DEFBO

8-BIT MOVES
USING INDEX REGISTERS

The index registers IX and lY in the Z-80 are registers that are

analogous to the HL register. Each of the index registers is a data
pointer, but with an important difference. The effective address is

obtained by adding an 8-bit displacement value to the contents of

the index register. This means that within each instruction a dis-
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placement can be added to the pointer to access data within a

"block" of 256 bytes, starting from the location the index register

points to —128 bytes and ending with the index register +127 bytes

as shown in Fig. 10-1.

LOCN-128

:x OR lY

LOCN+127

Fig. 10-1. Index regist-er block access.

Suppose that the requirement was to store the A, B, C, and D
registers into locations BLOCK - 4, BLOCK, BLOCK + 4, and
BLOCK + 8, respectively. The following insti-uctions would accom-

plish the task:

LD IX,BLOCK
LD(IX - 4),A

LD(IX -f- 0),B

LD(IX -f 4),C

LD(IX + 8),D

POINT TO BLOCK
STORE A INTO BLOCK - 4
STORE B INTO BLOCK
STORE C INTO BLOCK + 4
STORE D INTO BLOCK + 8

The displacements in the third byte of the instruction would be
—4, 0, 4, and 8, respectively. Here the process of storing data within

the 256-byte block was made much more elEcient than the example
using the HL register pair pointer. Or was it? Let's compai-e the rel-

ative sizes and timing of the two programs. The first program using

the HL registers used four three-byte instructions (LD HL,STORX

)

and four 1-byte instructions (LD (HL),D) for a total of sixteen

bytes and 17 microseconds. The program above used five 3-byte in-

structions for a total fifteen bytes and 22.5 microseconds! It appears

that the first implementation was faster and only slightly more ex-

pensive in terms of memory usage than the second. This is only one
example of how execution speeds and memory storage requirements

must be compared between one method of implementation and an-

other if one is concerned about program eificiency.
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If the lY register was to be used instead of the IX, the instruction

foniiat would be virtually identical, with "lY" substituted for "IX."

The index register-oriented instructions can be used to advantage
for moving data as in the following routine that moves the three

bytes in BLK2 through BLK2 + 2 to BLKl through BLKl + 2. The
move is implemented in reverse fashion starting at BLK2 + 2 and
BLKl + 2. IX holds the source pointer while lY holds the destination

pointer. Both index registers are decremented by a DEC IX or DEC
lY instruction.

NXTl

NXT2

NXT3

LD IX,BLK2
LD IY,BLK1

LD B,(IX)

LD (IY),B

DEC IX

DEC lY

LD B,(IX)

LD (IY),B

DEC IX

DEC lY

LD B,{IX)

LD {IY),B

INITIALIZE START OF SOURCE
INITIALIZE START OF DEST
SAME AS (IX + 0)

SAME AS (lY + 0)

POINT TO NEXT BYTE SOURCE
POINT TO NEXT BYTE DEST
NEXT

NEXT

Code such as the above is ineflScient in memory storage because
the same basic operation is repeated many times. The transfers at

NXTl, NXT2, and NXT3 are almost identical. If 100 bytes were to

be transfen-ed, it would of course be ludicrous to repeat the identi-

cal actions 100 times. The most efBcient way to implement repetitive

actions is by looping back to the same set of instructions for as many
times, N, as required. This is done in the following program which
uses IX and lY as source and destination pointers as before and
moves 100 bytes from BLK2 to BLKl. The initial count, N = 100,

is held in the C register and is decremented down to 0. ITie loop at

EXECUTED ONCE ONLY

p-*LOOP

100
i

TIMES

-DONE

LD IX,BLK2

LD IY,BLK1

LD C,1Q0
LD B,(IX)

LD (IY),B

INC IX

INC lY

DECC
JP NZ,LOOP

STRT OF SRC BLK

STRT OF DST BLK

SET N = 100
LOAD BYTE
STORE BYTE
BMP IND BY ONE

N - 1

GO IF NT DN (Z:

DONE HERE
1)
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LOOP is executed 100 times as long as N = 100 to 1, the Z flag is not

set and the conditional branch JP NZ,LOOP is made. IX and lY are

incremented by one each time thi-ough the loop to point to the next

position in the blocks.

The values of IX, lY, C, and B for the first 5 and last 5 iterations

of the loop are shown in Fig. 10-2.

JY _C. ,i

oLf\c BLKl 100 INITIALIZATION

BLK2+1 BLKl+1 99 BYTE 1 ITERATION IIAFTERI

BLK2+2 BLKl+2 98 2 2

BLK2+3 BLKl+3 97 3 3

BLK2t4 BLKl+4 96^ 4 4

BLK2+5 BLKl+5 95" BYTE 5 5

1

1

1

BLK2+% BLKl+96 4 BYTE 96 ITERATION 96 (AFTER)

BLK2+97 BLKl+97 3 97 97

BLK2+98 BLKl+98 2 98 98

BLK2+99 BLKl+99 1 99 99

BLK2+100 BLKl+100 BYTE 100 100

Fig. 10-2. indexing example.

8-BIT MOVES USING
THE A REGISTER

AND EXTENDED ADDRESSING

The A register can be loaded or stored using extended addi-ess-

ing. In this case, the address specified is in the instruction itself, and

completely random addi-essing can be done without the need for

MEMORY

8-BIT MOVES VIA A REGISTER

AND EXTENDED ADDRESSING

B

C

D

E

H

L

8-BIT MOVES A REGISTER

TOOTHER CPU REGISTERS

Fig. 10-3. A register used for random addressing.
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setting up any pointers or index registers. This instruction is prob-
ably the one most frequently used for moving eight bits of data into

CPU registers and for storing CPU register data via the A register,

as shown in Fig. 10-3. The A register is the path for all of the other
CPU registers in this case.

The following routine loads A, B, C, and D with VARl, VAR2,
VAR3, and VAR4 after first storing the registers in STRA, STRB,
STRC, and STRD using this kind of addressing.

LD (STRA),A STORE A
LD A,B
LD (STRB),A STORE B
LD A,C
LD (STRC),A STORE C
LD A,D
LD {STRD),A STORE D
LD A,(VAR4) GET VAR4 FOR D
LD D,A
LD A,(VAR3) GET VAR3 FOR C
LD C,A
LD A,(VAR2) GET VAR2 FOR B
LD B,A
LD A,(VAR1) GET VARl FOR A

8-BIT MOVES USING
THE A REGISTER AND BC OR DE

REGISTER INDIRECT

The four instructions LD A,(DE); LD A,(BC); LD (DE),A; and
LD (BC),A use BC or DE as pointers in a manner similar to the
way HL is used as a pointer for the previously discussed moves.
Here again, this addressing mode is very efficient as long as the data
being accessed is contiguous data in a block or table. A few exam-
ples ago, the use of the index registers for moving data from one
block to another was presented. The following routine does the
same, and it can be seen that the actions are virtually identical. BC

AGAIN

DONE

LD BC,BLK2
LD DE,BLK1
LD L,100

LD A,(BC)

LD (DE),A

INC BC
INC DE
DEC L

JP NZ,AGAIN

START OF SOURCE BLOCK
START OF DEST BLOCK
SET N = 100
LOAD BYTE
STORE BYTE
BUMP INDICES BY ONE

N - 1

GO IF NOT DONE (Z = 1)
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points to the source block, DE points to the destination block, and
L contains the count, 100 in this case.

16-BIT MOVES

Data movement discussed above involved moving eight bits at a

time. Tlie Z-80 has many instmetions to move data two bytes, or

sixteen bits at a time, however. Data moved in this width are loaded

or stored between register pairs BC, DE, and HL; registers SP, IX,

and lY and memoiy. Sixteen-bit data operations allow the following:

1. Immediate loads of BC, DE, HL, SP, IX, lY

2. Transferring data from memory to BC, DE, HL, SP, IX, or lY,

or the reverse

3. Transfen-ing data from the HL, IX, or lY to SP
4. Pushing and popping BC, DE, HL, AF, IX, or lY to the stack

Many of the loads of the register pairs, SP, or index registers wall,

of course, involve loads of memory addresses. Sixteen bits will hold

all 64-K external-memoiy addresses for the Z-80, and tlie instractions

in this group have specifically been set up for handling address-

related data. If convenient, though, all instructions can be used to

load and store nonaddress operands, such as 16-bit double-precision

values or ASCII character data.

IMMEDIATE LOADS OF 16 BITS

Many of the immediate loads have previously been illustrated in

this chapter. BC, DE, HL, IX, and lY are typically loaded with the

starting address of data blocks containing data to be processed as in:

LOAD ADDRESS OF DATA 1

LOAD ADDRESS OF DATA 2
LOAD ADDRESS OF DATA 3
LOAD ADDRESS OF DATA 4
LOAD ADDRESS OF DATA 5

DATA BLOCK OF TOO BYTES
DATA BLOCK OF 50 BYTES
DATA BLOCK OF 20 BYTES
DATA BLOCK OF 60 BYTES
DATA BLOCK OF 100 BYTES

LD BC,DATA1
LD DE,DATA2
LD HL,DATA3
LD IX,DATA4
LD IY,DATA5

DATA! DEFS 100
DATA2 DEFS 50
DATA3 DEFS 20
DATA4 DEFS 60
DATA5 DEFS TOO

The stack pointer register, SP, almost always points to the area of

memoiy allocated as the stack area, however, and not to a predefined

data block. The SP is initialized to an address value that represents

the top of stack by an LD SP,NN insti-uction. Since the SP always
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points to the last used location in the stack and is decremented be-
fore storage of data is performed, the SP must be loaded with an
addi-ess value corresponding to one greater than the first location to

be used as the stack. If, for example, stack storage is to occupy lOOH
bytes from addi-ess 3FFFH down to 3F00, the SP would be initial-

ized as follows:

0100 LD SP,4000H LOAD TOP OF STACK
OR

LD SPJOPS

3F00 DEFSIOOH DEFINE STACK AREA
4000 TOPS EQU $ OF 256 BYTES

Subsequent pushes to the stack ( there can be no pops as there has
been no data storage in the stack at this point) will decrement the
SP by one before storage. The first byte of data will be stored at

3FFF, the next at 3FFE, and so forth.

16-BIT TRANSFERS TO AND FROM MEMORY
The BC, DE, HL, SP, IX, lY, or SP registers may be loaded from

or stored to memory by instructions in this group. As an example,
suppose that the BC, DE, and HL registers are to be loaded with the
addresses of three blocks of memory, but their contents are to be
saved and restored for later use. As an alternative to storage in the
stack (covered a little later in this chapter), the three register pairs

may be saved by:

SAVB
SAVD
SAVH

LD
LD
LD

DEFS
DEFS
DEFS

(SAVB),BC
(SAVD),DE
(SAVH),HL

2

2

2

SAVE BC
SAVE DE
SAVE HL

STORAGE FOR BC
STORAGE FOR DE
STORAGE FOR HL

Notice that the storage locations reserved for each of the register

pairs must be tivo bytes. Later, when the register pairs are to be re-

loaded with their original values, the instractions below may be
executed:

LD
LD
LD

BC,(SAVB)
DE,(SAVD)
HL,(SAVL)

RESTORE BC
RESTORE DE
RESTORE HL

As in many groups of instructions, the format of the assembly lan-

guage arguments is extremely important. In the following code, LD
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HL,SAVL loads the address of SAVL (lOOOH) while LD HL,
(SAVL) loads the contents of SAVL.

1000 SAVL

LD

LD

DEFW 1234H

HL,SAVL

HL,(SAVH)

LOADS lOOOH

LOADS 1234H

CONTENTS OF lOOOH
IS 1234H

16-BIT DATA TRANSFERS TO THE STACK

The Z-80 allows the transfer of data from the HL, IX, and lY reg-

isters to the stack pointer register, but not the reverse. Examples of

these transfers are:

LD SP,HL HL TO SP

LDSP,IX IX TO SP

LDSP,IY lY TO SP

16-BIT STACK OPERATIONS

The title of this subsection is a misnomer, for all stack operations

involve the transfer of sixteen bits or two bytes of data at a time.

Eight bits cannot be pushed or popped to the stack as in other micro-

computers. This is not a great disadvantage, although it may create

a little more overhead when only one register is to be saved in the

stack for temporaiy storage. In the Z-80 register pairs BC, DE, HL,
AF, and registers IX and lY may be pushed and popped to the

memoiy stack. As each is pushed to the stack, the data in the high-

order byte of the register pair is put into the top of stack —1 and

the data in the low-order byte is put into top of stack —2. The SP

register is decremented by one before each byte is pushed. Tlie fol-

lovdng explains stack action on a push of a register pair, IX or lY.

LD
^

SP,1000H

PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX

PUSH lY

INITIALIZE SP TO lOOOH

A TO OFFFH, F TO OFFEH
B TO OFFDH, C TO OFFCH
D TO OFFBH, E TO OFFAH
H TO 0FF9H, L TO 0FF8H
1X15-8 TO 0FF7H, 1X7-0 TO 0FF6H
IY15-8 TO 0FF5H, IY7-0 TO 0FF4H

As the reader would suspect, the F ( lags
)
register is treated as an

8-bit lower-order register on stack operations.

As data is popped from the stack, the process is reversed. The
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low-order byte is pulled from the top of stack and put into the F, C,

E, L, IXi„„, or lYiuw registers, the SP is then incremented and the
high-order b>te is put into the high-order register of the register

pair or higher-order byte of the IX or lY registers.

Stack storage is employed for the following reasons:

1. Storage of the environment during interrupt processing

2. Temporary storage of CPU registers

3. As a way to transfer data between CPU registers

4. Subroutine use

Stack operations during interrupt actions and subroutine use will

be discussed later. The other two uses are somewhat obvious. At any
time, data from one of the register pairs, IX or lY, may be saved in

the stack by execution of a PUSH instruction. Later the data may be
retrieved by a POP instruction. There is no condition that states that

the data POPped must be restored to the same register pair and the

stack may therefore conveniently be used to transfer data between
registers, as in the following example which exchanges the BC and
lY, and DE and IX registers.

The stack register may also be used to facilitate processing of

strings of data, although care must be taken to maintain the stack

pointer properly when this is done. As an example of this, suppose
that locations 177FH through 1700H had a string of ASCII charac-
ters with the first character in 1700H and the last in 177FH. (Data
can easily be stored in this fashion by use of the increment type in-

structions.) The following code processes each of the characters,

one at a time, providing that the stack is not used for any other

storage anywhere in the processing. This means that no maskable or

nonmaskable interrupts may occur or that no other routines that use
the stack may be employed during the time the processing occurs.

PUSH BC
PUSH lY

PUSH DE
PUSH IX

POP DE
POP IX

POP BC
POP lY

STACK NOW HAS BC
STACK NOW HAS BC, lY

NOW BC, lY, DE
NOW BC, lY, DE, IX

IX TO DE
DE TO IX

lY TO BC
BC TO lY

LD (SAVP),SP
LD SP,1700H

r-» POP BC

SAVE CURRENT STACK POINTER
INITIALIZE SP TO DATA
FIRST BYTE IN C, NEXT IN B

(PROCESS) (LOOP HERE 128 TIMES)

LD SP,(SAVP) RESTORE SP TO ORIGINAL STACK
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Although the processing above will certainly woi-k, it is probably

best to process the string data by other means, especially since inter-

rupts will cause catastrophic results. The block instructions imple-

mented in the Z-80 will permit processing of string data in a much
cleaner fashion.

Tire Block Transfer instructions in the Z-80 offer a means to move
up to 64-K bytes of data automatically or semi-automatically from
one area of memory to another. The ground rule for moving data is

the following:

NEVER MOVE LARGE BLOCKS OF DATA FROM ONE AREA
OF MEMORY TO ANOTHER UNLESS UNAVOIDABLE!

There are many ways to avoid large data movements. Data should

be input or output directly to a buffer in which they can be proc-

essed. Tables can be set up properly to avoid reformatting of data.

Programming structures such as linked lists may be employed in-

stead of contiguous tables. The primary reason for avoiding block-

data transfers is the enonmous amount of time that they require. To
move 1000 bytes of data at 10 microseconds per byte requires 10

milliseconds or 1/100 of a second. Altliough the time required per

byte in the Z-80 is about one half of this, block movements still take

large amounts of time in comparison to other program operations.

With the above proviso in mind, let us see how the block transfer

instructions in the Z-80 can be set up. The first of these is the LDI
instruction. Tlie LDI requires that the HL register pair points to the

source data block and that the DE register pair points to the desti-

nation data block. The BC register pair contains a byte count. To
transfer lOOH bytes of data from a data block starting at location

lOOOH to a data block starting at 2000H, the following code could

be employed.

After initialization, each time an LDI was executed a byte would
be transferred from the location pointed to by the HL to the location

pointed to by DE. The byte count in BC would then be decremented

by one. When the byte count reached zero, the P/V flag would be

reset. Tlie P/V flag therefore can be tested to determine the end of

the transfer. The following code transfers the data:

BLOCK TRANSFER INSTRUCTIONS

LD HL,1000H
LD DE,2000H
LD BC,100H

SET UP SOURCE PNTR
SET UP DEST PNTR
100 BYTES
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LOOP

DONE

LD HL,1000H
LD DE,2000H
LD BC,100H
LDI

JP PE,LOOP

SET UP SOURCE PNTR
SET UP DEST PNTR
100 BYTES
TRANSFER BYTE
GO IF NOT DONE

Note that the P/V flag is set if the byte count is not equal to 0.

This is equivalent to "parity even" or PE. Tlie jump will be per-

formed as long as P/V equals 1 and lOOH bytes have not been trans-

ferred.

This block transfer instruction is "semi-automatic" compared to

the LDIR that transfers the specified number of bytes in BC auto-

matically in one instruction. What is the advantage in having some-
thing other than a fully automatic block transfer? One obvious ad-
vantage is that the LDI allows intermediate processing to occur
between the transfer and the jump back to the next transfer. Suppose
that the data must not only be moved, but that the movement be
terminated on zero data. Thus, a maximum of N bytes would be
moved; however, if any of the source bytes were the move would
stop. The following code terminates the move if the next byte to be
moved is zero. The source byte about to be moved is first tested

before the move occm-s, and if zero, the move is terminated. The OR
A, instruction tests the zero/nonzero status of the byte without
affecting the byte. The Z flag is reset if any bit in the byte is a one
and set if all bits are zeros.

MOVE

NEXT

DONE

LD HL,1000H SET UP SOURCE PNTR
LD DE,2000H SET UP DEST PNTR
LD BCJOOH 100 BYTES MAXIMUM
LDI TRANSFER BYTE
JP P0,DONE GO IF DONE (MAXIMUM)
LD A,{HL) GET NEXT BYTE
OR A TEST BYTE FOR ZERO
JP NZ,NEXT CONTINUE IF NOT ZERO

(

Another advantage of the LDI is that it can be used to move non-
contiguous data. Suppose that there is a table of data that is lOOH
bytes long and that every fourth byte is to be moved to a new data
area as shown in Fig. 10-4. The number of transfers must be 256/4
or 64 and the new storage area will hold the source bytes as shown.
The following code moves the data:

LD HL,SRTAB
LD DE,DSTTB
LD BC,100H/4

SET UP SOURCE PNTR
SET UP DEST PNTR
SET UP BYTE COUNT
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NEXT

DONE

LDI

INC HL
INC HL
INC HL
JP PE,NEXT

SOURCE TABLE

TRANSFER BYTE
POINT TO NEXT BYTE

GO IF NOT DONE

DESTINATION TABLE

SRTAB

+1

+2

+3

+4

+252

+253

+254

+255

BYTE 1

BYTE 2

BYTE 64

Fig. 10-4. Moving noncontiguous data with LDI.

There are several subtleties in the above code. The expression

lOOH/4 will work in many assemblers and enables an assembly-time

calculation of the number of bytes. After the LDI has transferred

the Ith byte, the HL register points to I + 1. The three increments

bump the HL to point to I + 4.

If no processing is to take place between the transfer of individ-

ual bytes, then the LDIR may be used. The LDIR is set up in exactly

the same manner as the LDI. If N bytes are to be transfeixed, how-
ever, the LDIR will execute N times. For each transfer, the LDIR
takes 5.25 microseconds (the LDI takes 4.0 microseconds) except

for the last transfer (BC = 0) in which the LDIR takes 4.0 micro-

seconds.

LD HUSTRTS
LD DE,STRTD
LD BC,64
LDIR

DONE
c

SOURCE START
DEST START
# OF BYTES
TRANSFER 64 BYTES IN

ABOUT 335 MICROSEC.

In the LDI and LDIR instructions, data is transferred in forward

order, that is, it is transferred starting from low memoi-y and ascend-

ing to high memory. The only difference between the LDI and
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LDIR and the LDD and LDDR is that the latter two transfer data
in descending order. HL and DE are set to the ending address of

the source and destination data blocks, respectively, and each is

decremented to point to the next lower byte by the LDD or LDDR.
To transfer data from the previous example, the code would read;

LD HL,ENDS
LD DE,ENDD
LD BC,64
LDDR

DONE

STAB DEFS 64
ENDS EQU $-1
DTAB DEFS 64
ENDD EQU $-1

SOURCE END
DEST END
# OF BYTES
TRANSFER 64 BYTES

SOURCE TABLE

DESTINATION TABLE

EXCHANGE GROUP

There are six instructions in the exchange group. Two of them
transfer data between the current set of CPU registers and the
primed (') set. Three others allow the HL and index registers to

exchange their contents vwth the top of the stack. The last simply
exchanges the contents of DE with HL.
When tlie CPU is initialized, one set of the two eight-register sets

becomes the current set. The other set containing A', F', B', C, D',
E', H', and L' may be accessed via the two exchange instructions

EX AF,AF' and EXX. EX AF,AF' swaps the contents of A and F
with A' and F'. To temporarily store A and F, the follovidng code
could be used:

EX AF,AF'

i
PROCESSING

EX AF,AF'

SAVE A,F

RESTORE A,F

Likewise, EXX swaps EC, DE, and HL with BC, DE', and HL'.

EXX
LD BC,NEW1
LD DE,NEW2
LD^ HL,NEW3

PROCESSING

EXX

SAVE BC, DE, HL
NEW ADDRESSES

RESTORE BC, DE,HL
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EX AF,AF' and EXX would probably be used most frequently in

saving the environment during internipt processing. One reason for

not using the instructions at other times is that if the primed registers

are used for temporary storage and also used for interrupt storage,

it is veiy probable that some of the temporaiy data will be de-

stioyed if interrupts are pei-mitted while both sets of CPU registers

are being used. It is best to reserve the primed registers for process-

ing use only and utilize the stack or memory for temporary storage.

The EX DE.HL instniction swaps the contents of register pair

DE and HL. The insbxiction is useful for moving data from the DE
to HL for the limited arithmetic operations that can be perfomned

to HL. As an example of this, suppose the contents of DE were to

be doubled. The following code would move DE to HL, add HL to

itself to double the contents and move the result back into DE.

The remaining three instructions in this group exchange the con-

tents of the top of stack with either HL, IX, or lY. The SP is not

affected by the swap. Clearly, the manufacturer had a good reason

for the exchange of HL and top of stack [EX (SP),HL — Intel] and
the index registers [EX (SP), IX or lY - Zilog]. It will be left

as an exercise for the reader to discover for himself what those rea-

sons are. (Seriously, one application is to permit adjustment of the

return addi-ess for a call to enable a return to a location other than

the one following the call.)

EX DE,HL
ADD HL,HL
EX DE,HL

DE TO HL
HL + HL TO HL
HL TO DE
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CHAPTER 11

Arithmetic and Logical Operations

8-and 16-Bit Arithmetic Group,

Decimal Arithmetic

The aiithmetic and logical operations covered in this chapter in-

clude adds, subtracts, logical ors, ands, exclusive ors, compares,
increments, and decrements. All of these operations can be per-

formed in 8-bit precision and the adds, subtracts, increments, and
decrements can also be performed in 16-bit precision using register

pairs. The functions performed in these groups aie some of the most
basic operations that a computer can perform. Additionally, the Z-80
allows bed or decimal adds and subtracts by means of a special

"decimal adjust."

8-BIT ARITHMETIC OPERATIONS

In 8-bit arithmetic operations, two 8-bit operands are added or

subtracted. One of the operands must be in the A register while the
other operand may be an immediate operand, an operand in an-

other CPU register, or an operand from memory. The result of the
operation always goes to the A register. The add or subtract func-

tion sets the condition-code flags in the flag register on the result of

the operation as discussed in Chapter 6. A variety of addressing

modes may be used to fetch the second operand, including register

indirect and indexing addressing.

The simplest operation in this group is an 8-bit add. If a checksum
of a block of 63 bytes was to be computed, the following routine
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would add together all 63 bytes after clearing the A register. The
checksum is then stored at the beginning of the block in location

BLK. (A checksum such as this would be used for comparison pur-

poses on subsequent retrievals of the data block; by repeating the

add and comparing the result with the inherent checksum, the valid-

ity of the data could be established.

)

SUB A A - A CLEARS A
LD IX,BLK+63 SET PNTR TO END OF DATA
LD B,63 SET COUNT TO 63

LOOP ADD A,(IX) ADD NEXT BYTE
DEC IX INDEX - 1

DEC B COUNT - 1

JP NZ,LOOP CONTINUE IF NOT 63 BYTES
DONE LD (IX),A STORE A IN BLK

BLK DEFS 64 CHECKSUM + 63 DATA BYTES

In the above program, the last instruction LD ( IX ) ,A stored the

checksum held in A to the location pointed to by the contents of

the index register IX. As the data started at BLK+63 and ended at

BLK-f 1, the index register pointed to BLK4-0 after the last iteration

of the loop and the checksum could be stored without further ad-

justment to the index register.

If the block of data were to be read in from the I/O device and
the checksum to be calculated and compared, a subtract instruction

could be used to advantage.

SET PNTR TO START OF DATA
GET CHECKSUM
SET COUNT TO 63

LOOP SUB (iX) SUBTRACT NEXT BYTE
POINT TO NEXT BYTE
COUNT - 1

CONTINUE IF NOT 63 BYTES
DONE OR A TEST CONTENTS OF A

GO IF ERROR IN DATA
NERROR / NO ERROR

LD IX,INBLK-M
LD A,(IX-1)
LD B,63

SUB (IX)

INC IX

DEC B

JP NZ,LOOP
OR A
JP NZ,ERROR

ERROR

The IX register is first set to the start of the data at INBLK-fl.
The next instruction loads the checksum byte at INBLK (IX— 1 is

(INBLK+1) - 1 = INBLK) into A. Then the data at INBLK+1
through INBLK+63 is subtracted from the partial checksum in A.

At the end (DONE), the contents of A should be if the data is

valid. An or is done which simply serves to set the flags for the con-

ditional branch JP NZ,ERROR. If A is not zero, location ERROR is
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executed, presumably an error routine, otherwise the next -instruc-

tion at NERROR is executed.

When two 8-bit operands are added or subtracted the sign, zero,

parity, and carry flags are afl^ected. Examples for use of the zero flag

have been presented previously. The sign flag may be tested by a

conditional jump on P(ositive) or M(inus). The following example
tests for an ASCII character between 30H and 39H (decimal
through 9).

LD A,(CHAR) GET ASCII CHARACTER
TEST09 SUB 30H SUBTRACT 30

JP M,ERROR GO IF LESS THAN 30
SUB 10 SUBTRACT 10
JP P,ERROR GO IF 3A OR GREATER

OK ADD A,10 THIS CHARACTER 30 TO 39

In this somewhat inefficient test ( a compare is called for in place
of the SUR 10), the ASCII character is loaded and an immediate
30H is subtracted from the character. If the character is less than
ASCII 30H (decimal 0), the result is negative, the sign flag is set,

and a jump to ERROR is taken. If the character is greater or equal
to 30H, 10 is subtracted from the first result yielding a negative num-
ber for all valid ASCII characters (now through 9) or a positive

number for all ASCII characters greater than ASCII 39H ( decimal

9). A test at the JP causes a jump to the error routine if this limit

check fails. Finally, the decimal equivalent of the ASCII chai-acter

is restored by adding 10 to yield - 9 for the converted character.

If an add or subtiact results in an effective add of two 8-bit oper-

ands of similar signs, overflow is possible and can be tested by a

conditional branch on the P/V flag. Overflow will occur and the P/V
flag will be set if the result exceeds -128 (80H) or +127 (7FH).
The following code tests for overflow and effects a jump to an error

routine if overflow has occurred.

LD A,(OPNDl) LOAD OPERAND 1

LD B,A INTO B
LD A,(OPND2) LOAD OPERAND 2

ADD A,B ADD OPND 2 TO OPND 1

JP PE,ERROR JUMP IF OVERFLOW
NO OVERFLOW HERENERROR

The cany flag finds most use during double-precision or multiple-

precision operations. If the required precision is 16 bits, many opera-

tions can be implemented by the 16-bit arithmetic instmctions dis-

cussed later in this section. For the general case, however, where
the precision may exceed 16 bits, the Z-80 has addition and subtrac-

tion instructions that make use of the carry and allow operands to
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be any size, one byte to n bytes. If an operand of four bytes or 32
bits is required, for example, numbers from to 4,294,967,296 may
be handled ( or the equivalent range of negative and positive num-
bers ) . To add or subtract two four-byte operands, a caiTy or borrow
must be propagated to the higher-order bytes. This means that an
add or subti-act to the three higher orders will not suffice; there must
be an add or subtract with carry (cany also represents a bon-ow
in the Z-80 and other machines). The following code performs a

four-byte add and subtract on two four-byte operands located in

OPl and 0P2. OP2 is added or subtracted to OPl and the result put
in OPl. The first add or subtract is of the lowest order and no cai-ry

or borrow exists from previous orders, therefore, an ADD or SUB is

used. Subsequent adds and subtracts utilize the ADC (add vwth
carry) and SBC [subtract with carry (borrow)] instructions to

propagate tlie caixy or borrow.

ADD4

DONE

SUB4

LOOP4

LD IX,OPl+3 POINT TO LOW-ORDER BYTE
LD IY,OP2-)-3 POINT TO LOW-ORDER BYTE
LD A,(IX)

ADD A,(IY) OPl + OP2 BYTE 3

LD (IX),A STORE RESULT IN OPl-l-3
LD A,(IX-1)
ADC A,(IY-1) OPl + OP2 BYTE 2
LD (IX-1),A STORE RESULT IN OPl + 2
LD A,(IX-2)
ADC A,(IY-2) OPl OP2 BYTE 1

LD (1X-2),A STORE RESULT IN OPl + 1

LD A,(IX-3)
ADC A,(IY-3) OPl -1- OP2 BYTE O
LD (IX-3),A STORE RESULT IN OPl

LD IX,OP1+3 POINT TO LOW-ORDER BYTE
LD IY,OP2+3 POINT TO LOW-ORDER BYTE
LD B,4 INITIALIZE COUNT
XOR A CLEAR CARRY
LD A,(IX) LOAD BYTE
SBC A,(IY) OPT - OP2
LD (IX),A STORE RESULT
DEC IX POINT TO NEXT HIGH-ORDER
DEC lY

DEC B DECREMENT COUNT
JP NZ,LOOP4 GO IF NOT DONE

DONE

The examples of add and subtract illustrate two different ap-

proaches to the solution of the same problem. The add example
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utilizes a linear or in-line approach while the subtract example is an
iterative approach using a loop. In the add, a separate load, add, and
store is performed for each of the four bytes. All but the first add
adds in the cany from the lower-order byte by an ADC instruction.

The subtract example has some subtleties in it. The index registers

are initialized to the low-order address of the operands. A count of

four for the four subtracts is set up in the B register. For the first

add, the carry must be cleared and an XOR instruction is used to ac-

complish the clear. An XOR always clears the carry. Now the first

operands are subtracted and the result stored in the low-order byte

of the destination operand. The IX and lY registers are decremented
by one to point to OPl+2 and OP2-I-2. The count in the B register is

decremented and, because it is not yet zero, the jump is taken to

L00P4. On the next subtract, the carry will be set, or reset, depen-
dent on the last SBC instiaiction since no other instruction in the

loop affects the carry. After four subtracts from low to high order,

the count in B is and the instruction at DONE is executed and the

result is in OPl to OPl-f-3.

8-BIT LOGICAL OPERATIONS

The 8-bit logical operations are similar to the 8-bit adds in that

the same addressing modes are permitted and the A register con-

tains the primaiy operand and holds the result at the end of insti-uc-

tion execution. The three logical operations that can be perfonned
are the logical and, or, and exclusive or. The rules for these logi-

cal operations are shown in Table 11-1.

Table 11-1. Logical Operations

Instruction Logical Operation Symbol

AND 11
a£ A I A £ A 1

1

A is the symbol for AND

OR 11
V £ V _L V £. V111

V is the symbol for OR

XOR 11
© ® 1 e ® 1Olio

ffi is the symbol for exclusive OR

Each logical operation is done for every bit position on a bit-by-bit

basis. One bit position does not affect any other bit position and
consequently there can be no carry.
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The AND instruction can be used to mask in, or mask out, un-

wanted fields within data bytes. Suppose, for example, that an 8-bit

byte in memoiy holds two packed bed digits, one in bits 7-4 and the

other in bits 3-0. It is necessary to test the second bed digit. The
first bed digit would be masked out and the second bed digit would
remain for testing by the following code.

LD A,(DIGITS) GET 2 BCD DIGITS
AND OFH MASK OUT HIGH ORDER

TEST
^

Since bits 7-4 of the immediate data value were 0, the correspond-

ing bits of the result in the A register can never be one. As bits 3-0

of the immediate data value were ones, however, all bits of the low-

order bed digit "fall-through" to the result. If tbe data at DIGITS
was 37H, the result after the and instruction was executed would
be 37H A OFH = 07H.
The OR instruction is used to merge data into a field or to uncon-

ditionally set certain bits within a data byte. If one bed digit was in

the A register in the fonn OOOOJJJJ2 and the second was in the B
register in the form KKKKOOOOo, a merged result of the form

KKKKJJJJa could be obtained by:

OR B MERGE TWO BCD DIGITS

As another example of the ORing function, suppose that the high-

est order, or most significant bit, in a table of ten bytes was to be
unconditionally set. The following code would set the msb of each
of the ten bytes without affecting the remainder of tlie byte. Note
that an ADD of 80H would not necessai-ily do the same thing as

adding BOH to values of BOH to FFH would reset the msb.

LOOP

LD IXJABLE SET UP INDEX
LD B,10 SET UP COUNT
LD A,{IX) GET BYTE FROM TABLE
OR 80H SET MSB
LD (IX),A STORE BYTE BACK IN TABLE
INC IX POINT TO NEXT BYTE
DEC B DECREMENT COUNT
.JP NZ,LOOP JUMP IF NOT DONE

DONE
c

Tlie exclusive or instruction is not used as frequently as the and
and OR instructions. One use is to "toggle" a bit between a one and
a zero, either for timing or for maintaining a count of two. The fol-

lowing inshaictions allow a loop starting at LOOP to be reentered

twice only:
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LOOP
LD A,0 SET COUNT TO

DONE

(PROCESSING)

XOR 1

JP NZ,LOOP
TOGGLE COUNT
GO IF 1 FOR SECOND PASS
DONE WITH TWO PASSES

S-BIT COMPARES

A compare operation is functionally similar to a subtract except

that the result of the comparison does not replace the source oper-

and. Only the condition-code flags are set on the result of the com-
parison. A compare can therefore be used to test one operand against

another and a following conditional jump can be made on the results

of the comparison. As in the add or subtract, the 8-bit compare can
use a variety of addressing modes including register indirect and
indexed addi-essing.

As an example of a compare, let us look at the following pro-

gram which finds the smallest number in a list of positive numbers.
As each new number is accessed, it is compared with the previous

smallest number. If the new entry is smaller, it replaces the previous

smallest number in the B register. When the last number in the list

has been compared, the B register holds the smallest number in the

list. The numbers in the list may range from to -1-127 in unsorted

GTSMLL

NEXT

DONE

LIST

LD IX,LIST SET UP LIST ADDRESS
LD C-1 STORE TERMINATOR
LD B,127 INITIALIZE SMALLEST NUMBER
LD A,(IX) GET NEXT ENTRY
CP C COMPARE TO -1
JR Z,DONE GO IF AT END OF LIST

INC IX POINT TO NEXT NUMBER
CP B COMPARE NEW-SMALLEST
JP P,NEXT GO IF NEW >=SMALLEST
LD B,A NEW TO SMALLEST
JP NEXT CONTINUE

c
SMALLEST IN B

DEFB 20 LISTOF NUMBERS
DEFB 32 UNSORTED
DEFB 1 MAY BE 0-127
DEFB
DEFB 37
DEFB 112
DEFB 3

DEFB -1 TERMINATOR
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or random order. Because only positive numbers are represented, a
magniiude compare rather than an algebraic compare (positive and
negative numbers) may be performed. Because no negative num-
bers are allowed, a —1 is used to terminate the list. This makes the

check for the end of the list" somewhat easier than decrementing a

count as the current number may be tested for a —1 state before the

smallest comparison is made.
The index register is set up with the address of the list in the first

instruction. Next, the terminator value -1 is stored in C for each
register comparison and the smallest number in B is initialized to

127] 0. Since 127 is the largest pennissable value, all of the numbers
in the list must be less than or equal to 127. The list showii is gener-

ated at assembly-time, but a list generated dynamically could just

as easily be used. As each entry in the list is picked up, it is com-
pared to —1 and if equal to (Z), a relative branch is made to DONE.
The assembler will automatically fill in the proper displacement in

the JR instiaiction to cause a branch to DONE. Next, the index reg-

ister is incremented in preparation for the next comparison. A com-
parison is then done of the current value to the smallest in B; if the

current value is smaller, it replaces the contents of B. A jump to

NEXT is then made for the next comparison.

The above example is of a magnitude or unsigned comparison.
How is the signed comparison implemented? There are four cases

in the comparison of signed numbers, compaiison of a ++, -I—

,

—
h, and .If the signs of the operands are the same, there will

be no cany if the contents of A are greater than or equal to the sec-

ond operand. If the signs of the operands are different, there will be
no carry if the contents of A are less than B. The following routine

performs an algebraic compare on two operands, either of which
may be —128 to 4-127. Jumps are made on three equality combina-
tions <, =, or > based on a comparison of A;B (A—B).

CMPARE CP B
JP Z,EQUAL
PUSH AF
XOR B
JP P,SAME
POP AF

TEST JP NCLESST
JP GREAT

SAME POP AF
CCF
JP TEST

A:B
GO IF A=B
A AND FLAGS

GO IF SIGNS THE SAME
RESTORE A, FLAGS
A<B
A>B
RESTORE A, FLAGS
COMPLEMENT CARRY FOR TEST

The program above first tests the equality of A and B. If they are

equal, a jump is made to equal. Then the flags and A are saved in
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the stack and an XOR is done to test the sense of the two operands.

If the sign flag is set after the XOR, the signs are different. If the

signs are the same, A and the flags are restored. The CY flag holds
the results of the previous comparison which is complemented by
CCF for the test at TEST. The branch to LESST is talcen if

(+ ):( + ) or (
— ):(-) and there is a carry, or if ( + ):(-) or

(-):(+ ) and there is no carry. The branch to GREAT is taken for

the inverse conditions.

The increment instruction INC and decrement instruction DEC
can be used to increment or decrement contents of a CPU register

or memory location by one. Any of the general-purpose 8-bit regis-

ters A, B, C, D, E, H, and L may be modified. Note that the associ-

ated register of the register pair is not affected. When a memory
location is modified, register indirect addiessing using the HL reg-

ister or indexed addressing may be used. Tlie instructions are

straightforward and should hold no surprises for the programmer.

Just as the A register was the main accumulator that was used for

8-bit arithmetic and logical operations, the HL register is used as

an accumulator for 16-bit arithmetic operations. Register pairs EC,
DE, HL, and SP may be added to, or subtracted from, the contents
of the HL register. The add may be with or without cany, but the
subtract is always with borrow. The Z-80 instruction also allows EC,
DE, HL, or SP to be added to the contents of IX or lY in a simple
add without cany, and allows any register EC, DE, HL, SP, IX, or

lY to be incremented or decremented by one in a 16-bit operation.

In the 8-bit examples, two programs performing four -byte addition

and subtraction were listed. The 16-bit instructions offer an alterna-

tive way to implement the problem. If the four-byte operands are at

OPl and OP2, the following two programs compute OPl -I- OP2 and
OPl - OP2 and place the four-byte result in OPl. (The format of

the operands in memory is ordered least significant byte followed by
most significant byte for every 2-byte "word."

)

ADD4 LD HL,(OP14-2) GET TWO LS BYTES OPl
LD BC,(OP2-h2) GET TWO LS BYTES OP2

8-BIT INCREMENT AND DECREMENT

16-BIT ARITHMETIC OPERATIONS

ADD
LD
LD
LD
ADC
LD

HL,BC
(OPH-2),HL

BC + HL TO HL
STORE LS BYTES OF RESULT
GET TWO MS BYTES OPl
GET TWO MS BYTES OP2
ADD WITH CARRY
STORE MS BYTES OF RESULT

HL,(OPl)

BC,(OP2)
HL,BC
(OPl),HL

DONE
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SUB4 LD HL,(OPl+2) GET TWO LS BYTES OPl
LD DE,(OP2+2) GET TWO LS BYTES OP2
OR A RESET CARRY
SBC HL,DE HL — DE TO HL
LD (OPl +2),HL STORE LS BYTES OF RESULT
LD HL,(OPl) GET TWO MS BYTES OPl
LD DE,(OP2) GET TWO MS BYTES OP2
SBC HL,DE SUBTRACT WITH BORROW
LD (OPl),HL STORE MS BYTES OF RESULT

DONE

Notice that in the above subtract example the carry (borrow) had
to be cleai-ed by an OR A ( or AND A ) before the first subti-act was
done. The next subtract utilizes the carry ( borrow ) from the lower

order. The 16-bit arithmetic operations resulted in a much more
compact implementation of the problem. As the HL and other regis-

ters involved may be easily stored in the stack, use of the HL and
other register pairs for n-precision arithmetic is very conveniently

done.

The contents of IX and lY may be altered by an add from BC,
DE, SP, or the index register itself. Tlie obvious use for this is in

indexing through tables, or other data structures in memory where
data is located every nth byte in the table. If n is loaded into one of

the register pairs, the index register may easily be altered to index

to the next location. Let us see how this works. The following pro-

gram searches a table of 128 entries for a given key value. Each
entiy is seven bytes long and the byte corresponding to the key is

located at the tliird byte in the entry as shown in Fig. 11-1. If a

match is found, the program exits to DONE with the match location

in IX. If no match to the key is found, IX contains —1.

SRCH

LOOP

LD B,KEY LOAD KEY VALUE
LD IX,TABLE+2 START OF TABLE + 2

LD C,128 INITIALIZE COUNT
LD DE,7 INCREMENT VALUE
LD A,(IX) GET TABLE ENTRY
CP B COMPARE TO KEY
JP Z,DONE GO IF MATCH
ADD IX,DE INDEX + 7
DEC C DECREMENT COUNT
JP NZ,LOOP GO IF NOT 128TH ENTRY
LD IX -1 SET NOT FOUND FLAG

DONE

The 16-bit increments and decrements have been used in many
examples above. They are generally straightfoi-ward except for one
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A REGISTER |
8-BIT KEY

|

Fig. 11-1. Table search example.

TABLE -K)

+1

+2

+3

+4

+5

+6

+7

+889

+890

+891

+892

+893

+894

+895

KEYl

KEY 128

ENTRY 1

mm 128

caution. The 16-bit INCs or DECs do not affect any condition code
flags. One implication of this is that a register pair cannot easily be
tested for a decrement of a count down to zero or a limit condition.

If a register pair is to be used to hold a count, a 16-bit add or sub-
tract may be used in place of the INC or DEC to increment or decre-

ment the register pair, as these insti-uctions do set the carry and, in

some cases, the zero flag. Here is an example of how the ADD HL,SS
instruction may be used to control the number of iterations through
a LOOP.

LOOP

LD
LD
LD

DE-1
IXJABLE
HL,COUNT

LOAD -1 TO DE
START OF TABLE
LOAD COUNT OF N-

(PROCESSING)

INC IX

ADD HL,DE
JP C,LOOP

POINT TO NEXT BYTE OF TABLE
DECREMENT COUNT BY 1

CONTINUE

The count is initialized to one less than the number of iterations

required. The last instruction of the routine tests the state of the
carry. The next to last instruction effectively decrements the count
in HL by one. No carry is produced when —1 is added to a in
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HL. Therefore, a condition of carry marks the termination of the

loop after N iterations. The Z flag is not aff^ected by tlie ADD HL.SS,
but is affected by ADC and SBC.

GENERAL-PURPOSE ARITHMETIC INSTRUCTIONS

Two insb-uctions in the general-purpose arithmetic group fall into

a discussion of 8- and 16-bit arithmetic operations. The CPL and
NEC instructions complement and negate the contents of tlie A reg-

ister, respectively. The CPL fonns the one's complement of the A
register contents, while the NEC forms the two's complement of the

A register contents. Both operations are convenient dming normal
processing in most programs.

DECIMAL ARITHMETIC OPERATONS

When an 8-bit add or subtract is perfomied, the arithmetic and
logical unit in the Z-80 CPU performs a straight binary add or sub-

tract. Some early computers perfonned bed adds and subtracts

rather than binary operations and data was retained in memory in

bed form. The Z-80 combines die simplicity of bed representation

with the efficiency of binary storage by the equivalent of bed adds
and subti-acts. The binary add, or subtract, is first performed and
then the DAA, or Decimal Adjust A instruction, is performed to ad-

just the binary result in the A register to bed form. Multiple-preci-

sion bed adds and subtracts may be performed as easily as multiple-

precision binary operations. Suppose that two two-byte bed oper-

ands are held in locations BCDl and BCD2. Each operand consists

of four bed digits as shown in Fig. 11-2. The following code perfonns

a bed add of BCD2 to BCDl with result stored in BCDl. The sec-

ond example subtracts BCD2 from BCDl, stores results in BCDl.

BCDADD

DONE

LD A,(BCD2-M) GET LS BCD DIGITS OP2
LD B,A
LD A,(BCDl-hl) GET LS BCD DIGITS OP2
ADD A,B
DAA BCD ADD
LD (BCD1-H),A STORE LS RESULT
LD A,{BCD2) GET MS BCD DIGITS OP2
LD B,A
LD A,(BCD1) GET MS BCD DIGITS OPl
ADC A,B
DAA BCD ADD
LD (BCD1),A STORE MS RESULT
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BCDSUB

LOOP

DONE

LD IX,BCD1 + 1 POINT TO L'l OPl
LD IY,BCD2+1 POINT TO (S OP?
LD B,—

2

LOOP COUNT
XOR A CLEAR CARRY
LD A (IX) OFT BCD r)ir5IT<; DPI
LD
SBC A,B
DAA DECIMAL ADJUST
LD (IX),A STORE RESULT
DEC IX POINT TO HIGHER ORDER
DEC lY

INC B BUMP LOOP COUNT
JP NZ,LOOP CONTINUE

INCREASING

SIGNIFICANCE

7 4 3 7 4 3

I
BCD DIGIT 3 1 BCD DIGIT 2 1 (BCD DIGIT 1 1 BCD DIGIT

103 10^ lol lo»

POSITION POSITION POSITION POSITION

Fig. 1 1-2. Four-digit bed representation.

As the subtract example shows, the routines may be easily gener-
alized to operate on (N X 2) bed digits. The cany flag is always
set by the CPU after the DAA operation to represent the cany from
the hcd operation so that the carry (or borrow) is properly propa-
gated to higher-order bed operations.
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CHAPTER 12

Shifting and Bit Manipulation

—

Rotate and Shift, Bit Set, Reset,

and Test Groups

The instructions in this general category are basically concerned

with shifting for arithmetic reasons or with manipulation of bits or

fields of data. The Z-80 allows many combinations of shifts, supple-

menting the basic 8080 base containing four rotate A register in-

structions with logical and arithmetic shifts to CPU registers or

memory. With the proper tise of shifts, many arithmetic operations

such as multiplication and division may be implemented in addition

to manipulation of fields within words. The bit-oriented insb'uctions

permit testing and storage of data on a bit basis, either in CPU reg-

isters or memoiy.

LOGICAL SHIFTS

Logical shifts are perhaps tlie simplest shifts to understand. In a

logical shift of eight bits, there is no consideration of the sign. The
data is shifted right, or left, one bit at a time. The data is not "re-

circulated" to the opposite end of the register or memory location as

it is shifted; bits that are shifted out of the register are lost except

that they set the CY flag. Zeros fill vacated bit positions. Tliere are

two shift methods that perfonn a logical shift in the Z-80, one being

the SRL or Shift Right Logical, and the other being the SLA or

Shift Left Arithmetic. The latter, although designated "arithmetic,"

performs a classic logical shift. All shifts in the Z-80 operate on
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eight bits of data; there are no 16-bit shifts except those imple-

mented in software.

Logical shifts are usually implemented for one of two reasons:

1. To multiply and divide by powers of 2 or other factors.

2. To align fields within data bytes.

SRL BEFORE

SRIARER

CY

I
1 1 1 1

I
[x]

CY

I
1 1 1

1
|T|

53H

*2

29H WITH CARRY "1

SLA BEFORE

I ° 1 1 1 1
I

SU AFTER

H] [T 1 1 1 0|

53H

1(2

A6H WITH CARRY -0

Fig. 12-1. Multiplication and division by shifting.

MULTIPLICATION AND DIVISION BY SHIFTING

Fig. 12-1 shows an SRL and SLA performed on the hexadecimal
value 53H. The result after the SRL is 29H with the carry set. The
result after the SLA is A6H vwth the carry reset. The effect of the
SRL has been to divide by 2, while the SLA has multiplied by 2.

For each bit position shifted right, the SRL divides by 2 so that n
SRLs divide by 2". For each bit position shifted left, the SLA vdll

multiply by 2; a shift of n bit positions divides by 2". As an example
of this, consider the routine below. This routine finds the average
of eight test scores where each test score represents a number from
one to ten. Since the maximum total is 80, a single byte may be used
for the total. The total is divided by eight by a shift right of three bit

positions implemented by three SRLs. The average is a truncated
average to the next lowest integer.

FNDAVE

LOOP

LD lYJESTS-l POINT TO TABLE OF TESTS
LD B,8 SET UP COUNT
XOR A ZERO A FOR TOTALIZATION
INC lY BUMP POINTER
DEC B DECREMENT COUNT
JP M,JUMP1 GO IF 8 ITERATIONS
ADD A,(IY) TOTALIZE
JP LOOP CONTINUE
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JUMPl SRL A DIVIDE BY 2

SRL A DIVIDE BY 4
SRL A DIVIDE BY 8

DONE

TESTS DEFS 8 TABLE OF TEST SCORES

This program is implemented somewhat differently than previous

loops. ( Not as efficiently either! ) Here the lY register and count are

modified before the processing. A test is made of the minus state of

the sign flag to terminate the loop. If the total ntunber of test scores

has not been processed, the next score is added and the loop con-

tinues. Note that the initial value in lY is equal to (TABLE — 1)

but is equal to TABLE by the time the first score is retrieved.

By a combination of shifting and addition, multiplication or divi-

sion by any number that can be written as a sum of powers of two is

possible. A frequently seen use of this method is multiplication or

division by 10 which can be factored into ( 8 + 2 ) . The example be-

low illustrates multiplication by .10 of an 8-bit number, assumed to

be 25 or less to fit within an unsigned 8-bit byte.

MULIO LD A,NUMBER GET MULTIPLICAND
SLA A MULTIPLICAND X 2

LD B,A SAVE
SLA A MULTIPLICAND X 4
SLA A MULTIPLICAND X 8
ADD A,B MLCND*(8+2) = M*10

Logical shifts are commonly used to align data within fields, al-

though in some cases a rotate and mask operation may be performed.

The following routine is one method of converting two hexadecimal

digits into their corresponding ASCII values of — F. A logical shift

is used on the first digit to align it (right justified) so that the ASCII
conversion may be performed.

CVERT

OKI

LD A,VALUE GET TWO HEX DIGITS

LD B,A SAVE
SRL A
SRL A
SRL A
SRL A ALIGN FOR CONVERT
ADD A,30H CONVERT TO ASCII

CP 3AH
JP M,0K1 GO IF NO CORRECTION
ADD A,7 CORRECT FOR A - F

LD (BUF),A STORE FOR OUTPUT
LD A,B GET 2ND DIGIT

AND OFH MASK OUT 1ST DIGIT
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OK2
DONE

ADD
CP
JP

ADD
LD

A,30H
3AH
M,OK2
A,7
{BUF+1),A

CONVERT TO ASCII

GO IF NO CORRECTION
CORRECT FOR A - F

STORE FOR OUTPUT

i

A left logical shift may also be implemented by addition. The A
register or HL register pair may be added to itself to shift data or

simply to multiply by powers of two. The ADD A, instruction is

one byte and takes 1 microsecond while a corresponding SLA is

two bytes and takes 2 microseconds. Needless to say the ADD A
should always be used. The 16-bit shifts of the HL register may be
implemented by the ADD HL,HL instruction. The code below
duplicates the multiply by ten above, but with 16 bits.

MUL10 LD
ADD
PUSH
POP
ADD
ADD
ADD

HL,{NUMBER)
HL,HL
HL
DE
HL,HL
HL,HL
HL,DE

GET MULTIPLICAND
2 * MULTIPLICAND

TRANSFER TO DE
4 * MULTIPLICAND
8 * MULTIPLICAND
10 * MULTIPLICAND

ROTATE-TYPE SHIFTS

The Z-80 has eight rotate-type shifts, some of wliich are redundant.
The rotates basically shift the eight bits of the operand and a carry
or eight bits of the operand alone. In the first case, the shift is really

a 9-bit shift if the cany is considered an extension of the register or
memory location. Both the rotates with the carry and the rotates

without the carry have their uses. All rotates preserve all eight or
nine bits of the data and shift a CPU register or memory operand

A REG I STIR ONLY

RLCA

CPU REGISTER
OR MEMORY OPERAND

P RLC

RU RL

RRCA RRC

RRA RR

Fig. 12-2. Shift actions.
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1-bit position to the right or left. For those shifts that do not shift

through the carry, the carry is set to the value of the bit shifted out

of the register and around. Fig. 12-2 recaps the shift, actions.

Rotate shifts are used to align fields within bytes for access and
storage and to enable multiple-register shifts. Data in a CPU register

or memory location may be tested by a rotate shift, but not neces-

sarily destroyed.

Discounting the fact that we can obtain the parity of an 8-bit

operand very easily by performing an AND A or OR A, let us illus-

trate how a rotate may be used to compute the parity of a memory
operand.

PARITY XOR A CLEAR PARITY AND C
LD B 8 INITIALIZE COUNT
LD h'l,memop MEMORY OPERAND ADDRESS

LOOP RLC (HI) SHIFT OUT BIT TO CY
JR NC,.JUMP1 GO IF NOT A ONE BIT

XOR 1 FLIP PARITY INDICATOR
JUMPl DEC B DECREMENT COUNT

JR NZ,LOOP GO IF NOT 8 BITS

DONE A REGISTER NOW IF EVEN
# OF 1 BITS, 1 IF NOT

The A register and carry are first cleared by the XOR. Now the

RL (HL) instruction is executed eight times. At the end of eight

times, the contents of MEMOP are identical to the contents before

the routine was entered. The A register Isb was set or toggled each
time a one bit was shifted around to bit 0, so that after eight shifts

the A register bit holds a one if the total number of one bits was
odd, or a if the total number of one bits was even.

Another example of the use of the rotate is shown next. Here, the

rotate is used to convert an 8-bit binary operand to binary-ASCII

BXASB EQU $ BINARY-.TO-ASCII-BINARY
LD A,(BYTE) GET BYTE TO CONVERT
LD C 8 SET # COUNT
LD IX,BUF-l-7 BUFFER, LAST BYTE

LOOP LD B,30H ASCII

RRCA SHIFT OUT BIT

JR NC,JUMP1 GO IF BIT =
INC B CHANGE TO ASCII 1

JUMPl LD (IX),B STORE ASCII CHARACTER
DEC IX POINT TO HIGHER-ORDER SLOT
DEC C DECREMENT COUNT
JR NZ,LOOP GO IF NOT 8 TESTS

DONE
\
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digits. As there will be eight ASCII characters representing

(ASCII 30H) or 1 (ASCII 31), a buffer of eight bytes is allocated

to hold the results of the conversion. The bits in the operand to be
converted are tested one at a time by shifting the A register right in

a rotate shift. The rotate could be either an RRCA rotate or an RRC
A rotate. Both perform the same action (the RRCA is compatible

with the 8080 rotate of this kind). Since the RRCA takes one byte

and 1 microsecond and the RRC A takes two bytes and 2 microsec-

onds, the RRCA was chosen.

If the value at BYTE was IOIIIOOI2, the character stored at BUF
through BUF+7 for this routine would be 31, 30, 31, 31, 31, 30, 30,

31, all hexadecimal.

The rotate shifts may be used in conjunction with logical shifts to

facilitate multiple-precision shifts. Suppose that we wish (for some
unfathomable reason) to shift a 3-byte operand located at UDGE
two bit positions to the left in a logical shift. The rotate may be used
to propagate any carry along the 3-byte chain as follows:

SLUDGE EQU $ SHIFT LEFT UDGE
LD IX, UDGE+2
SLA (IX) TO BIT 0, BIT 7 TO C
RL (iX-1) C TO BIT 0, BIT 7 TO C
RL (IX-2) C TO BIT 0, BIT 7 TO C
SLA (IX) TO BIT 0, BIT 7 TO C
RL (IX-1) C TO BIT 0, BIT 7 TO C
RL (IX~2) C TO BIT 0, BIT 7 TO C

Another variation of this implementation uses the HL register.

( The format of the operand in memory is ordered byte 1 ( most sig-

nificant), byte 3, byte 2 because of Z-80 "word" format.)

LD HL,(UDGE-H) TWO LS BYTES
LD lY, UDGE
ADD HL,HL SHIFT LEFT 1 TO C
RL (lY) C TO MS BYTE
ADD HL,HL SHIFT LEFT 1 TO C
RL (lY) C TO MS BYTE
LD (UDGE-H1),HL STORE LS BYTE

ARITHMETIC SHIFTS

We have already covered the shift left arithmetic in previous ex-

amples. Various manufacturers implement arithmetic left shifts in

one of two ways. Many equate a left arithmetic shift to a left logical

and leave it go at that—the sign is simply shifted out on the first shift.

Other manufacturers retain the sign on a left shift. The bit in bit
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position six is shifted out into the carry and bit seven remains.

In any event, the Shift Right Arithmetic is unambiguous. The sign

bit position, bit seven, w retained, and extended into bit position six.

Fig. 12-3 shows a large negative number reduced by shifting. As a

right arithmetic shift is performed, the number in the register or

memory operand is truncated, that is, bits that are shifted off the

right are lost. In fact, the instantaneous value of the carry after a

right shift represents the remainder of a divide-by-two operation.

If the fractional portion of the arithmetic portion of the shift is to be
retained, the bits shifted off must be saved in another register.

I
1 1 1 I OR IGINAL VALUE -n9jj

I
1 1 1 1 AFTER SRAl -60^^

I
1 1 1 1 | AFTER SRA2 - -30jj

[ 1 1 1 1 1 ] AFTER SRA3 - -ISjj,

I
1 1 1 1 1 | AFTER SRA4 » -8

I
1 1 1 1 1 1 0| AFTER SRA5 - -4

Fig. 12-3. SRA action.

The following routine perfoims an aritlimetic right shift and saves

the fractional part of the number in the B register. If the binary

point is considered to be between the two registers, then the bit

positions of the fractional portion represent 1/2, 1/4, 1/8, etc.

ARSSVF LD A,{NUMBER) GET NUMBER
LD B,0 CLEAR FRACTION
SRA A N/2
RR B SAVE 1/8
SRA A N/4
RR B SAVE 1/4
SRA A N/8
RR B SAVE 1/2

DONE

The effect of an arithmetic right shift on a positive number is to

truncate the number and retain the quotient of the divide while
ignoring the remainder. An example of this is the divide IOII2/4
implemented by a 2-bit arithmetic right shift (this is not a value
judgement). The number after the shift is 2; the remainder of 3/4
has been lost. The effect of an arithmetic right shift on a negative

number is to round up if the fractional part is ignored when the
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number is converted to positive form. The divide IIIIOIOI2/4 is

IIHIIOI2 with a remainder of 010000002 if the fractional remainder
is saved. IIIIIIOI2 is ^3; the quotient has been rounded up to the

nearest integer.

Since the arithmetic right shift extends the sign bit position, it

normally should not be used to align data in fields. Erroneous one
bits will be extended to the right if a negative number is arithmeti-

cally shifted prior to masking and testing.

THE 4-BIT BCD SHIFT

All of the above shifts shift one bit position to the right or left per

shift instruction. The RLD and RRD instructions perform a 4-bit

shift to the left and right respectively, working with the A register

and the location referenced by the HL register. The instructions are

recapped in Fig. 12-4. Although this shift may be used conveniently

for any processing that deals with 4-bit fields, it is very convenient

for processing bed data. Each 4-bit shift brings in a new bed digit.

Let us see an example of the way the shifts may be used to manipu-
late bed data.

The program below converts ASCII characters, assumed to be the

digits — 9, into bed digits. Ten characters, representing a 10-digit

bed value of OOOOOOOOOOio - 9999999999io are stored in INBUF
through INBUF-l-9. The conversion will put the 5-byte packed bed
result in INBUF through INBUF-l-4, two bed digits per byte, in the

same order. See Fig. 12-5.

BCDAXB

LOOP

DONE

EQU $ BCD ASCII TO BCD
LD IXJNBUF POINT TO BUFFER
LD HLJNBUF POINT TO BUFFER
LD B,5 SET UP COUNT
LD A,(IX) GET CHARACTER
SUB 30H CONVERT TO BCD 0-9
RLD ROTATE TO (HL)

LD A,(IX+1) GET NEXT CHARACTER
SUB 30H CONVERT TO BCD - 9
RLD ROTATE TO HL
INC IX BUMP CURRENT CHARACTER
INC IX POINTER
INC HL BUMP STORAGE POINTER
DEC B DECREMENT COUNTER
JR NZ,LOOP GO IF NOT DONE

In the above program, the ASCII characters were accessed two
per iteration through the loop. Each was converted to bed by sub-
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RLD
4 BITS

7 4
_

3 I ^
,

7 4 3 ^0
H] POIMTED TO BY HL

^ [ I I

'
^

'
'^™OI'Y OPERAND

T~^, . I I „"T
\ 4BITS 4BITS

UNAFFECTED

RRD /
/ 4 BJTS

7 / 4 3 i 7 4 3 I

I

1 !
^

1 MEMORY OPERAND
1 1

1 1 I n 1 , 1 POINTED TO BY HL

I „ f
4 BITS 4 BITS

Fig. 1 2-4. RLD, RRD action.

traction of 30H and the resulting bed digits were rotated into the

location pointed to by HL. At the end of the loop, the HL pointer

was incremented by one and the IX by two; HL is the pointer to

the next storage location, while IX points to the current ASCII char-

acter to be processed. The loop has five iterations to process five sets

of two characters at a time.

BEFORE BCDAXB AFTERBCDAXB

INBUF+0

+ 1

2
+ 3

+ 4

+ 5

••6

+ 7

ASCII CHARACTER D

+ 1

+ 2

+ 3

+ 4

+ J
+ 6 I

"Tx
BCD DIGIT BCD DIGIT 1

2 3

4 5

6 7

^ B

Fig. 12-5. ASCII to bed conversion.

As a further example of the use of the 4-bit rotates, let us convert

the opposite way, going from packed bed digits in INBUF through

INBUF-l-4 into ASCII characters representing the digits through

9. Here, we must go backwards through the buffer as we are filling

two bytes of ASCII data with each packed byte of two bed digits.

IX will hold the address of the next location to be used for storage

in the buffer, while HL will point to the current pair of bed digits.

As two bed digits will be processed at a time, five iterations vdll take

place. The first two bed digits are picked up from INBUF4-4 and
stored in INBUF-f-9 and INBUF-l-8. The conversion will continue

until the digits at INBUF are accessed and the ASCII characters that

result are stored at INBUF-H and INBUF as shown in Fig. 12-6.
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BEFORE BXBCDA AFTER BXBCDA

BXBCDA EQU $
LD IX,INBUF+9
LD HL,INBUF+4
LD B,5

LOOP XOR A
RRD
ADD A,30H
LD (IX),A

XOR A
RRD
ADD A,30H
LD (IX-1),A
DEC IX

DEC IX

DEC HL
DEC B

JR NZ,LOOP
DONE )

BCD TO BCD ASCII
PNT TO LST BYTE OF BUFFER
POINT TO FIRST TWO DIGITS
SET UP COUNT
CLEAR A
GET MS DIGIT TO A
CONVERT TO ASCII

STORE IN BUFFER
CLEAR A
GET LS DIGIT TO A
CONVERT TO ASCII
STORE IN BUFFER
POINT TO NEXT
STORAGE
POINT TO NEXT 2 DIGITS
DECREMENT COUNTER
GO IF NOT DONE

The only subtlety in the program above is that the A register must
be cleared before each bed digit is shifted in, as the shift does not
affect bits 7 — 4 of the A register.

BIT SET, RESET, AND TEST GROUP
The instructions in this group enable any of the eight bits in a

CPU register or memory operand to be tested, set, or reset. Register
indirect or indexed addressing is permitted for addressing operands
in memory. The instructions in the group are rather powerful as they
enable fast and efficient bit manipulation. Bits within bytes may be
operated on by combinations of load and masking operations, rather
than the bit instructions, but the resultant code is at least three in-

structions as shown here:

183



BITEST EQU $ TEST BIT

LD HL,BYTE POINT TO BYTE
LD A,(HL) GET BYTE
AND VALUE MASK OUT BIT

VALUE EQU 1 (OR 2, 4, 8, 16, 32, 64, 128)

BITSET EQU $ SET BIT

LD HUBYTE POINT TO BYTE
LD A,(HL) GET BYTE
OR VALUE SET BIT

LD

<

(HL),A STORE BYTE

BITRST EQU $ RESET BIT

LD HL,BYTE POINT TO BYTE
LD A,(HL) GET BYTE
AND NOTVAL RESET BIT

LD (HL),A STORE BYTE

NOTVAL EQU FEH (OR FD, FB, F7, EF, DF, BF, 7F)

Each of the three routines above can be replaced with one equiva-

lent bit test, set, or reset instruction. To test bit 7 in an 8-bit byte in

memory, the following code is used:

LD HL,BYTE POINT TO BYTE
BIT 7,(HL) TEST MS BIT

JR Z,ZERO GO IF BIT IS A ZERO
ONE ) BIT IS A ONE

To set a bit in a memory operand,

LD IX,BYTE POINT TO BYTE
SET 5,(IX) SET BIT 5

To reset a bit in a memory operand,

LD IY,BYTE POINT TO BYTE
RES 1,(IY) RESET BIT 1

Of course, any of the three bit instructions may also be used to

test, set, or reset any bit in a CPU register:

BIT 7,B TEST MS BIT OF B REGISTER

As an example of how the bit processing instructions may be used,

consider the following example. A 256 column by 256 line video dis-

play is being used in a Z-80 microcomputer system as shown in Fig.

12-7. Each pixel, or picture element, is represented by one bit in
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256 COLUMNS

256

LINES

VDHBl + l

/ +6

VDTTBl+0 KNiyiiiii iMimiiiiii'

MEMORY TABLE

MAPPED TO VDr
SCREEN 8192

BYTES -64K BITS

+ 8160 J}

VDTTBl + 31

/
ROWO

1

2

VDTB 1 + 8191

'ROW 255

3 IT FOR ROWO, COL 55

-BIT FOR ROWO, COL 48

Fig. 12-7. VDT bit map for 64K pixels.

memory and can be on (white) or off (black). The first Hne is rep-
resented by the data at VDTTBl through VDTTBl+31, each byte
holding eight pixels worth of data. The entire 8K bytes (64K bits)

is output to the VDT by direct memory access of the VDTTBl data
by the electronics in the VDT controller. The display program will

continually update the display buffer VDTTBl to change the dis-

play. For display of plots and other data, it is convenient to address
the pixels by row, colunm representation. The pixel in the upper left-

hand corner is 0,0 (row 0, column 0), the pixel in the upper right-

hand corner is 0,255, the pixel in the lower left is 255,0, and the pixel
in the lower right corner is 255,255. The problem is to convert a pixel

address from row, column representation to the actual bit address
and access the bit in VDTTBl to test the current value, set the bit,

or reset the bit to change the display. The following examples are
three portions of the program. Data is passed to the programs in the
A register and B register, A representing the row and B the column.
The set and reset programs simply set or reset the required pixel.

The test passes back an argument representing the current value of
the pixel in the Z flag, Z=0 for on (white), and 1 for off (black).

; THIS ROUTINE TESTS THE VALUE OF A PIXEL
TESTPX LD C,46H LOAD SKELETON (BIT)

JUMP CALL GTADD GET ADD IN HL, BIT # IN A
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OR C MERGE BIT #
LD (MODIFY),A STORE BIT INSTRUCTION

INSTRU BIT 0,{HL) TEST, SET, OR RESET BIT

RET RETURN
MODIFY EQU INSTR+1 SEC BYTE OF BIT INSTR

; THIS ROUTINE SETS THE VALUE OF A PIXEL TO 1

SETPX LD C,0C6H LOAD SKELETON (SET)

JP JUMP
; THIS ROUTINE RESETS THE VALUE OF A PIXEL TO
RESTPX LD C,86H LOAD SKELETON (RES)

JP JUMP
; THIS ROUTINE PUTS ADDRESS OF BYTE CONTAINING
; PIXEL IN HL, BIT # IN A ALIGNED IN BITS 5-3
GTADD PUSH BC SAVE B,C IN STACK

SRL A TRUNCATE 3 LSBS OF B

RR B ALIGN 3 ADDRESS BITS

SRL A
RR B

SRL A
RR B

LD L,B DISPLACEMENT NOW IN

LD H,A
ADD HL,VDTTB1 VDT TABLE ADDRESS
POP BC RESTORE B,C

LD A,B GET LOWER-ORDER BITS

CPL
AND 7 GET BIT ADDRESS
SLA A ALIGN BIT ADDRESS
SLA A FOR BIT INSTRUCTION
SLA A
RET RETURN

These routines are probably more sophisticated than any we have

considered thus far. In the first place, they are true subroutines,

callable by a CALL instruction. The return is made with the RET
instruction. There are three entry points in the subroutine TESTPX
which tests the value in a pixel, SETPX, which sets a 1 into the

pixel, and RESTPX, which resets a pixel to 0. Depending on the

function to be performed, they are callable by something similar to:

LD A,ROW GET CURRENT ROW
LD B,COL GET CURRENT COLUMN
CALL SETPX SET PIXEL TO ON

RETURN HERE

Subroutine TESTPX (which also encompasses the SETPX and

RESTPX functions) calls yet another subroutine GTADD. Subrou-

tine GTADD converts a row, column address to a byte address in
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1. GTADD REGISTERS ON ENTRY

7 7_ 0_
A REGISTER I ROW (0-255) | 1 COLUMN (0-255) | B REGISTER

2. DISPLACEIWENT OF BYTE CALCULATED

A |R R R R R R R R| |C C C C C|C C C) B

OO'ORRRRRRRRCCC Fcl HL

13 BITS "ADDRESS
TO 8191

3. FIND ACTUAL ADDRESS OF BYTE

I
VDDTB2tRRRRRRRRcccCC2 ADDRESS | HL

4. FIND BIT#7-0

2
J_

|c C "C"! COMPLEMENT

ALIGN BIT #FOR BIT INSTRUCTION

ri-V 3 2

|00|CCC|000| A REG I STER

6. RETURN FROM SUBROUTINE

Fig. 12-8. Subroutine GTADD action.

HL and a bit address in A. Let us investigate GTADD in detail first.

The parameters on input to GTADD are as shown in Fig. 12-8, the
row # to 255 in A and the cohimn # to 255 in B. Tlie byte dis-

placement of the byte containing the pixel bit is given by (ROW
X 32) -f (COLUMN/8). The bit address 0-7 (most significant bit

to least significant bit) is given by the remainder of COLUMN/8.
GTADD calculates the byte displacement by shifting A and B and
then calculates the actual addi-ess witliin the table by adding the
displacement to the address of the start of the table. The byte
addi-ess is then stored in HL. The bit address of the pixel is found
by masking the three least significant bits of the colmnn address in

B. Since these are the inverse of the Z-80 bit position numbers, they
are complemented before the mask to set the corresponding Z-80 bit

position numbers. After the bit position number is found, it is aligned
to bits 5 — 3 of the A register for reasons which shall become obvi-

ous. The entire action of subroutine GTADD is shown in Fig. 12-8.

To test the value of a pixel, subroutine TESTPX is called. A and B
contain the row and column of the pixel, respectively. The first ac-

tion taken is to load the G register with a value corresponding to the
second byte of a BIT instruction. Value 46H represents the second
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byte of BIT 0, (HL ) . Subroutine GTADD is then called to compute
the byte and bit address of the pixel within VDTTBl. Aligned bit

number in A on return is ORed with BIT 0, ( HL ) code in C to pro-

duce the BIT B,(HL) form of the instruction. This is stored in the

second byte of the BIT instruction (location MODIFY). The BIT 0,

(HL), now a BIT B,(HL) instruction, is then executed setting the

Z flag on the results of the bit test. The Z flag is still valid when the

RTN instruction is executed to return to the main calling program.

SETPX and RESTPX operate in similar fashion, except that the

instructions loaded in C are the second bytes of SET 0,(HL) and

RES 0, ( HL ) . The B field is merged on the OR after the return from

GTADD. The three instmctions executed at INSTRU for the three

entry points are shown in Fig. 12-!

BITB.IHU
7 g_

BYTEO
I

1 10 10 1 I

1 |0" 1
I

B
I

1 1

**

SETB.ML)

? 0_

BYTE h 1 o" 10 1 1

1
I

1 1
I

b"
I
1 1

**

RES B.MLI

7

BYTE
I

1 1 "o 10 1 1

1
I
1

I
B "p"

1

***
I*

**

Fig. 12-9. Instruction modification for VDT bit routine.

The previous program utilizes many of the shifting, bit manipula-

tion, indexing, and logical functions discussed in this and previous

chapters. It also introduces several new concepts. One of the most
important is that an instruction is simply data that can be modified

as any other data value. The instruction at INSTRU was dynamically

changed rather than changed at assembly time to reflect the function

perfonned. The above implementation also illustrates the use of

subroutines and subroutine calls. This subject will be covered in

more detail in Chapter 14.

SOFTWARE MULTIPLICATION AND DIVISION

The subject of software multiply and divide is discussed in this

chapter because the implementation of these functions, in the gen-

eral case, is primarily shift and bit test operations. There are several

kinds of implementations possible for multiply and divide opera-

nt THIS BYTE -FOR ALL
THREE INSTRUCTIONS

** THISFIELD =FOR ALL

THREE INSTRUCTIONS

*** THIS FIELD CHANGES
FOR INSTRUCTION

** THIS FIELD COMPUTED
** IN GTADD
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tions, but most are inefBcient. The multiply by shifting and adding
powers of two works well for decimal and other multipliers. The in-

verse of this, shifting and subtracting powers of two, also will work
well for division of small divisors. Other methods for multiplication

and division include successive addition (multiplication) and sub-
traction (division) and a variation of this based on table "lookup"
of powers of ten. All of these implementations, however, suffer in

the general case from large execution times. As an example of the
execution times involved, consider the following program which
divides by successive subtraction of the 8-bit unsigned divisor from
a 16-bit unsigned dividend.

DIVIDE LD
LD
NEG
LD
LD

LD
LOOP ADD

JR

INC
JP

DONE
^

The divisor is effectively subtracted from the dividend until the
residue goes below 0. For each successful subtract, the quotient is

incremented by one. The best case execution of this program is about
25 microseconds. The worst case time is about 1/2 second! With an
average time of about a millisecond, the program is far too slow for

software that requires many divide operations.

The generic form of most multiply routines emulate a paper and
pencil multiplication exercise. The digits of the multiplier are ex-

amined one at a time, multiplied against the multiplicand, the pro-

duct added to a partial product, and a shift made to the next digit

MULT LD L,0 CLEAR L

LD H,A MULTIPLIER TO H
LD C,B MULTIPLICAND TO C
LD B,0 0, MULTIPLICAND TO B,C
LD A,8 ITERATION COUNT

LOOP ADD HL,HL SHIFT LEFT ONE
JR NC,JUMP1 GO IF NO CARRY
ADD HL,BC ADD MULTIPLICAND TO PARTIAL PROD

JUMP] DEC A DECREMENT ITERATION COUNT
JR NZ,LOOP GO IF NOT 8 ITERATIONS

DONE
^

HL,(DIVDND)
A,(DVISOR)

C,A
B,OFFH
DE,0
HL,BC
NC,DONE
DE
LOOP

16-BIT DIVIDEND
8-BIT DIVISOR
NEGATE DIVISOR
- DIVISOR TO BC

CLEAR QUOTIENT
SUBTRACT DIVISOR
GO IF DONE
BUMP QUOTIENT
CONTINUE
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position. Let us see how this works in a simple unsigned multiply

of two 8-bit operands. The multiplier is passed in the A register and
the multiplicand in the B register.

The register arrangement at the start of the multiply is shown in

Fig. 12-10. The multiplier is shifted out one bit at a time. If the

multiplier bit is a one (carry set), the multiplicand is added to the

partial product; if a zero, no add is made. After eight iterations, the

multiplier has been shifted completely out of H and HL holds the

16-bit product. The worst case time for this multiply is under 100

microseconds, a factor of 10 better than for a successive addition

method. The same general implementation may be carried out for

multiplies of greater widths although a product exceeding 16 bits

will require additional code for shifting more than one register pair-.

]-»— SHIFT PARTIAL PRODUCT

I
B.CADDSTOH.L

]

Fig. T2-10. An 8-bit multiply register arrangement.

MULTIPLIER
BITS MIT MULTIPLIER

OUT

C

3 IT MULTIPLICAND

The general form of division of the Z-80 and similar microproces-

sors is also related to the paper and pencil method. In this case, the

restoring division of manual methods is used. The residue or partial

dividend is examined to see if the divisor "will go" into it (is less

than or equal to the dividend ) . If the subtract can be made, a one

bit is put into the quotient and a shift is made for the next divide.

If the subtract cannot be made, the value of the residue is restored

by adding back the dividend and a zero bit is put into the quotient.

The following routine divides a 16-bit unsigned dividend in HL by

an 8-bit unsigned divisor in the B register to yield an 8-bit quotient

and 8-bit remainder.

DVIDE8 LD C,0 NOW - DIVISOR IN BC
LD D,8 ITERATION COUNT

LOOP ADD HL,HL SHIFT LEFT ONE
XOR A CLEAR C
SBC HL,BC
INC HL SET 0=1
.JP NC,JUMP1 GO IF POSITIVE RESULT
ADD HL,BC RESTORE
RES 0,L RESET Q BIT TO

.JUMP 1 DEC D DECREMENT COUNT
JR NZ,LOOP CONTINUE IF NOT 8

DONE ;
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HL-BC 4 ^ 5J

I
8-BIT DIVISOR

I
'

|

Fig. 12-1 1. A 16-bit by 8-bit divide register arrangement.

The register arrangement at the start of the divide is shown in

Fig. 12-11. The divisor is subtracted from the residue in HL after a
left shift of the residue ( is in the msb of the dividend for the first

shift). The quotient bit is preset to a 1 in the lower end of the L
register. If the subtract wall not "go," a restore is done (ADD
HL,BC) and the quotient bit reset to 0. At the end of the divide, the
residue or remainder is in H and an 8-bit quotient has been shifted

into L. Overflow is possible if the quotient cannot be resolved in

eight bits.

The preceding is a brief introduction to implementations of un-
signed "multiplies" and "divides." In many software projects such
simple operations will suffice; in other systems, more elaborate

arithmetic operations such as floating-point implementations wdll be
required.
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CHAPTER 13

List and Table Operations

Search Group

This chapter discusses three kinds of data structures, strings, tables

and lists, and the techniques used to access them. The search group

of Z-80 instructions are specifically implemented to search through

tables and strings of data, and they are described in detailed exam-

ples in the discussion.

DATA STRINGS

Data strings are sequences of data, and the common usage refers

to character data. The assembler pseudo-operation TXT generates

a string of ASCII characters as in the following example:

MESGl TXT $THIS IS A CHARACTER STRINGS

String operations are important in text processing and compiler

operation, and some higher-level languages have been implemented
specifically to deal with string manipulation.

The Z-80 has the capability to search a sequence of data bytes for

a given byte. The search may be made for character or other data

as the implementation is only concerned with finding a data byte

that matches a search key. The implementation of the search in-

structions is very similar to the implementation of other Z-80 block-

related instructions. An 8-bit search key is loaded into the A regis-

ter. The HL register pair is loaded with the starting address of the

data string, and the BC register pair is loaded with the number of

bytes to be searched. If the CPI instruction is used, the search vdll
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be done "semi-automatically," that is, one instruction will be exe-

cuted. The byte pointed to by HL will be accessed and compared to

the contents of the A register. The contents of HL will be incre-

mented and the contents of BC will be decremented. If BC ^ after

the decrement, the P/V flag will be set. The S, Z, and H (half-cany)
will be set if the comparison result is negative, equal, or produces a

half-carry, respectively. The next instruction in sequence will then

be executed. Examples of CPI use will be presented under table

operations in this chapter.

If the instruction is a CPIR instruction, all of the setup and execu-

tion details are the same, except that the CPIR will continue execu-

tion until either a match is found with the search key in the A regis-

ter or until the byte count has been decremented down to zero

(BC = 0). Testing of the P/V and Z flags will indicate the terminat-

ing condition.

As an example of CPIR use, consider the following example. A
string of 64 characters, starting at STRING, is to be searched for the

character "$."

SRCHD LD
LD
LD
CPIR
JP

A,24H DOLLAR SIGN
HL,STRING ADDRESS OF FIRST CHAR
BC,64 64 BYTES MAXIMUM

SEARCH STRING FOR $
Z,FOUND GO IF CHARACTER FOUND

NOT FOUND

FOUND DEC HL POINT TO $
LD (PNTR),HL SAVE POINTER TO $

The A register is loaded with the hexadecimal equivalent of an
ASCII dollar sign. Register pair HL is initialized with the address of
the start of the character string, STRING. Since 64 characters are
to be searched, a byte count of 64 is loaded into BC. The CPIR se-

quences through the 64-character string. If a dollar sign is found,
CPIR is exited to the next instruction with the Z flag set. If the
dollar sign was at the last character, both the Z flag and the P/V
flag vwll indicate terminating conditions; the Z flag will be set indi-

cating the character was found and the P/V flag will be reset indi-

cating that the byte count was decremented down to zero. It is neces-
sary to test the Z flag first, therefore, to see if the character was found
before testing the P/V for end of string. If the character is found, the
HL register points to the byte aper the character, so the pointer
must be adjusted by one to point to the location of the dollar sign.

The terminating conditions for a typical successful search for this

example are given in Fig. 13-1.

As described in a previous chapter, the CPDR works in similar

fashion to the CPIR, except that it decrements from the end of the
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list. The contents of HL is decremented after each iteration of the

instruction; the contents of BC is, of course, decrenaented as in the

CPIR. The initiahzation for a 64-character string for use with a

CPDR is as follows.

SRCHD LD A,24H DOLLAR SIGN
LD HL,STRING+63 ADDRESS OF LAST CHAR
LD BC,64 64 BYTES MAXIMUM
CPDR SEARCH FOR $ BACKWARDS

CPIR and CPDR work extremely efficiently for one-character

keys. The time per iteration if the key is not found is 5.25 microsec-

onds, making the average search time through a 64-character string

(64/2) X 5.25= 168 microseconds. The corresponding code for an

access, compare, conditional test, adjust of byte count and pointer,

and conditional test would be about double the CPIR or CPDR and
occupy a great deal more memory.

If a key of more than one character is required, the compare
string instructions may also be used, but the comparison process will

not be quite as efficient as a search for a single byte. If the first char-

acter search is made on a frequently occurring character (such as

24 H SEARCH KEY

SEARCH DIRECTION

+63

STRING +8

Z P/V

m m
Fig. 13-1. String search terminating conditions.

194



an "e" in an alphanumeric string ) , then a significant amount of time
will be wasted in comparing the remainder of the string to the search
string; if the first character of the search string occms less frequently
(such as a "q"), then the number of "failing comparisons" will be
fewer and the overall search more efficient. One general way to

search for a given string of more than one character is given in the
next sample instructions. Here, a search is made for a two-character
string. The first level of the search is performed for the first letter

of the key string. When the first letter is found in the string to be
searched, the next character is compared to the second key character.

If a match is made, the routine exits; but if a match is not made, the
routine restarts from the point at which the first character was found.
Here, the search is through a string of 64 characters. The search is

over if no match has been found by the 63rd character.

BIGSRC LD HL,STRING START OF STRING
LD BC,63 63 BYTES MAXIMUM

LOOP LD A,(CHAR+0) FIRST CHARACTER OF KEY
CPiR SEARCH FOR 1ST CHAR
JP NZ,NFND GO IF NOT FOUND

SECLVL LD D,(HL) GET SECOND CHAR
LD A,(CHAR+1) GET SECOND CHAR OF KEY
CP D COMPARE
JP NZ,LOOP GO IF NOT FOUND

FOUND HL POINTS TO MATCH + 1

If the first key character has a match, then the second level com-
parison at SECLVL is entered. HL at this point points to the match
plus one so that the next character can be picked up directly. A is

then loaded with the second key character and a comparison made.
If there is a compare, FOUND is executed; if there is no compare,
LOOP is reentered. The BC and HL registers are already properly
set for the next CPIR comparison in the no match case!

A variation of the above technique can be used to search for a
given length key or a hashing comparison may be made for the sec-

ond level compare. In the latter case, a one-for-one compare of each
of the remaining bytes in the key and string is not made. The re-

maining bytes of the string are used to compute a hash value which
is then compared with a precomputed key hash value. If the two
hash values are equal, then a direct compare is made. If the two
hash values are not equal, then the search continues. The hash
algorithm may be any scheme that produces a relatively unique
value. If the hash algorithm adds the remaining bytes together, for

example, a relatively unique hash value is found as shown in Table
13-1. Here, about 1 in 30 five-character strings will produce the same
hash value.
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Table 13-1. Five-Character String Comparison

character

String ASCII

Total of

Bytes

WHITE 57H, 48, 49, 54, 45 181H

GREEN 47, 52, 45, 45, 4E 171H

BROWN 42, 52, 4F, 57, 4E 188H

AAAUVE 4D, 41, 55, 56, 45 17EH

An implementation of a search based on this simple hash is shown
in the following code.

HASHSR

LOOP

SECLVL

MAYBE

FOUND

LD IX,CHAR
LD A,(IX+1)
ADD A,(IX+2)
ADD A,(IX+3)
ADD A,{IX+4)
LD D,A
LD HUSTRING
LD BC,60
LD A,(CHAR+0)
CPIR
JP NZ,NFND
PUSH HL
POP IX

LD A,(IX)

ADD A,{IX+1)
ADD A,(IX+2)
ADD A,(IX+3)
CP D
JP NZ,LOOP
LD IY,CHAR+1
LD A,(IX)

CP (lY)

.JP NZ,LOOP
LD A,(IX+1)
CP (IY+1)

JP NZ,LOOP
LD A,(IX+2)
CP (IY-f2)

JP NZ,LOOP
LD A,(IX+3)
CP (IY+3)

JP NZ,LOOP

c

START OF 5-CHAR KEY
LOAD KEY CHARACTERS

SAVE IN D
START OF STRING
60 BYTES = DONE
FIRST CHARACTER
SEARCH FOR 1ST CHAR
GO IF NOT FOUND
SAVE POINTER
POINT TO 2ND CHAR

COMPUTE HASH
COMPARE TO KEY HASH
GO IF NO MATCH
POINT TO 2ND CHAR OF KEY

GO IF NO MATCH 2ND CHAR

GO IF NO MATCH 3RD CHAR

GO IF NO MATCH 4TH CHAR

GO IF NO MATCH 5TH CHAR
FOUND!

If a match is found on the first character, SECLVL is entered. A
hash is then computed for the remaining four characters of the

string and compared to the precomputed key hash in D. If there is
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no match, LOOP is reentered. If there is a match, MAYBE is en-

tered where a direct one-for-one comparison is made culminating in

FOUND, if all of the remaining characters match. The portion of

code from MAYBE to FOUND could have been shortened consider-

ably by subroutine or loop use, but the code was expanded for

clarity.

TABLE OPERATIONS

Strings are a subset of tables, as they are contiguous lists of items.

Each entry in the string consists of one ASCII character. A table is

TABLE ENTRY 1

TABLE +12810 2

TABLE +256
3_

TABLE +384 4

ENTRY N

ENTRY 100

TABLE + 12800 101

Fig. 1 3-2. Employee table format.

+

LAST NAME

+14

+15

: FIRST NAME :

+24

+25
OTHER

DATA

+ 127
10

made up of a number of entries that may be any number of bits long
and may contain subgroupings of data. Within the table, entries may
be ordered, in random order, or indexed by some external key.

Ordering may be done on any subgroup within the table entry. Let
us use a table of names and addresses to illustrate the use of an
indexed table in the Z-80. LASER PERIPHERALS, INC. has 101
employees. A table used in the payroll program is referenced by em-
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ployee number 1 — 101. Each entry of the table consists of data on
the employee as shown in Fig. 13-2. The following program picks

up the employee name from the table and moves it into a print

buffer.

EQU $ EMPLOYEE ID IN A
LD HLJABLE START OF EMPLOYEE TABLE
DEC A CHANGE ID # TO INDEX 0-100
LD B,A INDEX TO B
LD C,0 BC NOW HAS INDEX * 256
SRL B

RR C BC NOW HAS INDEX * 128

ADD HL,BC TABLE + (INDEX * 128)
LD BC,15 # CHARACTERS IN LAST NAME
LD DE,BUFFER PRINT BUFFER ADDRESS
LDIR TRANSFER LAST NAME

The ID # (in A) is first converted to an index # of O-lOOio. The
index is then multiplied by 128 as each entry starts at a 128-byte
block. When this displacement is computed, it is added to the start

of the table to find the start of the last name of the employee. An
LDIR is then used to move the data into the print buffer.

Suppose that the entries in the above example were not in any
order or not indexed by ID number. If the ID # was 1 — 255, then
a search through the table could be made for a given ID # key by
using the CPI or CPD instruction. The ID # is located in the last

byte of each 128-byte entry in the table (see Fig. 13-2). Searching
for the ID # from end of the table back would proceed as follows

:

GETID LD HL,TABLE-f 128*NENT-1 LAST ENTRY-M27
LD BC,NENT BYTE COUNT = # OF ENTRIES
LD A,KEYID LOAD KEY ID #
LD DE,-127 DECREMENT VALUE

LOOP CPD SEARCH FOR ID ONCE
JR Z,FOUND GO IF FOUND
JP PO,NFND GO IF AT END (NOT END)
ADD HL,DE

'

DECREMENT HL
.JP LOOP CONTINUE

FOUND
<

HL POINTS TO ID # -F 1

NENT EQU 101 NUMBER OF ENTRIES

In the previous program, the HL register was set up to point to

the address of the last entry of the table + 127. Since each entry is

128 bytes long, total length of the table is TABLE -f (NENT * 128).
NENT is the number of entries in the variable length table. The
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value TABLE + (NENT * 128) points to the last byte of the table

plus one, so one is subtracted from the expression to point to the last

ID # in the table. A search is then made, one ID at a time, by a CPD.

If a match is not found, 127 is decremented from IIL to point to the

next ID ( the HL register pair has already been decremented once

by the CPD). If the ID # is not in the table, BC is decremented

down to zero and the NFND routine is entered.

The preceding routine shows a search for a 1-byte key in a table

of entries. Searches for n-byte keys may be made using the same

methods to sequence through a table, forward or backward, and

may use the string comparison techniques described in previous

examples.

When it becomes necessary to order tables, the block transfer rou-

tines may be used to advantage. Although it is good programming

practice not to move large blocks of data from one set of locations in

memory to another, at times data must be inserted in tables, deleted

from tables, or the key value must be modified and the table re-

ordered. In the following routines, the general parameters are

TABLE, the starting address of the table, NENT, the number of

entries in the table, and LENT, the length in bytes of each entry.

The address of the last word in the table + 1 is given by LASTW.
The inputs to the multiply routine are in the A register (multipli-

cand) and B register (multiplier). The output of the multiplier rou-

tine is a 16-bit product in the BC register. The key for the search

is always assumed to be in the first byte of the table entry.

The first routine in this set deletes an entry from the table. A
search is first made to find the entry by a CPI. When the entry is

found, the entries below the delete entry are moved up by an LDIR
instruction. Note that this instruction must be an LDIR as an LDDR
would overwrite data to be moved as the move was implemented.

DELETE LD H LIABLE START OF TABLE
LD BC,NENT # OF ENTRIES IN TABLE
LD A,KEY SEARCH KEY
LD DE,LENT # OF BYTES PER ENTRY
DEC DE # OF BYTES PER ENTRY

LOOP CPI SEARCH ONE ENTRY
JP Z,FOUND GO IF FOUND
JP PO,NFND NOT FOUND!
ADD HLDE POINT TO NEXT ENTRY
JP LOOP CONTINUE

FOUND DEC HL POINT TO 1ST BYTE OF
PUSH HL
LD HL,LASTW LAST WORD -f 1

OR A CLEAR C
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DESTA

DONE

DrsDr\Jr # OF BYTES TO MOVE
SBC HL,BC
UK AA

nL.,Ut # OF BYTES TO MOVE
MInL # OF BYTES TO MOVE

PI IQMrUon dL.

PI KMr uon Ml

PHP DV-
1 KANoFtK lO BC

POP DE DESTINATION ADDRESS
LD HL,LENT # OF BYTES PER ENTRY
ADD HL,DE SOURCE ADDRESS
LDIR MOVE DATA

In the above routine, a search was first made to find the entry. If
found, the remainder of the routine is concerned with setting up the
parameters for the move. The HL register points to the destination
address + one at this point, so it is decremented and saved in the
stack, eventually (at DESTA) to be put into DE. The number of
bytes to move is then given by LASTW - HL - LENT, and this
value is computed and put into BC. The source address is provided
by HL + LENT; this is computed and loaded into HL for the
LDIR. The actions of this move are shown in Fig. 13-3.

TABLE

LENT"
#0F BYTES
PER ENTRY

TABLE+N

ENTRY 1

ENTRY TO DELETE

ENTRY N

#0F
BYTES
TO MOVE

AFTER
DELETE

THIS DATA
NOT ALTERED

NEW

LOCATION

Fig. 13-3. Delete table entry actions.

The next routine inserts an entry into a table. Here, a search is not
made on the basis of finding a value equal to a key value, but on
finding the two adjacent entries that are less than and greater than
the key value (or less than or equal, or greater than or equal). All of
the search instructions set the sign flag on each iteration of the
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search, so that this comparison may be easily made. When this kind
of search is made, a CPI or CPD must, of course, be used as the
search is only terminated on equality.

t t ^ ^ l~V "T"

INSERT LD HLJABLE START OF TABLE
LD BC,NENT # OF ENTRIES IN TABLE
LD A,KEY SEARCH KEY
LD DE,LENT # OF BYTES PER ENTRY
DEC DE # OF BYTES PER ENTRY - 1

LOOP CPI SEARCH ONE ENTRY
JP QLTHAN GO IF ENTRY GT KEY
JP PO,END NOT FOUND
ADD HL,DE POINT TO NEXT ENTRY
JR LOOP CONTINUE

LTHAN DEC HL POINT TO GT ENTRY=INSERT POINT

A search is first made through the table forwards for the first value
that is greater than the search key. If no value is found greater than
the search key, then the new entry must be appended to the table
to retain the ascending order of the table. The code for this would
be at END and is not shown. If a greater than value is found, then
the pointer value in HL minus one defines the source starting ad-
dress for the move. The destination address is the length of one
entry plus the source starting address. The number of bytes to be
moved is the total number of table entries minus the current entry
multiplied by the number of bytes per entry. The move must be a
LDDR to prevent overwriting data that has not yet been moved. The
actions of the INSERT are shown in Fig. 13-4. Note that this insert

is correct even if the new entry will be inserted as the first entry of
the table.

The tliird routine of this set modifies the key value of a table entry.

As the new value disturbs the order of the table, the table must be
reordered. One way to implement a modify of this kind would be to

AFTER

INSERT

TABLE

INSERT ENTRY J>

ENTRY 1

ENTRY N

Fig. 13-4. Insert table entry actions.
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ORIGINAL
CONTEMTS

AFTER
DELETE

AFTER

INSERT

ENTRY 1

ENTRY 3

ENTRY 4

ENTRY N-1

ENTRY
-TO BE

MODIFIED

ENTRY 2

ENTRY N-1

ENTRY N

ENTRY 1

NEW ENTRY 3

ENTRY N-1

ENTRY N

NEW ENTRY 3 NEW ENTRY 3

Fig. 13-5. Modify table entry actions.

delete the entry using the delete routine, and then to insert the modi-

fied entry using the insert routine. Tlie actions of the MODIFY are

shown in Fig. 13-5.

The search instructions lend themselves to sequential searches

through tables of data where each data entry is accessed in sequence

while moving through the table forward or backwards. Various other

search algorithms are possible for ordered data entries. A binary

search accesses table entries by comparing the sense of the (key:

table) entiy comparison. In a table ordered with entries in ascend-

ing order, the next entry accessed will be the middle entry of the

remaining entries before the current entry, if the current entry is

greater than the key value; or the middle entry of the remaining

entries after the current entry, if the current entry is less than the

key value. The algorithm converges on the sought entry in N = ( logg

NENT) + I, where NENT is the number of entries in the table, as

shown in Fig. 13-6. A table of 1000 entries can be searched for a

TABLE +0

1

2

3

4

5

6

TABEND-1

TABEND

ENTRY 1

N-1

ASCENDING ORDER

Fig. 1 3-6. Table for binary

search example.
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given entry in 11 iterations or less [N = (log;. 1000) + 1 = 9.XX + 1

= 11], whereas a sequential search will take an average of 500 ac-
cesses.

The following routine perfonns a binary search for an 8-bit value
for a table of 256 entries, or less, that starts at TABLE and ends at
TABEND. Each entiy has one byte, the search key itself, as shown
in Fig. 13-6.

BINSRC LD B,0 SET LOW INDEX =
LD TAUPMPl TAD! C

1 AdcNU-I AdLc CUT LII/^LJ IMPvCV 1 ACT

1

D

n n 1M IT! A 1 17C nP

1 D IMiTIA! \7iZ I ACT IMr\CVINI 1 lALIZfc lAo 1 (NUfcA
1 DImLj lA,l\tY rUINI lU KtY
IP I! IftAD 1JU/v\r 1

CIDCT TIICT I ACT CMTDVrIKol Ico! — LAol LNlKY
LOOP LD

SUB A DA,D HIGH-LOW
SRL AA (HIUH-LUW;/ ji

ADD (nlijn-HJvv;/ z -r LUW
LD E,A MIDPOINT DISPLACEMENT

JUMPl LD HLJABLE TABLE START
ADD HL,DE START + (HIGH-LOW/ 2)

LD A,(HL) GET ENTRY
CP (IX) COMPARE WITH KEY
JP Z,FOUND GO IF MATCH
JP NC,JUMP2 GO IF ENTRY GT KEY
LD B,E CURRENT TO LOW
JP LOOP CONTINUE

JUMP2 LD C,E CURRENT TO HIGH
JP LOOP CONTINUE

The routine, first of all, compares the last entry of the table with
the search key ( to avoid truncation errors in computing the next in-

dex ) .
If the key is not found, the iterative portion of the routine is

entered. For each iteration, new low and high limits are established
based on the results of the last comparison. The current index in E
is put into either C (high) or B (low) as the new limit. The mid-
point displacement of the area to be searched is then computed
(HIGH - L0W)/2, and added to LOW to find the next index
for the search. The value in the next location is then compared
with the search key and if unequal, the next binary search area
and location are computed. In the above loop, there is no check
on terminating conditions for the search. If the key exists, as we have
assumed, it will eventually be found and the instruction at FOUND
will be executed. If the key does not exist, no termination of the loop
will occur. To prevent an endless loop, a simple comparison should
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be made of the (i+1) index value [(HIGH ~ LOW)/2 + LOW] to

the ith index value. When the two values are equal, the binary search

has ended without a match. The binary search actions of this rou-

tine for a 15-entry table are shown in Fig. 13-7.

56

TABLE +0 1

+1 13

+2 15

+3 17

+4 19

+5 21

+6 25

+7 50

+8 55

+9 56

+10 72

+11 85

+12 89

+13 99

TABEND 100

®
(D
®

ENTRIES IN

ASCENDING
ORDER

ITERATION LOW INDEX HIGH INDEX ENTRY ACCESSED SENSE OF MATCH

TABLE+M >
+7 <
+10 >
^-8 <
+9

Fig. T3-7. Binary search example.

LIST OPERATIONS

When sorted data must be altered frequently and entries deleted,

inserted, or modified, the overhead of altering data tables becomes
significantly large. A list is a data structure that reduces the over-

head by eliminating movements of large blocks of data when items

are changed within the list. A single-ended list consists of entries that

are noncontiguous in memory. Each entry consists of the data as-

sociated with that list entry and a pointer ( address ) to the next data

items in the list. As the data items are linked by the address pointers,

the entries in the list may be in any order in memory. The head of

the list is referenced by a variable in memory. The last item in the

list often has a —1 or other invalid address to signify that it is

the last item. Fig. 13-8 shows a typical single-ended linked li.st of

nine data items with four bytes per entiy. The last two bytes are the

pointer to the next item in the list. The head of the list is referenced

by HEADLS.
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MEMORY
LOCATION

lOOOH

1004

1008

lOOC

1010

1014

1018

lOlC

1020

1024

1028

102C

1030

1034

1038

103C

1040

1044

1000

1004

1014

1020

1024

1008

1030

BYTE

1

2

3

KEY VALUE

OTHER DATA

LINK ADDRESS
TO NEXT ENTRY

- SHADED AREAS UNUSED ENTRY FORMAT

- VALUES IN ENTRIES ARE ADDRESS LINKS TO NEXT ENTRY IN LIST

Fig. 13-8. Typical single-ended linked list.

When data is to be deleted from the list, the previous pointer is

simply changed to the link address of the deleted item. When data
is to be inserted the pointer of the data item before the insertion

point is changed to the address of the new item. The address of the
new data item is loaded with the link address of the data item before
the insertion point. These actions are illustrated in Fig. 13-9.

The following Z-80 code shows a search of a single-ended linked
list for a given search key value. Each data item of the Hst consists

of an 8-bit data value and a 2-byte link address.

INSERT

LOOP

LD HUHEADLS HEAD OF LIST

LD A,KEY SEARCH KEY
LD BC,1 FOR END OF LIST COMPARISON
OR A RESET CARRY
ADC HL,BC NEXT ADDRESS + 1

JP Z,END END OF LIST, NOT FOUND
DEC HL NEXT ADDRESS
LD D,(HL) GET NEXT ENTRY
CP D COMPARE NEXT TO S KEY
JP Z,FOUND GO IF FOUND
PUSH HL TRANSFER HL TO IX
POP IX

LD H,(IX+2) GET MSB OF ADDRESS
LD L,{IX+1) GET LSB OF ADDRESS
JP LOOP CONTINUE
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LIST INSERT ACTIONS

lOOOH

1003H

1006H

VALUE

10O6

LINK

VALUE

NEXT

LINK

1003

LINK

lOOOH

1003fl

lOOW

VALUE

3000

LINK

VALUE

NEXT
LINK

1003

LINK

3000H VALUE

XXXX

3000H VALUE

1006

LINK

ENTRY TO

BE INSERTED

Fig. T3-9. List delete and insert- actions.

The address of the first entry of the Hst is loaded from HEADLS.
A check is made to see if the address of the next data item is a — 1

which would signify the end of the list, or an empty Hst ( HEADLS
= ~1). The check is made, incidentally, by adding one to the ad-

dress in HL by addition of BC to HL. The ADC HL,SS and SBC
HL,SS are unique in that they set the Z flag if the result is zero; none

of the other 16-bit arithmetic instructions affect the Z flag. If the

address is a valid address, the data value from the next list entry is

retrieved and a match is tried. If no match is found, the link address

of the data item is loaded into HL in preparation for the next

comparison.

List operations for inserts and deletes are similar to the sequential

searches discussed under table operations. More overhead is in-

volved in finding the insertion or deletion point for the list, but once

the proper list entry is found, only a slight additional amount of

code is involved to change pointers and the data movement over-
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head is avoided. The following code illustrates insertion of a new
data item in a list after the data item pointed to by IX.

INSERT LD B,(IX+2)

C,{IX+1)
GET LINK ADDRESS

LD
LD
LD
LD
LD
LD
LD
LD

A,(NEWLKA)
(IX+1),A

A,(NEWLKA+1)
(IX+2),A
IY,NEWLKA
(IY+2),B

(IY+1),C

NEW LINK ADDRESS
STORE NEXT LINK

NEW LS ADDRESS BYTE
REPLACE ITEM (M - 1) ADDRESS

ADDRESS

At entry, IX points to the list entry immediately preceding the
insertion point. The link address of this list entry is picked up in BC.
This link address will point to the list entry which will be immedi-
ately after the inserted entry. The address of the new data item is

in the 2-byte location NEWLKA, and NEWLKA+1. This address is

stored in the link address bytes of the previous list entry. Finally, the
link address of the list entry which will precede the inserted entry is

stored in bytes one and two of the insert entry.

The preceding paragraph briefly discusses list operations using the
Z-80 instruction set. More sophisticated list operations such as dou-
ble-ended lists are commonly used but the techniques involved are

somewhat similar to the lists described.
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CHAPTER 14

Subroutine Operation—Jump,

Call, and Return Groups

The instructions in these groups allow the user to jump condition-

ally, or unconditionally, to locations within the relative addressing

range or to jump directly with extended addressing to any memory
location. If the jump is to a memory location and a return is not to

be made back to the instruction following the jump, then the jump
is a JP or JR. If the jump saves the return address in the stack, then

the jump is a CALL. CALLs are used to transfer control to subrou-

tines, which are simply segments of code designated as subroutines

that occur in one place in memory. These segments can be used by
many different parts of the program, avoiding duplication of the

code at every point where the functions of the subroutine are to be

performed. Each subroutine is entered by a CALL, which saves the

return address of the instruction following the CALL in the stack;

each subroutine is terminated by an RET, or return. Returns may
be conditional, or unconditional. If the retmn is conditional, it is

based on the condition-code settings just as a conditional jump is.

The RST or restart instruction is a special CALL that can be used

for page zero subroutine call use or for interrupt responses.

JUMP INSTRUCTIONS

The unconditional jump instruction, JP, has been used in many
examples in previous chapters and should be no problem to the
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reader. When a choice must be made between a JP and an uncondi-
tional relative jump JR, the relative jump should be chosen if the
jump address is within the relative addressing range of the instruc-

tion. The JR uses two bytes, as opposed to the three bytes of the JP.
( The JP is faster, however, 2.5 microseconds compared to 3.0 micro-
seconds for the JR. ) The relative addressing range of the JR is up to

126 locations back from the JR or up to 129 locations forward from
the JR. The assembler used for the Z-80 will give a diagnostic mes-
sage on the assembly listing, if this range is exceeded, and a JP can
then be substituted for the JR. The JR will be possible in most of

the jump cases.

The conditional extended-addressing jump JP and relative-address-

ing jump JR enable a jump to a location based on the state of the
zero flag, carry flag, parity flag, or sign flag as shown in Table 14-1.

Various assemblers will use different mnemonics for the condition.

NZ, Z, NC, C, P, and M are self-explanatory, but the PO and PE
mnemonics may be replaced with more descriptive mnemonics such
as V or NV for overflow and no overflow; and P and NP for parity

or no parity.

Table 14-1. Conditional Jumps

Flag Extended Form Relative Form

NZ nonzero JP NZ,LOCN JR Z.LOCN
Z zero JP Z,LOCN JR NZ,LOCN

NC no carry JP NC.LOCN JR C.LOCN
C carry JP CLOCN JR NCLOCN

PO parity odd JP PO,LOCN none
PE parity even JP PE,LOCN none

P sign positive JP P,LOCN none
M sign negative JP M,LOCN none

Three jump instructions JP (HL), JP (IX), and JP (lY) effec-

tively cause an unconditional jump by loading the program counter
with the contents of the HL, IX, or lY registers. When a multiple
path decision must be made and a jump to one of several points is

effected, these instructions may be used to advantage. As an exam-
ple, suppose that in a large program we have a "mode" word that

indicates what mode the system is in currently. This could be used
to indicate the pass number of a three-pass assembler or any combi-
nation of conditions the programmer desires. For our pui-poses, let

us assume the mode word MODE represents states of the system as

shown in Fig. 14-1. Note that some combinations of states are not
possible, but that the general range for the four bits of the mode
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'MODE" WORD STATE ENCODING

FOR MICROPROCESSOR CONTROLLED AUTOMAT:
OTHER BITS I MODE

X X X X NO SANDWICH

X X X X Q I PEANUT BUTTIR SANDWICH
X X X X 1 JELLY SANDWICH

X X X X 1 1 PEANUT BUTTER &JELLY SANDWICH
X X X X 1 NOT POSSIBLE

X X X X 1 1 PEANUT BUHER, BANANA SANDWICH
X X X X 1 1 D JELLY AND BANANA SANDWICH
X X X X 1 1 1 PEANUT BUTTER, JELLY, BANANA SANDWICH
X X X X 1 NOT POSSIBLE

X X X X 1 D 1 PEANUT BUTTER. HOLD THE BREAD
X X X X 1 1 JELLY, HOLD THE BREAD
7 6 5 4 3 2 1

X - DONT CARE

Fig. T4-T. Mode word example.

word is from through .10. The following code takes the mode word
and "jumps out" based on a jump, or branch table, to the proper

processing routine for the current system mode.

TESTMD

-JUMPTB

LD BC,JUMPTB JUMP TABLE ADDRESS
LD A,MODE GET MODE WORD
AND OFH STRIP OFF MODE BITS

LD L,A

LD H,0 MODE TO HL
ADD HL,HL MODE * 2

ADD HL,BC JUMPTB + (MODE * 2)

JP (HL) JUMP OUT
JR MODEO
JR MODE!
JR MODE2
JR MODE3
JR ERROR NOT POSSIBLE
JR MODES
JR MODE6
JR MODE7
JR ERROR NOT POSSIBLE
JR MODE9
JR MODEIO

The mode field is first multiplied by two and then added to the

address of the jump table. Each entry in the jump table is two bytes

long, so the multiplication by two indexes into the table properly,

causing a jump by the JP (HL) to the jump in the table correspond-
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ing to the mode. The alternative to the jump table would be coded
such as the following:

LD
AND
JR
CP
JR

CP

A,MODE
OFH
Z,MODE0
A,l

Z,MODEl
A,2

GET MODE WORD
STRIP OFF MODE BITS

GO IF MODE

GO IF MODE 1

The jump table approach is somewhat cleaner to implement and
for a large number of combinations is more eflBcient in memory stor-

age and execution-time requirements.

The most interesting instruction in the jump group is the DJNZ
instruction, a 2-byte relative-addi-essing instruction. The DJNZ is a
decrement and jump if nonzero-type instruction. The contents of the

B register is decremented by one. If the result is nonzero, a jump is

made to the address specified. If the result of the decrement is zero,

the next instruction in sequence is executed. This instraction replaces

the code:

DEC B DECREMENT COUNT IN B
JR NZ,LOOP GO IF NOT AT END

In any case where an iterative routine is implemented vwth a loop
count of 256 or less, the DJNZ may be used to advantage. Using one
of the previous examples as an illustration, here is a typical use of

DJNZ.

PARITY

LOOP

JUMP]
DONE

A CLEAR PARITY AND C
B,8 INITIALIZE COUNT
HL,MEMOP MEMORY OPERAND ADDRESS
(HL) SHIFT OUT BIT TO CY
NC,JUMPI GO IF NOT A ONE BIT

1 FLIP PARITY INDICATOR
LOOP GO IF NOT 8 BITS

A REGISTER NOW IF EVEN
# OF 1 BITS, 1 IF NOT

The DJNZ executes in 3.25 microseconds for the jump and 2.0

microseconds if the result is 0. The equivalent DEC and JR execute
in 4.0 and 2.75 microseconds for the jump and no jump, respectively,

and use one more byte in memory.

SUBROUTINE USE

A subroutine is CALLed by a CALL instruction and terminated
by a RETum instruction. A subroutine almost always executes a
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retiirn instruction to properly pop the return address from the stack.

If this is not done, subsequent pops will pull the wrong data from
the stack. The only other alternatives to executing a return is to rein-

itialize the stack by an LD SP instruction for some catastrophic sys-

tem malfunction, or to increment the stack pointer by two to "reset"

the SP to the point at which the return would have left it. The latter

procedure is poor programming practice although it can easily be
done by:

ADJUST INC SP DO NOT RETURN
INC SP TO CALLING PROGRAM

We have seen subroutine use in previous examples. The simplest

case is a subroutine that performs one function only. No parameters

are passed to the subroutine and the subroutine executes its prede-

fined function and returns to the calling program. An example of

this is the code below which shifts the DE register pair one bit posi-

tion to the right in a logical shift.

SHRL SRL D SHIFT HIGH ORDER
RR E SHIFT LOW ORDER
RET RETURN TO CALLING PROGRAM

In many cases, however, subroutines will perform a function that

requires a parameter or number of parameters defining the function.

A simple example of this would be the more functional subroutine

that follows which shifts the DE register logically right a specified

number of times. The argument N is passed in the B register.

MSHRL CALL SHRL SHIFT DE ONCE
DJNZ MSHRL CONTINUE N TIMES
RET RETURN TO CALLING PROGRAM

When there are many arguments to be passed to the subroutine,

there are a number of solutions. The contents of the CPU registers

PUSH AF SAVE A PARTIAL RESULT
PUSH BC SAVE BC
PUSH DE SAVE DE
PUSH IX SAVE BUFFER ADDRESS
LD A,MODE SYSTEM MODE
LD BC,SOURCE I/O BUFFER ADDRESS
LD DE,COMLST I/O COMMAND LIST

LD IX,ERADR ERROR MSG ADDRESS
CALL WRTAPE WRITE OUT TAPE RECORD
POP IX RESTORE
POP DE ALL
POP BC REGISTERS
POP

c

AF
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may be temporarily saved in the stack, and then used as parameter
storage before the subroutine is called. Once the subroutine action
has been completed, the original register contents can be retrieved
from the stack.

Another way of passing a number of arguments is to put the argu-
ments (or parameters) into a parameter list in memory. The address
of the list can then be loaded into one of the register pairs, or index
registers, and passed to the subroutine, which can then easily pick
up the arguments.

LD lYJOBLK
CALL WRTAPE

LOAD PARAMETER LIST

WRITE OUT TAPE RECORD

The following subroutine, BXOAS, converts a 16-bit binary value
in the DE register to a string of octal digits and stores those digits in

a specified buffer area. The parameters to be passed are defined in

a calling sequence that is nothing more than a description of the
parameters used in the subroutine, how they are passed, and how
the subroutine is used. Many times it is convenient to define the
calling sequence in the assembly code itself as follows:

* SUBROUTINE BXOAS

* FUNCTION: THIS SR CONVERTS A 16-BIT
* BINARY NUMBER IN D,E TO A SIX-DIGIT
* ASCII CHARACTER STRING.
* CALLING SEQUENCE:
*
*
*
*
*
*

(H,L) = POINTER TO CHARACTER BUFFER + 5
(D,E) = BINARY #
CALL BXOAS
(RETURN WITH CHARACTERS
CONVERTED, (HL) = FIRST CHARACTER
POSITION IN BUFFER - 1, ALL OTHER
REGISTERS SAVED

ERROR CONDITIONS: NONE

BXOAS

LOOP

PUSH DE SAVE NUMBER
PUSH AF SAVE A, FLAGS
PUSH BC SAVE BC
LD C, 6 LOAD ITERATION COUNT
LD A, 7 MASK
AND E GET CURRENT OCTAL #
ADD A, 30H CONVERT TO OCTAL ASCII
LD (HL), A STORE
DEC HL BUMP CHARACTER PNTR
DEC C DECREMENT ITERATION CNT
JR Z, DONE GO IF DONE
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LD B, 3 FOR SHIFT SUBROUTINE
CALL MSHRL SHIFT DE 3 PLACES RIGHT
JP LOOP CONTINUE
POP BC RESTORE ALL
POP AF REGISTERS AND
POP DE RETURN
RET

DONE

The preceding subroutine illustrates another important aspect of

subroutine use. It is important to know , which registers the subrou-

tine uses and which registers are saved. BXOAS saves all registers

used, such as DE (shifted and masked), A (used for conversion),

and C (used for iteration counting). In addition, BXOAS calls an-

other subroutine, MSHRL, which uses the B register, so that the

B register must also be saved. The preceding sequence, by the way,

uses three levels of subroutines. BXOAS calls MSHRL, which calls

SHRL. This nesting of subroutines can be extended to as many levels

as convenient. Stack operations are automatic and create no prob-

lems as long as there is a return for every call and a pop for every

push.

All of the above examples have dealt with unconditional CALLs
and RETurns, but conditional calls and returns may also be made.

The conditions and mnemonics for these are the same as for the con-

ditional extended jumps, as shown in Table 14-2.

The uses of the conditional calls and returns are identical to the

apphcations of their unconditional counterparts . In the following

example, an argument is loaded into A and subroutine ABSVAL is

called if the number is negative. A bit test instruction tests the sign

bit to reset the Z flag if the number is negative.

LD A, (IX) LOAD FIRST ARGUMENT
BIT 7, A TEST SIGN
CALL NZ, ABSVAL TAKE ABS VAL IF NECESSARY

An example of a conditional return is in the following routine

which finds the integer portion of the square root of an 8-bit number.

Table 14-2. Conditional Calls and Returns

Flag Call ReJorn

NZ CALL NZ.SRTN RET NZ
Z CALL Z,SRTN RET Z

NC CALL NCSRTN RET NC
C CALL CSRTN RET C
PO CALL PO.SRTN RET PO
PE CALL PE.SRTN RET PE

P CALL P,SRTN RET P

M CALL M,SRTN RET M
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The number is in the A register on entry and the integer portion of

SQRT

LOOP

LD B, INITIALIZE SQ ROOT
LD C, 1 INITIALIZE FIRST ODD #
SUB A, C SUBTRACT NEXT ODD INTEGER
RET C RETURN IF DONE
INC C
INC C BUMP TO NEXT ODD INTEGER
INC B BUMP PARTIAL SQ ROOT
JP LOOP CONTINUE

None of the instructions in the jump, call, or return groups alter
the condition codes when a jump is made to another memory loca-
tion, or subroutine. This means that a subroutine may pass hack
parameters in the condition-code flags themselves as in the follow-
ing example where the carry from a 4-byte add is passed back on
exit from the subroutine, in addition to the other flags.

LD BC,(ARG1) LS 2 BYTES OP 1

LD HL,(ARG2) LS 2 BYTES OP 2
ADD HL, BC OP 1 -1- OP 2 LS
LD (ARGl + 2), HL STORE RESULT LS
LD BC, ARGl MS 2 BYTES OP 1

LD HL, ARG2 MS 2 BYTES OP 2
ADC HL, BC OP 1 -f OP 2 MS
LD (ARGl), HL STORE RESULT MS
RET RETURN WITH C, Z,

P SET

The RST, or restart instruction, is rather a "leftover" from the
8080 implemented for compatibility. The NMI and mode 1 inten-upt
capability serves small microcomputer configurations well, and the
mode 2 interrupt capability is excellent for larger configurations
with many interrupts of different levels.

If the RST is not to be used in external interrupt circuitry (mode
0), then it may be used as a special 1-byte call. The RST perfonns
the same actions as a call, but allows a jump to only one of eiglrt

page zero locations, OOH, 08H, lOH, 18H, 20H, 28H, 30H, or 38H.
The advantage of using the RST is that if frequently called subrou-
tines are vectored from page some memory will be saved as the
1-byte RSTs replace 3-byte calls. The stress here is on "frequently
called." If 100 parameter calls are made to a subroutine in the course
of a program, then 200 locations in memory wiW be saved, a signifi-

cant savings for minimum configuration systems. Although the eight
locations available for each CALL limits the subroutine action quite
severely, some subroutines may be implemented in eight bytes and
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in others the page location may simply hold an extended address-

ing JP to another memory area. If all of the above is worth the trou-

ble, typical RSTs would appear as follows.

ORG
LD (HL), A STORE A
INC HL INCREMENT
RET
ORG 08H
LD A, (HL) LOAD A
INC HL INCREMENT
RET
ORG lOH
RLCA ROTATE A 4 LEFT

RLCA
RLCA s

RLCA C
RET

STRING EQU
LDINC EQU 08H
R04LF EQU

i

lOH

RST LDINC LOAD BYTE 1

RST STRING STORE
RST LDINC LOAD BYTE 2

RST STRING STORE
RST LDINC LOAD BYTE 3

RST R04LF ROTATE 4

AND OFH STRIP BCD DIGIT

The three routines at locations 0, 08H, and lOH are typical of the

commonly used routines that could be placed in page 0. The call is

made to the proper page location by the RST with an argument

previously equated to the page location. RST LDINC would be

identical to RST 8, for example.

REENTRANCY

The subroutine calls, returns, and stack instructions facilitate the

writing of reentrant code. Reentrancy in a portion of code means

that the code may be reentered due to intenupt processing. Reen-

trancy is no problem if the environment is saved when the interrupt

is received and if in the routine that is reentered, no common mem-
ory locations are altered. If common memory is altered, then reen-

trancy may destroy the results or partial results of the previous users

of the reentered routine.
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Consider the following example. The routine below stores the con-
tents of the A register in temporary storage location in memory
called TEMPI. No interrupts are active. Several instructions after
the store, an interrupt occurs. As the interrupts are enabled, the in-

terrupt is acted on and the interrupt processing routine is entered.
During the course of the interrupt processing, the interrupt process-
ing routine calls subroutine FINDIT. As the subroutine was being
executed when the interrupt occurred, it is reentered. During the
course of the routine, a new value is stored in TEMPI. Later, the
subroutine is executed and a return made back to the interrupt proc-
essing routine. Eventually, the interrupt processing routine finishes,

restores the environment, and executes a RETI or RETN to return
back to the interrupted point, in this case location BACKER. At the
next instruction, the contents of the A register is reloaded, but the
value reloaded is the value stored for the second entry of FINDIT,
not the first! Reentrancy has destroyed the previous contents of
TEMPI.

REENTRY -> FINDIT

INTERRUPT -

ENTER HERE-
AFTER

INTERRUPT
PROCESSING

BACKHR

TEMPI
TEMP2

LD (TEMPI), A SAVE A TEMP
LD A, (HL) GT NXT PARAM
LD B, (IX + 30H) GT2ND VALU
ADD A, B
LD (HL), A STORE RESULT
LD A, (TEMPI) RESTORE

RET RETURN
DEFS 1 TMPRY STRG
DEFS 1

There are many ways around reentrancy. The easiest is to never
alter common memory locations within a subroutine. The stack ac-
tions for storage will automatically save parameters and provide
almost unlimited temporary storage of variables. With stack storage,
a subroutine can be reentered as many times as practical while still

preserving temporary storage for each entry level. If it becomes
necessary to use areas of memory for storage, then reentrancy is still

possible if there is a separate user area for each level of reentrancy.
In a simple example of this, let us say there are five users that cause
five separate interrupts. The interrupt processing for each of tlie

interrapts calls subroutine GETCH that reads the next available
character from a keyboard input and stores it in the next buffer loca-
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tion for the user. The interrupt processing routine would call the

subroutine with a user number.

LD A,3
CALL GETCH
OR A
JP NZ,AVAIL

THIS IS USER # 3

LOOK FOR NEXT CHARACTER
SET FLAGS
GO IF CHARACTER AVAILABLE

The subroutine at GETCH would utilize the user number to find

the predefined user area ( or task block) for storage of data and vari-

ables if required.

GETCH

BUFTB

PUSH AF
SLA A
LD C,A
LD B,0

LD HL,BUFTB
ADD HL,BC
LD E,{HL)

INC HL
LD D,(HL)

CALL READK
JP Z,OUT
LD (HL),A

V
DEFW BUFFO
DEFW BUFFI
DEFW BUFF2
DEFW BUFFS
DEFW BUFF4

SAVE USER #
(USER #) * 2

(USER #) * 2 IN BC

TABLE OF BUFFER ADDRESSES

GET BUFFER ADDRESS
READ KEYBOARD
GO IF NONE AVAILABLE
STORE CHARACTER

TABLE OF BUFFER
ADDRESSES USERS

THRU 4

Other ways to avoid the reentrancy problem are "lock-outs" of

subroutines in use, disabling of interrupts during critical sequences,

and replication of code for each level of user, but the above tech-

niques are probably the most common and the use of stack for tem-

porary storage is the cleanest implementation.
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CHAPTER 15

110 and Interrupt Operations—

no and CPU Control Groups

The I/O instructions allow the Z-80 system user to input or output
data a byte at a time under programmed I/O. Compatibility with
the 8080 is provided in the Z-80 IN A,(N) and OUT (N),A instruc-
tions which transfer data by means of the A register only. Data may
be transferred between any general-pui-pose CPU register and the
I/O device controller vwth the IN R,(C) and OUT (C),R instruc-
tions, however. I/O block transfer instructions allow semi-automatic
or automatic transfer of up to 256 bytes of data with an operation
similar to the other block-oriented instructions.

The interrupt actions in the Z-80 are controlled by the interrupt
enable, disable instructions and by the interrupt mode instructions.
Several interrupt modes are possible, depending on system configu-
ration. The maximum interrupt capability of a Z-80 system will han-
dle many levels of internipts with priority encoding and automatic
vectoring.

A REGISTER I/O INSTRUCTIONS

The IN A,(N) and OUT (N),A I/O instructions are downwards
compatible with the equivalent IN and OUT 8080 instructions. Both
instructions are a 2-byte immediate instruction with the first byte
specifying the operation code and the second byte specifying an
8-bit I/O address N from through 255. As described in Chapter 8,
when an IN A,(N) instruction is executed, the I/O port address N
is placed on address lines A7 through AO. The addressed device con-
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tioller outputs the data byte to be transferred to the data bus after

decoding the address and lORQ ( and RD ) . The CPU then strobes

the data into the A register. When an OUT ( N ) ,A instruction is exe-

cuted, the address N is output to address hues A7 through AO, as in

the case of the IN instruction. Some time later within the OUT in-

struction cycle, the CPU outputs the contents of the A register onto

the data bus and also provides the lORQ and WR signals. The I/O
device controller then strobes the 8-bit data into its internal register.

Both the IN A,(N) and OUT (N),A instructions output the device

address on A7 and outputs the contents of the A register on A15

through A8.

The simplest form of an IN instruction loop goes through the

following sequence:

1. Is the next data byte ready from device controller N?
2. If not, go to 1.

3. Input the data byte.

4. Exit the subroutine.

The preceding sequence requires that the device controller know
when the next data byte is ready and has some way of communicat-

ing the ready status to the CPU. The device controller must also be

able to decode the query for ready status and the request to transmit

the data byte. A simple way to implement the preceding instruction

is to assign one I/O address to the status query port, and one to the

I/O data port. Some format for the status must also be established

so that the CPU can decode the status in software. Assuming that a

Teletype keyboard is being read with a status port address of 1 and

a data port address of 0, the routine to read in one byte of data

would appear as follows.

The subroutine first reads the status from the Teletype controller.

The controller responds by outputting the status byte which in this

case is all zeros in D7 through Dl and a 1 in DO if the next byte is

ready. The routine keeps on reading status until the status indicates

data ready. After this condition is detected, the CPU reads in the

data byte by addressing the data port of the teletypewriter controller

(device address 0). The action of reading in the data byte resets the

ready status in the teletypewriter device controller. The status re-

mains reset until the next character is typed by the operator and

READC
LOOP

EQU
IN

BIT

JP

IN

RET

$
A,(l)

0,A
Z,LOOP
A,(0)

READ CHARACTER ROUTINE
GET STATUS
TEST READY STATUS
GO IF NOT READY
GET BYTE
EXIT
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stored in the teletypewriter controller buffer (no earlier than 100 ms
for a typical teletypewriter )

.

As described in previous chapters, this routine is very much Z/O
bound. Most of the execution time of the routine is spent in the
three-instruction loop waiting for the next data byte to appear and
set the ready status. The alternative method of interrupt transfers is

described later in this chapter. It is one way to overlap processing
and 1/ O. The maximum data transfer rate of the above loop can be
easily calculated. The four instructions require a total execution
time of 10.0 /xs. If a high-speed I/O device was able to transfer one
byte every 10 ^s, this timing loop would just be able to keep up
with it with perfectly synchronized timing. The absolute maximum
data transfer rate would thus be 100,000 bytes per second. High-
speed I/O devices rarely use a timing loop such as this; most devices
that are high-speed, relatively synchronous devices will use DMA,
or direct-memory-access. DMA allows the device controller to access
external memory independently of CPU processing, and enables
overlap of I/O transfers and CPU processing that is transparent to
the program being executed. DMA operations are described later in

this chapter.

The OUT (N),A instruction functions quite similarly to the IN
A,(N) instruction. The output process proceeds as follows: The
ready status of the device controller is first tested by reading in the
status. If the device controller is ready (done processing the previ-
ous character), the program performs an OUT (N),A, outputting the
previously loaded A register to the data bus. The output sets the
"busy" status in the device controller. When the character has been
transmitted from the device controller buffer to the I/O device, the
busy status is reset. A typical output subroutine for one character
output would appear as shown next.

WRITEC EQU $ WRITE CHARACTER ROUTINE
LOOP IN A,(l) GET STATUS

Here, the status is assumed to be compatible with the input routine,

bit 1 of the status indicating that the output section of the device
controller has finished writing the last byte. When the device con-
troller indicates "not busy" (bit 1 = 0), the contents of A are output
to the data channel of the device.

The above routines are designed to output, or input, one character
at a time in simplistic fashion, yet many devices, such as teletype-
writers, paper-tape readers and punches, line printers, certain crt

BIT 1,A

JP NZ,LOOP
OUT (0),A

RET

TEST READY STATUS
GO IF NOT READY
OUTPUT BYTE
RETURN
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displays, and others require no more sophisticated communication

than the above. There may be embellishments with more particulars

about device states
(
parity, device ready, etc. ) , but the above rou-

tines, or ones like them, are quite usable for simple I/O devices.

Prior to the input and output operations above, a clear command
may have been issued to the I/O device. This is generally done be-

fore each block of I/O transfers w^hen the device should not be
"hung" in an erroneous busy state to clear the status and initialize

data transfers. Depending on the I/O device controller involved, this

may range from a simple write of a clear command to the status port,

or something more elaborate.

I/O INSTRUCTIONS USING C REGISTER

The remaining nonblock transfer I/O instructions utilize the C
register in holding the I/O address, through 255. Data may be
transferred to one of the general-purpose CPU registers A, B, C, D,

E, H, or L by the IN R,(C) instruction. Data may be transferred

from one of the registers to an I/O device by the OUT (C),R in-

struction. In both cases, the C register must be loaded with the I/O
device address. The contents of the C I'egister is output to address

lines A7 through AO while the contents of the B register are output

to address lines A15 through A8. The B register contents may be
used for communication of status or for outputting the current byte

count, as in the I/O block transfer instmctions to be discussed. They
may, of course, also be ignored, as the C register holds the actual

device addi^ess and the data bus is used to transfer data to and from

the I/O device controller. Setup of the registers for these I/O in-

structions are similar to the previous I/O instructions using the A
register.

WRITEC LD D,(HL) GET NEXT CHARACTER
LD C,30H DEVICE ADDRESS

LOOP IN E,(C) GET STATUS
JP Z,LOOP GO IF NOT READY
OUT (C),D OUTPUT DATA BYTE
RET RETURN

In the preceding routine, the D register was loaded with the data

to be output and the C register was loaded with, the device address

of 30H. Here the status port address is the same as the data port

address, assuming a "write only" device that supplies status for a

read. The IN E,(C) instruction inputs status into the E register. One
bit of status, ready ( 1) or not ready (0) was assumed. If the device

was ready, the data in the D register was output by the OUT ( C ) ,D

instruction.
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The IN instruction using the C register is difiFerent from the former
A register IN instruction in that input data does set the condition
codes in the C register I/O instruction case. The sign flag, zero flag,

and parity flags are all affected by the input data and can be tested
after execution of an IN R,(C) instruction, as was done in the previ-
ous example.

I/O BLOCK TRANSFER INSTRUCTIONS

The I/O block transfer instructions enable data to be input or out-
put in blocks of 1 to 256 bytes. The block access is either forward
through a block, or backwards through a block, as is the case in the
other Z-80 block instructions. Again, the transfers are either a byte
at a time per block instruction (semi-automatic) or the complete
block in one instruction ( automatic )

.

The INI instruction transfers one byte of data from an I/O device
controller to memory. The C register is initialized with an I/O ad-
dress as in the case of an IN R,(C) instruction. As the INI is exe-
cuted, the input data is stored into the memory location pointed to
by the HL register. After the data is stored, the HL register pair is

incremented by one and a byte count in the B register is decre-
mented by one. The Z flag is set if the contents of the B register

equals zero after instruction execution. The following code shows
the setup of the registers for INI execution and the INI input
loop.

LD HL,BUFFER BUFFER ADDRESS
LD BC,25600+23H 100 BYTES &DEV ADD

STATUS IN D,(C) GET STATUS
BIT 0,D TEST
JP Z,STATUS LOOP IF NOT READY
INI INPUT ONE DATA BYTE
JP NZ,STATUS LOOP IF NOT TOO BYTES

DONE RET RETURN

The LD BC loads the B register wdth 100i„ and the C register with
23H. The INI and JP instructions total 6.5 /xs and as a result, the
maximum data transfer speed is 50% greater than the I/O loops
above. The INl replaces the following code in a conventional micro-
processor.

INPUT ONE BYTE
STORE IN MEMORY
BUMP POINTER

STATUS

IN A,(C)

LD (HL),A

INC HL
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DEC C DECREMENT COUNT
JP NZ,STATUS LOOP IF NOT 100 BYTES

RET RETURN

Although the INI is extremely convenient, as it handles the over-

head operations of storage and memory and pointer maintenance,

the I/O operation is still a programmed I/O loop. No other code can

be executed until the I/O transfer is complete; the CPU is I/O

bound at the speed of the I/O device. If an I/O block transfer is

done to a Teletype ASR-33 printer, the transmission rate will still

be 10 bytes per second, or 100 ms between bytes with most of the

time devoted to the "test status" portion of the I/O loop.

The INIR instruction is identical to the INI instruction except that

the total number of bytes specified in the B register are transferred

with the INIR instruction. As data is input, it is stored into memory
in forward (low memory to high memory) fashion. Each iteration

of the INIR takes 5.25 /xs if more data is to be transferred ( B regis-

ter not zero ) . The maximum data transfer rate is therefore close to

190,000 bytes per second. The INIR has no capability to test device

controller status; there is no "built-in" handshaking logic. The ques-

tion arises, then, of how the CPU is informed when the next data

byte is available. The answer is that it is not informed. The I/O

device controller must be fast enough to transfer data at a 200 kb/ sec

rate or must insert I/O wait states to effectively make the INIR in-

struction time equal to the data transmission rate of the I/O device

(see Chapter 8). The actual time of the INIR instruction is, there-

fore, dependent on the I/O device and the INIR transfer will com-

plete after N bytes have been transferred at the I/O device speed.

If the hardware wait state is used it has been substituted for the soft-

ware status check of the INI instruction. The following code shows

a typical INIR input loop.

READC LD HUBUFFER
LD B,200
LD C,30H
INIR

DONE )

The IND and INDR instructions operate exactly the same as the

INI and INIR instructions except that the transfers build I/O data

down from high to low memory. Everything else is the same as

shown next.

READC LD HL,BUFEND END OF BUFFER

LD BC,25600+23H 100 BYTES & DEV ADD
STATUS IN D,(C) GET STATUS

BUFFER ADDRESS
BYTE COUNT
I/O DEVICE ADDRESS
INPUT 200 BYTES
DONE HERE
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DONE

BIT 0,D TEST
JP Z,STATUS LOOP IF NOT READY
IND INPUT ONE DATA BYTE
JP NZ,STATUS LOOP IF NOT 100 BYTES
RET RETURN

The OUTI instruction transfers one byte of data from a memory
location pointed to by the HL register pair to the device whose de-
vice address is in the C register. After the transfer, the contents of

the HL register pair is incremented by one and a byte count in the

B register is decremented by one. The Z flag is set if the contents of

the B register after the decrement is zero. The OUTI is very similar

to the INI except, of course, for the direction of the I/O transfer. The
foUovi^ing code shovs's the code to set up and implement the OUTI
transfer.

STATUS

DONE

The OTIR is an automatic output instruction analogous to the
INIR. From 1 to 256 bytes will be output from the specified block in

memory according to the byte count in the B register. The same im-

plementation as the INIR applies. If the device is slow compared to

the 190,000 byte-per-second rate of the OTIR, I/O, wait states must
be employed to match the speed of the I/O device and the CPU. A
typical output loop using the OTIR is shown next.

LD HUBUFFER BUFFER ADDRESS
LD BC,25600+23H 1 00 BYTES & DEV ADD
IN D,{C) GET STATUS
BIT 0,D TEST
JP Z,STATUS LOOP IF NOT READY
OUTI OUTPUT 1 DATA BYTE
JP NZ,STATUS LOOP IF NOT 100 BYTES
RET RETURN

WRITE

DONE

LD HL,BUFFER
LD B,200
LD C,30H
OTIR

BUFFER ADDRESS
BYTE COUNT
I/O DEVICE ADDRESS
OUTPUT 200 BYTES
DONE HERE

The OUTD and OTDR are almost identical to the OUTI and
OTIR except that the data is written from the output buffer starting

at the buffer end and working back. All other actions are the same.

SOFTWARE I/O DRIVERS

The above discussion included examples of short subroutines in-

tended to read or write one character or block of characters to an
I/O device. The I/O device in question was assumed to be a rela-
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tively simple device that supplied one interface signal, busy or

ready. Although there are a number of devices that interface in such

a simple fashion, there are many other devices that require more
elaborate interfacing. A reel-to-reel magnetic tape has a variety of

functions that may be performed including reading a record, writing

a record, writing an end-of-file, forward or backward skips over

records or files, and so forth. In addition, the tape provides many
status outputs such as end-of-tape, load-point, parity error, end-of-

file, and off-line. Obviously, a software routine for this device has

to be considerably more complicated than just the simple loops de-

scribed. To provide a complete subroutine for servicing the more
sophisticated I/O devices or to provide additional capability for the

simple I/O devices, most large software systems include a software

I/O driver subroutine for each kind of I/O device in the system.

The I/O driver handles all communication vnth the device type and
acts as a software interface between portions of the system programs
that require I/O sei-vice and the I/O devices.

To illustrate this concept, assume that several floppy discs are con-

nected to the Z-80 system. The physical characteristics of each disc

are shown in Fig. 15-1. The basic functions that one would want to

perform with a floppy might be the following:

1. Read track N starting at sector M for J bytes into a specified

buffer.

2. Write from a specified buffer J bytes starting from track N,

sector M.
3. Position head to track N ( in preparation for read or write )

.

o 32 SECTORS

B 77 TRACKS

41 KBITS OF DATA/TRACK

SECTOR 31 SECTOR

SECTOR A OF

TRACK 20

1

360 RPM

ONE OF 77 TRACKS

ARRANGED IN

CONCENTRIC

CIRCLES

INNERMOST
TRACK

Fig. 15-1. Typical floppy-disc characteristics.
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UNIT#-0. 1. 2. 3

SECTOR - 0-31
TRACK "0-76
I
-1: INTERRUPT, -0: WAIT

FUNCTION: 0-READ. ! WRITE:

2 - POSITION, 3 - STATUS
BUFFER ADDRESS FOR

READ OR WRITE
FOR READ OR WRITE
STATUS BITS

TOF C- 0- NORMAL
- 1 ABNORMAL. SEE

STATUS

Fig. 15-2. Floppy-disc I/O driver-parameter block.

4. Read current status from the disc.

As many as four disc drives usually connect to one controller, so

all of the preceding functions would also have a unit number of

through 3. Besides the previous physical functions, there may be
system options that might be desirable to implement. Some of these

might be

:

1. Provide error indication if a read or write error.

2. Provide interrupt capability if desired.

A representative block of parameters to be passed to the floppy

disc I/O driver might appear as in Fig. 15-2. Basically, four functions

are implemented in word two bits 6 — 0. Function OOH is read, OIH
is write, 02H is position, and 03H is read status.

For a write or read, the buffer address is held in bytes 3 and 4
and the number of bytes to be transferred is in bytes 5 and 6. The
starting track and sector are in bytes 1 and with the didve number,
0-3, in bits 7 and 6 of byte 0. The status after the read or write is

loaded after the read or write operation. The type of completion is

a 0, if no error occurred, or a —1, if an error occurred vwth further

status available to define the error in byte 7.

For a position function ( 02H )
only the number of the drive, sec-

tor, track, and function need be specified. The I/O driver would
position the drive to the indicated track and sector and provide the

type of complete and status.

A status function ( 03H ) would require only the drive number and
function. The I/O driver would pass the current status into the

status byte and also provide a type completion code.

The I bit in byte 2 would enable a calling program to perform a

"wait-for-complete" I/O if I = or an interrupt driven I/O for 1 = 1.

If a wait for complete I/O was required, the I/O driver would not
return to the calling program until the function requested was com-
pletely finished. If 1 = 1, then the I/O driver would set up the

proper intermpt logic in the controller, start the read, write, or posi-

tion, and then return to the calling program. At the termination of

BYTEO

1

2

3

4

5

6

7

7 6 5 4 3 2 1

UNIT SECTOR #

TRACK #

FUNCTION

BUFFER

ADDRESS

#0F BYTES

STATUS

TYPE OF COMPLETION
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the function, the floppy-disc interface would detect the termination

of the read, or write, and provide an interrupt to the Z-80, initiating

the expected interrupt action.

The parameters above could be passed to the floppy-disc I/O
driver in a variety of ways, but the most typical would probably be
to pass a pointer in the HL or index registers.

LOAD lOBLK POINTER
READ DISC
GET TYPE OF COMPLETE
TEST TOC
GO IF ERROR ON READ

LD lYJOBLK
CALL DISCD
LD A,(IY+8)
BIT 7,A
JP NZ,ERROR

(

lOBLK EQU $
SECTOR DEFS 1

TRACK DEFS 1

FUNC DEFS 1

BUFFER DEFS 2

NOBYTS DEFS 2

STATUS DEFS 1

TOFC DEFS 1

The preceding code shows a pointer to the I/O block being passed

in the lY index register and an lOBLK with the location of the

parameters defined. In many cases, the proper parameters will be
put in dynamically at run-time rather than being preassembled, as

many of them change depending on the type of I/O call.

The implementation of the I/O driver "DISCD" is not shown be-

cause it is strictly dependent on the type of floppy-disc drive and the

interface design. There will be quite a bit of latitude in how the

actual interface is implemented. Perhaps the 8080-type interrupt

mode will be implemented instead of the mode 2 table-vectored

interrupts. Possibly I/O will be nonDMA instead of direct transfers

to memory. In any event, the I/O driver must translate the parame-
ters provided into proper I/O instructions to initiate and complete
the I/O actions required.

In many microcomputers, firmware in the device controller per-

forms the I/O driver functions, providing the user a more simple
interface than that described.

DMA ACTIONS

In the preceding interface, DMA, or direct-memory access, may
be required. In many cases, the performance of DMA will be the

responsibility of tlie hardware logic of the device contioUer. I t will

automatically communicate with the CPU via the BUSRQ and
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BUSAK signals described in Chapter 8 to "lock out" the CPU dur-

ing a cycle-stealing access to memory to transfer data indepen-

dently of CPU instruction execution. Although the format of the

commands sent to the interface vary from system to system, a typi-

cal sequence would involve sending a buffer address, a byte count,

and a command code to define the nature of the DMA (read, or

write, and possibly other auxiliaiy functions). A sequence might
go somewhat as follows:

LOOP

LD C,30H ADDRESS OF DISC BFR PORT
LD A,COMAND START COMMAND
OUT (C),A START DMA SETUP
LD DE,BYTES # OF BYTES FOR DMA
LD BC,BUFFER BUFFER ADDRESS
OUT (C),B

OUT (C),C OUTPUT TO DISC BFR REG
OUT (C),D

OUT (C),E OUTPUT TO DISC BYTE REG
IN A,(31H) GET STATUS OF DMA
BIT 0,A TEST BUSY
JP Z,LOOP GO IF STILL BUSY

In the preceding sequence (and it is hypothetical although rep-

resentative), the buffer address and byte count are sent out in a

4-byte predefined sequence to I/O port 30H. I/O port 30H is the

address of the floppy-disc controller DMA control registers. When
the controller receives the "start DMA setup" command, it expects

that the next 4-bytes output to port 30H vwll be the two bytes de-

fining the address for the DMA and the two bytes defining the num-
ber of bytes to transfer. After receiving the fourth byte, DMA action

starts immediately. Here, a second port address, 31H, may be
queried for status on the state of the DMA. The code shown here

is the familiar wait loop that continually checks ready status, dur-

ing time of DMA activity. Since one associates DMA with automatic

transfers transparent to the user program, the code at this point

would probably not wait for DMA complete, but finish any clean-up

actions required in the DISCD driver, and return to the calling jjro-

gram. The calling program could then perform additional processing

functions until the interrupt associated vwth the floppy-disc DMA
occurred, if an interrupt was specified, or conceivably could periodi-

cally check DMA complete by another type of call to the DISCD
driver program.
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INTERRUPT OPERATIONS

The interrupt operations associated with the Z-80 system operation

are somewhat like the detailed I/O operations—rather diifficult to

describe in the general case, without reference to a particular sys-

tem. The actual CPU instructions involved are the IM 0, IM 1, IM 2,

EI, and DI instructions which were discussed in earlier chapters in

conjunction with various interrupt modes. IM 0, IM 1, and IM 2 set

the appropriate interrupt mode, which is very much related to how
the system is configured for interrupts. Each device controller or

PIO will have its own address and hard-wired interrupt response

and probably only one of the three modes will be used for any given

system. DI and EI simply disable or enable interrupts, allowing

7naskahle external interrupts to become active. When the interrapt

enable flip-flop is set, interrupts cause an interrupt action dependent

on the interrupt mode in force ( see Chapter 7 ) . Ultimately, any in-

terrupt transfers control to an interrupt processing routine, usually

unique for every kind of interrupt.

In the intermpt processing routine, the first order of business is to

ascertain that other interrupts are disabled until the contents of all

registers and flags that will be used in the interrupt routine can be
saved. All maskable interrupts are disabled on an interrupt until the

issuance of the next EI instruction, so the following sequence can be
executed:

PTAPE

NO MASKABLE
INTERRUPT
CAN OCCUR
IN THIS
SEQUENCE

EQU $
PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX

PUSH lY

El

PTAPE INTERRUPT ROUTINE
SAVE ALL
REGISTERS
AND FLAGS

ENABLE INTERRUPTS

Here all registers except SF have been saved, indicating that the

interrupt processing will be quite extensive and will probably utilize

all registers. If the interrupt processing is relatively minor, and it is

known that certain registers will not be used, then those registers

need not be saved. It is hard to imagine an interrupt processing rou-

tine, however, in which flags would not somehow be affected, and
the PUSH AF (or EX AF,AF') must always be executed. Once the

environment has been saved, then higher priority interrupts are free

to occur and be processed.

Interrupt processing actions are virtually unlimited, except that
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in good system design interrupt processing is kept relatively short

compared to other tasks in the system. At the end of interrupt proc-

essing for the particular interrupt involved, the SP will point to the

last register pair saved and the environment may be restored by pops
(or exchanges) and a return made to the interrupted location by
either an RETI ( return from maskable interrupt ) or RETN ( return

from nonmaskable interrupt).

'RETURN Dl DISABLE INTERRUPTS
POP lY RESTORE

NO MASK- POP IX ENVIRONMENT
ABLE POP HL
INTERRUPT POP DE
CAN OCCUR POP BC
IN THIS POP AF
SEQUENCE El

RETI

ENABLE INTERRUPTS
RETURN FROM INTERRUPT

Both the Dl and EI prevent another maskable interrupt from oc-

curring during their execution. The EI instruction prevents an inter-

rupt from occurring until one instruction after the EI, allowing suc-

cessful completion of the RETI instruction to effect the return from
interrupt.

As the maskable interrupt (NMI) can occur at any time, it may
occur at a time when maskable interrupts are disabled and registers

are being saved or restored or lock-out conditions for reentrancy are

in force. Order may still be retained, however, if the NMI interrupt

routine avoids stack use and utilizes a separate memory area to save

the environment. After processing is done and an RETN is executed,

the previous state of the maskable interrupt is restored and process-

ing can continue. As the NMI is usually implemented for cata-

strophic conditions, the validity of the system may be in question at

the end of the NMI routine and the recovery action may not be
required anyway.



CHAPTER 16

Z-80 Programming—Commonly

Used Subroutines

This chapter discusses commonly used subroutines and provides

some guidance about how to efficiently implement them in Z-80 as-

sembly language. Among the subroutines considered are comparison
routines, timing loops, multiply and divide subroutines, multiple-

precision arithmetic routines, routines to convert from ASCII to

binary, decimal and hexadecimal, and back again, a routine to "fill"

data, a string comparison, and a table search. While these are cer-

tainly not all of the routines that will ever be used in Z-80 programs,

they do represent functions that need to be implemented again and
again, and could be made part of a permanent library of routines

that may be called on as required. Each subroutine discussed here

is considered from the standpoint of a separate functional module,

rather than in-line code. Systern design may utilize precanned mod-
ules such as these with overall system functional requirements in a

combination of "top-down" ( system requirements ) and "bottom-up"

(functional low-level subroutines) implementation.

COMPARISON SUBROUTINE

Many decisions are made based on the results of comparisons of

one operand with another. A convenient subroutine for comparison

would compare algebraically 8-bit operand A with 8-bit operand B
and provide an indication of A<B, A<=B, A=B, A>=B, or A>B.
If the call to the subroutine is followed by three relative jumps, then

the calling sequence could be:
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LD AXOPERA) OPERAND A
LD B,(OPERB) OPERAND B

CALL CAAPARE A:B
JR LTHAN RETURN HERE IF A < B
JR EQUAL RETURN HERE IF A = B

JR GTHAN RETURN HERE IF A > B

As in some high-level languages, the missing equalities of A<=B
and A>=B may be constructed by proper use of the return points,

such as this sequence that returns to location LTEQL if A<=B and
to GTTHAN if A>B.

LD A,(OPERA) OPERAND A
LD B,(OPERB) OPERAND B
CALL CAAPARE A:B
JR LTEQL A < B RTN
JR LTEQL A = B RTN
JR GTHAN A > B RTN

The actual code within the subroutine would be an expansion of

that in Chapter 11.

CAAPARE CP B A:B
EX (SP),HL GET RETURN
JR Z,EQUAL GO IF A = B

PUSH AF SAVE A, FLAGS
XOR B

JP P,SAAAE GO IF SIGNS EQUAL
POP AF RESTORE A, FLAGS

TEST JP NC,LESST A < B

JP GREAT A > B
SAAAE POP AF

CCF
JP TEST

GREAT INC HL BUAAP TO CALL + 4
INC HL

EQUAL INC HL BUAAP TO CALL + 2
INC HL

LESST EX (SP),HL RESTORE RTN
RET RETURN

The comparison is made after first retrieving the return address

from the stack (stack pointer remains unaffected). The return ad-

dress is then incremented to a return point to +2 or +4 bytes past

the return location stored by the call to reflect the return on <, =,

or >.

233



TIMING LOOP

A timing loop may be used for a variable time delay for 1/O proc-

essing, real-time interval timing, or a delay for operator response.

It is convenient to have a timing loop that will run from milliseconds

to 30 seconds or so. If the average instruction execution time is 2.5

fis (4-Mhz clock), then 12,000,000 instructions will have to be exe-

cuted for a 30-second delay. A two-level nested loop will work if

each segment of the loop can delay about 3,000 counts or if one can

delay 300 counts, while the other delays 30,000 counts.

DELAY
LOOP!
LOOP2

LD
LD
ADD
JR
DJNZ
RET

DE-1
HL,17391
HL,DE
C,LOOP2
LOOP]

FOR DECREMENT
INITIALIZE INNER LOOP
HL - 1

GO IF NOT

The inner loop above takes O.I second to decrement HL from

17391 to —1. The outer loop is determined by the B register input

value so that:

DELAY = (B) X 0.1 sec. approximately

The maximum delay is 25.6 seconds with B = 0(256), but longer de-

lays can be implemented by altering the initialization value of HL.

MULTIPLY AND DIVIDE SUBROUTINES

An 8-bit by 8-bit unsigned multiply was discussed in Chapter 12.

The operands in this multiply are somewhat limited for many appli-

cations. A 16-bit by 16-bit multiply would handle most microcom-

puter applications; if more precision were required, a floating point

multiply would have to be implemented. In the 16-bit by 16-bit

multiply below, the multiplier is input in DE, unsigned, and the mul-

tiplicand is in BC, unsigned. The 4-byte output is passed in D, E, H,

and L. Overflow is not possible.

MULT16 LD A,16 ITERATION COUNTER
LD HL,0 ZERO PRODUCT

LOOP EX DE,HL SHIFT DE
ADD HL,HL

PUSH AF SAVE CARRY
EX DE,HL
ADD HL,HL SHIFT HL

JP NC,JUMP1 GO IF NO CARRY
INC DE CARRY TO MS BYTES

.JUMP] POP AF GET CARRY
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IDJr NL,JUMP3 GO IF NO CARRY
Ann HL,BC ADD MULTIPLICAND
IDJr M 1 A A noNC,JUAArJ GO IF NO CARRY
INC DE CARRY TO MS BYTES
DEC A DECREMENT ITERATION COUNT
RET Z RETURN IF DONE
JP LOOP CONTINUE

JUMP2

JUMP3

J. iiv. LLij^v^ iunjit.iiii.iiLo a iu-Liii. uy xu-uiL Luibiyiieu iiiuiupiy lu give
a 32-bit product. A signed multiply would require a product sign
check, followed by a step to take the absolute value of the operands.
The unsigned multiply could then be called and the product recon-
verted to the proper sign. The sign check is easily implemented by
an exclusive OR of the signs of the two operands.

SIGNC LD A,D OPERAND 1

XOR B XOR OF SIGN
LD A,0
JP P,JUMP2 GO IF + RESULT
CPL -1 TO A
LD (SIGN),A STORE FOR +, -1 FOR -JUMP2

i

A 16-bit by 8-bit unsigned divide was implemented in Chapter 12.

As was the case of the 8 by 8 multiply, the operands are somewhat
too small to be practical in many cases. A 32-bit by 16-bit unsigned
divide is shown next that will cover divides in which the quotient
can be resolved in 16 bits. The 32-bit dividend is input in H,L,D,
and E while the 16-bit divisor is in register pair BC.

DVDE16
LOOP

JUMP!

JUMP2

LD A, 16 ITERATION COUNTER
ADD HUHL SHIFT HL LEFT
EX DE,HL DE TO HL FOR SHIFT
ADD HL,HL SHIFT (DE)

EX DE,HL
JP NC,JUMP2 GO IF Q = 1

INC HL CARRY TO MS 2 BYTES
OR A RESET CARRY
SBC HL,BC SUBTRACT DIVISOR
INC DE SET Q = 1

JP NC,JUMP2 GO IF Q = 1

ADD HL,BC RESTORE
RES 0,E SET Q =
DEC A DECREMENT COUNT
JP NZ,LOOP GO IF NOT DONE
RET RETURN

At the completion of the divide routine, the 16-bit quotient is held
in DE and any remainder is in HL. Overflow will occur if the quo-
tient cannot be held in 16 bits. (No overflow indication is provided.)
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A signed divide can be implemented in the same manner as the

signed multiply. The sign of the quotient is determined by an exclu-

sive OR of the signs of the two operands. The absolute values of the

two operands are then taken and the unsigned divide is called. After

the divide, the quotient and remainder are converted to the proper

sign.

MULTIPLE-PRECISION ARITHMETIC ROUTINES

The routines in this group provide n-precision adds and subtracts.

From 1 byte to many bytes of precision may be used. The add mul-

tiple routine adds the n-precision destination operand starting at the

location pointed to by HL to the n-precision source operand starting

at the location pointed to by DE. The n-precision result is put into

the destination locations. The number of bytes of precision is con-

tained in C. The carry is set on return to reflect the last (most sig-

nificant) add.

MPADD

LOOP

LD B,0 NOW HAVE N IN BC
ADD HL,BC POINT TO LS BYTE + 1

DEC HL POINT TO LS BYTE
EX DE,HL

ADD HL,BC LS BYTE -f 1

DEC HL LS BYTE
EX DE,HL

^ SOURCE POINTER IN DE

OR A CLEAR CARRY
LD A,(DE) GET BYTE
ADC A,(HL) SOURCE + DEST + CARRY
LD {HL),A STORE RESULT
DEC HL DECREMENT DEST PNTR
DEC DE DECREMENT SOURCE PNTR
DEC C
JR NZ,LOOP GO IF NOT N ADDS
RET RETURN

The subtract multiple routine operates identically to the add mul-

tiple routine above, except that the destination operand is subtracted

from the source operand and the result is stored in the destination

location. The carry is set on return to reflect the last (most signifi-

cant) borrow.

MPSUB LD B,0 NOW HAVE N IN BC
ADD HL,BC POINT TO DEST LS BYTE + 1

DEC HL POINT TO LS BYTE
EX DE,HL
ADD HL,BC POINT TO SOURCE LS BYTE + 1

DEC HL LS BYTE
EX DE,HL SOURCE PNTR IN DE
OR A CLEAR BORROW
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LOOP LD
SBC
LD
DEC
DEC
DEC
JR
RET

A,(DE)

A,(HL)

(HL),A

HL
DE
C
NZ,LOOP

GET SOURCE BYTE
SOURCE-DEST-CARRY
STORE RESULT
DECREMENT DEST PNTR
DECREMENT SOURCE PNTR

GO IF NOT N SUBTRACTS
RETURN

ASCII TO BASE X CONVERSIONS
It is convenient to have subroutines that will take a string of

ASCII characters representing ASCII binary, decimal, hexadecimal,
or bed digits and convert the ASCII characters to the proper number
in the specified base. By employing these routines, data can be en-
tered from a keyboard and converted to variables to be used in exe-
cution of a program, or to instructions.

Tlie general philosophy in the follovi'ing routines will be that there
is a string of ASCII characters, starting at location (HL), that must
be converted to the proper internal format. ASCII characters repre-
senting binary numbers vdll be converted eight at a time since eight
bits can be held nicely in an 8-bit register. ASCII characters repre-
senting hexadecimal vnll be converted two at a time as two hex
digits may be held in eight bits; ASCII bed characters will be con-
verted two at a time for the same reason. When the data represents
ASCII decimal digits, the question becomes one of a convenient
length for conversion. Eight bits will hold the decimal values of to
255, and sixteen bits will hold up to 65,535. Neither range lends itself

to consecutive conversions of strings of data as in the binary, hexa-
decimal, and bed cases. The decimal conversion will arbitrarily be
made of five ASCII characters, as this represents a reasonble range
of values to be input to a program. After each conversion, the pointer
to the string will be incremented by the number of characters con-
verted so that subsequent conversions can be made from the next
character in the string.

The following routine converts eight ASCII characters, assumed
to be ASCII ones or zeros, to an 8-bit binary value in the A register.
On input, HL points to the first character, and on output, HL points
to the ninth character in the string.

ASXBIN LD B,8 SET COUNT

LOOP
LD
SLA
LD
INC
SUB

A,(HL)

C,0

C

HL
30H

CLEAR RESULT
SHIFT RESULT
GET ASCII
BUMP POINTER
CONVERT TO OR 1
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OR
LD
DJNZ
RET

C
C,A
LOOP

MERGE WITH RESULT
SAVE RESULT IN C
GO IF NOT DONE
RETURN

The next subroutine converts two ASCII characters, assumed to

be ASCII hex digits (0-9, A-F) to an 8-bit value in the A register.

On input, HL points to the first character in the string, on output,

HL points to the third character in the string.

ASXHEX

CVERT

JUMPl

LD C,0
1 n A CHI )

CVERT
INT HI

1 n A (Hi)

CALL CVERT
INC HL
RET
SLA C
SLA C
SLA C
SLA C
SUB 30H
CP A,10
JP M,JUMP1
SUB 7

ADD A,C
LD C,A
RET

CLEAR RESULT
GET FIRST CHARACTER
CONVERT

GET SECOND CHARACTER
CONVERT
POINT TO THIRD CHAR
RETURN
ALIGN RESULT

CONVERT TO 0-15

CHECK FOR A-F
GO IF 0-9
CONVERT A-F TO 0-15

MERGE RESULT
SAVE IN/C O
RETURN

ters, assumed to be the ASCII bed digits 0-9, to an 8-bit value in the

A register representing two bed digits. As before, HL points to the

first character of the string on input and the third character of the

string on output.

ASXBCD LD A,(HL) GET FIRST CHARACTER
INC HL BUMP POINTER
SUB 30H CONVERT TO BCD
RLCA
RLCA
RLCA
RLCA ALIGN TO BITS 7-4

LD C,A SAVE RESULT

LD A,{HL) GET SECOND CHARACTER
SUB 30H CONVERT TO BCD
ADD A,C MERGE
INC HL BUMP POINTER
RET RETURN

The decimal conversion routine makes use of a multiply by 10 by
shifting and adding. The five characters to be converted (leading
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zeros are not ignored) are pointed to by IX on entry. On exit, IX
points to the start of the string + 5, and HL holds the converted
result. The ASCII characters are assumed to be the ASCII decimal
characters through 9 with a maximum value of 65535.

ASXDEC

LOOP

LD B,5 SET UP COUNTER
LD HL,0 CLEAR RESULT
ADD HL,HL RESULT X 2
PUSH HL
ADD HL,HL RESULT X 4
ADD HL,HL RESULT X 8
POP DE
ADD HL,DE RESULT X 10
LD A,{IX) GET NEXT ASCII CHARACTER
SUB 30H CONVERT TO 0-9

LD E,A
LD D,0 0-9 IN B,C
ADD HL,DE MERGE IN RESULT
INC IX BUMP POINTER
DJNZ LOOP GO IF NOT 5
RET RETURN

Fig. 16-1 shovi's the actions of the four routines in the ASCII to

base X conversion group.

BASE X TO ASCII CONVERSIONS

The conversions in this group operate in reverse from the ASCII
to base conversions of the previous subroutines. Here, a binary value
is converted to ASCII binary, hexadecimal, bed, or decimal charac-
ters. On entry, a pointer to the buffer area is used to store the ASCII
result; on exit, the pointer points to the next available storage byte
in the buffer.

The next routine converts an 8-bit binary value in the C register
to a string of eight ASCII binary characters stored in buffer through
buffer + 7. On entry, HL points to the buffer area and on exit HL
points to buffer -I- 8.

BXASB LD 8,8
LOOP LD A,30H

BIT 7,C
JP Z,JUMP1
INC A

JUMPl LD (HL),A

SLA C
INC HL
DJNZ LOOP
RET

SET COUNT
ASCII ZERO
TEST MSB
GO IF

ASCII ONE
STORE ASCII CHARACTER
SHIFT FOR NEXT COMPARISON
POINT TO NEXT POSITION
GO IF NOT DONE
RETURN
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INPUT OUTPUT

ASXBIN

(HL)

JIT BINARY

8 ASCII
^

BINARY CHARACTERS
"(HLI

ASXHEX

(HU-
] [ 8-BIT BINARY

2 ASCII

HEX CHARACTERS

ASXBCD

IHU- B }

2 ASCII

BCD CHARACTERS

7

Ibcdd igitTTbcd digit 2| a

(HL)

asxdec

(IX) -

^ I 16-BIT BINARY

5 ASCII ^
DECIMAL CHARACTERS "(IX)

Fig. 16-1. ASCII to base X conversions.

The second routine of this group converts an 8-bit binary value in

the C register to two ASCII hexadecimal digits. On entry, HL points

to the buffer area and on exit, HL points to buffer + 2.

BXASH

CVERT

JUMPl

LD A,OFOH MASK
AND A,C GET FIRST CHARACTER
RRCA
RRCA
RRCA
RRCA ALIGN FOR CONVERT
CALL CVERT CONVERT
LD A,OFOH MASK
AND C GET FIRST CHARACTER
CALL CVERT CONVERT
RET RETURN
ADD A,30H CONVERT TO 0-15

CP 3AH
JP M,JUMP1 GO IF 0-9

ADD A,7 CONVERT 10-15 TO A-F
LD {HL),A STORE IN BUFFER
INC HL BUMP POINTER
RET RETURN
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The next routine in this set converts an 8-bit value in the C regis-

ter, assumed to be two bed digits, to two ASCII decimal digits 0-9.

On entry, the HL register pair points to the buffer area and on exit,

HL points to buffer -|- 2.

1 r\LU A,OFOH MASK
AND C GET FIRST BCD DIGIT
KKLA
DD/^ A

KRCA
KKCA ALIGN FOR CONVERT
ADD A,30H CONVERT TO 0-9

LD (HL),A STORE
INC HL
LD A,OFH
AND C GET SECOND BCD DIGIT
ADD A,30H CONVERT TO 0-9

LD (HL),A STORE
INC HL
RET RETURN

The last routine converts a 16-bit binary value in the HL register

to five ASCII characters 0-9. On entry, IX points to the start of the
character buffer; on exit, IX points to the start of the buffer -I- 5. To
avoid a 16 by 8 divide with a remainder, use is made of a table
lookup to find powers of ten. The table consists of 10^ lO", 10^, 10\
and units, and is indexed by the current iteration count of the loop.

A successive subtraction of the power of ten is performed to find the
number of times each of the powers of ten will "go into" the residue.
The number of times each can successfully be subtracted is the deci-
mal digit for that power of ten.

BXDEC LD IY,P10TAB POWER OF TEN TABLE
LOOPO XOR A SET DIGIT CNT =

LD D,(IY + 1)

LD E,(IY + 0) LOAD - POWER OF TEN
LOOP! OR A CLEAR CARRY

SBC HL,DE SUBTRACT POWER OF 10
JP C,JUMP1 GO IF DONE
INC A BUMP DIGIT COUNT
JP LOOP!

JUMP! ADD HL,DE RESTORE TO POSITIVE
ADD A,30H
LD (IX + 0),A STORE DIGIT COUNT
INC IX BUMP BUFFER POINTER
INC lY

INC lY POINT TO NEXT POWER OF
LD A,E
CP 1 TEST FOR 5 DIGITS
JP NZ,LOOP0 OUTER LOOP
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PIOTAB
RET
DEFW
DEFW
DEFW
DEFW
DEFW

RETURN
10000
1000
100
10

1

Fig. 16-2 shows the actions of the four routines in the base X to

ASCII conversion group.

INPUT OUTPUT

BXASB

C r 8-BIT BINARY

BXASH

8-BIT BINARY

OUTPUT BUFFER
FILLED WITH 8

ASCII BINARY CHARACTERS

OUTPUT BUFFER
FILLED WITH 2

ASCII HEX CHARACTERS

BXBCD

C BCDDIG.ITl BCDDIGI

BXDEC

-16 BIT BINARY-

OUTPUT BUFFER
FILLED WITH 2

ASCII DECIMAL CHARACTERS

OUTPUT BUFFER

FILLED WITH 5

ASCII DECIMAL CHARACTERS

Fig. 16-2. Base X to ASCII conversions.

FILL DATA ROUTINE

The following routine fills a block of memory with a specified 8-bit

binary value. This routine is useful in zeroing tables or for filling a

known data value into buffers ( such as all blanks to initialize a print

buffer). The value to be filled is input to the A register, the starting

address for the fill is contained in the HL register, and the number
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of bytes to fill is in the B register. Up to 256 bytes can be filled at

one time (if the B register specifies 0, then 256 bytes are filled).

FLDATA LD (HL),A STORE BYTE
INC HL BUMP POINTER
DJNZ FLDATA CONTINUE IF B NOT
RET RETURN

STRING COMPARISON

The following routine compares a string of data wdth another

string of data. The strings may be of any length up to 256 bytes and
typically would be search keys in a table or possibly textual strings.

A comparison result indicating whether string A is less than, equal
to, or greater than string B is returned. The address of string B is

passed in the HL register pair and the address of string A in the DE
register pair. The number of bytes in the strings ( both lengths must
be equal, of course ) is passed in the B register. If the byte count is

0, 256 bytes will be compared. The comparison result is rettirned in

the A register. If A is not equal to 0, A holds the result of A—B for

the first unequal byte of the string.

COMSTR LD A,(DE)

SUB (HL)

RET NZ
INC DE
INC HL
DJNZ COMSTR
RET

GET BYTE OF STRING
A - B

GO IF NOT EQUAL
BUMP A PNTR
BUMP B PNTR
CONTINUE IF NOT AT END
RETURN

TABLE SEARCH ROUTINE

The following subroutine is a general-purpose routine for search-

ing a table of n entries where each entry is made up of m bytes. The
key for the search is eight bits and the search value for each entry
is assumed to be in the first byte of the table. The parameters input
to the routine are the search key in the A register, the start of the

table in the IX register, the number of entries in the B register, and
the number of bytes per entry in the E register. These are illustrated

in Fig. 16-3. The search progresses down through the table. If the

key is found, the address of the first matching entry is returned in the

IX register; if the key is not found, a —1 is returned in IX. All pa-

rameters in A, B, and E are maintained so that the subroutine can be
immediately reentered to search for the next matching key; the value

of the search key and number of bytes per entry will be unchanged,
and the number of entries in B will be modified to reflect the number
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E # BYTES /ENTRY

B #0F ENTRIES

A 8-BIT KEY VALUE

IIX)-,

#BYTESmRY

# ENTRIES

ENTRY N-1

ENTRY N

TYPICAL ENTRY

MBYTES LONG, KEY

IN BYTE

Fig. T6-3. Table search routine.

of entries remaining in the table. The reentry address is a second

entry point in the routine. The initial entry is at SRTAB, while the

"reentry" point is at SRTABl.

SRTAB LD D,0 NOW HAVE # BYTES/ ENTRY IN D,E

LOOP CP (IX+0) COMPARE SEARCH KEY TO ENTRY
RET Z GO IF MATCH

SRTABl ADD IX,DE BUMP IX TO NEXT ENTRY
DJNZ LOOP GO IF NOT LAST ENTRY
LD ix,-i FLAG FOR NOT FOUND
RET RETURN
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S E C T I O N III

Z-80 Microcomputers





CHAPTER 17

Zilog, Inc.

Zilog, as do many microprocessor chip manufacturers, offers a
complete microprocessor development system, the Z-80 Develop-
ment System. This is a turn-key system with which the commercial
user can develop Z-80 programs. The Z-80 Development System in-

cludes dual floppy-disc drives, 16K capacity RAM memory, full

software including a debug package, operating system, editor, as-

sembler, and file maintenance. In addition to the development sys-

tem, Zilog offers a complete set of microcomputer modules including
a Microcomputer Board (MCB), Disc Controller Board (MDC),
and a RAM Memory Board (RMB). The modules may be supple-
mented by chassis, power supplies, and floppy discs to make up the

microcomputer configurations desired.

Z-80 MCB™ MICROCOMPUTER BOARD
The Z-80 MCB™ is a complete 7.7- x 7.75-inch single-board com-

puter shovra in Fig. 17-1. A block diagram of the MCB is shown in

Fig. 17-2. The heart of the MCB, of course, is the Z-80 microproces-
sor chip. RAM memory consists of 4K of dynamic RAM on the MCB
board. Up to 4K of EPROM, PROM, or ROM may be used on the
MCB. Zilog provides a monitor program that is available in 1/2K,
IK, and 3K versions. Parallel I/O capability is provided on the MCB
with a single PIO chip. I/O capability for serial I/O devices such as

teletypewriters and teletypewriter-compatible devices is imple-
mented by a USART chip (Universal Synchronous/Asynchronous
Receiver/Transmitter). A Zilog CTC™, Counter Timer Circuit, pro-
vides a real-time clock capability and is also used as a program-
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Courtesy Zilog, Inc.

Fig. 17-1. Zilog Z-80 MCB^M microcomputer board.

mable baud-rate generator. A 19.6608-MHz crystal oscillator pro-

vides both the basic 2.547-MHz clock for microprocessor operation

and frequencies for various serial I/O. Three-state buffers are used

on all data, address, and control lines and a 122-pin connector is used

to provide interfacing to other logic in the system, or compatible

MCB modules. External power supply requirements are 4-5 VDC
at 10 watts maximum.

MCB MEMORY

The nominal memory mapping for the MCB is shown in Fig. 17-3.

The 4K bytes of EPROM, PROM, or ROM are normally located in

block (memory locations OOOOH to OFFFH) with the 4K bytes

of RAM in block 1 (lOOOH to IFFFH). Both the read-only memory
and RAM, however, can be relocated anywhere in the 64K byte
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+5VDC

. 1

ADDRESS BUS ^

DATA BUS -a >

CONTROL SIGNALS ^ 1-

Z-80

MICRO-
PROCESSOR

UP TO 4K
PROM/ROM/

EPROM

4K DYNAMIC
RAM

I/O PORT
ADDRESS
DECODE

. EXTERNAL
0^

8<J)-«

19-MHz XTAL
OSCILLATOR

" PORT SELECTS

USART Z80-PIO Z80-CTC

I 1 I
SERIAL PARALLEL CTC

I/O I/O I/O

Fig. 17-2. Z-80 MCB™ functional block diagram.

addressing range of the Z-80 by slight modifications to the MCB
board. The MCB uses 4K bytes of dynamic RAM in an eight-chip

4K X 1 configuration. At least part of the possible 4K bytes of

ROM in the MCB will probably be one of the versions of the Zilog
monitor. The remaining area available for read-only memory can

OOOOH

OFFFH

lOOOH

IFFFH

2000H

Fig. 17-3. Z-80 MCBTM nominal
memory mapping.

FFFFH

fK BYTES PROM.

ROM, EPROM

4K BYTES RAM

be used for EPROM (erasable programmable read-only memory) or
ROM (read-only memory). As EPROMs require -f5V, -5V, and
+12 VDC, these three voltages must, of course, be externally sup-
plied to the MCB when EPROMS are used. EPROM use also re-

quires minor modifications to the MCB.
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MCB I/O PORTS

The MCB provides address decoding both for the on-board I/O
sections (CTC, PIO, and serial data) and for external I/O devices.

By jumping the proper pins, eight groups of 32 device addresses are

selectable. The MCB is provided with the I/O address decode in the

block of addresses COH through DFH. A decode of the two least

significant address bits ABl and ABO results in four signals (SCO,

SGI, SG2, and SG3) provided externally on the connector. A decode

of address lines AB7 through AB2 generates eight signals, GPO
through GP7. Three of the latter are used to address the CTC, PIO,

and serial I/O section (GPS, GP6, and GP7). The remaining five can

be used in conjunction with SCO, SGI, SG2, and SG3 to address ex-

ternal I/O devices. External I/O devices may also be addressed by

an external decode of the address lines and control signals which are

also brought out to the connector.

MCB PARALLEL I/O

The MCB offers a two-port programmable I/O interface by means
of the PIO device on the board. The PIO enables bidirectional data

transfers with full handshaking and interrupt capability as discussed

in Chapter 8. The I/O ports of the PIO connect directly to a set of

wire-wrap pins that can be connected to four 16-pin IC sockets on

the MCB board. Appropriate drivers can be provided in the sockets

for external I/O equipment and wire-wrapped connections can be

easily made to edge connector pins.

MCB SERIAL I/O

Serial I/O is provided by the 8251 USART on the MCB. The 8251

is a programmable communication interface that can be programmed
to handle virtually any serial data transmission scheme now in use.

Baud rates from 50 to 38,400 and above are selectable by jumper

connections. One of the four channels of the CTC is used to gen-

erate a baud-rate clock with the USART. The CTC is configured by
the MCB software to provide a clock signal 32 times the serial com-

munication frequency. Either an RS-232 or current-loop interface

may be selected by jumper connections to provide direct connection

of a teletypewriter, or many other serial data devices. With proper

programming and slight circuit modifications, the USART may be

configured to perform the functions of a modem (modulator/ de-

modulator) to allow direct phone-line communications with the

USART and MCB.
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MCB INTERRUPTS

Both the PIO and CTC operate in the mode 2 interrapt mode of
the Z-80, with daisy chaining between the CTC and PIO. The lEI
and lEO signals for the interrupt priority chain are brought out to

edge connector pins to allow external I/O devices to be connected
for interrupt mode 2 servicing. The external I/O devices operate in

conjunction with PIO interrupt logic as discussed in previous
sections.

MCB CONFIGURATIONS

The minimum configuration for the MCB consists of the MCB, a
5-voIt power supply, and a teletypev(aiter as shown in Fig. 17-4. The
MCB must have monitor software installed in the read-only memory

Fig. 17-4. Minimum MCB system.

Teletype ASR-33

section. Either the 1/2K or IK version will suffice. This configuration
offers a complete program development system as a teletypewriter
ofl^ers keyboard input and output, and, if the Teletype ASR-33 is em-
ployed, paper-tape input and output. Programs may be developed
and debugged with this system and saved on paper tape. Note that
assembly-language capability is not provided; and that assembly-
language programs (such as a time-sharing service) must be assem-
bled on another system and then loaded into the MCB system.
Limited debugging capability is provided by the MCB monitor.
Other modules in the MCB series provide the capability of system

expansion. A Memory/ Disc Controller Board (Z-80 MDC) adds the
capability of communication with a floppy disc (Shugart 800) and
additional RAM memory. The board provides an additional 12K
bytes of RAM with complete bufl:ering and control on the board
(no additional logic is required). The disc-controller portion of this
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board provides control of up to four floppy-disc drives. The board

provides CRC parity generation and checking and full-status reading

and control under CPU softvi'are control. An extra bidirectional 8-bit

PIO port is provided with the addition of this board. The 2K and

4K versions of the MCB system monitor must be used when the Z-80

MDC board is added to provide software for the disc I/O operations.

The MDC is fully compatible with the MCB board and requires only

a 5-VDC supply.

A Z-80 RMB, or RAM Memory Board, is another module in this

series. Additional dynamic RAM storage of 16K bytes is provided

vdth the RMB board. The RMB board is fully compatible with the

MCB and MDC boards and requires only a 5-VDC supply.

Other modules in this series include a VDB, or Video Interface

Card, PROM memory boards, serial and parallel I/O boards, PROM
or EPROM programmer boards, wire-wrap boards, extender boards,

and a standard card cage that will hold up to nine standard modules.

A complete microcomputer system, the Z-80 MCS^"^, is also avail-

able from Zilog. The MCS uses the MCB and MDC and provides

dual floppy discs, power supplies, card cage, and chassis.

MCB MONITOR

A description of the IK version of the Z-80 MCB PROM™ moni-

tor is provided below. The word monitor as applied to microcom-

puter systems essentially means "debugging program" in the smaller

versions, as the program offers a set of debugging commands that

will display the register contents; memory contents; alter register or

memory with given data; save to paper tape and load memory from

paper tape; and control program execution while debugging. The
monitor for the MCB is discussed, not so much to provide a detailed

example of this support program, but as an example of the capabili-

ties of an on-board monitor of this kind.

The commands in the IK MCB monitor are as shown in Table

17-1. "AAAA" stands for an address value, "NN" stands for a number

Table 17-1. MCB IK Monitor Commands

Sequence Command

1 DISPLAY AAAA NN CR

2 SET AAAA DD DD DD DD . . . DD CR

3 REGISTER RR (blank)

4 BREAK AAA {N} CR

5 JUMP AAAA CR

6 GO CR

7 PUNCH AAAA AAAA CR

8 LOAD CR
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of bytes, "DD" represents two hexadecimal digits, and "RR" is a

mnemonic for a register.

The commands above are entered on the system entry device
which would typically be a teletypewriter or video display keyboard,
llie monitor vdll recognize the command by its first letter, and typ -

ing the full command is optional. Each field of the command is de-
limited by a blank. All numeric values represent hexadecimal digits.

Leading blanks may be omitted, and entering more than four ch^-
acters results in the last four being used as the value. The CM
represents a carriage return character on the keyboard device. Itan
invalid command is entered, the monitor responds with a question
mark prompt and a new command can be input.

The DISPLAY command displays the contents of address AAAA
to address AAAA + ( NN - 1 ) on the display device. To display

locations lOOOH to lOFFH, the user would type:

DISPLAY 1000 100 @
SET stores the given data bytes, which may be any number, into

memory starting at location AAAA. To store the values 1, 2, 3, 4,

etc., into the locations from 0300H, the user would type:

SET 300 1 2 3 4 5 6 7 8 9 10 @
REGISTER displays the contents of a given register. The user

types in the command "REGISTER" followed by a one- or two-
letter mnemonic signifying the register to be displayed. Valid reg-

ister mnemonics are A, B, C, D, E, F, H, L, I, A', B', C', D', E', F'

H', L', IX, lY, PC, or SP. The mnemonic is followed by a blank
rather than a carriage return. To display the contents of register IX,
the user would type

:

REGISTER IX ©
After the mnemonic and blank have been typed, the monitor will

print the contents of the register on the same line. The user then has
three options. If the register is not to be modified, and the next reg-

ister is not to be displayed, a carriage return may be typed. If the
register is not to be modified, but the next register in the sequence
A, B, etc., is to be displayed, a fine feed may be entered; the next
register in sequence vwll then be displayed. The contents of the reg-

ister may be modified to a new value by typing a blank, a new value,

and a carriage return or linefeed. To modify registers A' through E'
the following sequence would be followed:

REGISTER A' 12 13 © (A' modified to 13 from 12)

14 15 (m (B' modified to 15 from 14)
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15 @ (C unchanged)

16 17 @ (D' modified to 17 from 16)

17 18 @ (F modified to 18 from 17)

BREAK sets a breakpoint at address AAAA. A breakpoint is an

instruction location which, when executed, returns control to a moni-

tor, or debugging program. A typical debugging method is to set a

breakpoint, execute the program that is being debugged from a loca-

tion before the breakpoint, and then examine the contents of memory
and/or registers when the breakpoint is reached (if it is reached!).

The BREAK command replaces the instruction at the specified ad-

dress with a restart to 38H instruction. When the instruction that is

breakpointed is executed, the RST 38H is instead executed, and the

breakpoint routine is entered. The contents of all registers are then

saved and a message indicating that the breakpoint has been reached

is printed by the monitor. If the optional N field is entered along

with the address of the breakpoint, the breakpointed instruction at

AAAA will execute N times before the break occurs. This is helpful

in breakpointing iterative code, as it eliminates a brealcpoint at each

repetition of an instruction. To set a breakpoint at location lOAAH
after 123H times through a loop, the following command would be

entered:

The JUMP command causes the monitor to jump to the specified

address. If a previous breakpoint was entered, all registers are re-

stored to their contents before the breakpoint. The following com
mand starts execution at location 123AH:

The GO command is similar to the JUMP command, except that

it is used after a breakpoint to continue execution from the break-

pointed location.

Tlie PUNCH and LOAD commands are used to save and restore

the contents of memory. Typically, this would be done after debug-

ging a program or partially debugging a program by patching.

PUNCHing the contents of a block of memory saves the contents of

memory on paper tape; the paper tape can subsequently be reloaded

by a LOAD command to restore the previous contents.

The foimat of the PUNCH command specifies a starting address

for the punch and an ending address for the punch. To save locations

lOOOH through IFFFH on paper tape, the command would be:

BREAK lOAA 123 (C^

JUMP 123A

PUNCH 1000 IFFF
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The monitor would then punch tape leader (blank or null tape),
followed by memory locations lOOOH through IFFFH, or about 100
inches of paper tape at 10 characters (bytes) per inch. At the end of
data, a trailer of blanks would be punched.
The punched paper tape could then be read into memory at any

later time by inputting the LOAD command to the monitor. The
monitor would then load the tape, inputting data on the first non-
blank character of the paper tape. Data regarding the memory loca-

tions to be loaded and checksum data is stored on the tape along
with the actual memory data. If the tape is loaded correctly, the
monitor will await the next command; if invalid data has been read,
the message "BAD CHKSUM'will be printed.

The monitor program described above offers a convenient way to

debug short programs in the MCB. The disc versions offer even more
debugging aids, disc I/O capability, and rudimentary file-manage-
ment functions.

Z-80 DEVELOPMENT SYSTEM

The Zilog Z-80 Development System is a complete program devel-
opment and hardware development system. The basic system in-

cludes a Z-80 CPU with 4K bytes of ROM, 16K bytes of RAM
(expanded to 60K bytes), and two floppy-disc drives with a con-
troller. A teletypewriter or other terminal may be connected to the
system by the RS-232 or current loop serial interface included in the
system. A programmable hardware breakpoint module allows hard-
ware breakpointing on specified control signals and/or addressing
and data bus configurations. The user may develop his system by an
in-circuit emulator which essentially connects the users hardware
with the Z-80 Development System resources. An optional parallel

I/O card enables interface of the system to other kinds of peripheral
equipment, such as line printers, paper-tape punches, and so forth.

System software includes a ROM-based operating system and debug
package, and a resident assembler, editor, and file-maintenance
package.

Z-80 DEVELOPMENT SYSTEM HARDWARE
The development system is made up of modules as shown in Fig.

17-5. The Processor Module contains the Z-80, 3K bytes of ROM,
and IK bytes of RAM. This memory contains the operating system,
peripheral drivers, bootstrap loader, and debug software. The editor,

assembler, and file-maintenance routines are stored on floppy disc
and are available on command from the operating system.
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HARDWARE MODULES

PROCESSOR
MODULE

Z-80. 3k ROM. 1 K RAM

16KRAM
MEMORY

(OPTIONAL)

ADDITIONAL
16 K RAM MEMORY

REAL-TIME
STORAGE
MODULE

BREAKPOINT
BOARD

FLOPPY-DISC FLOPPY FLOPPY
CONTROLLER DISC DISC
BOARD 1 2

IN-CIRCUIT

EMULATOR
BOARD

USER
HARDWARE

(OPTIONALI

PARALLEL I/O

BOARD

Fig. 17-5. Zilog Z-80™ development system.

System memory consists of one 16K byte memory module made
up of dynamic RAM. Memory is expandable to 60K bytes of user

memory (4K of addresses are utilized by the Processor Module).

The additional memory below and beyond the 4K used in the pro-

cessor may be in either Monitor Mode or User Mode. In User Mode,

the entire set of additional memory is dedicated to the user's soft-

ware; the user has control over system peripherals and CPU. In the

Monitor Mode, this memory serves as main memory for editing and

assembling.

The Real-Time Storage Module Board contains a 256 by 32

"storage array." The storage array essentially stores events in the

array as they occur on a rolling basis. The user may specify the kind

of events to be recorded under control of the debug software, and

may specify combinations of memory reads or writes, and 1/O reads

or writes. As each event occurs during user program execution, the

state of the address bus, data bus, and control bus are stored in the

next location of the 256 places in the array. When the system returns

to Monitor Mode from User Mode, the array may be interpreted and
printed to enable the user to analyze the last events that occurred.
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The Hardware Breakpoint Board enables the user to specify hard-
ware breakpoints that effectively "trap" the occurrence of events that

have a specified combination of address bits, data bits, and I/O bits.

The Breakpoint Board, Real-Time Storage Module Board, and soft-

ware debug module are used together to facilitate tracing system
activity during user debugging.

The Floppy-Disc Controller Board is the hardware interface be-
tween the two floppy discs of the system and the Z-80. The optional
Parallel I/O Board contains two Z-80 PIO chips which can be soft-

ware configured as required to interface the system to other kinds
of peripheral equipment, such as line printers, paper-tape equip-
ment, or PROM programmers.
The In-Circuit Emulator Board is the interface between the user's

own equipment and the Z-80 Development System. It is an exten-

sion of the system bus including cabling to the address bus, data
bus, CPU control signals, and system clock. Additional logic controls

User and Monitor Modes.

Z-80 DEVELOPMENT SYSTEM SOFTWARE
The Z-80 Development System is controlled by a small operating

system, OS Z-80, which retrieves the assembler, editor, and file main-
tenance from disc storage. OS Z-80 is resident in the read-only mem-
ory of the Processor Module.
The debug software of the system is also resident in read-only

memory and contains commands similar to the MCB debug com-
mands. In addition, there are commands related to the Hardware
Breakpoint Module and the Real-Time Storage Module; these com-
mands specify the breakpoint and storage conditions and allow a
history of events to be printed.

The Editor software is brought into memory from disc under con-
trol of OS Z-80. The Editor is a lim-oriented editor which allows a
user to append, delete, or insert lines of text and provides file man-
agement of the text files. A powerful feature of the Editor is a
MACRO capability, which permits a user-specified set of commands
to be invoked as required.

The Assembler of the system is a subset of the Z-80 cross assem-
bler. The Assembler is invoked by an OS Z-80 command, which
loads the Assembler software from the floppy disc. The Assembler
permits assembly of text files from disc with object output also

stored on disc. The object module representing the assembled file

may then be loaded for execution by a Debug LOAD command, llie

ability to text edit, assemble, and load from floppy disc greatly facih-

tates program development when compared to a system operating
only with paper-tape input and output.
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The last item of utility software supplied with the Z-80 Develop-

ment System is the File-Maintenance software. This software per-

mits file management of text, or other files, stored on the floppy discs.

Under control of the File Maintenance software, disc files may be
renamed, erased, copied from one disc to another, appended to an-

other file, or combined. File contents may be printed or punched
and information about the current files, or disc, may be listed on the

system printing device.

OTHER ZILOG PRODUCTS

In addition to the MCB modules and Z-80 Development System,

Zilog offers a Z-80 Simulator program and Macro Cross Assembler

for use on time-sharing services or larger computer systems. The
Simulator will execute Z-80 programs by interpreting Z-80 instruc-

tions while running in a host computer. The Macro Cross Assembler

allows assemblies of Z-80 programs on machines other than the Z-80.

PL/Z, a higher-level language similar to PL/I, and BASIC are also

offered for off-line support of Z-80 products.
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CHAPTER 18

Other Z-80 Microcomputer Systems

The Zilog MCB series and Z-80 Development System discussed in

the previous chapter are primarily oriented toward the commercial
user of Z-80 hardware. The systems are designed to provide powerful
tools in Z-80 hardware and software development. In many cases,

the user will design his own specialized Z-80 System around the Z-80
microprocessor chip, using the Z-80 Development System for re-

search and development, or for new versions of firmtvare, or soft-

ware, for production systems. In other cases, modules of the MCB
series will be incoiporated in new designs.

The manufacturers discussed in this chapter have a somewhat
different orientation. While the systems discussed here are being
offered to the commercial user or OEM ( Original Equipment Man-
ufacturer), they also are being offered to the computer hobbyist. As
a result, many of the system components are available as kits in addi-
tion to fully assembled modules. Many of the recent hobbyist kit

manufacturers have produced products that have not come up to

commercial standards in design, production, documentation, or sup-
port. The four manufacturers discussed here all provide quality

products that are well designed, produced to commercial standards,

and, in some cases, quite innovative. Other manufacturers of Z-80
equipment also are producing quality components and the discus-

sion of these four manufacturers is not meant to imply that other

units are not equal in quality.

The four manufacturers described in this chapter are Technical
Design Labs, Inc.; Cromemco, Inc.; The Digital Group, Inc.; and
Radio Shack. The products produced by Technical Design Labs and
Cromemco are S-100 bus compatible. The S-100 bus has become a
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de facto standard bus since MITS, Inc. produced the first hobbyist

microcomputer, the MITS 8800, using the 8080A as a base. The sig-

nals defined for their system bus, many of which are identical or

very much related to the 8080A pin signals, have become the MITS
bus. As 100 pins are involved ( and because other manufacturers are

reluctant to promote competitors ) , the bus also has become known
as the S-100 bus. Cromemco and Technical Design Labs products

will, therefore, operate compatibly with other products that have
been designed for the S-100 bus, and there are a great many such

products.

The Digital Group, however, has established their own bus which
is not S-100 bus compatible. There are both advantages and disad-

vantages to this. If a microprocessor is widely different from the

8080A-related bus, then much logic has to be devoted for conversion

from the microprocessor logic signals to S-100 bus signals. Subse-

quent timing problems and bus status problems also have to be dealt

with. On the other hand, if a module is S-100 bus compatible, then

a system user may utilize all of the diverse products available for the

S-100 bus in his system, ranging from speech synthesizers to special-

purpose I/O interfaces. Fortunately, the Digital Group offers a wide
variety of modules for their bus and this disadvantage is somewhat
alleviated.

The fourth manufacturer, Radio Shack, offers a turnkey micro-

computer system available to the computer hobbyist or small busi-

ness user only in assembled form. The bus, of course, is not an S-100

bus, although an interface between the Radio Shack system and S-

100 bus may be made available.

The following discussion is not meant to compare the four manu-
facturers point by point, but rather to provide a factual description

of what is currently being offered by each. Since the microcomputer
market is so dynamic, these descriptions will suffer with time, but

should provide some guidelines to the reader in making an evalua-

tion of Z-80 microcomputer equipment.

TECHNICAL DESIGN LABS, INC.

Technical Design Labs' basic Z-80 module is the TDL ZPU™ card

which is an S-100 bus-compatible CPU board. In addition to the

ZPU, TDL offers an S-lOO 16K byte memory card, and a System

Monitor Board, which contains a monitor, RAM, and I/O porting.

In addition to the Z-80 modules, TDL has a mainframe microcom-

puter, the TDL XITAN Microcomputer, which provides a system

package based on the Z-80 modules. While not offering a great deal

of I/O hardware at this time of writing. TDL software appears to

be very impressive. TDL offers a monitor, a line and character-
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oriented text editor, a relocating macro assembler, a BASIC and
SUPER-BASIC interpreter, a text output processor, and disc soft-

ware for an S-100 bus-compatible floppy disc of another manufac-

turer.

TDL ZPU™ BOARD

The TDL ZPU™ card is supplied either as a kit or fully assembled

and tested. The board is shown in Fig. 18-1. The board contains the

Z-80 microprocessor chip and buffering for the Z-80 bus signals.

Most of the other logic is devoted to generation of S-100 bus-com-

patible signals. The ZPU™ has two clocks on the board. One is fixed

at 2 MHz by a crystal oscillator; the other is frequency variable by

means of a small potentiometer. The frequency of the second clock

can be adjusted from about 1 MHz to 4 MHz if the second clock is

selected. Either of the two clocks, or an external clock, may be

selected for Z-80 timing, but the system clock (the bus clock) is

always the 2-MHz output.

Courtesy Technical Design Labs, Inc.

Fig. 18-1. TDL ZPUTM board.

When the ZPU™ is installed to replace an 8080A microprocessor

card in an older system, there are certain options which may be

utilized. The S-100 bus has no provision for a RFSH signal from the

Z-SO. An existing S-100 bus signal, SSTACK (pin 98), may be uti-

lized to bus the refresh signal to the remainder of the system. The
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NMI signal, nonmaskable interrupt, may be connected to the S-100

bus by connecting the NMI signal to the VIO signal of the S-100

bus, the highest-priority vectored-interrupt line on the bus. The
ZPU™ board requires +5 VDC only.

TDL Z16™ BOARD

The Z16 board (Fig. 18-2) is a low-power, static memory board
with a cycle speed of 200 nanoseconds. The board may be obtained

in kit, or assembled form, with memory increments from 4K to 16K
bytes. The fully populated version is 16K bytes (thirty two 4K by
1-bit chips). Power-supply voltages required for the Z16 are ±5
VDC, and 12 VDC, and are available on the S-100 bus.

Courtesy Technical Design Labs, Inc.

Fig. 18-2. TDL Z-16TM board.

The Z16 board has several unique features. One of these is a
memory-protect capability which will prevent selected 1 to 4K
segments of the 16K board from being accessed for a write. The
memory protect is switch selectable. A battery backup capability is

provided on the board, with the addition of an external battery pack
with voltage sensing. Logic for memory-bank switching is also pro-

vided on the board. By means of an external Memory-Management
Board, banks of 16K memory may be connected, or disconnected,

from the system bus. This means that two (or more) complete 64K



banks of memory may be alternately connected and disconnected

from the system bus under software control for multiprogramming
or other uses.

TDL SYSTEM MONITOR BOARD

The SMB board is a multipurpose board that provides a monitor,

RAM, and I/O device controllers. Tlie SMB contains a 2K monitor,

the ZAPPLE™ monitor in PROM. The monitor is a comprehensive
debug package and collection of software I/O drivers, including a

serial 1/O driver and an audio tape-cassette driver. In addition to the

2K of PROM, the SMB contains 2K bytes of RAM, available to the

system user. Two serial I/O ports are available. They can provide

serial I/O at 110 to 9600 baud and interface to either a 20-mA cur-

rent loop, or RS-232 device. Baud rates of 110 (Teletype), 300, 600,

1200, 4800, and 9600 are jumper-selectable. One parallel I/O port is

available to the user and can be software configured to either an
input, or output port.

wis . / f '
I
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Courtesy Technical Design Labs, Inc.

Fig. 18-3. TDL SMBTM board.

A second parallel I/O port (on a Motorola PIA, a programmable
I/O device similar to a PIO) connects to a set of 8-dip switches

which are used to configure the SMB board for I/O. By means of

proper settings on the dip switches, the four system logical devices

can be set to a physical device. The four system logical devices are

the console device, tape-reader device, and listing device. These
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logical devices may be set to various physical devices that can be
connected to the system-teletypewriter, high-speed serial (CRT),
paper tape, line printer, cassette, or user-defined device. As these

switches are examined on system reset they allow simple reconfigura-

tion of system devices without rewriting monitor software.

The SMB contains a built-in 1200-baud audio-cassette interface

enabling data to be read from a standard Phillips-type cassette re-

corder. Also provided on the board is the capability to automatically

restart to the monitor program on system power on and/ or reset.

TDL XITAN™ MICROCOMPUTER

The ZITAN™ Microcomputer is essentially a power supply, card
cage, minimal front panel, and other packaging to contain the TDL
ZPU™, SMB™, and Z16™ boards. In this utilization, it is identical

with most other "box without front panel" microcomputers including

the Zilog Development System. If the manufacturer provides an
adequate monitor, there is little reason for a front panel, as the front

panel functions, and a great deal more, are implemented in the

monitor.

TDL SOFTWARE

The ZAPPLE™ monitor in the SMB board provides over 20 debug
and file commands. In addition, the monitor contains I/O routines

for standard system devices or user-defined ( user-written ) I/O de-

vices. All I/O in the other utility software is done via the I/O drivers

in the ZAPPLE™ monitor.

The ZAPPLE™ text editor is both a line-oriented and character-

oriented text editor that allows the user to edit text files. Lines may
be inserted, or deleted. Character strings may be located by a search

command and another string may be substituted, in addition to nor-

mal insertion and deletion of character strings. A macro capability

for text editor command strings may also be used, to enable auto-

matic repetition of given command strings.

A Relocating Macro Assembler is available from TDL. Both the

relocatability and macro capability are sophisticated additions to the

minimal assemblers seen from many microcomputer manufacturers.

Relocatability allows an assembled object program to be loaded into

any portion of memory. The alternative to relocatability is an abso-

lute object output which can only be loaded and executed in one
area of memory. When a great deal of system software development
is to be done, relocatability facilitates changes to the programs and
pei-mits a larger program to be partitioned into relocatable modules.
Changing various parts of the system does not require changing
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and/ or reassembly of each module as might be the ease if all of the
programs were absolute.

Macros are assembly-time predefined segments of code (as op-
posed to subroutines, which are run-time segments of code). Macros
are made up of one, or more, instructions and constitute a section of
code that performs a specific function, or set of functions. A macro
may be invoked at assembly time to repeat the instructions associ-

ated with it. The net effect is to substitute a multisource line macro
expansion for a macro call and a set of parameters defining the in-

puts to the macro. Calling the macro avoids vwiting the source lines

associated with the macro at each point in the program where the
function is to be performed; the macro call generates the instructions

automatically. Macros also may be defined in the general case, so
that a macro call may have macro parameters, or arguments defined,

with the macro to generate code related to the arguments. Macro
capability allows such things as assembly-time simulation of com-
puters other than the host computer and predefined procedures.
TDL offers a BASIC and SUPER-BASIC higher-level language.

Both are interpretive BASICs, that is, the source language state-

ments or compressions of them are interpreted and executed at run-
time rather than producing an executable output module at compi-
lation time. The 8K BASIC is very complete and has such features

as a trace function to display line numbers as the lines are executed
and a listing of program variables. The 12K SUPER-BASIC is an
expanded BASIC with many editing and formatting commands ap-
pended to the basic functions.

The Text Output Processor is a utility package which provides
output formatting for text files. Output files are prepared by the Text
Editor with embedded format control words. When the file is listed

by the Text Output Processor, the processor performs formatting
based on the control words to control line spacing, headings, page
length, spacing, and other word-processing functions.

CROMEMCO, INC.

Cromemco, Inc. offers two microcomputer systems designed
around their Z-80 CPU card, the Z-1 Microcomputer System, and the
Z-2 Computer System. Both the Z-1 and Z-2 use S-100 bus-compati-
ble boards in the system. The Z-1 has a control panel, while the Z-2
does not (see Figs. 18-4 and 18-5). In addition to the Z-80 CPU
card, Cromemco offers a variety of other boards including 4K and
16K byte RAM, an 8K PROM board with an integral programmer,
an I/O board, a PROM programmer board, a digital-to-analog I/O
board, and a color graphic interface. Software includes a IK moni-
tor, Z-80 assembler, and CONTROL BASIC.
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Courtesy Cromemco, Inc.

Fig. 18-4. Cromemco Z-2 computer system.

CROMEMCO CPU CARD

The Cromemco CPU board is primarily made up of the Z-80,

buffers, and logic associated with S-100 bus compatibility. The clock

on the CPU board is selectable to either a 2-MHz or 4-MHz clock

rate. Cromemco will guarantee operation of the Z-80 microprocessor

at 4 MHz, but the feature is nice as many older systems have in-

herent limitations of the system clock rate due to slow memories, or

other system components. As in the case of TDL, the SSTACK line

in the S-100 is used for a Z-80 function, this time to indicate whether
the clock is set at 2 MHz or 4 MHz.

Another feature of the CPU board is an on-board WAIT-state
generator. The WAIT state for the S-100 bus is identical in function

to the WAIT state in the Z-80—it allows slow memory, or I/O de-

vices, to send a WAIT signal to the CPU to provide extra time to

respond to the CPU. A jumper-selectable WAIT-state option on the

CPU board inserts a WAIT state in the Z-80 between the T2 and
T3 cycles of every machine cycle. This enables the CPU board to be

used with slower speed memories without additional WAIT logic

generated by the memory board itself.

The power-on memory jump option on the CPU board allows the

user to select a jump address on any 4K boundary. A jump is auto-
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Courtesy Cromemco, Inq.

Fig. 18-5. Cromemco Z-2 computer system (cover removed).

matically executed to that address when the system reset switch is

activated. The jump address would probably be the start of the sys-

tem monitor to enable the user to load programs for execution on
start-up, or to regain control during program execution failures.

CROMEMCO MEMORY
Cromemco memory boards include 4K byte and 16K byte RAM

boards. The 4K RAM is a static RAM while the 16K RAM is dynamic
with a "transparent" (to the user's program) refresh. Both the 4K
and 16K RAM boards have a bank-select feature which permits
memoiy expansion to eight banks of 64K bytes. In addition to the
RAM memory, Cromemco offers two types of PROM boards. A 16K
PROM board holds sixteen IK byte 2708 EPROMs when fully popu-
lated. The 2708 is an erasable PROM. Exposure to ultra-violet light

erases the contents of the PROM and allows reprogramming. PROM
programming is possible by use of another Cromemco board, the
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BYTESAVERT'*'^ board. This board contains a maximum of eight IK
byte 2708 EPROMs. One of the PROMs contains software that con-

trols the on-board PROM programmer hardware. Using the BYTE-
SAVER, any of the other PROMs on the board may be programmed
in a few seconds by copying a IK "memory image" of the program,

or data in memory.

OTHER CROMEMCO BOARDS

A T-UART™ board provides two serial I/O ports, two 8-bit paral-

lel I/O ports, and ten independent programmable internal timers.

Baud rates of 110 to 9600 baud are software selectable.

A Digital Interface Board provides digital-to-analog, analog-to-

digital and parallel I/O output and input. Up to seven channels of

analog inputs (—2.56V to -I-2.54V) may be input with the board

and converted to eight bits of digital data. The same number of

channels are provided for analog outputs ( —2.56V to -1-2.54V ) which

are converted from 8-bit digital data. In addition to the a-d and d-a

conversions, eight bits of data may be input, or output, to a separate

port for other control applications. The Digital Interface Board al-

lows a Z-1, or Z-2, to interface to a variety of control applications,

including real-time process control. Conversions are 5.5 /.is, which

are quite fast for a card of this kind.

Other Cromemco hardware are the TV DAZZLER'^'^, which pro-

vides
^
color graphics capability using an ordinary television, wire-

wrap boards, extender cards, and a "joystick" console for analog-

control inputs.

CROMEMCO Z-1 AND Z-2 MICROCOMPUTER SYSTEMS

The Z-1 Microcomputer System includes the Z-1 chassis with

power supply (28 amp), twenty-two S-100 bus type card slots, and

front control panel. The control panel allows an operator to examine

and modify memory locations, perfonn a reset or external clear

function, single step the CPU a cycle at a time, or execute the pro-

gram from a given location. Indicator lights display the address and

data-bus contents and system status.

The Z-1 includes the Z-80 CPU board, two 4K static RAM boards,

an 8K PROM (BYTESAVER™) board with eight 2708 EPROMs,
a resident monitor in PROM, and an RS-232 serial input/output

interface.

The Z-2 Computer System in kit form includes the Z-2 chassis

with 30-Amp power supply, one card socket and guide, front panel,

and CPU board. In assembled form, the Z-2 includes the above items

plus all 21 card sockets and guides and a cooling fan.
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CROMEMCO SOFTWARE

The Cromemco IK monitor includes commands to examine and
modify memory, move and compare blocks of memory, read and
load paper tapes, and program 2704 and 270S PROMs using the
BYTESAVER™ board. The monitor is supplied in the Z-1 system.
A resident 8K assembler is available in PROM, or on paper tape.

A BASIC interpreter is available in PROM, or on paper tape. This
BASIC is a special CONTROL BASIC that occupies 3K of memory
and is designed for control and automated testing applications. Tlie

CONTROL BASIC allows the use of strings, multiple files, and sub-
routines, and also allows files to be programmed in PROMs on a
BYTESAVER™ board.

THE DIGITAL GROUP, INC.

The Digital Group offers a number of CPU boards, among them
the Motorola 6800, MOS Technology 6502, 8080A, and Z-80. All CPU
boards are interchangeable and system compatibility is maintained
at the CPU board level. A variety of system boards, peripherals, and
microcomputer system combinations are offered by the company.
System boards include a parallel I/O board, 8K static RAM, TV
Readout and Audio-Cassette Interfaces, 4K EPROM memory
board, and a Color Graphics Board. Peripheral equipment is gen-
erally housed in cabinets that match the other system cabinetry in

styling and color. Keyboards, tv monitors, cassette drives, and a
matrix printer are available. As with the other Z-80 microcomputer
manufacturers, combinations of the various system components are
offered as complete systems.

DIGITAL GROUP Z-80 CPU BOARD
As the Digital Group equipment is not S-100 bus compatible,

much of the CPU card can be devoted to logic other than that dedi-
cated to S-100 bus conversion. The Digital Group Z-80 CPU Board
contains the Z-80 microprocessor, 2K bytes of 500-nanosecond static

RAM, and 256 bytes of EPROM (1702A) containing a bootstrap
loader. The bootstrap loader would ordinarily be used to load a
small operating system from cassette which has the capability of
cassette read and write, keyboard entry, and tv display. The system
clock on the CPU board runs at 2.5 MHz. Logic is provided on the
board to support DMA operations and all three Z-80 interrupt
modes. Single step, and power on, reset are provided externally to
the board.
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DIGITAL GROUP MEMORY BOARDS

Two types of 8K memory boards are available, both using 2102

static RAM memory chips. One version is a 500-nanosecond mem-
ory, u^hile the other board is a low-power 250-nanosecond memory.
No wait states are required for the Z-80 CPU with the 500-nano-

second version. A 1702A EPROM board holds 4K bytes of 1702A

EPROM memory (16 chips as the 1702 is a 256-byte EPROM chip).

DIGITAL GROUP I/O INTERFACES AND DEVICES

An Input/ Output Board provides four 8-bit input ports and four

8-bit latching output ports. The I/O board supports either a mem-
ory-mapped I/O scheme as in the Motorola 6800 microprocessor,

or the 8080/Z-80 I/O mapped scheme. (In the memory-mapped
scheme, I/O devices are not addressed by I/O instructions but as

16-bit addresses).

A TV Readout and Audio-Cassette Interface Board allows both

a character-oriented tv display and audio-cassette recording and

playback. The TV Readout portion of the board provides a 64-

character by 16-line display with a 7- by 9-dot matrix display of

characters. The board will store the IK characters in on-board RAM
storage. One hundred twenty eight ASCII characters are display-

able including both upper- and lower-case alphabets, numbers,

extended math symbols, and Greek alphabet. The cursor may be

positioned forward and backward under software control. Output

of the tv section of the board is to a standard monitor ( Digital Group
or others ) or to a standard television with input to the video section.

Tlie Audio-Cassette portion of the board records, or reads, data

on standard Phillips-type audio-cassette recorders using FSK (fre-

quency-shift keying) recording. Data rates are 1100 baud which is

the equivalent of 100 characters per second, approximately 10 times

faster than a standard teletypewriter.

A separate Cassette-Storage System is also available, using one

to four Phi-Deck cassette transports. The Phi-Deck is a quality

audio-cassette drive with a file-search capability and other func-

tions. Data rates are 800 bytes per second (!) and a search speed

of 100 inches per second. A software operating system (driver) is

supplied to implement recording of multiple blocks, single blocks,

reading, CRC check, fast reverse and forward, and block search.

The Cassette-Storage System requires a Phi-F interface board, and
either a two- or four-drive cabinet with transports.

Another peripheral and interface offered is the Digital Group
96-Column Impact Printer. This is a relatively inexpensive 120

character per second, 96 character per line printer that prints on
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an 8V2 inch page. The printer is a 5- by 7-dot matrix printer that
prints 12 characters per inch horizontally and 6 lines per inch ver-
tically. The associated interface card may be interfaced to existing
I/O ports.

A 4096-pixel Color Graphics Board provides a color display of
a 64 by 64 matrix. Three on board 4K dynamic memories (red,
green, and blue) result in eight different hues in any of the 4K
pixels. The Color Graphics Board is driven by two 8-bit parallel
I/O ports.

Other I/O equipment includes a 76-key ASCII keyboard with
cabinet, a stand-alone cassette interface, prototyping boards and
extenders, and miscellaneous hardware.

DIGITAL GROUP SYSTEMS

Various system combinations are offered by The Digital Group
ranging from a four-board Z-80 system with lOK of RAM, I/O
boards, and TV Readout/Audio-Cassette Interface, to a "hard copy"
system with Z-80 CPU, TV Readout/Audio-Cassette Interface, two
I/O Boards, 18K of RAM, Cassette Drive Interface with four Cas-

( A ) Table-top arrangement.

% COLUMN PRINIIR. POWER SUPPLY
INTERFACE CARD & CABINET

TWO FULL SIZEFLOPPY DISK DRIVES CAPACITANCE KEYBOARD CASSETTC UNIT
CONTROLLER CARD AND CABINET AND CABINET AND CABINH

( B ) Cabinet identifier.

Courtesy The Digital Group, Inc.

Fig. 18-6. The Digital Group System 7.
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sette drives, Monitor, Keyboard, and 96-Colunin Printer like the

one shown in Fig. 18-6A. All of the systems are of the "box without

control panel" type and include all cabinetry, cabling, power sup-

plies, and so forth to make up a turn-key system. Virtually all sys-

tem components and complete systems may be obtained in kit, or

fully assembled, form.

DIGITAL GROUP SOFTWARE

Software available from The Digital Group includes a Cassette

Storage Operating System, TINY BASIC, MAXI-BASIC, a Text-

Editor, Z-80 Assembler, Z-80 Disassembler, and a variety of other

applications programs and games.

The Cassette Storage Operating System, PHIMON, requires about
3K of memory. It is essentially a file-manage package operating vsdth

the Phi-Deck cassette transports. Programs may be loaded or saved

on tape as files, and system utility files such as Debugging Software

may be loaded in for execution. Complete file-manage functions,

such as display and updates of tape directories are available to

the user.

A small subset of BASIC, TINY BASIC, and MAXI-BASIC are

available as higher-level interpretive packages. MAXI-BASIC for

the Z-80 provides bed floating-point arithmetic, formatted output,

multiple statements per line, and multiple-line functions. Arrays may
be any number of dimensions and string manipulation is provided.

MAXI-BASIC requires 8K of memory and the recommended system

configuration is 18K.

The Z-80 Assembler is a two-pass assembler requiring 12K plus

working storage. The recommended system configuration is 18K.

RADIO SHACK

Radio Shack offers a Z-80 microcomputer system called the TRS-
80. This system is unique from any other Z-80 system discussed in

previous paragraphs as it is a completely integrated turnkey system

( in the basic configuration ) . The user can purchase the system, take

it home, plug it in, and can immediately compile his own BASIC
program or run a predefined Radio Shack applications program!

RADIO SHACK HARDWARE

The basic TRS-80 system is shown in Fig. 18-7. It consists of a

single-board computer enclosed within a cabinet that also contains

the 53-key ASCII keyboard. A 12-inch monitor is used as a video

display; 16 lines of 64 characters-per-line may be displayed with
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automatic scrolling. In addition, graphics capability of 128 horizon-

tal by 48 vertical elements is provided. A cassette recorder for sec-

ondary storage is included in the system. Transfer rates to the re-

corder are at 250 baud.

Memory in the TRS-80 consists of 4K bytes of ROM and 4K
bytes of dynamic RAM. Tlie ROM is dedicated to a BASIC inter-

preter, keyboard scanning routines, and drivers for the video dis-

play and cassette.

Courtesy Radio Shack, a Tandy Coip. Co.

Fig. 1 8-7. The Radio Shack TRS-80 microcomputer system.

The basic TRS-80 system may be expanded with up to 52K bytes
of additional memory. Within the keyboard case up to 12K of ROM
and 16K of RAM may be added. An "expansion module" is option-
ally provided for memory above these limits.

Although the system includes all cabling and connections for the
video display and cassette recorder, additional I/O devices may be
added by means of a 40-pin external connector on the rear of the
cabinet. The Z-80 address bus, data bus, input/ output, read, vinrite

interrupt, and interrupt acknowledge signals are available on the
connector. Line printers, a floppy disc, a serial I/O unit, and modem
are some of the peripherals currently available or available in the
near future.
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RADIO SHACK SOFTWARE

The 4K version of Radio Shack BASIC includes floating-point

arithmetic, numeric, array, and (hmited) string manipulation. It

also includes video-graphics commands and cassette save and load

commands. The SET (x,y) command turns on graphics point x,y,

RESET ( x,y ) turns point x,u off, and POINT ( x,y ) determines the

state of the point. CLS clears the screen. Direct cursor control is

provided with the PRINT AT(x) command.
The 4K version of BASIC will be supplemented by a 12K version.

Other software, such as editors, assemblers, and disc operating sys-

tems are planned. In addition, a wide range of applications software,

such as game programs and business applications packages are cur-

rently available.
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APPENDIX A

Z-80 Electrical Specifications

Z-80 electrical specifications, Z-80 CPU ac characteristics, and ac
timing diagram are provided in the tables and figures on the follow-
ing pages.
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CAPACITANCE

Ta = 25''C, f = 1 MHz

Symbol Parameter Typ. Max. Unit Test Conditions

C* Clock Capacitance 20 pF
Unmeasured Pins

Returned to Ground
Cm Input Capacitance 5 PF

CoUT Output Capacitance 10 pF

Fig. A-T. Clock driver.

An external clock pull-up resistor of (330fi) will meef both ac and dc clock requirements.
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TIMING MEASUREMENTS ARE MADE AT THE FOLLOWING
VOLTAGES, UNLESS OTHERWISE SPECIFIED: "1" .,Q„

CLOCK 4.2 V 0.8 V
OUTPUT 2.0V 0.8V
INPUT 2.0V 0.8V

Fig. A-3. Z-80 ac timing diagram.
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APPENDIX B

8080 and Z-80

Instructions Compared

Table B-1. 8080 and Z-80 Instructions

8080 Z-80 8080 Z-80 8080 Z-80

Mnemonic Mnemonic Mnemonic Mnemonic Mnemonic Mnemonic

ACI ADC A,N IN IN A,(N) POP H POP HL

ADC M ADC A,(HL) INR M INC (HL) POP PSW POP AF
ADC r ADC A,R INR r INC R PUSH B PUSH BC

ADD M ADD A,(HL) INX B INC BC PUSH D PUSH DE
ADD r ADD A,R INX D INC DE PUSH H PUSH HL

ADI ADD A,N INX H INC HL PUSH PSW PUSH AF
ANA M AND (HL) INX SP INC SP RAL RLA
ANA r AND R JC JP C,NN RAR RRA
ANI AND N JM JP M,NN RC RET C

CALL CALL NN JMP JP NN RET RET

CC CALL C,NN JNC JP NC.NN RLC RLCA
CM CALL M,NN JNZ JP NZ,NN RM RET M
CMA CPL JP JP P,NN RNC RET NC
CMC CCF JPE JP PE.NN RNZ RET NZ
CMP M CP (HL) JPO JP PO,NN RP RET P

CMP r CP R JZ JP Z,NN RPE RET PE

CNC CALL NC,NN LDA LD A,(NN) RPO RET PO
CNZ CALL NZ,NN LDAX B LD A,(BC) RRC RRCA
CP CALL P,NN LDAX D LD A,(DE) RST RST P

CP E CALL PE,NN LHLD LD HL,(NN) RZ RET Z

CPI CP N LXI B LD BC,NN SBB M SBC A,(HL)

CPO CALL PO,NN LXI D LD DE,NN SBB r SBC A,R

CZ CALL Z,NN LXI H LD HL.NN SBI SBC A,N

DAA DAA LXI SP LD SP,NN SHLD LD (NN),HL

DAD B ADD HL,BC MVI M LD (HL),N SPHL LD SP,HL

DAD D ADD HL,DE MVI r LD R,N STA LD (NN),A

DAD H ADD HL,HL MOV M,r LD (HL),R STAX B LD (BC),A

DAD SP ADD HL.SP MOV r,M LD R,(HL) STAX D LD (DE),A

OCR M DEC (HL) MOV rl,r2 LD R,R' STC SCF

DCR r DEC R NOP NOP SUB M SUB (HL)

DCX B DEC BC ORA M OR (HL) SUB r SUB R

DCX D DEC DE ORA r OR R SUI SUB N
DCX H DEC HL ORI OR N XCHG EX DE,HL

DCX SP DEC SP OUT OUT (N),A XRA M XOR (HL)

Dl Dl PCHL JP (HL) XRA r XOR R

El El POP B POP BC XRI XOR N
HLT HALT POP D POP DE XTHL EX (SP),HL
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APPENDIX C

Z-80 Instructions

Instructions for the Z-80 Microcomputer are presented in Tables
C-1 through C-11 on the following pages.
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Table C-1. Eight-Bit Load Group

Mnemonic
Symbolic
Operation

Flags OP-Codc No.
of
Bytes

No.
of M
Cycles

No.
of T
Cycles Commentsw g N 76 543 210

LD r, r' e 01 r r' 1 1 4 '' Reg.

LD r. n r *- n a a a e • « 00 r 110 2 2 7 000 B

*- n -* 001 C

LD r, (HI.) r ^ (HL) 01 r 110 1 2 7 010 D

LD r, (IX+d) r*-(IX+d) a « • 11 Oil 101 3 5 19 Oil E

01 r 110 100 H
d lOI L

LD r, (lY+d) r.^(IY+d) e 11 111 101 3 5 19 HI A

01 r 110

- d ->

LD (HL), r (HL) ^ r 01 110 r I 2 7

LD (IX+d), r (IX+d) 11 Oil 101 3 5 19

01 110 I

- d -

LD (lY+d), r {IY+d)-r a a e 11 111 10! 3 5 19

01 110 r

— d —

LD (HL), n (HI ) *~ n * a * ° 00 110 no 2 3 10

— n —

LD (IX+d). n (lX+d)^n a • a o e 11 on 101 4 5 19

00 110 110

- d -

n

LD (lY+d), n (lY+d)-n 11 111 101 4 5 19

00 110 110

.- d

LD A, (BC) A-(BC) e 00 001 010 1 2 7

LD A, (DE) A - (DE) 00 Oil 010 1 2 7

LD A. (nn) A ~ (nn) 00 111 010

- n -
3 4 13

LD (BC), A (BO-

A

e

- n --

00 000 010 1 2 7

LD (DE), A (DE)-A e o 00 010 010 1 2 7

LD (nn), A (nn)-A e e a 00 110 010

n

3 4 13

*- n —

L D A, I A-1 e t IFf i 11 101 101 2 2 9

01 010 111

LD A, R A - R X IF t 11 101 101 2 2 9

01 on in

LD i, A I-A 11 101 101 2 2 9

01 000 in

LD R. A R - A o 11 101 101 2 9

01 001 111

Nolos: r, r' means any of the registers A, B, C, D. H. H, L

IFF the conleiU of the interriipl enable nip-ITop (H- !-) is copied into Ihc P/V Hag

i-lag Notation: « = Hag not iiflected. = Hag reset. 1 = ilag .set, X = Hag is unknown,

! = Hag is affected according to the result of the operation.

284



Table C-2. Sixteen-Bit Load Group

Mnemonic
Symbolic
Operation

Flags Op-Code No, No.

Cycles

No.

Sutcs Comments76 543 210 By(c3

LDtid,nn dd •-nn 00 ddO 001 3 3

00 BC

01 DE
LD IX. nn IX -nn u on 101 4 4

00 100 001 11 SP

*- n —
LD lY. nn lY - nn 11 ill 101 4

00 !00 001

*~ n

— n —
LD HL,(nn) H - (nn+1) 00 101 010 3

L-(nn)

LD dd, (nn) dtij,! -(nn+l) n 10! 101 4 6 30

ddj^ (nn) 01 ddi 01

i

LD IX, (nn) IXjj — (nn+l) li oil 101 4 ''0

IXj_ - (nn) 00 101 OiO

— n —

LD lY, (nn) IY„ - (nn+1) ! 1 111 101 4

IYj_*-(nn) 00 101 010

— n —

LD (nn),HL (nn+1) -H 00 100 0!0 3 5

(nn) -L
^ n -

LD (nn). dd (nn+l) — ddj^ ! 1 10! iO! ^

(nn) *Idj^ 01 ddO 01!

LD (nnl.IX (nn+1) -IX,, 1! Oil 10! 4 20

(nn) - [X[_ 00 100 010

LD (nn), IV (nn+1) - lY^j 11 1 ! 1 !0i

(nn) - IYj_ 00 iOO OiO

LD SP. HL SP-HL 11 lii 001 1

LD SP, IX SP-IX n on 10! 10

11 1 ! ! 001

LDSP, lY SP-IY • 11 \i\ 10) 3 10

11 111 001 qq P

PUSHqq (SP-2)-qq, ii qqO 101 1 3 !! 00 BC
(SP-l)-qq^ 01 DE

PUSH iX (SP-2) -IX[_ 1! Oil !0I 2 4 15 10 HL
(SP-1)-IX„ n IOO 101 1! AP

PUSH lY (SP-2) -IY|_ !1 111 101 4 15

(SP-l)-iY,| 11 100 10!

POP qq qqH'-(SP+l) 11 qqO 001 1 3 10

qqL-<SP)
POP IX lX„-(SPti) -il 0!! 101 2 4 14

IX^-(SP) !1 !00 001

POPIY 1Y„-(SP+1) !1 11! 10! 2 4 14

lY, -(SP) H 100 001

Noles: dd is any of Ilic register pairs UC, DE, HL SP
qq is any of the register pairs AF, BC. DE. HL
(PAIR)„, (PAIR), refer lo hlgii order and low order eight bits of the register pair respeclivcly

E.E BCj^ = C,AFj^ = A

Flag Notation: = Hag not affccled, = Hag reset. ! = Hag set. X = nag is unknown.
J flag is affected according to tlie result of tiie operation
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Table C-3. Exchange Group and Block Transfer and Search Group

Mnemonic
Symbolic
Opcralion

Flags Op-Code

76 543 210

No.
of
Byles

No.
ofM
Cycles

No.
ofT
States

EX DE. HL

EX AF.AF'

EXX

EX (SP), HL

EX (SP), IX

EX (SP), lY

l-DI

DE - HL

AF - AF'

\C'\

DE''
HL7

H"(SPtl)

L - (SP)

1X^-(SP+1)

IX^-(SP)

1Y^-(SP+1)

1Y: - (SP)

(DE) - (HLI

DE - DE+

1

HL - HL+I

Ut - IK 1

(DEl-(llL)

DE - Di;-n

HL - IIL+I

BC - UC-

1

Rtpeat until

U(" =

I

(Dt)-(IILI

DE - Dl-:-l

HL - HL-1

Bt - li( -

1

(DL) - (HLI

DE-DE I

HL-HL-I
lie - B("-l

Repeal until

ur -0

A-(HL1

HL-HLtl
Br - BC-

I

A - (HL)

HL-HLtl
B("-ur-l

Repia! until

A = (HL) or

BC

A -(HLI

HL- HLI

B( -BC-I

A-lllU

HL - HL-1

BC - BC-1

Repeal until

A = (HL) or

BC =

®ffi

II 101 oil

00 001 000

11 oil 001

11 oil lOI

11 100 Oil

11 III 101

II 100 oil

II 101 101

10 100 000

I! 101 101

10 110 000

II lUI 101

u) 101 000

II 101 101

10 1 1 I 000

II 101 101

10 100 001

II 101 101

10 no 001

II 101 101

10 101 001

Register bank and

auxiliary register

bank exchange

Load (HL) into

(DE), increment the

pointers and
decrement the byte
counter (BC)

IfBC*

If BC =

irBC*0
IfBC=

HBC * Oand A * (HL)

If Br= Oor A =(HL)

lfBC*OandA*(HL)
irBC=OorA = (HL)

©1®
t t I t 11 101 101 I 2 5 21

10 111 001
I

2
I

4
I

16

Notes: CD P'^' Oag is if llic result of BC-I » 0. other.visc P'V =
I

d) Z naf n I if A - (in.,). othet«-ise Z = 0.

Flag Notation: • = Hag not aftected, = Oag reset I
= flag set. X = flag is unknown.

I = Hag is affected according to the result of the operation.
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Table C-4. Eight-Bit Arithmetic and Logical Group

Mnemonic
Symbolic
Operalion

Flags Op-Code
No.
of

Byles

No.
of M
Cycles

No.
ofT
Stales Commentsc z V N H 76 543 210

A -A + 1 J t V I ! 10 lOOOj T 1 1 4 r Reg.

ADDn A - A + n I t I 1 1 ioi 1 10 2 2 7
000
001

B

C
— n ^

010 D
ADD (HL) 1 1 V I : 10 [OOO] 1 10 1 2 7 on E

ADD (IX+il) A -A + (IX+d) ] J V I 1 II oil 101 3 5 19 100 H

10 ioo] 1 10

-ri-
101

II

1

L

A

ADD(lY+d) A -A+llY+d) t I V t t ll 111 101 3 5 19

10 \mgl 110

ADCs A -A + s + CY 1 1 V t t

- d -

[MI s IS any ol r. n.

SUB 5 • A - A - s ! i V 1 1 t loTol HID (IX+d)

SBC s -A-s-CY (lY+dl ;l^ shown lor
A t 1 EED ADD inslna lion

ANDs A - A A s 1 p i 1 juiol

OH s A -A V s 1 p t 1 ITiol The indiciiled bus

A - A •s
'

{) ^
{> ^ 1 101

1

repla e Ihc 000 In

Ihc ADD sol above
CP s A ! 1 V : 1 t nm
INC r r - r + 1 B 1 V 1 00 F j 1 ool 4

INC (HI.) (HL)-(IU)+I ^ 00 1 ml lool 1 3 1 1

INC <IX+cl) llX+il) - 1 V 1 1 11 oil IOI 3 (, 21
(IX+d)+t

00 110 j 1 uoj

INC llY+dl (lY+.ll t V 1 1

d

II III 101 3 (i 23
(lY + dl 1 1

00 i HI
1
mill

cl

1)1 ( it J - d -
1 V I I I rnm d IS J i\ ol t (IILI

(IX+dl (IY*d) as

shown for INC
Sanu forni.il nid

slaks as IN(

Hi pi. sv 100 \M!h

101 1 1 OP > ode

Notes: V symbol in (ho P/V llj-j coliinm miiiuiiks ilial ihi; i' \ Hiif- contains ihc ovcrlla« uI 11k k -.nil ol liiu

operalion Similarly Ihc !' .symbo! iniJicaics p:irit). V- t iiiL';in\ ovcrlluu , V = means noi (ivvflluu i' = i

means parily oT the result is even. P = means paniy ol thi rtsuH is otft!

Mag Noiation: • = flat; not alfeclcd ^ tla;; rcscl, ! = tla:; su. X = Hag is unknown
I = flaj; is alTccieil atcufding lo (he iciili of Ihc upcraiion
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Table C-5. General Purpose Arithmetic and CPU Control Groups

Mnemonic
Symbolic
Operation

Mags OM^odc
No,
of
Bytes

No.
of M
Cycles

No.
ofT
Slates CommentsC Z V S N H 76 543 210

DAA Converts acc„ 1 1 P t a t 00 100 111 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add

or subtract

with packed

BOD operands

CPL. A*-

A

A « • • I 1 00 101 111 1 1 4 Complement
accumulator

(one's complement)

NEG A- ~A i V I I 1 11 101 101 2 2 8 Negate acc (two's

01 000 100 complement)

CCF CY -CY t • a a X 00 111 111 1 4 Complement carry

nog

CY +-
1 I 00 1 10 111 ' 1 4 Set carry flag

NOP No operation • « a a • 00 000 000 1 1 4

HALT CPU halted « a 01 110 110 1 1 4

DI IFF ^0 e « a e a 11 110 oil 1 4

El IFF - I e • a a a 11 111 oil 1 4

IM Sel interaipt e e a 11 101 101 2 2 8

mode
01 000 110

IM 1 Set interrupt e « « a 11 101 101 2 8

mode 1

01 010 110

1M3 Set interrupt a a a a a 11 101 101 2 8

mode 2
01 oil 110

Notes: IFF indicates the interrupt enable flip-flop

CY indicates tlie carry flip-flop.

Flag Notation: a = flag not affected, = flag reset, I = flag set, X = flag is unknown.

I = flag is affected according Jo (he result of tlie opera.tion.
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Table C-6. Sixteen-Bit Arithmetic Group

Mnemonic
Symbolic
Operation

Flags Op-Code No.
of

No.
of M
Cycles

No.

States CommentsC
-

z s N H 76 543 210 Bytes

ADD HL, ss HL ^HL+ss
—

j( 00 ssl 001 I 3 11 ss Rej

00 BC
ADCHL.ss HL-HL+ss+CY t t V t X II 101 101 2 4 15 01 DE

10 HL
01 ssl 010

11 SP
SBC HL, S5 HL*~HL-ss-CY 1 t V t 1 X II lOI 101 2 4 15

01 ssO 010

ADD IX, pp IX^IX + pp t • » • X II 01 1 101 2 4 IS PP Reg

01 DE

1 1 SP

ADD IY,rt lY-IY+jr t X II III 101 2 4 15 rr Reg

00 rrl 001 00 DC
01 DE
10 lY

II SP

INC ss ss - ss + 1 UU SSU U 1 I ' 1 6

INC IX 1X-IX+ 1 II Oil 101 2 2 10

00 100 oil

INC lY 1Y-IY+ 1 • • • « • II III 101 2 2 10

00 100 oil

DEC ss ss *- ss - I 00 ssl on 1 1 6

DEC IX IX - IX - I II on 101 2 2 U)

00 101 on
DECIY lY^lY- 1 • a • • • II III 101 2 2 10

00 101 on

Nolcs: ss is any of the register pairs BC, DE, HL, SP

pp is any of the register pairs BC, DE, IX. SP
rr is any of Ihe register pairs BC, DE, lY, SP

Rag Notation: • = tlag not atfcaed, = Hag reset. I = Hag set. X = Hag is unknown
X = llag is affected according to the result of tiie operation
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Table C-7. Rotate and Shift Group

RLC r

RIC (HL)

RLC (IX+d)

Symbolic
Operation

S.;HlHLI,.lX.JMlY.d.

I, .l, .1 l. -I> .l

_H_J

-in

Flags Op-Code

11 001 Oil

00 1 OOP I
r

11 001 on
oo loool iio

11 oil 101

11 001 oil

- d -
OO lODOl UO
11 111 101

11 001 Oil

d -»

oo loool iio

[Ml

MB

UM

mn

nrm

11 101 101

01 101 111

11 101 101

01 100 111

No.
of
Bytes

No.
of M
Cycles

No.
ofT
Stales

Rotate left circular

accumulator

Rotate left

accumulator

Rotate right circular

accumulator

Rotate right

accumulator

Rotate left circular

register r

Reg

000 B

001 C
010 D
oil E
100 H
101 L
111 A

Instruction format and

states axe as shown
for RLC,s To form

newOP-tode replace

[Sl of RLCswith
shown code

Rotate digit left and

right between the

accumulator

and location (HL)
The content of the

upper half of the

accumulator is

unaffected

Flag Notation: • = Hag not affected, = flag reset, I = flag set, X = flag is unknown,

t = flag is affected according to the result of the operation

.
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Table C-8. Bit Set, Reset and Test Group

Flags Op-Code
No. No.

P.
No-

Symbolic 1 of of M of T
Mnemonic Operation C V IN H 76 543 210 Bytes Cycles States Comments

BIT b, r J X X 11 001 Oil 2 2 8 Reg.

01 b r 000 B

BIT b, (HL) Z — (HL) « t X X 1
t 1 nf\ 1 nil11 UUl Ull 3 12 001 C

01 b no 010 D

BIT b, (IX+d)
on E

Z - (IX+d).
b

t X X 1 11 on 101 4 5 20 100 H

11 Uui Ul

1

101 L
1 1

1

- d

BIT b, (lY+d)

01 b 110 b Bit Tested

Z - (IY+d)j^ I X X 1 4 20 000
1 1 r\n 1 nil 001 1

010 2- d on 3

0! h no 100 4

101 5

no 6

SET b, t

in 7
r *- 1 • a • B

1 1 UU 1 U 1 1 8

SET b, (HL) (HL)^-l « • • 11 001 on 2 4 15

QT] b no
SET b, (IX+d) « • « • 11 on 101 4 6 23

n 001 Oil

_ d -
rm
1

1
i

1 b 1 tO

SET b. (lY+d) (lY+d)j^ - I • • a a e e 11 in 101 4 6 23

I! 001 on
- d -

Til b no

RES b, s Do] To form new Op-
s =r. (HL). code re place \Tm

(IX+d). of SET b.swith

(iY+d) fTo]. Hags and time

slates for SET
instruction

Notes: The noution s. indicates bit b (0 to 7) or location s.

Flag Notation: o = flag not affected, = Oag reset. I
= flag set X = flag h unknown,

t = flag is affected according to the result of the operation
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Table C-9. Jump Group

Symbolic
Operation

Flags Op-Codc

76 543 210

No,
of
Bytes

No.
of M
Cycles

No.
ofT
States

JR e

JR C, e

JR NZ.e

JP (HL)

JP (IX)

JP (lY)

DJNZ.c

If condition cc

is true PC --nn.

otherwise

continue

lfC = 0,

continue

irc= 1,

PC - PC+c

IfC = 1.

continue

If C-0.
PC - PC + e

If Z =

continue

IfZ = 1.

PC - PC + e

If Z = 1.

continue

IfZ = 0,

PC - PC + e

PC -HL

P< - IX

PC-IY

B-B-1
If B = 0.

continue

IfB #0,
PC - PC +

11 000 Oil

«- n -*

n

11 cc 010

— n —

n

00 Oil 000

- e-2 -

00 111 000

- e-2 -

00 110 000

- c-2 -

00 101 000

- e-2 ^

00 100 000

- e-2 -

II on 101

11 101 001

II III 101

II 101 001

00 010 000

- e-2 -

CC Condition

000 NZnon zero

001 Z zero

010 NC non carry

011 C carry

100 PO parity odd
101 PE parity even

no P sign positive

HI M sign negative

If condition not met

If condition is met

If condition not met

It condition is met

II condition not met

H'condition \s met

Il condition not mi

Ifcondilion met

Notes: e represents the extension in the relative addressing mode

e is a signed two's complement number in the range <-i26, 129>

e-2 in the op-code provides an effective address of pc +e as PC is

incremented by 2 prior to the addition of e.

Flag Notation: « = flag not affected, = flag reset, I = Rag set. X = flag is unknown.

t = flag is affected according to the result of the operation
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Table C-10. Call and Return Group

Flags Op.Code

Mnemonic
Symbolic
Operation C Z

r,

1

V S N H 76 543 210

No.
of

• Bytes

No.
of M
Cycles

No.
of T
States Comments

CALL nn (SP-D-PCj^

{SP-2)^PCj^

PC—nn

• o a • a a 11 001 101

•- n

3 5 17

CALL cc, nn If condition

cc is false

continue,

e a a o 11 cc 1 00

^ n

3 3 10 Ifcc is false

otherwise n -* 3 5 17 If cc is true

same as

CALL nn

RET PC^^KSP)

PC^j-<SP-M)

a a a a a II 001 001 1 3 10

RET cc If condition

cc is false

continue,

otherwise

« a a « • a 1 1 cc 000 1

1

1

3

5

11

Ifcc

Ifcc

is false

is true

RET
cc Condition

000
001

NZ
Z

non zero

zero

RET! Return from
interrupt

e a 9 a a o 11 101 101

01 001 101

2 4 1414
010
Oil

100

NC
C
PO

non carry

carry

parity odd

REIN

P

Return from
non maskable
interrupt

(SP-2)-PCl

PC„-0
PC^ -P

e

o a

a a 11 101 101

01 000 101

11 t III

2

1

4

3

14

U

101

110

111

t

PE
P
M

P

parity even

sign positive

sign negative

000 OOH
001 08H
010 lOH
oil 18H
100 20H
101 28H
110 30H
111 38H

Fiag Notation: • = flag not affected, = flag rese

t ~ flag is affected according to tl

, 1 = nag set, X = flag is unk
e result of the operation.

town
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Table C-11. Input and Output Group

Flags Op-Code
No. No. No.p

oyiDDoiic / of of M of T
Mnemonic Operation C Z V s N H 76 543 210 Bytes Cycles States Comments

liN A, (n^ A *- (n) • • e a • a 11 nil nit

— n -•

1

1

n to Aq — A^

Acc to Ag ~ Aj

J

IN r, (C) t F t t
It t rt t t ft

t

11 lUi lUl 2 1

1

C to Aq ~ Aj

if r - 1 10 only 01 r 000 B to Aj - Aj5
the flags will

be affected

®
INI (HI ) - (C) • X X 1 X 11 101 idi 2 4 16 C to Ajj - A^

B - B- 1 10 100 010 Bt0A3-A,5
HL-HL+ 1

INIR (HL) - (C) I X X 1 X 11 101 101 2 5 2 1 C to Ag - A^

B.oAj-A,5B - B 1 10 no 010 (If 8*0)

HL -HL+ 1 2 4 16

Repeat until

B=
(11 B = 0)

IND (HL)-(C) • t X X 1 X 11 101 101 2 4 16 C to Ajj - A.^

B-B- 1 10 101 010 BtoAg-A|5
HL-HL- 1

INDR (HL)-(C) • 1 X X i X 11 101 101 2 5 21 r to A,, ~ A-
7

BloAj-A|5B-B- 1 10 111 010 (If B * 0)

HL -HL-1
2 4 16

Repeat until

B =
(if B = 0)

OUT (n), A in) - A 11 010 oil 2 3 1 1 n to A,, ~ A~

ACC to Ag ~"
[ 5

C lo Aq ~ Aj

BloAg-A|5
OUT (C), r (C) - r • •

®

• • a • 11 101 101

01 r 001

2 3 12

OUTI (C)-(HL) a 1 X X 1 X 11 101 101 2 4 16 r to Au - Aj

B to A - A
H 1 i

B-B- 1 10 100 on
HL-HL-f 1

OTIR (C) - (HL) 1 X X 1 X 11 101 101 2 5 21 ( !o A^j ~ A^

BtoAj-
A|5

B-B- 1 10 no on (lfB*0)

HL-HL+ 1

2 164

Repeat until

8 =

®

(If B = 01

OUTD (C)-(HL) • I X X 1 X II 101 101 2 4 16 C Ul Ay ~ A^

BtoAg- A,5B-B- 1 10 101 on
HL - HL-

1

OTDR (C) - (HL) a 1 X X 1 X n 101 101 2 5 21 C !o Ay ~ A^

B - B - 1 10 111 on (If B * 0) Bto A,-A,5
HL-HL-1

162 4
Repeat until

B =
(lfB = 0)

Notes: (T) If the result of B - 1 is zero the Z flag is set. otherwise it is reset

Flag Notation: • = flag not affected, = flag reset, 1 = flag set, X = flag is unknown,
t = flag is affected according lo the result of the operation
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APPENDIX D

Binary and Hexadecimal

Representation

BINARY AND HEXADECIMAL REPRESENTATION
Binary Representation

In binary, positional notation is used similarly to decimal notation:

1 2 3 4m
"ft t 4 X 10°= 4

' 3X10"= 30

2X10== 200
'

1 X 10°= 1000

1234

1 1 1 1 U
-1X2° = 1

-1X2" = 2
- 1X2= = 4

1 X 2°_ 8

0X2' =
-1X2= = 32

47^0
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Hexadecimal Representation

Decimalio Binary^ Hexadecimalio

0000

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 01 1 1 7

8 1000 8

9 1001 9

10 1010 A
11 1011 B

12 1100 C

13 1101 D
14 1110 E

15 1111 F

Hexadecimal to Decimal Conversion

16"

POSITION

A B 9 2 H
16° POSITION :

16' POSITION :

16= POSITION :

16" POSITION :

1

16

: 256

:4096

To convert:

A B 9 2 H

-2X16°=2X1 = 2

- 9 X 16'= 9 X 16 = 144

11 X 16°= 11 X 256 = 2816

10 X 16" = 10 X 4096 = 40960

43,922io

Steps In Conversion;

1. Multiply each digit weight by hex digit.

2. Add to get total equal to equivalent decimal #.
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Decimal to Hexadecimal Conversion

1199,0= 4 A F H

_0

1 6)4 REMAINDER 4

-

16)74 REMAINDER 10-
16) 1199

112

79
64

15 REMAINDER 15 —

Hexadecimal Addition and Subtraction

OPERAND 2

1 2 3 4 5 6 7 8 9 A B C D E F

1 2 3 4 5 6 7 8 9 A B c D E F
1 1 2 3 4 5 6 7 8 9 A B C D E F 10
2 2 3 4 5 6 7 8 9 A B C D E F 10 11

3 3 4 5 6 7 8 9 A B C D E F 10 11 12

4 4 5 6 7 8 9 A B C D E F 10 11 12 13
5 5 6 7 8 9 A B C D E F 10 11 12 13 14
6 6 7 8 9 A B C D E F 10 11 12 13 14 15

7 7 8 9 A B C D E F 10 11 12 13 14 15 16
8 8 9 A B C D E F 10 11 12 13 14 15 16 17
9 9 A B C D E F 10 11 12 13 14 15 16 17 18

A A B C D E F 10 11 12 13 14 15 16 17 18 19
B B C D E F 10 11 12 13 14 15 16 17 18 19 lA
C C D E F 10 11 12 13 14 15 16 17 18 19 lA IB

D D E F 10 11 12 13 14 15 16 17 18 19 lA IB IC
E E F 10 11 12 13 14 15 16 17 18 19 lA IB IC ID
F F 10 11 12 13 14 15 16 17 18 19 lA IB IC ID IE

To add operand 1 to operand 2 find sum at intersection. If two digits, a carry to high
order is represented.

To subtract operand 1 from operand 2 find difference in operand 2 column. If operand 2
greater than one digit the high-order 1 represents a borrow from next digit.

Steps in Conversion:

1. Divide decimal # by 16.

2. Save remainder.

3. Repeat until quotient = 0.

4. Remainders in reverse order

represent hexadecimal

equivalent.
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APPENDIX E

ASCII Character Code

The ASCII character code is shown in Chart E-1 on the follow-

ing page.
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to US O 4 DEL

Ul so
to
ai A Z <— c

I

a u SO
1 II S E

<j u- V / - —

a VT ESC + Jit:

< u.
—J SUB N ... N

J.H 1 - o- - > -

oa
to
CQ CAN - 00 I X

Is BEL ETB - K O 01

« ACK SYN a o u- > H- >

m O
2
LU

<
Z

LU D 0)

"« EOT
DC4 Q 1— -o

CO ETX DCS CO (J CO u

CI STX
DC2

CM a:: J3

- SOH DCl - < O ra cr

o NUL DLE a.
to o {§) a

o CI •» •0 K

XlOia X3H XNV3UINOIS iSOW



APPENDIX F

Z-80 Microcomputer Manufacturers

Computer Systems

26401 Harper Avenue
St. Clair Shores, Michigan 48081

Cromemco, Inc.

2432 Charleston Road
Mountain View, California 94043

The Digital Group, Inc.

P. O. Box 6528
Denver, Colorado 80206

MiniMicroMart, Inc.

1618 James Street

Syracuse, New York 13203

Quay Corporation

P.O. Box 386
Freehold, New Jersey 07728

Radio Shack, A Division of

Tandy Corporation

One Tandy Center

Fort Worth, Texas 76102

S. D. Sales Company
P.O. Box 28810K
Dallas, Texas 75228

Technical Design Labs, Inc.

Research Park

Bldg. H
1101 State Road
Princeton, New Jersey 08540

Zilog, Inc.

10460 Bubb Road
Cupertino, California 95014
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Index

Absolute symbols, 141
Address and data bus, 26
Addressing modes, 41-54
Algebraic compare, 168
Alphanumeric string, 195
A register

I/O instructions, 219-222
used for random addressing, 150

Argument, 185, 212-213
Arithmetic and logical operations, 17,

161-173
Arithmetic shifts, 179-181
ASCII

binary characters, 239
character code, 299
decimal digits, 241
hexadecimal digits, 240
to base X conversion, 237-240
to bed conversion, 182

Assembly
format, 137-139
mechanics, 144
process, 137
-time calculations, 158

Backward references, 140
Banking schemes, memory, 48
Base X to ASCII conversions, 239-242
Basic instruction cycles, 32
Bed, 102-103

to ASCII conversion, 183
Binary, 141

and hexadecimal representation, 295-
297

-coded decimal (bed), 15
Bit

addressing, 51
example, 54
position, 44
Set, Reset, and Test group, 84-88,

183-188
Blank or null tape, 255
Block

fashion, 14
transfer instructions, 156-159
transfers, 92

Branch instruction, 20
Breakpoint, 254
Buffer, 24
Buffering, 114
Bus, 26-27
Bus Acknowledge Signal (BUSAK).27
Bus Request Signal (BUSRO), 26-27

Calls, 88
Carry flag (CY), 19, 72, 95-98
Chip enable signal, 28
Clock, 105
Compare, 167-168
Comparison subroutine, 232-233
Complement Accumulator (CPL), 42
Conditional

calls and returns, 214
jumps, 209

Condition codes, 19

Controller, 22
Counter-timer circuit (CTC), 111, 247-

248
CPU, 15

electrical specifications, 30-31
registers, 19
timing, 30-31

CRC parity generation, 252
Cromemco, Inc., 265-269
Cross-assembler, 137
Current assembler location, 142
Cycle-stealing, 229

Daisy-chained interrupt circuitry, 37
Data

bus, 26
strings, 192-197
structures, 192

Debugging program, 252
Decimal, 141

Adjust Accumulator instruction, 15
arithmetic operations, 172-173
to hexadecimal conversion, 297

Decrement, 66
Decrementing (subtracting one), 18
DEFB and DEFW pseudo-ops, 143
Delete table entry actions, 200
Delimiters, 144
Diagnostic messages, 139
Digital Group, Inc., The, 259, 269-272
Disc controller board (MDC), 247
Displacement field, 21
Divide

-by-two operation, 180
signed, 236
unsigned, 235

DMA actions, 228-230
Double-precision operation, 18, 163
Dynamic
memory interfacing, 121-122
memories, 23
RAM refresh, 122

EcUtor, 144
Effective address, 21, 50
8-bit

arithmetic operations, 161-165
compares, 167-169
increment and decrement, 169
load group, 55-59

arithmetic and logical, 65-69
logical operations, 165-167
moves, 145-152
multiply register arrangement, 190

8080 and Z-80 instructions compared,
282

8251 USART, 250
Electrical specifications
CPU, 30
Z-80, 31, 276-277

Employee table format, 197-198
Environment, 16
EPROM, 24
ERROR routine, 162
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Exchange
block transfer, and search group,

62-68
group, 159-160

Expression evaluation, 141
Extended addressing, 43-48
External memory, 23-24

Fetch, 23
cycle (Ml), 28-29

File-Maintenance software, 258
Fill data routine, 242-243
FINDIT subroutine, 217
Five-character string comparison, 196
Flag

carry (CorCY), 19, 95-98
half-carry (H), 19
H and N, 100-102
parity/overflow (P/V), 19, 98-99
register format, 19, 93
sign, 19, 95-96
subtract (N), 19
zero (Z), 19, 93-95

Flags and arithmetic operations, 93-103
Floating point, 234
Floppy disc, 24

characteristics, 226
control board, 257
I/O driver-parameter block, 227
Shuart 800, 251

4-bit bed shift, 181-183
Four-digit bed representation, 172
Forward references, 140
Frames, 104

GETCH subroutine, 218

Half-carry, 102, 193
flag (H), 19

HALT signal, 29-30
H and N flags, 100-102
Handshaking, 24, 122, 224
Hardware Breakpoint Board, 257

Hashing, 195
Hash search, 196
Hexadecimal, 141, 296, 297
High and Low register pair (HL ) , 46-47
HL pointer, 46-47

IFF (interrupt flip-flop), 108
Image of source line, 139
Immediate

addressing, 43
loads of 16 bits, 152-153

Implied addressing, 41-42
IN-Circuit Emulator Board, 257
Increment, 66
Incrementing ( adding one ) , 18
Indexed addressing, 50-51
Indexing, 150, 170
Index

register block access, 148
registers IX and lY, 21, 147

Initialized, 152
Input- and output-

data formats RAM/ROM configuration,
120

group, 92
signals (lORQ), 28

Insert table entry actions, 20

1

Instruction
comparison 8008, 8080, and Z-80, 13
modification for VDT bit routine, 188
set, 55-92

Intel

8080, 12
8008, 11
4004, 11

Interface signals and timing, 26-40
Interfacing
memory and I/O devices to the Z-80,

116-132
ROM and RAM, 118-121

Interrupt, 16, 20
enable flip-flop (IFF), 29-30
handling routine, 21
mode, 2, 112-114
nonmaskable ( always active ) , 22-23
operations, 230-231
response vector, 38
sequences, 104-115
Vector Register, 29

I/O
block transfer instructions, 223-225
device controller, 24-25
instructions using C register, 222-223
read and write cycles, 35-36

I register actions, 22

"Jams," 92
Jump, 20, 85-92

Large-Scale-Integration (LSI) chip, 11
Least significant byte ( Isb), 47
Level conversion, 24
LIFO operation, 21
Limit check, 163
Linked lists, 156
List

delete and insert actions, 206
and table operations—search group,

192-207
operations, 204-207

Loader format, 144
Load group

bit set, reset, and test, 84-88
call and return, 85-89
8-bit, 55-59, 68-69
exchange, block transfer, and search,

62-68
general-purpose arithmetic and CPU

control, 69-75
input and output, 92
jump, 88-92
rotate and shift, 77-84
16-bit, 59-64, 75-77

Load (LD), 48
and Decrement instructions ( LDD )

,

66
and Increment instructions ( LDI ) , 66

Location counter, 142
"Lock-outs," 218, 229
Logical shifts, 174-175
LOOP, 166
Looping, 149
LSI chips, 25

Machine
cycle, 28
language, 133-137
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Macro
Cross Assembler, 258
expansion, 265

Magnitude compare, 168
Manual assembly process program 1-2,

134, 136
Maskable interrupt, 111-113
MCB

configurations, 251-252
interrupts, 251
I/O parts, 250
memory, 248
monitor, 252-255
nominal memory mapping, 249
parallel I/O, 250
serial I/O, 250

Memory
-bank switching, 262
banking schemes, 48
data read and write cycles, 34-35
-mapping I/O, 118
operand, 77
or I/O WAIT states, 39-40
refresh ( R ) , register. 23
Bequest Signal (TvlREO'), 27-28
signals, 27-28

Merge data, 166
Microcomputer

board (MCB), 247
component parts, 23-25

Microprocessor chip, 23
Minimum Z-80 system, 116-118
Mnemonics, 134-135
Mode

word example, 210
interrupt processing, 109

Modem (modulator/demodulator), 250
Modified page zero addressing, 48-49
Modify table entry actions, 202
Ml fetch cycle, 28-29, 32-33
Monitor

mode, 256
program PROM, 25

Most significant

add, 236
borrow (carry), 236
byte (msb), 47, 166

Moving
data—load, block transfer, and

exchange groups, 145-160
noncontiguous data with LDI, 159

Multiple-precision
arithmetic routines, 236-237
operations, 163

Multiplication and division by shifting,
174-177

Multiply and divide subroutines, 234-
236

Multiprogramming, 263

Nested interrupts. 111
Nesting, 214
NMI ( nonmaskable interrupts ) , 106-108
NMOS, 12
Nongenerative comment line, 138
Nonmaskable ( always active ) iaterrupt,

22-23
/Acknowledge cycle ( NMI ) , 32
cycle, 38-39

No parity (NP), 209

Number bases, representation of, 141

Object module, 137, 144
Op code fetch cycle (Ml), 32-33
Operant, 81
OS Z-80 operating system, 257
Overflow conditions and P/V flag, 101

"Pad" a program, 72
Page zero addressing, modified, 48-49
Paper-tape-reader controller, 22
Parallel

bytes, 24
I/O Board, 257

Parity (P), 209
-overflow flag (P/V), 19, 98-99

Patching, 254
PIO (parallel I/O), 122

initial conditions, 127-128
interfacing, 122-124
interrupts, 126-127
mode 1, 2, and 3, 125-126
registers, 124
vector control word, 126

Pixel, 184-185
PMOS, 11
Popping the stack, 88
Priority

encoding for interrupt mode 0, 110
interrupt control unit (Intel 8214),

110
Processor module, 257
Programmable counter-timer interface,

105
Programmed, 24

I/O loop, 224
PROM, 24
Prompt, 253
Pseudo-operations, 141-144
Pulled, 20
Pimeh tape leader, 255
Pushed, 20
P/V flag, 98-99

Radio Shack, 259, 272-274
RAM (random access memory), 24
memory board (RMB ) , 227
ROM memory mapping, 120

RDY signal, 125
Read

cycle, 34
signal (Tn5), 27-28

Real-time
clock, 105
storage, 256

Reentrancy, 216-218
problems, 108

Reentrant code, 216
"Reentry" point. 244
Refresh signal (RFSH), 27-28
Register

addressing, 44-45
block combinations, 17
comparison 8008, 8080, and Z-80, 13
flag, 18-19
general-purpose, 15-18
I, 19
indirect addressing, 46-47
lY, 19
IX, 19
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Register—cont
pairs, 18
PC, 19-20
R, 19
SP, 19
special-purpose, 19-23

Relative
addressing 49-50
branch, 168

Relocatable symbols, 141
Representation of number bases, 141
RESET signal, 116-117
Resident assembler, 137
Residue, 189
Restoring, 190
Returns, 88
R field values, 45
Right justified, 176
RLD and RRD action, 182
Rolling basis storage, 256
ROM, 24
Rotate

and shift group, 77-84
-type shifts, 177-179

Semiconductor
N-channel metal-oxide, 12
P-channel metal-oxide, 11

Serial bits, 24
Shift

actions, 177
instructions, 80-8

1

logical, 174-175
right arithmetic (SRA), 179-180

Shifts, rotate-type, 177-179
Signal levels, 24
Signals, memory, 27-28
Sign flag, 19, 95-96
Single-ended linked list, 205
16-bit

arithmetic operations, 169-172
by 8 bit divide register arrangement,

191
data transfers to the stack, 154
load group, 59-64, 75-77
moves, 152

stack operations, 154-156
transfers to and from memory, 153-

154
Software
I/O drivers, 226-228
multiplication and division, 188-191

Source
line, 138
register, 55

Special-purpose registers, 19-23
Stack pointer (SP), 19-21
Storage array, 256
String

comparison, 243
search terminating conditions, 194

Subroutine
GTADD action, 187
operation—jump, call, and return

groups, 208-218
use, 211-216

Subtract flag (N), 19
SUPER-BASIC, 265
Symbolic

assembly language, 133
representation, 139-141

Symbols, 141

Table
for binary search example, 202
operations, 197-204
search

examples, 117
routine, 243-244

Technical Design Labs, Inc. (TDL),
260-265

Timing
interface signals and, 26-40
loop, 234

"Toggle," 166
Toggled, 178
"Top-down" and "bottom-up" subroutine

system, 232
Top of stack, 152
Trailer of blanks, 255
Tri-state output, 26
Truncation errors, 203
TTL (Transistor-Transistor Logic), 24,

30

USART chip, 247
User mode, 256

VDB, 252
VDT bit map for 64K pixels, 185
Vectored interrupts, 105
Video Interface Card, 252

WAIT signal, 29-30
"Wire-or" configuration, 1 14
Wire-wrap pins, 250
WOM { write only memory ) , 24
Write

cycle, 35
signal (WR) , 27-28

ZAPPLETM, 263-264
Z-80

ac timing diagram, 281
addressing modes chart, 52-53
architecture, 15-25
assembler, 133-144
CPU, 26, 278-280
development system, 255-258
instruction, 283-294
interrupt inputs, 106
MCBTAA microcomputer board, 247-

248
Microcomputer manufacturers, 300
Microprocessor architecture, 76
PIO configuration, 128-130
programming—commonly used
subroutines, 232-244
simulator, 258

Zero (Z) flag, 19, 84, 93-95
actions, 94

Zilog, Inc., 247-258
Z-80 microprocessor or chip, 12-14
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The Z-80
Microcomputer
Handbook
Organizationafly, the book is arranged in three sections- Sectfon I discusses Z-80

hardware. Chapters 2 and 3 look at architecture, interface singnols, and timing.

Chapters 4 and 5 handle addressing modes and instructions. In Chapter 6 is

presented the effect of arithmetic operations and other operotjons on CPU flogs.

The next chapter contains the powerful interrupt sequences of the Chapters

describes interfacing examples of I/O on memory devices. *

Section II presents the Z-80 software with a representative assembler program being

introduced In the first chapter of the section. Machine language aspects are covered,

as well Chapters 10 through 15 detail the common programming operations of

moving data, arithmetic operations, list and table procedures, subroutine use, and

I/O functions relative to instruction set groups. Many examples of each operation are

provided. The last chapter in the section offers some commonly used subroutines

written in Z-80 assembly language.

Section III discusses microcomputers built around the Z-80. Chapter 17 presents the

Zilog products including the microcomputer board products in the Z-80 family and

development systems. In the last chapter, four other Z-80 microcomputer manufacturers'

hardware and software are described: Technical Design Labs, Inc,^ Cromenco, Inc.,

the Digital Group, Inc., and Radio Shack,

William Borden, Jr,, is o computer consultont specializing in small configurotion

computer systems. He has nearly 20 years experience in computer programming and
computer systems onolysis and design on o variety of computer systems Mr Borden
is o member of the Association for Computing Machinery and the IEEE, His mo jor

interest is home compuler systems. Amateur radio, moJhemotkal games, ond soiling

are among hts other interests.
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