

TRICKS & TIPS

FOR THE COMMODORE 64

BY: Klaus Gerits

Lothar Englisch

Michael Angerhausen

A DATA BECKER BOOK

Abacus BIS Software

P.O. BOX 7211 GRAND RAPIDS, MICH. 49510

Second English Edition, Nov 1984

Printed in U.S.A.

Copyright (O1983 Data Becker GmbH

Merowingerstr. 30

4000 Dusseldorf W. Germany

Copyright (O1984 Abacus Software

P.O. Box 7211

Grand Rapids, MI 49510

This books is copyrighted. No part of this publication may

be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical,

photycopying, recording, or otherwise, without the prior

written permission of ABACUS Software, Inc.

ISBN 0-916439-03-8

Table of Contents

1. Introduction 1

2. Advanced Graphics

2.1 Graphics on the Commodore 64 2

2.1.1 Graphics on the keyboard 3

2.1.2 Using sprites 6

2.2 3D graphics - BASIC program 8

2.3 Color line graphics 13

2.4 Defining a character set 20

2.5 Modifying the character set with a joystick 24

2.6 Dividing the screen 32

2.7 Soft scrolling 38

2.8 Changing the keyboard layout 41

3. Easy Data Input

3.1 Cursor positioning and determining

cursor position 45

3.2 Turning the cursor on and off 47

3.3 Repeat function for all keys 49

3.4 The WAIT command: waiting for a key stroke 50

3.5 Function key layout 52

3.6 An easy input routine 58

3.7 The "mouse" of the 64: Simulation with the

joystick 66

4. Advanced BASIC

4.1 Creating a BASIC line in BASIC 74

4.2 Copying the BASIC interpreter into RAM 81

4.3 No more negative numbers with the FRE function..83

4.4 Returning to a BASIC program after LIST 85

4.5 GOTO, GOSUB, AND RESTORE with calculated line

numbers 88

4.6 Enhancing the MID$ command 92

4.7 INSTR and STRING$ functions 98

4.8 Automatic line numbering 105

4.9 User defined functions - DEF FN 109

4.10 Using a HARDCOPY routine with

commercial programs 112

5. Forth: An alternative to BASIC

5. 1 Programming in Forth 115

5.2 A comparison of Forth and BASIC 119

6. CP/M on the Commodore 64

6.1 Introduction to CP/M 128

6.2 The relationships of the individual

CP/M programs 340

6.3 Adapting standard CP/M programs to the 64 146

6.4 The memory management of the Z80

microprocessor 148

6.5 Disk management under CP/M 150

6.6 The interaction between the 6510 and Z80 152

6.7 Implementing your own I/O functions in BIOS....154

6.8 Transferring programs and data between CP/M

and Commodore BASIC 156

7. Interface and expansion options

7.1 The USER port: Interfacing Centronics printers.160

7.2 Transferring data between computers over the

USER port 169

7.3 The CP/M cartridge and the expansion port:

A case study 176

7.4 Synthesizer in stereo 183

8. Data management

8.1 Introduction 186

8.2 Cassette-Diskette 189

8.3 The principle behind data management:

Sequential files 197

8.4 Copying files one and two drives 212

8.5 Faster access: Relative files 217

8.6 Another method: Direct access234

8.7 Rescuing an improperly closed file 239

9. POKEs and other useful routines

9.1 The cassette buffer as program storage 245

9.2 Sorting strings 247

9.3 Minimum and maximum of numeric fields 252

9.4 DUMP - Printing variables and their values 258

9.5 USR function to read "hidden" RAM and

character generator 262

9.6 Multi-tasking on the Commodore 64. .<<...;.•..... .266

9.7 POKEs and the zero page 274

Tricks & Tips

Chapter 1 : Introduction

The Commodore 64 wins thousands of new friends every

day all over the world. That is hardly surprising since the

64 offers not only excellent performance, but also an

excellent price to performance ratio. One can now purchase a

Commodore 64 complete with disk drive for under 500 dollars.

The 64 carries the price of an introductory computer, but it

offers far more than just game playing or an introduction to

computing. It offers the hobbyist an almost boundless tool

with which to work and can also be used for small business

and scientific applications.

Here then is Tricks & Tigs, our fourth book for the

Commodore 64. Our experienced team of authors consisting of

Klaus Gerits, Lothar Bnglisch, and Michael Angerhausen has

again filled this book with programming tricks. The authors

hope to provide ideas for your own programs through the use

of countless examples and model programs. This book is

intended to help you, the programmer, get more out of your

Commodore 64.

- 1 -

Tricks & Tips

Chapter 2 : Advanced Graphics

2.1 Graphics on the CoModore 64

Sooner or later every Commodore 64 user has the desire

to work with the built-in graphics capabilities of this

computer. Unfortunately, the instruction manual says little

about the capabilities and possibilities that the Commodore

64 offers.

At this point, we want to take a more detailed look at

the graphics possibilities and features.

First one must distinguish between the normal graphics,

i.e. the symbols of which are shown on the keys (the block

or line graphics), the high-resolution graphics, and the

sprites. Some computers offer block graphics and high-

resolution graphics, but the sprites are something truly new

on the Commodore 64. These sprites were previously found

only on video arcade games. And now these same capabilities

are offered to us by the Commodore 64.

On the next pages we want to go over the three graphics

modes. We will of course help you by illustrating the theory

with many examples.

- 2 -

Tricks & Tips

2.1.1 The block or line graphics on the keyboard

This method of creating graphics on the Commodore 64 is

the simplest and easiest. No addresses have to be calculated

nor attention paid to any registers. One can create graphics

directly from the keyboard and place them in the program

while both are being developed. It is usually necessary to

press two keys to obtain these symbols. If you look at the

keyboard closely, you will see that almost every key has two

graphics symbols on it in addition to the normal letter. The

symbol or graphics character on the left side of the key is

obtained by first pressing the Commodore (C=) key, holding

this down, and then pressing the corresponding key with the

desired graphics character.

These characters can always be entered within a PRINT

or INPUT statement. One might write

100 PRINT "

for example, and then press the keys C= and A. You now see

the upper right-hand corner of a frame on the screen. To

create an entire frame, the following input is necessary

(still in line 100):

- 3 -

Tricks fc Tips

Press the shift and * keys 38 tines. You see a straight

line extending from the corner of the frame on the same

horizontal line. In addition, you have also learned that you

can enter the graphics character shown on the right side of

a key by pressing SHIFT along with that key. Now press the

keys C= and S to complete the top part of the frame. At the

end of line 100, enter the following:

and press the RETURN key

The next line can be entered as follows:

110 PRINT "

After this, press SHIFT and - one time, the space bar 38

times, and SHIFT and - once again. At the end, enter

>

and press the RETURN key again.

The second line of the frame is already done. The third and

last line is written as follows:

120 PRINT "

and then C= and Z, SHIFT and * 38 times, then C= and X. Now

we have the complete frame consisting of three lines. Enter

these lines:

- 4 -

Tricks & Tips

99 PRINT CHR$(147);: REM ERASE THE SCREEN

132 A$="

135 REM A$ = 38 SPACES

140 B$="-THIS LINE FILLS OUR FRAME COMPLETELY-"

150 PRINT CHR$(19);

160 PRINT CHR$(17);CHR$(29);A$;

170 PRINT CHR$(19);

180 PRINT CHR$(17);CHR$(29);B$;

190 FOR 1=1 TO 1000: NEXT

200 GOTO 150

Today, Bsany commercial programs use such frames to make

the screen appear more professional and less cluttered.

Naturally, there is another way of entering such

graphics symbols. These symbols can all be obtained via the

CHR$ function. Here is an example using our last program:

100 A1$=CHR$(176): A2$=CHR$(174)

101 REM THE LEFT AND RIGHT-HAND UPPER CORNERS

102 A3$=CHR$(173): A4$=CHR$(189)

103 REM THE LEFT AND RIGHT-HAND LOWER CORNERS

104 H1$=CHR$(96)

105 REM HORIZONTAL LINE

106 H2$=CHR$(125)

107 REM PERPENDICULAR LINE

108 H3$=CHR$(32)

109 REM SPACE

110 Z1$=A1$

111 FOR 1=1 TO 38

112 Z1$=Z1$+H1$

113 NEXT I

114 Z1$=Z1$+A2$

- 5 -

Tricks & Tips

115 REM FIRST LINE OF THE FRAME

116 Z2$=H2$

117 FOR 1=1 TO 38

118 Z2$=Z2$+H3$

119 NEXT I

120 Z2$=Z2$+H2$

121 REM SECOND LINE OF THE FRAME

122 Z3$=A3$

123 FOR 1=1 TO 38

124 Z3$=Z3$+H1$

125 NEXT I

126 Z3$=Z3$+A4$

127 REM THIRD LINE OF THE FRAME

128 PRINT Zl$;

129 PRINT Z2$;

130 PRINT Z3$;

When you enter these new lines and run the program, you

will get the same result as before. The advantage lies in

the fact that programs written with such CHR$ functions are

easier to read and change.

2.1.2 The use of sprites

Your Commodore 64 can do more that just draw simple

lines or frames. It offers you graphics capabilities that we

have only begun to describe, capabilities previously found

only on coin-operated video games.

The Commodore 64 has eight movable graphics objects

called "sprites." Each of these eight sprites can be moved,

erased, or redefined via POKE commands, independent of the

other sprites. In order to get the most out of sprite

graphics, one must be acquainted with the corresponding

registers in the Commodore 64. The complete register layout

- 6 -

Tricks fc Tips

can be found in the book The Anatomy of the Commodore 64.

There are a variety of registers at our disposal for

each sprite. It would be advantageous if you first

experiment with the sprites which you find in the Commodore

User's Guide.

The most important address to keep in mind when working

with sprites is located at 53248. The built-in VIC (Video

Controller) 6569 has a set of registers which are mapped to

addresses starting here. In order to position a sprite, for

instance, we must tell the VIC chip where we want it to draw

the sprite. The register we use is register 0 (having an

address exactly equal to 53248). In this address we find the

horizontal position and in register 1 (53249) the vertical

position of the sprite.

POKE 53248,160: POKE 53249,120

Two POKEs suffice to set an entire sprite at a certain

location on the screen. These two POKEs place the sprite in

the middle of the screen. Registers 0 and 1 serve for sprite

1, registers 2 and 3 for sprite 2, and so on. Almost all of

the registers work on this principle. Exact information

about the manipulation of sprites can be found in The

Anatomy of the Commodore 64. In the next pages you will

learn how to create complex graphic images with minimum

effort.

- 7 -

Tricks & Tips

2.2 3D Graphics - BASIC Program

At the beginning of this book we want to present you

with a BASIC program that displays three-dimensional

representations of functions on the screen with the help of

the Commodore 64's high-resolution graphics. The program

uses the commands of a BASIC extension called ULTRABASIC-64;

at the end you will find the necessary changes if you do not

have ULTRABASIC-64 at your disposal.

This program draws the function defined in line 100. The

function can be drawn in one of three different ways:

First, the function can be shown in a normal Cartesian

(rectangular) coordinate system, in the same way you would

draw the function on graph paper. Second, it is possible to

represent the function in the polar coordinate (radius and

length) system. Third and most interesting is three-

dimensional representation. The function is rotated about

the (vertical) Y-axis. Because of the large number of points

that must be calculated, this method requires the greatest

amount of time.

Now a description of the program itself. First, you can

select the means of representation (lines 40-70). For the

Cartesian and polar plots you are asked for the function

increment (line 260). This is the value by which the

parameter of the horizontal axis is incremented after each

calculation. Lines 270 and 280 ask for the scaling factors

for the X and Y axes. This allows you to control the aspect

ratio of the axes as well as the "magnification" factor. For

the time being, enter 1 for both. Use zero for the

horizontal and vertical displacements (lines 370-410). The

- 8 -

Tricks & Tips

graphics mode is selected in line 430. The lines 450 to 560

draw the axes and scales. The lines 680 to 790 draw the

polar representation and lines 820 to 970 draw the

rectangular graph.

The three-dimensional plotting routine starts at line

1010. You can again select the values for scale and

position. For now, enter the suggested values of 20 and 90.

The three-dimensional representation requires that the

function in line 100 be calculated more than ten thousand

times; the program takes between one half of an hour to

several hours to do this.

Run the program with various functions. Here are some

functions which will yield interesting graphs.

100 DBF FN R(Q) = COS (2*Q) + COS ((Q + BB)/16)

100 DBF FN R(Q) = SQR (ABS(.5*(16-Q*Q)) + l/(Q+4)

100 DBF FN R(Q) = COS (4*Q) + 20/(Q*Q + 3)

If you do not have ULTRABASIC-64, you must

following changes and additions to the program:

make the

Line 5 POKE 56,32 : CLR

Line 430 and 1400 GOSUB 2000

Line 470 FOR Al=0 TO 199 : AX=F: AY=A1: GOSUB 3000

FOR Al=0 TO 319 :

FOR A1=E-1 TO E + l

FOR A1=E-1 TO E+l

FOR A1=F-1 TO F+l

FOR A1=F-1 TO F+l

Line 480

Line 500

Line 520

Line 540

Line 560

Line 770

Line 900

: NBXT

AX=A1: AY=E: GOSUB 3000 : NEXT

AX=YR: AY=A1: GOSUB 3000 : NEXT

AX=XL: AY=A1: GOSUB 3000 : NEXT

AY=YD: GOSUB 3000 : NEXT

AY=YU: GOSUB 3000 : NEXT

AX=A1:

AX=A1:

AX=XX: AY=YY: GOSUB 3000

AX=G: AY=YY: GOSUB 3000

Line 1600 AX=X1: AY=Y1: GOSUB 3000

- 9 -

Tricks & Tips

Line 1620 GOSUB 4000 : RETURN

Line 2000 FOR Al=8192 TO 16191 : POKE Al,0 : NEXT

Line 2010 FOR Al=1024 TO 2023 : POKE Al,16: NEXT

Line 2020 POKE 53248+17, 27+32 : POKE 53248+24, 16+8

Line 2030 RETURN

Line 3000 OY=320*INT(AY/8)+(AYAND7)

Line 3010 OX=8*INT(AX/8)

Line 3020 MA=2"((7-AX)AND7)

Line 3030 AV=8192+OY+OX

Line 3040 POKE AV,PEEK(AV) OR MA : RETURN

Line 4000 FOR A1=Y1+1 TO 199:AX=X1:AY=A1:OOSUB 5000:RETURN

Line 5000 OY=320*INT(AY/8)+(AYAND7)

Line 5010 OX=8*INT(AX/8)

Line 5020 MA=2~((7-AX)AND7)

Line 5030 AV=8192+OY+OX

Line 5040 POKE AV,PEEK(AV) AND (255-MA): RETURN

Programming the graphics functions in BASIC makes the

program considerably slower as compared to programming using

ULTRABASIC-64 for example.

- 10 -

Tricks fc Tips

10 PRINT" CCLR3-CC/DN3- GRAPHIC REPRESENTATION OF FUNCTIONSCC/

DN3- "

20 PRINT " DEFINED IN LINE KKKC/DN* "

40 PRINT" -CC/DN} 1 ~ CARTESIAN PLOT"

50 PRINT" CC/DN3- 2 - POLAR COORDINATES"

60 PRINT" CC/DN3- 3 - 3D PLOT"

70 INPUT" CC/DN3- CHOICES 1 GC/LF3-CC/LF> CC/LF3-" ? PL

100 DEF FNR(Q)=COS < Q)+COS < 2*Q >+COS < 5*Q)

210 IF PL=3 THEN 1010

250 PRINT:PRINT

260 INPUT"FUNCTION INCREMENT = "?IK

270 INPUT"CC/DN3FACT0R FOR X-AXIS = "SS1

280 INPUT" CC/DN3-FACTOR FOR Y-AXIS = ";S2

370 PRINT"LEFT OR RIGHT SHIFT"

380 INPUT"NUMBER FROM -130 TO 130 ";C

400 PRINT"UP OR DOWN SHIFT"

410 INPUT"NUMBER FROM -90 TO 90 ";D

430 HIRES 232

450 E== 100+D aa F= 160+C

470 DRAW F-.O-.F,,199,1

480 DRAW 0,E,319,E,l

490 FOR XR=F TO 319 STEP 19*S1

500 DRAW XR,E-i,XR,E+i,i : NEXT

510 FOR XL=F TO 0 STEP -19*S1

520 DRAW XL,E-l,XL,E+i,1 s NEXT

530 FOR YD=E TO 199 STEP 15*S2

540 DRAW F-l,, YDpF+l;, YD, 1 S NEXT

550 FOR YU=E TO 0 STEP -15*S2

560 DRAW F-l,YU,F+i,YU,i : NEXT

580 IF PL=1 THEN 820

610 REM POLAR PLOT

620 RD=-n/180 s FOR G=0 TO 360 STEP IK S T=G*RD

710 X=FNR<T)*COS(T):Y=FNR(T)*SIN(T)

730 XX=X*(19*S1)+F : YY=-Y*(15*S2)+E

740 IF XX<0 OR XX>319 THEN 780

750 IF YY<0 OR YYM99 THEN 780

770 DOT XX,199-YY,1

780 NEXT

790 END

820 REM CARTESIAN PLOT

830 FOR G=0 TO 319 STEP IK

840 X=(G-F)/<19*S1) : Y=FNR(X)

850 YY«E-<Y*15*S2)

860 IF YY<0 OR YY>199 THEN 960

900 DOT G5199-YY,1

960 NEXT

970 END

1010 REM 3D PLOT

1020 PRINT" CCLR> CC/DN3- CC/DNJ- -CC/DN3- CC/RT> <C/RT> -CC/RT3-VERTICAL

ASPECT"

1030 INPUT" CC/DN>CC/DN3-CC/RT>{:C/RT>LC/RT>-40 TO 40, TYPICALL

Y 20 ";;N1

- 11 -

Tricks & Tips

1040 PRINT"<C/DN>{C/DN1<C/DN> CC/RT3- <C/RT>tC/RT*VERTICAL OFFS

ET"

1050 INPUT" {C/DN><:C/DNMC/RT}-CC/RT}-CC/RT}-50 TO 150;, TYPICAL

LY 90 "5N2

1260 REM CONSTANTS A,B,C,D?E,F,G

1280 A=1445 B=2n 25:C=N1S D«.0327:E=160S F=N2:G=199

1400 HIRES 2S2

1410 FOR H=~A TO A STEB B

1420 AA=INT <.5+SQR(A*A~H*H))

1430 FOR BB=-AA TO AASCC=SQR<BB*BB+H*H>*D

1440 D1=FNR <CC> S DD=D1*C:G0SUB1520:NEXT2NEXTS END

1450 GOTO 1450

1520 X=BB+H/B+E S Y=DD-H/B+F

1530 Xl=INT<n85*X):Y1=INT(.9*<G-Y))SIFY<00RY>199THENRETURN

1600 DOT XI, 1.99-Y1, 1

1620 RETURN: MODE 2 : DRAW XI,199-Y1-1,XI,031 S MODE 0 S RE

TURN

READY.

- 12 -

Tricks & Tips

2.3 Color line graphics

The following machine language program draws vertical

or horizontal lines in color. This allows data to be

represented on the screen with easily understandable

graphics. Because the graphics are created with the normal

screen characters, text and graphics may be mixed on the

screen, allowing you to label graphs, for instance. The

lines are eight points wide, just like a character.

The machine language program is designed such that the

length or height and color of the line can be easily

controlled. The line is drawn at the current cursor

position. In order to simplify the representation of a

complete graphics image, the cursor is moved one position to

the right after the output of a vertical line so that the

next line can be drawn immediately (in a different color if

necessary). After drawing a horizontal line, the cursor

automatically moves one line down.

The routine is called through an expanded SYS command:

SYS H, L, C or

SYS V, L, C

where H and V are the starting addresses for the routines to

draw horizontal and vertical lines, respectively. L is the

length of the line in pixels (up to 320 for a horizontal

line and 200 for a vertical line), and C is the color code

(0 to 15).

The machine language program begins on the following page.

- 13 -

Tricks & Tips

LINE ADDR CODE LABEL OPC OPERAND COMMENTS

OOO1

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

OLOR

0019

0020

0021

0022

0023

0024

0025

0026
0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

hi

0044

0045

0046

0047

0048

0049

0050

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

COOO

RAM

COOO

COOO

COOO

COOO

COOO

COOO

C003

C006
C008

COOA

cooc

COOE

COOF

C010

con

C012

C013

C015

C017

C018

C019

C01A

C01B

C01C

C01E

C020

C021

C022

C024

C026

C028

C02A

20

20

86

A5

C9

BO

OA

OA

OA

OA

OA

85

A5

48

4A

4A

4A

18

65

65

48

A8

C5

FO

C9

90

AO

FD AE

EB B7

24
15

02

42

23

14

23

D3

D3

13

27

02

27

; COLOR LINE GRAPHICS

; HPLOT AND VPLOT

5

;

GETCOR

SCROUT

LBYT

HBYT

CURCOL

SETCOL

SETCHR

ILLQUA

CHKCOM

CODE

TMP

XREG

TMP1

COLOR

CURRIG

ADR

LINELN

CHRADR

HPLOT

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

ORG

JSR

JSR

STX
LDA

CMP

BCS

ASL

ASL

ASL

ASL

ASL

STA

LDA

PHA

LSR

LSR

LSR

CLC

ADC

ADC

PHA

TAY

CMP

BEQ

CMP

BCC

LDY

- 14

*B7EB

*E716

*14

LBYT+1

*D3

*EA24

*EA1E

*B248

*AEFD

$22

CODE+1

TMP+1

XREG+1

*F3

SAB3B

*FD

*D5

*D1

*C000

CHKCOM

GETCOR

XREG
HBYT

#2

ILL

TMP

LBYT

TMP

CURCOL

CURCOL

Tl

#39

T2

#39

[-

sPOINTER TO C

;COMMA

;CURSOR COLUM

;<40

0051 C02C

0L0R RAM

0052 C02F

0053 C031

COLOR

0054 C034

0055 C035

0056 C037

0057 C039

0058 C03A

0059 C03B

0060 C03C

0061 C03E

0062 C040

0063 C042

0064 C043

0065 C046

0066 C048

0067 C04B

0068 C04D

0069 C050

0070 C053

0071 C057

0072 C05B

0073 COSE

0074 C061

0075 C063

0076 C065

0077 C067

0078 C069

0079 C06A

0080 C06B

0081 C06C

0082 C06E

0083 C070

0084 C072

0085 C074

00B6 C076

0087 C077

COLUMN

0088 C079

0089 C07B

0090 C07D

0091 C07F

0092 C081

0093 C083

0094 C085

0095 C087

LOR ADDR

0096 C08A

0097 C08C

0098 C08E

0099 C090

COLOR

20

A9

20

88

C4

10

68

A8

68

CO

BO

29

AA

BD

A6

20

A9

4C

4C

20

61

20

20

A5

DO

86

A5

4A

4A

4A

85

A5

29

85

A5

18

65

85

A5

69

85

AO

A6

FO

20

A9

91

A5

91

24

AO

IE

D3

F3

28

OB

07

53

24

IE

11

16

48

65

F6

FD

EB

15

EB

24

14

23

14

07

25

Dl

D3

FD

D2

00

FE

00

23

20

C7

AO

FD

24

F3

EA

EA

CO

EA

E7

B2

74

EA

AE

B7

CO

T2

Tl

DONE

ILL

JSR SETCOL

LDA #*20+*80

JSR SETCHR

DEY

CPY CURCOL

BPL T2

PLA

TAY

PLA

CPY #40

BCS DONE

AND #7

TAX

LDA TABLE,X

LDX XRE6

JSR SETCHR

LDA #17

JMP SCROUT

JMP ILLQUA

75 TABLE BYT *20,*65

E7

VPLOT

T4

BYT *61,*F6

JSR CHKCOM

JSR 6ETC0R

LDA HBYT

BNE ILL

STX XRE6

LDA LBYT

LSR

LSR

LSR

STA TMP

LDA LBYT

AND #7

STA TMP1

LDA CHRADR

CLC

ADC CURCOL

STA ADR

LDA CHRADR+1

ADC #0

STA ADR+1

LDY #0

LDX TMP

BEQ T3

JSR CLR

LDA #$20+*80

STA <ADR),Y

LDA XREG

STA (COLOR),Y

Tricks & Tips

;POINTER TO C

;REVERSE BLAN

;SET CHAR AND

;CURSOR DOWN

,*74f*75

,*EA,*E7

;COLOR

;LINE ADDRESS

;PLUS CURSOR

;CALCULATE CO

;COLOR

;SET CHAR AND

- 15 -

Tricks & Tips

0100

0101

0102

0103

0104

0105

0106

0107

CHED

0108

0109

0110

0111

0112

0113

0114

0115

0116

0117

0118

C092

C094

C095

C097

C099

C09B

C09D

C09F

C0A1

C0A3

C0A5

C0A7

COAA

COAC

COAF

C0B1

C0B3

C0B5

C0B7

ST COL?

0119

0120

0121

0122

0123

0124

0125

0126

0127

C0B9

COBB

COBE

COBF

C0C3

C0C7

C0C9

COCB

COCD

A5

38

E9

85

BO

C6

A5

C9

90

C6

DO

20

A6

BD

91

A5

91

AS

C5

FO

4C

60

20

62

A5

85

AS

4C

FD

28

FD

08

FE

FE

04

12

23

EO

C7

25

BF

FD

24

F3

D3

D5

03

3B

64

F8

FD

F3

FE

2A

CO

CO

AB

6F

F7

EA

T5

T3

T6

T7

79 TAB2

E3

CLR

LDA

SEC

SBC

STA

BCS

DEC

LDA

CMP

BCC

DEC

BNE

JSR

LDX

LDA

STA

LDA

STA

LDA

CMP

BEQ

JMP

RTS

ADR

#40 ;NEXT LINE

ADR

T5

ADR+1

ADR+1

#4 ;TOP LINE REA

T6

TMP

T4

CLR

TMP1

TAB2,X

(ADR),Y

XREG ;COLOR

(COLOR),Y

CURCOL

LINELN ;CURSOR IN LA

T7

CURRIG ;CURSOR RIGHT

BYT *20,*64,*6F,*79

BYT *62,*F8,*F7,*E3

LDA

STA

LDA

JMP

ADR

COLOR

ADR+1

SETCOL+6

ASSEMBLY COMPLETE.

- 16 -

Tricks & Tips

Here is a loader program in BASIC for those who do not have

an assembler or monitor at their disposal.

100 FOR 1=49152 TO 49359

110 READ X:

POKE I,X:

NEXT

120 DATA 32,253, 174,32,235, 183, 134,36, 165,21,201,2

130 DATA 176,66,10,10,10,10,10,133,35,165,20,72

140 DATA 74,74,74,24,101,35,101,211,72,168,197,211

150 DATA 240,19,201,39,144,2,160,39,32,36,234,169

160 DATA 160,32,30,234„136„196,211,16,243,104,168,104

170 DATA 192, 40 .,176,11,41, 7, 170, 189,83,192,166, 36

180 DATA 32,30,234,169,17,76,22,231,76,72,178,32

190 DATA 10 i., 116 „ 117, 97, 246, 234,231, 32, 253, 174, 32, 235
200 DATA 183, 165., 21, 208, 235, 134,36, 165,20,74,74,74

210 DATA 133,35,165,20,41,7,133,37,165,209,24,101

220 DATA 211,133,253,165,210,105,0,133,254,160,0,166

230 DATA 35,2403 32,32,199,192 H169,160,145,253,165,36

240 DATA 145,243,165,253,56,233,40,133,253,176,8,198

250 DATA 254, 165, 254., 201,4,144,18,198,35, 208, 224, 32

260 DATA 199, 192, 166, 37, 189, 191, 192, 145, 253., 165, 36, 145

270 DATA 243, 165, 211, 197., 213„ 240, 3, 76, 59, 171, 96, 32

280 DATA 100,111,121,98,248,247,227,165,253,133,243,16

5

290 DATA 254,76,42,234

300 IF SO26696

THEN PRINT "ERROR IN DATA !!":

END

310 PRINT "OK"

- 17 -

Tricks & Tips

Let us take a look at a possible use for these graphics

routines. This example represents sales statistics

graphically.

100 REM THE MONTH-END TOTALS FOR THE YEAR

110 REM ARE IN THE DATA STATEMENTS

120 DIM U(12)

130 REM READ THE DATA

140 FOR 1= 1 TO 12 : READ U(I) : NEXT

150 REM DETERMINE MAXIMUM VALUE

160 MAX = 0

170 FOR 1= 1 TO 12

180 IF U(I) > MAX THEN MAX = U(I)

190 NEXT

200 V = 12*4096+5*16+11 : REM ADDRESS OF THE ML ROUTINE

220 PRINT CHR$(147) : REM ERASE SCREEN

230 FOR 1= 1 TO 21 : PRINT CHR$(17); : NEXT : REM CURSOR

240 REM DRAW GRAPHICS

250 FOR 1= 1 TO 12

260 PRINT SPC(2); : SYS V, U(I)/MAX * 180 , I

270 NEXT

280 PRINT : PRINT

290 REM WRITE MONTH NUMBER

300 FOR 1=1 TO 12

310 PRINT RIGHT$(" "+STR$(I),3);

320 NEXT

330 GET A$: IF A$=tltf THEN 330

400 REM SALES DATA

410 DATA 12000, 13500, 11000, 8000, 14000, 9000

420 DATA 13800, 14000, 12750, 14000, 13800, 17200

- 18 -

Tricks & Tips

Now let's examine a function with horizontal line

graphics.

The color code can be entered in line 100. The screen

is then erased, the background color set to black, and the

cursor placed in the second column. The function is

calculated from -2.2 to 2.2 in lines 120 and 130, expanded

to an easily representable size, and finally plotted with

the SYS command.

100 INPUT "COLOR";C:IF C<1 OR C>15 THEN 100

110 H=12*4096 : PRINT CHR$(147)TAB(2); : POKE 53281,0

120 FOR I=-2.2 TO 2.2 STEP .2

130 SYS H,EXP(-I*I)*300,C : NEXT

- 19 -

Tricks & Tips

2.4 Defining a character set

A special feature of the Commodore 64 is the ability to

place the character generator in RAM. This gives you the

opportunity to define your own characters.

How is a character defined?

The shape of each character is determined by something

called the character matrix, an array of eight by eight

pixels. Each matrix point is determined by a bit in the

character generator. Each character requires 64 bits or

eight bytes for a complete definition. If a bit is zero,

then the corresponding point in the matrix is not set, while

a set bit indicates a set point in the matrix. If a bit in

the matrix is set, then it appears on the screen. The

following program displays the matrix of a character on the

screen. The program uses the modified PEEK function from

Section 9.5—load or enter the program found there before

you enter this one.

100 PRINT CHR$(147):PRINT:PRINT:PRINT

110 INPUT "PLEASE ENTER A CHARACTER ";A$

120 PRINT CHR$(19)A$:B=PEEK(1024)

130 PRINT:PRINT:PRINT:PRINT

140 CG = 13*4096 : REM START OF THE CHARACTER GENERATOR

150 REM DETERMINE IF UPPER/GRAPHICS OR UPPER/LOWER MODE

160 B = (PEEK(53248+24) AND 2) * 1024

170 FOR 1=0 TO 7

180 Z = USR (CG+B+8*C+I) : REM GET MATRIX A LINE AT A TIME

190 FOR J=7 TO 0 STEP -1

200 A = Z AND 2~J

- 20 -

Tricks & Tips

210 IF A THEN PRINT "*"; : GOTO 230

220 PRINT ".";

230 NEXT

240 PRINT

250 NEXT

260 RUN

The program asks for the character whose matrix it

should display. The ASCII code of the character is put into

the variable B in line 120. Line 140 checks for upper/lower

case or upper/graphics mode. In line 160 the starting

position of the character definition matrix within the

character generator is determined. Line 180 determines if

the matrix point is set or not. An asterisk is printed if

the point (bit) is set, while a period is printed if it is

not. Enter a "T", for example, and you will receive this

output:

...**...

...**...

...**...

...**...

...**...

After you have seen what the matrix of an individual

character looks like, we can proceed to define or redefine

our own characters. To do this, we must copy the character

- 21 -

Tricks & Tips

generator from ROM to RAM and then inform the operating

system where the new character generator is. The screen

memory at address $C400 (decimal 50176 to 51175) is shifted

at the same time. This can be accomplished in BASIC with a

POKB loop. We will again use the USR function from Section

9.5.

100 FOR 1=13*4096 TO 14*4096-1

110 POKB 1+4096,USR(I) : NEXT

120 POKB 53272,24 : POKE 56576,148 : POKE 648,196

After RUNning this program you can define your own

characters with the following program. The program prompts

you for the character to be modified. You can then enter the

character matrix, thereby redefining the character that is

to be displayed. An asterisk indicates a set point and a

period means the point is not set. When you are finished

defining characters, enter the word "END" as the character.

100 REM CHARACTER DEFINITION

110 CG=14*4096:

REM BASE OF THE CHARACTER GENERATOR

200 INPUT "CCSDtCDDIICD^nCDJLCRlCCRJCCR^CHARACTER ";A«:

IF AUGEND"

THEN END

210 PRINT nCCH3";A*

220 OPEEK (12*4096+1024)

230 PRINT "LCD3LCD3CCD3CCDDCCD3CCD3CCD3CCR3CCR3CCR3CCR3CCR3

01234567"

300 FOR 1=0 TO 7

310 PRINT I;:

INPUT A*(I):

IF LEN(A$(I>)<>8

THEN PRINT "CCU3CCU3":

GOTO 310

320 NEXT

400 B=(PEEK(53248+24) AND 2)*1024:

REM UPPER CASE/GRAPHICS MODE

405 AD=CG+B+C*8

- 22 -

Tricks & Tips

410

420

430

440

450

460

470

480

FOR 1=0 TO 7:

2=0

FOR J=0 TO 7

Z=Z- *i M1D* < A* < 1') ., B-J 9 1)

NEXT

poke; ad-i-j:., z:

REM CHARACTER

POKE AD+1024+I,2S5-ZS

REM RVS-CHARACTER

NEXT

GOTO 200

- 23 -

Tricks & Tips

2.5 Modifying the character set with a joystick

For certain applications it is often desirable to have

special characters available which appear immediately upon

pressing a key. Such things as Greek letters, often used in

mathematical formulas, fall into this category.

When you have a suitable application, you can first

draw your characters in raster representation on a piece of

graph paper and then POKE the appropriate values into the

duplicate of the character generator, but this is rather

tedious.

Here is a small program which eases the development and

definition of characters. It is necessary to use a joystick

in control port 1 in order to use the program.

The program makes two copies of the built-in character

generator into RAM. A character is taken from the first copy

and displayed as a sprite, once in regular size and again in

double size so that it is easier to read.

A flashing point (which we call the microcursor and

which you can move with the joystick) appears on the screen.

The desired action (drawing lines, erasing lines, or

positioning the microcursor) is accomplished by pressing the

fire button on the joystick. The current mode is displayed

on the screen.

Once the character is designed to your satisfaction,

press the Fl key. This new character is placed into the

alternate character set (second copy). To accept the

character and leave it unchanged, press the 6 key. Now you

can work on the next character. After you have edited all

512 characters the program ends.

- 24 -

Tricks & Tips

Why 512 characters?

There are 128 printable characters in each display

mode, upper/lower case or upper/graphics mode. The same

characters displayed in reverse bring the total up to 256.

This gives a grand total of 512 characters for the two

display modes. The positions of the characters within the

character generator can be found on page 132 of the user's

guide for the C64.

Before we discuss the program itself, you should know

the significance of the variables and memory addresses used.

First the variables:

C base address of the first duplicate of the character to

be displayed next

CD base address of the transferred character in the second

copy

CP character position counter in the range 0-511

JB condition of the button on the joystick

JR position of the joystick

JS address of control port 1

MA counter for the operating mode

PO microcursor position within the addressed byte

PP address of the microcursor within the sprite data of the

raicrocursor

PV immediate value of the byte of the sprite data, addressed

by the joystick

SB base address of the sprite data

V base address of the video controller

X x position of the sprites on the screen

XJ x position of the microcursor

Y y position of the sprite on the screen

- 25 -

Tricks & Tips

YJ y position of the nicrocursor

The addresses:

56 high byte of the pointer to top of memory

648 pointer to the start of video ram

832 start address of the cassette buffer

Because the cassette buffer is not used within the

program, the machine language program is placed in it.

50196 pointer for sprite 1

50170 pointer for sprite 2

53272 pointer for video ram and character generator within

the video controller

56576 This location contains the two bits which determine

the 16K range for the memory addressed by the video

controller.

Here is a step-by-step description of the program:

10 The top of memory is lowered because the first

duplicate of the character set will be loaded

here.

30-233 Sprites 1 & 2 are turned on and their color is

set. The sprite pointers are loaded and sprite

2 is switched to double size.

The sprite data are first erased and the

sprites are positioned in the approximate

middle of the screen.

1000-1010 The machine language program.

For those who are interested, here is the

program in assembly language:

- 26 -

Tricks & Tips

SEI

LDA

STA

LOA

STA

STA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

CLI

RET

#$33

1

#0

$5F

$5A

$58

#$D0

$60

#$F0

$59

#$E0

$5B

$A3BF

#$37

1

1020-1040 T

1060

2000-2360

2380

disable interrupts

make character generator available

old block-start low

old block-end low

new block-end low

old block-start high

new block-end high

old block-end high

block shift routine

allow interrupts

back to BASIC

machine language program is put into the

cassette buffer and executed—two duplicates

are made of the character generator.

The operating system is informed of the changes

made. The positions of the character generator

and video RAM are changed (necessary because of

the hardware). The characters you now see on

the screen are already coming from copy 2.

The characters are converted to sprites one

after the other and can be changed.

After working on all of the characters, the top

of memory is raised again because copy 1 is no

longer needed.

- 27 -

Tricks & Tips

4000-4070 The joystick is polled and program execution

branches depending on the position of the

joystick and condition of the fire button.

5000-12040 The cursor position is Modified based on the

position of the joystick.

13000-13200 The position of the joystick is use to modify

the position of the microcursor and this point

is alternately flashed on and off.

20000-20080 Characters successfully completing editing are

here transferred to the second copy.

One feature of this program to note is that the

modified character generator does not take up any BASIC

storage space. It is placed in RAM under the kernal (that is

to be taken verbatim since RAM and ROM overlap each other in

the C64).

The video RAM has been moved to address 49152, an

address you should keep in mind if you do any POKBing to the

video RAM. It is unfortunately determined by the hardware of

the Commodore 64 that the shifting of the video RAM must

accompany relocation of the character generator. This

problem is explained in detail in our book The Anatomy, of

the Commodore 64.

10 POKE 56,144:

CLR

20 V-53248:

POKE 53281,0

30 POKE V+21,6:

POKE V+40.IS

POKE V+41,1

40 POKE 50169,16:

POKE 50170., 16

42 POKE V+23,4:

POKE V+29,4

50 FOR 1=0 TO 62:

POKE 50176+1., 0::

NEXT

- 28 -

Tricks & Tips

The program listing:

55 X=150:

Y=1OO

223 POKE V+4,X

226 POKE V+2,X-40

233 POKE V+16,0

320 POKE V+5,Y:

POKE V+3,Y+19

1000 DATA 120,169,51,133,1,169,0,133,95,133,90,133,88,1

69, 208, 133., 96, 169, 240

1010 DATA 133,89,169,224,133,91,32,191,163,169,55,133,1

,88,96

1020 FOR I«832 TO 832+33

1030 READ A:

POKE I,AS

NEXT

1040 SYS 832:

POKE 850,160:

SYS 832

1060 POKE 53272,82

POKE 56576,PEEK(56576) AND 252:

POKE 648,192

1070 PRINT CHR$<147)

2000 C=9*4096

2020 FOR CP»O TO 511:

PRINT GHR*(19>CP:

SB=50176

2040 FOR 1=0 TO 7

2060 POKE SB+3*I,PEEK(C+I)

2080 NEXT I

2360 C=C+8:

GOSUB 4000:

NEXT CP

2380 POKE V+21,0."

POKE 56,160:

CLR :

END

4000 XJ=O:

YJ=O:

JS=5632l:

SB«50176

4020 JR=(255-PEEK(JS)) AND 15:

JB~ (255'-PEEK < JS) .> AND 16

4030 IF JB

THEN MA«MA+l:

IF" MA>2

- 29 -

Tricks * Tips

THEN MA=O

4040 ON JR

GOTO 5000,6000,4020„7000,SOOO„9000,4020,10000„1100

0,12000

4045 IF PEEK (203)04

THEN 4066

4050 PRINT CHR*(19)CHR*(145)CHR*(18)"SAVE":

GOSUB 20000

4055 RETURN

4066 IF MA=1

THEN PRINT CHR*(145)CHR*(145)CHR*(18)" SET"

4067 IF MA=2

THEN PRINT CHR*<145)CHR*(145)CHR*(IB)" CLR"

4068 IF PEEK(203)=26

THEN RETURN

4069 IF MA=O

THEN PRINT CHR*(145)CHR*(145)"

4070 GOSUB 13000:

GOTO 4020

5000 REM UP

5020 YJ=YJ-l:

IF YJ<0

THEN YJ=O

5040 GOSUB 13000:

GOTO 4020

6000 REM DOWN

6020 YJ=YJ+l:

IF YJ>7

THEN YJ=7

6040 GOSUB 13000:

GOTO 4020

7000 REM LEFT

7020 XJ=XJ-1".

IF XJ<0

THEN XJ=O

7040 GOSUB 13000:

GOTO 4020

8000 REM LEFT UP

8020 XJ=XJ-1."

IF XJ<0

THEN XJ=O

8040 GOTO 5000

9000 REM LEFT DOWN

9020 XJ=XJ-l:

IF XJ<0

THEN XJ=O

9040 GOTO 6000

10000 REM RIGHT

10020 XJ=XJ+i:

IF XJ>7

THEN XJ=7

- 30 -

Tricks & Tips

10040

11000

11020

11040

12000

12020

12040

13000

13020

13040

13060

13080

13100

13120

13200

GOSUB 13000:

GOTO 4020

REM RIGHT UP

XJ--XJ+1:

IF XJ>7

THEN XJ=7

GOTO 5000

REM RIGHT DOWN

xjaxj+i:

IF XJ>7

THEN XJ=7

GOTO 6000

REM

PP=SB+YJ*3+INT<XJ/8):

PV=PEEK<PP>

PG=XJ~INT(XJ/8>*8

IF PV AND 2-'%<7-P0>

THEN POKE PP,<PV AND <255-2A<7-PQ)>>

GOTO 13100

POKE PP,(PV OR (2-(7-P0)))

IF MA=1

THEN PV=(PV OR (2--(7-P0)))

IF MA=2

THEN PV=(PV AND < 255-2 •" (7-PO)))

FOR 1=0 TO 50:

NEXT ."

POKE PP,PV:

RETURN

20000 REM TRANSFER NEW CHARACTER

20010 CD=C+20472

20020 FOR 1=0 TO 7

20040 POKE CD+I„PEEK(SB+3*I)

20060 NEXT I

20080 RETURN

- 31 -

Tricks & Tips

2.6 Dividing the screen

There is one special feature of the video controller in

the Commodore 64 which makes some very interesting effects

possible, but which is also seldom heard about: the raster

interrupt.

In order to clarify this feature to you, we must dig a

bit deeper into how the video controller creates an image on

the screen.

The screen picture is constructed from individual

lines, which you can see clearly if you take a close look at

it. You can also recognize that a character is made up of

eight lines. The video controller has a register which

always contains the screen line currently being displayed.

This is register 18, and is located at address 53248-1-18 =

53266. If you examine the contents of this register using

PRINT PEEK(53266)

the value of the raster line displayed at the exact time the

PEEK command was executed is shown. Since 25 screen images

are displayed in one second, you cannot obtain these values

quickly enough in BASIC and must therefore program in

machine language.

Another feature of the video controller is its ability

to interrupt a program just before it displays a given

raster line. To program a raster interrupt you must first

allow the interrupt condition to actually interrupt the

microprocessor (by setting the appropriate value in the

interrupt register) and then setting the raster line number

- 32 -

Tricks & Tips

at which the interrupt is to take place (by setting the

value in register 18).

Interrupt service programming must be done in machine

language. The following program is a short machine language

program to illustrate the use of raster interrupts.

LINE

0001

0002

0003

0004

ADDR

033C

033C

033C

033C

CODE

E0 INTERRUPT

0005

LLER

0006

0007

OLOR

0008

033C

INTERRUPT MASK

033C

033C

033C

ER INTERRUPT

0009 033C

INTERRUPT

0010

0011

0012

0013

0014

FER

0015

0016

0017

0018

0019

0020

0021

FOR]

0022

0023

IT

0024

0025

033C

033C

033C

033C

033C

033C

033D

033F

0342

0344

0347

0349

78

A9

8D

A9

8D

A5

8D

5B

14

03

15

FB

12

INTERRUPT

034C

034F

0351

0354

Y RASTER

0026

0027

0028

0356

0359

035A

AD

29

8D

A9

8D

58

60

11

7F

11

81

1A

03

03

DO

DO

DO

DO

LABEL

IRQOLD

IRQVEC

RASTER

IRQREG

MASK-

BORDER

COLOR

ICR

RETIRQ

LINE1

L.TNE2

COLOR1

C0L0R2

SETUP

OPC

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

ORG

SEI

LDA

STA

LDA

STA

LDA

STA

LDA

AND

STA

LDA

STA

CLI

RTS

OPERAND

*EA31

$314

*D012

*D019

*D01A

*D020

*D02i

*DCOD

$FEBC

*FB

*FC

$FD

*FE

828

4KIRQNEW

IRQVEC

#>IRQNEW

IRQVEC+1

LINE1

RASTER

RASTER-1

#*7F

RASTER-1

#*81

MASK

COMMENTS

5 RASTER LINE

5 FLAG FOR VID

5 VIDEO CONTRO

5 BORDER COLOR

5 BACKGROUND C

5 FLAG FOR TIM

;RETURN FROM

;CASSETTE BUF

5 RASTER LINE

5 CLEAR HIGH B

5 PERMIT IRQ B

- 33 -

Tricks fc Tips

0029 035B

0030 035B AD 19 DO IRQNEW LDA IRQREG

0031 035E 8D 19 DO STA IRQREG

UPT FLAG

0032 0361 29 01 AND #1

0033 0363 DO 07 BNE SCREEN

RASTER LINE?

0034 0365 AD OD DC LDA ICR

UPT FLAG

0035 0368 58 CLI

INTERRUPT

0036 0369 4C 31 EA JMP IRQOLD

0037 036C

0038 036C AD 12 DO SCREEN LDA RASTER

LINE

0039 036F C5 FC CMP LINE2

0040 0371 BO OD BCS SECOND

OR EQUAL SECOND VALUE?

0041 0373 A5 FD LDA COLOR1

0042 0375 8D 20 DO STA BORDER

0043 0378 8D 21 DO STA COLOR

0044 037B A5 FC LDA LINE2

PT AT 2ND LINE

0045 037D 4C 8A 03 JMP EXIT

0046 0380 A5 FE SECOND LDA C0L0R2

0047 0382 8D 20 DO STA BORDER

0048 0385 BD 21 DO STA COLOR

0049 0388 A5 FB LDA LINE1

PT

0050 038A 8D 12 DO EXIT

0051 038D 4C BC FE

ASSEMBLY COMPLETE.

STA RASTER

JMP RETIRQ

5 CLEAR INTERR

5 INTERRUPT BY

5 CLEAR INTERR

5 ALLOW RASTER

5 READ RASTER

5 GREATER THAN

;SET COLOR 1

5 NEXT INTERRU

5 SET COLOR 2

5 NEXT INTERRU

;AT LINE 1

100

110

120

130

140

150

160

170

180

190

200

FOR I

READ

DATA

DATA

DATA

DATA

DATA

DATA

DATA

IF S

PRINT

= 828 TO 911

X : POKE I,X S S=S+X i NEXT

120,169, 91,141, 20, 3,169, 3,141, 21, 3,165

251,141, 18,208,173, 17,208, 41,127,141, 17,208

169,129,141, 26,208, 88, 96,173, 25,208,141, 25

208, 41, 1,208, 7,173, 13,220, 88, 76, 49,234

173, 18,208,197,252,176, 13,165,253,141, 32,208

141., 33,208,165,252, 76,138, 3,165,254,141, 32

208,141, 33,208,165,251,141, 18,209, 76,188,254

<> 10678 THEN PRINT "ERROR IN DATA!!" : END

"OK"

- 34 -

Tricks & Tips

As an example, we have developed a program which allows

you to display one portion of the screen with a different

background color. This allows you to emphasize one or more

lines on the screen. In order to keep the program as general

as possible, it allows you to select the color of the

emphasized area as well as the background color of the rest

of the screen with POKE commands. The raster line at which

the switch to the second background color occurs can be set

in the same manner. This also applies to the number of the

raster line at which the switch back to the first background

color is made.

This program also allows you to move a colored line

with a width of a standard screen line (8 raster lines) on

the screen by pressing the cursor-up and cursor-down keys.

The function keys can be use to change the color of the line

and the remaining background.

100 LI=251:

L2=Li+i:

Cl"=L2*l:

C2-C1+1

110 L=50:

SYS 828:

REM INIT1ALI ZE 1NTERRUPTS

120 POKE Ll.L:

POKE L2,L+8:

POKE C196:

POKE C2,8

150 GET M>:

IF A*=Iln

THEN ISO

.1.60 IF A*=CHR*(17>

THEN GOSUB 200

170 IF A*=CHR*<145)

THEN GOSUB 300

180 IF A*-CHR*<133)

THEN GOSUB 400

190 IF A*=CHR*<134)

THEN GGSUB 500

195 GOTO 150

- 35 -

Tricks fc Tips

200 IF L<240

THEN FOR 1=0 TO 7:

L-L+l:

POKE L1«L:

POKE L2«L+B:

NEXT

210 RETURN

300 IF L>50

THEN FOR 1*0 TO 7:

L«L-i:

POKE L1,L:

POKE L2j,L+8;

NEXT

310 RETURN

400 POKE C.I., PEEK <C1)+l AND IS:

RETURN

500 POKE C2,PEEK(C2>+1 AND 15:

RETURN

You can change the program to suit your own purposes by

changing the raster line POKEd into memory locations 251

through 254. This allows you to change the point at which

the switch to the second color occurs and the raster line at

which the switch is made back to the original color

(locations 251 and 252, respectively). The next two

addresses, 253 and 254, contain the color codes of the first

and second characters.

Raster line 50 corresponds to the upper screen border

(the point where the border begins), while the beginning of

the lower border corresponds to raster line 250. A screen

line is divided into 8 raster lines. You can also place the

border between the two different colors in the middle of a

screen line.

- 36 -

Tricks & Tips

Switching background colors is not the only effect

which the raster interrupt allows. Any of the video

controller parameters can be changed under interrupt

control. You can, for instance, mix two graphics screens or

a graphics screen and a text screen on the display using the

same technique we used for the background colors. You might

even try displaying different character sets at different

parts of the screen all at the same time!

With this technique, you can also obtain effects which

are not otherwise possible with the Commodore 64. For

example, the raster interrupt makes it possible to display

more than 8 sprites at one time. You can display eight

sprites in the upper half of the screen. When a certain

raster line is reached, you simply reset the sprite pointers

and coordinates and you can display eight more sprites in

the lower half of the screen. Naturally, you can also divide

the screen into more than two parts.

- 37 -

Tricks & Tips

2.7 Smooth scrolling

Scrolling is the term given to the action the screen

performs when all of the information on it is moved in one

direction (generally up). When the screen scrolls up, a line

is left blank at the bottom so that more information can be

printed.

By "smooth" scrolling we mean the ability to display a

new line on the screen gradually while the old line

gradually disappears. The video controller allows us this

possibility using register 17. The three least-significant

bits allow the screen to scroll up to eight raster lines at

a time, which corresponds exactly to a screen line. In order

to display a new line on the screen, we can tell the video

controller to display only 24 lines. This is the case when

bit 3 of register 17 is cleared to zero.

First we switch the screen over to 24 lines and then

position the rest of the screen contents so that the upper

24 lines will be displayed. Now we can write something to

the invisible 25th line and shift the visible portion of the

screen up 8 raster lines = 1 screen line. This causes the

top line to disappear.

In addition to scrolling up (or down), the video

controller is able to smooth-scroll horizontally, to the

right or left. The three least-significant bits of register

22 apply to the column-wise shifting, while bit 3 forces the

controller to display in 38 columns.

This example program scrolls the screen up.

- 38 -

Tricks & Tips

20 FOR J=l TO .100:

NEXT

100 VIDE0=53248

110 LINE=VIDE0+17

115 X*=CHR$(19>:

FOR 1=1 TO 24:

X*=X$+CHR*<17>:

NEXT

120 POKE LINE,PEEK(LINE) AND NOT 8

130 POKE LINE,PEEK(LINE) AND 248 OR 7

140 N«N+l:

A*="LINE"+STR*(N) ."

GOSUB 200:

GOTO 140

200 PRINT :

PRINT X*A*;

210 FOR 1=7 TO 0 STEP -1

220 POKE LINE,PEEK(LINE) AND 248 OR I

230 FOR J=l TO 250:

NEXT

240 NEXT :

RETURN

115 A string is defined consisting of one "cursor-

hone" and 24 "cursor-down" characters for

positioning the cursor in the 25th line.

120 Bit 3 in register 17 of the video controller is

erased, switching the display to 24 lines.

130 Bits 0 through 2 are set. This displays the upper

24 lines of the screen while the 25th remains

invisible at the lower screen border.

140 The counter N is incremented. The text for the

line to be printed is placed in A$ for the

- 39 -

Tricks fc Tips

subroutine at 200, and this subroutine is called.

200 The screen is shifted up one line by the PRINT

command. The text is then printed on the last

line.

210-240 This loop shifts the screen up 8 raster lines. The

delay loop controls rate at which the scrolling

will occur.

- 40 -

Tricks & Tips

2.8 Changing the keyboard layout

The keyboard of the Commodore 64 is organized as a

matrix with eight rows and eight columns. The lines of the

eight rows are tied to port A (address $DC00 = 56320) of CIA

1 and the eight columns are connected to port B (address

$DC01 = 56321) of CIA 1. When polling (reading) the

keyboard, (address $FF9F = 65485) it is polled row by row,

during which each row sends a signal over port A. If a key

is pressed, you can determine the column of the pressed key

over port B. The key numbers between 0 and 63 are calculated

from the row and column numbers. 64 indicates that no key is

pressed. The organization is given in the table below. This

key number is placed in location $CB (203) after each

polling. The number of the key last pressed is stored in $C5

(197). The status of the special keys is stored in address

$028D = 653 when polling. Bit 0 indicates SHIFT, bit 1 is

reserved for the COMMODORE key, and bit 2 is for the CTRL

key. The assignment of a particular character to a

particular key is controlled by various tables which

determine the ASCII value to be assigned to any given key.

Because all keys on the Commodore 64 can have four different

meanings, there are four such tables. Notice the difference

between the right and left shift keys. Shift lock is tied to

the left shift key.

- 41 -

Tricks & Tips

Col 0 12 3

Row

0 DEL RETURN CURRIGHT F7

1

2

3

4

5 +

6 POUND

7 1

3

5

7

9

W

R

Y

I

P

*

ARROW

A

D

G

J

L

4

6

8

0

Fl

Z

C

B

M

F3

S

F

H

K

; HONE SHIFT RIGHT =

CTRL 2 SPACE C=

F5 CURDOWN

E SHIFT LT

T X

U V

0 N

STOP

The first assignment table gives the ASCII code when

the key is pressed alone. The second table contains the

codes for when the key is pressed along with the SHIFT key,

the third table for when the Commodore key is pressed, and

the fourth and final table is for the control key. An entry

of $FF=255 in this table marks an illegal entry. The keys

SHIFT, COMMODORE, and CTRL are handled differently; the

corresponding entries in the first table are 1, 2, and 4.

This status is saved in $28D=653. Bits 0, 1, and 2

correspond to these three keys.

If we want to assign a different code to a key, we must

change the corresponding entry in the table. Because the

table is stored in ROM, it is not possible to change it

directly. The Commodore 64 has RAM as well as ROM available

to it in the same address range, however, allowing the

kernal to be copied to the "underlying" RAM and there

changed. This can be done with a small BASIC program. At the

same time, BASIC itself must also be copied into the

underlying RAM.

- 42 -

Tricks & Tips

100 FOR I = 40960 TO 49151 : REM COPY BASIC RAM

110 POKE I, PEEK(I) : NEXT

120 FOR I = 14*4096 TO 65535 : REM COPY KERNAL

130 POKE I, PEEK(I) : NEXT

140 POKE 1,53

Lines 100 to 130 copy the kernal and BASIC from ROM

into the underlying RAM. The switch from ROM to RAM is made

in line 140, so that the kernal is now running in RAM. Now

we can proceed to change the codes of individual keys.

We need to know the addresses of the four tables:

Table 1 unshifted $EB81 = 60289

Table 2 with shift $EBC2 = 60354

Table 3 with Commodore $EC03 = 60419

Table 4 with CTRL $EC78 = 60536

If we want to change a code, we must determine the

number of the key we wish to change from the matrix table.

The numbering runs from 0 in the upper left-hand corner to

63 in the lower right. To find the key number, multiply the

row number by 8 and add the column number. Y, for instance

has the number 25 and Z the number 12. The number of the key

is used as the offset to the start of the desired table.

With the help of these four tables you can define 4*64

or 256 different characters. The RESTORE key cannot be

redefined since it is tied directly to the non-maskable

interrupt (NMI) line of the processor. The key definition

remains until STOP/RESTORE is pressed. Since these two keys

switch the ROM back on. This can be prevented by changing

the value for the memory configuration in RAM. This can be

- 43 -

Tricks & Tips

done in the previous program in line 150:

150 POKE 64982, 53

Instead of determining the number of the key from the

matrix, one can obtain it from the program itself. This

program reassigns keys and determines the appropriate key

number itself:

100 DIM T(4): FOR 1=1 TO 4: READ T(I): NEXT

110 DATA 60289,60354,60419,60536

120 FOR 1=14*4096 TO 65535: POKE I, PEEK(I): NEXT

130 FOR 1=40960 TO 49151 : POKE I, PEEK(I) : NEXT

140 POKE 1,53: POKE 64982, 53

1000 PRINT "PLEASE PRESS THE KEY WHICH YOU WISH TO CHANGE"

1010 GET A$: IF A$="" THEN 1010

1020 PRINT A$

1030 A = ASC(A$)

1040 FOR J=l TO 4: T=T(T)

1050 FOR 1=0 TO 63: IF PEEK(T+1) <> A THEN NEXT: NEXT

1060 PRINT "PRESS THE KEY WHICH YOU WISH TO ASSIGN"

1065 PRINT "TO THE FIRST"

1070 GET A$: IF A$="" THEN 1070

1080 PRINT A$

1090 POKE T+I, ASC(A$): GOTO 1000

- 44 -

Tricks & Tips

Chapter 3: Easy Data Bntry

3.1 Cursor positioning and determining cursor position

For easy input and output on the screen, it is very

useful to be able to set the cursor directly to any desired

spot on the display. The Commodore 64 has a command for

positioning the cursor on a line, the TAB command and the

POS function for determining the column, but no commands for

moving the cursor directly to any spot on the screen and it

is only possible to move forward with the TAB command.

The kernal already contains routines for arbitrarily

positioning the cursor, however. Two memory locations in

page zero are reserved for the row and column of the cursor

position. By reading these values with PEEK we can determine

the cursor position at any time.

100 PRINT "THE CURSOR IS IN LINE"PEBK(214)"COLUMN"PEEK(211)

If we want to set the cursor, it is not enough to just

POKE the appropriate values in addresses 214 and 211. The

kernal must still calculate the required pointer for screen

and color RAM based on the cursor position. There is a

routine in the kernal that will do this for us.

- 45 -

Tricks fc Tips

100 REN SET CURSOR

110 INPUT flROWfl;R

120 INPUT "COLUMN";C

130 POKE 214,R

140 POKE 211,C

150 SYS 58640

160 PRINT "TEST";

Calling 58640 with SYS 58640 sets the cursor at the

position determined by locations 214 and 211.

The combination of these two procedures gives us new

capabilities for programming. You can provide status lines

in your programs, for instance, in which information can be

given to the user from time to time. So as not to disturb

the rest of the screen, save the current position before

moving the cursor to the status line. Then print the message

on the status line, set the cursor position back to the

original value, and continue with the execution of the

program. A program fragment might look like this:

300 R=PEEK(214): REM ROW

310 C=PEEK(211): REM COLUMN

320 POKE 214,0: REM CURSOR IN ROW 0

330 POKE 211,10: REM CURSOR IN COLUMN 10

335 SYS 58640

340 PRINT "PLEASE INSERT DISK"

350 POKE 214,R: REM RESTORE ROW

360 POKE 211,C: REM COLUMN

370 SYS 58640

The rows are numbered from 0 to 24 and the columns from

0 to 39.

- 46 -

Tricks fc Tips

3.2 Turning the cursor on and off

The cursor marking the current screen position on the

Commodore 64 is automatically turned on when the computer is

expecting input. This is the case when an INPUT command is

executed, for example. When you perform input with GET,

however, no cursor appears. There are times however when it

would be nice to have the cursor flashing when using GET so

that the user is aware that the program is expecting input.

The Commodore 64 has a memory location (204) that

functions as a flag for the cursor. If this location

contains the value 1 (or any other value not equal to zero),

the computer knows that the cursor is turned off and a jump

is made (during the interrupt) to the corresponding location

in the kernal. A value of zero tells the computer to flash

the cursor.

We can make use of this fact when we want to turn the

cursor on and off under program control. We can, for

example, turn the cursor on before a GET command, then wait

for a key press and turn the cursor off.

100 POKE 204,0 : REM CURSOR ON

110 GET A$: IF A$ = M" THEN 110: REM WAIT FOR KEY PRESS

120 POKE 204,1: REM CURSOR OFF

130 PRINT A$;

It may happen that the cursor is turned on and

immediately turned off while it is still in the on phase. If

this happens, a white square will remain on the screen. This

can be avoided if one first checks to see if the cursor is

- 47 -

Tricks & Tips

in the on phase before it is turned off. There is also a

memory location in page zero to accomplish this. Inserting

the following line into our example program will cause the

computer to wait until the cursor is in the off phase before

turning it off.

115 IF PEEK(207) THEN 115: REM WAIT UNTIL CURSOR IS OFF

You can find an application of this technique in section 3.5.

- 48 -

Tricks & Tips

3.3 Repeat function for all keys

You have no doubt noticed while working with your

Commodore 64 that the cursor control keys and the space bar

repeat when held down. This is especially useful for

positioning the cursor and editing programs. With just a

simple POKE command, the repeat function can be extended to

all keys. This is particularly helpful for such things as

word processing. The switch can be made in the direct mode

or in a program and can also be switch ed back by either of

these methods. The address used to make the switch is 650. A

value of 0 means that only the cursor keys are automatically

repeated. If you write the value 128 into memory location

650 with POKE, all keys will repeat. It is also possible to

turn the repeat function off entirely by placing the value

64 in address 650.

100 POKE 650,128: REM REPEAT FOR ALL KEYS

200 POKE 650,0 : REM REPEAT FOR CURSOR ONLY

300 POKE 650,64 : REM TURN REPEAT OFF

The repeat delay and repeat rate values are found in

locations 651 and 652, respectively. These values are always

renewed by the kernal, so changes are only possible by

moving the kernal to RAM (see sections 2.6 and 4.2).

- 49 -

Tricks & Tips

3.4 The WAIT comaand: Waiting for a key press

The WAIT command is a little-used BASIC command. We

will show you what it does and what it can be used for.

WAIT A,B

This command gets the contents of memory location A (as

in a PEEK command), and ANDs this value with B. If the

result is not zero, program execution continues. It is

assumed in this description that the value of A is either

the address of an I/O port or some other peripheral, or that

the value of A is changed by an interrupt. Otherwise the

command will either wait forever or not at all.

The most interesting use is waiting for a certain key

press. Memory location 653, for example, contains

information about whether or not the SHIFT, COMMODORE, or

CTRL keys have been pressed. You can use the WAIT command to

wait until one of these keys has been pressed.

100 PRINT "PRESS THE CONTROL KEY"

110 WAIT 653,4: REM WAIT FOR CTRL

120 ...

In line 110 the program waits until the control key is

pressed. You can wait for the shift and Commodore keys with

the following WAIT commands:

WAIT 653,1: REM WAIT FOR SHIFT

WAIT 653,2: REM WAIT FOR COMMODORE KEY

- 50 -

Tricks & Tips

If you want to wait for any desired key press, you can

check location 203. If no key is pressed, this location

contains then value 64, otherwise it contains the matrix

number of key pressed (see section 2.6). With

WAIT 203,64

the program waits as long as a key pressed. With

WAIT 203,63

the computer waits until a key is pressed. This key can then

be determined through use of the GET command, for example.

100 WAIT 203,63

110 GET A$: PRINT A$;

The WAIT command will be ended only when a key is

pressed. If there is data already in the keyboard buffer,

you can also make the number of pressed keys the basis of

the WAIT command.

100 WAIT 198,255

110 GET A$: PRINT A$;

120 GOTO 100

- 51 -

Tricks & Tips

3.5 Assigning the function keys

The Commodore 64 has, in addition to its alphanumeric

keys, four function keys, each of which has two functions.

These keys can be used for menu control, for instance, in

order to select a certain part of a program. These keys can

be polled with GET and then execution can be transferred

depending on the key pressed. The function keys have the

following ASCII codes:

fl => 133

f3 => 134

f5 => 135

f7 => 136

Pressing the shift key at the same time increments the ASCII

value by four:

f2 => 137

f4 => 138

f6 => 139

f8 => 140

The function keys can be polled in the following manner:

100 GET A$: IF A$="" THEN 100

110 A = ASC(A$)

120 IF A = 133 THEN 1100 : REN Fl

130 IF A = 134 THEN 1200 : REN F3

140 IF A = 135 THEN 1300 : REN F5

150 IF A = 136 THEN 1400 : REN F7

160 IF A = 137 THEN 1500 : REN F2

- 52 -

Tricks & Tips

170 IF A = 138 THEN 1600 : REN F4

180 IF A = 139 THEN 1700 : REN F6

190 IF A = 140 THEN 1800 : REN F8

200 GOTO 100

Control is passed to the appropriate line based on the

function key that was pressed. This can be accomplished in a

more elegant fashion with an ON ... GOTO statement.

100 GET A$: IF A$="" THEN 100

110 A = ASC (A$) : IF A<133 OR A>140 THEN 100

120 ON A-132 GOTO 1100,1200,1300,1400,1500,1600,1700,1800

This technique can be used within a program. We would

now like to present to you a program which allows a string

of characters to be assigned to each function key and which

will display this string on the screen whenever the function

key is pressed. The function keys could be assigned with

BASIC command words, for instance. It is also possible to

assign a word followed by a RETURN to a function key. This

allows the command to be executed directly. If, for example,

the string "LIST", followed by the code for RETURN, is

assigned to the Fl key, then the program currently in memory

will be listed whenever the Fl key is pressed. The maximum

length of the string assigned to a function key is 10

characters, the length of the keyboard input buffer.

With our program, you can assign not just eight

different strings to the function keys (dual assignment—

with or without the shift key), but sixteen. The Commodore

and control keys are used along with the shift key to select

the desired function from among the four keys. We have

chosen the following assignments for the keys:

- 53 -

Tricks & Tips

fl

f2

f3

f4

f5

f6

f7

f8

f9

flO

fll

fl2

fl3

fl4

fl5

fl6

= >

= >

= >

= >

= >

= >

= >

= >

= >

= >

= >

= >

= >

= >

= >

= >

fl

f3

f5

f7

fl

f3

f5

f7

fl

f3

f5

f7

fl

f3

f5

f7

plus

plus

plus

plus

plus

plus

plus

plus

plus

plus

plus

plus

SHIFT

SHIFT

SHIFT

SHIFT

COMMODORE

COMMODORE

COMMODORE

COMMODORE

CTRL

CTRL

CTRL

CTRL

Here is the machine language program which allows the

assignment of the function keys. The strings will be placed

in memory by a BASIC program.

0001 033C ?FUNCTION KEY

S FOR CBM 64

0002 033C 5

0003 033C 5

0004 033C ORG 828 5 CASSETTE BUF

FER

0005 033C KEYVEC EQU *28F 5 VECTOR FOR K

EYBOARD DECODING

0006 033C KEYPNT EQU $F5 ? POINTER TO D

ECODER TABLE

0007 033C BUFFER EQU $277 $ KEYBOARD BUF

FER

0008 033C NOKEYS EQU $C6 5 NUMBER OF CH

ARACTERS IN KEYBOARD BUFFER

0009 033C SHIFT EQU *28D ;FLAG FOR SHI

FT/CBM/CTRL

0010 033C KEYNO EQU *CB ;MATRIX NUMBE

R FOR PRESSED KEY

0011 033C LSTKEY EQU *C5 5 NUMBER OF LA

ST KEY

0012 033C TEMP EQU LSTKEY

- 54 -

Tricks & Tips

0013 033C

EST FUNCTION KEY

0014 033C

HEST FUNCTION KEY

0015 033C

0016 033C

ASSIGNMENT

0017 033C

0018 033C A9 47

0 NEW ROUTINE

0019 033E AO 03

0020 0340 8D 8F 02

0021 0343 8C 90 02

0022 0346 60

0023 0347

0024 0347 A4 CB

0025 0349 C4 C5

RE?

0026 034B FO OA

0027 034D Bl F5

0028 034F C9 89

HIGHER FUNCTION KEY

0029 0351 BO 04

KEY?

0030 0353 C9 85

0031 0355 BO 03

0032 0357 4C 48 EB

ARD EVALUATER

0033 035A E9 85

0034 035C 85 C5

0035 035E OA

0036 035F OA

0037 0360 65 C5

0038 0362 OA

0039 0363 AE 8D 02

BM/CTRL

0040 0366 EO 01

0041 0368 FO OE

0042 036A EO 02

0043 036C FO 07

0044 036E EO 04

0045 0370 DO 09

0046 0372 18

0047 0373 69 28

0048 0375 18

0049 0376 69 28

EXT TABLE

0050 0378 18

0051 0379 69 28

0052 037B AA

NDEX

0053 037C AO 00

0054 037E BD 00 CF

NT FROM TABLE

0055 0381 FO 09

FMIN

FMAX

SETFLG

OLDKEY

INIT

FNCTN

NOFUNC

FTN

CTRLKY

CBMKEY

SHIFTK

NOSPEC

GETKEY

—

EQU

EQU

EQU

EQU

LDA

LDY

STA

STY

RTS

LDY

CPY

BEQ

LDA

CMP

BCS

CMP

BCS

JMP

SBC

STA

ASL

ASL

ADC

ASL

LDX

CPX

BEQ

CPX

BEQ

CPX

BNE

CLC

ADC

CLC

ADC

CLC

ADC

TAX

LDY

LDA

BEQ

55

$85

$88

*EB26

*EB48

#<FNCTN

#>FNCTN

KEWEC

KEYVEC+1

KEYNO

LSTKEY

NOFUNC

<KEYPNT>,Y

#FMAX+1

NOFUNC

#FMIN

FTN

OLDKEY

#FMIN

TEMP

TEMP

SHIFT

#1

SHIFTK

#2

CBMKEY

#4

NOSPEC

#40

#40

#40

#0

TABLE,X

ENDKEY
—

5 CODE FOR LOW

5 CODE FOR HIG

SOLD KEYBOARD

5

5 SET VECTOR T

5 KEY NUMBER

5 SAME AS BEFO

;YES

SASCI I CODE

5 COMPARE WITH

5 NO FUNCTION

5 TO OLD KEYBO

5 TIMES 10

5 FLAG SHIFT/C

5 SHIFT?

; CBM?

; CTRL?

?POINTER TO N

5 POINTER TO I

5 GET ASSIGNME

STA

INX

I NY

CPY

BNE

ENDKEY STY

LDX

JMP

TABLE EQU

BUFFER, Y

#10

GETKEY

NOKEYS

#$FF

SETFLG

*CFOO

iJAND WRITE IN

§ 10 CHARACTER

5 SAVE NUMBER

;FLAG FOR INV

5 ACTUALIZE FL

Tricks & Tips

0056 0383 99 77 02

BUFFER

0057 0386 E8

0058 0387 CS

0059 0388 CO OA

ALREADY

0060 038A DO F2

0061 038C 84 C6

OF CHARACTERS

0062 038E A2 FF

ALID KEYBOARD CODE

0063 0390 4C 26 EB

AGS

0064 0393

The following BASIC program generates the machine

language code and places the strings for the 16 function

keys into memory. The strings themselves are stored in the

program in DATA statements at line 300 and can naturally be

changed as desired. Remember that the strings may not be

more than ten characters long. If you want to execute a

command immediately upon pressing the function key, a RETURN

character must terminate the string. This can be done by

placing a left-arrow as the last character in the string.

When loading the strings into memory, this character will be

converted to a RETURN (line 250). If you want to use a

quotation mark within the string, use an apostrophe instead

(see line 260). If a comma appears in the string, the string

must be enclosed in quotation marks (as in line 330).

100

110

120

130

140

150

160

170

180

190

200

210

FOR I

READ

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

IF S

PRINT

=s

X ;

169

203

133

101

240

24

1.1.9

76

<>

828 TO 914

,

P

!i

!i

?

POKE I,

71,160

196,197

176, 3

197, 10

7,224

105, 40

2,232

38,235

X :

,i •_«

,240

, 76

,174

? 4

, 170

, 200

S=S+X

,141,

, 10,

, 72,

,141,

,208,

,160,

10591 THEN PRINT

"OK ••

: NEXT

143, 2,140,144, 2, 96,164

177,245,201,137,176, 4,201

235,233,133,133,197, 10, 10

2,224, 1,240, 14,224, 2

9, 24,105, 40, 24,105, 40

0,189, 0,207,240, 9,153

10, 208, 242,132.,198,162, 255

'ERROR IN DATA! ! ' END

- 56 -

Tricks & Tips

215 SVS 828

220 REM PLACE KEY ASSIGNMENTS IN MEMORY

230 AD = 12*4096+15*256 : REM *CFOO

240 FOR 1=0 TO 15 : READ X$ i FOR J=l TO LEN<X*>

250 A=ASC<MID*<X*,J,i>) : IF A=95 THEN A=13 : REM RETURN

260 IF A«39 THEN A=34 : REM QUOTE

270 POKE AD+1O*I+J-1,A S NEXT

280 IF JO 11 THEN POKE AD+I*1O+J-1., 0 : REM END CRITERIUM

290 NEXT

300 DATA LIST*-, RUN*-, GOTO, CHR*<

310 DATA ?FRE<6>*-., SAVE, PRINT, THEN
320 DATA POKE,PEEK(,PRINT#,INPUT#

330 DATA 'TOAD'**, 8*-% NEXT 5GQSUB, RETURN

The strings assigned to the function keys will be

placed in free RAM at address $CFOO. If you are using this

nemory area or you want to store the strings somewhere else,

you must change the address in line 230 as well as the

address in the DATA statement in line 170. Replace the

fourth and fifth-last elements (0 and 207) with the low and

high bytes of the new address. When you use a different

address, remember that at least 160 bytes must be available

there (16 keys * 10 characters).

To change the function key assignments, all that is

required is to change the strings in the DATA statements

starting at line 220.

Pressing RUN/STOP-RESTORE will unassign the function

keys. You can restore them with SYS 828.

- 57 -

Tricks & Tips

3.6 An Easy INPUT Routine

You have no doubt run across the problem of having your

program "interrupted" after invalid input from the keyboard.

There are two primary reasons for this:

Input in the form INPUT A

A program interruption occurs if the input does not consist

of exclusively numeric characters.

Input in the form INPUT A$

The program may crash if the RETURN key is pressed without

previous alphanumeric input or if too few characters are

entered.

Input by means of GET A$ eliminates the first problem

and can be used to eliminate the second, but many avoid it

because of the necessity of building a string one character

at a time if the input is longer than one character. In

addition, no flashing cursor is displayed, something that

would be desirable as a request for input.

Once you have made sure that the obstacles are removed

from data entry, it is still possible that data errors may

creep in, which, while they will not cause the program to

crash, may result in an erroneous result.

Let us look at a typical example using INPUT A$ to

input numeric data.

You want characters from the keyboard which you intend

to convert to a numerical value by means of VAL(A$). You

have avoided possible conflicts here that would have

occurred with INPUT A (entering alphabetic data), although

an illegal input has the following effect:

You answer the INPUT with 123R56. The conversion with

A=VAL(A$) puts the value 123 in A, certainly not the number

- 58 -

Tricks fc Tips

intended.

Perhaps you object, saying that such input errors are

the exception and not the rule and that getting the wrong

answer now and then is not of much consequence in personal

computing.

We are of the opinion, however, that it should be your

goal to produce "bomb-proof" programs, taking into

consideration that you may have the opportunity to write

programs which are not just for your own use.

We want to present you with a ready-to-use subroutine

which virtually eliminates the problems mentioned earlier.

We describe certain parts of this program in detail which

you can adapt to your own needs.

First, the meanings of the variables and memory

locations used in the program are explained. The following

variables must be initialized before the subroutine is

called:

MN=0 Purely numerical input is desired.

MN=1 The input may be alphanumeric.

ML=0 The length given in IL is mandatory.

ML=1 The length given in IL is the maximum.

IL Mandatory or maximum length of the input

Furthermore, the routine uses the following variables:

CC Number of valid characters in IN$

CS Current cursor column

CZ Current cursor line

CP Length created by inserting an input field

MS Highest cursor column during input

- 59 -

Tricks & Tips

G$ Contains the character from the last GET

IN$ The complete input is returned in this variable

Memory locations used:

204=0 Turn cursor on

204=1 Turn cursor off

205 Counter for the flash frequency of the cursor

207=0 Cursor in OFF phase

207=1 Cursor in ON phase

211 Cursor column

214 Cursor line

One additional preparation necessary for using this

routine is opening the screen with OPEN 1,3. This is

required because the created input is read from the screen

by means of GET#1 in line 35680.

Now the individual program steps:

35020 The variables are initialized and the cursor

position is saved for the GET#1 in line 35680.

35060 A character is read from the keyboard.

35080 If this character is a RETURN, the input is

ended depending on the length and the value in

ML.

35100-35130 If the DELETE key was used, the length and

position counters are actualized if the input

field contains only legal characters (CP=0) or

if it was enlarged with INSERT.

35140 INSERT is only executed if the length in IL will

not be exceeded.

35160-35180 Ensures that the cursor does not leave the input

field when CRSR RIGHT and LEFT are used.

- 60 -

Tricks & Tips

35200 Entry point of the data filter depending on NN.

35220-35240 If the cursor is within the data field and a

purely numerical value will be entered, the

characters will be accepted. The legal range,

here set at values 47 through 58, can be changed

as desired.

In our example these values form the borders for

the representable digits 0-9. You can find the

appropriate values for the border of your

choosing on page 135ff of the Commodore 64's

user's guide.

For our example that means that 47 corresponds

with the character 0 and 58 stands for the

character 9. All characters in between (0-9) are

also legal.

35300-35380 Here the same thing happens, but the legal

range is expanded to include the letters of the

alphabet.

35400 If the input is not long enough (and ML=0),

input will not be ended.

35600-35690 The input field is taken from the screen and put

into IN$ until either the length given in IL is

reached or no more data is found on the screen.

Before this can happen, the cursor is reset to

the position it had at the beginning of the

routine so that the GET#1 starts at the

beginning of the field.

36000-36060 The cursor is turned off and the character in G$

is displayed on the screen.

The line numbering of the routine was chosen

arbitrarily. The routine may start with 1000, 50000, or some

other number of your own choosing. Remember, however, to

- 61 -

Tricks fc Tips

change the line number references in GOTO, GOSUB, and

IF...THEN statements accordingly.

We recommend that you start the subroutines of each of

your programs with the same line number. This makes it

easier to write new programs using this subroutine library.

Here now is the INPUT routine:

35000 REM INPUT FROM KEYBOARD

35020 IN***1"1:

COOS

CS=PEEK<211):

CZ=PEEK<214):

cp=o:

MS=0

35040 POKE 204,0:

REM CURSOR ON

35060 GET G*:

IF G*=ni1

THEN 35060

35080 G=ASC<G*>:

IF G=13

THEN ON ML+1

GOTO 35400,35600

35100 IF G=20 AND CP>0

THEN CP«CP-l:

GOSUB 36000:

GOTO 35060:

REM DELETE

35120 IF G=20 AND COO AND PEEK (211) >CS

THEN CC=CC-l:

MS=MS-l:

cp-cp-i:

GOSUB 36000:

GOTO 35060

35130 IF G»20 AND PEEK(211)>CS

THEN MS=MS~1:

GOSUB 36000:

GOTO 35060

35140 IF 6=148 AND CP+MS<IL

THEN CP-CP+l:

MS»MS+l:

GOSUB 36000:

GOTO 35060:

REM INSERT

35160 IF G=29 AND PEEK <211) OCS+IL-1

THEN GOSUB 36000:

GOTO 35060:

REM CURSOR RIGHT

- 62 -

Tricks & Tips

35180 IF G=157 AND PEEK(211)>CS

THEN GOSUB 36000:

GOTO 35060:

REM CURSOR LEFT

35200 ON MN

GOTO 35300

35220 IF G>47 AND G<58 AND CC<IL AND PEEK(211)<=CS+IL-1

THEN CC=CC+l:

GOSUB 36000:

GOTO 35360

35230 GOTO 35360

35240 IF G>47 AND G<58 AND PEEK(211)<=CS+IL

THEN GOSUB 36000:

GOTO 35360

35300 IF G<48 OR (G>57 AND G<65) OR (G>90 AND G<193) OR

G>218

THEN 35060

35320 IF CC<IL AND PEEK(211)<=CS+IL~1

I HEN COCC+l:

GOSUB 36000:

GOTO 35360

35340 IF PEEK (211 KCS+IL

THEN GOSUB 36000

35360 IF CP>0

THEN CP=CP-1

35380 GOTO 35060

35400 IF CCOIL

THEN 35060

35600 POKE 205,2

35620 IF PEEK (207)00

THEN 35620

35640 POKE 204,1

35660 POKE 211,CS:

POKE 214,CZ

35670 IF COO

THEN RETURN

35680 GET #1,G*."

IF G$=CHR$<13)

THEN IN*=LEFT*(IN*+"

RETURN

35682 IN$=IN$+G*

35684 IF LEN(IN*XIL

THEN 35680

35690 RETURN

36000 POKE 205,2

36020 IF PEEK <207)00

THEN 36020

36040 PRINT G*5:

IF PEEK(211)>MS

THEN MS-PEEK(211)-CS

36060 RETURN

11, ID !

- 63 -

Tricks & Tips

How do you use this program?

Suppose you want to enter an item number for an

inventory. This number must be exactly six digits long and

consist of numeric characters only.

We would program the following to accomplish this:

10 OPEN 1,3

100 IL=6:MN=0:ML=0

110 PRINT"PART NUMBER ";:GOSUB35000

120 IN=VAL(IN$)

The desired part number is now at your disposal in IN

and you can be sure that is exactly six digits long and that

it contains only numerical digits.

Along with the previously entered item number you also

need the description of the part. Since you have set up a

file with records of a predetermined length, this

description may be no longer than a certain value, say 10

characters. This is the maximum length; it is not

obligatory.

- 64 -

Tricks & Tips

The appropriate program lines look like this:

200 IL=10:MN=l:ML=l

210 PRINT"DESCRIPTION ";:GOSUB35000

The description is now contained in IN$ and, if less

than 10 characters long, padded with blanks at the end.

The price is also important of course. It has a

variable length, up to, say, eight characters and is

strictly numeric.

300 IL=8:MN=0:ML=l

310 PRINTMPRICE ";:GOSUB35000

320 IN=VAL(IN$)

The number, consisting of a maximum of eight digits, is

now in IN and you can proceed with the input of the quantity

and so on.

We hope that this small routine takes care of the

problems you may have had with syntactically incorrect data

input. Feel free to make use of the special features used in

the subroutine in regard to the cursor positioning and the

input from the screen (GET#1) in your own programs.

- 65 -

Tricks & Tips

3.7 A "mouse" for the CBM 64

A new buzz word has infiltrated the world of personal

computers: the "MOUSE"

What is behind this intriguing expression?

You are probably acquainted with devices called track

balls on video games. A track ball is a pointing or control

device used instead of joysticks or paddles to move figures

around on the screen.

In contrast to joysticks whose handles can be moved in

one of only eight directions, the track ball allows rotation

in all directions since it employs a free-moving ball

without axes, whose movement is converted into two angles

for the X and Y axes. On video games this ball is operated

with the palm.

The "mouse" consists of such a ball built into the

underside of a housing about the size of a package of

cigarettes, which one lays, ball down, on the table and

rolls back and forth with the hand.

Through the movement of this box on the table the ball

is in turn set in motion by the friction against the table

surface. The coordinates of the device are transmitted to

the computer via a special interface.

How does one make serious use of a mouse?

If a program intended for a large range of users is

supposed to bear the title "user-friendly," it will in all

probability be designed using what is called the menu

technique. This procedure has the advantage that it can

easily be understood and used by almost anyone. The user can

- 66 -

Tricks & Tips

select the desired function either directly or through a

succession of choices, each more specific than the last and

all presented to him on the screen.

The choice is made either by entering a number or

letter corresponding to an option on the screen or by moving

the cursor to the desired point on the screen.

Experts in ergonomics have discovered that the

operations involved in making a choice can be accomplished

more comfortably and more certainly when one does not have

to search for the appropriate key on the keyboard but rather

when one is resting comfortably in an easy chair. With the

mouse, the movements of the cursor on the screen correspond

directly to those of the device on the table. Reaching the

desired field is signaled by pressing a button on top of the

mouse.

In order to give you the opportunity to experiment with

this charming little animal without requiring the purchase

of an expensive track ball, we have developed the following

program which works with the conventional joystick in

control port 2 of your Commodore 64.

Naturally, this will not allow the same ease of use as

the real mouse, but the experimentation with the principle

of the thing will answer for our purpose.

In keeping with our usual style, we first present the

variables and memory locations used and then discuss the

program in detail.

- 67 -

Tricks & Tips

First the variables:

R0$ character for reverse on

RF$ character for reverse off

A$ character entered

B$ after RETURN contains all the previously entered

characters

A two-dimensional variable field which contains the ASCII

values for each of the characters on the first four

lines of the video display.

DR original value of the data direction register in 56322.

This value must be POKEd back into this location at the

end of the program.

J position of the joystick in control port 2

JS joystick column

JZ joystick line

PS column position for PRINT

PZ line position for PRINT

S column of the joystick cursor for indexing of A(X,Y)

Z as above, but line

Memory locations:

56322 data direction register for control port 2

58643 kernal routine for determining cursor position

58636 kernal routine for positioning the cursor

781 contents of processor register X, loaded from here by

the SYS command and placed back when the routine ends

782 as above, but for the Y register

204 =0 cursor on

=1 cursor off

205 counter for flash frequency of cursor

207 =0 cursor in OFF phase

- 68 -

Tricks & Tips

<>0 cursor in ON phase

Step-by-step description of the program:

1 Because the control ports and the keyboard use

the same peripheral interfaces in the C64, the

keyboard is turned off here. At the end of your

program the value in DR must be poked back into

56322 or the computer will not respond to the

keyboard. Only STOP/RESTORE will get you out of

our example program.

10-50 The menu field is constructed on the screen.

60-560 The array is filled with the ASCII values of the

characters in the first four lines of the

display. When this array is indexed by the line

and column positions, it returns the value of

the character at that screen position.

680 The character produced by the subroutine at 5000

is displayed on the screen.

700 The cursor position resulting from the PRINT is

saved because the menu field will be

reconstructed in line 720. This is necessary

because the lines scroll up when the screen is

full and the field may be destroyed.

760 The cursor, displaced by the reconstruction of

the field, is returned to its original position.

780 If the last character was RETURN, the input of a

line is terminated. If you wish to perform

further operations on the data, you should take

the data out of B$,

800 otherwise the entered character is appended to

B$.

- 69 -

Tricks & Tips

5020-5140 The cursor is saved and turned off, set to

position 0, and turned on again.

5160 The value obtained form the joystick on control

port 2 is put into J.

5170 Delay loop—makes the cursor easier to control.

5180-5340 The cursor is moved according to the position of

the joystick.

If the joystick button was pressed (5260), the

character under the cursor (at 6010) is put into

A$.

6010-6160 The array A(X,Y) is addressed with the cursor

position of the joystick and the resulting value

is placed in A$ (6060).

Because the C64 has a double-line organization,

that is, the column counter can go up to 80

positions although the screen is only 40 columns

wide, the column value is corrected for properly

indexing the array in line 6050.

This program is quite simple to use. After typing RUN,

the cursor appears in the upper left-hand corner of the

display* You can move it about with a joystick plugged into

control port 2. When you come to a character that you would

like to put in B$, simply press the fire button on the

joystick to do so. As acknowledgment, the chosen character

appears several lines down. Now you can go on to the next

character.

After selecting RETURN, the line is complete in B$ and

you can process it as desired.

We hope that you have fun with this program and that it

encourages you to try similar ideas of your own.

- 70 -

Tricks & Tips

The program listing:

1 DR=PEEK(56322) :

POKE 56322,224:

R0*=CHR*(18) :

RF*=CHR*(146)

5 PRINT CHR*(147):

GOSUB 10:

GOTO 60

10 PRINT CHR*<19)" , - . / 0 1 2 3 4 5 6 7 S 9

"5

20 PRINT " @ A B C D E F G H 1 J K L ";

30 PRINT "MNOPQRSTUVWXYZ "5

40 PRINT " 11RO*"RETllRF*n IIRO*IIDEL"RF*" "RO*"F1 "RF*U '

0*IIF3"RF*11 1IR0*llF5"RF*S

45 PRINT " "RQ*"F7"RF$"

50 RETURN

60 DIM A(4540)

100 FOR 1=0 TO 13

120 A(0,1*2+1)=1+44

140 NEXT I

180 FOR 1=0 TO 12

200 A(1,I*2+2)«I+64

220 NEXT I

260 FOR 1=0 TO 13

280 A(2,1*2+1)=1+77

300 NEXT I

340 FOR 1=1 TO 3

360 A(3,I)=13

380 NEXT I

420 FOR 1=5 TO 7

440 A(3,I)=20

460 NEXT I

500 FOR 1=0 TO 3

520 A(3,1*2+9)=1+133

560 NEXT I

580 PRINT :

PRINT

600 B*a"»:

X=FRE(O)

640 GOSUB 5000:

REM GET CHARACTER

680 PRINT A$S

700 SYS 58643:

PZ=PEEK(2il):

PS=PEEK(214)

720 GOSUB 10

760 POKE 211,PZ:

POKE 214,PS:

REM SYS58636

- 71 -

Tricks & Tips

780 IF ASC(A*)^13

THEN 600

800 B*=B*+A*

820 GOTO 640

5000 REM

5001 REM ***** READ JOYSTICK *****

5002 REM

5020 SYS 58643:

REM SAVE PRINT-CURSOR

5060 PZ=PEEK(781):

PS=PEEK(7B2>

5070 POKE 205,3

5080 IF PEEK(207)

THEN 5080

5090 POKE 204,1

5100 POKE 781,Z:

POKE 782SS:

JZ~Z:

JS=S

5120 SYS 58636:

REM SET JOYSTICK CURSOR

5140 POKE 204,0:

REM TURN CURSOR ON

5160 J=PEEK(56320):

REM READ JOYSTICK

5170 FOR 1=0 TO 30:

NEXT I

5180 IF (J AND l)=0

THEN JZ=JZ-1

5200 IF (J AND 2)=0

THEN JZ=JZ+1

5220 IF (J/4)=0

THEN JS=JS-1

5240 IF (J AND 8)*=0

THEN JS=JS+1

5260 IF (J AND 16)=0

THEN 6000

5280 IF JZ<0

THEN JZ=O

5281 IF JS<0

THEN JS=O

5282 IF JS>30

THEN JS=30

5283 IF JZ>3

THEN JZ=3

5285 POKE 205,3

5290 IF PEEK(207)

THEN 5290

5295 POKE 204,1

5300 POKE 781,JZ:

POKE 782,JS:

SYS 58636

5340 GOTO 5140

- 72 -

Tricks & Tips

6000 REM

6001 REM ***** GET asciz VALUE OF CHARACTER *****

6002 REM

6010 POKE 205,3

6015 IF PEEK(207)

THEN 6015

6017 POKE 204,1

6020 SYS 58643=

REM GET CURSOR POSITION

6040 Z=PEEK<781) ".

S=PEEK(782)

6050 IF S>39

THEN S-S-40

6060 A*«CHR*(A < Z„S))

6100 POKE 7B1SPZ:

POKE 782,PS

6120 SYS 58636:

REM LOAD PRINT POSITION

6160 RETURN

- 73 -•

Tricks fc Tips

Chapter 4 Advanced BASIC

4.1 Creating a BASIC line in BASIC

Have you ever tried to write a universal computer

program? By universal we mean a program which can be

executed with any desired arithmetic operations with any

variables or constants.tf

Of course not, you will answer. The operation of a

program depends on the previously entered algorithms. This

is true, but imagine for a moment that you want to write a

word processor that allows calculations. Within the text

are numeric fields on which the mathematical operations are

to be performed. Such a program might combine the features

of a word processor with those of a spread-sheet program.

You could write a version of this program that was set

up to do only certain calculations, such as balancing a

checkbook or something similar. It could not perform

general calculations for which it was not specifically

designed, however. To perform other operations, a new

version of the program would have to be written. It would

be more practical to have a version which would allow any

calculations to be performed.

This is what we want to present to you, a procedure

which allows you to specify the variables on which

arithmetic operations are to be performed and what

operations are to be executed while the program is RUNning.

This is only possible if we can generate a BASIC line

containing the desired formula within the executing program.

We will show you how this can be done.

The following program contains a machine language

- 74 -

Tricks & Tips

subroutine, but this will be handled entirely from BASIC.

Before we discuss the individual program steps, we first

present the variables and memory addresses used.

First the variables:

TM Contains the last address in memory

VL Least-significant byte of the address "variable start"

VH As above, but most-significant byte

VT As above, but total value

BU Address of the line input buffer

BC Index variable for filling the buffer

CA$ Variable containing the calculation

RE Contains the result after executing the routine

The memory locations used:

45-46 Pointer to the start of the variable table

47-48 Pointer to the start of the arrays

49-50 Pointer to the start of the strings

56 Most-significant byte of the pointer to the end of

BASIC RAM

40448 The created BASIC line 50100 is placed here.

40704 Address of the routine which creates a BASIC line from

the contents of the input buffer and puts it in 40448

Step-by-step description of the program operation:

1 The top-of-memory is set to 40448. Memory above this

point will be used for the machine language routine

and later for the created BASIC line.

- 75 -

Tricks & Tips

2-6 The pointer for the start of the variable table is

raised because the connecting line 50099 will be

inserted here.

10-14 Lines 50100 and 50110 are established so that these

are available at all times in case a jump is made to

them without having previously placed an operation

there. The lines contain PRINT and RETURN.

20-30 The connecting line 50099 is placed at the end of the

BASIC program. The continuation address of this line

points to the line 50100 at address 40449.

32-50 These lines contain the machine language program which

will be examined in greater detail later.

60-70 The machine language program is placed in memory at

40704.

50040 The BASIC line is read in from the keyboard into CA$.

Make sure that only functions are entered.

50050 The input is taken from CA$ and placed in the line

input buffer (up to 50075).

50080 The machine language program to create the line is

called.

50095 Here the created calculation is called. The result

will be returned in RE.

For those who are interested, here is the machine language

program:

LDA $7A save BASIC pointer

STA $9FFF

LDA $7B

STA $9FFE

LDA $14

STA $9FFD

LDA $15

- 76 -

Tricks & Tips

XX

YY

STA

LDA

STA

JSR

LDX

LDA

BBQ

STA

INX

BNE

LDA

STA

LDA

STA

LDA

STA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

RTS

$9FFC

#$0B

$7A

$A579

#0

$0200,X

YY

$9E05,X

XX

#$3A

$9K05,X

#$8E

$9E06,X

#0

$9E07,X

$9B08,X

$9E09,X

$9FFF

$7A

$9FFE

$7B

$9FFD

$14

$9FFC

$15

offset to input buffer

call the routine "CRUNCH"

transfer line to 40453

jump out when done

behind the line

append a RETURN

oark the end-of-line

reload BASIC pointer

back to BASIC

The program listed below consists of two parts:

The first part from line 1 to 70 need be executed only

once, at the beginning of the program. It is important that

these lines also be used at the beginning of your program

- 77 -

Tricks & Tips

and not be moved to other line numbers, otherwise your

variables will be destroyed in lines 1 and 6.

The second part of the program makes a BASIC line out

of the formula entered in CA$ and executes this. The result

is returned in RE.

The line numbers of the program in which these routines

are placed may not exceed 49999. The lines at 50000 must

absolutely be the last in the program.

The only restriction when using these routines is that

you must only enter functions, though these may be of any

type, such as 75/2*Vl-V2+SQR(V3). The assignment of the

result to RE is already done in line 50050.

WARNING! Once the program has been started, it may not be

changed. You should enter NEW, reload the program, and then

change it. This is necessary because the created lines are

not placed directly behind the BASIC program but high in

memory. As a result, the computer may crash if you try to

edit, insert, or delete a line.

Here is the program listing:

1 POKE 56,i58:

CLR

2 IF-" PEEK<45>+2>255

THEN POKE 45,2-<256-PEEK(45>>:
POKE 46,PEEK(46)+1:

BOTO 6

4 POKE 45,PEEK(45)+2

6 POKE 47,PEEK(45)

POKE 48,PEEK(46)

POKE 49,, PEEK (45) :

POKE (50),PEEK(46)

3 TM-4044Q

10 POKE TM,O:

POKE TM+J. ,7:

POKE TM+-2, 158:

POKE TM+3, 1801'

POKE TM+4.195

- 78 -

Tricks & Tips

12 POKE TM+5,153:

POKE TM+6,0:

POKE TM+7, 13:

POKE TM+8,158:

POKE TM+9,190

14 POKE TM+10,195:

POKE TM+11,142:

POKE TM+12,0:

POKE TM+13,0:

POKE TM+14,0

20 VL«=PEEK<45) ".

VH=PEEK<46):

VT=VH*256+VL

30 POKE VT-4,l:

POKE VT-3,158:

POKE VT-2,179:

POKE VT~1,195

32 DATA 165,122,141,255,159,165,123,141,254,159,165,2

0,141,253,159,165,21

33 DATA 141,252,159,169,11,133,122,32,121,165

34 DATA 162,0,189,0,2,240,6,157,5,158,232,208,245,169

,58,157,5,158

36 DATA 169,142,157,6,158,169,0,157,7,158,157,8,158,1

57,9,158

40 DATA 173,255,159,133,122,173,254,159

50 DATA 133,123,173,253,159,133,20,173,252,159,133,21

,96

60 FOR 1=40704 TO 40785

70 READ MC:

POKE I,MC:

NEXT I

50000 REM CALCULATOR *•*****■*****#*

50040 BU=523:

INPUT "CALC'SCA*

50050 POKE BU,ABC<"R"):

POKE BU+ljASCC'E") :

POKE BU+2,ASC<" = II> :

BU=BU+2

50060 FOR 1=1 TO LEN<CA*>

50070 POKE BU+1,ASC(MID* <CA$,1,1)):

NEXT I

50073 BC=LEN(CA*)+1

50075 POKE BU+BC?OS

POKE BU+BC+1,0:

POKE BU+BC+2,0

50080 SYS 40704

50095 GOSUB 50100

50097 RETURN

- 79 -

Tricks & Tips

In closing, we have one more suggestion which we would

like to present to you.

Assume for one moment that you have found a procedure

which will create the BASIC program line necessary to solve

a specially formulated problem. Furthermore, this procedure

is so universal that from a set of tasks it will create a

corresponding set of program lines, including loops and

jumps.

The only remaining problem is to place all of these

lines in memory one after the other. The procedure we have

described in this section can create only a single program

line, but it can be expanded so that it can be used for

several lines.

It should be noted that the machine language program

does not always transfer the created line to the same point

in memory but to a address depending on the length of the

previously created line. In addition, the continuation

pointer (the first two bytes at the beginning of the line)

must be taken care of, something we omitted in our example

because the return command was placed directly within the

created line.

Perhaps you will use this suggestion to write a truly

universal program generator, since such a thing is possible

in principle. Program generators are programs which are

given a specific task of a particular kind and then create a

program in a given programming language (it need not be

BASIC).

- 80 -

Tricks & Tips

4.2 Copying the BASIC interpreter into RAM

One of the advantages that the Commodore 64 has over

the other Commodore computers is that the entire address

space of the processor—64 kilobytes—is equipped with RAM.

This presents us with some interesting possibilities such as

providing the 64 with a completely new operating system and

a new BASIC interpreter. You need only load the new or

modified kernal or BASIC interpreter into RAM and then tell

the computer to switch off the ROM and activate the

corresponding RAM. This can be accomplished with POKE

commands.

If you do not want to load an entirely new BASIC but

only wish to change certain characteristics, such as

implementing your own functions or modifications to existing

functions or commands, you would simply copy the BASIC

interpreter into RAM, execute the modifications there and

then switch to RAM.

A short discussion of the Commodore 64's memory

management will help explain this process. When the

computer is turned on, the kernal ROM and the BASIC ROM are

switched on and executed. When you read from this area of

memory with a PEEK command, you receive the value from the

ROM (see section 9.5 for information on how to read the

RAM). If you write to this area with POKE, you will always

write to RAM, regardless of whether it is selected or not.

We can make use of this feature to copy the entire kernal or

BASIC ROM into the underlying RAM in order to manipulate it

for our purposes. The copying can be done with a BASIC loop.

- 81 -

Tricks & Tips

FOR I=B TO E : POKE I, PEEK(I) : NEXT

B is the beginning address and E the end address. For BASIC

these addresses are 40960 ($A000) and 49151 ($BFFF); the

kernal lies from 57344 ($E000) to 65535 ($FFFF).

This POKE loop copies the contents of the RON into the

underlying RAM. BASIC continues to run in ROM, however. We

must tell the computer to switch over to the RAM.

Memory location 1, the processor port, is used for this

purpose. Normally this location contains the value 55. If

you want to run BASIC in RAM, you must select the RAM with

POKE 1,54. Note: You may only execute this POKE after you

have copied BASIC from 40960 to 49151 into RAM or the

computer will "crash." If you also want to copy the kernal

to RAM, this must be done together with the BASIC ROM

because the selection of this RAM automatically selects the

RAM under the BASIC ROM as well (see section 2.6). The POKE

command to make this switch is POKE 1,53. If you want to

manipulate the BASIC interpreter, first copy the ROM, make

the desired changes, and then save the program with which

you made the changes and switch over with POKE 1 If you

have made an error your computer may "hang up" and you must

start over from the beginning. Reload your program, correct

the error and run it again until it works as desired.

- 82 -

Tricks & Tips

4.3 No more negative numbers with the FEE function

Have you ever found it surprising that when turn on

your Commodore 64 it announces that it has 38911 bytes free

but when you issue the command

PRINT FRE(O)

it responds with -26627?

If one receives a negative number, one must add 2 to

the 16th power (or 65536) to the value in order to get the

proper (positive) value. This is not overly difficult but it

is inconvenient. What is the cause of this?

We must examine the corresponding locations in the ROM

listing to determine the answer (address $B37D: The Anatomy

of the Commodore 64). There, after the strings which are no

longer needed are removed and their memory locations made

free (garbage collection), the free memory area is

calculated: The start of the strings ($33/$34) minus the end

of the arrays ($31/$32). This 16-bit integer is converted

into floating-point format and returned. Here is the error.

The integer value is treated as a signed number just like

the integer variables (*), which can only contain values

from -32768 to 32767. If these numbers were treated as

positive values, they could contain values in the range 0 to

65535. With the earlier Commodore computers there was never

more than 32767 bytes of memory free so that this error was

never encountered. We must therefore change the FRE routine

so that the conversion to a floating-point number treats the

integer as a positive value. This is the case with line

- 83 -

Tricks & Tips

numbers which may also be larger than 32767.

These are the changes which are necessary. Here we have

placed the additional code in an unused area of the BASIC

interpreter.

B38D 4C 55 BF JMP $BF55

B390 EA NOP

BF55

BF57

BF59

BF5B

BF5D

BF5F

BF61

BF63

A5

E5

A2

86

85

84

A2

4C

34

32

00

0D

62

63

90

49 BC

LDA

SBC

LDX

STX

STA

STY

LDX

JMP

$34

$32

#$00

$0D

$62

$63

#$90

$BC49

The changes can be made with a small POKE loop.

100 FOR 1=40960 TO 49151

110 POKE I, PEEK(I) : NEXT

120 A=ll*4096+3*256+8*16+13

130 FOR I=A TO A+3

140 READ X : POKE I,X : NEXT

150 A=ll*4096+15*256+5*16+5

160 FOR I=A TO A+16

170 READ X : POKE I,X : NEXT

180 POKE 1,54

200 DATA 76,85,191,234

210 DATA 165,52,229,50,162,0,134,13,133,98,132,99

220 DATA 162,144,76,73,188

- 84 -

Tricks & Tips

4.4 Returning to a BASIC program after a LIST command

When one puts a LIST command within a BASIC program,

execution always returns to the command mode after the LIST

command is carried out. This is inconvenient when you want

to output certain lines such as those which contain function

definitions using DEF FN. You are also prohibited from

outputting more than one copy of a program listing, even

from a loop in the direct mode, such as:

FOR 1=1 TO 2 : LIST : NEXT

The remedy to this problem is as follows: Place a jump

to the BASIC warm-start at the end of the LIST function by

means of a return command. In addition, the pointer to the

program text must be saved before calling the LIST function

because this will be changed during the LIST.

We need a small routine which carries out these tasks

and jumps back to the BASIC interpreter. Since this requires

a machine language program in any case, we will include the

code to copy the BASIC ROM into RAN. This way we avoid the

slow BASIC POKE loop.

We have placed this routine in the cassette buffer.

After entering or loading, it is executed with SYS 828 and

immediately allows the use of the LIST command without

program interruption.

- 85 -

Tricks & Tips

0001 033C

FER

0002 033C

TER

0003 033C

RACTER

0004 033C

0005 033C

1ST ROUTINE

0006 033C

POINTER

0007 033C

EMENT

0008 033C

0009 033C A2 20

S

0010 033E A9 AO

TART OF BASIC

0011 0340 AO 00

0012 0342 84 22

0013 0344 85 23

0014 0346 Bl 22

P

0015 0348 91 22

0016 034A C8

0017 034B DO F9

0018 034D E6 23

0019 034F CA

0020 0350 DO F4

0021 0352 A9 60

0022 0354 8D 14 A7

0023 0357 A9 EA

0024 0359 8D BB A6

0025 035C 8D BC A6

0026 035F A9 6D

EW LIST FUNCTION

0027 0361 8D 42 AO

0028 0364 A9 03

0029 0366 8D 43 AO

0030 0369 A9 36

M

0031 036B 85 01

0032 036D 60

0033 036E A5 7A

0034 0370 48

POINTER

0035 0371 A5 7B

0036 0373 48

0037 0374 20 79 00

RACTER

0038 0377 20 9C A6

0039 037A 20 D7 AA

0040 037D 68

0041 037E 85 7B

0042 0380 68

POINTER BACK

ORG 828

CHRPTR EQU $7A

CHRGOT EQU $79

LIST EQU $A69C

LSTVEC EQU $A042

NEXTST EQU $A8F8

CRLF EQU

LDX

LDA

LDY

STY

STA

LOOP LDA

STA

I NY

BNE

INC

DEX

BNE

LDA

STA

LDA

STA

STA

LDA

STA

LDA

STA

LDA

STA

RTS

NEWLST LDA

PHA

LDA

PHA

JSR

JSR

JSR

PLA

STA

PLA

$AAD7

#32

#$A0

#0

$22

$23

($22)PY

<$22)9V

LOOP

$23

LOOP

#$60

$A714

#$EA

$A6BB

$A6BC

#$6D

LSTVEC

#$03

LSTVEC+1

#$36

1

CHRPTR

CHRPTR+1

CHRGOT

LIST

CRLF

CHRPTR+1

?CASSETTE BUF

5 PROGRAM POIN

5 GET LAST CHA

SLIST ROUTINE

5 POINTER TO L

5 SET PROGRAM

5 TO NEXT STAT

5 OUTPUT CR

SCOPY 32 PAGE

5 POINTER TO S

5 TRANSFER LOO

;RTS CODE

?NOP CODE

5 POINTER TO N

5 SWITCH TO RA

3 SAVE PROGRAM

3 GET LAST CHA

5 EXECUTE LIST

;OUTPUT CR

3 GET PROGRAM

- 86 -

Tricks &

0043 0381 85 7A STA CHRPTR

0044 0383 20 F8 A8 JSR NEXTST ; POINTER TO N

EXT STATEMENT

0045 0386 4C 79 00 JMP CHRGOT 5 GET LAST CHA

RACTER

Here is the loader program in BASIC.

100 FOR 1=828 TO 904

110 READ X:

POKE I,X".

s=s+x:

NEXT

120 DATA 162,32,169,160,160,0,132,34,133,35, 177,34

130 DATA 145,34,200,208,249,230,35,202,208,244,169,96

140 DATA 141,20,167,169,234,141,187,166,141,188,166,169

150 DATA 109,141,66,160,169,3,141,67,160,169,54,133

160 DATA 1,96,165,122,72,165,123,72,32,121,0,32

170 DATA 156,166,32,215,170,104,133,123,104,133,122,32

180 DATA 248,168,76,121,0

190 IF SO9613

THEN PRINT "ERROR IN DATA!!11:

END

200 PRINT "OK"

If you run the following BASIC program before and after the

SYS 828, you can see the difference.

100 PRINT "LIST-TEST"

110 LIST 120

120 GOTO 100

- 87 -

Tricks & Tips

4.5 Calculated line numbers with GOTO, GOSUB, and RESTORE

Whenever you want to make a program branch or call a

subroutine, you must know the exact line number of the point

you wish to call. In some cases, it would make programming

easier if the line number could be calculated while the

program is running, such as the following program assumes.

100 PRINT "LINE NUMBER fl; L

110 GOTO L

This could be done with an extensive set of ON ... GOTO

statements, and the same applies to the GOSUB command, but

it would be much easier if calculated line numbers were

allowed.

Another useful extension would be to allow a line

number in the RESTORE command. If one has several different

blocks of data which are to be read several times, one can

only reset the READ/DATA pointer to the beginning of the

data and then read over a quantity of unwanted data until

the desired data are reached. RESTORE with a line number

allows the data pointer to be set to any desired line.

The modification of the GOTO command can be

accomplished with a few POKEs. We need only replace the call

to get the line number with a routine that will get and

evaluate a numeric expression. In doing so we also change

the GOSUB routine, since GOSUB calls the GOTO routine.

- 88 -

Tricks & Tips

A8A0 20 CO 02 JSR $02C0

02C0 20 8A AD

02C3 4C F7 B7

JSR $AD8A

JMP $B7F7

Here we have placed the additional code at $02C0

which is free so long as sprite 11 is not used.

(704),

The following BASIC program will place the code in memory:

100 FOR 1=40960 TO 49151

110 POKE I, PEEK(I) : NEXT

120 A=10*4096+8*256+10*16

130 FOR I=A TO A+2

140 READ X : POKE I,X : NEXT

150 A=704

160 FOR I=A TO A+5

170 READ X : POKE I,X : NEXT

200 DATA 32,192,2

210 DATA 32,138,173,76,247,183

Now we have taken care of the GOTO and GOSUB commands.

The RESTORE command is somewhat more complicated because

there is normally no line number associated with it. We must

distinguish between a plain RESTORE command and a RESTORE

command with a line number. As it turns out, this is not

difficult.

02C6 DO 03

02C8 4C ID A8

02CB 20 CO 02

02CE 20 13 A6

BNE $02C8 ;additional characters?

JMP $A81D ;to old RESTORE command

JSR $02C0 ;get line number

JSR $A613 ;calculate address of the

line number

- 89 -

Tricks & Tips

02D1 38 SBC

0202 A5 5F LDA $5F ;address low

02D4 E9 01 SBC #$01 {subtract one

02D6 A4 60 LDY $60 ;address high

02D8 4C 24 A8 JMP $A824 ;continue as per old RESTORE

Again, we can place the code in memory with a small BASIC

program:

300 A=2*256+12*16+6

310 FOR I = A TO A+20

320 READ X : POKE I,X : NEXT

330 DATA 208,3,76,29,168,32,192,2,32,19,166

340 DATA 56,165,95,233,1,164,96,76,36,168

Now we must tell the interpreter where the new RESTORE

routine is located. Add these lines to the others above:

400 POKE 40996, 197 : POKE 40997, 2

410 POKE 1,54

Line 410 switches over to the RAM. You can now use the

RESTORE command in three different ways:

First, without the line number, as before, second with

a line number, or third, with an expression which will yield

a line number once evaluated. If a line number is specified,

the next READ command will read the first DATA element on

the line specified. If this line does not exist, no error

message will be given and the pointer will be set to the

next line. The following program structure is now possible.

- 90 -

Tricks & Tips

100 GOTO 200

200 RESTORE 10

500 RESTORE

800 GOSUB A*2+100

900 RESTORE X*100+500

- 91 -

Tricks & Tips

4.6 The NID$ connand

You are no doubt familiar with the MID$ function, a

string function which isolates a part of an alphanumeric

string. The following program fragment

100 A$ = "TESTSTRING"

110 B$ = MID$(A$,5,3)

120 PRINT B$

produces the output

STR

In this section we offer an enhancement of the MID$

function which allows not only extracting parts of a string

but also assignments to parts of a string. With the new

command the following type of programming is possible:

100 A$ = "TESTSTRING11

110 MID$ (A$,5,3) = "123"

120 PRINT A$

Here three characters at position five are replaced with the

string "123"; the result is

TEST123ING

Without this new MID$ command, the string would have to be

divided into two parts and then the parts recombined with

the string to be inserted:

- 92 -

Tricks & Tips

100 A$ = "TESTSTRING"

110 A$ = LEFT$(A$,4) + "123" + MID$(A$,7,3)

120 PRINT A$

This command is very useful for replacing individual parts

(fields) of a data record. To do this, one defines a string

with length equal to the length of the data record and

inserts the values of the individual fields with the new

NID$ command.

The command is again implemented through a

language program.

small machine

000i 033C

EUDOVARIABLE

0002 033C

0003 033C

ARIABLE,POSITION,LENGTH) =

0004 033C

ARIABLE,POSITION)

0005 033C

0006 033C

0007 033C

TATEMENT EXECUTION

0008 033C

0009 033C

0010 033C

0011 033C

0012 033C

0013 033C

0014 033C

0015 033C

0016 033C

0017 033C

ESIS

0018 033C

HESIS

0019 033C

0020 033C

0021 033C

0022 033C

0023 033C

0024 033C

0025 033C

0026 033C

0027 033C

0028 033C

= STRING

MIDCOD

EXECUT

CHRGET

CHRGOT

EXECOL

VARNAM

VARADR

DESCRP

TEBTBT

GETVAR

SETSTR

CHKOPN

CHKCLQ

CHKCOM

TEST

GETBYT

FRMEVL

ILLQUA

FRESTR

LENGTH

POSITN

VARSTR

EQUAL

STRINGEXPRESSION

EXPRESSION

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

$CA

*308

*73

CHRGET+6

$A7E7

$45

$49

$64

$AD8F

$B08B

$AA52

$AEFA

$AEF7

*AEFD

*AEFF

$B79E

$AD9E

$B248

*B6A3

$03

*O4

$05

$B2

;MID* AS A PS

5MID*(STRINGV

5MID*<STRINGV

5

5 VECTOR FOR S

5 OPEN PARENTH

?CLOSE PARENT

;COMMA

- 93 -

Tricks & Tips

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

033C

033C

033C

033C

033E

0340

0343

0346

0347

034A

034C

034E

0351

A9

A0

8D

8C

60

20

C9

FO

20

4C

47

03

08

09

73

CA

06

79

E7

03

03

00

00

A7

P0INT2 EQU

ORG

INIT LDA

LDY

STA

STY

RTS

MIDTES JSR

CMP

BEQ

JSR

JMP

$50

828

#<MIDTES

#>MIDTES

EXECUT

EXECUT+1

CHRGET

#MIDCOD

MIDSTR

CHRGOT

EXECGL

AL STATEMENT

0042 0354 20

ER

0043 0357 20

0044 035A 20

0045 035D 85

0046 035F 84

0047 0361 85

0048 0363 84

0049 0365 20

0050 0368 AO

0051 036A Bl

0052 036C 48

0053 036D FO

0054 036F 20

ING TO RAM

0055 0372 AO

0056 0374 Bl

0057 0376 85

E ADDRESS

0058 0378 C8

0059 0379 Bl

0060 037B 85

0061 037D 20

0062 0380 20

0063 0383 8A

0064 0384 FO

0065 0386 CA

0066 0387 86

0067 0389 20

0068 038C C9

SSION?

0069 038E DO

0070 0390 A9

0071 0392 DO

0072 0394 20

0073 0397 20

0074 039A 8A

0075 039B DO

0076 039D 4C

0077 03A0 85

73 00 MIDSTR JSR CHRGET

FA

8B

64

65

49

4A

A3

00

64

2E

52

01

49

05

49

06

FD

9E

17

04

79

29

04

FF

OC

FD

9E

03

48

03

AE

BO

B6

AA

AE

B7

00

AE NEXT

B7

B2 ILL

STORE

JSR

JSR

STA

STY

STA

STY

JSR

LDY

LDA

PHA

BEQ

JSR

LDY

LDA

STA

I NY

LDA

STA

JSR

JSR

TXA

BEQ

DEX

STX

JSR

CMP

BNE

LDA

BNE

JSR

JSR

TXA

BNE

JMP

STA

- 94

CHKOPN

GETVAR

DESCRP

DESCRP+1

VARADR

VARADR+1

FRESTR

#0

(DESCRP)?Y

ILL

SETSTR

#1

(VARADR),Y

VARSTR

(VARADR),Y

VARSTR+1

CHKCOM

GETBYT

ILL

POSITN

CHRGOT

#?) '

NEXT

#*FF

STORE

CHKCOM

GETBYT

STORE

ILLQUA

LENGTH

_

5 CODE FOR MID

5 YES

5 EXECUTE NORM

3 NEXT CHARACT

;OPEN PAREN

5 GET VARIABLE

5 LENGTH

;TRANSFER SIR

?SAVE VARIABL

5 GET POSITION

?END OF EXPRE

5 MAX. LENGTH

5 GET LENGTH

Tricks & Tips

0078

0079

0080

0081

0082

0083

0084

0085

0086

0087

ON

0088

0089

0090

0091

0092

0093

0094

0095

0096

0097

RROR

0098

0099

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

03A2

03A3

03A4

03A6

03A8

03AA

03AC

03AF

03B1

03B4

03B7

03BA

03BC

03BE

03C0

03C1

03C3

03C5

03C6

03C8

03CA

03CC

03CE

03D0

03D2

03D3

03D5

03D7

03D9

03DB

03DD

03DE

OM STRING

0110 03E0

68

38

E5

C5

BO

85

20

A9

20

20

20

AO

Bl

85

88

Bl

85

88

Bl

FO

C5

BO

85

A5

18

65

85

90

E6

A4

88

Bl

04

03

02

03

F7

B2

FF

9E

A3

02

64

51

64

50

64

D3

03

02

03

05

04

05

04

06

03

50

AE

AE

AD

B6

OK

OKI

LOOP

EXPRESSION

91 05

STRING VARIABLE

0111

0112

0113

03E2

03E4

03E6

CO

DO

4C

00

F7

AE A7

PLA

SEC

SBC

CMP

BCS

STA

JSR

LDA

JSR

JSR

JSR

LDY

LDA

STA

DEY

LDA

STA

DEY

LDA

BEQ

CMP

BCS

STA

LDA

CLC

ADC

STA

BCC

INC

LDY

DEY

LDA

STA

CPY

BNE

JMP

POSITN

LENGTH

OK

LENGTH

CHKCLO

#EQUAL

TEST

FRMEVL

FRESTR

#2

(DESCRP) j,Y

P0INT2+1'

<DESCRP>,Y

P0INT2

(DESCRP),Y

ILL

LENGTH

OKI

LENGTH

VARSTR

POSITN

VARSTR

LOOP

VARSTR+1

LENGTH

(P0INT2) ,, Y

(VARSTR),Y

#0

LOOP

$A7AE

ER LOOP

ASSEMBLY COMPLETE.

5 CLOSE PAREN

5 GET EXPRESSI

3 ZERO, THEN E

?CHARACTER FR

5 TRANSFER TO

5 TO INTERPRET

- 95 -

Tricks & Tips

After entering the program, initialize the command expansion

by typing

SYS 828

The following BASIC loader program does the initialization

automatically.

100 FOR 1=828 TO 1000

110 READ X:

POKE I,X:

s=s+x:

NEXT

120 DATA 169,71,160,3,141,8,3,140,9,3,96,32

130 DATA 113,0,201,202,240,6,32,121,0,76,231,167

140 DATA 32,115,0,32,250,174,32,139,176,133,100,132

150 DATA 101,133,73,132,74,32,163,182,160,0,177,100

160 DATA 72,240,46,32,82,170,160,1,177,73,133,5

170 DATA 200, 177,73, 133,, 6, 32, 253, 174,32, 158, 183, 138

180 DATA 240,23,202,134,4,32,121,0,201,41,208,4

190 DATA 169,255,208,12,32,253,174,32,158,183,138,208

200 DATA 3,76,72,178,133,3,104,56,229,4,197,3

210 DATA 176,2,133,3,32,247,174,169,178,32,255,174

220 DATA 32,158,173,32,163,182,160,2,177,100,13Z„81

230 DATA 136,177,100,133,80,136,177,100,240,211,197,3

240 DATA 176,2, 133,3,-165,5,24, 101,4, 133,5, .1.44

250 DATA 2,230,6,164,3,136,177,80,145,5,192,O

260 DATA 208,247,76,174,167

270 IF BO 19273

THEN PRINT "ERROR IN DATA!!":

END

280 SYS 828:

PRINT "OK"

- 96 -

Tricks & Tips

As an example and test of the new function, try this

program:

100 DIM A$(10)

110 FOR I = 1 TO 10

120 A$(I) = "TESTSTRING11

130 NEXT

140 FOR I = 1 TO 10

150 MID$ (A$(I),I,1) = MID$("1234567890",I,l)

160 NEXT

170 FOR I = 1 TO 10

180 PRINT A$(I)

190 NEXT

The output of the program is ten strings. In the first

string, the first character is replaced with a "1", in the

second string the second character is replaced with a "2",

and so on:

1ESTSTRING

T2STSTRING

TE3TSTRING

TES4STRING

TEST5TRING

TESTS6RING

TESTST7ING

TESTSTR8NG

TESTSTRI9G

TESTSTRINO

- 97 -

Tricks & Tips

4.7 INSTR and STRING$ functions

Many other computers have two very useful string

functions which the Commodore 64 lacks. The first function,

usually called STRING$, creates a string of desired length

filled with any given character. The second, often called

INSTR, checks to see if a given string is contained within

another.

With a knowledge of the BASIC interpreter and the

string management of the Commodore 64, it is possible to

implement these functions on the 64 as well. We will use the

existing command words "POS" and "STR$" for these functions,

differentiated from the current BASIC commands with a

preceding H!w.

The INSTR function has the following syntax:

I=!POS(A$,B$,P)

A$ is the string to be searched, B$ is the string whose

occurrence in A$ you wish to check for, and P is the

position at which the search will start. The result is

assigned to the variable I, and if zero, then the sought-

after string was not found. If the second string was found

in the first, I contains the position at which it was found.

The input of the position P is optional; if it is not given,

the search starts at the beginning of the string.

Expressions or functions may be used in place of the

variables.

- 98 -

Tricks & Tips

Here are some examples of its use:

PRINT !POS("ABCDEFGHIJK","D")

4

IF !POS(A$,"J") THEN PRINT "FOUND*

A$ = "TESTSTRING"

PRINT !POS(A$,"T")

1

X = !POS(A$,"T",5) : PRINT X

6

The STRINGS function is used as follows:

A$ = !STR$(L,B)

or

A$ = !STR$(L,B$)

Here A$ is the string which we want to create. L is the

length the string will have and B is the ASCII code of the

character with which the string will be filled. If a string

is used instead of B, the ASCII code of the first character

of this string is used. The following examples demonstrate

the use of the STRINGS function:

- 99 -

Tricks & Tips

PRINT !STR$(20,65)

AAAAAAAAAAAAAAAAAAAA

A$ = !STR$(10,M*") : PRINT A$

The machine language program is placed in free memory and

begins at address 51200.

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

C800

C800

C800

C800

CBOO

C800

CBOO

C800

C800

C800

CBOO

C800

C800

C800

CBOO

C800

C800

C800

C800

C800

CBOO

C800

C800

C800

C800

C800

C800

C800

C802

C804

C807

C80A

C80B

C80D

C80F

C812

C814

A9

AO

8D

8C

60

A9

85

20

C9

FO

OB

C8

OA 03

OB 03

00

OD

73 00

21

06

CHKOPN

CHKCLO

CHKCOM

FRMEVL

CHKSTR

FRESTR

YFAC

CHRGET

CHRGOT

GETBYT

INTEGE

DESCRP

STRADR

ADDR2

ADDR1

LEN1

LEN2

NUMBER

START

TYPFLG

STRCOD

ILLQUA

SYNTAX

POSCOD

VECTOR

TEMP

TESTIN

ORG

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

LDA

LDY

STA

STY

RTS

LDA

STA

JSR

CMP

BEQ

4C800

*AEFA

*AEF7

*AEFD

*AD9E

*AD8F

$B6A3

*B3A2

$73

CHRGET+6

*B79B

*B1AA

$64

$62

*FB

*FB+2

3

4

5

6

13

$C4

*B248

$AF08

*B9

*30A

LEN1

#<TESTIN

#>TESTIN

VECTOR

VECTOR+1

#0

TYPFLG

CHRGET

#? ! '

TEST2

- 100 -

Tricks & Tips

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

ON

0052

0053

0054

C816

C819

C81C

C81F

C821

C823

C825

C827

C82A

C82D

C830

C833

C836

C839

C83B

20

4C

20

C9

FO

C9

DO

4C

4C

20

20

20

20

A5

48

SS ON STACK

0055

0056

0057

0058

b

0059

0060

0061

0062

0063

0064

0065

0066

C83C

C83E

C83F

C842

C845

C848

C84A

C84C

C84E

C850

C851

C852

ADDRESS

0067

0068

0069

0070

0071

0072

C853

C856

C858

CB5A

C85C

C85E

A5

48

20

20

20

FO

85

86

84

68

A8

68

20

FO

85

86

84

A2

79

8D

73

B9

OA

C4

03

Bl

08

73

FA

9E

8F

64

65

FD

9E

A3

64

04

FB

FC

AA

56

03

FD

FE

00

THIRD PARAMETER

0073

0074

0075

0076

0077

ON

0078

0079

0080

C860

C863

C865

C867

C86A

C86B

C86D

C86E

20

C9

DO

20

8A

FO

CA

86

ON IN STRING

0081

0082

0083

0084

0085

0086

C870

C873

C875

C876

C878

C87A

20

A5

38

E5

90

69

79

2C

07

9B

41

06

F7

03

04

28

00

00

AE

00 TEST2

C8

AF LB1

00 INSTR

AE

AD

AD

AE

AD

B6

B6

00

B7

LI

AE

JSR

JMP

JSR

CMP

BEQ

CMP

BNE

JMP

JMP

JSR

JSR

JSR

JSR

LDA

PHA

LDA

PHA

JSR

JSR

JSR

BEQ

STA

STX

STY

PLA

TAY

PLA

JSR

BEQ

STA

STX

STY

LDX

JSR

CMP

BNE

JSR

TXA

BEQ

DEX

STX

JSR

LDA

SEC

SBC

BCC

CHRGOT

*AE8D

CHRGET

#POSCOD

INSTR

#STRCOD

LB1

STRING

SYNTAX

CHRGET

CHKOPN

FRMEVL

CHKSTR

DESCRP

DESCRP+1

CHKCOM

FRMEVL

FRESTR

ILL

LEN2

ADDR2

ADDR2+1

FRESTR+7

ILL

LEN1

ADDR1

ADDR1+1

#0

CHRGOT

LI

GETBYT

ILL

START

CHKCLO

LEN1

LEN2

END

ADC^O

5 OPEN PAREN

5 GET EXPRESSI

?TEST STRING

5 STRING ADDRE

5 COMMA

5 SECOND STRIN

3 LENGTH=O

5 FIRST STRING

5 DEFAULT FOR

5 START POSITI

5 START POSITI

3LEN2>LEN1

;RESULT 0?

- 101 -

Tricks & Tips

0087 C87C 85 05

S

0088 C87E A5 06

0089 C880 18

US START POSITION

0090 C881 65 FD

0091 C883 85 FD

0092 C885 90 04

0093 C887 E6 FE

0094 C889 AO 00

0095 C88B Bl FB

0096 C88D Dl FD

ACTERS

0097 C88F DO OB

XT POSITION

0098 C891 C8

0099 C892 C4 04

RS OF STRING2 TESTED?

0100 C894 90 F5

0101 C896 A4 06

0102 C898 C8

0103 C899 4C A2 B3

0104 C89C E6 06

0105 C89E C6 05

0106 C8A0 DO 04

0107 C8A2 AO 00

ERO

0108 C8A4 FO F3

0109 C8A6 E6 FD

0110 C8A8 DO DF

RING2 ADDRESS

0111 C8AA E6 FE

0112 C8AC DO DB

0113 C8AE 4C 48 B2

0114 C8B1

0115 C8B1

TION

0116 C8B1

0117lC8Bl 20 73 00
0118 C8B4 20 FA AE

0119 C8B7 20 9E B7

0120 C8BA 8A

0121 C8BB 48

0122 C8BC 20 FD AE

0123 C8BF 20 9E AD

0124 C8C2 24 OD

0125 C8C4 30 OC

0126 C8C6 20 AA Bl

0127 C8C9 A5 64

0128 C8CB DO El

0129 C8CD AS 65

NGTH

0130 C8CF 4C DB C8

0131 C8D2 20 82 B7

LG TO NUMERIC

L2

L3

L4

L5

END

L6

ILL

STA

LDA

CLC

ADC

STA

BCC

INC

LDY

LDA

CMP

BNE

I NY

CPY

BCC

LDY

I NY

JMP

INC

DEC

BNE

LDY

BED.

INC

BNE

INC

BNE

JMP

NUMBER

START

ADDR1

ADDR1

L3

ADDR1+1

#0

(ADDR2),Y

(ADDRl)j,Y

L5

LEN2

L3

START

YFAC

START

NUMBER

L6

#0

L4

ADDR1

L2

ADDR1+1

L2

ILLQUA

;0F THE SHIFT

;ADDRESS 1 PL

STRING JSR

JSR

JSR

TXA

PHA

JSR

JSR

BIT

BMI

JSR

LDA

BNE

LDA

JMP

STR JSR

CHRGET

CHKOPN

GETBYT+3

CHKCOM

FRMEVL

TYPFLG

STR

INTEGE

DESCRP

ILL

DESCRP+1

STR2

*B782

5 compare char

;search at ne

;all characte

;RESULT

5 NOT DONE?

;NOT FOUND, Z

5 INCREMENT ST

5STRING* FUNC

5

;OPEN PAREN

5 SAVE LENGTH

5 STRING

5 HIGH BYTE

5 >255

5 LOW BYTE, LE

5SETSTR, TYPF

- 102 -

Tricks & Tips

0132 C8D5 F0 D7

0133 C8D7 AO 00

0134 C8D9 Bl

TER

0135 C8DB 85

22

03

0136 C8DD 68

0137 C8DE 20 7D B4

0138 C8E1 A8

0139 C8E2 FO 07

0140 C8E4 A5 03

0141 C8E6 88

0142 C8E7 91 62

G

0143 C8E9 DO FB

0144 C8EB 20 CA B4

N DESCRIPTOR STACK

0145 C8EE 4C F7 AE

ASSEMBLY COMPLETE.

BEQ ILL

LDY #0

LDA <*22>.,Y

STR2 STA TEMP

PLA

JSR *B47D

TAY

BEQ STR3

LDA TEMP

LOOP DEY

STA (STRADR)SY

BNE LOOP

STR3 JSR *B4CA

JMP CHKCLO

5 LENGTH ZERO

5 FIRST CHARAC

5 LENGTH

SFRESTR

5 CREATE STRIN

5 PUT STRING I

- 103 -

Tricks & Tips

100 FOR 1=51200 TO 51440

110 READ X:

POKE I,X:

s=s+x:

NEXT

120 DATA 169,11,160,200,141,10,3,140,11,3,96,169

130 DATA 0,133,13,32,115,0,201,33,240,6,32,121

140 DATA 0,76,141,174,32,115,0,201,185,240,10,201

150 DATA 196,208,3,76,177,200,76,8,175,32,115,0

160 DATA 32,250,174,32,158,173,32,143,173,165,100,72

170 DATA 165,101,72,32,253,174,32,158,173,32,163,182

180 DATA 240,100,133,4,134,251,132,252,104,168,104,32

190 DATA 170,182,240,86,133,3,134,253,132,254,162,6
200 DATA 32,121,0,201,44,208,7,32,155,183,138,240

210 DATA 65,202,134,6,32,247,174,165,3,56,229,4

220 DATA 144,40,105,0,133,5,165,6,24,101,253,133

230 DATA 253,144,2,230,254,160,0,177,251,209,253,208

240 DATA 11,200,196,4,144,245,164,6,200,76,162,179

250 DATA 230,6,198„5,208,4,160,0,240,243,230,253

260 DATA 208,223,230,254,208,219,76,72,178,32,115,0

270 DATA 32,250,174,32,158,183,138,72,32,253,174,32

280 DATA 158,173,36,13,48,12,32,170,177,165,100,208

290 DATA 225,165,101,76,219,200,32,130,183,240,215,160

300 DATA 0,177,34,133,3,104,32,125,180,168,240,7

310 DATA 165,3,136,145,98,208,251,32,202,180,76,247

320 DATA 174

330 IF SO30119

THEN PRINT "ERROR IN DATA!!":

END

340 SYS 51200:

PRINT "OK"

- 104 -

Tricks & Tips

4.8 Automatic line numbering

In this section we want to present a useful command for

the Commodore 64 which makes it much easier to enter

programs. This command, similar to the "AUTO" command found

on other computers, will automatically create line numbers

for you so that you do not have to type them in yourself.

You can set both the starting line number and the increment

by which each successive line number will be increased. It

is quite simple to use this new command:

To turn on the automatic line numbering, enter the

following command:

SYS 828, startnumber, increment

Ex. SYS 828, 100, 10

The increment may be an integer value up to 255. After

entering the SYS command, the first line number is printed

and the cursor is placed behind it. You can enter the

program line directly and press RETURN when done. Now the

next line number will be displayed automatically, line 110

in our example.

100 INPUT "INPUT";A$

110

To end the AUTO command, simply press RETURN without

typing anything else on a line. If you later want to

continue entering lines, you need only enter

- 105 -

Tricks & Tips

SYS 828

The line number at which you left off will automatically be

displayed. You can of course change the starting line number

and increment at any time by entering these along with the

SYS command.

The machine language program is stored in the cassette

buffer. Following this assembly language listing is again a

loader program in BASIC.

0001

FER

0002

0003

0004

033C

033C

033C

033C

NT ACCUMULATOR

0005

URN

0006

0007

0008

033C

033C

033C

033C

LOATING POINT

0009

NT 0

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

033C

ASCII

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C 20

HARACTERS?

0023

0024

0025
-■

0026

0027

0028

0029

033F FO

0341 20

0344 20

0347 86

0349 A5

034B 85

034D A5

79 00

10

FD AE

EB B7

FD

14

FB

15

LO

HI

FAC

CR

LINE

I NCR

INTFLT

FLTASC

VECTOR

INPUT

PRINT

BUFFI

BUFF2

MNLOOP

GOON

CONT

CHRGOT

OLDVEC

GETPAR

CHKCOM

ORG

EQLI

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

JSR

BEQ

JSR

JSR

SIX

LDA

STA

LDA

828

$14

LO+1

$62

13

251

LINE+2

$BC49

$BDDD

$302

$FFCF

*FFD2

$101

$200

$A486

$A569

$A576

$79

$A483

$B7EB

$AEFD

CHRGOT

LO

CHKCOM

GETPAR

I NCR

LO

LINE

HI

iCASSETTE BUF

SFLOATING-POI

{CARRIAGE RET

SLINE

iINCREMENT

;INTEGER TO F

!FLOATING POI

SLINE INPUT

ADDITIONAL C

NO

COMMA?

GET PARAMETE

AND SAVE

- 106 -

0030

0031

0032

CTOR

0033

0034

0035

0036

0037

0036

0039

0040

0041

0042

0043

0044

0045

0046

034F

0351

0353

0356

0358

035B

035C

035C

035F

0362

0362

0364

0366

0368

036A

036C

036D

POINT

0047

004S

0049

0050

0051

FER

0052

0053

0054

0055

0056

0057

0058

0059

0060

0061

0062

0063

0064

0065

0066

0067

0068

MBER

0069

0070

0071

0072

0073

0074

0075

0076

0370

0373

0375

0378

037A

037D

0380

0381

0383

0385

0386

0388

038A

038C

038E

0390

0393

0396

0398

039A

039D

039F

03A1

03A3

03A5

03A7

03A9

O3A3B

03AE

03B1

85

A9

8D

A9

SD

60

20

4C

A5

A6

85

86

A2

38

20

20

A2

BD

FO

9D

20

E8

DO

A5

18

65

85

90

E6

A9

20

20

C9

FO

4C

A5

E5

85

BO

C6

A9

AO

80

8C

4C

FC

5C

02

03

03

62

86

FB

FC

63

62

90

49

DD

00

01

09

00

D2

F2

FB

FD

FB

02

FC

20

D2

CF

OD

03

69

FB

FD

FB

02

FC

83

A4

02

03

76

03

03

03

A4

BC

BD

01

02

FF

FF

FF

A5

03

03

A5

LO

AUTO

AUTNUM

LI

L2

L3

L4

L5

STA

LDA

STA

LDA

STA

RTS

JSR

JMP

LDA

LDX

STA

STX

LDX

SEC

JSR

JSR

LDX

LDA

BEQ

STA

JSR

I NX

BNE

LDA

CLC

ADC

STA

BCC

INC

LDA

JSR

JSR

CMP

BEQ

JMP

LDA

SBC

STA

BCS

DEC

LDA

LDY

STA

STY

JMP

LINE+1

4KAUTQ

VECTOR

#>AUTO

VECTOR+1

AUTNUM

MNLQDP

LINE

LINE+1

FAC+1

FAC

#*90

INTFLT

FLTASC

#0

BUFFI,X

L2

BUFF2,X

PRINT

LI

LINE

I NCR

LINE

L3

LINE+1

#32

PRINT

INPUT

#CR

L4

GOON

LINE

I.NCR

LINE

L5

LINE+1

#<GLDVEC

#>OLDVEC

VECTOR

VECTOR+1

CONT

Tricks & Tips

§SET INPUT VE

.3 LINE NUMBER

jiTO FLOATING

5 TO ASCII

5 GET DIGITS

5,1 N BASIC BUF

SAND OUTPUT

SLINE NUMBER

;OUTPUT SPACE

5 EMPTY INPUT

SYES

;CONTINUE

3 NEXT LINE NU

5 PUT OLD

:; VECTOR BACK

ASSEMBLY COMPLETE.

- 107 -

Tricks & Tips

100 FOR I = 828 TO 947

110 READ X S POKE I,X S S=S+X 5 NEXT

120 DATA 32,121, 0, 240, 16, .32, 253, 174, 32, 235,183,134

130 DATA 253,165, 20,133,251,165, 21,133,252,169, 92,141

140 DATA 2,, 3,169, 3,141, 3, 3, 96, 32, 98, 3, 76

150 DATA 134, 164, 165,251, 166,252, .1.33, 99,134, 98,162,144

160 DATA 56,, 32, 73,188, 32,221,189,162, 0,189, 1, 1

170 DATA 240, 9,157, 0, 2, 32,210,255,232,208,242,165

180 DATA 251, 24,101,253,133,251,144, 2,230,252,169, 32

190 DATA 32,210,255, 32,207,255,201, 13,240, 3, 76,105

200 DATA 165,165,251,229,253,133,2515,176, 2,198,252,169

210 DATA 131,160,164,141, 2, 3,140, 3, 3, 76,118,165

220 IF S <> 15495 THEN PRINT "ERROR IN DATA!!" : END

230 PRINT "OK" *

- 108 -

Tricks & Tips

4.9 User-defined functions—DEF FN

Many programmers prefer to add more lines or

subroutines to their program instead of simply defining

their functions. Admittedly, this technique is not well-

described in the user's guide, so we will try to clarify its

use. In addition to the lack of emphasis in the

documentation, there is another reason why this technique is

not used: The function does not appear very powerful, at

least at first glance, because only one argument may be

passed to the user-defined functions.

In this section we want first to illustrate the use of

these functions and second, to show how complex multi-

variable formulas can be implemented by nesting several

functions.

A function definition is constructed in the following

manner:

DEF FN name (function variable) = arithmetic expression

Example:

DEF FN A(X) = 2*X + B

Our function has the name A and function variable X.

When the function is called, the expression between the

parentheses (it need not be X or even a variable) will be

substituted for X in the arithmetic expression. Any

variables with the name A or X will remain undisturbed. The

function variable X is used only as a place holder for the

- 109 -

Tricks & Tips

actual value given in the function call. In contrast, B

implies the actual variable B which must be defined before

calling the function. The function variable is often

described as the dummy variable. The result of the function

must always be numeric—a string expression is not allowed.

As an example, we will define a formula which will

round-off a value to the nearest hundreth—a function useful

for working with dollar amounts. As you know, the third

decimal place determines the rounding. If this value is 5 or

greater, the second decimal place is increased by one

(rounded up), else the number is merely truncated at the

second decimal place (rounded down).

Most programmers would place this rounding function

directly into the program:

A = INT (B*100+.5)/100

If this function must be used more than once, one can save

time and space by replacing it with a function call

A = FNX(B)

First, however, the function must be defined:

10 DBF FN R(B) = INT(B*100+.5)/100

100 A = FNR(B)

The command in line 100 can be used as often as necessary

in place of the longer formula, in which the variable B

contains the value to be rounded.

- 110 -

Tricks & Tips

Now an example of nesting functions. Here we will

calculate the price of an item based on the cost, a given

profit margin, and the sales tax.

C is the cost

P is the profit margin in %

S is the sales tax in %

10 DBF FN SL(C) = (C/(l-P/100)*(l+S/100))

20 DBF FN PR(B) = INT (FN SL(B)*100+.5)/100

100 A = FN PR(C)

After line 100, A contains the retail price, rounded to

the nearest penny. Functions may also be nested deeper, of

course. A maximum of ten functions may be nested. If you try

to nest them any deeper, an MOUT OF MEMORY ERROR" will

occur, indicating that the stack has overflowed (not

necessarily that the BASIC program storage was exceeded). If

subroutines (GOSUB) or FOR-NEXT loops are active during a FN

call, the total nesting level including subroutines, FOR-

NEXT loops, and FN levels must not exceed the maximum of ten

levels.

- Ill -

Tricks & Tips

4.10 BASIC HARDCOPY routine

Have you ever tried to print the contents of the screen

on your printer? There are a number of machine language

program that allow you to do this, but it is also easy to do

in BASIC.

Since you must understand the operation of the program,

you must first learn something about the construction of the

screen memory.

As you know, there are 1000 characters at your disposal

on the screen. These 1000 characters are organized as 25

lines of 40 characters each. These characters are naturally

not only on the video display, but also stored in the

Commodore 64*s memory. Normally, the area in which you will

find the individual characters is in RAM from address 1024

to 2023. In order to place on the paper all of the

information on the screen, we must read the characters out

of this memory area with PEEK and then print the

corresponding values with the CHR$ function. It is important

to note that the values in the range 0 to 31 cannot be

printed directly because these values belong to the ASCII

range of control characters and are by nature non-printable.

There is one other thing we must pay attention to. The

lines on the screen are 40 characters long but a line on a

printer normally consists of at least 80 characters. If you

are familiar with programming in BASIC, you know that to

print characters one after each other with multiple PRINT

statements (screen or printer) requires that the PRINT

statements be followed with a semicolon. For our hardcopy

routine we must print 40 characters one after the other (one

entire screen line) and then send a carriage return to the

- 112 -

Tricks & Tips

printer so that the screen image is printed the same way it

appears on the screen. We can accomplish this with nested

loops. The completed program looks like this:

50000 OPEN 4,4: REM OPEN PRINTER CHANNEL FOR UPPER/GRAPHICS

50010 FOR 1=1024 TO 1984 STEP 40: REM 25 LINES

50015 BL$="": REM ERASE LINE

50020 FOR J=0 TO 39: REM 40 LINES

50030 L=PEEK(I+J): REM READ CHARACTER

50040 IF L<32 THEN L=L+64: REM CONVERT TO UPPER CASE

50050 BL$=BL$+CHR$(L): REM BUILD LINE

50060 NEXT J : REM NEXT CHARACTER

50070 PRINT BL$: REM PRINT LINE

50080 NEXT I: REM NEXT LINE

50090 RETURN: REM BACK TO MAIN PROGRAM

You may have noticed that we wrote this program

slightly differently than we had discussed before. If you

have seen a hardcopy routine in action, you may have noticed

that a certain amount of time goes by before the printer

actually prints the line after it has been sent. Why? Almost

every printer works with something called a buffer (of

varying size). The characters which the computer sends are

placed into this buffer until it is full. Then the buffer is

printed. The advantage of this is that an entire line can be

printed faster than just one character at a time. It is for

a similar reason that we first fill a text string (BL$) with

the individual characters before we print it. The computer

is able to send a 40-character string faster than it can

send 40 individual characters.

One other feature of this program is the conversion to

upper case characters in line 50040. The upper case

- 113 -

Tricks & Tips

characters in the Commodore 64 are stored in memory using

a range of codes starting with 1. In standard ASCII however,

this character range starts with 65, therefore, all numbers

less than 32 are incremented by 64 to allow them to be

printed correctly.

- 114 -

Tricks & Tips

Chapter 5 : Forth

5.1 Programming in Forth

What is Forth? This is a question often asked by those

who have only programmed in BASIC or assembly language up to

this point. Certainly many of you will say "Why should I

learn another programming language when my Commodore has a

good version of BASIC?1' This objection may seem justified at

first, but after a closer look, one must consider if it

really is justified, especially when a computer can speak

more than one language.

Once you have programmed in BASIC for a while, you will

come across things which either cannot be done at all or are

very difficult to do. On larger computers, one has the

ability to switch to other languages. There is FORTRAN for

mathematical applications, COBOL for commercial purposes,

assembly language for time-critical tasks, BASIC for general

problem solving and so on. Then there are languages designed

to force structured programming such as Pascal and ELAN.

Each language has its strengths and weaknesses.

Forth belongs to the youngest generation of programming

languages, as its name says, to the fourth generation. The

developers of Forth have tried to implement all the

advantages of the older, better-known languages without the

disadvantages of these languages.

- 115 -

Tricks & Tips

Forth has in its structure some very striking

advantages, especially for microcomputers:

1. The computer on which Forth runs requires a

very small address space. Because Forth programs

do not require much space, large, efficient

programs can be created on a very small computer.

2. Forth is ideally suited for performing low-

level (machine-level) or I/O functions even

though one need not be acquainted with the

hardware of the device in any great detail in

order to program in Forth. It is often used in

industrial control applications and robotics.

3. In addition to the first two advantages, Forth

does not require a disk drive, although it is a

good idea to have one.

Forth consists of five parts:

1. DICTIONARY: The philosophy of Forth is such

that the set of commands in Forth which relate

directly to machine language code is very small.

The user is permitted to define his own commands

and use these in subsequent programs. This allows

you to personalize Forth or optimize for

performing certain types of operations. The

dictionary itself is a linked list containing the

current Forth commands (called words) and

information necessary to execute them.

2. STACK: The stack is the most important element

of Forth. The notion of a stack is familiar to

anyone who has done any machine language

- 116 -

Tricks & Tips

programming or who owns a Reverse Polish Notation

(RPN) calculator. We will come back to this

later.

The stack uses the last-in/first-out (LIFO)

method of data storage. Virtually all operations

work with the stack.

3. INTERPRETER: Forth, like BASIC, is an

interpreter. This means that one first creates a

Forth program with the editor and then starts the

program with the appropriate command. Error

checking occurs while the program is running.

There is no tedious waiting while the program

compiles; it can be started immediately. This has

the result that interpreted programs are

typically slower than compiled programs. The time

factor difference is not as great with Forth. The

interpreter is divided into a text interpreter

and an address interpreter. The text interpreter

checks the words in the dictionary, and when the

word is found, the address interpreter is

activated. This interpreter works with absolute

addresses, calling in turn each of the words

which make up a user-defined or higher-level

Forth word. These addresses are "compiled" into a

word's dictionary entry at the time it is

defined.

4. ASSEMBLER: Many Forth interpreters contain an

assembler. This assembler can be used to define

words which will then execute machine language

routines when called. This method of programming

is sometimes required for I/O—establishing

- 117 -

Tricks & Tips

contact with the external world. Forth itself

bears a certain resemblance to assembly language;

it is quite fast, but far easier to learn.

5. MEMORY: Memory is important for any

programming language, and no less so for Forth,

although it typically requires far less than

other programming languages. In Forth, memory can

be treated like blocks on a disk drive, and, to a

certain extent, blocks on a disk drive can be

treated like memory.

- 118 -

Tricks & Tips

5.2 A comparison of Forth and BASIC

The best way to see the advantages of Forth is to

compare two programs, one written in Forth and the other in

BASIC, which perform the same task. Before we present these

programs, we must clarify a few things.

In section 5.1 we mentioned that the stack plays a very

important role in Forth, and that one can compare it to the

method of operation of an RPN calculator (such as those made

by Hewlett-Packard):

Let's calculate (2 + 3) * (4 + 5) on an HP calculator. The

keys we press are:

2 <ENTER> 3+4 <ENTER> 5 + *

This looks confusing at first, but it is necessary in order

to solve the equation without using parentheses. Pressing

"2" and then the ENTER key places the number 2 on the top of

the stack. Pressing "3" places this number on the stack,

first moving the 2 one place lower on the stack. The stack

now looks like this:

STACK: TOP 3

2

BOTTOM

- 119 -

Tricks & Tips

After the "+" key is pressed, the addition is carried

out. The "+" operation removes the top two values from the

stack, adds them, and them pushes the result back onto the

stack. The stack now looks like this:

TOP

BOTTOM

Pressing the "4" key pushes the 5 down one place and puts

the 4 on top:

TOP 4

5

BOTTOM

Entering the number 5 moves the old 5 and the 4 one place

down on the stack:

- 120 -

Tricks & Tips

TOP 5

4

5

BOTTOM

The M + If operation again removes the two most recently

entered values from the stack, adds them and pushes the

result back onto the stack.

TOP 9

5

BOTTOM

The last operation is the multiplication. It works in the

same way as the addition.

TOP 45

BOTTOM

Now the result is at our disposal. This process seems

quite complicated and time-consuming, but each calculator

- 121 -

Tricks & Tips

and computer works on this principle. On Hewlett-Packard

calculators, as in Forth, this process is made explicit.

Those who have done some programming in assembly language

will be able to learn Forth with few difficulties, but even

the novice learning Forth will have fewer problems than he

might think. The greatest obstacle to learning Forth is that

it is so different from most other languages, not that it is

so difficult to understand on its own.

We will now present a small Forth program which will

clarify the operation of the stack and also illustrate the

process of defining new words and adding them to the Forth

vocabulary. The program takes the cube of a number; since

there is no command to perform this calculation, we must

define one:

: CUBE (THIS WORD IS BEING DEFINED)

DUP DUP (COPY THE NUMBER TWICE ON STACK)

* * (MULTIPLIES TOP TWO STACK VALUES 2X)

The colon in Forth tells the interpreter that a word is

being defined. If we had not entered the colon, Forth would

have responded

CUBE ?

indicating that it had not found this word in its

dictionary. Since we did use the colon, however, Forth will

treat everything up to the semicolon as the definition of

this word. After encountering this character, Forth replies

OK

- 122 -

Tricks & Tips

The word CUBE is now part of our Forth dictionary and

we can use it directly or within a program. It will remain

so only as long as the computer is turned on, unless we save

it onto a disk.

The command DUP makes a copy of the value at the top of

the stack and puts this copy back on the stack. Since we

want not the square but the cube of the number, we must make

two copies of the number. If the number 5 was at the top of

the stack, the stack would now look like this:

TOP 5

5

5

BOTTOM

Now we must multiply the numbers together. A total of

two multiplications are necessary. Forth uses the usual "*"

symbol for multiplication. After we have performed the

multiplications, the cube will be at the top of the stack,

and we can end our definition. Note that during a colon

definition none of these operations are actually carried

out. The colon places Forth in what is called the compile

mode, where it searches for each word in the definition and

makes note of that word's address within the dictionary,

which it places in the definition for the new word. When we

now use this new word, a colon run-time routine calls each

of the words in turn, thereby executing the new command.

Here are some examples of our new command (the "." tells

- 123 -

Tricks & Tips

Forth to print the value at the top of the stack):

You enter:

5 CUBE .

1 CUBE .

-15 CUBE .

Forth responds:

1.25 OK

1 OK

-3375 OK

As you can see, it is very easy to add new commands to

Forth. You can make use of this feature to optimize the

language to a specific application or set of applications.

Now let's compare Forth and BASIC. The program we will

use calculates the cubes of the integers from zero to ten.

The Forth program will make use of our newly defined word

CUBE.

1. Forth

: CUBENUNBERS

10 0 (FROM 0 TO 10 * LIFO!! *)

DO (START OF LOOP)

CR I . I CUBE .

(PRINT NUMBER (I) AND CUBE)

LOOP (END OF LOOP)

CUBENUMBERS

0 0

1 1

2 8

3 27

- 124 -

Tricks & Tips

2. BASIC

4 64

5 125

6 216

7 343

8 512

9 729 OK

10 REN CALCULATE CUBES

20 MIN=0 : MAX=9

30 FOR I=MIN TO MAX : PRINT 1,1*1*1

40 NEXT I

50 END

RUN

0

1

2

3

4

5

6

7

8

9

READY

0

1

8

27

64

125

216

343

512

729

Both programs require approximately the same number of

lines, but the Forth program requires far less storage space

than does the BASIC program. Efficient use of memory is not.

- 125 -

Tricks & Tips

everything, however. Let us compare the speeds of Forth and

BASIC. We can do this with a simple loop:

1. Forth

BENCHMARK

30000 0

DO

LOOP

(FROM 0 TO 30000)

(START OF LOOP)

(EMPTY LOOP)

(END OF LOOP)

(END OF DEFINITION)

BENCHMARK OK

2. BASIC

10 REM BENCHMARK

20 MIN=0 : MAX=30000

30 FOR I=MIN TO MAX

40 NEXT I

50 END

RUN

READY.

The results may be quite surprising:

Language:

BASIC

Forth

Time:

about 40 seconds

about 4 seconds

- 126 -

Tricka & Tips

Remember, these test were performed the same computer, the

Commodore 64.

This advantage alone should prompt many people to give

serious consideration to learning Forth. Programming in it

is quite easy and the speed and memory savings are

significant.

Forth - The language for professional software developers

It is interesting to note that more and more

professional software developers are changing their minds

about Forth because of the many advantages that we have

already discussed. In addition, Forth offers a short

development time because it is as structured language, is

easy to use, and in spite of this still offers the

flexibility and speed of machine language. There are already

programs for the Commodore 64 which have been developed in

Forth, such as the spreadsheet program Calc Result.

Forth has one last advantage which is of special

interest to software houses. It belongs to the small group

of portable languages, which means that a program written in

Forth on one computer can easily be made to run on a

different computer. This reduces the time required to

produce a given software packages for multiple computers,

something which is very important to software companies.

If you are interested in learning more about Forth, you

can try our TINY FORTH package, available for the Commodore

64 or VIC-20.

- 127 -

Tricks & Tips

Chapter 6 : CP/M on the Commodore 64

6.1 Introduction to CP/M

CP/M is one of the most widely-used microcomputer

operating system. It has become the "standard" operating

system, inasmuch as such a thing exists. CP/M has withstood

the test of time, something which cannot be said of many

other microcomputer operating systems. Most of the bugs have

been worked out and the system is reasonably trustworthy.

What can the Commodore 64 user gain from this operating

system? He is used to BASIC 2.0 and the Commodore DOS, why

another operating system? This question is not often found

outside of Commodore users who have not seen much of the

rest of the computer world. There one finds an undreamed-of

quantity of software. Not that the 64 does not have a

significant amount of software available for it, but it is

nothing compared to the sheer volume available for CP/M.

Not only can the user profit from the availability of

CP/M software, but the programmer as well. He can write his

software for a much larger body of users than ever before

possible. Writing a program specifically for the Commodore

64 limits the potential users to 64 owners, but many

different computers can use CP/M, so writing a program to

run under CP/M greatly increases the potential market for a

program. Many programmers writing for an "exotic" operating

system have heard "And when will the program be available on

CP/M?"

- 128 -

Tricks & Tips

At this point we must point out one major problem with

every CP/M system:

CP/M IS NOT THE SAME AS CP/M!

Unfortunately, most computer manufacturers use their

own modified version of CP/M. Despite the apparent

compatibilty, it is not possible to interchange programs or

transfer data. The CP/M for the Commodore 64 also has its

peculiarities. For example, the I/O byte of CP/M is not

implemented, the 64 can display only 40 characters per line

on the video display, and even the disk format is not

compatible with other computers. We will return to these

problems and how to solve them later.

CP/M has certain standards, some of which we have already

mentioned:

1. The computer on which it runs must have at

least 48K of RAM.

2. CP/M occupies the free memory at address

$0100.

3. Most programs require a video display capable

of displaying 24 (or 25) lines of 80 characters.

4. Much CP/M software is available only on 8 inch

disks.

Let's take a brief look at these standards. First, the

computer must have at least 48K of RAM. Virtually all

currently produced computers can be expanded to 48K of RAM,

- 129 -

Tricks & Tips

and the Commodore 64 already comes with more than this. The

ability of the 64 to switch the ROMs out is also important

for implementing CP/M and other programs which could not be

used on computers without this capability. CP/M can be

placed where it is supposed to go, at address $0100.

The first problem with implementing CP/M on the 64 is

the limited screen size. CP/M programs such as Wordstar,

Datastar, and others require an 80 column display for proper

operation. The Commodore 64 has only 40 characters, although

there is a solution which we will say more about in section

6.3.

The last problem concerns the disk drive. We mentioned

that much of the CP/M software is available on 8 inch disks.

The 1541 disk drive uses 5 1/4 inch disks. More and more

computer manufacturers are using the 5 1/4 inch disk drives

and so more CP/M software is being made available for these

formats. Unfortunately, none is yet available in the 1541

format.

What does CP/M consist of?

CP/M is an operating system composed of several parts. More

exactly, it consists of four major parts.

1. BIOS (Basic Input/Output System): As the name

implies, the BIOS is concerned with communicating

with the outside world. It is used to send

information to the printer, the terminal

(screen), to the disk drive, and so on. The BIOS

has a number of function calls which tell the

operating system how this communication will take

- 130 -

Tricks & Tips

place. A complete table of these functions is

found at the end of this description.

2. BDOS (Basic Disk Operating System): This part

controls the disk drives—the management of the

directory and the actual read and write commands.

These procedures are also controlled by

individual function calls.

3. CCP (Console Command Processor): The operating

system must be told what it is you want it to do.

This is generally done via the Commodore 64's

keyboard. The CCP transmits your commands to the

CP/M system.

4. TPA (Transient Program Area): This is the free

program area which is available to the user. This

storage area is used when you write or use a

program.

This is the layout of the BIOS, BDOS, CCP, and TPA in

memory:

Name: Address:

FDOS (BIOS + BDOS) $9C00

CCP $9400

TPA $0100

System parameters $0000

- 131 -

Tricks & Tips

Here is the table of FDOS functions:

Number: Function:

BIOS

00

01

02

03

04

05

06

07

08

09

10

11

System reset

Read ASCII character from terminal

Send ASCII character to terminal

Read ASCII character from paper tape

reader

Send ASCII character to paper tape punch

Send ASCII character to printer

Send/receive character to/from console

Read status from device

Send status to device

Send character string buffer

Read character string into buffer

Read status of console

BDOS

12

13

14

15

16

17

18

19

20

Read CP/N version number

Disk reset

Select drive number

Open file (OPEN)

Close file (CLOSE)

Search for first program in FCB

Search for next program in FCB

Erase program (DELETE)

Read from sequential file

- 132 -

Tricks & Tips

21 Write to sequential file

22 Create file

23 Change filename (RENAME)

24 Input possible drives

25 Read current drive number

26 Set DMA address

27 Read address

28 Set write protect

29 Read read/write pointer

30 Set read/write pointer

31 Read address of disk parameters

32 Read/set user id

33 Read from random file

34 Write to random file

35 Calculate program length

36 Read address of record

All of these functions are called in a specific

pattern. In order to clarify this, we must learn a little

bit about 8080 machine language. Because CP/M was developed

on this processor and the Z-80 microprocessor which is found

in the Commodore CP/M module also understands the 8080

machine language, CP/M applications are written in it. If

you are not familiar with this machine language, but you

would like to delve deeper into CP/M, we strongly recommend

that you get a CP/M handbook such as Rodney Zaks CP/M

Handbook and a good book on Z-80 or 8080 machine language.

What do these function calls look like?

As an example, we will read the version number of the

Commodore CP/M (2.2) with the following routine:

- 133 -

Tricks & Tips

MVI

CALL

CPI

C,12

0005

20H

;FUNCTION 12

;JUMP TO DDOS

;$20 INDICATES CP/M.2.0

First the C register is loaded with the value 12, the

function number for reading the CP/M version number. This C

register is always loaded with the function number before

the branch is made to address 0005. CP/M now knows that we

want to find out the version number, and branches

automatically to the point in the CP/M system where the

version number will be read. BDOS then jumps back to our

routine after placing the version number in the accumulator.

If the value is $20 then we know that the version number is

at least 2.0. This information is very important if we want

to write a program which uses random file access because all

CP/M versions before 2.0 can work only with sequential files

(see chapter 8). If we want our program to run on a CP/M

computer other than the Commodore 64, we can easily

determine if it will run or not by reading the version

number and checking to see that it is 2.0 or greater.

The various registers play an important role in the

CP/M function calls. The first to mention is the C register

which contains the function number prior to the BDOS/BIOS

call. After the execution of the appropriate routine, the

other registers contain the desired information. Some

functions do not return any information, rather they output

information to some device, or inform the operating system

itself of something. For these types of calls, the

appropriate register or registers are loaded with the

information, the C register is loaded with the function

code, and then call is made.

- 134 -

Tricka & Tips

Why function codes?

As you know by know, it is an advantage of the CP/M

operating system that a CP/M program can generally be run on

any CP/M computer. Small changes to the BIOS/BDOS or CCP may

be necessary to implement CP/M itself on different

computers, however. In order to guarantee that a program

will run without the programmer having to worry about the

construction of a particular version of CP/M, the function

calls to the BIOS/BDOS via address 0005 are used. This way a

given part of the operating system can be changed without

having to rewrite any programs. The same advantage is found

in the kernal ROM of the Commodore 64, without the CP/M

operating system. In the kernal is a list of subroutine

entry points called a vector table which call the various

input/output routines. If any of these routines are changed,

it is still possible to use the old programs; they notice

nothing of the altered operating system.

The CCP commands

The CCP serves as an interface between the user and the

CP/M operating system. Programs can be executed from the CCP

and it also supervises its own small set of commands:

1. DIR (DIRectory): This command displays the

contents of the disk. It offers the following

options:

- DIR displays the entire directory listing

of the disk in the currently selected

drive.

- 135 -

Tricks & Tips

- DIR B: displays the entire directory

listing of the diskette in drive B (1). "A"

nay be used in place of B, causing the

directory of the disk in drive A (0) to be

displayed.

- DIR <name.ext> only indicates whether or

not the given file is on the diskette. The

name may be up to eight characters long,

must start with a letter, and may contain

no special characters (punctuation) except

the extension separator, the period, "ext"

is a three-letter extension of the program

name. It is normally used to indicate the

type of program. For example, only programs

which end in COM may be executed directly.

TXT indicates that the file contains text,

BAS indicates a BASIC program, and so on.

- DIR <*.ext> displays all programs ending

with ext. DIR *.COM would display all

programs ending with .COM, i.e. all

directly-executable programs.

See the CP/M manual for other options with

the DIR command.

Here is the format of the directory listing when

using the DIR command on the Commodore 64:

A>DIR

A:

A:

A:

A:

MOVCPM

SUBMIT

ED

DDT

COM :

COM :

COM :

COM :

PIP

XSUB

ASM

LOAD

COM

COM

COM

COM

- 136 -

Tricks & Tips

A:

A:

A:

A>

STAT

DUMP

COPY

COM :

COM :

COP :

SYSGEN

DUMP

CONFIG

COM

ASM

COM

2. ERA (ERAse): This command erases one program

or several programs from the directory. Here too

there are several options:

-ERA <name.ext>

-ERA <*.ext>

3. REN (REName): With this command you can give

an existing program or data file a new name.

There is only one form of the command:

- REN <new name) = <old name>

4. TYPE: This command is used only for text

files. It displays the contents of a file on the

screen. It has the form:

- TYPE <filename.ext>

In most cases the extension will be TXT, PRN, or

something similar.

- 137 -

Tricks & Tips

5. SAVE: This command appears quite complicated

at first. It is normally used to save a program

modified with DDT, or for saving a modified CP/M

version. The format is:

- SAVE <number of pages> <name.ext>

The number of pages is the number of 256-byte

"pages" to be saved. The command

SAVE 50 TEST.COM

puts the contents of memory from address $0100

(start of the TPA) to address $32FF under the

name TEST.COM. The length is 50*256.

6. USER: This command allows the directory to be

divided up for different users. It is possible to

protect certain areas of the directory from

access by other users (on other computers). This

command has no real value on the Commodore 64,

however. The form is:

- USER user number

The user number is an integer from 0 to 15.

Entering the number places one in the directory

of the corresponding user. The default number is

zero.

These are the commands which every computer using the

CP/M operating system understands. Only the USER command is

- 138 -

Tricks & Tips

new since version 2.0. All others belong to the standard

CP/M command set. In the next pages we will present a short

overview of the standard CP/M programs: PIP, ED, DDT, and

STAT. They are supplied on every CP/M system diskette, but

they are programs, not commands. They serve to expand the

commands available on CP/M, but they must be first loaded in

from disk.

- 139 -

Tricks & Tips

6.2 The individual CP/M programs

What would CP/M be without its framework of utility

programs? Digital Research, the producer of CP/M, has made

sure that the user can start programming immediately. (Note

to Commodore 64 users: No version of BASIC comes with the

Commodore CP/M although one may be added later).

The following programs belong to the CP/M standard:

- STAT.COM A program which obtains and displays the

various system information such as the space

left on the disk, device assignments, and so

on.

- ASM.COM

- L0AD.COM

This is an assembler provided for programming

in 8080 assembly language.

This programs makes ready-to-run programs out

of assembled programs (programs with the

extension .HEX).

- DUMP.COM With this program a program (.COM) can be

displayed on the screen in readable

hexadecimal format.

- PIP.COM PIP is a program to exchange

different peripheral devices.

data between

- ED.COM The CP/M text editor. This program is useful

for creating text, assembly language source

programs and so on.

- 140 -

Tricks & Tips

- SYSGEN.COM PIP can only copy files, so SYSGEN is needed

to write the individual BIOS tracks on the

disk and thereby generate a new BIOS (see

section 6.3).

- M0VCPM.COM This program fits the standard CP/M to your

special type of computer (see section 6.3).

- SUBMIT.COM It often happens that the same input must be

entered repeatedly. The SUBMIT command allows

you to create a file of this input which it

will enter at the appropriate time (such as

setting certain start-up parameters).

- XSUB.COM This program also eases the work of entering

repeatedly occurring commands. It is only

combination with SUBMIT. It allows manual

input, over the keyboard, during the

operation of SUBMIT.

At this point we cannot deal with all of these programs

in detail. We shall limit our presentation to a brief

introduction to three of the most commonly used programs.

More information can be obtained from the CP/M manual.

STAT

STAT is one of the more important CP/M programs. It

might also be called the STATUS program because one can

obtain a great deal of information about the condition of

- 141 -

Tricks & Tips

the entire system from it. STAT not only gives the remaining

space on the diskette and the length of the files, but it

can also alter the read/write pointer which indicates

whether the disk can be written to and read from, or may

only be read from. There is one limitation when using the

Commodore 64 version of CP/M. The I/O byte is not

implemented which means that the individual assignments

cannot be changed. This should not be a problem in normal

use, however.

An example of the STAT program:

A>STAT VAL:

TBMP R/0 DISK: D:=R/O

SET INDICATOR: D:FILENAME.TYP $R/0 $R/W $SYS $DIR

DISK STATUS : DSK: D:DSK:

USER STATUS : USR:

IOBYTE ASSIGN:

CON: = TTY: CRT: BAT: UC1:

RDR: = TTY: PTR: UR1: UR2:

PUN: = TTY: PTP: UP1: UP2:

LST: = TTY: CRT: LPT: UL1:

Here we can find out which values and in what form we can

(theoretically) change, but as already mentioned, the values

under IOBYTE cannot be changed on the Commodore 64.

If we want to place a write protect on a disk, for

example, we enter STAT A:R/0. This write protect remains as

long as the device is turned on. To find out the CP/M device

- 142 -

Tricks & Tips

assignments, enter STAT A:DEV:. On the 64 the result will

be:

A>STAT DEV:

CON: IS TTY:

RDR: IS TTY:

PUN: IS TTY:

LST: IS TTY:

Changing any of these assignments will have no effect on the

Commodore 64.

The information about the disk characteristics is also

very informative. Here we can learn the disk capacity, what

the construction looks like, and much more. The appropriate

command is

A>STAT DSK:

A: DRIVE CHARACTERISTICS

1088: 128 BYTE RECORD CAPACITY

136: KILOBYTE DRIVE CAPACITY

64: 32 BYTE DIRECTORY BNTRIES

64: CHECKED DIRECTORY ENTRIES

128: RECORD/ EXTENT

8: RECORD/ BLOCK

34: SECTORS/ BLOCK

2: RESERVED TRACKS

- 143 -

Tricks & Tips

PIP

PIP is a universal program for copying files. Not only

can it copy between different disk drives, it can also send

data intended for the screen to the printer. This has the

advantage that the programs themselves do not have to be

changed in order to have them print out results on the

printer. In order to copy a entire diskette, the form PIP

B:=A:*.* is used. This command copies all the files from

drive A to drive B. To send data to the printer, we would

use a command such as PIP LST:=DUMP.ASM. Now, provided that

the printer is connected, the entire program DUMP.ASM will

be printed.

ED

The text editor allows input of text or programs which

will be later compiled or assembled, such as FORTRAN, COBOL,

or assembly language programs. Working with ED requires some

practice; it will appear somewhat complicated to Commodore

users but it will not take long to become familiar with this

simple editor. An example:

A>ED TEST.TXT

NEW FILE

*I

THIS IS THE FIRST TEXT LINE

AND THIS IS THE SECOND

<CTRL>-Z press the CTRL and the Z key

at the same time

*E

A>

- 144 -

Tricks & Tips

These commands write the two lines of text shown beneath the

"*I" to a disk file called TEST.TXT. The M*tf is the editor's

command prompt. Entering the E command ends the editing

session and saves the file to disk, returning you to CP/M

and the A> prompt. This file can be listed by entering TYPE

TEST.TXT, Other editing commands for changing and

manipulating the file from within ED are also available;

consult your CP/M manual for details.

- 145 -

Tricks & Tips

6.3 Adapting standard CP/M software to the 64

What must be taken into consideration when adapting

CP/M software to the hardware of the Commodore 64? First you

Bust remember that the screen is only 40 columns across.

Because most CP/M software is written for an 80 column

screen, you will need an 80 column card of some sort. In

addition, a large, fast disk drive would be useful for

working with CP/M.

To adapt CP/M to a specific computer, the operating

system has two programs at its disposal: MOVCPM and SYSGEN.

MOVCPM sets up the operating system for a specific memory

configuration. It is possible to make use of the maximum

memory capacity this way. When starting up the CP/M system,

the computer responds with the message 44K CP/M. It is

possible, however, to use the entire memory for CP/M. We

have mentioned before that RAM can occupy the entire address

space of the Commodore 64.

The CP/M system can be copied onto your own diskettes

with SYSGEN, allowing you to create "boot" diskettes, disk

which you can use to initialize or "boot-up" the CP/M

system.

The problem of transferring existing CP/M programs to

the VIC-1541 disk format is one the greatest obstacles to

using CP/M on the Commodore 64. In section 6.9 we will

present a method for transferring standard Commodore files

(DOS 2.6 files) to CP/M. This can be used, together with an

RS-232 serial interface and a terminal program which allows

files to be down-loaded to the 64, to down-load programs

- 146 -

Tricks & Tips

from another CP/M computer for which software is available

in the appropriate format. The connection between the two

may be made directly using something called a null-modem

cable or over the phone lines via modems. Once the program

is saved as a DOS 2.6 file, it can be transferred to CP/M as

described in section 6.9.

- 147 -

Tricks & Tips

6.4 The Memory management of the Z-80 processor

The Z-80 processor on the CP/M card can address the

entire 64K bytes of the Commodore 64. Since the Z-80

requires address zero as the reset address (the address at

which execution will start upon reset or power-up), and this

address is assigned as the processor port of the 6510, the

addressing of the memory through the Z-80 microprocessor is

handled differently than the addressing through the 6510.

The CP/M card contains the hardware to create an offset when

addressing the memory through the Z-80. The offset is equal

to $1000 or 4096. This results in the following situation:

When the Z-80 wants address zero, the hardware manipulations

of the address lines result in an address which is

equivalent to address $1000 for the 6510. To calculate the

corresponding Z-80 address from a 6510 address, simply

subtract $1000. Alternatively, you can also add $F000 and

ignore the overflow. Through this trick, an area of 4K bytes

from address 0 to $0FFF on the 6510 is placed at the end of

the address range of the Z-80 ($F000-$FFFF). This memory

area contains the zero page, the stack, and the scratch pad

memory of the 6510 as well as the video RAM. The other 2K

from $800 to $FFF is used by the CP/M card to transmit data

between the 6510 and the Z-80, as well as program storage

for the 6510 input/output routines. The Z-80 delegates all

of the input/output to the 6510

Label 6510 Z80 Description

HSTBUF $0800 0F800H 256-byte disk buffer

CMD $0900 0F900H command register for the 6510

DATA $0901 0F901H data register

- 148 -

Tricks & Tips

SECTOR

TRACK

DISKNO

KEYCHAR

MODESW

IOTYPE

$0902

$0903

$0904

$0905

$DEOO

$0CFF

0F902H

0F903H

0F904H

0F905H

0CE00H

OFCFFH

sector register

track register

register for drive number

number of the pressed key

switch for 6510/Z80

I/O configuration

6510

$FFFF

$D000

$C000

$1000

$0000

6510

OPERATING

SYSTEM

48K

44K

CP/M

6510 - Z80

Z80

OEFFFH OFFFFH

0C000H

0B000H

0F900H

0F800H

0F400H

00000H

OFFFFH 0F000H

BI0S65

DISK BUFFER

VIDEO RAM

6510

WORK STORAGE

6510

$OFFF

$0900

$0800

$0400

$0000

- 149 -

Tricks & Tips

6.5 Disk management under CP/M

A diskette is divided into a number of concentric

tracks which are further divided into sectors. These

divisions are set up as follows on the 1541:

Track

1-17

18-24

25-30

31-35

Sectors

0-20

0-18

0-17

0-16

A total of 683 sectors (blocks) are available. Track 18 is

used to store the directory, so 664 blocks are available for

file storage.

Under CP/M, the first two tracks are reserved for the

CP/M operating system itself; the other tracks are free for

data and program storage. Because disk management under CP/M

cannot make use of a variable number of sectors, only the

sectors from 0 to 16 are used. In effect you have 32 tracks

each containing 17 sectors, for a total of 574 256-byte

blocks or 143K bytes of storage. In addition, the CP/M

directory requires some space (64 entries or 32 bytes each,

2K bytes). This is stored in the CP/M BIOS (Basic

Input/Output System) disk parameter block and can be adapted

by the user to his disk capacity. Track 18 (which contains

the Commodore directory) is not used by CP/M.

Track 1, sector 0 of the operating system disk contains

the loader program "CPM." The "BIOS 65" is contained in

track 1, sectors 1 through 5, which contains the I/O

routines for the 6510 as well as the cold-start loaders for

- 150 -

Tricks & Tips

CP/M. The program "CPM" loads these three sectors at

addresses $0A00 to $0EFF. From there the block from $0E00 to

$0BFF is transferred to address $1000 to $10FF. This is Z-80

address zero, at which the cold-start loader will be

transferred. Finally, the 6510 switches itself off while

switching the Z-80 on. The Z-80 begins executing the program

at address zero, which loads the CP/M operating system from

disk. The CCP and the BDOS (Command Control Processor and

Basic Disk Operating System) occupy 22 sectors on tracks one

and two, from track 1 sector 6 to track 2 sector 10. These

sectors are also loaded in on a warm start with control-C; a

star appears on the screen for each sector loaded in. The

BIOS, which is loaded in only on a cold start, occupies five

sectors from track 2 sector 11 to sector 16. The directory

occupies sectors 0 through 7 on track three.

With the CP/M utility program COPY, only the necessary

sectors are copied, depending on the option selected. For

example, selecting "system tracks only" copies only sectors

1 and 2 as well as 18 and track 3 for the CP/M directory.

If you want to connect a different disk drive, using

the IEEE bus for example, you must know the track and sector

layout of the drive. No adaptation is necessary for the 4040

drive because it is completely compatible with the 1541. To

make use of the greater storage capacity of the 8050 or 8250

dual drives, it is necessary to make some changes to the

"disk parameter block" of the BIOS. There are the values for

the sectors per track (23 for the 8050) and the disk

capacity. In addition, the tracks 38 and 39 must be set

aside instead of track 18 because the directory is stored

there on the 8050. These changes must also be made in the

COPY program.

- 151 -

Tricks & Tips

6.6 The interaction between the 6510 and the Z-80

When you work with CP/M on the Commodore 64, the two

microprocessors share the work. While the Z-80 serves the

actual CP/M, the 6510 is brought into play to handle the

input/output operations since the Commodore 64 already has

these routines in its kernal ROM. The Z-80 delegates the

following tasks to the 6510:

Command number Operation

0 read a sector from the disk

1 write a sector to the disk

2 read the keyboard

3 display a character on the screen

4 get the printer status

5 output a character to the printer

6 format the diskette

7-9 reserved for future expansion, such as

serial I/O

The two processors cannot operate simultaneously. The

address $DE00 of the 6510 (0CB00H on the Z-80) is used to

switch between the two. When the Z-80 wants the 6510 to

execute an I/O function, it sends the 6510 the number of the

desired code from the above table and switches itself off

while switching the 6510 on. It does this by writing a Ml"

to address 0CE00H. The 6510 fetches the command code,

executes the appropriate command, and switches over to the

Z-80 by writing a M0" to address $DE00. The Z-80 can then

continue with its program at the point where it had passed

control to the 6510. Because of certain hardware

requirements, the first command executed after switching

- 152 -

6510

$0900

$0901

$0902

$0903

$0904

$0905

Z-80

0F900H

0F901H

0F902H

0F903H

0F904H

0F905H

Tricks & Tips

fron the 6510 to the Z-80 must be a NOP (No Operation).

Six memory locations at address $900 (0F900H for the Z-

80) are used to transmit parameters.

Parameter

command number

data for input or output

sector number

track number

disk number

key number

The memory from $800 to $8FF (0F800H to 0F8FFH) is used

as a buffer to hold a sector to be written to the disk or

one which has just been read from the diskette. Reading and

writing disk sectors is performed with the direct access

Block-Read and Block-Write commands.

The keyboard polling yields only the number of the

depressed key. The assignment of an ASCII value to a key

happens in the BIOS using a 256-byte table at address $D00

(0FD00H). A table at address $C00 (0FC00H) contains the

addresses of the character strings assigned to the functions

keys. The definitions themselves start at address $C10

(0FC10H) and may consist of up to 16 characters each. These

assignments may be changed with the program CONFIG.

- 153 -

Tricks & Tips

6.7 Implementing your own Input/Output routines in BIOS

The CP/M BIOS contains two routines called PUNCH and

READER, which are not used in the Commodore 64 version of

CP/M. The READER routine currently returns a control-Z, the

marker for the end of the file. We can use it and the PUNCH

vector for our own purposes. The PUNCH routine could be used

to drive a printer with a Centronics-type parallel

interface, for instance, as described in section 7.1. The

driver routine can be formulated in 6510 code, and we can

use the command codes 7 and 8 which branch to locations $E00

and $F00, respectively, to call our drivers. The call would

look something like this:

PUNCH: ;output character to PUN: Centronics printer

;character in accumulator

;into transfer register

;code for our routine

;call 6510 routine

Our 6510 driver must be located at address $E00; we

have 256 bytes available to us. Since the routine need only

handle outputting the data to the port and the handshaking,

this will be plenty of room.

The READER routine can be implemented similarly.

MOV

STA

MVI

STA

CALL

RET

A,C

DATA

A,7

CMD

106510

- 154 -

Tricks & Tips

MVI

STA

CALL

LDA

ANI

RET

A,8

CMD

106510

DATA

7FH

READER: ;get character from RDR:

;code for our routine

;call 6510 routine

;get character

;erase parity bit

The command code 8 expects the input routine to be at

address $F00; here too we have 256 bytes available to us.

You can define your favorite input device as RDR:, such as

the cassette recorder, another disk drive, or an interface

to transfer data from other computers. The READER routine

expects text data in standard ASCII format. The end-of-file

is indicated by a control-Z, as usual.

- 155 -

Tricks & Tips

6.8 Transferring CP/M programs and data to and froi

Commodore BASIC

When one works with CP/N on the Commodore 64, one

normally does not have the ability to later use programs or

data in the normal BASIC mode of the 64. These files are

only accessible in the CP/M mode. It is possible to transfer

files, however, with a small change to the BIOS.

In CP/N you can send data to the printer. This is done

in BIOS65 with the appropriate OPEN and PRINT* commands. At

this point we can go in and simply change the device number

on the OPEN command. If we set the number to one, all the

data intended for the printer will be sent to the cassette

recorder instead. We must enter one as the secondary address

a well, so that the tape file will be opened for writing. We

can make this change using the CP/N program DDT. Enter the

following commands to make the changes (your input is

underlined):

DDT

-SFAC7

FAC7 07 01

FAC8 20 ±

-SFADD

FADD 00 01

FADE A9 x

-SFAE6

FAE6 04 01

FAE7 20 i

- 156 -

Tricks & Tips

Now when you output something with ~P or PIP LST:=, it

will not be sent to the printer but to the cassette drive.

The first time, the message "press record & play on tape"

will appear and the screen will go dark. Once the data has

been sent, press control C and then press STOP and RESTORE

together during the warm start. The computer will respond

with "ready." in the Commodore mode. Now you must close the

tape file with CLOSE 4, and after you have the turned the

computer off and back on again, you can read the tape file

in:

100 OPEN 1

110 GET#1, A$

200 IF STO64 THEN 110

210 CLOSE 1

This program gets the data character by character; you can

then save it to a disk file or do whatever you like with it.

If you want to transfer data from CP/M often, you can

use the editor (ED) and the assembler (ASM) to create a

small program which makes the changes for you so that you do

not have to use DDT. First create the following program

using ED:

ORG 100H

MVI A,l

STA 0FAC7H

STA OFADFH

STA 0FAE6H

JMP 0

- 157 -

Tricks & Tips

and assemble it

ASM TAPE.AAX

Then make a .CON file out of it

LOAD TAPE

Now you can make the changes by simply typing the program

name TAPE from CP/N.

It is also possible to transfer data the other way,

from the Commodore BASIC mode to CP/M. To transfer a file,

is must be saved as a program file with load address $1100.

This is equivalent to the Z-80 address 100H, the start of

the Transient Program Area (TPA). The following program will

save a file as a program with a load address of $1100:

100 INPUT "NAME OF THE FILE H;N$

110 OPEN 2,8,2, N$

120 OPEN 1,8,1, N$+t(.CPM": REM OPEN PROGRAM FILE

130 PRINT#1, CHR$(0)CHR$(17); : REM START ADDRESS $1100

140 6ET#2, A$: IF ST=64 THEN CLOSE 1:CLOSE 2: END

150 PRINT#1, A$;: GOTO 140

Before we can load the program, we must know its length. We

can find this by loading the directory.

25 "NAME.CPM" PRG

Remember the number 25. Now we load the program file.

- 158 -

Tricks & Tips

LOAD "NAME.CPM" ,8,1

Insert the CP/M diskette and enter CP/M as usual. When CP/M

is loaded, we can save the file under CP/M.

SAVE 25 NAME.TXT

Here the number 25 gives the number of 256-byte blocks to be

saved, but is identical to the number of blocks given in the

Commodore directory. There may be a problems with

upper/lower case reversal when transferring text files. If

this is the case, the conversion to standard ASCII can be

made to A$ in line 140.

- 159 -

Tricks & Tips

Chapter 7: Interface and expansion options

7.1 The USER port: An interface for a Centronics printer

The Commodore 64 has an interface which is not normally

used by the operating system, and which is available for

your own devices. This interface consists of an 8-bit port

and two handshake lines. The 8-bit port can be used for

input as well as output; each bit may be switched

independently.

This interface is ideally suited for implementing a

printer interface. Here in short is the procedure:

The 8 bits of a byte are sent in parallel over eight

data lines. To insure that no data are lost during the

transmission, two so-called "handshake lines" are used.

Before the computer sends a data byte to the printer, it

checks the BUSY line to see if the printer is ready to

receive the data. If the BUSY line is high, the printer is

not ready and the computer must wait. When the printer is

ready, the computer sends the data over the port and signals

the printer by means of the STROBE line that it is sending

the data. The printer accepts the data and sets the BUSY

line high until it is ready to receive another character.

Now the next byte can be transmitted, and so on. This

process ensures that the printer actually receives each byte

sent by the computer.

In order to be able to use the PRINT* command to send

data to the printer, the software in the operating system

must be modified. There is also one additional problem:

Most of the printers with a Centronics-type interface

- 160 -

Tricks & Tips

use the standard ASCII character set, which is different

from the Commodore 64's character set. We must convert the

codes used by the computer to the equivalent codes used by

the printer. In addition, it is also necessary to be able to

send data to the printer exactly as the computer sends it.

This is required when doing things like graphics on the

printer.

To solve this problem, we have written the driver

program to accept two options. If no secondary address is

given along with the OPEN command, the data will be

converted from the Commodore codes to the appropriate ASCII

codes. If a secondary address of one is given, the data will

be sent to the printer without alteration. The device

address 2 was chosen. This address is normally used for the

RS232 interface, but since this interface cannot be used in

conjunction with our interface (it also uses the USER port),

this presents no problems.

To send a program listing over this interface, you

would enter the following commands:

OPEN 1,2 : CMD 1 : LIST

After the cursor reappears, enter

PRINT#1 : CLOSE 1

to return the CND mode to normal and close the channel. If

you want to transmit graphics data or printer commands, the

following would be used:

- 161 -

Tricks * Tips

OPEN 1,2,1

PRINT* 1, .

CLOSE 1

For the hardware portion of the interface, all that is

needed is a cable with a USER port socket on one end and a

Centronics socket on the other. The pin layout of the cable

is given at the end of the assembly listing. When connecting

the printer, attach the cable between the printer and

coaputer, turn the computer on, and then turn the printer

on. Load the machine language program and initialize it with

SYS 12*4096.

0001 C000

NTERFACE DRIVER FOR

0002 C000

ECTED TO USER PORT

0003 C000

0004 C000

F THE I/O VECTORS

0005 COOO

0006 COOO

0007 COOO

0008 COOO

0009 COOO

0010 COOO

0011 COOO

REGISTER

0012 COOO

0013 COOO

IONS

0014 COOO

0015 COOO

0016 COOO

0017 COOO

ON

0018 COOO

0019 COOO

NTROL REGISTER

0020 COOO

0021 COOO

0022 COOO

0023 COOO

0024 COOO

0025 COOO

0026 COOO

CBM 64

QPENV EQU $31A

CLOSEV EQU $31C

CHKINV EQU $3IE

CHKOTV EQU $320

BSOUTV EQU $326

XREG EQU $97

PORTA EQU $DDOO

PORTB EQU $DD01

DDRA EQU $DD02

DDRB

ICR

LF

SA

FA

NMBFLS

LFTAB

FATAB

SATAB

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

$DD03

$DDOD

$B8

$B9

$BA

$98

$259

$263

$26D

5 CENTRONICS I

5 PRINTER CONN

5

^DEFINITION 0

5 STORAGE FOR

?

5 PORT DEFINIT

5

5CIA2 PORT

5 DATA DIRECTI

SINTERRUPT CO

- 162 -

Tricks fc Tips

0027

0028

0029

ON

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

TPUT

0054

0055

0056

i

0057

0058

0059

COOO

COOO

COOO

COOO

COOO

COOO

C002

C004

C007

COOA

COOC

COOE

con

CO 14

CO 16

CO 18

CO IB

CO IE

C020

C022

C025

C028

C02A

C02C

C02F

C032

C034

C037

C03A

C03C

C03F

C040

C040

HANDSHAKE

0060

0061

0062

C040

C040

C040

AG TO ICR

0063

0064

0065

C040

C040

C043

AG? BIT

0066

0067

0068

0069

0070

0071

0072

C045

C048

C04A

C04D

C04F

C052

C054

A9

AO

8D

8C

A9

AO

8D

SC

A9

AO

8D

8C

A9

AO

8D

8C

A9

AO

8D

8C

A9

8D

AD

09

8D

60

8D

A9

2C

FO

AD

29

8D

09

8D

58

CO

1A

IB

SB

CO

1C

ID

A3

CO

IE

IF

BA

CO

20

21

Dl

CO

26

27

FF

03

02

04

02

01

10

OD

FB

00

FB

00

04

00

03

03

03

03

03

03

03

03

03

03

DD

DD

DD

DD

DD

DD

DD

DD

SRCHFL EQU

ORG

LDA

LDY

STA

STY

LDA

LDY

STA

STY

LDA

LDY

STA

STY

LDA

LDY

STA

STY

LDA

LDY

STA

STY

LDA

STA

LDA

ORA

STA

RTS

OUTPUT STA

LDA

TSTBSY BIT

BEQ

LDA

AND

STA

ORA

STA

- 163

$F30F

$C000

#<OPEN

#>OPEN

OPENV

OPENV+1

#<CLOSE

#>CLOSE

CLOSEV

CLOSEV+1

#<CHKIN

#>CHKIN

CHKINV

CHKINV+1

#<CHKOUT

#>CHKOUT

CHKOTV

CHKOTV+1

#<BSOUT

#>BSOUT

BSOUTV

BSOUTV+1

#$FF

DDRB

DDRA

#$04

DDRA

PORTB

#$10

ICR

TSTBSY

PORTA

#$FB

PORTA

#$04

PORTA

_

5

5INITIALIZATI

a

!■

SPORT B AS OU

3PA2 AS OUTPU

3

;OUTPUT WITH

;data to port

5 STROBE ON PA

SBUSY OVER FL

5

3OUTPUT DATA

3 MASK FOR ?FL

3 ERASE STROBE

3 SET STROBE

Tricks fc Tips

0073 C057 60 RTS

0074 C058

0075 C058 A6 B8 OPEN LDX LF

NUMBER

0076 C05A FO 05

0077 C05C 20 OF F3

ILE NUMBER

0078 C05F DO 03

0079 C061 4C FE F6

RROR?

0080 C064 A6 98

EN FILES

0081 C066 EO OA

0082 C068 90 03

0083 C06A 4C FB F6

LES ERROR7

0084 C06D E6 98

0085 C06F A5 B8

0086 C071 9D 59 02

0087 C074 A5 B9

0088 C076 09 60

0089 C078 9D 6D 02

0090 C07B A5 BA

0091 C07D 9D 63 02

0092 C080 C9 02

0093 C082 DO 02

0094 C084 18

0095 C085 60

0096 C086 C9 00

0097 C088 4C 77 F3

0098 C08B

0099 C08B 20 14 F3

OGICAL FILE NUMBER

0100 C08E FO 02

0101 C090 18

0102 C091 60

0103 C092 20 IF F3 LB4

AMETERS

0104 C095 8A

0105 C096 48

0106 C097 A5 BA

0107 C099 C9 02

0108 C09B FO 03

0109 C09D 4C 9D F2

NUE

0110 COAO 4C Fl F2

IN TABLE

0111 C0A3

0112 C0A3 20 OF F3

ILE NUMBER

0113 C0A6 FO 03

0114 C0A8 4C 01 F7

EN ERROR?

0115 COAB 20 IF F3 LB6 JSR *F31F

AMETERS

BEQ

JSR

BNE

OPNERR JMP

LB1 LDX

CPX

BCC

JMP

LB2 INC

LDA

STA

LDA

ORA

STA

LDA

STA

CMP

BNE

CLC

RTS

LB3 CMP

JMP

OPNERR

SRCHFL

LB1

*F6FE

NMBFLS

#10

LB2

*F6FB

NMBFLS

LF

LFTAB,X

SA

#*60

SATAB,X

FA

FATAB,X

#2

LB3

#0

*F377

CLOSE JSR $F314

BEQ

CLC

RTS

JSR

TXA

PHA

LDA

CMP

BEQ

JMP

JMP

LB4

*F31F

FA

#2

LBS

*F29D

*F2F1LBS

CHKIN JSR SRCHFL

BEQ LB6

JMP $F701

5 LOGICAL FILE

;SEARCH FOR F

5'FILE OPEN E

5 NUMBER OF OP

;'T00 MANY FI

;DONE

5 SEARCH FOR L

3 DONE

;SET FILE PAR

§ NORMAL CONTI

?ERASE ENTRY

;

5 SEARCH FOR F

U >FILE NOT OP

SSET FILE PAR

- 164 -

0116

0117

0118

0119

COAE

COBO

C0B2

C0B4

ILE ERROR:

0120

0121

C0B7

COBA

A5

C9

DO

4C

4C

20

ILE NUMBER

0122

0123

COBD

COBF

EN ERROR?

0124 C0C2

AMETERS

0125

0126

0127

0128

0129

0130

0131

0132

ct.

0133

0134

0135

NUE

0136

DRESS

0137

0138

ZERO

0139

0140

0141

0142

C0C5

C0C7

C0C9

COCB

COCE

C0D1

C0D1

C0D2

C0D4

C0D6

CODS

CODB

CODD

CODF

C0E1

C0E3

C0E4

C0E5

M TABLE

0143

0144

0145

0146

0147

CTER

0148

0149

0150

0151

0152

0153

0154

0155

0156

0157

0158

0159

C0E8

COEA

COEB

COEC

COED

COFO

COF1

C0F2

C0F3

C0F6

C0F9

COFC

COFF

C102

C105

C108

C10B

FO

4C

20

A5

C9

DO

4C

4C

48

A5

C9

FO

4C

A5

29

DO

86

68

AA

BD

A6

24

68

48

20

68

18

60

00

03

06

09

OC

OF

17'

15

18

BA

02

03

OA

19

OF

03

01

IF

BA

02

03

75

5B

9A

02

03

CD

B9

OF

OA

97

F3

97

40

01

04

07

OA

OD

10

13

16

19

F7

F2

F3

F7

F3

F2

F2

Fl

CO

CO

02

05

08

OB

OE

11

14

17

1A

LB7

CHKOUT

LBS

LB9

BSOUT

LB10

OUT

TABLE

LDA

CMP

BNE

JMP

JMP

JSR

BEQ

JMP

JSR

LDA

CMP

BNE

JMP

JMP

PHA

LDA

CMP

BEQ

JMP

LDA

AND

BNE

STX

PLA

TAX

LDA

LDX

BYT

PLA

PHA

JSR

PLA

CLC

RTS

BYT

BYT

BYT

BYT

BYT

BYT

BYT

BYT

BYT

FA

#2

LB7

$F70A

$F219

SRCHFL

LB8

$F701

$F31F

FA

#2

LB9

$F275

$F25B

$9A

#2

LB10

$F1CD

SA

#$0F

OUT

XREG

TABLE,X

XREG

$24

OUTPUT

$00,, $01.,

$03,$04,

$06,$07,

$09., $0A,,

*OC,*OD,

$0F,$10,

*12,*13,

$15,$16,

$18, $19,,

- 165 -

$02

$05

$08

$0B

$0E

$11

$14

$17

$ 1 A

Tricks & Tips

;'NOT INPUT F

3 SEARCH FOR F

5'FILE NOT OP

5 SET FILE PAR

5 OUTPUT DEVIC

?NORMAL CONTI

5 SECONDARY AD

3 NOT EQUAL TO

3 GET CODE FRO

5 OUTPUT CHARA

Tricks & Tips

0160 C10E IB 1C ID BYT $1B,$1C,$1D

0161 Clll IE IF 20 BYT $1E,$1f!,$20
0162 C114 21 22 23 BYT $21,$22,$23

0163 C117 24 25 26 BYT $24,$25,$26

0164 C11A 27 28 29 BYT $27,$28,$29

0165 CUD 2A 2B 2C BYT $2A,$2b!,$2C
0166 C120 2D 2E 2F BYT $2D,$2E,$2F

0167 C123 30 31 32 BYT $30,$31,$32

0168 C126 33 34 35 BYT $33,$34,$35

0169 C129 36 37 38 BYT $36,$37,$38

0170 C12C 39 3A 3B BYT $39, $3A], $3B
0171 C12F 3C 3D 3E BYT $3C,$3d!,$3E
0172 C132 3F 40 61 BYT $3F,$40,$61

0173 C135 62 63 64 BYT $62,$63,$64

0174 C138 65 66 67 BYT $65,$66,$67

0175 C13B 68 69 6A BYT $68,$69,$6A

0176 C13E 6B 6C 6D BYT $6B,$6C,$6D

0177 C141 6E 6F 70 BYT $6E,$6F'$70
0178 C144 71 72 73 BYT $71,$72,$73

0179 C147 74 75 76 BYT $74,$75,$76

0180 C14A 77 78 79 BYT $77,$78,$79

0181 C14D 7A 7B 7C BYT $7A,$7B^$7C
0182 C150 7D 7E 5F BYT $7D,$7E,$5F

0183 C153 60 61 62 BYT $60,$61,$62

0184 C1S6 63 64 65 BYT $63,$64,$65

0185 C159 66 67 68 BYT $66!, $67, $68
0186 C15C 69 6A 6B BYT $69,$6A,$6B

0187 C15F 6C 6D 6E BYT $6C,$6D,$6E

0188 C162 6F 70 71 BYT $6F,$70,$71

0189 C165 72 73 74 BYT $72,$73,$74

0190 C168 75 76 77 BYT $75,$76,$77

0191 C16B 78 79 7A BYT $78,$79,$7A

0192 C16E 7B 7C 7D BYT $7B,$7C,$7D

0193 C171 7E 7F 80 BYT $7E,$7F,,$80

0194 C174 81 82 83 BYT $81,$82,$83

0195 C177 84 85 86 BYT $84,$85,$86

0196 C17A 87 88 89 BYT $87,$88,$89

0197 C17D 8A 8B 8C BYT $8A,$8B,$8C

0198 C180 8D 8E 8F BYT $8D,$8E,$8F

0199 C183 90 91 92 BYT $90,$91,$92

0200 C186 93 94 95 BYT $93,$94,$95

0201 C189 96 97 98 BYT $96,$97,$98

0202 C18C 99 9A 9B BYT $99,$9A,$9B

0203 C18F 9C 9D 9E BYT $9C,$9D,$9E

0204 C192 9F AO Al BYT $9F,$AO,$A1

0205 C195 A2 A3 A4 BYT $A2,$A3,$A4

0206 C198 A5 A6 A7 BYT $A5,$A6,$A7

0207 C19B A8 A9 AA BYT $A8,$A9,$AA

0208 C19E AB AC AD BYT $AB,$AC,$AD

0209 C1A1 AE AF BO BYT $AE,$Af!,$BO
0210 C1A4 Bl B2 B3 BYT $B1,$B2,$B3

0211 C1A7 B4 B5 B6 BYT $B4,$B5,$B6

0212 ClAA B7 B8 B9 BYT $B7,$B8,$B9

0213 ClAD BA BB BC BYT $BA,$BB,$BC

0214 C1B0 BD BE BF BYT $BD,$BE,$BF

- 166 -

Tricks & Tips

0215

0216

0217

0218

0219

0220

0221

0222

0223

0224

0225

0226

0227

0228

0229

0230

0231

0232

0233

0234

0235

0236

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

C1B3

C1B6

C1B9

C1BC

C1BF

C1C2

C1C5

C1C8

C1CB

C1CE

C1D1

C1D4

C1D7

C1DA

CIDD

C1E0

C1E3

C1E6

C1E9

C1EC

C1EF

C1F2

FOR I

READ

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

CO

43

46

49

4C

4F

52

55

58

5B

DE

El

E4

E7

EA

ED

FO

F3

F6

F9

FC

FF

=r .

X :

169

160

141

3

39

141

240

141

3

246

157

24

24

3

76

76

1

117

76

170

104

9

21

33

45

57

101

113

125

105

117

41 42

44 45

47 48

4A 4B

4D 4E

50 51

53 54

56 57

59 5A

5C 5D

DF EO

E2 E3

E5 E6

E8 E9

EB EC

EE EF

Fl F2

F4 F5

F7 F8

FA FB

FD FE

BYT $C0,*41,*42

BYT $43,$44,*45

BYT *46,*47,*4B

BYT *49,$4A,$4B

BYT $4C,*4D,$4E

BYT *4F,*50,*51

BYT *52,*53,*54

BYT *55,*56,$57

BYT *58,$59,$5A

BYT *5B,*5C,*5D

BYT *DE,*DF,*EO

BYT *E1,$E2,*E3

BYT *E4,*E5,*E6

BYT *E7,$E8,$E9

BYT *EA,*EB,*EC

BYT *ED,*EE,*EF

BYT *FO,*F1,*F2

BYT *F3,*F4,$F5

BYT $F6,*F7,*F8

BYT *F9,$FA,$FB

BYT *FC,*FD,*FE

BYT *FF

49152 TO 49650

POKE I,X S S

, 88,160,192,

,192,141, 28,

, 30, 3,140,

,140, 33, 3,

, 3,169,255,

, 2,221, 96,

,251,173, 0,

, 0,221, 96,

, 76,254,246,

,230,152,165,

,109, 2,165,

, 96,201, 0,

, 96, 32, 31,

, 76,157,242,

, 1,247, 32,

, 10,247, 76,

,247, 32, 31,

,242, 76, 91,

,205,241,165,

,189,243,192,

, 24, 96, 0,

, 10, 11, 12,

, 22, 23, 24,

, 34, 35, 36,

, 46, 47, 48,

, 58, 59, 60,

,102,103,104,

,114,115,116,

,126, 95, 96,

,106,107,108,

,118,119,120,

;=S+X s NEXT

141, 26, 3,140, 27,

3,140, 29, 3,169,

31, 3,169,186,160,

169,209,160,192,141,

141, 3i,221,173, 2,
141, 1,221,169, 16,

221, 41,251,141, 0,

166,184^240, 5, 32,
166,152,224, 10,144,

184,157, 89, 2,165,

186,157, 99, 2,201,

76,119,243, 32, 20,

243,138, 72,165,186,

76,241,242, 32, 15,

31,243,165,186,201,

25,242, 32, 15,243,

243,165,186,201, 2,

242, 72,165,154,201,

185, 41, 15,208, 10,

166,151, 36,104, 72,

1, 2, 3, 4, 5,

13, 14, 15, 16, 17,

25, 26, 27, 28, 29,

37, 38, 39, 40, 41,

49, 50, 51, 52, 53,

61, 62, 63, 64, 97',
105,106,107,108,109,

117,118,119,120,121,

97, 98, 99,100,101,

109,110,111,112,113,

121,122,123,124,125,

- 167 -

3,169,139

163,160,192

192,141, 32

38, 3,140

221, 9, 4

44, 13,221

221*, 9, 4
15,243,208

3, 76,251

185, 9, 96

2,208, 2

243,240, 2

201, 2,240

243,240, 3

2,208^, 3
240, 3, 76

208, 3, 76

2,240, 3

134,151,104

32, 64,192

6, 7, 8

18, 19, 20

30, 31, 32

42, 43, 44

54, 55, 56

98, 99,, 100

110,111,112

122,123,124

102,103,104

114,115,116

126,127,128

Tricks & Tips

430 DATA 129, 130, 131, 132, 133,, 134, 135,, 136, 137, 138, 139, 140

440 DATA 141, 142, 143, 144, 145,146, 147,148, 149!, 150,151,152
450 DATA 153, 154,155, 156, 157, 158, 159,160, 161!, 162,163, 164
460 DATA 165, 166, 167, 168, 169., 170, 171, 172, 173!, 174,175,176
470 DATA 177,178,179,180,181,182,183,184,185,186,187,188

480 DATA 189,190,191,192, 65, 66, 67, 68, 69, 70, 71, 72

490 DATA 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84

500 DATA 85, 86, 87, 88, 89, 90, 91, 92, 93,222,223,224

510 DATA 225,226,227,228,229,230,231,232,233,234,235,236

520 DATA 237,238,239,240,241,242,243,244,245,246,247,248

530 DATA 249,250,251,252,253,254,255

540 IF S <> 58534 THEN PRINT*"ERROR IN DATA!!" : END
550 PRINT "OK"

The cable connecting the printer to the User port has the

following pin layout:

USER PORT

A

B

C

D

E

F

H

J

K

L

M

—

GND

FLAG-BUSY

DO

Dl

D2

D3

D4

D5

D6

D7

PA2-STR0BE

CENTRONICS

16

11

2

3

4

5

6

7

8

9

1

- 168 -

Tricks & Tips

7.2 Transferring data between computers using the USER port

Imagine the following: You own, in addition to your

Commodore 64, a CBM 8032. Wouldn't it be nice to be able to

directly transfer data from the 8032 to your 64 where you

can work with it in color? Or maybe you like to be able to

send information from the 64 to the 8032, where you can see

it in 80 columns. You could do this with a cassette,

assuming you have one, but this is a tedious and bothersome

process.

We have chosen this example to illustrate the use of

the Commodore 64's USER port, and we have written a small

program which allows the 64 to both send and receive data.

In our case, the device to which we will be sending data (or

from which we will be receiving it) is a CBM 8032. It is

also possible to use the same procedure for communicating

with other computers which have an interface similar to the

user port.

The programs (one for the Commodore 64 and one for the

CBM 8032) which will be given shortly naturally require the

appropriate connection between the two computers. The pin

assignments and necessary connections can be found following

the listing. First, however, we will present a detailed

account of the variables and memory locations used in each

of the programs as well as a step-by-step description of the

programs themselves.

- 169 -

Tricks & Tips

The variables (both programs):

X ASCII value of a sent or received byte

TI operating system clock; counts in 1/60 second steps

0$ composite string of data received or to be sent

Memory locations used on the CBM 8032:

59457 Data register of the user port

59459 User port data direction register. As you may already

know, the user port may be configured as either input

or output. For this reason, we must specify the data

direction of each bit.

59468 Bit 5 of this address controls the CB2 line of the

user port. When sending, this line will indicate the

validity of the data. When receiving, this lines

serves as the acknowledgement signal, indicating that

the data was received. These signals are required to

ensure that no data are lost.

59469 Bit 1 gives the condition of the CA1 line of the user

port. When sending data, this bit will be monitored

for the acknowledgement signal of the receiving

device, while when receiving, it is monitored as the

data ready or valid signal.

Memory locations used on the Commodore 64:

56576 Bit 2 controls the PA2 line of the user port. This

line is used in the same manner as the CB2 line on

the CBM 8032 (see description of location 59468).

56577 User port data register.

- 170 -

Tricks & Tips

56579 User port data direction register.

56589 Bit 4 reflects the condition of the FLAG line on the

user port. Its use is the same as the CA1 line on the

8032 (see description of location 59469).

Program operation:

1000-1080 Send routine

1000 The data direction register is set to output.

1010 The length of the send loop is determined by the

number of bytes to be sent.

1020 The individual bytes in D$, indexed by I, are

written to the data register.

1030 The appropriate signal line is set to zero to

indicate that the data on the data lines is valid.

1040 This loop waits until the receiver acknowledges

reception of the data byte.

1050-1060 The data valid signal is set back to 1 and the

next byte is sent.

1070-1080 The user port is returned to normal and the send

routine ends.

2000-2090 Receive routine

2000 The first data byte is awaited.

2020-2030 The clock is set to zero and the next statements

wait until either a data byte is received or two

seconds have elapsed. If the latter is the case,

it can be assumed that the data transmission is

done. The time limit in line 2020 can be changed

as desired. The 120 refers to 120 l/60ths of a

second, a total of two seconds. To allow for a

three second pause, the appropriate value would be

180.

- 171 -

Tricks & Tips

2040-2050 The computer waits for the data valid signal. If

it is received, the byte in X is added to D$.

2060-2080 As acknowledgement that the data byte was

received, the corresponding line is set to zero

and the loop returns to wait for the next

character.

These programs consist only of two subroutines, one for

sending data and one for receiving it. They should be

inserted into your own programs. When you want to send

characters, place them in D$ and QOSUB 1000. To receive

data, call line 2000 (GOSUB 2000) and upon return, D$ will

contain the characters received.

The first listing is for the CBM 8032 and the second is

for the Commodore 64. They are identical in structure,

although the addresses of the user ports are different in

each case. The only other difference occurs in line 2010. In

consideration for the different way in which the C64 kernal

operates, a jump must be inserted.

- 172 -

Tricks & Tips

8032 version

995 rem subroutines for transferring data over the user

port

996 rem CBM 8032 for the 6522 at address 59456

997 rem

999 rem send a string

1000 poke 59459,255 : rem set data direction to output

1005 poke 59468,peek(59468) or 224 : rem cb2 high

1010 for i=l to len(d$) : rem send loop for d$

1020 x=asc(mid$(d$,i,l)) : poke 59457,x : rem output data

1030 poke 59468,peek(59468) and 223 : rem cb2 low

1040 wait 59469,2 : rem wait until data received

1050 poke 59468,peek(59468) or 224 : rem cb2 high

1060 next

1070 poke 59457,0 : poke 59459,0 : rem reset port

1080 return

1996 rem

1997 rem receive data into d$

1998 rem

1999 rem

2000 wait 59469,2 : rem wait for start of data transmission

2010 d$ = llfl : rem initialize d$

2020 ti$="000000tf

2030 if ti>120 then 2090

2040 if (peek(59469) and 2)=0 then 2030 : rem wait for

data byte

2050 x=peek(59457) : d$=d$+chr$(x)

2060 poke 59468,peek(59468) and 223 : rem cb2 low

2070 poke 59468,peek(59468) or 224 :

rem cb2 high = receive confirmation

2080 goto 2020

2090 return

- 173 -

Tricks & Tips

Commodore 64 version

995 rem subroutines for transferring data over the user

port

996 rem CBM 64 version for 6526 at address 56576

998 rem

999 rem send a string

1000 poke 56579,255 : rem set data direction to output

1010 for i=l to len(d$) : rem send loop for d$

1020 x=asc(mid$(d$,i,l)) : poke 56577,x : rem output data

1030 poke 56576,147 : rem pa2 low

1040 wait 56589,16 : rem wait until data received

1050 poke 56576,151: rem pa2 high

1060 next

1070 poke 56577,0 : poke 56579,0 : rem reset port

1080 return

1996 rem

1997 rem receive into d$

1998 rem

1999 rem

2000 wait 56589,16 : rem wait for start of transmission

2010 d$="" : goto 2050 : rem initialize d$

2020 ti$="000000"

2030 if ti>120 then 2090

2040 if (peek(56589) and 16)=0 then 2030 : rem wait for

data byte

2050 x=peek(56577) : d$=d$+chr$(x)

2060 poke 56576,147 : rem pa2 low

2070 poke 56576,151 : rem pa2 high = receive confirmation

2080 goto 2020

2090 return

- 174 -

Tricks & Tips

A short example will clarify the use of these routines:

Assuming that you have loaded the appropriate routines

into both computers, add the following line to the sender

routine:

10 D$=Htest" : GOSUB 1000 : END

and the following to the receiver

10 GOSUB 2000 : PRINT D$: END

Start both programs and watch what happens

computers are connected properly).

(assuming both

The diagram below shows the construction of the

connecting cable. We recommend a 10-wire shielded cable. The

shield is connected to the GND pin on both sides. It is best

to limit the length of the cable to no more than 15 feet. If

a longer cable is required, line drivers may have to be used

to insure that no data is lost during transmission. Noise

created by electric motors (washing machine, vacuum cleaner)

or other large electrical devices can scramble the data

being transmitted. You should have no problems at all if the

length is kept under 10 feet. Ten feet should also be

considered an absolute maximum when using an unshielded

cable.

C tf

MAMS

FLA&X

PA1

P3 0

2

3

4

sr

6

c

D

e

F

H

0

L

Af

1 1

:

!

•

1 J

V
5HIELD

PIM

S

At

C

£

F

H

3

K
L.

A*

BOSZ

A/AME

C8X

CA1

PA*
A

1

3

5*

6

- 175 -

Tricks & Tips

7.3 The CP/M cartridge on the expansion port: A case study

In this section, we describe how a clever piece of

hardware can make optimal use of the expansion slot on the

Commodore 64. For a better understanding of the material

that we present, a knowledge of the material in the

corresponding chapter of our book The Anatomy of the

Commodore 64 is an advantage.

First of all, what it is the CP/M cartridge?

The CP/M cartridge is a module developed by Commodore

which contains a Z-80 microprocessor and the necessary logic

to communicate with the C64. The module makes it possible to

use the popular CP/M operating system on the 64 and so gain

access to the wide range of software available for CP/M.

The topic we wish to examine more closely is the

technique of using two processors in the same computer. At

the end of this section you will find a block diagram of the

CP/M cartridge. Not all of the connections are shown in

order to keep the diagram as simple as possible. The

following discussion centers around this diagram and

presents the function groups together with their

designations. We have tried to make this discussion simple

enough so that you need not be a hardware expert in order to

understand it.

First, we present a description of the expansion port

lines which play a role in this context:

CDO-7 System bus data lines.

These can be controlled by the 6510 within the 64

only as long as DMA=1 and BA=1.

- 176 -

Tricks & Tips

We should make note of this condition, since it is

necessary for further progress.

CAO-15 System bus address lines.

The above conditions apply to these lines as well.

1/01 This line is low whenever any activities take place

in the address range $DE00-$DEFF (56832-57087).

RES When this line is low (usually only when the computer

is first turned on), all connected hardware devices

are reset.

DMA This line is an input. Setting it to zero halts the

6510, leaving the system bus free for external

control.

BA The 64's video controller uses this line to signal

that it is accessing the memory (BA=0). During this

time, the system bus may not be used by the 6510 or

any other device.

S02 This is the system clock which coordinates all of the

operations within the 64. In order to execute all

activities in synchronization with the 64, the Z-80

in the CP/M module is also controlled by this clock.

We begin our description of the additional processes

with the reset state, the condition of the device after

being turned on. First we need an explanation of a line on

the Z-80, BUSREQ. This signal has the same operation as the

AEC (activated by DMA=0) on the 6510. If BUSREQ=0, the Z-80

ceases all activities and leaves its system bus free.

When the device is turned on, the RES line is set low

for a short time, resetting the Z-80 and the FF flip-flop

(Q=0, -Q=l). This has the effect of setting the output of

the AND gate to zero, independent of BA. This in turn

inhibits the Al, A2, and D buffers, preventing the Z-80

- 177 -

Tricks & Tips

system bus from being externally controlled. BUSREQ is also

held low, effectively inhibiting the Z-80 processor.

You can see now that the operation of the module

depends on the condition of the flip-flop FF in combination

with the signal BA (combined through the AND gate &). Only

when FF is set (Q=l, -Q=0) and BA=1 does BUSRBQ=1, allowing

the Z-80 to operate. You can use your 64 as usual, provided

you do not execute a certain command, namely POKE 56832,1.

As you can gather from the block diagram and the

description of expansion port, this poke activates the line

1/01. Poking the value 1 sets our flip-flop FF and allows

the Z-80 to run free, since BA=1 most of the time. At the

same time, the 6510 is switched off and the computer will

probably crash because there is no program in memory which

will make any sense to the Z-80.

At this point we come to our next theme: Where must a

program be so that the Z-80 can execute it? To find this

out, we must dig a bit deeper. In contrast to the 6510, the

Z-80 begins execution at location 0 after reset (RES=0).

Here we have a conflict since the 6510 has its I/O port at

location 0 and the following locations are the zero page, a

section of memory absolutely required by the processor

because the important system parameters are stored there. A

Z-80 program simply cannot be stored at this point. On the

other hand, we cannot change where the Z-80 will begin its

execution.

The CP/M module solves this dilemma quite elegantly. If

you take a look at the block diagram, you will find a

function block which we have labeled ADD. This function

block contains a four-bit full adder. The adder accepts two

4-bit words as input, adds them, and places the sum at its

outputs. In our case, the adder is connected to the four

- 178 -

Tricks & Tips

highest-order bits of the address. One input is connected to

the address lines of the Z-80 and the other is permanently

set at 0001. The result is that the top four address bits

are incremented by one. This has the net effect of

increasing the total address by $1000 (4096) because the

most significant digit of a two-byte address counts in 4K

increments.

To return to our example, when the Z-80 outputs address

zero in order to fetch the first command, it actually

accesses address $1000 (4096). There, a program intended for

the Z-80 can be placed without disturbing the operating

system of the 6510. Using this scheme, a Z-80 address of

$F000 (61440) corresponds to an effective address of 0,

since the carry produced by the addition is ignored.

This procedure is essentially the same as the real

operation of the module: After turning the computer on, a

small start program is loaded into memory (at $1000 of

course) and after setting the flip-flop FF, the Z-80 takes

over and executes the program which loads the CP/M operating

system. You should use this procedure when you want to

execute Z-80 programs of your own. Simply place the program

you have written at location $1000 (4096) and switch the

cartridge on as described.

Since such a program is not an end in itself, but will

have some output, whether to the screen or on the printer, a

good knowledge of the Commodore 64's hardware is

indispensable so that you can execute the appropriate

functions from the Z-80 program. Remember that all addresses

referenced from the module are offset by 4096. To send data

to the user port, for example, you should use the address

$CD01 (52481) in your Z-80 program because the user port is

located at address $DD01 (56577) in the 6510 mode.

- 179 -

Tricks & Tips

How does one return from the Z-80 mode? If the BASIC

interpreter is loaded, you can reset FF by entering POKE

52736,0. This has the additional effect of setting BUSREQ to

0, halting the Z-80 while setting DMA to 1, whereupon the

6510 resumes execution at the point at which it left off.

The address must actually be 4096 less than the 6510

address since this value will be added back in by ADD. It is

not recommended to proceed in this manner, however, since

the 6510 will not find a program which it can run upon

return since the memory contains programs intended for the

Z-80, and the computer will crash.

BA is only a help signal which controls the traffic on

the bus. It has a profound effect on the CP/M module,

however, since the Z-80 halts execution whenever BA=0 or the

output of FF is zero. If we take a closer look at the origin

of BA, we will discover why this is so.

- 180 -

Tricks & Tips

BA is a signal created by the video controller in the

Commodore 64. Because the video controller must access the

video RAM cyclically for refreshing the screen, the system

bus must not be used by any other device. Normally this does

not require halting the usual bus traffic; the video

controller makes use of the "holes" in the microprocessor

access cycles during which the processor is not using the

system bus. There are exceptions, however, such as when the

sprites are being displayed. Here these holes will not

suffice since the memory must be accessed several times in

succession. The video controller signals this condition by

setting BA to zero and all other devices (including the Z-80

and the 6510) must give up the bus.

We have purposely kept the block diagram on the next

page simple although the circuitry in the area of data

buffer D is more complex than that shown. It is sufficient

however to explain to explain the interaction between the Z-

80 and the 6510.

- 181 -

Tricks & Tips

S$2

- 182 -

Tricks & Tips

7.4 Synthesizer in stereo

If you use the synthesizer in your Commodore 64 often,

you have probably wished for something better than the tinny

sound of your TV speaker. With the help of a stereo receiver

or amplifier we can produce considerably better sound.

Because the stereo has two channels at its disposal, we must

consider how to divide the single-channel output of the

synthesizer between them. Unfortunately, the individual

voices of the device do not have separate outputs, or we

could make the division easily.

We have made certain allowances, however, and have

divided the tone signal into two frequency ranges. The

division occurs at 300 Hz. This splits the range of the

synthesizer nearly in the middle as far as the ear is

concerned, with three octaves below (down to 36 Hz) and four

octaves above (up to 4800 Hz) 300 Hz.

This is accomplished with two double-T filters with an

attenuation of 6dB/octave and a cut-off frequency of 300 Hz

(low pass) and 3 kHz (high pass). You can change the cut-off

frequencies as desired by using different capacitors, but

you should leave the values of the resistors as they are

since they were calculated to match the impedance of the

connected device.

Given the cut-off frequency, the required value of the

capacitor can be found with the formula C=l/(3300*F). If you

have some capacitors already and want to know what cut-off

frequency they would give, use the formula F=l/(3300*C). The

values that we have chosen are optimized for this project

based on numerous measurements and listening tests. '

If an attenuation of 3dB/octave is good enough for you,

the components R2, C2, C4, and R6 can be eliminated. This

- 183 -

Tricks & Tips

will result in a greater acoustical overlap between the two

speakers. As you see, the filter circuit is extremely

simple. It can be constructed on a piece of perfboard.

We now want to present a program which will produce a

"sweep" using the triangle wave. This will allow you to

clearly hear how the tone moves from one speaker to the

other. We have chosen the triangle wave because it is

relatively free of overtones and will allow the effect to

noticed better. With more complex sounds, rich in overtones,

such as the sawtooth, the overtones will appear on one

channel while the fundamental wave will be heard on the

other, provided that the fundamental does not exceed 300 Hz.

- 184 -

Tricks & Tips

10 Vl=54272

20 V2=54279

30 V3=54286

60 RS=54295

70 PL=54296

80 POKE Vl+4,0 : POKE V2+4,0 : POKE V3+4,0

100 A=9 : D = 9 : S=9 : R=9 : H=30

110 POKE RS,0 : POKE PL,15

120 POKE V3+5,16*A+D : POKE V3+6,16*S+R

130 POKE V3+4.17

140 FOR 1=0 to H : POKE V3+1,PEEK(54300) : NEXT I

150 POKE V3+4.16

160 FOR 1=0 to R*4 : POKE V3+1,PEEK(54300) : NEXT 1

Here is the schematic diagram for the filter. The

side is intended to be connected to the phono input.

stereo

C 64- ft*

3.5K 5

- 185 -

Tricks & Tips

Chapter 8 : Data Management

8.1 Introduction

The effective and efficient management and processing

of data is one of the most basic themes in computing. All

programs do it to some degree, but programs designed

specifically for storage and retrieval of large quantities

of various data are among the most complex in programming.

It is the same in BASIC, FORTRAN, Pascal or other

languages—data management, and everything else that has to

do with data, is a very important problem. One would

therefore expect that computer manuals or programming books

would provide detailed information about this topic.

Unfortunately, these books discuss data management only very

briefly, it at all.

In this chapter we want to give you some insight into

data management on the Commodore 64. We will not merely

present dry theory, but we will also present examples which

will hopefully allow you to understand your Commodore 64

better and to use it more effectively. First, however, we

must begin by clarifying a few fundamentals of data

management.

FILE

The whole world talks about data processing and files—

but what actually are files? The easiest way to clarify this

term is to replace it with another, one which everyone is

familiar with: CARD CATALOG. As you know, a card catalog,

such as those found in libraries, consists of a number of

filing cards. On these cards is information concerning a

- 186 -

Tricks & Tips

particular item or person. The cards must be organized

according to a specific pattern. The most common method of

organization is alphabetic sorting. Another possibility is

sorting by the item number or some other datum. All of the

cards together make up a card catalog. A file uses the same

principle. A file consists of a number of data records which

contain the individual pieces of information—just like a

filing card.

The great advantage of a data file over a card file is

the amazing flexibility of the data file. The time savings

when searching and sorting are most important, but the space

savings also plays a large role today. Microcomputers can

now be equipped with millions of characters of data storage.

Can you imagine how many filing cards would be required to

store so much information?

DATA RECORD

As we mentioned before, a data record can be compared

to a filing card in a card catalog. Within this data record

are all the data that would be on the filing card, divided

into one or more FIELDS.

FIELD

Here too we can use the example of the card catalog. If

you can picture a data record as a filing card, then the

fields are the individual lines of information on the card.

The association between the three concepts can be thought of

approximately as:

FILE -> DATA RECORD -> FIELD

- 187 -

Tricks & Tips

When one wants certain information about a thing or a

person, such as the name, the appropriate file must first be

accessed, then the data record from this file, and finally

the appropriate field from the data record. This can be

represented graphically as follows:

FILE:

Rec:

Rec:

Rec:

1

2

3

ADDRESSFILE

FIELD

LAST

Jones

Smith

Green

FIELD

FIRST

Tom

John

Joe

FIELD

STREET

123 Main

456 Park

789 Kings

St.

PI.

Ct.

FIELD

CITY

Anytown,

Nowhere,

CBM City

AZ

CA

, TX

FIELD

ZIP CODE

55555

86521

68513

In this example one can clearly see the differences and

relationships between file, data record, and field. These

terms should be well understood before one begins writing

data management programs. We will now move on to various

access and storage methods, but the basis for this

presentation will be the material we have discussed so far.

- 188 -

Tricks & Tips

8.2 Cassette - Diskette

After this somewhat lengthy introduction we want to

actually write data management programs. We should first

examine the devices which are at our disposal for storage on

the Commodore 64: the datasette and disk drive.

How are these two devices and their media different?

How can they be used? In order to clarify these questions we

will first make an excursion into the beginnings of data

processing.

Not so many years ago, terms such as "floppy" or

"magnetic platter" were unheard. But even then one could not

do without some sort of storage medium, a device that could

save and recall data. Punch cards were developed for this

purpose. With these one had a simple and cost-effective

means of saving and retrieving data. A serious disadvantage

of the devices required for working with the punch cards,

the card puncher and reader, soon became apparent. Both were

purely mechanical devices and far too slow. Faster and more

reliable storage devices have always been in demand, so

something better had to be developed. The result Was the

magnetic tape, which we can compare to the present cassette,

since the principle is much the same as that used by the

much larger reel-to-reel tape drives used on mainframe

computers.

The principle of the cassette as storage medium is

really quite simple. The Commodore 64 has a specific device

assignment for the cassette, device number 1. The command

for writing is also 1. To open a file on the cassette

recorder, the following command might be used:

OPEN 1, 1, 1, "CBM 64 FILE"

- 189 -

Tricks & Tips

The first "1" is the file number for the Commodore 64. If

you want to open several files on the 64, you must choose

different file numbers for the printer, cassette, and disk

drive. The file number must be an integer from 1 to 255.

When the record and play buttons on the cassette recorder

are pressed, the Commodore 64 will write a special leader on

the tape. This leader contains only the file name for a data

file but can also include the start address if a program is

being saved. This so-called program or file header is saved

twice, after which the tape is stopped. At this point, data

(or the program) can be saved.

The following sequence offers an additional possibility

for saving a file:

OPEN 1, 1, 2, "CBM 64 FILB"

When you use this command, the computer will write one

additional piece of information to the tape after the file.

This information, called the EOT (End Of Tape), when

encountered in a subsequent read, tells the computer that

the tape ends at that point.

Once saved, data will be read in again at some time.

The corresponding command is:

OPEN 1, 1, 0, "CBM 64 FILE"

The Commodore 64 will search for a particular file until it

finds it or until it encounters an EOT marker.

IMPORTANT: When writing, the 64 does NOT search for a

file with the given name. It writes without regard for any

existing data at the exact point on the tape that it finds

itself. For this reason, it is best to store only one file

- 190 -

Tricks & Tips

per cassette in order to prevent unintentional destruction

of other data or programs.

After a while, magnetic tapes no longer sufficed (we

will discuss the reasons why later), so the storage

techniques were refined. Magnetic platters were used. Here

too the Commodore 64 has a similar method of storage

available. Here one can connect one or more devices called

disk drives. The corresponding medium, the diskette, can be

compared to a phonograph record. On both media there are

various "tracks," although all of the material on the

diskette is magnetic and therefore the tracks are invisible.

This allows the "record" to not only be read from but also

written to. The syntax of the command for writing or reading

a file using the disk looks like this:

OPEN 2, 8, 2, "0:CBM 64 FILE,S,W"

or

OPEN 2, 8, 2, "0:CBM 64 FILE,S,R"

The first "2" is again the internal file number, "8" is the

usual device number for a disk drive (but it can also be 9-

12), and the second "2" is the channel number. The most

interesting part, however, is the name. Here we find first

the number of the disk drive (0 or 1), then the filename,

then an "S" for "sequential file" (more about this later),

and finally either a "W" for write or an "R" for read.

- 191 -

Tricks & Tips

The most important differences between disk and

cassette storage consist of

-Cost

Based on the initial purchase price, the cassette

recorder is by far the cheaper storage medium, even

though the price of the disk drive has come down

dramatically and one can purchase a VIC-1541 for under

$250 Another cost factor is the price of the actual

storage media. For example, in order to store the

170,000 characters which will fit onto a single disk

in the Commodore VIC-1541, one would need four C-60

cassettes. Here the cassette recorder offers no price

advantage.

-Access time

Here the advantages of the disk are shown most

clearly. For instance, reading a 10K program from a

cassette requires 200 seconds, but only 20 for the

VIC-1541 disk drive. To read a file consisting of 50

addresses, each 100 characters long, requires 180

seconds with a cassette recorder, while the disk drive

requires only 18 seconds.

-Access methods and ease of programming and operation

While the cassette recorder allows only programs and

sequential data files to be stored, the disk offers

many more possibilities through its ability to make

use of relative files (random access) and direct

access. In addition, the disk is much easier to use.

One need only give the disk drive the name of program

to be saved, and the drive will find free space on the

disk and save the program there.

- 192 -

Tricks & Tips

It should now be clear that the cassette recorder is a

low-cost device for the beginner or light user. Anyone who

wants to use his computer for commercial purposes will

require a disk drive.

Next, we will take a look at the under-lying technical

principles of data storage on the cassette and then turn to

the individual access methods and file forms.

- 193 -

Tricks & Tips

The datasette, or HOW DO THE BITS GET ON THE TAPE?

Now that we have clarified the principles behind files

(and you have hopefully understood them), we want to explain

how the information is actually placed on the tape. The

discussion will become a bit technical, but you may find the

information useful nonetheless.

The method Commodore uses for representing the

information (bits) on the cassette tape is called PPM or

Pulse Position Modulation. This means that the Commodore 64,

just like its other Commodore brothers, writes the digital

signals directly, and not in the form of tone frequencies,

to the tape. These digital signals are transmitted in three

different lengths: short (S), long (L), and medium (N). From

these three lengths, three different combinations are

formed, which have the following meanings:

LLMM = BYTE ; this combination precedes every byte

MMSS = 1

SSMM = 0

The letter "A" would be represented on the tape in the

following form:

LLMM MMSS SSMM SSMM SSMM SSMM SSMM MMSS SSMM MMSS

BYTE 100000101

BIT* 01234567 parity ODD

The format of the whole program or file on the tape looks

like this:

Programs Data files

- 194 -

Tricks & Tips

Program header

Start & end addresses, name

Program header (again)

Program (a block)

Program (again)

End block

File header

Name

File header (again)

Data block

Data block (again)

End block

The header is constructed as follows:

Programs

Start address (xxxx)

End address (xxxx)

Program name (16 characters)

Padding chars, (for prg. name)

Data files

Start address (0000)

End address (0000)

Filename (16 chars.)

Padding chars, (for

filename)

A block consists of: (programs and data files)

approximately 2 seconds of leader

9-byte count down ($89 $88 $87 $86 $85 $84 $83 $82 $81)

for first block

($09 $08 $07 $06 $05 $04 $03 $02 $01)

for repetition

data

checksum (EXOR checksum for all data)

end marker (LLSS SSSS SSSS SSSS SSSS)

- 195 -

Tricks & Tips

approximately 0.16 seconds of trailer

As we mentioned before, the method of representation is

the same for all of the Commodore computers. The problem

with exchanging data between the Commodore 64 and VIC-20

lies only in the different clock frequencies used. The

system clock of the VIC-20 runs faster than that of the CBM,

while the system clock of the CBM runs faster than that of

the Commodore 64. In practice, this means that VIC-20 and

Commodore 64 programs can be run on the larger CBM's, but

that a VIC-20 program cannot be directly loaded into a

Commodore 64, and vice versa. If you want to exchange

cassettes between these two computers, you must make a

detour through a CBM. The procedure would be something like

this:

You have a casse'tte which contains one or more VIC-20

programs or files which you want to transfer to your

Commodore 64. In order to do so, you first take a ordinary

datasette and connect it to a CBM or PET computer and load

the first program (or file) as usual. Then take a new

cassette and exchange it for the VIC-20 cassette in the

recorder. Now save you program (or file) onto the tape with

the usual commands. If you have more than one program or

file, repeat this procedure until you are done.

After all of the programs have been transferred, or

perhaps it would be better to say converted, you have a

cassette which can be used on both the VIC-20 and the

Commodore 64. Under certain circumstances you may have to

make some changes to the program, such as adapting it to the

64's 40x25 screen size, changing some POKE's, etc.

- 196 -

Tricks & Tips

8.3 The principle behind data management: Sequential files

We have occupied ourselves in detail with the "history"

of storage media. Now we shall turn our attention to the two

most recent storage media, the tape and disk drives. In this

section, we will concentrate on the sequential method of

data access.

Sequential means "one after the other." This is exactly

the way we find individual data records in the file. It can

be compared with the selection of a piece of music with the

aid of a cassette recorder. You fast-forward or rewind the

tape to the specific place at which the piece is recorded

and then press the play button. When working with sequential

files, either on tape or disk, there is one additional

limitation. It is like having a tape recorder with a fast-

forward and a rewind-to-start-of-tape button. If we want to

hear the piece of music again, or mak°e another pass through

our data, we must go back to the beginning of the tape and

fast-forward to the desired spot again.

It works much the same way with data storage on the

tape. When you save some data, you must make note of the

counter position so that you can find the same spot on the

tape later when you wish to read the data back in. You can

use the fast-forward and rewind buttons to aid in finding

the data. In spite of this, it is somewhat problematical to

search through a file for a specific data record. If you

have a file full of addresses, and you search for the name

SMITH, it may happen that there is more than one SMITH in

the file. Often, you cannot always make note of the counter

position (in addition, we want to do without such manual

work, otherwise we might just as well use filing cards). We

must find some other way. We rewind the tape to the

beginning, open the file for reading and then go through

- 197 -

Tricks & Tips

record by record until we have read the correct SMITH.

Naturally, this has certain time expenses: with 2000 records

in a file one can have a nice cup of coffee or walk the dog

while the file is being processed. But one can still use the

cassette recorder for working with small amounts of data,

especially since it is very cost-effective for such

applications.

Those who own cassettes but who would like to process

their data quickly and efficiently should make use of the

following procedure: Form all of your files such that they

will fit into the free memory of the Commodore 64. Before

you change, erase, insert, or simply display any of the data

in the file, load the whole thing into memory from the

cassette. Now the data accesses are not dependent on the

speed of the cassette, rather, you can make use of the

processing speed of your computer. When you are done working

with the file, save the entire file back to tape. This

simple and effective procedure can also be used for larger

files. For example, you can divide an extensive address file

into groups of names, one tape for those whose last names

start with A-C, another for D-F, and so on, so that the

parts each fit into the 64's memory. With some skill and

organization a tape recorder can be used to manage a large

amount of data.

When the process of data storage is presented

figuratively, one can easily see why only sequential files

are possible on the cassette recorder. All data are saved

one after the other and read back into the computer in the

same way.

Sequential files are also available as a method of data

storage on the disk drive. Sequential files can be found

quickly and directly without searching since the drive

- 198 -

Tricks & Tips

maintains a directory of the disk's contents and where the

files can be found. This allows you to escape the tedious

searching necessary with the cassette recorder.

How do we handle a sequential file on the Commodore 64?

First we must open the file. We need the file number, device

number, channel number, and filename. Once we have opened a

file, we can read or write in the file with one command, but

never both at once.

Without doing something additional we cannot write to a

file which already exists. If, for example, you open the

file "CBM 64 FILE" with the command

OPEN 2, 8, 2, "0:CBM 64 FILE,S,W"

and a file with the same name already exists on the

diskette, you will receive the error message FILE EXISTS.

The command must therefore be modified by placing an at-sign

("©") in front of the drive number. The command is then

worded

OPEN 2, 8, 2, "@0:CBM 64 FILE,S,W"

and will cause any existing file with the same name to be

overwritten.

This is important because even with a disk, no data can

be changed in an existing sequential data file. To change

any data, the file must be read into memory in its entirety,

and after making the changes it must be rewritten to the

diskette. Those who wish to use sequential files with the

disk instead of the direct access files available should use

the procedure described for use with the cassette recorder.

- 199 -

Tricks & Tips

Sequential files on the disk drive offer a

substantially higher rate of access and data transfer speed

as well as automated operation. The disk offers yet another

advantage, namely the ability to APPEND to a sequential

file. This ability to append is very useful because it means

that you do not have to read all of the data into the

Commodore 64 and then write it back again in order to simply

add new data to an existing file. A simple change of the

OPEN command allows you to append data to the end of a

sequential file. The OPEN command looks like this:

OPEN 2, 8, 2, "0:CBM 64 FILE,S,A"

Now all data written to the file will be added to the end.

This append option is unfortunately unavailable on the

cassette drive. You must read in all of the data, then write

it back out again, and finally add the new data before

closing the file. It should now be obvious why we said that

data management is far more convenient with the disk than

with the cassette.

Following, you will find a set of model programs for

simple sequential data management on a cassette or disk

drive. The individual programs can be easily modified for

your own uses. First the cassette version.

- 200 -

Tricks & Tips

1. Writing the data

10 REM ************************************

20 REM WRITING FIRST AND LAST NAMES TO TAPE

30 REM VERSION FOR DATASETTE / COMMODORE 64

40 REM ************************************

50 PRINT CHR$(147) : REM ERASE SCREEN

52 PRINT "OPENING FILE FOR WRITING"

54 PRINT

56 OPEN 1,1,1,"CBM 64 FILE"

60 INPUT "LAST NAME : ";LN$

70 INPUT "FIRST NAME : ";N$

80 PRINT

90 PRINT "WRITING - LAST NAME = ";LN$

100 PRINT " - FIRST NAME = ";N$

110 PRINT

120 PRINT#1,LN$

130 PRINT#1,N$

140 PRINT

150 INPUT "MORE (Y/N) ";YN$

155 PRINT

160 IF YN$="Y" THEN 60

170 IF YN$="N" THEN 200

180 PRINT "INVALID INPUT!"

190 GOTO 140

200 CLOSE 1

210 END

This program will save a desired number of first and

last names to tape. Note that this program can only be used

with a cassette recorder. The next program is the "opposite"

of the first. It reads the data into the 64 and displays it

- 201 -

Tricks & Tips

on the screen (or printer). Before running this program you

must rewind the tape to the start of the file you created

with the above program.

2. Reading the data

10 REM **************************************

20 REM READING FIRST AND LAST NAMES FROM TAPE

30 REM VERSION FOR DATASETTE / COMMODORE 64

40 REM **************************************

50 PRINT CHR$(147) : REM ERASE SCREEN

52 PRINT "OPENING FILE FOR READING"

54 PRINT

56 OPEN 1,1,0,"CBM 64 FILE"

60 INPUT#1,LN$

70 INPUT#1,N$

80 IF ST AND 64 THEN 130 : REM END OF FILE?

90 PRINT "READING - LAST NAME = ";LN$

100 PRINT " - FIRST NAME = ";N$

110 PRINT

120 GOTO 60

130 PRINT "END OF FILE - LAST NAME = ";LN$

140 PRINT " - FIRST NAME = ";N$

150 CLOSE 1

160 END

- 202 -

Tricks & Tips

This program reads all of the data previously saved by

the first program and then displays it on the screen. If you

want to send the data to the printer instead of the screen,

you must change a few lines:

58 OPEN 4,4

90 PRINT#4,"READING - LAST NAME = ";LN$

100 PRINT#4," - FIRST NAME = ft; N$

110 PRINT#4

130 PRINT#4,"END OF FILE - LAST NAME = ";LN$

140 PRINT#4," - FIRST NAME = ";N$

155 CLOSE 4

There is yet another possibility, namely the addition

of data. As we mentioned earlier, there is no simple way to

append data to the end of a cassette-based sequential file

as there is for such file on disk. The file must be read

into memory in its entirety, the tape rewound, the file

opened again for writing, and the previously read data

written back to the tape. At the end you may add the new

data. The same procedure would also allow you to change or

erase individual data.

- 203 -

Tricks & Tips

3. Adding data

10 REM ************************************

20 REM ADDING FIRST AND LAST NAMES TO TAPE

30 REM VERSION FOR DATASETTE / COMMODORE 64

40 REM ************************************

50 PRINT CHR$(147) : REM CLEAR SCREEN

52 PRINT "OPENING FILE FOR READING"

54 PRINT

56 OPEN l,l,0,"CBM 64 FILE"

60 DIM LN$(100),N$(100) : 1=1 : REM 100 NAMES MAX.

70 INPUT#1,LN$: LN$(I)=LN$

80 INPUT#1,N$: N$(I)=N$

90 IF ST AND 64 THEN 130

100 IF 1=100 THEN 130

110 1=1+1

120 GOTO 70

130 EN=I

135 PRINT

140 PRINT "PLEASE REWIND THE TAPE."

150 PRINT

160 INPUT "DONE (Y/N) ";YN$

170 IF YN$="N" THEN 130

180 IF YN$="Y" THEN 210

190 PRINT "INVALID INPUT!"

200 GOTO 150

210 PRINT "OPENING FILE FOR APPENDING"

220 PRINT

230 OPEN 1,1,1,"CBM 64 FILE"

240 FOR 1=1 TO EN

250 PRINT#1,LN$(I)

260 PRINT#1,N$(I)

270 NEXT I

- 204 -

Tricks & Tips

280 PRINT "ADD DATA:"

290 PRINT

300 INPUT "LAST NAME : ";LN$

310 INPUT "FIRST NAME : ";N$

320 PRINT

330 PRINT "WRITING - LAST NAME = ";LN$

340 PRINT " - FIRST NAME = ";N$

350 PRINT

360 PRINT*1,LN$

370 PRINT#1,N$

380 PRINT

390 INPUT "MORE (Y/N) ";YN$

400 IF YN$="Y" THEN 300

410 IF YN$="N" THEN 440

420 PRINT "INVALID INPUT!"

430 GOTO 380

440 CLOSE 1

450 END

Now you have a small address manager. To be sure, it

lacks the addresses yet, but anyone with a bit of experience

in programming will be able to expand the program to include

this.

We shall now turn to sequential file management on the

disk drive. Here too we will offer the three examples which

we gave for the datasette. This will allow you to compare

and contrast the two.

- 205 -

Tricks & Tips

1. Writing the data

10 REM ************************************

20 REN WRITING FIRST AND LAST NAMES TO DISK

30 REM VERSION FOR VIC-1541 / COMMODORE 64

40 REM ************************************

50 PRINT CHR$(147) : REM CLEAR SCREEN

52 PRINT "OPENING FILE FOR WRITING"

54 PRINT

56 OPEN 2,8,2,"CBM 64 FILE,S,W"

60 INPUT "LAST NAME : ";LN$

70 INPUT "FIRST NAME : ";N$

80 PRINT

90 PRINT "WRITING - LAST NAME = ";LN$

100 PRINT " - FIRST NAME = ";N$

110 PRINT

120 PRINT#2,LN$

130 PRINT#2,N$

140 PRINT

150 INPUT "MORE (Y/N) ";YN$

155 PRINT

160 IF YN$="Y" THEN 60

170 IF YN$="N" THEN 200

180 PRINT "INVALID INPUT!"

190 GOTO 140

200 CLOSE 2

210 END

Exactly as the previously-described program for the

datasette, this program writes any number of first and last

names to the diskette in sequential form. Naturally, this

works only until the diskette, or better, the file space, is

full. It requires a large amount of data to fill up a

- 206 -

Tricks & Tips

diskette, but one should still take care in programming that

no error or program crash will occur when the disk is full.

So that you receive the full impression of the capacity of

the disk, we want to show you a small example:

The VIC-1541 disk drive can store a total of 174,848

bytes (characters) on a diskette. We can use the following

amounts for files:

Sequential files : 168,656 characters

Relative files : 167,132 characters

A maximum of 144 programs and files can be saved.

Let's assume that we have written a complete address

manager. For the sake of example, assume our program expects

the following data:

Field Length

Number

First name

Last name

Street address

City

State

Zip code

Telephone number

Notes

3

20

20

25

25

2

5

14

50

Our data record is 164 characters long. To this we add the

RETURN characters for the end of the fields (CHR$(13)). We

must add one more character for each field. This yields a

- 207 -

Tricks & Tips

total of 173 characters. How many records can we store on

one diskette?

The calculation we need here look like this:

MAX = BYTES FOR SEQUENTIAL FILES / LENGTH OF A RECORD

or in our example:

168,656 / 173 = 974.8901734

Since it will be a little difficult to make use of

974.8901734 data records, and a little space on the diskette

never hurts, we could store up to about 960 records. This

number should suffice for most applications. If, however,

you need to store more records, you must either write the

program in such a way so that it can make use of multiple

data disks or use a larger disk drive. In our example, using

a Commodore 8250 drive would increase the storage capacity

by a factor of 6 per drive. This would mean that the 8250

could store more than 5500 addresses.

This possibility is available to the Commodore 64. All

that you need is the disk drive itself and an IEEE-488

interface for the 64.

2. Reading the data

Now on to reading the data. The program is virtually

identical to the cassette version. For the sake of

completeness we will present this program again:

- 208 -

Tricks & Tips

10 REM **************************************

20 REM READING FIRST AND LAST NAMES FROM DISK

30 REM VERSION FOR VIC-1541 / COMMODORE 64

40 REM **************************************

50 PRINT CHR$(147) : REM CLEAR SCREEN

52 PRINT "OPENING FILE FOR READING"

54 PRINT

56 OPEN 2,8,2,"CBM 64 FILE,S,R"

60 INPUT#2,LN$

70 INPUT#2,N$

80 IF ST AND 64 THEN 130 : REM END OF FILE?

90 PRINT "READING - LAST NAME = "; LN$

100 PRINT " - FIRST NAME = ";N$

110 PRINT

120 GOTO 60

130 PRINT "END OF FILE - LAST NAME = ";LN$

140 PRINT " - FIRST NAME = ";N$

150 CLOSE 2

160 END

As you see, this program has no important differences

from the cassette version. The only significant difference

in the ways in which the cassette and disk work with

sequential files is the disk drive's ability to append to

the end of a sequential file without having to read in and

rewrite the old data.

- 209 -

Tricks & Tips

3. Adding data

10 REM *************************************

20 REM ADDING FIRST AND LAST NAMES TO A FILE

30 REM VERSION FOR VIC-1541 / COMMODORE 64

40 REM *************************************

50 PRINT CHR$(147) : REM CLEAR THE SCREEN

52 PRINT "OPENING FILE FOR APPENDING"

54 PRINT

56 OPEN 2,8,2,"CBM 64 FILE,S,A"

60 INPUT "NAME : ";LN$

70 INPUT " : ";N$

80 PRINT

90 PRINT "WRITING - LAST NAME = ";LN$

100 PRINT " - FIRST NAME = "; N$

110 PRINT

120 PRINT#2,LN$

130 PRINT#2,N$

140 PRINT

150 INPUT "MORE (Y/N) ";YN$

155 PRINT

160 IF YN$="Y" THEN 60

170 IF YN$="N" THEN 200

180 PRINT "INVALID INPUT!"

190 GOTO 140

200 CLOSE 2

210 END

As you have noticed, this program bears a strong

resemblance to the program for writing the data—with one

exception: The OPEN command was changed from

- 210 -

Tricks & Tips

OPEN 2,8,2,"CBM 64 FILE,S,WW

to

OPEN 2,8,2,"CBM 64 FILE,S,AM

This ability of the disk allows relatively easy manipulation

of sequential files.

At the close of this section, we would like to clarify

the range of applications of sequential files. For data

management where fast access and easy alteration of data is

important, sequential files are used only under certain

conditions. Sequential files files are used primarily when a

file is to be created for a clearly defined purpose in a

clearly defined form. An example is data exchange between

computers. Sequential files can, in principle, be read by

any computer provided the character sets (generally ASCII)

are compatible. With relative files or direct access, the

various disk operating systems use different means of

managing the files and such an exchange is generally not

possible. Another example is register files which are

created once and then never changed, such as the book

keeping journal in accounting.

- 211 -

Tricks & Tips

8.4 Copying files with one and two disk drives

As we have discussed, there are various ways of

expanding, changing, or erasing sequential files. Sequential

data management can be very simple—but it is looked upon as

only a primitive method of saving and retrieving data.

In addition, it is sensible or even necessary to

duplicate data or files so that after working with a file, a

copy of data in its original condition is still available or

so that should anything happen to one copy of the file, the

other can still be used.

We will first discuss copying files. In our example, we

assume that the file has been saved sequentially. There are

several ways of copying this file. First, we could read the

entire file into the 64fs memory in order to copy the

records into the new file. This method either requires a

very large amount of memory (the diskette can contain up to

170,000 characters while the Commodore 64 can hold only

about 30,000 along with BASIC and program) or is limited to

small files. A "compromise" is possible where a certain

number of records are read in by blocks and then written

back to the diskette. We will keep to the simplest method

however and read each record in and then write it back.

Our goal is to create a second file which, after the

copying process, is identical to the original file. The only

problem which we encounter here is that we must know how

many fields each record has. In order to make the program

easier to use, we also it to display which record it is

working along with its fields.

- 212 -

Tricks & Tips

50000

50010

so01 :t

50020

50030

50040

50045

50050

50060

50070

50080

50090

50100

50110

50112

50115

50120

50130

50140

50145

50150

50160

50170

50180

50190

50200

50210

50220

50230

50240

51000

51010

51020

51030

51040

51050

AD*=naRI6INAL FILE11.1:

REM NAME OF THE FILE (CHANGE AS NEEDED)

NF*~"NEW FILE":

REN NAME OF NEW FILE <

NF*=llGi: II+NF*+" , S, W" :

REM WRITE NEW FILE

INPUT "HOW MANY FIELDS PER RECORD •'; NF*

NF=VAL(NF$)

DIM FT*<NF>:

REM DIMENSION FIELD TITLES

DIM DF*<NF>:

REM DIMENSION DATA F1LEDS

FOR 1=1 TO AF:

REM INPUT ALL FIELD TITLES

INPUT FT*(I)

NEXT 1

PRINT

PRINT "COPYING IN PROGRESS.,"

OPEN 1,8,2hAF*:

REM OPEN FILE FOR READING

OPEN 2,B!,3,NF1^

REM OPEN FILE FOR WRITING

RN== I l

REM BEGIN WITH RECORD 1

PRINT "READING RECORD NO. "5 RIM:

PRINT

FOR I~l TO NF."

REM READ ALL FIELDS

INPUT4tl.DF*<I)

PRINT" FT*<1) 5 " : ";DF*(D

DL«ST:

REM DL » FILE STATUS

NEXT I

PRINT

PR I NT " WR i TIMG RECORD NO. " 5 NR".

PRINT

FOR I«l TO NF:

REM WRITE ALL FIELDS

PRINT#2,DF*(I)

NEXT I

PRINT

IF DL AND 64

THEN 51000:

REM END OF THE FILE?

DR-DR+lr.

REM NEXT RECORD

GOTO 50113

PRINT "ALL RECORDS (JURIED."

PRINT

close ;;■.:

REh CLOSE THE FILES

CLOSL 1

PRINT "END."

END

- 213 -

Tricks & Tips

With this program you can easily copy your own

sequential files, so long as you know the construction (the

number of fields per data record) of the file.

This routine hajs a problem, however. When you want to

copy a very large file, you will very soon reach the limits

of the disk drive's capacity. You can see that a 100,000

character file (about 100KB) cannot be copied so easily with

this program since you cannot create a destination file

which has both the same construction and size of the

original.

In order to copy large files, we must either work with

two disk drives or two different diskettes. The easiest and

surest way is to make the duplicate using two disk drives.

One of the drives must be defined as device 8 and the other

as device 9. This can be done in software, although DIP

switches inside the drive can be changed to make the device

number more permanent.

- 214 -

Tricks & Tips

Once you have defined one drive as device 9, you can

alter the previous program so that even large files can be

copied.

50110 OPEN 2,9,3,ND$: REM OPEN FILE FOR WRITING

Data will now be read from drive 8, displayed on the screen,

and written back to drive 9.

Many programmers use record 0 or 1 of their file or a

second file to store information about the construction of

the file. It would, for example, be very useful if you would

save the number of fields and number of records as the first

information in the file. This makes it unnecessary to input

this information manually when you want to copy the file. In

addition, you always know how many records must still be

copied. If you have saved these two values in the file, the

program must naturally be changed somewhat.

50012 OPEN 1,8,2,AD$: REM OPEN ORIGINAL FILE FOR READING

50013 INPUT#1,NF$: REM NUMBER OF FIELDS

50014 INPUT#1,NR$: REM NUMBER OF RECORDS

50015 CLOSE 1

Delete line 50020

50035 NR=VAL(NR$)

50111 INPUT#1,NF$: INPUT#1,NR$: PRINT#2,NF$: PRINT#2,NR$

50112 FOR RN=1 TO NR

Delete lines 50145 and 50220

50230 NEXT RN

- 215 -

Tricks & Tips

Such a parameterized file is considerably easier to work

with.

Appending records can be done using the same principle.

First the file must be copied with this program, then file

2, the new data file, is not closed but expanded with the

usual PRINT* commands. Once the file is expanded as desired;,

you can copy it back to the original. '

- 216 -

Tricks & Tips

8.5 Faster access: Relative files

Other Commodore computers with BASIC 4.0 and Commodore

64's equipped with IEEE expanders with BASIC 4.0 or MASTER

64 have much easier methods of managing relative files than

does an unaided Commodore 64. In a relative file, each

record carries a number which, based on its position, is

relative to the beginning of the file. This allows you to

construct a data management program using one of two basic

options:

1) You use the ordering criterium of the relative

file, namely the given record number, as the

access key for your record. Using this, you could

set the account number in an account file equal

to the record number. This makes possible a

faster, more direct access to the desired

account. The same applies for part numbers and

other numeric keys which you may want to use.

2) You build a table which contains the keys

indexed to the record numbers. If, for example,

you have ordered your address file by names and

want to search for an address with the name

SMITH, you first search the table for the name

SMITH and then using the record number associated

with the name, access this record directly. This

procedure is considerably faster and more elegant

than reading through a sequential file until the

name is found.

Unfortunately, users of serial-oriented Commodore 64's

who have not added BASIC 4.0 capability to their machines

- 217 -

Tricks & Tips

cannot normally make use of these efficient relative files.

The VIC-1541 disk drive's operating system is able to work

with relative files, but the necessary commands are not

available in the 64's Commodore BASIC 2.0. We would like to

show you a way in which one can use relative files on the

Commodore 64 in spite of this limitation.

The possibility exists to inform the disk drive using

CHR$ commands which record is to be written or read. The

whole procedure consists of two parts:

1) Opening the relative file with the usual OPEN command:

OPEN filenumber, deviceaddress, channelnumber,

"name,L,"+CHR$(length)

The first part of this OPEN command is the same as that for

sequential files. After the declaration of the name comes an

"L". This L stands for LENGTH—-the disk drive now knows that

it is supposed to open a relative file. Next comes a very

important CHR$ command. This command tells the disk drive

the length of the data records in our file. In our previous

example of the address file, we would enter 173 here as the

record length. The Commodore 64 and the disk operating

system allow a maximum record length of 254 characters. If a

record requires more than 254 characters, either another

file must be opened and the record divided into two or more

smaller records or you can write in the same file and make

note of the fact that every second record is the second part

of the "meta-record."

- 218 -

Tricks & Tips

2. Positioning the record pointer:

PRINT* channelnumber,"P"+CHR$(channelnumber)+

CHR$(low)+CHR$(high)

The special part of this command begins after the

declaration of the file number. The WPM means POSITION and

tells the operating system that the following CHR$ commands

are to set the record pointer through the input of LOW and

HIGH (we will show you later how to calculate LOW and HIGH).

The command can be expanded even farther. If you add

another CHR$ command to the end of the current string, this

will designate the position within data record. This allows

you to set the record pointer to a specific character.

There is one very important characteristic of relative

files which must be noted:

A terminating character (CHR$(13)) must be written to

the record after each FIELD is written. Without this

separating character, the computer will not be able to

distinguish between successive fields. For this reason we

have always placed the PRINT* commands on different lines so

that a carriage return, CHR$(13), is automatically saved

between the records.

This will all be made clearer through an example.

Therefore, we have included a completely functional

inventory control program at the end of this section so that

you can see the procedures discussed in the section actually

used in a program. We believe that the trouble of typing

this program in will be well worth it, since with only minor

changes it can be used as an address manager, tape and

record cataloguer, and more.

- 219 -

Tricks & Tips

But first to the above-mentioned HIGH and LOW numbers.

These HIGH and LOW numbers together give the actual data

record number. The formula for calculating the record number

record number = HIGH * 256 + LOW

This allows us access to records with numbers greater than

255. To read the 78th record, for instance, we must first

calculate HIGH and LOW:

HIGH = INT (record number / 256)

LOW = record number - HIGH * 256

or in a concrete example

HB=INT(78/256): LB=78-HB*256

which yields the values

HB = 0, LB = 78

This calculation is rather trivial for reading a record

whose number is less than 256, but this example shows how

all of the calculations can be made.

This result must now be used in the command to set the

record pointer. To set the pointer to the 78th record, the

command is

PRINT# channelnumber,"PM+CHR$(channelnumber)+CHR$(0)+CHR$(78)

In our inventory management program, you will find the

- 220 -

Tricks & Tips

following structure:

PRINT#15,"P"+CHR$(3)+CHR$(231)+CHR$(3)+CHR$(1)

This command will set the pointer to the first character

within the 999th data record of the file.

Before the file can be used, it must first be prepared

for relative operation. This is done by setting the record

pointer to a record and then writing to this record with the

character CHR$(255). This character tells the operating

system that an existing data record lies at this point, in

which nothing has yet been written. In our example, all of

the 999 records are marked with this character.

Now we can write the record in this file, but no more

than we have declared when we opened the file. If one tries

to write a record which lies outside of the allowed range,

the computer will respond with the error message RECORD NOT

PRESENT, since this data record does not exist.

In our program, after you start it with RUN, you will

be asked if the disk drive is connected. This message will

appear until you press the Y key. After this, you will be

asked if you want to use a new disk. "New" means only that

the disk is unformatted or that it has not been initialized

for the file. Be careful, though, because the disk will be

formatted in any event, so don't use a disk which contains

anything you might want to keep. When this is done, the main

menu will appear. From this point, you can call up six

possible functions.

When you want to construct a record, remember that the

input may be no longer than the length given in the data

lines (30-82). These lines are constructed such that the

name is entered first and then the length of the field. To

delete an existing record, go to the routine CHANGE and

- 221 -

Tricks & Tips

enter an @ as the first character in the DESCRIPTION field.

This will mark the record as erased.

In any function, you can return to the main menu by

entering END when asked to enter the part number.

When first entering a part, only the part number and

description are entered. To enter an initial quantity, you

must enter this quantity as a sales slip. At this time you

will also have to opportunity to set cost and price of the

item. This must also be done when receiving items. To update

the inventory (when goods are sold), enter the quantity sold

as a negative number when entering the sales slip. You do

not have to re-enter the cost and price each time—just

press RETURN when asked.

In addition, a printer and disk drive must always be

connected when working with this program. If you do not have

a printer, you must rewrite the program. Lines containing

PRINT#4 commands must be changed since these are the lines

which send the data to the printer.

If this program is to be used for multiple branches or

by more than one person, it is recommended that a new disk

be used for each branch or person.

We hope that this program will offer you some insight

into data management, especially data management with

relative files. It looks at first glance more difficult than

it really is. With a little practice, you will be able to

design similar programs of your own.

- 222 -

Tricks & Tips

10

15

20

30

32

34

36

38

40

42

50

56

58

60

70

76

78

80

82

100

110

120

130

140

150

160

170

180

190

200

CLR

ME(l)=1.065:

ME(2)=1.13:

ME(3)=1.07:

ME(4>=1.14

FOR 1=1 TO 7:

READ TD*(I),TD(I):

NEXT I

DATA "1) PART NUMBER

DATA "2) DESCRIPTION

DATA "3) QUANTITY

DATA "4) COST/EACH

DATA M5> TOTAL COST

DATA "6) PRICE/EACH

DATA "7) TOTAL PRICE

FOR 1=1 TO 3:

READ TI*<I),TI(I):

NEXT I

DATA "1) PART NUMBER

DATA "2> DESCRIPTION

DATA "

FOR 1=1 TO 4:

READ TT*<I),TT<I>:

NEXT I

DATA "1) BRANCH NUMBER

DATA "2) DATE

DATA H3) ACCOUNT NUMBER

DATA "4) RECEIPT NUMBER

PRINT CHR*(147)

: ", 3

: ", 20

:", 3

: " i 7
: ", 8

: ", 7

: "58

:",3

:", 20

:",l

: ", 1

:",8

:",8

:%8

PRINT "*####***#*****#**##****#•**■****■*********•*'" 5

PRINT "* DATA MANAGEMENT PROGRAM 1.0 *"5

PRINT " ■*■**•**#***•*•*•*■#*••**

PRINT :

PRINT

PRINT "DISK DRIVE CONNECTED? "5

GET A*:

IF A$=""

THEN 160

IF AHK>"Y"

THEN 160

PRINT A*

OPEN 15,8,15,"10":

CLOSE 15

PRINT "NEW DISKETTE? (Y/N) ";

210 GET A*:

IF A$«""

THEN 210

220 IF A$O"Y"

THEN 300

222 PRINT A*

230 OPEN 15,8,15,"N:DATA DISKETTE,AH"

240 OPEN 1,8,3,, " 0: IMVDAT, L, " +CHR* (64)

250 PRINT#15, "P"+CHR* (3) +-CHR* (231) +CHR* (3) +CHR$ < 1)

260 PRINT#1, CHR$ (255) !i

270 RM=INT(167132/64)

- 223 -

Tricks & Tips

280

300

310

320

330

340

345

350

355

360

365

370

375

380

390

400

410

420

430

1000

1002

1005

1010

1020

1030

1040

1050

1060

1065

1070

1080

1090

1092

1) ENTER PART":

2) CHANGE PART"

3) ENTER SALES SLIP":

4) PRINT PARTS LIST"

5) PRINT EVALUATION":

6) EXIT PROGRAM"

CLOSE l:

CLOSE 15

PRINT CHR*(147)

PRINT

PRINT "* DATA MANAGEMENT PROGRAM 1

PRINT

PRINT :

PRINT

PRINT TAB(15)5"MAIN MENU

PRINT :

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT :

PRINT

PRINT "YOUR SELECTION (1-6) : " ?

GET A*:

IF A*="11

THEN 390

A=VAL(A$):

IF A<1 OR A>6

THEN 390

PRINT A*

FOR 1=1 TO 1000:

NEXT

ON A

GOTO 1000„2000„3000,4000,5000,6000

OPEN 15,8,15S

OPEN 8,8,8,"0 SINVDAT"

GOSUB 12000

PRINT CHR$(147)

PR I NT "*****###*♦***#*##****#*#*##*#*##*■*#*#•*#"

PRINT "* DATA MANAGEMENT PROGRAM 1.0 *"

PRINT "*#####*#********************■****#*•*•*•***"

PRINT :

PRINT

PRINT TAB < 7 > ?"INPUT PART":

PRINT :

PRINT

FOR 1=1 TO 2

TE$(I)=""

PRINT TI$(I)5

INPUT TE*(I)

NEXT

IF TE*<1)="END11

THEN 1200

- 224 -

Tricks & Tips

1093

1095

1100

1102

1110

1120

1130

1140

1150

1200

1220

2000

2002

2005

2010

2020

2030

2040

2050

2055

2060

2070

2080

2090

2100

2110

2120

2130

2140

2142

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

FOR 1=1 TO 3

IF LEN(TE*<I>> >TI(I

THEN 1065

NEXT

FOR 1=4 TO 8:

TE*<I)«""S

NEXT

RN=VAL<TE*(1))

IF RN<1 OR RN>999

THEN 1005

BOSUB 10000

GOSUB 10070

GOTO 1005

CLOSE 8:

CLOSE 15

GOTO 300

OPEN 15,8,15:

OPEN 8,8,8,"O:INVDAT"

GOSUB 12000

PRINT CHR*<147)

PRINT

PRINT

PRINT

11 * DATA MANAGEMENT PROGRAM 1-0 *"

«i *^*#***#***##****#***#*****************# "

PRINT :

PRINT

PRINT TAB <8) 5 "CHANGE PART11:

PRINT :

PRINT

TE*<1>«IMI

PRINT TI*<1>5

INPUT TE*(1)

PRINT

IF TE$(1)="END"

THEN 2400

IF LEN(TE$(1>)>TI(1)

THEN 2055

RN=VAL(TE*<1))

IF RN<1 OR RN>999

THEN 2005

GOSUB 10000

GOSUB 10030

IF VAL(TE$(1))<>RN

THEN 2005

PRINT CHR*(147>

PRINT "****#*##*#*#*******###**#*#*********■****"

PRINT "* DATA MANAGEMENT PROGRAM 1.0 *"

PRINT "**#*#**#****

PRINT '.'

PRINT

PRINT TAB(8)"CHANGE PART":

PRINT :

PRINT

FOR 1=1 TO 2

PRINT TI*<I)5"? "5

PRINT TE*(I)

PRINT CHR*U45) ?

- 225 -

Tricks & Tips

2250 PRINT TI*(I)5

2260 INPUT TE*(I)

2270 PRINT

2280 IF TE*<i)»"END"

THEN 2400

2290 IF LEN(TE*<I))>TI<I)

THEN 2250

2300 NEXT

2310 RN=VAL<TE*(1>)

2320 IF RN<1 OR RN>999

THEN 2005

2330 GOSUB 10000

2340 GOSUB 10070

2400 CLOSE 4:

CLOSE 8:

CLOSE 15

2430 GOTO 300

2530 GOTO 3005

3000 OPEN 15,8,15:

OPEN 8, 8, 8, " O: IIMVDAT "

3001 OPEN 4,4:

DV«1

3002 GOSUB 12000

3005 PRINT CHR*<147>

3010 PRINT ''**#********#****■*#*#*#*##*■*******#*■*#■***

3020 PRINT "* DATA MANAGEMENT PROGRAM 1.0 *

3030 PRINT n******##******•**#***#****#********#****#

3040 PRINT :

PRINT

3050 PRINT TAB(7)"ENTER SALES SLIP":

PRINT :

PRINT

3060 TE*U)«""

3070 PRINT TI*<i);

3080 INPUT TE*<1>

3090 PRINT

3100 IF TE*(1)«"END11

THEN 3700

3110 1F LEN(TE* <1))>T1(1)

THEN 3060

3120 RN»VAL(TE*<1))

3130 IF RN<1 OR RN>999

THEM 3005

3132 IF DW=1 AND RN>799

THEN 3005

3134 IF DW=2 AND RN<800

THEN 3000

3140 GOSUB 10000

3150 GOSUB 10030

3152 IF VAL <TE* <1>)< >RN

THEN 3005

3154 IF LEFT*(TE*(2)„1)="©"

THEN 3005

3160 PRINT CHR*<147)

3170 PRINT l'**^#***##****#***

3180 PRINT "* DATA MANAGEMENT PROGRAM 1.0

- 226 -

Tricks & Tips

3190 PRINT l'*#****#****#*****#**#*****#*********##**'' ?

3200 PRINT :

PRINT

3210 PRINT TAB<7)"ENTER SALES SLIP":

PRINT :

PRINT

3212 FOR 1=1 TO 5

3214 TH* < I) =*TE* (1+3)

3216 NEXT

3220 FOR 1=1 TO 2

3230 PR I NT TD* < I) " ? '• TE* (I)

3235 TX*(I)=TE*(I)

3240 PRINT

3250 NEXT

3255 TX*(3)=TE*(3>

3260 PRINT TD*<3)3

3270 INPUT TX*(4>

3275 TE*(4)=TX*<4)

3280 PRINT

3285 IF VAL(TE*< 4))<-999 OR VAL(TE*(4))>999

THEN 3260

3287 IF LEN(TE*(4))>TD(3)

THEN 3260

3290 PRINT TD*(4> 5

3295 TE*(5>=""

3300 INPUT TX*(5>

3305 TE*(5>=TX*(5)

3310 PRINT

3315 IF LEN(TE*(5))>TD(4)

THEN 3290

3320 PRINT TD*(6>",

3325 TE*<7)=ni>

3330 INPUT TX*<7>

3335 TE* <7)=TX*(7)

3340 PRINT

3345 IF LEN(TE*(7)>>TD(6)

THEN 3320

3346 TH=VAL(TE*(4))

3347 TH=TH+VAL(TH*(1))

3348 TE$(4)=STR*(TH)

3350 TH=VAL<TE$(5))^VAL(TE$<4))

3351 TX*(6)=STR* <TH)

3355 TE*(6>=STR*<TH>

3360 TH=VAL<TE*<7))*VAL<TE*(4))

3361 TX*(8)=STR* <TH)

3365 TE*(8)=STR*(TH)

3370 TH==VAL (TE* (5))

3371 IF VAL(TE*(4))<1

THEN TH—TH

3375 TE*(5)=STR*(TH)

3380 TH«VAL(TE*(7))

3381 IF VAL(TE*(4) XI

THEM TH«-TH

3385 TE*(7)=STR*< TH)

3460 RN«VAL(TE*(1))

3470 G0SUB 10000

- 227 -

Tricks & Tips

3480 GOSUB 10070

3485 FOR 1=1 TO 8:

TE*(I)=:TX*(I) :

TX$<I)="":

NEXT

3490 IF DW=O AND VAL <TE* (i) X800
THEN DW=l:

GOSUB 5360S

GOTO 3510

3500 IF DW=O AND VAL<TE*<1))>799

THEN DW=2:

GOSUB 7005:

GOTO 3520

3510 IF DW=1

THEN GOSUB 5520:

GOTO 3530

3520 IF DW*2

THEN GOSUB 7120

3530 GOTO 3005

3700 IF DW=1

THEN GOSUB 5590:

GOTO 3800

3710 IF DW=2

THEN GOSUB 7190

3800 DW=O:

DV=O

3999 CLOSE 4:

CLOSE 8:

CLOSE 15:

GOTO 300

4000 OPEN 15,8,15:

OPEN 8,8,8,"OrlNVDAT"

4002 GOSUB 12000

4005 PRINT CHR*(147)

4010 PRINT "************#***#******####**#*****#**#*";

4020 PRINT "* DATA MANAGEMENT PROGRAM 1.0 »"?

4030 PRINT "*******************#*************####*#*» ij

4040 PRINT :

PRINT

4050 PRINT TAB(S)"PRINT PARTS LIST":

PRINT :

PRINT

4060 FOR 1=1 TO 2

4070 TE$(I)=""

4080 PRINT TT*(I)5

4090 INPUT TE$<I)

4100 PRINT

4110 IF TE*(1)="END"

THEN 4999

4120 IF LEN <TE* <I))>TT <I)

THEM 4070

4130 NEXT

4135 TE*<3>="":

TE*(4>=Illf

4140 IF DV=1

THEN RETURN

- 228 -

4200

4210

4220

4230

4240

4250

4260

4270

4280

4290

4300

4310

4330

4340

4345

4350

4360

4375

4385

4390

4405

4415

4420

4430

4440

4442

4444

4450

4460

4470

4480

4490

4492

4494

4999

5000

5002

5005

50 iO

5020

5030

5040

5050

Tricks & Tips

PRINT CHR*<147)

PR INT " *******#*****#*********#*#*#*********#■*# " ;

PRINT "* DATA MANAGEMENT PROGRAM 1.0 *"5

PRINT "****##**#**#*****#*************#****•***#"5

PRINT :

PRINT

PRINT TAB (8) "PRINT PARTS LIST11:

PRINT :

PRINT

PRINT "IS THE PRINTER TURNED ON? <Y/N) ";

GET A*:

IF A$=""

THEN 4270

IF A*O"Y"

THEN 4270

PRINT A*

OPEN 4,4

PRINT#4,"BRANCH NO- "?TE*<1>;

PRINT#4,CHR* <16)5"20"5"DATE ";TE* < 2)5

40

60

?"ACCOUNT NO.

" "RECEIPT NO.

QUANTITY";

DESCRIPTION11

" 5

PRINT#4,,CHR*(16> ;

PRINT#4,CHR*(16);

PRINT#4

PRINT#4!, "PART NO. "5

PRIMT#4,CHR*(16)?"15";'

PRINT#4,CHR*(16)5"25"3
DP TMTittA "— —.. ———————— •
r r\ j. iM I tt*t j ————— — n

PRINT#4,CHR*(16)3"15";"

PRINT#4,CHR*(16)5"25";"

FOR RN=1 TO 999

GOSUB 1OOOO

GOSUB 10030

IF VAL(TE*(1>)<>RN

THEN 4480

IF LEFT$(TE*(2),1)="©"

THEN 4480

PRINT#4j,TE*<1) i

PRINT#4,CHR*(16)5"15";TE*(4);

PRINT#4,, CHR* (16) ; "25" 5 TE* (2)

NEXT

FOR 1=1 TO 3

PRINT#4

NEXT

CLOSE 4:

CLOSE 8:

CLOSE 15:

GOTO 300

OPEN 15,8,15:

OPEN 8,8,8,"0:INVDAT"

GOSUB 12000

PRINT CHR*(147)

PRINT

PRINT

FRINT

PRINT :

PR IN I

PR 1N T" TAB (9) " PR I NT THE EVALUATI ON " :

- 229 -

;TE*(3 >;

;TE*<4>

DATA MANAGEMENT PROGRAM 1.0

Tricks fit Tips
PRINT :

PRINT

5060 FOR 1=1 TO 4

5070 TE*<I)=""

5080 PRINT TT$(I)5

5090 INPUT TE*<I)

5100 PRINT

5110 IF TE*(1)="END11

THEN 5999

5120 IF LEN<TE*<I))>TT(I)

THEN 5070

5125 IF DV=O AND 1=2

THEN 1=4

5130 NEXT

5140 IF DV=1

THEN RETURN

5200 PRINT CHR*<147)

5210 PRINT "*****#******#***************************";

5220 PRINT "* DATA MANAGEMENT PROGRAM 1.0 *";

5230 PRINT "*****#*********##***********************"5

5240 PRINT :

PRINT

5250 PRINT TAB<9)"PRINT EVALUATION":

PRINT :

PRINT

5252 SA=O:

SE=O:

SG=O."

SF=O:

SH=O

5255 FOR I*=l TO 4:

Ml(I)=0:

M2(I)=0:

NEXT

5260 PRINT "IS THE PRINTER TURNED ON? <Y/N) ";

5270 GET A*:

IF A*=""

THEN 5270

5280 IF A*O"Y"

THEN 5270

5290 PRINT A*

5300 OPEN 4,4

5310 PRINT#4,"BRANCH NO. "?TE*(1)5

5330 PRINT#4? CHR*(16)5"20"5"DATE "3 TE*(2);

5335 IF DV=O

THEN PRINT#4S

GOTO 5350

5340 PRIMT#4,CHR*(16)5"40"?"ACCOUNT NO. "5 TE*(3)5

5345 PRINT#4,CHR*(16>;"60"5"RECEIPT MO„ "? TE*(4)

3350 PRINT#4

S355 IF DV=1

THEN RETURN

S360 PRINT#4,"PART NO."5

5370 PRINT#4,CHF;;:*(16) 5 "10" 5 "QUA. "5

- 230 -

5375

5380

5390

5400

5410

5420

5425

5430

5440

5450

5460

5470

5475

5480

5490

5500

5510

5515

5520

5525

5530

5540

5550

5560

5570

5571

5572

5573

5574

5575

5576

5579

5580

5590

5600

5605

5610

5620

5630

5640

5650

5660

5670

5680

5690

5700

5775

5777

5780

5999

PRINT#4,CHR* <16);"15";"DESCRIPTION"5

PRINT#4,CHR* <16);"40";"COST/EA"j

PRINT#4,CHR*(16);'

PRINT#4,CHR*(16);'

PRINT#4,CHR*<16>;'

~ r\ X In I Tf*r 9 —»—.—«——— ^

PRINT#4,CHR*<16);"10";"-

PRINT#4?CHR*<16);"15";"-

PRINT#4.,CHR*<16) ; "40"; "-

PRINT#4flCHR*<16);"50";"-

Tricks & Tips

"50";"TOT COST"5

"60";"PRICE/EA"?

"70";"TOT PRIC"

-.i-

10"ilTE*(4)

"60

"70

•;TE*<6);

•;TE*(7);

•;TE*(8)

PRINT#4,CHR*(16> 5"60";"~

PRINT#4? CHR* (16) ; "70" ; " "

IF DV=1

THEN RETURN

FOR RN=1 TO 799

GOSUB 10000

GOSUB 10030

IF VAL(TE*(1))<>RN

THEN 5580

IF LEFT*<TE$(2)„1)="@"

THEN 5580

PRINT#4,TE*<1);

PRINT#4?CHR*(16) :

PRINT#4,CHR*<16);"15";TE*<2)i

PRINT#4,CHR*(16);"40";TE*(5) !

PRINT#4,CHR*(16);"50"

PRINT#4,CHR*(16);'

PRINT#4,CHR*(16);'

SA=SA+VAL(TE*(4))

SE=SE+VAL<TE*<5))

SG=SG+VAL<TE*(6))

SF=SF+VAL(TE*<7))

SH=SH+VAL(TE*(8))

IF VAL(TE*(3)><1 OR VAL(TE*<3))>4

THEN 5579

IF DV=1

THEN RETURN

NEXT

PRIIMT#4, " ";

PR1NT#4;,CHR*(16) '

PRINT#4,CHR*(16) !

PRINT#4,CHR*<16) \

PRINT#4,CHR*<16) I

PRINT#4,CHR*(16) !

PRINT#4!,CHR*(16) ;

PRINT#4,"TOTALS: '

PRINT#4,CHR*(16) ;

PRINT#4!I CHR* (16) :

PRINT#4,CHR*(16> I

PRINT#4,CHR$(16) ;

PRINT#4,CHR*(16) :

FOR 1=1 TO 5:

PRINT#4:

NEXT

RETURN

GOSUB 7000

CLOSE 4: _ 231 _

"10"

'15"

•40"

•50"

'60"

•70"

'09"

'39"

'49"

'59"

'69"

I " "• " 5

; '• •• -

• i. i. ■

5SA5

;SE;

.SB;

; SF 5

;SH

7999

8000

8010

8020

8030

8040

'15"

!"15";'

!"40";(

i"60";'

"DESC"5

"EXPENDITURES"

"RECEIPTS"

....

Tricks & Tips
CLOSE 8:

CLOSE 15:

GOTO 300

CLOSE 4:

CLOSE 8:

CLOSE 15

PRINT CHR*(147>

END

S1=O:

S2=0

PRINT#4,"PART NO.'

PRINT#4,CHR$(16)5'

PRINT#4,CHR*U6>5"40"5'

PRINT#4,CHR*(16)5"60";'

PRINT#4, " "5

PRINT#4,CHR$(16)j

PRINT#4,CHR*(16)j

PRINT#4j,CHR*<16) !

IF DV=1

THEN RETURN

FOR RN=800 TO 999

GOSUB 10000

GOSUB 10030

IF VAL(TE*<1))<>RN

THEN 7180

PRINT#4:,TE*(1) 5

PRINT#4,CHR*(16)i

PRINT#4,CHR*<16>!

PRINT#4,CHR$(16)i

S1«S1+VAL<TE$<5):

S2=S2+VAL(TE$(7)]

IF DV=1

THEN RETURN

NEXT

PRINT#4, " "!

PRINT#4,CHR$(16);

PRINT#4,CHR*(16);

PRINT#4,CHR*<16)5

PRINT#4,"TOTALS:".

PRINT#4,CHR$<16)5'

PRINT#4,CHR*(16);'

FOR 1=1 TO 3:

PRINT#4:

NEXT

FOR 1=1 TO 3:

PRINT#4:

NEXT

RETURN

PRINT CHR*<147)

PRINT "*****#*#********#************#***#******"5

* DATA MANAGEMENT PROGRAM 1.0 *";;

6000

6030

6040

7000

7005

7010

7020

7030

7040

7050

7060

7070

7075

7080

7090

7100

7110

7120

7130

7140

7150

7160

7170

7175

7180

7190

7200

7210

7220

7230

7240

7250

7260

7380

1115" 5 TE* (2) ;

"40";TE*<S)S

ii60";TE*<7)

"15"

"40"

"60"

5

"39"

"59"

; "--
- •• —

- ii —

5 SI 5

;S2

8050

PRINT

PRINT

PRINT :

PRINT

PRINT TAB(7);"ENTER SALES SLIP":

PRINT :

PRINT

8060 SA-0: Tricks & Tips

SE=0:

SG-0:

SF=o:

SH»0:

Sl«o:

82-0

8070 FOR 1=1 TO 4

8072 M1(I)»O

8074 M2(I)=0

8076 NEXT

8080 PRINT "IS THE PRINTER TURNED ON? (Y/N) "5

8090 GET A*:

IF A*«I1H

THEN 8090

8100 IF A$O"Y"

THEN 8090

8110 PRINT A*

8120 OPEN 4,4

8130 RETURN

8500 PRINT CHR*(147)

8510 PRINT "*******************************♦********";

8520 PRINT "* DATA MANAGEMENT PROGRAM 1.0 *";

8530 PRINT "**";

8540 PRINT :

PRINT

8550 PRINT TAB(7)3"ENTER SALES SLIP":

PRINT :

PRINT

8560 GOSUB 5060

8570 GOSUB 5310

8580 RETURN

10000 HB=INT(RN/256):

LB=RN-HB*256

10010 PRINT#15,"P"+CHR*(8)+CHR*(LB)+CHR*(HB)+CHR$<1)

10015 GOSUB 12000

10020 RETURN

10030 INPur#Ss,TE*(l) ,TE*<2) 9TE*<3) ,TE*<4) ,TE*<5) ,TE*<6) ,

TE*<7>,TE*(8)

10060 RETURN

10070 TE*=TE*(1)+CHR*(13)+TE*(2)+CHR* <13)+TE* <3>+CHR*(13

)+TE*(4)+CHR*(13)

10072 TE*=TE*h-TE*(5)+CHR$(13)+TE*(6)+CHR*(13)+TE*(7)+CHR

<13)+TE<8)

10080 PRINT#8,TE*

10110 RETURN

12000 IMPUT#15? X, X*j, Y*. Z*

J.2010 IF XOO

THEN 12030

12020 RETURN

12030 PRINT X;x$;Y$;z$:

CLOSE 8:

CLOSE 15

12040 FOR 1 = 1 TO 6000".

NEXT

12060 GOTO 100 _ 233 -

Tricks & Tips

8.6 Another method: Direct access

This method of accessing data on the diskette is

unfortunately often ignored or overlooked. It is quite

complicated but it has some very interesting aspects. What

does direct access allow us to do?

1) Accessing files - random files

This method has something to do with sequential file

management, but without the disadvantages, and also has

something in common with relative files.

2) Accessing individual tracks on the disk

This method of access offers you possibilities which

you had probably not thought of before, and whose purpose

you may not yet see. We will discuss it in greater detail

later.

1. Random files

In contrast to the sequential and relative files, a

single block in a random file is 256 bytes long, and a total

of 664 such blbcks can be stored on a diskette. You can also

store shorter records, such as 4 64-byte records in a block.

The task of correctly accessing the exact location within

the block falls now to the programmer. To use a random file,

you must first open a sequential file in order make note of

the tracks in which you have stored the data. You will need

a total of three files:

- 234 -

Tricks & Tips

1) Sequential file for the pointer

2) Command file

3) Data file for direct storage

10 OPEN 4,8,4,"CBM 64 FILE,S,WM: REM SEQUENT. FILE

20 OPEN 15,8,15: REM COMMAND CHANNEL

30 OPEN 5,8,5,"#": REM DATA FILE

40 TE$=MABACUS SOFTWARE"

50 PRINT#5,TE$;",";1: REM TEXT, RECORD #

60 T=l: S=l: REM TRACK=1, SECTOR=1

70 PRINT#15,"B-A:";0,T,S: REM DRIVE, TRACK, SECTOR

80 INPUT#15,ER,NA$,TR,BL: REM READ ERROR

90 IF ER=65 THEN T=TR: S=BL: GOTO 70

100 PRINT#15,"B-W:";5,0,T,S: REM WRITE RECORD

110 PRINT#4,T;",";S

120 CLOSE 5

130 CLOSE 15

140 CLOSE 4

150 END

What does this program do? First it opens the three

required files, then defines some text which will later be

written to the disk. This text is first written to the data

buffer, after which the operating system searches for the

next free block on the diskette. The search begins at track

1, sector 1, the start of the diskette (line 70). "B-A:"

means Block-Allocate and attempts to allocate the block

defined by the drive, track, and sector numbers. If this

block is not free (it is being used by some other file, or

perhaps another part of the current one) the operating

system will search until it finds a free block. In order to

see if the sought-after block is free or not, we must read

- 235 -

Tricks & Tips

the command channel. If the error code has the value 65, we

know that the block was not free. Once the computer finds a

free block, it then writes the data stored in the data

buffer in the proper block on the diskette. After this, it

writes the address of the block to the sequential file so

that the record can be found again later. At the same time,

the operating system also makes note of this block so that

it will not be overwritten by other files. The files are

closed and the program ends.

Equally interesting is the retrieval of the data:

10 OPEN 4,8,4,"CBM 64 FILE"

20 OPEN 15,8,15

30 OPEN 5,8,5,"#M

40 INPUT#4,T,S: REM READ THE ADDRESSES

50 PRINT#15,ttB-R:";5,0,T,S

60 INPUT#5,TE$,RE

70 PRINT#15,ttB-F:";0,T,S

80 CLOSE 5

90 CLOSE 4

100 PRINT#15,"S:CBM 64 FILE"

110 CLOSE 15

After the file is opened, the address (track and

sector) of the block in which the data is saved is read in.

The block itself is read, and the block is freed once again

with the Block-Free command in line 70. This is to be done

only when the block is to be deleted. Finally, the

sequential and data files are closed, the sequential file is

scratched, and the command channel is closed.

- 236 -

Tricks & Tips

2. Direct disk access

This access makes it possible, as the name suggests, to

directly access any desired tracks and sectors on the disk,

that is, to read from and write to the disk without opening

any files. This allows you to read the directory, for

example, without using the LOAD"$",8 command and thereby

destroying any program in memory. Or you could change a

program on the diskette without having to load it; even

destroyed programs can, under certain circumstances, be

repaired.

This method of access is also quite dangerous, so we

would like to warn all those against it who do not possess a

good working knowledge of the construction of the diskette,

the directory, and the BAM. Entire files and even the whole

disk can be destroyed very easily with this command. To find

out more about these commands, we refer you to the VIC-1541

user's guide or to the book The Anatomy of the 1541 Disk

5r.iy.§« If you want to experiment with these commands, be

sure to do it on a disk which does not contain any data or

programs you might want to keep.

Here is a list of the commands which can be used to directly

access the blocks on the diskette:

Name Use

Block-Read "B-R:";channel;drive;trackjblock

Block-Write "B-W:";channel;drive;trackjblock

Block-Allocate "B-A:";drive;track;block

Block-Free "B-F:";drive;trackjblock

Buffer-Pointer "B-P:";channel;position

- 237 -

Tricks & Tips

These are the most important commands for direct access.

Their common trait is that they all access the disk

controller directly, offering possibilities not available

otherwise. Many of the more useful possibilities can be

found in The Anatomy of 1541 Disk Drive.

- 238 -

Tricks & Tips

8.6 Rescuing an improperly closed file

Admittedly it does not happen often, but when it does,

it is very annoying and results in a loss of work.

What is "it"?

By "it" we mean something like the following:

With much effort you have organized your record

collection and would like to store the titles on a disk so

that you can find them quickly. The usual method simply

involves saving the record titles and artists' or composers'

names in one or more sequential files. You are now in the

course of entering the desired data via the keyboard and are

almost done (you have already entered 500 titles) when your

spouse trip over the power cord. "Doesn't matter," you

think, "The data's safe on the diskette."

You return to your program, change the OPEN command for

your sequential file to APPEND (A instead of W) and try to

continue, but the red light on the disk begins to flash,

indicating an error! Puzzled, and a bit worried, you read

the error channel and find the message "WRITE FILE OPEN".

When you list the directory, you find an "*" in front of the

type designation. This means that the file is still open for

writing since no CLOSE followed the write accesses. The same

thing happens when you remove a disk from the drive without

first closing all of the write files.

The usual methods offer you no chance of recovering

your data. Too bad about the record collection.

Since this happened to us often enough, we have

developed a small program which makes it possible to make

the destroyed files at least readable again. Once again, we

have provided a description of the program operations and

the variables used.

- 239 -

Tricks & Tips

Variables:

E Position of the filename within the directory sector

S Sector number for the direct commands

T Track number for the direct commands

TY File type (derived from T$)

X Index variable for isolating the file name

A$ Interim variable for constructing S$

F$ Filename

S$ Complete sector

T$ File type

X$ 16-character expanded filename read from directory,

later the actual filename

Xl$ Duplicate of X$

Program operation:

70 Open a data channel for the direct access

80 Open the command channel

100 Input filename

110 Assignment of track and sector numbers. For the

VIC-1541 and the CBM 4040, the directory begins on

track 18, sector 1. For the CBM 8050 disk drive, it

is stored on track 39. If you are using this drive,

this line must be changed accordingly.

120 In this line, the disk sector specified by T and S

is read from the diskette (drive 0) into the

internal buffer on the disk drive.

150 The buffer contents are transferred to A$.

160 A sector can contain up to eight directory entries.

- 240 -

Tricks & Tips

These are first searched for the desired filename

before the next sector is read in.

170 Here the filename is isolated from the entry and

placed in X$.

200-210 The end criterium for the actual length of the

filename is CHR$(160) (shifted space). Here the

filename is removed and placed back into X$.

220-230 If the filename is found, execution branches to

line 300, otherwise the other entries in the sector

are searched.

240-260 At the beginning of each sector stands the track

and sector addresses of the following block, or if

there is none (end of the directory), the track

number is zero.

300-310 The file type (the byte from which the file type

for the screen is generated) is isolated and placed

in T$ while the numeric value is placed in T.

320 T=0 marks an empty directory entry.

360 The bit which is set here is the cause of the whole

problem. This bit is used to indicate if a file was

opened for writing or not. The asterisk on the

screen is derived from this bit.

370 The entire sector, including marker for a closed

file, is reconstructed.

390-410 Now the buffer pointer in the drive is reset, the

sector is placed into the buffer, and the buffer

contents are written back to the disk.

420-490 These lines serve to remind you how to proceed with

rescuing the file.

- 241 -

Tricks & Tips

This program is quite simple to use:

Load the program, insert the disk containing the file you

wish to rescue into the drive (it must be drive 0 for a

double drive), run the program, and enter the name of the

file.

A limitation:

This procedure does not work with relative files because

they are stored differently on the disk. A relative file can

only be reconstructed with a great deal of work.

Once you have rescued your file, you should read it record

by record and rewrite the data to a new file. This is

necessary because although the file has been recovered, the

logical end of the file is no longer recognized.

At this point you should stop the procedure and be sure to

close the new file and then erase the defective file.

We hope that you will find this program useful but also that

you do not have to use it often.

- 242 -

Tricks & Tips

10

20

70

80

90

100

110

PRINT CHR*<147>;

PRINT CHR*(5)5

OPEN 2,8,2,"#":

REM DIRECT ACCESS

OPEN 15,8, 15':

REM COMMAND CHANNEL

PRINT :

PRINT-

INPUT "FILENAME ";F$:

PRINT :

PRINT

T=18:

REM 1541 DIRECTORY ** T=39 FOR CBM 8050

120 PRINT#15,"U1 2 O"T;S:

REM READ

130 S*=IIM:

REM VARIABLE FOR READ SECTOR

150 FOR 1 = 1 TO 255".

GET #2,A*:

S*=S*+LEFT* (A$+CHR$ <0) , 1) :

NEXT

160 FOR 1=0 TO 7:

REM 8 ENTRIES

170 X$=MID$ <S$,1*32+6,16):

180 REM ISOLATE FILENAME

190 X=l

200 IF MID*<X$,X,1)<>CHR*(16O)

THEN X=X+l:

IF X<17

THEN 200

210 X*=LEFT*(X*,X~l)

220 IF X$=F*

THEN E=l:

GOTO 300

230 NEXT I

240 T=ASC(S*>:

S=ASC(MID*(S*,2,1)/

250 REM READ NEXT SECTOR

260 IF TOO

THEN 120

270 REM END

280 PRINT "FILE "F$" NOT ON THIS DISKETTE"

290 CLOSE 2:

CLOSE 15:

END

300 "1 $™M1D* <S*. E*32+3)

310 TY=--ASC(T*> AND 15

320 IF TY=O

THEN NEXT I:

GOTO 240

330 IF TYO4

THEN 340

- 243 -

Tricks & Tips

335 PRINT "RELATIVE FILES CANNOT BE RESCUED"

337 GOTO 290

340 TY*="DELSEQPRGUSRREL"

350 PRINT "FILE "XI*" "MID*<TY»,TY*3+1,3>:

PRINT

360 T$=CHR*(ASC(T$) OR 128)

370 S*«LEFT*(S*„E*32+2)+T*+MID*(S*,E*32+4)

380 REM * ERASE AND REWRITE

390 PRINT*15, "B~P 2 O"TsS

400 PRINT#2,S*S

410 PRINT#15."U2 2 O"T;S

420 CLOSE 2:

CLOSE 15

425 PRINT "FILE DATA CAN NOW BE READ."

430 PRINT "AFTER COPYING THE VALID DATA,"

440 PRINT "THE FOLLOWING COMMANDS SHOULD"

450 PRINT "BE GIVEN:":

PRINT

460 PRINT "OPEN 15,8,15"

470 PRINT CHR*<17)"PRINT*15,"CHR*<34)"S:"F*CHR*<34>

480 PRINT CHR* <17)"PRINT#15,"CHR*(34)"VO"CHR* < 34)

490 PRINT CHR$(17)"CLOSE 15"

500 END

- 244 -

Tricks & Tips

Chapter 9 : POKE's and other useful routines

9.1 Using the cassette buffer as program storage

If one wants to use a small machine language program in

conjunction with BASIC, the question always arises

concerning where such programs should be placed in memory. A

section of memory must be chosen which will not be

overwritten by BASIC programs or variables. From this

viewpoint there are two possibilities.

The first possibility is that a section of memory can

be chosen which BASIC does not use at all, and the second is

that the start or end of the BASIC program storage area can

be changed. Three areas are unused by BASIC. The first is

the cassette buffer. It lies from address 828 to 1019 ($033C

to $03FB). This area is used by a program only when data is

saved to or read from the cassette recorder. It works very

well for machine language programs up to 192 bytes long. If

sprite 13, 14, or 15 is used, the cassette buffer will be

used to store these. Another small area is from address 704

to 767 ($02C0 to $02FF) which is used for sprite 11 (64

bytes). A large 4K-byte area above the BASIC interpreter is

located fro 49152 to 53247 ($C000 to $CFFF), which should

suffice for even the longest machine language programs.

If a few memory locations are needed, there are 16

bytes "behind" the screen memory which can be used. The 64

has IK = 1024 bytes of memory for the screen, but only 40*25

= 1000 are used for the video RAM. 24 bytes are then left

over, 8 of which are used as pointers for the sprites.

Sixteen bytes remain which you can use for your own

purposes. These are located from 2024 to 2039 (hexadecimal

$07E9 to $07F8).

- 245 -

Tricks & Tips

If these areas are not enough or you need more data

storage area, the BASIC program storage area can be

decreased and the extra space used by machine language

programs. You can lower the end of the BASIC program area

(the usual method) or raise the start. Let's take a closer

look at how this is done.

The BASIC interpreter has two pointers which point to

the start and end of the BASIC storage. The start-of-BASIC

pointer is located at 43/44 ($2B/$2C), the end at 55/56

($37/$38). These values can be read with

PRINT PEEK(43)+256*PEEK(44)

PRINT PEEK(55)+256*PEEK(56)

The values are normally 2049 and 40960. To make room for a

1000 byte machine language program, we can lower the end of

BASIC by 1000, leaving it at 39960. We can set the new value

with POKE statements.

HB = INT (39960/256) : LB = 39960 - HB*256

POKE 55,LB : POKE 56,HB : CLR

The CLR command is necessary to ensure that you do not get

false variable values. To move the start to 3049, the

following commands are necessary:

HB = INT (3049/256) : LB = 3049 - HB*256

POKE 43, LB : POKE 44,HB : POKE 3049-1,0 : NEW

Here the NEW command is necessary to properly reset the

other BASIC pointers.

- 246 -

Tricks & Tips

9.2 Sorting strings

One task which every programmer encounters sooner or

later is the sorting of data. These could be names,

addresses., or rows of numbers. There are various known

algorithms used for sorting, but all of them are time

consuming when large amounts of data have to be sorted. The

simplest procedures are also generally the slowest. If one

needs a faster sort method, one must formulate the algorithm

not in BASIC but in machine language. For such tasks,

solutions in machine language are about 100 times faster

than a comparable BASIC routine. The following program is

designed to sort strings. In order to keep it short, the

following conditions must be kept in mind:

1. The field to be sorted must be the first dimensioned with

a DIM statement.

2. An empty string must follow the last array element to be

sorted.

Point 2 has the advantage that even a partially filled

array can be sorted without all of the empty strings being

placed at the start of the array after sorting.

With these arrangements, the program is so short that

we can store it in the cassette buffer. It is called simply

with SYS 828. The program checks to make sure that the array

is a one-dimensional string array. If this is not the case,

the machine language program is immediately ended.

- 247 -

Tricks & Tips

0001 033C

0002 033C AO 00

0003 033E Bl 2F

0004 0340 30 OD

0005 0342 C8

0006 0343 Bl 2F

0007 0345

0008 0347

0009 0349

0010 034B

0011 034D

0012 034F

0013 0350

0014 0351

0015 0353

0016 0355

0017 0357

0018 0359

0019 035B

0020 035D

0021 035F

0022 0361

DONE

0023 0363

0024 0365

0025 0366

0026 0368

0027 036B

0028 036B

0029 036D

0030 036F

0031 0371

0032 0373

0033 0375

0034 0377

0035 0378

0036 037A

0037 037C

0038 037E

0039 0380

0040 0382

0041 0384

0042 0386

0043 0388

TH

0044 038A

ENGTH

0045 038C

0046 038E

0047 0390

TH

0048 0392

0049 0393

10 08

AO 04

Bl 2F

C9 01

FO 01

60

18

A5 2F

69 07

85 6E

A5 30

69 00

85 6F

AO 00

Bl 6E

FO EC

85 22

C8

Bl 6E

99 22 00

CO 02

DO F6

A5 6E

85 71

A5 6F

85 72

18

A5 71

69 03

85 71

90 02

E6 72

AO 00

Bl 71

FO 3D

85 4D

C5 22

90 02

A5 22

85 55

C8

Bl 71

LI

L2

L3

ORG 828

LDY #0

LDA <*2F),Y

BMI Li

I NY

LDA ($2F),,Y

BPL LI

LDY #4

LDA <*2F),Y

CMP #1

BEQ L2

RTS

CLC

LDA $2F

ADC #7

STA $6E

LDA $30

ADC #0

STA $6F

LDY #0

LDA <$6E)9Y

BEQ LI

5 FIRST LETTER

:SECOND LETTE

5 DIMENSION

SARRAY START

5 PLUS 7

; LENGTH ZERO j,

STA $22

L4 I NY

LDA ($6E)3Y

BYT $99,, $22 3 $00

§LDA $22,0 5 POINTER TO STRING

CRY #2

BNE L4

LDA $6E

STA $71

LDA $6F

STA $72

L5 CLC

LDA $71

ADC #3 5 ADD THREE

STA $71

BCC L6

INC $72

L6 LDY #0

LDA <*7i)sY

BEQ L13

STA $4D 5 COMPARE LENG

L7

L8

CMP $22

BCC L7

LDA $22

STA $55

I NY

LDA ($7:1)?Y

;WITH FIRST L

5 COMPARE LENG

- 248 -

Tricks & Tips

0050

0051

0052

0053

0054

0055

RE

0056

0057

0395

0398

0398

039A

039C

039E

03A0

03A2

CONTINUE

0058 03A4

EXCHANGE

0059 03A6

99

CO

DO

AO

Bl

Dl

FO

BO

90

NEXT STRING

0060

0061

03A8

03A9

RS EQUAL?

0062

0063

03AB

03AD

LONGER

0064

0065

0066

03AF

03B1

03B3

POINTERS

0067

0068

0069

0070

0071

0072

0073

0074

0075

0076

0077

03B5

03B6

03B8

03BA

03BD

03BD

03BE

■03C0

03C1

03C3

03C5

C8

C4

DO

C4

BO

AO

Bl

AA

Bl

91

99

8A

91

88

10

30

18

EXT STRING

0078

0079

0080

0081

0082

0083

03C6

03C8

03CA

03CC

03CE

03D0

A5

69

85

90

E6

DO

4D 00

02

F6

00

23

4E

04

OB

CF

55

Fl

22

C6

02

6E

71

6E

22 00

71

FO

B2

6E

03

6E

8F

6F

8B

5 STA

L9

L10

Lll

L12

5 STA

L13

BYT

*4D,Y

CPY

BNE

LDY

LDA

CMP

BEQ

BCS

BCC

I NY

CPY

BNE

CPY

BCS

LDY

LDA

TAX

LDA

STA

BYT

*22,Y

TXA

STA

DEY

BPL

BMI

CLC

LDA

ADC

STA

BCC

INC

BNE

*99!I$4D!I*00

#2

L8

#0

($23)3Y

<*4E>,Y

L10

Lll

L5

$55

L9

*22

L5

#2

<$6E> ;,Y

<$71> j, Y

(*6E)^Y
$99,$223*00

<*71)?Y

L12

L5

$6E

#3

$6E

L3

*6F

L3

5 STRING COMPA

5 EQUAL, THEN

5 GREATER THAN

5 SMALLER THEN

HALL CHARACTE

§ FIRST STRING

5 NO THEN OK

5 SWAP STRING

5 POINTER TO N

ASSEMBLY COMPLETE.

- 249 -

Tricks & Tips

100 FOR I = 828 TO 977

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 160, 0,177, 47, 48, 13,200,177, 47, 16, 8,160

130 DATA 4,177, 47,201, 1,240, 1, 96, 24,165, 47,105

140 DATA 7,133,110,165, 48,105, 0,133,111,160, 0,177

150 DATA 110,240,236,133, 34,200,177,110,153, 34, 0,192

160 DATA 2^,208,246, 165^, 110, 133, 113, 165, 111, 133, 114, 24
170 DATA 165!, 113, 105, 3,133* 113,144, 2,230,114,160, 0
180 DATA 177,113,240, 61,133, 77,197, 34,144, 2,165, 34

190 DATA 133, 85,200,177,113,153, 77, 0,192, 2,208,246

200 DATA 160, 0,177, 35,209, 78,240, 4,176, 11,144,207

210 DATA 200,196, 85,208,241,196, 34,176,198,160, 2,177

220 DATA 110,170,177,113,145,110,153, 34, 0,138,145,113

230 DATA 136, 16,240, 48,178, 24,165,110,105, 3,133,110

240 DATA 144,143,230,111,208,139

250 IF S <> 17663 THEN PRINT "ERROR IN DATA!!11 : END

260 PRINT "OK"

We can demonstrate the speed of the machine language program

with a small test program.

The program creates a given number of strings made up

of a given maximum number of random letters, displays these

on the screen, sorts them, and then prints them again,

together with the time required for the sort.

100 INPUT "NUMBER, LENGTH";N,L

110 DIM A$(N) : N=N-1

120 FOR 1=0 TO N

130 FOR J=l TO RND(1)*1

140 A$(I) = A$(I)+CHR$(RND(l)*26+65)

150 NEXT : NEXT

160 FOR 1=0 TO N : PRINT A$(I) : NEXT

170 T=TI : SYS 828 : T=TI-T

180 PRINT "SORT TIME =" T/60 "SECONDS"

190 FOR 1=0 to N : PRINT A$(I) : NEXT

- 250 -

Tricks & Tips

Run this program with various lengths and numbers of

strings and make note of the sort times. 100 strings can be

sorted in less than one second. A comparable BASIC program

would require minutes.

If you use this program in your programs, remember that

the last element in the array must be an empty string and

that the array must be the first dimensioned.

- 251 -

Tricks & Tips

9.3 Minimum and maximum of numeric fields

When performing calculations with dimensioned

variables, one often needs to know the smallest or largest

value in the field. This calculation can of course be

performed by a small BASIC loop, but this takes relatively

long for large fields. This is a good case for using machine

language. The program uses the same algorithm as the

corresponding BASIC variant.

100 DIM A(N)

200 GOSUB 1000

1000 MIN = A(0)

1010 FOR 1=1 TO N

1020 IF A(I) < MIN THEN MIN = A(I)

1030 NEXT

1040 RETURN

A field A is dimensioned from 0 to N. By calling the

subroutine at line 1000, the minimum is calculated and

returned in the variable MIN. If the maximum is desired, one

need only replace line 1020 with

1020 IF A(I) > MAX THEN MAX = A(I)

amj Line 1000 with

1000 MAX = A(0)

The machine language program has another advantage over its

- 252 -

Tricks & Tips

BASIC counterpart in that it is not restricted to a single

variable (our example above is limited to the variable A).

The program will work with real numbers as well as integer

arrays and resides at address $C800.

SMIN/MAX FUNC

5 FLAG FOR INT

5 POINTER TO A

5 POINTER TO E

5 VARIABLE NAM

5 POINTER TO F

;GET CONSTANT

5 COMPARE CONS

5 STORAGE FOR

5 INTEGER TO F

5 POINTER TO S

5 RUNNING POIN

5 END OF ARRAY

5 FIRST LETTER

5 COMPARE WITH

5 COMPARE SECO

0001

TION

0002

EGER

0003

0004

RRAY

0005

ND OF

0006
ct.

0007

0008

IRST

0009

S IN

0010

TANTS

0011

0012

C800

C800

VARIABLE

C800

C800

TABLE

C800

ARRAYS

C800

C800

C800

ARRAY

C800

FAC

C800

WITH

C800

C800

ELEMENT

FAC

INTEGER VARIABLE

0013

AC

0014

0015

0016

TART

0017

0018

TER

0019

0020

0021

C800

C800

C800

C802

A6

A5

OF ARRAY

C804

C806

C808

C80A

C80C

TABLE?

0022

0023

0024

C80E

C810

C812

86

85

C5

DO

E4

FO

AO

Bl

OF THE NAME

0025

0026

C814

C815

C8

C5

DESIRED NAME

0027

0028

0029

C817

C819

C81B

DO

A5

Dl

ND CHARACTER

2F

30

TABLE

5F

60

32

04

31

ID

00

5F

45

06

46

5F

INTFLG

STORE

ARRTAB

ARREND

VARNAM

TEMP

SETARR

MEMFAC

CMPARE

ERROUT

INT

INTFLT

MINMAX

L3

Ll

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

ORG

LDX

LDA

STX

STA

CMP

BNE

CPX

BEQ

LDY

LDA

I NY

CMP

BNE

LDA

CMP

- 253

14

$26

*2F

*31

*45

*5F

*B196

*BBA2

*BC5B

*A445

$14

*B391

*C800

ARRTAB

ARRTAB+1

TEMP

TEMP+1

ARREND+1

Ll

ARREND

NOTFND

#0

<TEMP)3Y

VARNAM

L2

VARNAM+i

(TEMP)jY

Tricks & Tips

0030 C81D F0 17

0031 C81F C8

0032 CS20 Bl 5F

0033 C822 18

0034 C823 65 5F

OR NEXT ARRAY

0035 C825 AA

0036 C826 C8

0037 C827 Bl 5F

0038 C829 65 60

0039 C82B 90 D7

0040 C82D A9 B8

RROR MESSAGE

0041 C82F 85 22

0042 C831 A9 C8

0043 C833 4C 45 A4

MESSAGE

0044 C836 C8

0045 C837 18

0046 C838 Bl 5F

0047 C83A 65 5F

0048 C83C 85 26

0049 C83E C8

0050 C83F Bl 5F

0051 C841 65 60

0052 C843 85 27

ND OF THE ARRAY

0053 C845 C8

0054 C846 Bl 5F

0055 C848 20 96 Bl

IRST ARRAY ELEMENT

0056 C84B 85 5F

0057 C84D 84 60

0058 C84F 24 OE

0059 C851 30 24

0060 C853 10 09

0061 C855 20 5B BC

Y ELEMENTS

0062 C858 10 07

0063 C85A A5 5F

0064 C85C A4 60

0065 C85E 20 A2 BB

LEMENT AS MIN/MAX

0066 C861 18

0067 C862 A5 5F

0068 C864 69 05

EXT ELEMENT

0069 C866 85 5F

0070 C868 90 02

0071 C86A E6 60

0072 C86C A4 60

BEQ FOUND

L2 I NY

LDA <TEMP)3Y

CLC

ADC TEMP

TAX

I NY

LDA <TEMP>i,Y

ADC TEMP+1

BCC L3

NOTFND LDA #<ERRMSG

STA *22

LDA #>ERRMSG

JMP ERROUT

FOUND

L5

LP1

LOOP

L4

I NY

CLC

LDA <TEMP)SY

ADC TEMP

STA STORE

I NY

LDA <TEMP>?Y

ADC TEMP+1

STA STORE+1

I NY

LDA <TEMP),Y

JSR SETARR

STA TEMP

STY TEMP+1

BIT INTFLG

BMI INTGER

BPL LP1

JSR CMPARE

BPL LOOP

LDA TEMP

LDY TEMP+1

JSR MEMFAC

CLC

LDA TEMP

ADC #5

STA TEMP

BCC L4

INC TEMP+1

LDY TEMP+1

;FOUND?

5 ADD OFFSET F

§ POINTER TO E

5 OUTPUT ERROR

;POINTER TO E

5 DIMENSION

5 POINTER TO F

5 SAVE POINTER

5 TEST TYPE

SCOMPARE ARRA

3 SAVE ARRAY E

3 POINTER TO N

- 254 -

0073

RRAY

0074

0075

0076

0077

0078
w

Y

0079

0080

0081

0082

0083

LUE 3

0084

0085

0086

0087

C86E

C870

C872

C874

C876

C877

C879

C87B

C87C

C87D

C87F

C5

DO

C4

DO

60

AO

Bl

AA

C8

Bl

85

[N INT

C881

C883

C884

C886

86

18

A5

69

EXT ELEMENT

0088

0089

0090

0091

0092

0093

0094

0095

0096

C888

C88A

C88C

C88E

C890

C892

C894

C896

C898

VALUE

0097

0098

AC

0099

0100

0101

C89A

C89C

C89F

C8A1

C8A3

BYTE

0102

0103

0104

0105

BYTE

0106

0107

ATER

0108

0109

LLER

0110

0111

0112

0113

C8A5

C8A7

C8A8

C8AA

C8AC

C8AE

C8B0

C8B2

C8B4

C8B6

C8B8

C8C6

85

90

E6

C5

DO

A5

C5

DO

A5

A4

4C

AO

Bl

C5

DO

C8

Bl

E5

FO

A9

90

A9

30

10

41

41

4E

20

55

C4

26

E3

27

DF

00

5F

5F

15

14

5F

02

5F

02

60

26

OD

60

27

07

14

15

91

00

5F

14

07

5F

15

D5

01

02

FF

Cl

CB

52

59

4F

46

4E

B3

52

20

54

4F

INTGER

L12

L10

Lll

L14

L13

ERRMSG

CMP

BNE

CPY

BNE

RTS

LDY

LDA

TAX

I NY

LDA

STA

STX

CLC

LDA

ADC

STA

BCC

INC

CMP

BNE

LDA

CMP

BNE

LDA

LDY

JMP

LDY

LDA

CMP

BNE

I NY

LDA

SBC

BEQ

LDA

BCC

LDA

BMI

BPL

ASC

BYT

STORE

L5

STORE*i

L5

#0

<TEMP),Y

(TEMP),Y

INT+1

INT

TEMP

#2

TEMP

L10

TEMP+1

STORE

Lll

TEMP+1

STORE+1

Lll

INT

INT+1

INTFLT

#0

(TEMP),Y

INT

L14

<TEMP),Y

INT+1

L12

#1

L13

#$FF

INTGER

L12

?ARRAY NOT

*C4

- 255 -

Tricks & Tips

;end of the a

5 INTEGER ARRA

;GET FIRST VA

;POINTER TO N

5 END REACHED?

5 GET INTEGER

5 CONVERT TO F

5 COMPARE HIGH

5 COMPARE LOW

5 FLAG FOR GRE

5 FLAG FOR SMA

FOUN*

Tricks & Tips

100 FOR I = 51200 TO 51398

110 READ X S POKE I,X : S=S+X 2 NEXT

120 DATA 166, 47,165, 48,134, 95,133, 96,197, 50,208, 4

130 DATA 228, 49,240, 29,160, 0,177, 95,200,197, 69,208

140 DATA 6„165, 70„209, 95,240, 23,200,177, 95, 24,1O1

150 DATA 95,170,200,177, 95,101, 96,144,215,169,184,133

160 DATA 34,169,200, 76, 69., 164, 200, 24,177, 95,101,, 95

170 DATA 133, 38,200,177, 95,101, 96,133, 39,200,177, 95

180 DATA 32,150,177,133, 95,132, 96, 36, 14, 48, 36, 16

190 DATA 9, 32, 91,188, 16, 7,165, 95,164, 96, 32,162

200 DATA 187, 24,165, 95,105, 5,133, 95,144, 2,230, 96

210 DATA 164, 96,197, 38,208,227,196, 39,208,223, 96,160

220 DATA 0,177, 95^ 170,200!, 177, 95,133, 21,134, 20, 24
230 DATA 165, 95,105, 2,133, 95,144, 2,230, 96,197, 38

240 DATA 208, 13,165, 96,197, 39,20B, 7,165, 20,164, 21

250 DATA 76,145,179,160, 0,177, 95,197, 20,208, 7,200

260 DATA 177, 95,229, 21,240,213,169, 1,144, 2,169,255

270 DATA 48,193, 16,203, 65, 82, 82, 65, 89, 32, 78, 79

280 DATA 84, 32, 70, 79, 85, 78,196

290 IF S <> 22908 THEN PRINT* "ERROR IN DATA!!11 ". END
300 PRINT "OK"

The version printed here calculates the maximum of an

array. If you want to calculate the minimum, you must

reverse the branch logic after the comparisons. The contents

of the following addresses must be changed:

- 256 -

Tricks & Tips

C858 from $10 to $30

C8B4 from $30 to $10

C8B6 from $10 to $30

To use the function, you must first set the address for the

USR function:

POKE 785,0 : POKE 786,200

Now you can call the function with PRINT USR(A) in

which A is the name of the array. The USR function can be

called as any other, for example X = USR(AS)*SIN(3).

The following small program will serve to demonstrate the

function.

100 POKE 785,0 : POKE 786,200

110 INPUT "ARRAY SIZE ";N

120 DIM A(N)

130 FOR 1=0 TO N

140 A(I) = RND (l)*1000

150 PRINT A(I)

160 NEXT

170 PRINT

180 PRINT USR(A)

The switch from MAX to MIN functions can be made by changing

the three previously-mentioned values with POKE statements:

POKE 51288,48 (or back to 16)

POKE 51380,16 (or back to 48)

POKE 51382,48 (or back to 16)

- 257 -

Tricks & Tips

9.4 DUMP command for variable output

The following machine language program is very useful

for debugging BASIC programs. It prints out all of the BASIC

variables together with their values. The program is stored

in the cassette buffer and is called with SYS 828.

5 CASSETTE BUF

5 POINTER TO S

5 SAVE

5 COMPARE WITH

5 TO END, THEN

5 POINTER TO V

5 OUTPUT NAME

; OUTPUT '='

;output integ

;to main loop

;output float

5 output strin

5 CARRIAGE RET

5 OUTPUT

OOO1

FER

0002

0003

TART

0004

0005

0006

END

0007

0008

0009

033C

033C

033E

A5

A4

2D

2E

OF VARIABLES

0340

0342

0344

85

84

C4

14

15

30

OF VARIABLES

0346

0348

034A

DONE

0010 034C

DO

C5

BO

69

02

2F

18

02

ARIABLE VALUE

0011

0012

0013

0014

0015

0016

0017

0018

0019

034E

0350

0351.

0353

0355

0358

035B

035C

035E

90

C8

85

84

20

20

8A

10

20

ER VARIABLE

0020

0021

0022

0023

0024

0361

0364

0365

0366

0368

ING-POINT

0025

0026

036B

036E

4C

60

98

30

20

01

22

23

82

B6

07

BF

71

06

CF

NUMBER

4C

20

G VARIABLE

0027

URN

0028

0029

0030

0031

0371

0373

0376

0378

037A

A9

20

A5

A4

18

71

D8

OD

D2

14

15

03

03

03

03

03

03

03

FF

LO

LI

L2

L3

L4

L5

L6

ORG

LDA

LDY

STA

STY

CPY

BNE

CMP

BCS

ADC

BCC

I NY

STA

STY

JSR

JSR

TXA

BPL

JSR

JMP

RTS

TYA

BMI

JSR

JMP

JSR

LDA

JSR

LDA

LDY

CLC

828

*2D

*2E

$14

$15

$30

LI

*2F

L3

#2

L2

$22

*23

L7

L12

L4

L13

L6

L5

L14

L6

L16

#13

*FFD2

$14

$15

- 258 -

0032 037B 69 07

XT VARIABLE

0033 037D 90 Cl

0034 037F CB

0035 0380 BO BE

0036 0382 AO 00 L7

0037 0384 Bl 14

OF NAME

0038 0386 AA

0039 0387 29 7F

0040 0389 20 D2 FF

0041 038C C8

0042 038D Bl 14

CTER

0043 038F A8

0044 0390 29 7F

0045 0392 FO 03

0046 0394 20 D2 FF

0047 0397 8A L8

0048 0398 10 11

0049 039A 98

0050 039B 30 OA

0051 039D A9 21

TPUT :1 ! '

0052 039F 20 D2 FF

0053 03A2 68

0054 03A3 68

0055 03A4 4C 71 03

MAIN LOOP

0056 03A7 A9 25 L9

ABLE

0057 03A9 DO 4E

0058 03AB 98 L10

0059 03AC 10 04

0060 03AE A9 24

BLE

0061 03B0 DO 47

0062 03B2 60 Lll

0063 03B3 20 D2 FF

CTER

0064 03B6 A9 20 L12

0065 03B8 20 D2 FF

0066 03BB A9 3D

0067 03BD DO 3A

0068 03BF AO 00 LI3

ABLE

0069 03C1 Bl 22

0070 03C3 AA

0071 03C4 C8

0072 03C5 Bl 22

0073 03C7 A8

0074 03C8 8A

0075 03C9 20 95 B3

LOATING POINT

ADC

BCC

I NY

BCS

LDY

LDA

TAX

AND

JSR

I NY

LDA

TAY

AND

BEQ

JSR

TXA

BPL

TYA

BMI

LDA

JSR

PLA

PLA

JMP

#7

LO

LO

#0

<*14),Y

#*7F

*FFD2

<*14>,Y

#*7F

L8

*FFD2

L10

L9

#- ! ?

*FFD2

L6

LDA

BNE

TYA

BPL

LDA

BNE

RTS

JSR

LDA

JSR

LDA

BNE

LDY

LDA

TAX

INY

LDA

TAY

TXA

JSR

L19

Lll

#?*?

L19

$FFD2

#*20

*FFD2

L19

#0

($22)„Y

(*22),Y

*B395

- 259 -

Tricks & Tips

3 ADD 7 FOR NE

3 TO MAIN LOOP

3 FIRST LETTER

5 OUTPUT

3 SECOND CHARA

3 OUTPUT

3 TEST TYPE

5 FUNCTION3 OU

3 JUMP BACK TO

5 INTEGER VARI

3 STRING VARIA

3 OUTPUT CHARA

3 OUTPUT BLANK

3 OUTPUT

3 INTEGER VARI

3 LOW BYTE

3 HIGH BYTE

3 CONVERT TO F

Tricks & Tips

0076 03CC 4C D2 03

0077 03CF 20 A6 BB

-POINT VARIABLE

0078 03D2 20 DD BD

SCII STRING

0079 03D5 AC IE AB

0080 03D8 20 F7 03

G, QUOTE

0081 03DB AO 02

0082 03DD Bl 22

0083 03DF 85 25

0084 03E1 88

0085 03E2 Bl 22

0086 03E4 85 24

0087 03E6 88

0088 03E7 Bl 22

0089 03E9 85 26

0090 03EB FO OA

0091 03ED Bl 24

CTERS

0092 03EF 20 D2 FF

0093 03F2 C8

0094 03F3 C4 26

0095 03F5 DO F6

0096 03F7 A9 22

0097 03F9 4C D2 FF

L14

L15

L16

L17

L18

L19

JMP

JSR

JSR

JMP

JSR

LDY

LDA

STA

DEY

LDA

STA

DEY

LDA

STA

BEQ

LDA

JSR

INY

CPY

BNE

LDA

JMP

L15

$BBA6

*BDDD

*AB1E

L18

#2

(*22),

$25

<*22),

$24

($22),

$26

L18

<*24>,

*FFD2

$26

L17

#*22

$FFD2

Y

Y

Y

Y

;and output

3 GET FLOATING

5 CONVERT TO A

SAND OUTPUT

5 OUTPUT STRIN

SADDRESS HIGH

5 ADDRESS LOW

3 LENGTH

3 OUTPUT CHARA

3 OF STRING

3 STRING DONE?

5 QUOTE

S OUTPUT

100 FOR I = 828 TO 1019

110 READ X 2 POKE I„X S S=S+X

120 DATA 165, 45,164, 46,133,

130 DATA 197;, 47,176, 24,105,

140 DATA 35, 32,130, 3, 32",
150 DATA 3, 76,113, 3*, 96,
160 DATA 113, 3, 32,216^ 3,
170 DATA 164, 21, 24,lOSi l\

180 DATA 177, 20,170, 41,127*,
190 DATA 41,127,240^, 3, 32^
200 DATA 10,169, 33, 32,210,

210 DATA 37,208, 78,152, 16*
220 DATA 210,255,169, 32, 32i
230 DATA 0,177, 34,170,200^
240 DATA 76,210, 3, 32,166,

250 DATA 32,247, 3, 160*. 2*.
260 DATA 133, 36,136,177, 34,

270 DATA 210,255,200,196, 38,

280 IF S <> 20988 THEN PRINT*
290 PRINT "OK"

NEXT

20,132

2, 144

182, 3

152, 48

169, 13

144,193

32,210

210,255

255,104

4, 169

210,255

177, 34

187,

177, 34

133, 38

208,246

11 ERROR

', 21,196,

, 1,200,

,138, 16,

, 32,

:, 32,210,

,200,176,

255,200,

,138, 16,

,104, 76,

, 36,208,

,169, 61,

,168,138,

:,221, 189,

,133, 37,

,240, 10,

,169, 34,

IN DATA!!

48,208, 2

133, 34,132

7, 32,191

207, 3, 76

255,165, 20

190,160, 0

177, 20,168

17,152, 48

113, 3,169

71, 96, 32

208, 58,160

32,149,179

76, 30,171

136,177, 34

177, 36, 32

76,210,255

" : END

- 260 -

Tricks & Tips

If you run the following program, you will receive the

output shown below it.

100 A=5

110 DEF FNX (Y) = SIN(Y) * COS(Y)

120 C$ = "PROGRAM"

130 B* = -101

140 SYS 828

A = 5

X!

Y = 0

C$ ="PROGRAM"

B£ =-101

You can also execute the DUMP function in the direct mode

with SYS 828. If you stop a program, you can view the actual

variable contents and then continue with the program using

the CONT command. As you see in the above example, user-

defined functions are indicated by a "!" after the function

name.

- 261 -

Tricks & Tips

9.5 Modified PEEK function

The following small machine language program provides

an elegant way of using the additional RAM storage of the

Commodore 64. At the same time, it also allows you to read

the character generator data from BASIC. A few

clarifications:

The memory areas from $A000 to $BFFF (40960 to 49151)

and $E000 to $FFFF (57344 to 65535) are doubly allocated:

First with 8K BASIC ROM and 8K kernal ROM, respectively, and

then with 8K of RAM each. These 16K bytes of RAM cannot be

used from BASIC without modification. POKE commands write

directly to the RAM, but a read attempt with PEEK always

reads from the ROM. Here we replace the PEEK function with

our own USR function. The function must do the following:

Before the value of a memory location is read, the memory

configuration must be changed so that the RAM "beneath" the

ROM is activated. Now the value can be read. Finally, the

old configuration must be restored. In addition, we would

like to be able to read the character generator which

resides from location $D000 to $DFFF. The routine checks to

see if the PEEK address lies between $D000 and $DFFF. If so,

the memory configuration will be set such that the character

generator can be read. The value is then read and the memory

configuration returned to normal.

- 262 -

Tricks fc Tips

0001 033C

0002 033C

ESS

0003 033C

0004 033C

0005 033C

FER

0006 033C A5 14

0007 033E 48

ADDRESS

0008 033F A5 15

0009 0341 48

0010 0342 20 F7 B7

TO ADDRESS FORMAT

0011 0345 AS 01

0012 0347 48

RATION

0013 0348 A5 15

0014 034A C9 DO

*D000

0015 034C 90 07

0016 034E C9 EO

tEOOO

0017 0350 BO 03

0018 0352 A9 31

ARACTER GENERATOR

0019 0354 2C

0020 0355 A9 34

M

0021 0357 78

0022 0358 85 01

ONFIGURATION

0023 035A AO 00

0024 035C Bl 14

0025 035E A8

0026 035F 68

0027 0360 85 01

ATION

0028 0362 58

0029 0363 68

0030 0364 85 15

0031 0366 68

BACK

0032 0367 85 14

0033 0369 4C A2 B3

FAC

ADR EQU *14

FACADR EQU

YFAC EQU

ORG

LDA

PHA

LDA

PHA

JSR

LDA

PHA

LDA

CMP

BCC

CMP

BCS

LDA

BYT

RAM LDA

SEI

STA

LDY

LDA

TAY

PLA

STA

CLI

PLA

STA

PLA

STA

JMP

*B7F7

*B3A2

828

ADR

ADR+1

FACADR

1

ADR+1

#*DO

RAM

#*EO

RAM

#*31

*2C

#*34

1

#0

(ADR),

1

ADR+1

ADR

YFAC

;USR - PEEK

5 INTEGER ADDR

;CASSETTE BUF

5 SAVE INTEGER

;CONVERT FAC

;SAVE CONFIGU

;SMALLER THAT

5 GREATER THAN

5 READ FROM CH

5 READ FROM RA

5 SET MEMORY C

;READ BYTE

;GET C0NFI6UR

5 GET ADDRESS

5 CONVERT Y TO

- 263 -

Tricks & Tips

The program is stored in the cassette buffer at address 828.

Once you have entered or loaded the program, the start

address of the program must be assigned to the USR vector.

This is done with two POKEs:

POKE 785, 828 AND 255

POKE 786, 828 / 256

For those who do not have an assembler, we have again

provided a loader program in BASIC, which also initializes

the USR vector for you.

100 FOR I = 82S TO 875

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 165, 20, 72,165, 21, 72, 32,247,183,165, 1, 72

130 DATA 165, 21,201,208,144, 7,201„224,176, 3,169, 49

140 DATA 44,169, 52,120,133, 1,160, 0,177, 20,168,104

150 DATA 133, 1, 88,104,133, 21,104,133, 20, 76,162,179

160 IF S <> 5085 THEN PRINT "ERROR IN DATA!!11 : END

170 POKE 785, 828 AND 255 S POKE 7863 828/256

180 PRINT "OK"

Now, if you want to read from the RAM or character

generator, you simply replace the PEEK function with the USR

function. To read the character matrix of a character, for

example, you could use the following program:

100 CG=13*4096

110 A = (PEEK(53248+24) AND 2) * 1024

120 INPUT "CHARACTER CODE ";C

130 FOR 1=0 TO 7

140 PRINT I, USR(CG+A+8*C+I) : NEXT

150 GOTO 110

- 264 -

Tricks & Tips

Line 110 chooses between the upper or lower half of the

character generator which selects between the upper

case/graphics set or the upper/lower case set.

This new "PEEK" function gives you up to 16K of RAM

which you can use to store data in BASIC or whatever else

you like.

- 265 -

Tricks & Tips

9.6 Multi-tasking on the Commodore 64

Multi-tasking is a term originally associated with

mainframe computers and refers to the ability of a computer

to execute several programs simultaneously. How does

something like this work?

Even a mainframe can only do one thing at a time, so

another trick is used:

If, for example, the computer is supposed to run five

programs at once, it will start executing the first the

program and after a certain length of time (a fraction of a

second) will stop executing it, save the variables, and

start executing the next program. This program too will be

interrupted after a short time and the computer will

continue executing the next one. Once all of the programs

have been executed once, the variables from the first

program are fetched and the execution of this program

continues. The computer's time is divided up into "time

slices" among the various programs. The term "time-sharing"

is also used to describe this.

In a limited sense, this sort of thing is also possible

on the Commodore 64. Two programs within the 64 run

simultaneously: the BASIC interpreter and the so-called

interrupt service routine which is called and executed 60

times per second. While your BASIC program is being

executed, it is being interrupted 60 times a second in order

to execute this interrupt routine. This routine takes care

of such things as reading the keyboard.

Here we can attach our own routine and perform

additional tasks of our own during the interrupt. One use of

this might be to output text on the printer. At each

interrupt a character could be fetched from a buffer and

sent to the printer. The user could then continue with his

- 266 -

Tricks & Tips

BASIC program as usual.

As an example of this procedure we have written a

program which displays the time, including tenths of a

second, on the screen, even while another program is

running. The program uses the Commodore 64*s real-time

clock. The time is automatically and constantly displayed in

the upper right-hand corner of the screen. The program is

written in machine language but can also be entered using

the BASIC loader program listed after the assembly language

source code.

0001 C800

0002 C800

SS?,COLOR

0003 C800

0004 C800

PRESSION

0005 C800

0006 C800

MMA

0007 C800

0008 C800

RESSION

0009 C800

NTITY'

0010 C800

0011 C800

COLOR VALUE

0012 C800

0 RAM

0013 C800

0014 C800

0015 C800

0016 C800

ECTOR

0017 C800

0018 C800

OCK CIA 1

0019 C800

0020 C800

0021 C800

0022 C800

0023 C800

RM

0024 C800

0025 C800 AD OE DC

0026 C803 09 80

FRMEVL

FRESTR

CHKCOM

CHRGOT

GETBYT

ILLQUA

ADR

COLOR

VIDEO

TEMP

IRQ

PNT

IRQVEC

CLR

TENTHS

SECOND

MINUTE

HOURS

TRIGER

SET

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

ORG

LDA

ORA

*AD9E

*B6A3

*AEFD

$79

*B79E

*B248

*22

$2A7

*288

$FB

$314

*FB

*EA31

*D800

*DC08

TENTHS*1

SECOND+1

MINUTE+1

HOURS+3

TRIGER+1

$C800

TRIGER

#*80

5 TIME DISPLAY

SSYS AD3 ?HHMM

3

5 GET BASIC EX

5 CHECK FOR CO

5 GET BYTE EXP

5 'ILLEGAL QUA

5 STORAGE FOR

SHI BYTE VIDE

5 IRQ VECTOR

5 NORMAL IRQ V

;COLOR RAM

5 REAL TIME CL

5 50/60 HZ

?SET TIME/ALA

;50 HZ MODE

- 267 -

Tricks k Tips

0027

0028

0029

0030

0031

ODE?

0032

0033

0034

0035

0036

0037

TITY

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

0057

M

0058

0059

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

0070

0071

0072

0073

0074

0075

0076

0077

C805

C808

C80B

C80D

C810

C813

C815

C818

C81B

C81E

C820

C822

C824

C826

C827

C829

C82B

C82D

C82E

C82F

C830

C831

C833

C834

C836

C837

C839

C83B

C83D

C83F

C841

C843

C845

C847

C849

C84B

C84D

C84E

C84F

C851

C852

C854

C857

C85A

C85D

C860

C863

C865

C868

C86B

C86D

8D

AD

29

8D

20

FO

20

20

20

C9

DO

AO

Bl

38

E9

C9

BO

OA

OA

OA

OA

85

C8

Bl

38

E9

C9

BO

05

DO

A9

DO

C9

BO

C9

90

38

F8

E9

D8

09

8D

20

8D

20

8D

A9

8D

20

FO

20

OE

OF

7F

OF

79

65

FD

9E

A3

06

6B

00

22

30

03

60

FB

22

30

OA

50

FB

04

92

OF

24

44

13

07

12

80

OB

FD

OA

FD

09

00

08

79

OD

FD

DC

DC

DC

00

AE

AD

B6

DC

C8

DC

C8

DC

DC

00

AE

STA

LDA

AND

STA

JSR

BEQ

JSR

JSR

JSR

CMP

BNE

LDY

LDA

SEC

SBC

CMP

BCS

ASL

ASL

ASL

ASL

STA

I NY

LDA

SEC

SBC

CMP

BCS

ORA

BNE

LDA

BNE

NOTNUL CMP

BCS

CMP

BCC

SEC

SED

SBC

CLD

ORA

SETSTD STA

JSR

STA

JSR

STA

LDA

STA

JSR

BEQ

JSR

TRIGER

SET

#*7F

SET

CHRGOT

CHGIRQ

CHKCOM

FRMEVL

FRESTR

#6

ILL

#0

(ADR) J.Y

#?0?

#3

ILL

TEMP

(ADR)?Y

#?0?

#10

ILL

TEMP

NOTNUL

#*92

SETSTD

#$24

ILL

#$13

SETSTD

#$12

#*80

HOURS

GET59

MINUTE

GET59

SECOND

#0

TENTHS

CHRGOT

CHGIRQ

CHKCOM

- 268 -

5 SET TIME

5 ADDITIONAL C

5 SWITCH CLOCK

5 GET STRING

5 PARAMETER

5 6 CHARACTERS

5 ILLEGAL QUAN

5 TO HEX

5 12 O'CLOCK P

5 SET PM

3 GET MINUTES

?START CLOCK

0078

0079

0080

0081

ODE

0082

C870

C873

C875

C877

C87A

VECTORS

0083

0084

C87B

C87E

TIMIRQ

0085

0086

0087

C880

C883

C886

TIMIRQ

0088

0089

0090

0091

0092

INE

0093

0094

0095

0096

0097

C888

C88B

C88C

C88D

C890

C890

C892

C893

C895

C896

VIDEO RAM

0098

0099

0100

I DEO

0101

0102

0103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

0116
Q

O

0117

0118

TEB

0119

0120

NDS

0121

0122

C899

C89B

C89D

RAM

C89F

C8A1

C8A4

C8A6

C8A8

C8AA

C8AC

C8AE

C8B0

C8B2

C8B3

C8B4

C8B6

C8B7

C8B9

C8BB

C8BE

C8C1

C8C4

C8C7

C8CA

C8CD

20

EO

BO

8E

78

AD

49

8D

AD

49

8D

58

60

4C

A5

48

A5

48

AD

85

A9

85

AO

AD

C9

FO

C9

90

29

C9

FO

F8

18

69

D8

DO

A9

20

AD

20

AD

20

AD

09

9E

10

16

A7

14

Al

14

15

22

15

48

FB

FC

88

FC

00

FB

IE

OB

12

11

80

OF

7F

12

09

12

02

00

DB

OA

DB

09

DB

08

30

B7

02

03

03

03

03

B2

02

DC

C8

DC

C8

DC

C8

DC

CHGIRQ

ILL

TIMIRQ

ZEROCK

STDOUT

JSR

CPX

BCS

STX

SEI

LDA

EOR

STA

LDA

EOR

STA

CLI

RTS

JMP

LDA

PHA

LDA

PHA

LDA

STA

LDA

STA

LDY

LDA

CMP

BEQ

CMP

BCC

AND

CMP

BEQ

SED

CLC

ADC

CLD

BNE

LDA

JSR

LDA

JSR

LDA

JSR

LDA

ORA

GETBYT

#16

ILL

COLOR

IRQ

#*A1

IRQ

IRQ+1

#*22

IRQ+i

ILLQUA

PNT

PNT+1

VIDEO

PNT+1

#0

PNT

#30

HOURS

#*12

ZEROCK

#*80

STDOUT

#$7F

#*12

STDOUT

#$12

STDOUT

#0

PRINT

MINUTE

PRINT

SECOND

PRINT

TENTHS

tt'O3

- 269 -

Tricks & Tips

;COLOR

5 SAVE COLOR C

;EXCHANGE IRQ

3#<IRQVEC EOR

5#>IRQVEC EOR

5 DISPLAY ROUT

;SAVE POINTER

;HIGH BYTE OF

5 POINTER TO V

5 3OTH COLUMN

SAM

IS DISPLAY HOUR

3 DISPLAY MINU

5 DISPLAY SECO

Tricks & Tips

0123

HS

0124

0125

0126

BACK

0127

0128

0129

0130

0131

0132

0133

0134

0135

0136

0137

0138

0139

0140

0141

0142

0143

0144

0145

0146

0147

0148

0149

0150

0151

0152

0153

0154

0155

0156

0157

0158

0159

0160

0161

0162

0163

0164

0165

0166

0167

C8CF

C8D2

C8D3

C8D5

C8D6

C8D8

C8DB

C8DC

C8DE

C8DF

C8E0

C8E1

C8E2

C8E3

C8E5

C8E8

C8E9

C8EB

C8EC

C8EE

C8F1

C8F3

C8F5

C8F8

C8FB

C8FC

C8FD

C8FE

C900

C901

C903

C905

C907

C908

C909

C90A

C90B

C90D

C90E

C910

C911

C913

C915

C917

C919

20

68

85

68

85

4C

48

29

4A

4A

4A

4A

18

69

20

68

29

IB

69

20

A9

91

AD

99

C8

60

C8

Bl

38

E9

C9

BO

OA

OA

OA

OA

85

C8

Bl

38

E9

C9

BO

05

60

F3

FC

FB

31

FO

30

F3

OF

30

F3

3A

FB

A7

00

22

30

06

86

FB

22

30

OA

EE

FB

C8

EA

C8

C8

02

D8

JSR

PLA

STA

PLA

STA

JMP

PRINT PHA

AND

LSR

LSR

LSR

LSR

CLC

ADC

JSR

PLA

AND

CLC

ADC

JSR

LDA

PRINT1 STA

LDA

STA

I NY

RTS

GET59 INY

LDA

SEC

SBC

CMP

ILL1 BCS

ASL

ASL

ASL

ASL

STA

I NY

LDA

SEC

SBC

CMP

BCS

ORA

RTS

PRINT1

PNT+1

PNT

IRQVEC

#*F0

PRINT1

#*0F

#?0?

PRINT1

#7 : ?

(PNT), Y

color'
CLR,Y

<ADR),Y

#?o-

#6

ILL

TEMP

<ADR)?Y

#10

ILL1

TEMP

5 DISPLAY TENT

5 GET POINTER

3 TO OLD IRQ

?DISPLAY

!i CHARACTER

5 AND COLOR

- 270 -

Tricks & Tips

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

FOR I = 51200 TO 51481

READ X : POKE 1, X S S=S+X 2 NEXT-

DATA 173, 14,220, 9,128,141, 14,220,173, 15,220, 41

DATA 127,141, 15,220, 32,121, 0,240,101, 32,253,174
DATA 32,158,173, 32,163,182,201, 6,208,107,160, 0

DATA 177, 34, 56,233, 48,201, 3,176, 96, 10, 10, 10
DATA 10,133,251,200,177, 34, 56,233, 48,201, 10,176

DATA 80, 5,251,208, 4,169,146,208, 15,201, 36,176

DATA 68,201, 19,144, 7, 56,248,233, 18,216, 9,128

DATA 141, 11,220, 32,253,200,141, 10,220, 32,253,200

DATA 141, 9,220,169, 0,141, 8,220, 32,121, 0,240
13, 32,253,174, 32,158,183,224, 16,176, 22,142

2,120,173, 20, 3, 73,161,141, 20, 3,173

3, 73; 34,141, 21, 3, 88, 96, 76, 72,178
DATA 165,251, 72,165,252, 72,173,136, 2,133,252,169

DATA o\133,251,160, 30,173, 11,220,201, 18,240, 17
DATA 20l"128,144, 15, 41,127,201, 18,240, 9,248, 24

DATA 105, 18,216,208, 2,169, 0, 32,219,200,173, 10

DATA 220, 32,219,200,173, 9,220, 32,219,200,173, 8

DATA 220, 9, 48, 32,243,200,104,133,252,104,133,251

DATA 76, 49,234, 72, 41,240, 74, 74, 74, 74, 24,105
DATA 48, 32,243,200,104, 41, 15, 24,105, 48, 32,243

DATA 200,169, 58,145,251,173,167, 2,153, 0,216,200

DATA 96,200,177, 34, 56,233, 48,201, 6,176,134, 10

DATA 10, 10, 10,133,251,200,177, 34, 56,233, 48,201

DATA 10,176,238, 5,251, 96

IF S <> 32970 THEN PRINT "ERROR IN DATA!!" 2 END

PRINT "OK"

DATA

DATA 167,

DATA 21,

- 271 -

Tricks & Tips

Once you have loaded the program, the clock can be turned on

by entering the following command:

SYS 51200,"HHMMSS",COLOR

where "HHMMSS" is the current time (Hours, Minutes, Seconds)

and COLOR is the color code for the time display (from 0 to

15). To set the clock to 2:30 P.M. (since this is a 24-hour

clock we must enter 14:30) and 15 seconds, with the time

displayed in yellow, we would use the following command:

SYS 51200, "143015",7

The current time will now appear in the upper-right corner

of the display with hours, minutes, seconds, and tenths of

seconds. To turn the display off, enter

SYS 51200

To turn it back on again without resetting the time or

color, simply type

SYS 51200

and the time will appear again.

In principle there are two methods for inserting the

second "job" in multi-tasking:

The first option is to use the system interrupt routine

which is called every sixtieth of a second. This method is

used for our routine to display the time. This is done by

- 272 -

Tricks & Tips

changing the interrupt vector so that it points to our

routine. Our routine then ends with a jump to the original

interrupt routine so that the computer can complete its

operations.

The second method gives the user routine its own

interrupt. This could be done with the output to the

printer, for example. The BUSY line of the printer could be

used as the interrupt source. Bach time the printer is ready

to receive a character it initiates an interrupt. The

interrupt routine sends a character to the printer then

continue with the normal program. Once the printer has

printed the character, it generates another interrupt,

forcing the computer to send it another character. The user

of the computer notices nothing of this.

You will need to know quite a bit about the operating

system of the 64 to implement these routines, information

which you will find in the book The Anatomy of the Commodore

64.

- 273 -

Tricks & Tips

9.7 POKEs and zero page

As you have surely noticed, there are various addresses

which are of use in programming in BASIC as well as in

machine language. Here is a short list of some of the

addresses (all of the pointers are stored in LSB, MSB

order):

Address:

0000-0001

(possible) Application:

A specific area of memory can be

switched on or off by POKEing to one or

both of these locations.

0043-0044 These addresses point to the start of

the user storage, the start of the BASIC

program. PEEK(43)+256*PEEK(44) will show

you this value. You can set the

beginning higher by poking to these

locations and use the lower memory area

for the rest of the sprites.

0045-0046 In these addresses you find the start of

the numeric variable table. This table

usually lies directly behind the BASIC

storage.

0047-0048 Contain the address of the start of the

array storage. All fields (arrays) are

placed in this area.

0049-0050 The contents of these addresses point to

the end of the array storage.

- 274 -

Tricks & Tips

0051-0052 In these locations is the pointer to the

start of the BASIC string variables.

0055-0056 Pointer to the end of the BASIC RAM. By

changing the contents of these addresses

it is possible to protect a specific

section of RAM (above the BASIC storage)

against overwriting. This allows you to

reserve this protected memory for a

machine language program and still have

the RAM from $C000 to $CFFF free for

other purposes. For example: POKE 55,0 :

POKE 56,64 sets the end of BASIC RAM to

$4000.

0115-0138 The CHRGET routine resides at these

addresses. This routine gets the

characters from the individual BASIC

lines. In order to write BASIC

expansions, this routine must be

altered.

0203 The code for the currently pressed key

is stored in this address. If this

address contains 64, it means that no

key was pressed.

- 275 -

Tricks & Tips

If you want to learn more about the "insides" of the

Commodore 64, we recommend the Abacus book The Anatomy of

the Commodore 64. There you will learn more about

programming in machine language and the construction of the

64*s RAM and ROM. We encourage you to experiment with the

various addresses of the Commodore 64. There is much hidden

in your computer—it only needs to be drawn forth.

- 276 -

HACKERS
The ultimate source
for Commodore-64

Computer information

OTHER BOOKS AVAILABLE SOON

THE ANATOMY OF THE C-64

is the insiders guide to the lesser known features of

the Commodore 64 Includes chapters on graphics,

sound synthesis, input/output control, sample programs

using the kernal routines, more For those who need to

know, it includes the complete disassembled and

documented ROM listings

ISBN-0-916439-00-3 300PD $19.95

THE ANATOMY OF THE 1541

DISK DRIVE

unravels the mysteries of using the misunderstood disk

drive Details the use of program, sequential, relative

and direct access files Include many sample programs

FILE PROTECT. DIRECTORY DISK MONITOR. BACKUP.

MERGE. COPY, others Describes internals of DOS with

completely disaddembied and commented listings of the

1541 ROMS

ISBN-0-916439-01-1 320pp $19.95

MACHINE LANGUAGE FOR C-64

is aimed at those who want to progress beyond BASIC

Write faster, more memory efficient programs in machine

language Test is specifically geared to Commodore 64

Learns all 6510 instructions Includes listings for 3 full

length programs ASSEMBLER. DISASSEMBLER and

amazing 6510 SIMULATOR so you can see the opera

tion of the 64

ISBN-0-916439-02-X 200pp $14.95

TRICKS & TIPS FOR THE C-64

is a collection of easy-to-use programming techniques tor

the '64 A perfect companion for those who have run

up against those hard to solve programming problems

Covers advanced graphics, easy data input. BASIC

enhancements. CP/M cartridge on the 64. POKEs. user

defined character sets. ioystick/mouse simulation, trans

fernng data between comuters. more A treasure chest

ISBN-0-916439-03-8 250pp $19.95

GRAPHICS BOOK FOR

THE C-64

takes you from the fundamentals of graphic to

advanced topics such as computer aided design Shows

you how to program new character sets, move sprites,

draw in HIRES and MULTICOLOR, use a lightpen,

handle IRQs. do 3D graphics, projections, curves and

animation Includes dozens of samples

ISBN-0-916439-05-4 280pp $19.95

ADVANCED MACHINE

LANGUAGE FOR THE C-64

gives you an intensive treatment of the powerful 64

features Author Lothar Englisch delves into areas such

as interrupts, the video controller, the timer, the real

time clock parallel and serial I/O extending BASIC and

tips and tricks from machine language, more

ISBN-0-916439-06-2 200pp $14.95

IDEAS FOR USE ON YOUR C-64

is lor those who wonder what you can do with your '64

It is written lor the novice and presents dozens of

program listing the many, many uses for your

computer Themes include auto expenses, electronic

calculator, recipe file, stock lists, construction cost

estimator personal health record diet planner store

window advertising, computer poetry, party invitations

and more

ISBN-0-916439-07-0 200pp $12.95

PRINTER BOOK FOR THE C-64

finally simplifies your understanding of the 1525.

MPS/801. 1520. 1526 and Epson compatible printers

Packed with examples and utility programs, you'll learn

how to make hardcopy of text and graphics, use secon

dary addresses, plot m 3-D. and much more Includes

commented listing ol MPS 801 ROMs

ISBN-0-916439-08-9 350pp. $19.95

SCIENCE/ENGINEERING

ON THE C-64
is an introduction to the world of computers in science

Describes variable types, computational accuracy,

various son alognthms Topics include linear and

nonlinear regression. CHI-square distribution, Fourier

analysis, matrix calculations, more Programs from

chemistry, physics, biology, astronomy and electronics

Includes many program listings

ISBN-0-916439-09-7 250pp $19.95

CASSETTE BOOK FOR THE C-64

(or Vic 20) contains all the information you need to

know about using and programming the Commodore

Datasette Includes many example programs Also con

tains a new operating system for fast loading, saving

and findinq of files

ISBN-0-916439-04-6 180pp. $12.95

DEALER INQUIRIES ARE INVITED

IN CANADA CONTACT:

The Book Centre, 1140 Beaulac Street

Montreal. Quebec H4R1R8 Phone: (514) 322-4154

AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus IS Software
P.O. BOX 7211 GRAND RAPIDS, Ml 49510

Exclusive U.S. DATA BECKER Pubtlstwra

For postage & handling, add $4.00 (U.S. and ■
Canada). addS6.00 for foreign. Make payment (

in U.S. dollars by check, money order of .

charge card. (Michigan Residents add 4% L
sales tax.)

FOR QUICK SERVICE PHONE (616) 241-5510

Commodore 64 is a rag. T.M. ol Commodore Busmen Machines

SERIOUS 64 SOFTWARE

AM.

PASCAL-64

This full compiler produces fast 6502

machine code. Supports major data Types:

REAL. INTEGER, BOOLEAN. CHAR,

multiple dimension arrays. RECORD. FILE.

SET and pointer. Offers easy string handl

ing, procedures for sequential and relative

data management and ability to write IN

TERRUPT routines m Pascal! Extensions

included for high resolution and sprite

graphics. Link to ASSEM/MON machine

language. DISK $39.95

DATAMAT-64
This powerful data base manager handles

up to 2000 records per disk. You select the

screen format using up to 50 fields per

record. DATAMAT 64 can sort on multiple

fields in any combination. Complete report

writing capabilities to all COMMODORE or

ASCII printers. D|SK $39 g3

Available November

TEXTOMAT-64
This complete word processor displays 80

columns using horizontal scrolling. In

memory editing up to 24.000 characterrs

plus chaining of longer documents.

Complete text formatting, block operations,

form letters, on-screen prompting.

Available November DISK $39.95

ASSEMBLER /

MONITOR-64

This complete language development

package features a macro assembler and

extended monitor. The macro assembler

offers freeform input, complete assembler

listings with symbol table (label), condi -

tional assembly.

The extended monitor has all the standard

commands plus single step, quick trace

breakpoint, bank switching and more.

DISK $39.95

BASIC-64
This is a full compiler that wont break your

budget. Is compatible with Commodore 64

BASIC. Compiles to fast machine code.

Protect your valuable source code by com

piling with BASIC 64.

Available December

OTHER NEW SOFTWARE COMING SOONI

All software products featured above

have inside disk storage pockets,

and heavy 3-ring-binder for maxi

mum durability and easy reference.

DISK $39.95

ADA TRAINING COURSE
This package is an introduction to ADA. the

official language ot the Department of

Defense and the programming language of

the future. Includes editor, syntax

checker/compiler and 110 page step by

step manual describint the language.

Available November

DISK $79.95

DEALER INQUIRIES INVITED

AVAILABLE AT COMPUTER STORES, OR WRITE:

AbacusHiSoftware
P.O. BOX 7211 GRAND RAPIDS, Ml 49510

Exclusive U.S. DATA BECKER Pubtohei*

For pottage & handling, add $4.00 (U.S. and

Canada), add $6.00 tor foreign. Maka payment

in U.S. dollars by check, money order of

charge card. (Michigan Residents add 4%

sales tax.)

FOR QUICK SERVICE PHONE (616) 241-5510

Commodore 04 n a rig. T.M. ot Cor

GETTHE MOSTOUTOF

tit

WITH ABACUS SOFTWARE

XREF-64 BASIC CROSS REFERENCE
This tool allows you to locate those hard-to-find variables in your programs.

Cross-references all tokens (key words), variables and constants in sorted

order. You can even add you own tokens from other software such as

ULTRABASIC or VICTREE. Listings to screen or all ASCII printers.

DISK $17.95

SYNTHY-64
This is renowned as the finest music synthesizers available at any price.

Others may have a lot of onscreen frills, but SYNTHY-64 makes music better

than them all. Nothing comes close to the performance of this package

Includes manual with tutorial, sample music

DISK $27.95 TAPE $24.95

ULTRABASIC-64

This package adds 50 powerful commands (many found in VIDEO BASIC,

above) • HIRES. MULTI. DOT. DRAW. CIRCLE. BOX. FILL. JOY. TURTLE.

MOVE. TURN. HARD. SOUND. SPRITE. ROTATE, more. All commands

are easy to use. Includes manual with two-part tutorial and demo.

DISK $27.95 TAPE $24.95

CHARTPAK-64

This finest charting package draws pie. bar and line charts and graphs from

your data or DIF. Multiplan and Busicalc files. Charts are drawn in any of

2 formats. Change format and build another chart immediately. Hardcopy

to MPS801, Epson. Okidata. Prownter. Includes manual and tutorial

DISK $42.95

CHARTPLOT-64
Same as CHARTPACK-64 for highest quality output to most popular pen

plotters. DISK $84.95

DEALER INQUIRIES ARE INVITED

CADPAK-64
This advanced design package has outstanding features • two Hires

screens; draw LINEs. RAYs. CIRCLES. BOXEs; freehand DRAW; FILL with

patterns; COPY areas; SAVE/RECALL pictures, define and use intricate

OBJECTS, insert text on screen; UNDO last function. Requires high quality

lightpen. We recommend McPen. Includes manual with tutorial.

DISK $49.95 McPen lightpen $49.95

MASTER 64
This professional application development package adds 100 powerful

commands to BASIC including fast ISAM indexed files; simplified yet

sophisticated screen and printer management; programmer's aid; BASIC

4.0 commands; 22-digit arithmetic; machine language monitor. Runtime

package for royalty-free distribution of your programs. Includes 150pp.

manual.

DISK $39.95

VIDEO BASIC-64
This superb graphics and sound development package lets you write soft

ware for distribution without royalties. Has hires, multicolor, sprite and

turtle graphics; audio commands for simple or complex music and sound

effects, two sizes of hardcopy to most dot matrix printers; game features

such as sprite collision detection, lightpen. game paddle, memory

management for multiple graphics screens, screen copy, etc.

DISK $59.95

TAS-64 FOR SERIOUS INVESTORS
This sophisticated charting system plots more than 15 technical indicators

on split screen, moving averages; oscillators; trading brands; least squares;

trend lines, superimpose graphs; five volume indicators; relative strength;

volumes, more Online data collection DJNR/S or Warner. 175pp. manual.

Tutorial DISK $64.95

FREE CATALOG Ask for a listing of other
Abacus Software for Commodore-64 clorVlc-20
DISTRIBUTORS

Great littala: liliulm: Frmn:
AOAMSOfT Inter Santos MICRO APPLICATION
16 Norwich Avr AVGuflaums30 147 Avenue PauMJounw ffiS
Rochdale. Lanes. BrusMl 1160, Btlgulm Ruei Malmalson. France gffiJjS
706-524304 2460-1447 1732-9254 63-88496

Wttt Qtrmaty: Swttftn: Australia:
DATA BECKER TIAL TRADING CW ELECTRONICS
MtfowhQtntf 30 P0 516 416 Logan Road
4000 DusseldOff 34300 Abnhult Brisbane. Queens
0211/312085 476-12304 07-397-08O6

Commodore 64 is a reg. T.M. of Commodore Business Machines

AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus 111 Software
P.O. BOX 7211 GRAND RAPIDS. MICH. 49510
For postage & handling, add 14.00 (U.S. and Canada), add $6.00
for foreign. Make payment in U.S. dollars by check, money order
or charge card. (Michigan Residents add 4% sales tax).

FOR QUICK SERVICE PHONE 616-241-5510

