
Write Your Own Adventure Programs (1983)(Usborne).pdf

• . • • • •

DVE1UTURE
PROGRAMS

Jenny Tyler and Les Howarth

Designed by Roger Priddy

is

istrated by Penny Simon,
Rob McCaig and
Mark Longworth

••v

• ^

K.' —'
Oflr J

ZX81 version of Haunted House by Chris Oxlade

Contents

3
4
6
8
10
12
13
14
16
19
20
28
32
33
38
39
46
47
48

**>
-

About this book
What is an adventure game?
Where to start
Drawing a grid
Hiding the treasures
Usefulobjects...
. . . and what can be done with them
The master plan
Putting the data into the computer
The program structure
Getting into the program
Changing and adding to the program
Debugging your adventure
Haunted House program listing
Changes for the 0^ectmm
Ha un ted House. £X81 version
Extra tips and hints
Answers to puzzles
Index

To write an adventure program, you need
to know a bit about the language BASIC.
You can still have fun with this book,
though, without knowing any BASIC, by
typing in and playing the game Ha un ted
House which was written specially for it. If
you want to learn or improve your BASIC,
there are two Usborne books to help you:
Introduction to Computer Programming
andBetter BASIC.

About this book
Writing an adventure game from scratch is
quite a daunting task, especially if you are
new to computer programming. This book
allows you to start as gently as you like by
giving you an adventure listing which you
can type in and play, change and add to as
much as you like, or use as a skeleton
program for your very own adventure story.

The game written for this book is called
Ha un ted House and you will find the main
listing for it on pages 33-38. This will work
on any computer which uses Microsoft-
style BASIC, including BBC, Dragon, Oric,
TRS-80 and expanded VIC 20, and has
changes to make it work on a 48K Spectrum
(Timex 2000). A special ZX81 (Timex 1000)
version of the game is listed on pages 39-45.
Turn straight to these pages if you want to
play the game before you find out how it
works. It is a specially good idea to do this if
you've never played an adventure game.

FNIOY PLAYING
SSTED HOUSE,

DON'T LOOKAT
PAGES 6-30 YE 1.

If you are used to looking at program
listings, you will probably pick up a few
clues about how the game works as you
type it in. To avoid this, you could try to
persuade someone else to type it in for you.

As the program is so long and
complicated, you will need to type it in
extremely carefully. It is worth typing
slowly and checking each line as you go, as
irou only need do it once. You can save the
jrogram on tape for when you want to play
t again or produce an adapted version.

On pages 6-15, you will find out how to
plan an adventure and on pages 16-27 how
to structure and write the program for it.
You may find this section quite difficult.
Don't worry if you do, just work through
each bit slowly and carefully until you feel
you have grasped the ideas in it, then go on
to the next bit.

As you work through these pages it is a
good idea to write a practice game of your
own, following each step carefully. Don't
worry if it isn't a specially good game,- it will
help you to understand how the program
works and see the problems you need to
solve in order to write an adventure. A good
adventure needs careful planning to make
it interesting and exciting to play.
Remember, you don't need to touch your
computer until you have planned your
game down to the last detail.

You will find some extra tips and hints on
adventure writing on page 46, and on page
47 there are answers to the puzzles set in the
book.

After playing Ha un ted House a few
times, you will probably want to make
changes to it. Pages 28-31 give you some
ideas for producing your own version.

What are the rules?
If you have played an adventure game
before you will know what to expect
fxomHaunted House. If you haven't, all
you need to know is that the computer
will ask you what you want to do and you
tell it, using not more than two words.

It is a good idea to pick up anything on
the way that looks valuable or useful and
to try using these things in any way you
can think of to solve the problems you
encounter. Type SCORE to find out how
many points you have and if you have
won.

What is an adventure game?
An adventure game is like a story in which
the player is the hero. Unlike a book, where
the sequence of events is fixed, an
adventure game is different each time it is
played because the player chooses what
happens ateach stage. By giving the
computer instructions in response to
descriptions which appear on the screen,
the player goes on a dangerous journey into
an unknown land. The aim is to survive
whatever dangers may arise and return
with treasures.

The first adventure game was written in
1976 on a mainframe computer at Stanford
University in the U.S.A. by William
Crowther and Don Woods. It is often
referred to as Colossal Cave, Colossal or
just Adven ture, and a version of it is now
available for most home computers. It was
written in the scientific computer language,
Fortran, which, unlike BASIC, cannot
handle words. All the data for the game
had to be indexed and stored on disc.

The first people to play adventures were
computer professionals, as home
computers did not exist. A version of
Crowther & Woods' adventure is still
included with most large business
computer systems to show people who are
not used to computers that they can be
"friendly". These disc-based adventures
often occupy more than 250K and are very
complicated to play.

Micro adventures

There have been many adventures since
this first one. Perhaps the most famous are
those written by Scott Adams, an American
programmer who was the first to produce a
version of Adventure for a small micro. This
was Adventure Land for the TRS-80. Other
Scott Adams' adventures to look out for are:
Pirate Adventure, The Count andPyrami'd
of Doom.

The term "adventure" is now used to
describe a wide range of different games.
The game in this book is a traditional text
adventure based on the Crowther & Woods
type of game. The player takes the leading
role in the story, but he is not given a set of
attributes as in role-playing games. The
player uses his own intelligence, cunning,
and so on, not those of a character assigned
to him at the beginning of the game. Like
chess, traditional adventures are "mind"
games, involving puzzle-solving rather than
quick reactions or chance.

Graphics adventures

The original adventure did not use any
graphics, relying instead on the player's
imagination to conjure up the monsters and
other terrors that make up the game. Some
people think that a game with graphics is
not a true adventure, though there are some
very good graphics adventures now
available for micros. If you have sufficient
memory, you could add graphics routines
to your adventures or to the Haunted House
program in this book. This book does not
explain how to do this because
graphics instructions vary so much
from computer to computer.

r.
What kind of program is it?

An adventure program is really a kind of
database. A database is a computer filing
system which stores information and
allows it to be called up in a variety of
different ways, and it can have all kinds
of serious uses. An adventure program is
an "interactive" database. The player
moves through it, altering or "updating"
information as he does so. As you work
through the book, you will see how
particular words are used as "keys" to
unlock certain items of information. This
technique can be used to restrict access
to certain information in a "serious"
database.

You can learn some useful
programming techniques by writing an
adventure. As the program is such a
complicated one, it shows how important
it is to plan it in detail before switching on
your computer. It also makes you think of
all the things a person using the program
might try to do. If you work out a way of
making the computer deal with any
input, however silly, you will be able to
write programs which don't crash.

Many of the adventures you can buy
on cassette are written, at least partly, in
machine code. This allows more
information to be packed into the
computer and makes the game run
faster. If you know a bit about machine
code, you could experiment with adding
machine code routines to your
adventures.

PLANNINGAGAME

Where to start
When you write an adventure game you are
inventing a fantasy world where you make
up all the rules. You decide where it is, what
sort of creatures and things live there and
what these creatures and things can and
cannot do. Your world can be an alien city,

i for instance, or an underground palace

book has 64 locations with short
descriptions.

A location can be indoors or out and
could be a room, a cave, halfway along a
passage, an area of forest, the middle of a
field, or anywhere else you like. It is best to
decide on the number of locations early on
and stick to it, as this affects the whole
structure of the game.

Making a map

where elves, wizards and trolls live or a
mysterious castle which is the home of
dragons and other strange monsters. It
could even be a time in the past involving
actual historical people and facts.

Many adventures use magic of some
kind. You can decide how closely your
world sticks to the rules of the real world

I and how much magic is allowed. Whatever
you choose to do, try to make sure the rules
are logical or players will find the game silly
and frustrating.

Having decided on a theme for your
adventure world, you then need to decide
on the point of your game. The player might
have to escape, or return to a certain place,
with treasures, or he might have to rescue
someone, or find a secret place and do
something there (such as defusing the Mad
Scientist's Evil Device for Blowing up the
World).

Working out the locations

The areas or rooms through which the
player moves during an adventure are
called locations. Later in the book, you will
see how these are numbered to put them in
the computer. For the moment, you need to
remember that the number of locations you
can have depends on the amount of
memory your computer has. More locations
can make the game more interesting, but
leave you less memory space for
descriptions of them all. The game in this

The next stage is to draw a rough sketch
map of your world. It need not be accurate '
to the last detail but should show the overall
scale. While you are doing this, think of
some ideas for good hiding places for
treasures and other objects that the
adventurer will need.

Here is a rough sketch map for the
Ha un ted House adventure written for this
book.

<Mfr. ji».

* « * . 'Afc.

*>• Backdoor

Kitchen

Spiral
staircase

Dark hall

Locked door

Haunted House is set in a weird house
standing on the edge of a sheer cliff. Its
strange twisted turrets loom out of an
always gloomy sky. No wall seems straight,
no corner a right-angle. Not surprisingly no
one lives there - well no human that i s . . .

People say the richest man in the world
spent his last days there. Strangely, no one
ever saw his body...

If you're stuck for an idea for your
adventure game, think of films or TV
programmes you have seen or books
you have read. Remember, though, if you
are writing a game to sell, you must not
stick too closely to the plot or use the
same names for copyright reasons.

Here are some ideas for adventure
themes.

DETECTIVE STORY - the player is a
detective investigating a terrible crime.
The object of the game is to get back to
police headquarters with all the
evidence. (The items of evidence are the
"treasures".)

PREHISTORIC ADVENTURE -the
player has travelled through time to the
days of cavemen. The object is to return
to the present with The Stone, an object
of immense power. The adventurer has
to make his own weapons and anything
else he needs, just as the cavemen do.
Prehistoric beasts and cave magic are
among the obstacles.

TEMPLE TERROR - the ancient ruins of a
temple built by a mysterious, long-lost
race are reputed to contain the secret of
eternal life. Just hearing about the things
that are said to have happened there
makes your hair stand on end. The object
is to escape with the secret.

PLANNING A GAME

Drawing a grid

The first stage in turning your adventure
world into a computer game is to transfer
your sketch map to a squared up grid. You
need one square for each location, so for its
64 locations, the Haunted House game
needs an 8 X 8 grid.

This grid will become the master plan for
your adventure, so make it as large and
clear as possible. Eventually it will show all
the locations and the ways in and out of
them, and all the treasures and objects used
in the game.

Number each location, starting in the top
left-hand comer. Most computers start
counting at zero, so use zero as your first
location number.

Working out the routes
Mark the exits from each location on your
grid, like this.

Notice that some locations on this grid
have one-way routes, so the player cannot
return the way he has come. Make sure
there are reasons for these if you use them
in your adventure, even if the reasons are
magic. In Haunted House the front door
slams and locks behind the player once he
has entered, so he cannot go out again. The

0

$

lb

H

X

V>

48

St.

f

9

17

2S

33

U

49

57

X

lo

It

3b

H

42

SO

59

3

u

19

a.7

35

43

57

59

4
IX.

xo

zr

>(.

44

53.

(0

F

11

V

Xf

37

K

S3

W

it

14

XL

30

3#

4b

S4

tl

7

It

13

31

3*

47

SS

£3

You may want to change the position of
walls and doorways when you work out the
routes the player can take, so start by
pencilling your map lightly onto the grid.
Label each location with a short
description, eg "dark cellar" or "dusty
room" and then think about the ways in and
out of each location. The usual way of
marking these is to use points of the
compass - north being towards the top of
the page, south down, east to the right and
west to the left.

By including staircases, ladders or
trapdoors in your descriptions, you can use
up and down for some of your routes
instead of compass points. This makes the
game more interesting without the need for
a real 3D grid.

DARK
CORNER

s

J OVERGROWN
IGARDEN

N
CORNEROF
HOUSE

S

I

FRONT E M W SITTING
HALL H ROOM

SECRET
ROOM

48

FRONT
VERANDAH ; PORCH

S S

56 A 57 A
N N

TWISTED
RAILINGS P A 1 H

58

PATH BY
RAILINGS

| 5 9 E ^

jBENEATH
TOWER

s • False s

42 A 43
N

LIBRARY 1 STUDY

^•Hw |
50 1 SI E ^

FRONT 1 SLOPING
TOWER I CORRIDOR

E ^ j ^ W

(

marsh at locations 53 and 54 is also a one
way route, because the boat gets smck.
How many one-way routes can you think of?

i£. When you have settled on your routes, ink
in the walls and staircases to fit in with them
and make a chart, like the one on the right,
listing the location number, its description
(this need not be your final version) and
its exits. You will find this helps enormously
when you start writing the program.

It is possible to construct real 3D
adventures which are set on several
levels like the storeys of a house. To do
this you need two or more interlocking
grids. Such games need a lot of memory
(48K is probably the minimum to make it
worthwhile) and can get very
complicated to write.

PLANNINGAGAME

Hiding the treasure
Having mapped out your adventure world,
you need to come back to thinking about
what the player has to do in it. In many
adventures, the player has to find valuable
objects of some kind and take them
somewhere. These could be "real"
treasures, like gold and jewels, or they
could be something like secret plans and
documents, or items of evidence to help
solve a crime. If the purpose of your game is
to rescue someone, then count this as
having one "treasure".

You can have general
obstacles and traps in your
game too; they don't all have
to be linked to a particular
treasure. Ha un ted House
has a marsh for instance.

Adding "props"

You need to decide what treasures to have
and where to hide them. Hiding the
treasures will probably involve including
some "props" in your plan. These are
pieces of furniture, carpets, items of
clothing and so on which the player can
open or examine, but which cannot be
taken away from the location in which they
are found. Haunted House has a coffin as
one of its props.

Setting problems for the player

Next you must think about the problems the
player will have to solve in order to find and
carry away the treasures. The cleverer and
more original the problems you invent for
the player, the more interesting the game
will be to play. The solutions to many of the
problems will involve other objects which
the player must find and then use in the right
way. You will find out about "useful" objects
over the page.

Make a list of your valuable objects and
number them, starting with 1 this time. (You
will find out why on page 16.) List the
objects in order of value as this will be
useful later on for setting up the scoring
system. This is the start of the list of words
you want your computer to recognize.

Make a note of the obstacles to getting
each treasure too. You might have a
monster guard, for example, or a mad axe-
wielding troll. Treasures might be in locked
drawers, or in safes. They may prove
impossible to carry without a container of
some kind which is hidden elsewhere. On
the left are some puzzles you can think
about.

:

4

6. Bag of gold coins
You need a light.

5. Ancient scroll
Guarded by bats.

«ie

^ • • m s ^fesT^
m m %
3. Book of magic

spells
Hidden in secret
room behind false

.wal l .

f
<£&

. Gold candlestick

VfS

16 1

24

p2

f40 \
48

17

1 3 3 ^ ^

41

| 2

^ . \

• i t ^ ^
6

• 26

3 N

11

19

27

• 4 2 | 4 3

w81
Po 4 isi :;

12

20

2 8 ^ | |

7

36

44

32

5 H

I3fr

5 J

137

45

| 5 3

We

• 22

• 30

1.38 M

i^n
M ^ » ^

^ 7

H5

\Z3f

K31

[47

Ls y)

7. Ebony statue
You need a light.

2. Diamond ring
Hidden in
coffin.

sd2u

rs7 62

X

14. Jewelled
goblet
Guarded by paralysing

spirits and locked
door.

^lark your "treasures" on your master plan,
using the numbers assigned to them on your \
list. Then write the number of the location
next to the object on your list too. (You can
only have one object in each location.)

, Oil painting
Guarded by
magical barrier
and locked
door.

V

Detective game puzzle

In this game the valuable objects are:
1. Single red hair
2. Brown woollen thread
3. Footprint
4. Set of fingerprints
5. Blood stain
6. Heavy wooden stick

The obstacles to getting these are:
1. The hair will get damaged or lost if you
take it as it is. It is on the sleeve of a coat.
2. The thread, invisible to the naked eye, is
on the inside edge of a locked drawer.

" >

3. The footprint is in a flower bed outside a
window.

4. The fingerprints are on the surface of a
large table next to the body. They are
invisible.

5. The blood stain is on the carpet.

6. Touching the stick will destroy any prints
which might be on it.

What solutions can you think of? There are
some suggestions on page 47, though yours
might be better.

j 11

• •

PLANNINGAGAME

Useful objects
To help the player solve the problems you set, you will have to include some tools,
weapons and other useful objects in the game. The player must find the appropriate
objects and use them in the right way to get round the obstacles. You can test the
player's ingenuity by not including the most obvious objects. Instead of a key, for
example, you could include a hairpin or paperclip for opening a locked door. You can
make things more difficult, too, by hiding, say, a torch in one place and the batteries for it
in another. The player must find both before he can use them.

Add your objects to the word list you started for your treasures. Don't forget that some
of your treasures can have uses too. (You don't need to list them twice.) >

Haunted House problems and solutions
Here are the solutions to the Haunted House game problems
and the objects needed for them.

Problem

Too dark to see

Bats
Secret room
Locked door
Paralysing ghosts

Magical barrier

Marsh

Barred window
Coffin

Solution

Put candle in candlestick
Light candle with match

Spray with "Baticide"
Break down false wall
Unlock
Suck up with vacuum cleaner

Use magic spell

Get across in boat
(Can only be used once as
it gets stuck in mud)
Dig round edge to remove bars
Open lid

Objects needed

Candle (hidden in desk drawer)
Matches
Candlestick (already in
valuable objects list)
Aerosol can
Axe
Key
Portable vacuum cleaner
Batteries
Book of magic spells (already
in valuable objects list)
Boat

Shovel
Nothing

Dec
I

tide wherje the objects are to go^nd
mark them on your master! plan. They will

less conspicuous if youjput them in \
, ces where people would expect to find
em, e.g. knife in the kitchen, book in the
dy or library, axe near the woodpile. You

ight want to add extra props (see previous
page) at this stage. Haunted House has a
desk in whigh the candle is hidden.
Itemember hot to put yourobjects in
impossible/places. It is no good putting the
light behind a locked door and then putting
the key in a dark room.

Put the r^umber of the location next to
each object. Add to your list any other
words (not verbs) that you will want the
computer to understand, too e.g. north,
south, ghosts, bats, coffin. (Remember to
include all your props.)

Mounted House o b j e c t

object number

\

9
10
11
12
13
14
15
16
17
18
19
20
Z1

gbjecf

Vacuum c iy

L£SL
10

26

\
\

24

Batteries
Shovel
Axe
Ropt

North
Sou*
West
East
UP Dovvn

Door
Bflts
Shosts

47
60
43
31

r

13
52
43
43

32

. . .and what can be done with them

It

Now you have decided on the objects to go
in your game, what are you going to let the
player do with them? You need to make a
list of verbs and the things they apply to.
This should include "going" verbs too, so
that players can give instructions about
where they want to move to.

Many adventure programs are
constructed so that the computer accepts
commands of not more than two words from
the player. It checks the first word against a
list of verbs you have put in its memory and
the second against the object and direction
words you have given it. A lot of the fun in
writing adventures is trying to think of all

the combinations of verbs and objects that
the player might try and deciding on what
action or reply the computer should give.
Writers of business programs need to think
in this way too, to prevent their programs
crashing because of an unexpected
response from the user.

To deal with verbs (and objects) which ,
the computer cannot find in its memory,
you can include general replies, such as
"Do what with the (object)?". Group
together verbs which mean the same
thing, such as get and take. You will be
able to save memory space by sending
the computer to the same routine for both.

Haunted House verb list
Number your verbs starting with 1. (The
computer uses zero for "verb not found",
as you will see on page 16.) HELP and
INVENTORY (or CARRYING?) are
standard adventure game features so
include them in the verb list. It is also

Verb
number
0
1
2
3
4
5
6
7
8
9

10

11
12
13
14

15
16
17

18
19

20
21

22

23
24
25

Verb Applies to

DIRECTIONS

HELP
CARRYING?
GO
N
S —
W
E —
U —
D —
GET OBJECTS

TAKE
EXAMINE
OPEN
READ

SAY
DIG
SWING

CLIMB
LIGHT

UNLIGHT
SPRAY

USE

UNLOCK
LEAVE
SCORE

OBJECTS
ANYTHING
DOOR, DESK
BOOKS, SPELL

ANY WORDS

AXE

ROPE
CANDLE

CANDLE
AEROSOL

VACUUM

KEY, DOOR
ANY WORDS

useful to add shortened forms of GO
NORTH etc. (see verb numbers 4-9 in the
chart). These reduce the amount of
typing the player has to do and make the
game faster to play.

Action (conditions, if any, in brackets)
Used to indicate "verb not found"
Lists all verbs the computer knows
Lists all the objects player is carrying
Moves position
Shortened form for "GO NORTH"
Shortened form for "GO SOUTH"
Shortened form for "GO WEST"
Shortened form for "GO EAST"
Shortened form for "GO UP"
Shortened form for "GO DOWN"
Pick up object and take it with you
(Object must be in the location)
Same as GET
Reveals any concealed object
Opens door or drawer (must have key for door)
Displays written clues (must have book of spells
or be in library)
Says words typed "out loud", e.g. casts spell
Makes a hole (must have shovel and be in cellar)
Breaks down false wall (must have axe and be
in study)
Go up or down rope
Turns light on (must have candle, matches and
candlestick)
Turns light off (must be carrying lighted candle
Removes bats from rear tower (must have
aerosol)
Sucks up ghosts (must have vacuum and
batteries)
Opens door (must have key)
Leave object behind (must have object)
Prints out score

PLANNINGAGAME

The master plan
Your master plan and the lists you have
made contain all the information, or data,
needed for your program. Here is the
completed master plan for Ha un ted
House. (Don't worry if your master plan
doesn't look as elaborate as this.) Over the
page, you will find out how to put this data
in your computer. Before you touch your
computer, though, make sure you have
planned out your game to the last detail.

14 V

Adventure brain teasers

Here are some situations players might
perhaps find themselves in during an
adventure. See how many solutions you
can think of for each one. There are
some suggestions on page 47.

1. You are trapped in a room about
three metres square. There are no
doors. There is a thick carpet.

2. As you enter a room, a feeling of
extreme drowsiness comes over you.
You are carrying a small, but quite
heavy, rucksack and a handkerchief.

3. You are standing on the battlements
of a castle. Beneath you is a horde of
angry slaves and behind you armed
soldiers. You have a parchment scroll
in your hand.

4. You have been invited to dinner by
the evil arch-villain. He has taken away
all your weapons. As dessert is served,
he shows you the remote control for his
world decimator weapon.

TWISTED
RAILINGS

E^4W £ •

1

STORING THE DATA

Putting the data into the computer
You now have all the data for your
adventure written out on pieces of paper.
The next problem is to work out how to put
it into the computer's memory.

The computer needs the data stored in
such a way that it can get at each item
quickly and update things as the player
progresses through the game. To do this,
you set up storage areas called "arrays" in
the computer's memory. An array is like a
set of pigeon holes or filing boxes. You
give each array a name and each box in it a
number, so the computer can find the box
you want when you refer to it in your

Before you can give the computer any
data, you must decide how big each array
should be and tell the computer to reserve
and label that much space. This is called
"dimensioning" the array and is written
DIM in BASIC.

The arrays for Haunted House

Haunted House needs the following arrays
to hold its data. You will need similar arrays
whatever the theme of your adventure.

1. An array to hold the descriptions of the
locations. It needs 64 pigeon holes (one for
each location). We've called it D$() and
numbered the holes 0 to 63 as on the master

16 plan.

2. An array to hold the information about the
routes the player can take from one location
to another. This is R$(). It needs to be the
same size and numbered in the same way as
D$().

3. An array for the objects and other words
on the word list. By dimensioning this DIM
0$(W), where W is the number of words on
your list, the computer will set up an array
with one space for each word and an extra
space. This is because it always starts
numbering with zero and ends with the
number in the DIM statement. This is useful,
because the zero space can be used for
"word not found in memory".

e.g. If W=4, the array would look like this.
DIM 0$(4) gives five spaces labelled 0
to 4.

4. A verb array. This needs a space for each computer can see what state the object is in.
verb and an extra space for "verb not
found". It is called V$() and needs to be
dimensioned DIM V$(V) where V is the
number of verbs on your list.

More arrays

Locations, routes, object words and verbs
are not the only information that needs to be
stored in the computer. You also need
arrays to store information about where the
objects are, which objects the player is
carrying and such things as whether the
light is on or off.

There is no need to store the object and
location words again. This extra information
can be stored as numbers to save space,
e.g. object 9 is in location 10.

Array L() shows which location each
object is in. It only needs spaces for the
"gettable" objects such as the key, not the
props or other words. If G is the number of
gettable objects then this array is
dimensioned DIM L(G).

Array C() is for information about which
objects the player is carrying. This also
needs spaces only for the gettable objects,
so is dimensioned DIM C(G).

Flags

As well as keeping track of the things the
player is carrying, the computer needs to
be able to record other changes that
happen during the game, e.g. whether the
candle is alight, the door locked or the key
visible.

This can be done by using an array, F(),
of markers or "flags", which contains W
spaces, i.e. one for each object word. By
putting Is and 0s in these spaces, the

0 is used for the "normal" or "inactive" state,
such as light off, object visible. 1 shows the
"active" or "not normal" state, such as light
on and object invisible.

Did you know that computers
have flag registers in their
CPUs which work like this flag
array? They use them to store
information about what is
happening while a program is
running.

Why not use 2D arrays?
If you have come across arrays before,
you may have wondered why single
dimension arrays are used for the
Haunted House descriptions and routes
instead of two-dimens ional arrays,
which would look like this:

The reason is that single dimension
arrays use slightly less memory space.
You could use 2D arrays if you wanted to,
in which case you would dimension them
DIM D$(8,8) and DIM R$(8,8).

17

STORING THE DATA

Putting the data into the arrays Data for the flags

Having set up labelled storage areas in the
computer's memory, you need to tell it what
to put in them. One way of doing this is to list
the data, in order, and tell the computer to
loop round putting one item at a time in the
spaces in an array. * Here is how this is
written in BASIC:

DIK D$!W)
DATA PAINTING,RING,MAGIC SPELLS,GOBLET,ETC.
FOR 1 = 1 TO W
READ 0 $ (I)
NEXT I

First time round, 1= 1, so
PAINTING is put in
0$(1). Computer goes
back for the next value of
I and puts the next item,
RING, in 0$(2) and so on. J

Loop starts with 1 for
object, verb and the
three number arrays, so
computer leaves space
zero empty. For location
and route arrays, loop
starts at zero.

\ \ Commas separate
I .J items of data,

This is the loop for READing the DATA into
0$(). Look at lines 1600 to 2100 in the
program listing on pages 36 and 37 and see
if you can pick out the data loops for the
other arrays.

18

The data for the flag array, F(), consists
only of Is and zeros. Objects which are
invisible at the start of the game have 1 in
their box in F(). When they are discovered
by the player the flag changes to zero. All
the other objects start with zero.

Invisible
Objects

Key (18)

You only need to tell the computer which
boxes in F() need Is in them. Leaving the
rest empty is the same as filling them with
zeros. The easiest way to fill this array is as
shown in line 2090 (on page 37).

You may have noticed that some spaces
inF() are not used because some objects
do not change their "state". These spare
flags can be used for other things. For
instance, inHaunted House, F(14)(therope
flag) is used to show whether the player is
up the tree. The candle needs two flags-
one to show if it is visible and another to
show if it is lit. The spare flag F(0) is used for
lighting it. If you want a spare flag for
something, use the ones for words that
won't need them, like "north".

Data for the carrying array

The player isn't carrying anything at the
beginning of the game, so to show this the
array C() is left empty. When an object is
picked up the computer puts a 1 into its box.
So, no data lines are needed for array C().

Initialization

Setting up the arrays and filling them with
data is called "initialization". You can see
in the next section where this fits into the
program structure.

*TheZX81 (TimexlOOO) does not do this, seepage39.

WRITING THE PROGRAM

The program structure
In order to arrive at the overall structure of
the adventure program, you need to think
about the jobs the computer has to do
during the game.

OTtfttfttfft
Compute* jo*>
1 a* UD arrays and put °aTC"™

exits.(DESCRlPiiwi oradditional

i n f o r m a t i o n ^ ^

4r^r^set.in^,ns.
Wrfwordsandij toJ ^

6a. If M^SMSZ» «* m

instructed.
8GobacKtol.

The list above shows the order in which the
computer needs to do things, but not
necessarily the order in which they need
appear in the program. A large chunk of the
program is the initialization routine which is
only needed once each game, and,
although it is the first thing the computer
must do, it is a good idea to put it at the end
of the program. This is because every time
the computer is told to GOTO or GOSUB it
goes back to the beginning of the program
and checks through each line number until
it finds the one it wants. This can take a
noticeable amount of time in a long
program. By putting initialization at the end,
the computer does not have to check
through it each time the player makes a
move.

The structure of the program actually looks
like this. As you can see, the biggest part of
it is the subroutine section. There needs to
be one subroutine for each verb used in the
game. You will find out more about these on
page 25.

RUN

TPTION&
FEEDBACK
MESSAGES

TUP ERROR
MESSAGES &
OVERRIDE CONDITIO!*

BRANCHTO
SUBROUTINES

VERB 2

VERB 3

VERB4

A A A W W

VERBV

INITIALIZATION

WRITING THE PROGRAM

Getting into the program
Now you have an overall idea of what the program will be like, you can start thinking about
each part in more detail. You have already seen on pages 16 to 18 how the initialization
section works. The next eight pages describe how the other main parts of the program
work.

Description and feedback
Every go, the computer must tell the player where he is and the directions in which he can
move. It must also tell the player what happened as a result of his last it, structions. This is
the description and feedback section and it looks something like this. See if you can
identify each part in the program listing on pages 35 to 37.

RM is the number of the location the player
is in. You must remember to set a starting
value for this in the initialization routine. (For
Haunted House 57 is the starting value for
RM, see line 2090),

The computer looks in D$ (the array
containing all the descriptions) and prints
what it finds in the box with the value RM.

Looks at the length of the string in box RM in
the routes array, R$. The computer then
loops round this number of times, printing
out each character in R$(RM) in turn,
putting a comma and a space between each
one.

Loops round to see if there is an object with
a zero flag in the location (i. e. a visible
object) and prints out its name if there is.

M$ is a variable used to contain messages
the computer has for the player, as a result
of instructions given in the previous go.
Look for M$ in the program listing on pages
33 to 37 and see how different messages are
put into M$ depending on what the player
typed.

At the beginning of each go, M$ is set to
"WHAT?", so if there is no new message to
replace this, the computer just prints
"WHAT?"

Righr-I'lltake
"WHAT?"out.

The input section

An important feature of adventure games is the way the computer responds to instructions
typed into it by the player. Haunted House, like many adventures, limits the player to
two-word sentences, plus a few special one-word commands such as HELP. The next
section of your program must ask the player for instructions and then tell the computer
what to do with them.

To start with the computer needs to split the player's input into two words which it can
then check against the words it has in its memory. The "word-splitter" routine used in
Haunted House works by scanning the player's input until it finds a gap in the letters. It is
listed below with a few extra lines so you can type it in by itself and see it working. *

100 CLS
110 PRINT "PLEASE TYPE SOMETHING"
120 INPUT Q*
130 V$=""
140 « = "

150 FOR 1=1 TO LEN(Qt)

160 IF NID$ IQ* , I ,1>=" " AND V$=
"" THEN V$=LEFT$!B*,I-1)

I've found
a space!

Gets player's instruction and puts
, it in Q$. Sets up two new string
variables: V$ and W$.

Looks to see how many
characters there are in Q$ and

• starts a loop which goes round this
many times.

. Looks through Q$ for a space. If it
finds one and V$ is still empty, it
puts all the letters to the left of the
space into V$.

These line numbers
do not correspond
to numbers in main
program listing.

Continues to look through Q$ until
it finds a letter following a space.
It then takes everything to the
right of this space and puts it in
W$. (This means it doesn't matter
how many spaces the player
types between his two words.)

170 IF HID$(9$,I+1,1)<>" " AND V*<>"
(Qt,I»l,LEN(Qt>-l);I=LEN(Q$),

THEN N$=HID$ f
180 NEXT I
190 IF »$=' THEN mm J
200 M$="THESE ARE YOUR 2 H0RDS"
210 PRINT "FIRST N0RD="iVt
220 PRINT "SECOND W0RD=";N$
230 IF Ht="" THEN H$="Y0U ONLY TYPED ONE H0RD"
240 IF « * = " AND V$="" THEN H$="Y0U DIDN'T TYPE
ANYTHING"
250 PRINT H$
260 STOP

When V$ and W$ are both filled,
the loop counter is set to its

' maximum value to end the loop.

. If the computer didn't find a gap in
the letters then V$ and W$ will
still be empty when the loop has
finished. It then takes the whole of
Q$andputsitmV$.

This section is so you can run the
word-splitter by itself. It prints out

' messages depending on what
you typed in. Run the program
and see what happens.

*NB This will not workon Sinclair(Timex) computers. Seepages 38 or 39.

WRITING THE PROGRAM

Analysis of input

The computer now has the player's instructions stored in two strings V$ and W$, which
stand for "verb string" and "word string". Its next job is to check these against the words
you have given it in the initialization procedure on page 18. It assumes the word in V$ is a
verb and loops round seeing if it matches any of the verbs in the array V$(). (Note the
difference between the string variable V$ and the array V$() - they are completely
different things to the computer, so make sure you don't confuse them.)

The computer then loops round in the same way trying to match up W$ with one of the
words in the array 0$().

Here is the section of program which checks for a match between the player's words
and the words in the computer's memory.

10 VB=p"~f

r

VB is a new variable set up to record the
box number containing the matching verb.
If the player typed GET, for example, the
computer looks through V$() until it
reaches box 10 where GET is stored. So, in
this case, VB= 10.

20 FOR I
30 IF V$
40 NEXT

=1 TO V
=V$(I) THEN VB=I
I

50 0B=0
60 FOR 1=1 TO H
70 IF M$=0$(I) THEN 0B=I
80 NEXT I

W h a t if t h e w o r d s don' t match?
If no match was found, then VB and OB will
still be zero. The computer takes this as
meaning that box zero in the array contains
the match for the player's word. But when it
looks there to find out what the matching
word is it doesn't find anything because you
left this box empty when filling the arrays
with data.

22

There's
nothing
there.

The computer loops round V times (V is the
number of verbs in the computer's
memory), comparing the player's verb with
each of those in its memory. If it finds one
that matches, it sets VB to the appropriate
number.

The loop for W$ works in the same way,
using OB to record the box number of the
matching word.

Silly combinations

Notice that this matching-up process only
checks if the two words are in the
computer's memory. It doesn't check to see
if the combination of words makes sense. A
silly combination such as UNLOCK
CANDLE gets through this stage of the
program, but will be rejected later on when
the computer tries to carry out the action. It
is much guicker just to check the separate

ords at this stage than to tell the computer
to check for valid combinations.

At the end of this section of the program,
the computer has a value for VB and a value
for OB. You can see what it does with these
over the next page.

Setting up error messages

The computer can use the values of VB and
OB to see if the player needs to be sent a
message saying his instructions are no
good. This part of the program is like a filter
or grader. The player's instructions are fed
through a series of tests. If they don't pass
one of the tests, a new message is put in M$.
If they pass through all the tests, M$ still
contains the message "WHAT?" which was
set up in line 220. (Remember that, at this
stage, the messages are just set up, they are
not printed on the screen and may be
changed again later in the program
anyway.)

Here are the program lines which set up
the error messages in Ha un ted House - see
if you can find them in the main listing. You
will need similar lines if you are writing your
own adventure.

Remember the message
in M$ might be changed
again later on in the
program.

object to the zero and produce an "on
range" error. To get round this, VB is
changed from zero to a value greater than V
(the number of verbs in the computer's
memory), and the computer is sent to a
"dummy" subroutine.

This line sets up a message if the player
only typed one word and so W$ is empty. (If
the word is one of the allowed one-word
commands, this message will be changed
later in the program.)

The first test looks to see if there is a word in
W$ (i.e. that the player typed two words)
and then checks if the value for OB is zero.

This line sets up a message if the computer
doesn't have the verb in its memory, but
does have the object.

This line is to overcome a problem. You
cannot GOSUB on a value of zero. But
different BASICS vary in the way they cope
with being asked to do this. Most of them
ignore the GOSUB and carry on to the next
line. Some, however, such as the BBC,

If the computer doesn't have either of the
player's words in its memory it sets up this
message. "^

WRITING THE PROGRAM

IF VB<V AND 0B>0 AND C!0B)<>1 THEN «$=
• "YOU DON'T HAVE "G$!QB) °

Override conditions

Sometimes things happen in an adventure
which prevent the player from doing
anything until he has dealt with them. In
these circumstances, instructions which
would normally be valid need to be
overridden, so the computer needs
program lines which set flags* in its
memory to tell it that special conditions
apply.

InHaunted House, lines 420 to 450 are
override conditions. You can see them on
the right, with an explanation of how they
work.

420 IF F(26!= l AND RM=13 AND RND(3K>3*

AND VB<>21 THEN HI="BATS ATTACKING!": *

SOTO 90 " ; -—""" , I'. •

430 IF R«=44 AND RND!2)=1 AND F(24)<>1
THEN F!27!=l

440 IF F(0)=1 THEN LL=LL-1

450 IF LL<1 THEN F!0)=0

Line 420
If bats are present, player is in Rear Turret
Room, random number is not 3 and player
hasn't used verb 21 (SPRAY) in his
instructions, then M$ is set to "BATS
ATTACKING" and player cannot go any
further in the game.
Line 430
If player is in Cobwebby Room, random
number value is 1 and vacuum cleaner is
switched off, then flag is set for paralysing
ghosts to appear, i.e. F(27) is set to 1.
Line 440
If candle is lit, then light limit counter, LL, is
decreased.
Line 450
If LL is zero, then candle on/off flag, F(0), is
set to zero.

Perhaps you can think of other override
conditions which could be added here.

Branch to subroutines

The computer's next task is to attempt to
carry out what the player wants to do. If it
had to search through every possible action
until it found the one the player wanted each
time, the game would be very slow and
boring. To avoid this, you use lots of
subroutines - one for almost every verb on
the verb list. (A few, such as GET and TAKE,
can share the same one.)

You can then use an ON... GOSUB line to
tell the computer to branch to a different
subroutine depending on the value of VB.

ON VB GOSUB 500,570,640,640,640,640,
l iiat.T-iiw.i < i H - i - i . K - i - i . M * i M « n t / l H * V fi

• 1130,1220,1250,1300,1340,1380,1400, •
M3M4i&i490,l5!*i1590

*Seepage 18 for more about flags.

How the O N . . .GOSUB line works

The O N . . . GOSUB line on the opposite page works like this. If VB = 1 the computer goes to
the first line number listed, if VB=2 it goes to the second, if VB=3 it goes to the third andso
on. Notice that the last line number listed is a "dummy" subroutine for VB=V+1 (the value
of VB when no matching verb was found in the computer's memory). The line it is sent to
just says RETURN and so sends the computer straight back up the program again.

Look at the subroutines on pages 34 to 36 and see if you can work out what they all do.
Here is the procedure for LIGHT (VB= 19) as an example. You will find it at lines 1340-1370.

1. If the object
word in player's
instructions is
"candle".

2 AND player is
carrying candle...

3 AND player is not
carrying object 8
(candlestick)...

OB=17 AND^E(17)=1 AND C(S)=0
HEN M*="IT WILL BURN YOUR HANDS

5. If object is
candle and
player is
carrying it.. .

IF 0B=17 AND C(17)=l AND C(9)=0
THEN M*="NOTHING TO LIGHT IT WITH

-NW:
7 then this message

\f^ is put in M$.

8. If object is
candle and
player is
carrying

IF 0B=17 AND
THEN M*="IT CASTS A

.AND
player is
carrying
candlestick AND
matches... o)

AND C(9)=l AND
FLICKERING LIGHT":F(O)=1

11 and candle on/off
flag is changed to 1 to
show it is lit.

What happens if the object is not candle? Back to the main program

If the object the player wanted to use was
not CANDLE, but one of the others in the
computer's memory, such as DOOR, then
the message in M$ is unchanged from when
it was set up in line 220. When the computer
returns to the main program and finds the
instruction PRINT M$ it will print the
message "WHAT?".

Notice that there is no need to set up a
message saying the candle isn't there, as
this is already covered in the error
messages section.

Although some of the verb routines are
longer and more complicated than this one,
they all work in a similar way: the value of
OB is checked, a special message is set up
if necessary and then the computer returns
to the main program. It checks the light limit
at lines 470 and 480 and is then sent back to
the description and feedback section. Here
it prints out the message it has put in M$ and
waits for the next set of instructions from the
player.

25

WRITINGTHE PROGRAM

The GO subroutine

The subroutine for the verb GO is so large
and important in an adventure game you
could almost think of it as a sub-program.
Seven verb commands are directed to it -
GO, N, S, W, E, U and D. This routine is also
special because it responds to single-letter
direction commands as well as two-word
ones. You don't have to include this facility
in your program, but it does help make the
game quicker and more interesting to play.
If you've played many adventures you will
realize how tedious it is to have to type GO
NORTH etc. every time.

This is how the GO routine works.

This is how the
GO routine works. | \ydjfl

Line 640

3r * -
D*1 - north
D = 2 = south
0 = 5 = west
D=4= east
D = S * up
0 = 6 = down

You can see now why
directions were
included on both the
verb and the object
lists.

640 D=0
650 IF 0B=0 THEN D-VB-3
660 IF 0B=19 THEN 0=1
670 IF 0B=20 THEN D=2
680 IF 0B=21 THEN 0=3
690 IF 08=22 THEN 0=4
700 IF 0E=23 THEN 0=5
710 IF 0B=24 THEN D=6
720 IF RH=20 AND 0=5 THEN 0=1
730 IF RH=20 AN0 0=6 THEN 0=3
740 IF RH=22 AND 0=6 THEN 0=2
750 IF RH=22 AND 0=5 THEN 0=3
760 IF RH=36 AND D=6 THEN 0=1 V
770 IF RH*36 AND 0=5 THEN B=2 ^ » •
780 IF F(14)=l THEN Ht="CRABH! YOU FELL OUT OF THE TREE1"
:F(14)«0:RETURN
790 IF F127> = 1 AND RN=52 THEN Ht="QHQSTS HILL NOT LET YOU
HOVE": RETURN
800 IF R«=45 AND C(l)=l AND F(34)=0 THEN H«="A NA6ICAL
BARRIER TO THE BEST":RETURN
810 IF iRH=26 AND F(0)=0) AND (D=l OR D=4i THEN H«="Y0U
NEED A LIGHT":RETURN
820 IF RN=54 AND C H S ! <>1 THEN H«="Y0U'RE STUCK1 *:RETURN
830 IF CI15)=1 AND NOT iR«=53 OR RH=54 OR Rfl=55 OR RH=47!
THEN ft$=*Y0U CAN'T CARRY A BOA

840 IF (RN>26 AND RH<30> AND Fi0)=0 THEN M$="T0D DARK TO
HOVE":RETURN

First, a variable D is set up to hold
information about the direction in which the
player wants to move. Its values 1 to 6
correspond to north, south, west, east, up
and down.

The next line checks to see if the player just
typed one word and then gives D a value
depending on the value of VB. (Notice that
by taking 3 away from VB, the computer
gets values for D which correspond to those
in lines 660 to 710.)

Lines 660-710
o > a

OB y 4 r^

THEN
9 O-A

D

•>

/
/

26

The next six lines check if the player typed
a two-word direction instruction. They use
the value of OB to set the value of D.

As this is not really a 3D adventure, the UP
and DOWN instructions need to be
converted into north, south, east or west.
Lines 720 to 770 do this. (If you check back
to the master plan on pages 14 to 15, you will
see that this does work.)

file:///ydjfl

Lines 780-840

The computer also needs to check if there If the player is in location 52 and the ghost
are any special conditions which affect the flag is "on" then a message is sent to say he
player's ability to move. For example if cannot move. Each of these conditions
F(14)= 1, then the player is at the top of the returns the computer to the main program,
tree. If he tries to move without first See if you can work out what the rest of the
climbing down, he gets a message saying lines in this section do.
he has fallen. This is a flag for the computer to use to register

<whether it has found the exit the player wants.
RL is a new variable which holds the length of the
string which it finds in R$(RM). (This string is the
routes, NSW etc., for the location the player is in.)

If the move has not been stopped
by any of these special
conditions, the computer must
check that there isn't a wall or
anything else blocking the way.
Here are the lines which do this.
They look quite complicated at
first sight, but if you look carefully
at each part, remembering what
all the variables are, you should
be able to see what is happening

850 F(35)=0:RL=LEN!R*(R«))-
860 FOR 1=1 TO RL •
870 U*=flID$(R$(RK!,I, l) ;
880 IF !U$="N" AND 0=1 AND F(35)=0:"

THEN RH=RN-8:F<35)=1
890 IF !U$="S" AND D=2 AND F(35)=0:

THEN RM=RH+8:F(35)=1
900 IF <U$="N" AND D=3 AND F(35)=0:

THEN RN=RH-1:F(35!=1
910 IF !U$="E" AND DM AND F(35>=0:

THEN RH=RH+1:F!35)=1
920 NEXT I
930 M="0K"
940 IF F(35)=0 THEN H*="CAN'

THAT MAY"
950 IF D<1 THEN N$="B0 WHE!
960 IF RH=41 AND F(23)«l

THEN R$(49)="SN*:N*-"T!
SLANS SHUT!":F(23!=0

970 RETURN

\
T 60 I p

• Computer loops round RL times.

• Each loop, computer takes one of the characters in
R$(RM) and temporarily calls it U$.

It then runs a series of tests on U$ and D. If the
player's direction instruction matches an exit in the
location he is in, then the value of RM is changed to
move him to the appropriate place. F(35) is then set
to 1 to stop the computer trying to change RM again
on another trip through the loop. (If you think

1 carefully, you will see that this could be possible as
the computer uses its new value of RM in line 870,)

If you check the master plan, you will see how
adding or subtracting 1 or 8 moves the player to the
correct next location.

At the end of the loop, M$ is set to "OK". This will
replace the "I NEED TWO WORDS" message set
in the error messages if the player typed a one-
word direction.

If F(35) is still zero, then the direction the player
wants to go is not allowed and M$ is changed to say so

If D is less than one (i.e. it wasn't assigned a value in
.lines 650 to 770), then M$ is changed to "GO WHERE?"

This line makes the front door a "once-only" route.
When the player enters location 41 (the lobby), the
exits from location 49 (front porch) are changed
from "NSW" to "SW", M$ is set to "THE DOOR
SLAMS SHUT" and the flag for the front door is set
to zero to show the computer it is now closed. (The
routes from location 41 do not need to be changed
because S wasn't included in them in the first place.) 27

MAKING CHANGES

Changing the program
Longer descriptions

You can change the program in this book as
much as you like, either to produce
variations on the haunted house theme or to
create games with completely different
settings, descriptions, objects, verbs and
messages. Remember that the more you
change, the more complicated it will get as
you will have to think about how everything
affects everything else.

If you are going to write a new game,
using this program as a guide, then you
should plan it as described on pages 6 to 15.
It is worth spending the time planning out
your game properly as you are less likely to
find it full of mistakes when you come to run
the program.

It is a good idea to start by making small
changes first to see what happens. If you
store the master program on tape, you can
make changes, test them and adapt them
without losing the original.

How much spare memory
have you got?

^-^cx **o^>

28

The Haunted House program itself
occupies about 7K of RAM before it is run. It
then needs a further 3V2 to 4K for the arrays
to store the data. Your computer will take
some memory for its own internal use -up
to 3K on some models - and it will use a
further IK or more for the screen. (The
Spectrum uses 7K which is why Haunted
House won't fit into the 16K model.) So, if
you have a 16K computer, you won't have
much memory left over, and most of the
changes you make will have to be
replacements rather than additions.

If you have more than 16K, one of the easiest
ways of making the game more interesting
to play is to add longer descriptions.
Instead of "impressive vaulted hall" for
instance, you could say something like "You
have entered a vast, vaulted chamber with
pillars extending many times your height
above you. Light filters in from the east and
there appears to be a doorway in the
distance to the west..."

Add a time limit
Haun ted House already has a time limit on
the life of the candle. You could add an
overall time limit to the game as well by
getting the computer to count the number of
turns the player has had and stop the game
at a preset number.

You can do this by adding to line 70 and
putting an extra line at 485 like this.

70 V=25:»=36:B=18:T=0
You may not need to \
do this as not all
computers need new
variables to be set up
before they can be
used.

485 T=T+1:IF T>200
"MIDNIGHT HAS STRUCK
YOU'VE TURNED INTO A BAT":ST0P

[You can change this number to
I anything you like.

Puzzle

Can you think how to put a limit on the
number of objects that can be carried at
any one time? (You will have to adjust the
scoring routine as well.)

Adding sounds

Squeak
Squeak

This is an effective way of adding to the
game without having to make complicated
changes. You will need to know how your

computer's sound instructions work. Test
some sound routines out first to make sure
they are what you want and then add a
GOSUB instruction to the line where the
action occurs, eg IF RM=46 AND C(1)=1
THEN M$="SOMETHING SCARY IS
HAPPENING": GOSUB 6000

You could add sounds for the front door
slamming, the secret wall breaking, the key
turning in the door, magic happening when
you use the magic word and so on. This
chart gives a few sound routines for various
computers. The only limit on the number
you can add is memory.

[FALL OUT OF
TREE DOOR SLAM MAGIC AXE BLOWS GENERAL

PROMPT

//"O
0-w

7
V

FO
POKE 34877,130
FOR L=15 70 (l STEP -1

POKE 36878,L

FOR 11=1 TO 20: NEXT M
NEXT L

POKE 36877,0

POKE 36877,130

FOR L«15 TO 0 STEP -

POKE 36878,L

FOR 11=1 TO 2:NEXT N

NEXT L

POKE 36877,0

POKE 36878,15

FOR 1=160 TO 240 STEP I

POKE 36876,I

FOR 11=1 TO 100:NEXT h

POKE 36B76.0

POKE 36878,15

FOR 1=1 TO 10

POKE 36877,200
POKE 36877,0
FOR 11=1 TO 400:NEXT h
NEXT I

POKE 36878,15

FOR 1=1 TO 2

POKE 36874,200

POKE 36876,0

FOR N=l TO 400.-NEXT N

NEXT I

SPECTRUM^

)RAGON/
rRS-COLOI

)RIC

FOR 1=5 TO 40 STEP
BEEP 0.2,1
NEXT I

FOR 1=1 TO 10
BEEP 0.01,0.01
FOR !i=l TO 100:NE<T M
NEXT I

BEEP 0.5,5

PAUSE 50

BEEP 0.5,5

FOR L=-15 TO 0

SOUND O.L.,5,1

NEXT L

FOR L=-!5 TO -8
SOUND 0,1,5,0.6
NEXT L

FOR 1=40 TO 160 STEP 5
SOUND 2,-15,1,5
NEXT I

FOR 1=1 TO 10
SOUND 0,-15,5,1
FOR N>1 TO 1000:NEXT li
NEXT I

SOUND 2,-15,100,2

FOR 11=1 TO 1000:NEXT N

SOUND 2,-15,100,2

FOR 1=50 TO 230 STEP 10

SOUND 1,2

NEXT 1

SOUND 180.1

FOR 11=1 TO 500:NEXT H

SOUND 180,1

FOR L=15 TO 0 STEP
PLAY 0,2,6,100
SOUND 5.100.L
M I T 10
NEXT L
PLAY 0,0,0,0

FOR L=15 TD 0 STEP -1
PLAY 0,2,6,100
SOUND 5,100,L
NfllT 1
NEXT L
PLAY o,0,0,0

FOR L=15 TO 0 STEP -1
PLAY 0,2,6,100
SOUND 5,100,L
WAIT 1
NEXT L
PLAY 0,0,0,0

FOR 1=1 TO 10

PLAY 0,1,1,20

SOUND 4,50,7
PLAY 0,0,0,0

FOR N=l TO 300:NEXT H
NEXT I

FOR 1=1 TO 2

PLAY 1,0,6,100

SOUND 1,70,7

WAIT 20

PLAY 0,0,0,0

FOR 11=1 TO 300: NEXT II

NEXT I

MAKING CHANGES

Scoring
Ha un ted House has a very simple scoring
system, awarding one point for each object
the player is carrying. You could change to
a more interesting system, such as basing
the score on the value of the object. If you
assume that the objects are numbered in
descending order of value, then the
painting will be the most valuable and the
key the least. If you change line 1530 like
this:

1530 IF C(I)= 1 THEN S = S + G - I

then the painting will be worth 18—1=17
and the key 18—18=0. (G is the number of
gettable objects and I is the number of the
object the player is carrying.) This makes
the key valueless as an item of treasure but
of great value as a useful object because
without it, the player would not be able to
get the painting or the goblet.

If you wanted a more flexible system (and
you have enough memory), you could set up
an array to contain object values in the
initialization routine, like this:

£ Add line numbers

DIM TIG)
FOR 1=1 TO G
READ T(I)
NEXT I

cr

Dimensions new
array T with G
spaces (i.e. number
of gettable objects)

30
DATA 20,20,30,11,16,25,32,8,25,4,9,17,3,0,
10,12,4,9

Also change line 1530 as follows:
1530 IF C(I)= 1 then S=S+T(I)

Penalties ^ j

So far, the scoring
routine has only
counted plus points
and not been
affected by silly
things the player
might try to do. You
could add a penalty
system quite easily by using a counter, say
MK, for mistakes. Whenever the player
does something really silly, you add to MK
and then subtract it from S when the score is
worked out at line 1530. If the player falls out
of the tree, for instance, you could award
one (or more) penalty points like this:

780 IF F (1 4) = l THEN M$="CRASH YOU FELL OUT

OF THE TREEH:FQ4) =0:HK=«K+i:RETURN

Don't forget that some computers need
new variables to be defined before they can
be used. You can do this by adding MK=0
to the variables in line 70.

Saving the game

It would be nice to
be able to switch
off part way
through a game
and then carry on
later from where
you left off. With
long, complicated
games this is a very
important feature
and you can include it by adding SAVE and
LOAD to the verb list. In line 70, change the
value of V to 27 and add the two new verbs,
separated by commas, to the end of line
1665. You will also need to change the ON
GOSUB line at line 460.

Put the line numbers of the two new
subroutines (one for SAVE and one for
LOAD) between the last two numbers in line
460 so that they read:
...1510,3000,4000,1590

/ \
First new number Second new number

Then add the new subroutines like this,
checking your computer's manual to make
sure the wording is correct.

1-3000 INPUT "IS YOUR CASSETTE
READY TD RECORD";Y$
3010 IF YIO'Y" THEN 3000
3020 OPEN FILE FOR OUTPUT FROM
COMPUTER

Replace this line]
with your
computer's own
instructions. You
may not even need
a line here at all.

3040
3050
3060
3070
3080
3090
3100
3200

•#•4000
4010
4020
4030
4040
4050
4040
4070
4080
4090
4100
4200

FOR 1=1 TO 6 y
PRINT #1,L(I)
NEXT I
FOR 1=1 TO N
PRINT ll,C(I),F(I)
NEXT I
CLOSE
RETURN
INPUT "ARE YOU READY TO
IF YIO'Y' THEN 4000
OPEN FILE FOR INPUT TO
INPUT II,m
FOR 1=1 TO 6
INPUT 11,1(1)
NEXT I
FOR 1=1 TO W
INPUT ll,C(I),FU)
NEXT I
CLOSE
RETURN

This loop saves
positions of
gettable objects.

Note that this save routine does not save the
descriptions and routes in the game. This
means that the rooms and routes altered by
the player's actions will return to their
original state - the secret wall will be
rebuilt, the door relocked and so on. (The
ghosts are probably responsible.) You
could save the D$ and R$ arrays if you
wanted to, by adding extra loops to each of
the SAVE and LOAD routines.

Do you give in?

Like most adventures, Haunted House
contains traps for the player which can only
be avoided by using a certain object in a
certain way. If the player doesn't have that
object he is stuck. A "quit" feature would be
useful in this situation so the player does not
have to press BREAK or ESCAPE to end the
game. You can do this by adding QUIT to
the verb list and putting in a new subroutine,
as for SAVE and LOAD described on the
left.

You must remember to change the
value of V in line 70, add QUIT to the end of
line 1665 and insert the new subroutine line
number in line 460, putting it in the second
to last position.

The QUIT subroutine should be
something like this:

5000 INPUT "HANT TO QUIT";Q$
5010 IF BIO'Y* THEN RETURN
5020 INPUT "LIKE TO SAVE GAHE FIRST",Dt
5030 IF 9$="Y" THEN B0SUB 3000

You don't need this if you
haven't put the SAVE feature
in.

5040 PRINT
5050 END

'THANKS FOR PLAYING

Notice that there is no RETURN at the end of
this subroutine. This is usually against the
rules in BASIC but, in this case, the
computer cannot get confused because the
program will no longer be running when it
reaches line 5050. 31

• / / y o u have a BBC, you may need to replace semi-colon with a comma.

MAKING CHANGES

Debugging your adventure
If you write your own version of Ha un ted House or use the routines in it to make a new
adventure, then you are quite likely to make mistakes. Finding mistakes and puttingthem
right is called debugging. Here are some of the problems you might come across and some
suggestions for fixing them.

^ ut of data

^

If the computer gives you an error code which stands for
"out of data in line x" then it means that the numbers don't
tie up in one of your data-reading sections. Check that the
number of items of data is the same as the number in the
loop for reading them in. You could have left a comma out
in the DATA statement perhaps, or missed out one item
altogether or put the wrong number in the loop.

DIM A(4)
FOR 1=1 TO 4
READ A d)
NEXT I
DATA SNORD,HONEY,FOOD HATER

Array error

Ni

If you get an array error, it means that you didn't reserve
enough space when you DIMmed the array or you
accidentally put an extra item in the DATA statement
(perhaps by putting in an extra comma) and then counted
this extra item when working out the number for the READ
loop.

DIN FI3)
FOR 1=1 TO 4
READ A d)
NEXT I
DATA AXE,C0FFIH,BLOOD,KEY

cts behave in strange ways

This could happen because the program is being directed to the wrong subroutine by
the ON GOSUB line. Check each number in this line against the subroutine with the same
number. If these are all correct, check the DATA statement for the verbs to see if their
order coincides with the order of the subroutines.

If the program is going to the correct verb subroutine and the verbs are listed in the
correct order, check that there is a RETURN line at the end of each subroutine. If this is
missing, the computer will "fall through" the program to the next subroutine down which
may produce some strange results.

If none of the above things solves the problem then check through the conditions in
the subroutine carefully. You might have missed something out or got a sign wrong or
used the wrong variable by mistake. Check the override conditions and flags which
occur earlier in the program too.

Exits in funny places

\

\

If you find a wall you can walk through or a doorway you can't, you may have made a
mistake in planning your routes or in typing in the route data. Check your route map
against the data lines to find the mistake.

Objects don't appear where they should

32

If an object appears in the wrong place then you've probably made a mistake in the data
for array L. If an object doesn't appear at all, check the flag array. You must have set the
flag with that object number to 1, which means that the object is there but the computer
won't tell you. You need to set the flag to zero. Check the initialization routine where the
flags are set up and then the flag references throughout the program.

PROGRAM LISTING

The Haunted House listing
This is the program listing for the Ha un ted House adventure. It should run on any
computer which uses Microsoft-style BASIC and which has a minimum of 16K of RAM. You
may have to make a few minor changes for your computer - look out for comments next to
certain lines in the listing. If you have a VIC 20 or an Oric, there are a few extra lines anda
line change which you will find at the end of the listing on page 37. If you have a BBC Model
A, use mode 7.

This listing will not work as it is on Sinclair (Timex) computers. If you have a Spectrum
(Timex 2000), turn to page 38 for changes to make to the program. If you have a ZX81
(Timex 1000) there is a special listing for you on pages 39 to 45.

As this is a long program, you will have to be extremely careful when you type it in. The
smallest mistake could prevent it running properly and will be very difficult to find once
you've typed the whole program in. Check each line as you go, especially the ON GOSUB
and DATA lines. Some of the program lines are so long that they take up two or more lines
on the printed page. Look out for these and make sure you do not press RETURN or ENTER
until the end of the program line.

10 REM
20 REN
30 REM
40 REM
50 REM
60 REM

If you have a VIC 20, change
CLS to PRINT CHR$(147). If you
have an Apple change it to
HOME.

O
<
m
Q u u
u-,

oS

O
On
I—(

«
O
x/i u
Q

I 1;

CO

<
<

g
3
EH
&
OH
5

r23

HAUNTED HOUSE ADVENTURE

THIS VERSION FOR "MICROSOFT
REQUIRES A MINIMUM OF 16K
SELECT "TEXT NODE" IF NECESSARY
H H H H W H H H H H H H H W

65 CLEAR 100
70 V=25:W=36:G=!8
80 B0SUB 1600
90 CLS:PRINT"HA
!00 PRINT
110 PRINT "YOUR LOCATION"
120 PRINT D*(RM)
130 PRINT "EXITS:";
140 FOR 1=1 TO LEN!R$(RM!)
150 PRINT MID*(R$(RM!,I ,1)
160 NEXT I
170 PRINT
180 FOR 1=1 TO G
190 IF LU)=RM AND F (I) = 0 THEN PRINT
200 NEXT I
210 PRINT »=========================
220 PRINT N$:M$="«HAT"
230 INPUT "WHAT HILL YOU DO N0H"iQ$
240 V$="*:Nt="":VB=0:0B=0
250 FOR 1=1 TO LENiQ*)
260 IF MID* (Q$, I ,1)=" " AND V$=""THEN V$=LEFT*(Q$,I-1)
270 IF MID$(Q$,I+1,1)<>" ' AND V$<>"" THEN «$=MID$(Q*,I+l,LEN!Qt!
280 NEXT I
290 IF H$="" THEN V$=Qt
300 FOR 1=1 TO V
310 IF V$=V$II) THEN VB-I
320 NEXT I
330 FOR 1=1 TO tt
340 IF H*=0J(I ! THEN LET 0B=I

Line 70 sets up the
variables. V is number of
verbs, W is number of
object words, G is
number of "gettable"
objects.

See page 20 to find out
how the description and
feedback section works.

"YOU CAN SEE " ; 0 $ (I J ; " HERE"

If you have a BBC, you
may need a comma here
instead of a semi-colon.

1):I=LEN(QJ)

See pages 21-22 to find
out how the input section
works.

33

m
2

cnO
u p ob

E
S

S
A

O

N
D

§H

&%
uj3

o

8g
gg
3 0
>g«
PQS

U5

• — *

3
5

ca

§

"THAT'S SILLY"

PROGRAM LISTING

350 NEXT I

560 IF W$>"" AND 0B=0 THEN H$

370 IF VB=0 THEN VB=V+l

380 IF « = " " THEN H$="I NEED TWO WORDS"

390 IF VBH' AND 0B>0 THEN H$="YQU CAN'T "+Q$+" ' "

400 IF VB>V AND 08=0 THEN N*="Y0l) DON'T HAKE SENSE

410 IF VB<V AND 0B>0 AND C(0B)=0 THEN H$=*Y0U DON'T HAVE

420 IF F(26)=l AND RH=13 AND RND!3)<>3 AND VB<>21 THEN H*

430 IF RH=44 AND RND!2)=_1JND F(24)<>1 THEN F(27) = l

440 IF F(0!=1 THEN LL=LL-1

450 IF L K 1 THEN F(Q)=0

See pages 23-24 to find
out how the error
messages section
works.

"BATS ATTACKING!":S0T0 90

Use your computer's
form of RND here.

34

Change this line for
VIC20andOric.
See page 37.

Take extra special care
to type this line
correctly. It will mess up
the game if you get it
wrong. J

460 ON VB 60SUB500,570,640,640,640,640>4£r640,640,980,9BO,1030,1070,1140,1180,1220,1250
1300,1340,1380,1400,1430,1460,1490,1510,1590
"470 IF LL=10 THEN H$="Y0UR CANDLE IS WANING!

480 IFLL=1 THEN H$="Y0UR CANDLE IS OUT!"
490 G0T090
500 PRINT'NORDS I KNOW:"
510 FOR 1=1 TO V

520 PRINT Vt(I) ;Vi
530 NEXT I
540 H$="":PRINT
550 G0SUB158O

\ 5 6 0 RETURN
/ * 5 7 0 PRINT'YOU ARE CARRYING:"

580 FOR 1=1 TO 6
590 IFC(I)=1 THEN PRINT0*(I)

600 NEXT I

610 «$="":PRINT
620 G0SUB1580

\ 6 3 0 RETURN
/ * " 6 4 0 D=0

650 IF 0B=0 THEN D=VB-3
660 IF 0B=19 THEN D=l
670 IF 0B=20 THEN D=2
680 IF QB=21 THEN D=3
690 IF 0B=22 THEN D=4
700 IF 0B=23 THEN D=5
710 IF 0B=24 THEN D=6
720 IF RH=20 AND D=5 THEN D=l
730 IF RH=20 AND D=6 THEN D=3
740 IF Rfi=22 AND D=6 THEN D=2
750 IF RH=22 AND D=5 THEN D=3
760 IF RH=36 AND D=6 THEN D=l
770 IF R(1=36 AND D=5 THEN D=2
780 IF F(14)=l THEN N$="CRASH! YOU FELL OUT OF THE TREE!":Fil4)=0:RETURN
790 IF Fi27)=l AND RM=52 THEN H$="GH0STS WILL NOT LET YOU H0VE":RETURN
800 IF RH=45 AND C(l)=l AND F(34)=0 THEN H*="A MAGICAL BARRIER TO THE WEST":RETURN
810 IF (RH=26 AND F(0)=0i AND (D=1 OR D=4) THEN Ht="YQU NEED A LI6HT":RETURN

The branch to
subroutines section and
the verb subroutines are
explained on pages 24-
25.

You can find out how the
GO subroutine works on
pages 26-27.

*T

880

890

900

910

920

If you are using a VIC 20,
you could shorten the
messages to 22
characters or make sure
the spaces fall in the
right places so the
messages look better on
the screen.

:F(23)=0

°8
o
i—i
CO

s
a

s

820 IF RH=54 AND C(15> <M THEN H$="Y0U'RE STUCK!":RETURN

830 IF C(15)=l AND NOT (RH=53 OR RH=54 OR RM=55 OR RH=47) THEN H$="Y0U CAN'T CARRY A BOA
": RETURN
840 IF (RH>26 AND RN<30) AND F!0)=0 THEN M$="T0Q DARK TO HOVE":RETURN
850 F(35)=0:RL=LEN(R*<RM)) f\
860 FOR 1=1 TO RL
870 U$=HID$(Rt(RM),I,l!

IF <U$="N* AND D=l AND F!35)=0)THEN RN=RM-8:F(35!=1
IF (U*="S" AND D=2 AND F(35i=0)THEN RH=RM+8:F(35)=i
IF (U*="W" AND D=3 AND F(35)=0)THEN RM=RN-1:F!35)=1
IF (U*="E" AND D=4 AND F(35)=0)THEN RH=RM+1:F(35!=1
NEXT I

930 M$="QK"
940 IF F(35)=0 THEN K*="CAN'T GO THAT BAY!"
950 IF D<1 THEN H*="G0 WHERE?"
960 IF RM=41 AND F(23)=l THEN R$!49)="SW":Mt="THE DOOR SLAMS SHUT!"
970 RETURN
980 IF 0B>6 THENM$="I CAN'T GET "+«$:RETURN
985 IF L(0B> <> RH THEN H$="IT ISN'T HERE"
990 IF F(0B) 0 0 THEN H$="«HAT »+«+"?"
1000 IF C(0B)=1 THEN fl$= "YOU ALREADY HAVE IT"
1010 IF 0B>0 AND L(0B)=RH AND F(0B)=0 THEN C(0B)=l:L(0B!=65:H*="Y0U HAVE THE

U 0 2 0 RETURN
fT030 IF RH=43 AND (0B=28 OR 0B=29) THEN F(17)=0:N$="DRA«ER OPEN"

1040 IF RH=28 AND 0B=25 THEN H$="IT'S LOCKED"
1050 IF RH=38 AND 0B=32 THEN H*="THAT'S CREEPY!":F(2)=0

U 0 6 0 RETURN
/T070 IF 0B=30 THEN F!18)=0:H*="S0HETHING HERE!"

1080 IF 0B=31 THEN H$="THAT'S DISGUSTING!"
1090 IF !0B=28 OR 0B=29) THEN H$="THERE IS A DRAWER"
1100 IF 0B=33 OR 0B=5 THEN GOSUB1140
1110 IF R«=43 AND 0B=35 THEN Ht="THERE IS SOMETHING BEYOND.."
1120 IF 0B=32 THEN 60SUB1030

y_130 RETURN
/Tl40 IF RH=42 AND 0B=33 THEN H$="THEY ARE DEMONIC WORKS"

1150 IF (0B=3 OR 08*36) AND C(3)=i AND F(34)=0 THEN M$="USE THIS WORD WITH CARE

"+W$

f\
8
W
>

(ZANFAR'"

/Ti

Use your computer 's
1160 IF C!5) = l AND 0B=5 THEN Ht="THE SCRIPT IS IN AN ALIEN TONGUE" | f o r m o f RND here .

170 RETURN

180 H$="0K ' "+W$+" ' "

1190 IF C(3)= l AND 0B=34THENH$="tMAGIC OCCURSt":IF RMO-45 THEN RM=RND!63>

1200 IF C(3)= l AND 0B=34 AND RM=45 THENF(34)=1

1210 RETURN

f220 IF C(125=l THEN H$="Y0U HADE A HOLE"

1230 IF C(12!= l AND RH=30 THEN M$="DU6 THE BARS 0UT":D$(RH)="H0LE IN WALL":R$(RM)="NSE

1_240 RETURN

r250 IF C(14) <>1 AND RM=7 THEN M$="THIS IS NO TIME TO PLAY GAMES"

1260 IF 0B=14 AND C(14)=l THEN M$="Y0U SWUNG IT"

1270 IF 0B=13 AND C(13!=l THEN M$="WH00SH!"
35

3
u
>
CM
CM

s
>
en

PROGRAM LISTING

1280 IF 0B=13 AND CU31 = 1 AND Rfl=43 THEN R$!RH)="WN":D$ifiM!="STUDY WITH SECRET RQDMa:H$=H

YOU BROKE THE THIN HALL"

>1290 RETURN
feoO IF 0B*14 AND C!14)=l THEN N$="IT ISN'T ATTACHED TO ANYTHING!"
1310 IF 0B=14 AND C(14i <>1 AND RM=7 AND F(14)=0 THEN H$="Y0U SEE THICK FOREST AND CLIFF

S0UTH":F!14i=l:RETURN
1320 IF 0B=14 AND C(14) <>1 AND RH=7 AND F (14)= l THEN H$="60IN6 B0NN!":F(14>=0
1330 RETURN
340 IF 0B=17 AND C(17)=1 AND Ci8)=0 THEN M$="IT WILL BURN YOUR HANDS"
1350 IF 0B=17 AND C(17>=1 AND C(9>=0 THEN H$="NOTHING TO LIGHT IT WITH"
1360 IF 0B=17 AND C(17)=l AND C!9>=1 AND C(8!=l THEN Ht="IT CASTS A FLICKERING LIGHT":F!0)=1
1370 RETURN
1380 IF F(0)=1 THEN F(0)=0:M$="EXTINGUISHED"
1390 RETURN
f400 IF QB=26 AND C!16>=1 THEN H$="HISSSS"
1410 IF 0B=26 ANDC(16)=1 AND F(26)=l THEN F(26)=0:M*=*PFFT! GOT THEH"
1420 RETURN
430 IF 0B=10 AND C(10)=l AND C(ll)=l THEN M*="S«ITCHED 0N":F(24)=1
1440 IF F(27)=l AND F(24)=i THEN M*="WHIZZ- VACUUMED THE GHOSTS UPi":F(27)=0
1450 RETURN
t m IF RH=43 AND (0B=27 OR QB=28) THEN G0SUB1030
1470 IF RM=28 AND 0B=25 AND F!25i=0 AND C(18)=l THEN F(25)=1:R*<RH)="SEH*:D*(RH)="HUGE OP

.EN DODR":H*="THE KEY TURNS!"
4S0 RETURN

"1490 IF C(0B)=1 THEN C(OB)=0:LiOB)=RH:H$="DONE"
1500 RETURN
1510 S=0
1520 FOR 1=1 TO G
1530 IF C(I)=1 THENS=S+1
1540 NEXT I
1550 IF S=17 AND C(15)<>1 AND RR <>57 THEN PRINT"YOU HAVE EVERYTHING":PRINT"RETURN TO THE
GATE FOR FINAL SCORE"
1560 IF S=17 AND RH = 57 THEN PRINT'DQUBLE SCORE FOR REACHING HERE!":S=S»2
1570 PRINT'YOUR SCORE=";S:IF S>18 THEN PRINT"WELL DONE! YOU FINISHED THE 6AHE":END
1580 INPUT"PRESS RETURN TO CONTINUE";Q$

U 5 9 0 RETURN
Fl600 DIPIRt(63),D$(63),0*(W),V*(V)
1610 DIHC!«),L!G),F(N)
1620 DATA46,38,35,50,13,18,28,42,10,

25,26,4,2.7,47,60,43,32
1630 FOR 1=1 TO G
1640 READ L(I)
1650 NEXT I
1660 DATAHELP,CARRYING?,GO,N,S,W,E,U,D,GET,TAKE,OPEN,EXAHINE,READ,SAY
1665 DATADIG,SWING,CLIHB,LIGHT,UNLIGHT,SPRAY,USE,UNLOCK,LEAVE,SCORE
1680 FOR 1=1 TO V
1690 READ V$!I)
1700 NEXT I

36

If you have a BBC, you
may need a c o m m a here
instead of a semi-colon.

c <

X Notice that data items
are separated by
commas. If you change
the data, make sure you
don't try to include
commas in it or you will
confuse the computer.

1710 DATASE,WE,WE,SWE,WE,WE,SWE,HS
1720 DATANS,SE,WE,NW,SE,W,NE,NSW
1730 DATANS,NS,SE,WE,NWUD,SE,WSUD,NS
1740 DATAN,NS,NSE,WE,WE,NSW,NS,NS
1750 DATAS,NSE,NSW,S,NSUD,N,N,NS
1760 DATANE,NW,NE,W,NSE,WE,N,NS
1770 BATASE,NSW,E,KE,NW,S,SW,NW
1780 DATANE,NWE,WE,WE,WE,NWE,NWE,W
1790 FOR 1=0 TO 63
1800 READRi(I)
1810 NEXT I
1320 DATA DARK CORNER,OVERGROWN GARDEN,BY LAR6E H00DPILE,YARD BY RUBBISH
1825 DATA WEEDPATCH,FOREST,THICK FORESt,BLASTED TREE
1840 DATA CORNER OF HOUSE,ENTRANCE TO KITCHEN,KITCHEN & BRIHY COOKER,SCULLERY DOOR
1845 DATA R00H WITH INCHES OF DUST,REAR TURRET ROOM,CLEARING BY H0USE.PATH
1860 DATA SIDE OF H0USE,BACK OF HALLWAY,DARK ALCOVE,SHALL DARK ROOM
1865 DATA BOTTOM OF SPIRAL STAIRCASE,WIDE PASSAGE,SLIPPERY STEPS,CLIFFTOP
1880 DATA NEAR CRUMBLING WALL.6L00HY PASSA6E.P00L OF LIGHT,IMPRESSIVE VAULTED HALLWAY
1885 DATA HALL BY THICK WOODEN DOOR,TROPHY ROOH.CELLAR WITH BARRED WINDOW,CLIFF PATH
1900 DATA CUPBOARD WITH HANGING COAT,FRONT HALL,SITTING ROOM.SECRET ROOM
1905 DATA STEEP MARBLE STAIRS,DINING ROOM,DEEP CELLAR WITH COFFIN.CLIFF PATH
1920 DATA CL0SET,FR0NT LOBBY,LIBRARY OF EVIL B00KS,STUDY WITH DESK & HOLE IN WALL
1925 DATA WEIRD COBWEBBY ROOM,VERY COLD CHAMBER,SPOOKY ROM,CLIFF PATH BY ftARSH
1940 DATA RUBBLE-STREWN VERANDAH,FRONT PORCH,FRONT TOWER,SLOPING CORRIDOR
1945 DATA UPPER 6ALLERY,MARSH BY WALL,MARSH,SOGGY PATH
1960 DATA BY TWISTED RAILING,PATH THR0U6H IRON GATE.BY RAILINGS,BENEATH FRONT TOWER
1965 DATA DEBRIS FROM CRUMBLING FACADE,LARGE FALLEN BRICKWORK.ROTTING STONE ARCH,CRUMBLING
CLIFFTOP .̂ -̂
1980 FOR 1=0 TO 63
1990 READD$(I)
2000 NEXT I
2010 DATAPAINTING,RING,MAGIC SPELLS,GOBLET,SCROLL,COINS,STATUE,CANDLEBTICK
2012 DATAMATCHES,VACUUM,BATTERIES,SHOVEL,AXE,ROPE,BOAT,AEROSOL,CANDLE,KEY
2014 DATANORTH,SOUTH,WEST,EAST,UP,DOWN
2016 DATADOOR,BATS,GHOSTS,DRAWER,DESK,COAT,RUBBISH
2018 DATACOFFIN,BOOKS,X2ANFAR,WALL,SPELLS
2060 FOR 1=1 TO W
2070 READO$(I)
2080 NEXT I V
2090 F!18)=1:F(17)=1:F(2)=1:F(26)=1:F(28)=1:F!23)=1:LL=60:RM=57:M$="0K"
2100 RETURN

C-
Cf ?

Make sure you type the
data in the correct order
or strange things will
happen when you try to
play the game.

VIC and Oric changes
If you have a VIC 20 or an Oric, use these lines instead of line 460 in the main listing.

455IF v8>14 THEN S0T0465
4600N VB GOSUB 500,570,640,640,640,640,640,640,980,980,1030,1070,1140
463GOT0470
4650N VB-14 SOSOB 1180,1220,1250,1300,1340,1380,1400,1430,1460,1490,1510,1590

37

SPECTRUM VERSION

Changes for the Spectrum (Timex 2000)
Sinclair (Timex) computers use a version of
BASIC which differs quite a lot from the
BASIC on other popular computers, so you
will have to make quite a lot of changes to
make it work. These changes make the
program slightly too long to fit into a 16K
Spectrum. You could, however, try
adapting the program to fit by cutting out
some of the verbs, for example, and
shortening the messages.

Use the lines listed below to replace lines
in the main program and also change the
main program as follows:
1. The Spectrum needs LET every time you
assign a value to a variable e.g. LET V=25.
This affects many lines, including all the
ones containing I F . . . THEN, so be careful.
2. All the string data in lines 1660,1665,
1710-1780,1820-1965 and 2010-2018 must be
put in quotes, like this:
1820DATA"DARK CORNER",
"OVERGROWN GARDEN", etc.
3. In lines 1790 and 1980, change the loop to
read FOR 1= 1 TO 64. (The Spectrum won't
allow you to use the box labelled zero in an
array.)

60 LETR="
120 PRINT D$(RM+1!
140 FOR 1=1 TO LEN!R$(RH+1))
150 PRINT R$(RM+i! (I TO I) ; " , " ;
240 LET X*="":LET M*="";LET VB=0sLET OB-0
250 FOR 1=1 TO LEN!Q$S-1
260 IF Q$(I TO I) = " " AND X$="" THEN LET Xt=9$i TO 1 -1 !
270 IF Q$(I+i TO I + l ! < > " " AND X$="" THEN LET H$=Q$(I+1 TQhLET I=L£N(Q$)-1
290 IF W$="" THEN LET X$=Q$
295 IF LEN(Xi) > LENiV$«l! ! OR X$=! l" THEN GOTO 325
296 LET X$=X*+F*(TO (LEN(V$(1))-LENU*)))
310 IF X*=V$U> THEN LET VB=I
325 IF « = " " OR LEN(«*)>LEN!0$«1)» THEN 60T0 360
326 LET «$=a$+F$! TO !LEN!0$(l)) -LEN(«t)))
405 IF 0B=0 THEN 60T0420
420 IF F(26)=l AND RH=i3 AND INT<RND*3+1><>3 AND VB <>21 THEN LET H*="BATS ATTACKING^
430 IF RHM4 AND INT(RND*2)=1 AND F!24X>1 THEN LET F(27)=l ^ f ^

Remember that if you type in the data
in capital letters, you must play the
game using capitals - the computer
does not recognize that "GO WEST"
and "go west" are the same thing. It is
best to keep the caps lock on all the
time.

38

440 IF F!20)=l THEN LET U X L - 1
450 IF LLUTHEN LET F!20!=0
460 GOSUB 5O0t(VB=l)+570t(VB>2 AND VB<10)+980*iVB=10 OR VB=i1)+ 1030*(VB=12>+ 1070*?VB=13>+1
140*<VB=i4>+1180*(VB=15)+1220*«yB=16)+i250*<yB=17>+1300*(VB=18)+i340*?VB=19>+1380*(yB=20)+
1400*CVB=2i)+14301!VB=22)+1460*(VB=23)+14901(VB=24)+1510*!VB=25)+1590* !VB=26)

800 IF iR«=26 AND F<20)=0) AND !D=1 OR D=4! THEN LET N$="Y0U NEED A LIGHT":RETURN
840 IF (RM>26 AND RIK30) AND F(20)=0 THEN LET H$="TQQ DARK TO M0VE":RETURN
850 LET F!35!=0:LET RL=LEN'IR$(RM+1))
870 LET U$=R*iRH+l) (I TO I)
960 IF Rfl=41 AND F(23!= l THEN LET Rt(50>="SW":LET M$="THE DOOR SLAHS SHUT!":LET F!23)=0
980 IF 0B>G OR DB=0 THEN LET N$="I CAN'T GET "+H$:RETURN

1190 IF C(3)=l AND 0B=34 THEN LET H*="*HAGIC 0CCURSf;IF RH045 THEN LET RH=INTiRND*64)
1230 IF CC12) = 1 AND R«=30 THEN LET M$="DU6 THE BARS QUT";LET D$!RH+1)="H0LE IN «ALL":LET

Ri(RM+l)="NSE"
1280 IF 0B=13 AND C(13)=l AND RN=43 THEN LET R$!RH+1/="UN":LET Dt(R«+l!="STUDY WITH SECRE

T ROOM":LET M$="Y0Ll BROKE THE THIN WALL"
1360 IF 0R=17 AND C!17)=l AND C(9)=l AND C!8! = l THEN LET (1$="IT CASTS A FLICKERING LIGHT"

:LET FI20!=1
1380.IF F!20)=l THEN LET Fi20)=0:LET H$="EXTINGUISHED"
1470 IF RH=28 AND 0B=25 AND F!25)=0 AND C(18)-1 THEN LET F!25)=1:LET R$(R«+1»="SEH":LET D

$(R«+1)="HUGE OPEN D00R":LET H$="THE KEY TURNS!"
1600 DIM R*i64,4):DIH D$!64,4i :DIH 0$(!N,13) :DIH V*!V,9)

ZX81 (Timex 1000) version
differences are that the ZX81 will accept
only one statement on each line and it does
not have the commands READ... DATA.
The program has been rewritten to take
account of these and other differences in
the BASIC which you will see pointed out on
the listing.

These changes take up quite a lot of
memory space. In order to make the game
fit, the number of locations has
been cut from 64 to 36 and other data
changed slightly to fit with this. The ZX81
version of the master plan is shown below.
You can find out how the data is put into the
computer's memory over the page.

ZX81 masterplan

1

ENTRANCE
TO KITCHEN

7

BACK OF
HALLWAY

13 f f = ^
H A L L W A Y ^
TO REAR A

19

FRONT
HALL

25

FRONT
LOBBY

31

FRONT
PORCH

2

KITCHEN

DARK
ALCOVE

14 HEfr
POOL OF
LIGHT

20

SITTING
ROOM

26

LIBRARY . . J

32

FRONT
TOWER M l

1 S

3

SCULLERY

9

SMALL
ROOM
WITH
RUBBISH

15

VAULTED
HALL

21

SECRET
ROOM

* • — « £ ? \

27

STUDY

33

SLOPING
CORRIDOR

4

DUSTY
ROOM

10

SPIRAL
STAIRCASE

16

HALL WITH
LOCKED DOOR

22

STEEP
MARBLE
STAIRS

28

COBWEBBY
ROOM

34

UPPER
GALLERY

REAR
TURRET
ROOM

11
WIDE £
PASSAGE ^ |

17

TROPHY
ROOM

23

DINING
ROOM

29

COLD
CHAMBER

35

BOAT
HOUSE

6
CLOSET
WITH
COAT

12

SLIPPERY
STEPS

18

CELLAR

24

VAULT
WITH
COFFIN

30

SPOOKY
ROOM

36

SOGGY
^ PATH

\

The program listing on the next six pages is
a special version of Haunted House for the
ZX81. It sticks as closely as possible to the
structure of the main program, so you can
follow the explanations of the program
given throughout this book. The main

Notice that the locations are
numbered starting with 1, as
the ZX81 will not allow you to
use the zero box in an array.

ZX81 LISTING

How to use the program
If you look through this listing, you will
notice that the data for the game is not
incorporated in the program. The program
works by asking you to type in the data and
then saving the whole program, including
the data, on tape. You only need do this
once - next time you want to play the game,
all you have to do is load the tape.

Follow these instructions to use the
program:
1. Type in the program (very carefully).
2. Type RUN 2440.

2200

U
<
m
Q
w
u
°a

o
I—I
E-a,
I—I 2
u
CO
u
a

§

°3
E-

b
2

40

"HAUNTED HOUSE ADVENTURE"

"YOUR LOCATION:

"YOU CAN SEE ";0$(D;" HERE"

10 GOSUB
20 CLS
30 PRINT
40 PRINT
50 PRINT
60 PRINT D$(R«)
70 PRINT "EXITS:"
80 FOR 1=1 TO LEN(R$!RN)!
90 PRINT RJiRHHI TO I)5,f"5
100 NEXT I
110 PRINT
120 FOR 1=1 TO 6
130 IF L(I)=RH AND F!I)=0 THEN PRINT
140 NEXT I
150 PRINT "====================•

, 160 PRINT Ht
VJ70 LET «$="HHAT ?"
/ H B O PRINT "HHAT HILL YOU DO NOW"

190 INPUT Q*
200 LET X$=""
210 LET « = " '
220 LET VB=0
230 LET 08=0
240 FOR 1=1 TO LEN(9*1-1
250 IF Q$!I TO I)=" " AND %%-" THEN LET X$=G*!T0 I-l)
260 IF Q$(I+1 TO I+l><>" " AND Xt<>"" THEN LET Ht=Qt!I+l
270 IF «$<>"" THEN LET I=LEN(Q*)-1
280 NEXT I
290 IF «="" THEN LET X*=Q$
300 IF LEN!X$)>LEN(V$!1!) OR X*="" THEN 60T0 420
310 LET F=LENfy$(l!)-LEN(X*)
320 LET X$=X*+F*!T0 F)
330 FOR 1=1 TO V
340 IF X*=V$!I) THEN LET VB=I
350 NEXT I
360 IF «$="" OR LEN(M)>LEN!Q*(1>) THEN 60T0 430

3. Now type in the data in the following
order (see page 45 for lists of data):
a) location descriptions
b) routes
c) object words
d)verbs
The program stops after each section so
you can re-enter any data which you put
in incorrectly. If, for instance, you want to
put the verb data in again, type GOTO
2720. If you want to carry on to the next
input section, type CONT, followed by
NEWLINE.

4. Now SAVE the program on tape. This will
save all the data as well.

5. To start the game, type GOTO 10. DO
NOT TYPE RUN, as this will destroy all
the variables.

6. Now input the starting positions of the
objects. When you input the last of these
(18) the program will give you your
starting location.

7. For a new game, repeat steps 5 and 6.
8. When you load the program from tape,

start these instructions at step 5.

The ZX81 needs LET when a
value is assigned to a variable.

This section looks a bit
different to the main program
because the ZX81 does not use
MID$, LEFTS and RIGHTS to
take a section of a string.

> 4
Notice that some of the
program lines are longer than
the printed lines on the page.
Make sure you don't press
NEWLINE before the end of
the program line.

370 LET F=LEN!0*(1))-LENCN$>
380 LET N$=W$+F$(T0 F)
390 FOR 1=1 TO N
400 IF Wt=0$!I) THEN LET 0B=I
410 NEXT I
420 IF «$>"" AND 0B=0 THEN LET N$="THATS SILLY"
430 IF VB=0 THEN LET VB=V+i
440 IF W$="" THEN LET «="I NEED TWO WORDS"
450 IF VB>V AND OB>0 THEN LET H$="Y0U CANT "+Q$
460 IF VB>V AND 0B=0 THEN LET H$="Y0U D0NT HAKE SENSE
470 IF 0B=0 OR 0B>G THEN SOTO 490
480 IF V'B<V AND 0B>0 AND C(0B)=0 THEN LET «$="Y0U D0NT HAVE "+W$
490 IF F(26)=0 OR RH<>5 OR INT!RND*3)=2 OR VB=21 THEN SOTO 520
500 LET H*="BATS ATTACKING"
510 60T0 20
520 IF RH=28 AND INT!RND*2)=1 AND F(24)=0 THEN LET F(27)=l
530 IF F(20)=l THEN LET LL=LL-1
J40 IF LL<1 THEN LET F!20)=0
% 0 G0SUB 590*(VB=l)+660*tVB=2)+730*<VB>2 AND VB<10)+1160*(VB=10 OR VB=ll)+1270*(VB=12)

+1350*tVB=13>+1440*(VB=14)+1480*(VB=15)+1540* !VB=16)+1560*fVB=17)+1640*!VB=18)+1700*(VB=19)

+1760*!VB=20)+1BOO*!VB=21)+1850*(VB=22)+1920*!VB=23)+1990*(VB=24)+2040*JVB=25)+2190*!VB=26).
560 IF LL=10 THEN LET H$=*Y0UR CANDLE IS WANIN6"
570 IF LL=1 THEN LET H$="Y0UR CANDLE IS OUT"
580 GOTO 20

Al

590 PRINT "WORDS I KNOW"
600 FOR 1=1 TO V
610 PRINT V$(I)!",":
620 NEXT I
630 LET «$=""
640 GOSUB 2160
650 RETURN
660 PRINT "YOU ARE CARRYING:"
670 FOR 1=1 TO S
680 IF C!I)=1 THEN PRINT 0$(I)i",";
690 NEXT I
700 LET «$=""
710 GOSUB 2160
720 RETURN
730 LET D=0
740 IF 0B=0 THEN LET D=VB-3
750 IF 0BM8 AND 0B<25 THEN LET D=0B-18
760 IF RM=10 AND D=5 THEN LET D=l
770 IF RH=10 AND D=6 THEN LET D=3
780 IF RH=12 AND D=6 THEN LET D=2
790 IF RN=12 AND D=5 THEN LET D=3
BOO IF RN=22 AND D=6 THEN LET D=l
810 IF RI1=22 AND D=5 THEN LET D=2
820 IF RH<>32 OR D<>3 THEN GOTO 850
830 LET N»="!TS A LONG DROP"

This line replaces the ON
GOSUB line, which the ZX81
can't do. It works like one long
calculation, using the value of
VB. The computer looks at
each of the brackets containing
"VB=" and puts a 1 if the
bracket is true and a zero if it
isn't. Try working through the
calculation using a particular
value of VB to see how it works.

This replaces the tree section
in the main program. Check
the plan if you want to see what
location 32 is.

41

ZX81 LISTING

>

840 RETURN
850 IF F(27)=0 OR RH<>34 THEN SOTO 880
860 LET fi$="GHOSTS HILL NOT LET YOU MOVE"
870 RETURN
880 IF RH<>29 OR C(1)=0 OR F(34)=l THEN GOTO 910
890 LET H$="NA6ICAL BARRIER TO THE NEST"
900 RETURN
910 IF RH<14 OR RHM7 OR F(20)=l THEN 60T0 950
920 IF RM=14 AND DOl AND D<>4 THEN GOTO 950
930 LET M$="TOO DARK TO HOVE"
940 RETURN
950 IF C«15)=0 OR RH<>36 THEN GOTO 980
960 LET M="THE BOAT IS TOO HEAVY*
970 RETURN
980 LET RL=LEN(R$(RH)>
990 LET OM=RH
1000 FOR 1=1 TO RL
1010 LET U$=R$(RH)(I TO I)
1020 IF U$="N* AND D=l THEN LET 0H=0H-6
1030 IF U$="S" AND D=2 THEN LET 0H=D«+6
1040 IF !»=•«• AND D=3 THEN LET 0H=0«-1
1050 IF U$="E" AND D=4 THEN LET 0«=0N+1
1060 NEXT I
1070 LET H$="OK"
1080 IF RH=OH THEN LET f!$="CANT GO THAT MAY"
1090 LET R«=OH
1100 IF D<1 THEN LET M$="SO WHERE ?"
1110 IF RH<>25 W F(23)=0 THEN GOTO 1150
112.0 LET R$!31)="
1130 LET N$="THE DOOR SLANS SHUT BEHIND YOU"
1140 LET F(23)=0
1150 RETURN
1160 IF OB>0 AND 0B<=6 THEN GOTO 1190
1170 LET H$="YOU CANT GET *+W
1180 RETURN
1190 IF L(0B)ORH THEN LET «$="ITS NOT HERE"
1200 IF F!0B)=1 THEN LET H$="KHAT "+«$+" ?"
1210 IF C(0B)=1 THEN LET H$="YQU ALREADY HAVE IT"
1220 IF L(0B)ORH OR F!0B)=1 THEN GOTO 1260
1230 LET C!0B)=1
1240 LET H$="YOU HAVE THE "+N*
1250 LET L!0B)=37
1260 RETURN
1270 IF RH<>27 OR (0BO28 AND 0BO29) THEN GOTO 1300
1280 LET N$="DRA«ER OPEN"
1290 LET F!17)=0
1300 IF RH=16 AND 0B=25 THEN LET N$="IT IS LOCKED
1310 IF RH<>24 OR 0BO32 THEN GOTO 1340
1320 LET H$="CREEPY"

Check each line before you
press NEWLINE. It is much
easier to try and spot your
mistakes as you type than
having to search through the
whole listing to find them.

See pages 24-25 for
more about how the
subroutines work.

Imagine your adventure is
going to be sold in a famous
chain of shops and design
and write an atmospheric
insert for its cassette box.

CCheck the two versions of
Ha un ted House against each
other to see where the
programs differ.

"USE

I 1/41
>475(

if MU

LET F (2)=0
RETURN

IF 0BO30 THEN 60T0 13B0
LET HJ="SOHETHING HERE-
LET F (18)=0

IF 0B=28 OR 0B=29 THEN LET H$="THERE IS A DRAWER"
IF 0B=33 OR 0B=5 THEN 60SUB 1440
IF RH=27 AND 0B=35 THEN LET N*="SQNETHIN6 BEYOND"
IF 0B=32 THEN GOSUB 1270

IF RH=9 AND 0B=31 THEN LET H*="THATS DISGUSTING"
RETURN

IF RH=26 AND 0B=33 THEN LET H*="THEY ARE DEMONIC WORKS
IF (0B=3 OR 0B=36) AND C ! 3) = l AND F(34>=0 THEN LET M$=
WORD KITH CARE - XZANFAR"

IF C<5>=1 AND 0B=5 THEN LET N$="AN ALIEN TONGUE"
RETURN

LET M$="0K "+W$

IF C(3)=0 OR 0BO34 THEN GOTO 1520
LET M='HAGIC OCCURS"
IF RH<>29 THEN LET RM=INT(RND*36)+1
IF C(3)=l AND 0B=34 AND RH=29 THEN LET F(34)=l
RETURN V
IF C!121=1 THEN LET N$="Y0U HAVE MADE A HOLE"
RETURN
IF C ! 1 4 X > 1 AND RH=11 THEN LET H*="THIS IS NO TIME FOR GAMES"

IF 0B=14 AND C(14)=l THEN LET H$="Y0U SWUNG IT"
IF 0B=13 AND C(13)=l THEN LET H$="«H00SH"
IF 0BO13 OR C!13!=0 OR RHO-27 THEN GOTO 1630
LET R$(RH!="«N"
LET D$!R«)=»STUDY KITH SECRET ROOM
LET N*="Y0U BROKE THROUGH"

I RETURN
IF RH<>32 OR C(14)<>1 OR 0BO14 THEN GOTO 1680

i LET H$="G0ING DOWN."
LET RM=RM-1

i GOTO 1690
LET «$="WHERE TO ?"

i RETURN
IF 0B=17 AND C(17)=l AND C!8)=0 THEN LET H$="IT MILL BURN YOUR HANDS

I IF 0B=17 AND C(17)=l AND C(9)=0 THEN LET H*="WHAT WITH ?"
IF 0BO17 OR C(17)=0 OR C(9)=0 OR C(8)=0 THEN GOTO 1750

I LET H$="IT CASTS A FLICKERING LIGHT"
' LET F(20)=l
I RETURN
1 IF F!20)=0 THEN GOTO 1790
I LET (^"EXTINGUISHED"
LET F(20)=0

i RETURN
IF 0B=26 AND C!16)=l THEN LET N*="HISSSS

Don't forget, you can add
extra verbs without adding
extra subroutines. You
could add LOOK for
example and make it use
the EXAMINE subroutine.

think of a better verb
than "unlight".

43

CO
(XI

S3
O
i—i

Nl
I 1

I—I

E -
I—I

2
4!

ZX81 LISTING

1810 IF 0BO26 OR C U 6 K M OR F(26)=0 THEN GOTO 1840
1820 LET H$="PFFT - 60T THEH*
1830 LET F(26>=0

\ j 8 4 0 RETURN
/1850 IF 0BO10 OR C(10)=0 OR C(11)=0 THEN SOTO 1910

I860 LET F(24)=l
1870 LET N$="S«ITCHED ON"
1880 IF F(27)=0 OR F(24)=0 THEN GOTO 1910
1890 LET H$="YOU VACUUflED THEH UP"
1900 LET Fi27)=0

K l 9 1 0 RETURN
M 9 2 0 IF RH=27 AND iOB=27 OR 0B=28) THEN GOSUB 1270

1930 IF RH<>16 OR 0BO25 OR F(25)=l OR C(18)=0 THEN GOTO 1980
1940 LET F(25)=l
1950 LET Ht="THE KEY TURNS - CLUNK"
1960 LET R$!RH)="SEH"
1970 LET D$(R«)='HUSE OPEN DOOR*

^>1980 RETURN
/ 1990 IF C!OB)=0 THEN GOTO 2030

2000 LET C(OB)=0
2010 LET H$="DONE*
2020 LET L!OB)=RH
'030 RETURN
2040 LET S=0
2050 FOR 1=1 TO G
2060 IF C!I)=1 THEN LET S=S+1
2070 NEXT I
2080 IF S=17 AND C!15)=0 AND RH<>31 THEN PRINT
RETURN TO PORCH FOR FINAL SCORE"
2090 IF S<>17 OR RH<>31 THEN GOTO 2120
2100 PRINT "DOUBLE SCORE"
2110 LET S=S*2
2120 PRINT "YOUR SCORE ">S
2130 IF SUB THEN GOTO 2160
2140 PRINT "NELL DONE - YOU HAVE FINISHED"
2150 STOP
2160 PRINT "PRESS NEH LINE TO CONTINUE"
2170 INPUT Q*
2180 LET H$="QK"

% ^ 1 9 0 RETURN
2 2 0 0 FOR 1=1 TO H

2210 LET F!I)=0 J
2220 LET C(I)=0
2230 NEXT I
2240 LET R$(31)="N"
2250 LET R$!27)="W"
2260 LET R$!16)="«E"
2270 LET D$!27)="STUDY, DESK AND HALL"
2280 LET D$(16)=*HALL NITH HUGE NOODEN DOOR

Lines 2300 to 2350 set the flags
for the invisible objects, so you
do not need to type in flag data
separately.

"YOU HAVE EVERYTHING

When you DIMension a string
array on the ZX81, you need to
tell the computer the length of
the longest item you are going
to store in it. The computer then
reserves 36 (or however many)
spaces of this length. This
wastes memory space if you
have one item which is much
longer than all the others.

Lines 2240 to 2380 reset the
variables which have been
changed during a game, so that
you can play a new game.

file:///j840

d a t a : Load the data in this order. (See page 40.)

«**

~»,

^

2
O
E-u u
CO
E-

E-
<
Q

2360
2370
2380
2390
2400
2410
2420
,2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760

G

LET H$='0K"
LET F!18)=l
LET F(17)=l
LET F(27)=l
LET F(2)=l
LET F(26)=l
LET F(23)=l
LET LL=60
LET RN=31
LET Ft="
FOR 1=1 TO
PRINT I
INPUT L(I)
NEXT I
RETURN
DIN R$(36,4)
DIM D$(36,30!
LET V=25
DIN V$(V,9)
LET N=36
DIN 0$(«,13)
Dill C(H)
DIN F(H)
LET 6=18
DIN L!6)
PRINT "DESCRIPTIONS
FOR 1=1 TO 36
PRINT I
INPUT D$(I)
NEXT I
STOP
PRINT "ROUTES"
FOR 1=1 TO 36
PRINT I
INPUT R$(I)
NEXT I
STOP
PRINT "OBJECTS"
FOR 1=1 TO H
PRINT I
INPUT 0$!I)
NEXT I
STOP
PRINT "VERBS"
FOR 1=1 TO V
PRINT I
INPUT V$(I)
NEXT I
STOP

13 SPACES

ENTRANCE TO KITCHEN, KITCHEN WITH GRIMY
COOKER, SCULLERY, DUSTY ROOM, REAR TURRET
ROOM, CLOSET WITH COAT, BACK HALLWAY, DARK
ALCOVE, SMALL ROOM WITH RUBBISH, SPIRAL
STAIRCASE, WIDE PASSAGE, SLIPPERY STEPS,
HALLWAY TO REAR, POOL OF LIGHT, VAULTED
HALL, HALL WITH HUGE WOODEN DOOR, TROPHY
ROOM, CELLAR ROOM, FRONT HALL, SITTING
ROOM, SECRET ROOM, STEEP MARBLE STAIRS,
DINING ROOM, VAULT WITH COFFIN, FRONT LOBBY,
LIBRARY OF EVIL BOOKS, STUDY WITH DESK. HOLE
IN WALL, COBWEBBY ROOM, VERY COLD CHAMBER,
SPOOKY ROOM, FRONT PORCH, TOP OF FRONT
TOWER, SLOPING CORRIDOR, UPPER GALLERY,
BOAT HOUSE. SOGGY PATH

SE,WE,W,SE,WE,W,
NS, SE, WE, NWUD, SE, SWUD,
NS, NSE, WE, WE, NSW, NS,
NSE,NSW,S,NSUD,N,N,
N,NE,W,NSE,WE,SW,
N,WE,WE,NW,E,NW

The commas show
where you should press
NEWLINE between data
items. DON'T TYPE THE
COMMAS.

PAINTING, RING, MAGIC SPELLS, GOBLET, SCROLL,
COINS, STATUE, CANDLESTICK, MATCHES,
VACUUM, BATTERIES, SHOVEL, AXE, ROPE, BOAT,
AEROSOL, CANDLE, KEY, NORTH, SOUTH, WEST,
EAST, UP, DOWN, DOOR, BATS, GHOSTS, DRAWER,
DESK, COAT, RUBBISH, COFFIN, BOOKS, XZANFAR,
WALL, SPELLS

VERBS

HELP, CARRYING?, GO, N, S, W, E, U, D,
GET, TAKE, OPEN, EXAMINE, READ, SAY,
DIG, SWING, CLIMB, LIGHT, UNLIGHT, SPRAY,
USE, UNLOCK, LEAVE, SCORE

STARTING LOCATIONS FOR OBJECTS

(You must type in this set of data each time you run
the program.)
30,24,21,32,5,8,
16,26,2,13,14,36,
18,11,35,3,27,6

Extra tips and hints
1. Use integer variables

On some computers you can put a % sign
after number variable names to show that
you only want to put integers or whole
numbers in them (numbers without
anything to the right of the decimal point
that is). So variable V becomes V% and so
on. You can do this on the BBC, TRS-80,
Dragon, TRS-Color and Oric. It is useful to
do this because it saves memory space and
increases the speed by as much as 50%.
The speed is particularly noticeable when
the computer is executing long loops.

2. Think about screen presentation

If you have enough spare memory, you
could improve the way the game looks on
the screen. You could add a graphics
routine for the opening title for instance and
make the text flash on and off at particular
points in the game, such as when the candle
flickers or the ghosts appear. The text need
not be printed at the edge of the screen, nor
need it all be the same colour. You could
make use of coloured borders and
backgrounds too.

3. Watch your spelling

If you are not quite sure how to "spell a word
you want to use in the game, check it in a
dictionary. Your computer doesn't know
how to spell and will store whatever you tell
it in its memory. This could be very
frustrating for the player who is using the
correct version and keeps getting error
messages because the computer doesn't
recognize the word.

4. Spread the action

Some adventure games are a bit boring to
play because everything happens in the
same place. Try to make sure there are

46 interesting things all through the game.

5. Use REM statements

When you are writing a program as long
and complicated as an adventure, it is a
very good idea to put REM statements in
front of each section. You are quite likely to
get confused as to which section is which if
you don't. When you have finished the
program, though, take the REMs out -they
take up memory space, slow the program
up and allow unscrupulous players to cheat.

6. Use helpful variable names

Try to name your variables so that it is easy
to remember what each one is e.g. OB for
objects, MK for mistakes, and so on. If you
have plenty of memory space and your
computer will allow you, it is a good idea to
use long variable names to help you
remember what each variable is, e.g.
instead of V use VERB. Make a list of your
variables and what they are anyway, so you
don't mix them up while you are writing the
program.

7. Keep it simple

Don't be too ambitious with your first
games. A simple, well-thought-out game
will be more fun to play than a confused,
complicated one. Not everyone wants to
play a game which goes on for days.

8. Keep it friendly

When you have written your game, look at
the comments to make sure they are not
ambiguous or misleading. Instead of "TOO
DARK", for instance, you could say "YOU
NEED A LIGHT TO GO HERE". Remember,
something that is obvious to you will not be
at all obvious to a player. Make some of
your comments funny too as this will help
the player feel the computer is really talking
to him.

Answers to puzzles
Detective game puzzle (page 13)
Here are some suggested solutions for the problems in the detective game. See how
they compare with the solutions you thought of.

1. You will only see the hair if you instruct computer to examine coat. You cannot take
hair unless you have a clean envelope to put it in.

2. You need a key to open the drawer, a magnifying glass to see the thread and asecond
clean envelope to put it in.

3. You need plaster and a container of water to make a plaster cast of the footprint.

4. You need talcum powder to show up prints and sticky tape to lift print off surface to
take away.

5. You need a portable blood analysis kit (described in game as a box containing bottles
and other scientific equipment).

6. You need a handkerchief to pick up the stick and a polythene bag to carry it in.

Adventure brain teasers (page 15)
Remember there are no "correct" answers to these puzzles. Here are some suggested
solutions.

1. Lift the carpet and find a trap door.

2. Use the handkerchief as a mask (assuming drowsiness is caused by a gas in the
room), look inside rucksack and find a flask. Open the flask and find black coffee.
Drink coffee.

3. Read scroll (which is a proclamation to free the slaves).

4. Throw the dessert (which happens to be custard pie) in the arch-villain's face. Grab
the remote control and escape.

Puzzle (page 28)
Here is how you can change the program to limit the number of objects that can be
carried at one time.

You need two new variables, here they are called CO (which stands for "carried
objects") and CL (which stands for "carrying limit"). Add these to the end of line 70 like
this:
70...:CO=0:CL=8

You then need to tell the computer to add one to CO in the GET routine when the
player picks up an object and subtract one from it in the LEAVE routine if he drops an
object. Do this by adding to the ends of lines, 1010 and 1490 like this:
1010...:CO=CO+1
1490...:CO=CO-1

Now add a new line to the GET routine to check if CO equals the limit before
proceeding with the rest of the routine.

(CL need not be 8, but it cannot be less or the player would not be able to carry all the
treasures to the finish.)

Going further
Once you have written an adventure, you could join the BBC Micro Adventure/Fantasy
Club. This is a postal club and it provides a library of adventure and fantasy games written
by members for the use of other members. To find out more, write to:
BBC Micro Adventure Club, 29 Blackthome Drive, Larkfield, Kent ME20 6NR, England.

Index
Adams, Scott, 4
Adventure, 4
adventure games, different

types, 4
array error, 32
arrays, 16,17,18,31,38
BASIC 3,4,16,18,23,38,39,40
BBC, 3,23,29,31,33,36,46
BBC Micro Adventure Club, 47
branch to subroutines, 19,24,

34
caps lock, use of, 38
carrying array, 17,18
changing the program, 28-32,

38
Colossal Cave, A
combinations of words, 22,23
commas, in data, 18,37,45
CPUs, 17
Crowther and Woods, 4
2D arrays, 17
2D games, 26
3D games, 9,26
data, 16,17,18

loops, 18
out of, 32
storing the, 16,17,18
forZX81game,45

database, 5
debugging, 32
descriptions, 19,20,25,28,33
descriptions of the locations

array, 16,17,20,31,39
detective story adventure, 7,11
DIM, 16,17,32,44
dimensioning, 16,17
disc-based adventures, 4
Dragon, 3,29,46
dummy subroutine, 23
error code, 32
error messages, setting up in

game, 19,23,24,25,34
feedback, 19,20,25,33
first adventure game, 4
flag arrays, 17,18,24,27,32,44
flag registers, 17
Fortran, 4
"gettable" objects, 17
Go subroutine, 26,27,34,41
GOSUB,19,23,29
GOTO, 19
graphics, 4,46
grid, drawing a, 8,9
HELP, 13,21
hiding places, 6
HOME, 33

I F . . . THEN, 38
initialization, 18,19,20,30,32,33
input, 19,21,33
input analysis, 19,22
instructions, player's, 21
integer variables, 46
interactive database, 5
INVENTORY, 13
invisible objects, 17,18
LEFTS, 40
LET, 38,40
listing, program, 33-37

Spectrum (Timex 2000)
version, 38
ZX81 (Timex 1000) version,
39-45

LOAD subroutine, 30,31
locations, 6,8,16,17,40,41

numbering of, 8,12
locations array, 16,17,20,39
loop, 18,20
machine code, 5
magic, use of, 6
map, of adventure world, 6-7
master plan, 8,11,12,14,15,16,

26
ZX81 version, 39

memory, amount used up by
game, 28

Microsoft-style BASIC, 3,33
MID$,40
mistakes, correcting, 32
no match, 22
number arrays, 17
numbering of locations, 8

objects, 10,12
object word array, 17,18
object words, 40
one-way routes, 8,9
one-word commands, 21,23,26
O N . . . GOSUB, 24,25,30,32,33,

41
on range error, 23
Oric,3,29,33,34,37,46
out of data, 32
override conditions, 19,24,32
penalties, 30
planning, 5-15
point of the game, 6
problems for player, 10
program

changing the, 28-32
structure, 19
writing the, 19-27

props, 10,12
QUIT, 31
READ... DATA, 18,39

REM statements, 46
RIGHTS, 40
RND.34,35
routes, 8,9,16,17,40

one-way, 8,9
routes array, 17,18,20,31
rules, 3
saving the game, 30,31
SCORE, 3

subroutine, 30,36,44
scoring, 10,30
screen presentation, 46
Sinclair (Timex) computers, 3,

18,21,33,38,40
single-letter commands, 26
sketch map, 6
sounds, 29
Spectrum, 3,29,33

version, 38
spelling, 46
Stanford University, 4
storing the data, 16,17,18
string arrays, 16
string data (for Spectrum), 38
string variables, 21,22
subroutines, 19,24,25,26,31,

34,42,43
dummy, 23

themes for games, 7
time limit, 28
Timex 1000,3,18,21,33,39-45
Timex2000,3,21,33,38
tools, 12
treasures, 8,10,11
TRS-80,46
TRS-Color,29,46
two-word sentences, 3,21
useful objects, 10,11,12,13
variable names, 46
variables, 16,20,26,30,33,38,

40,44
string, 21

verbs, 13,17,24,25,34,40,43
verbs array, 17,18
verb string, 16,22
VIC 20,29,33,34,35,37
walls, checking for, 27
weapons, 12
word list, 10,12,16
word not found in memory, 16
word-splitter routine, 21
word string, 16,22
writing the program, 19,20,21,

22,23,24,25,26,27
zero space, use of, 16
ZX81,3,18,21,33

version, 39-45

48

First published 1983 by Usborne Publishing Ltd, 20 Garrick Street, London WC2E 9BJ, England.
Copryight © 1983 Usbome Publishing
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the publisher. ^ .
The name Usborne and the device W are Trade Marks of Usbome Publishing Ltd.
Printed in Spain by CEDAGS.A., Barcelona. D.L.B. 29678-83

Usborne Computer Books
Usborne Computer Books are colourful, straightforward and easy-to-
understand guides to the world of home computing for beginners of all ages.

Usborne Guide to Computers A colourful introduct ion to the wor ld of
computers. "Without question the best general introduction to computing I have
everseen."Personal ComputerWor ld

Understanding the Micro A beginner's guide to microcomputers, how to use
them and howthey work. "This introduction to the subject seems toget
everything right. "Guard ian

Computer Programming A simple introduct ion to BASIC for absolute
beginners. " . . . lucid and entertaining.. . "Guardian

Computer and Video Games All about electronic games and howthey work,
w i th exper t ' s t ipson h o w t o w i n . "The idealbookto convertthearcadegames
freak to real computing. " C o m puting Today

Computer Spacegames, Computer Battlegames L i s t i n g s t o r u n o n t h e Z X 8 1 ,
Spectrum, BBC,TRS-80, Apple, VIC 20 and PET. "Highly recommendedto
anyone of any age. "Comput ing Today

Practical Things to do with a Microcomputer Lots of programs to run and a
robot to bui ld which wi l l work wi th most micros.

Computer Jargon An i l l us t ra tedgu ide toa l l the ja rgon.

Computer Graphics Superbly i l lustrated introduct ion to computer graphics
wi th programs and a graphics conversion chart for most micros.

Write Your Own Adventure Programs Step-by-step guide to wr i t ing adventure
games prog rams, w i th lots of expert's t ips.

Machine Code for Beginners A really simple introduct ion to machine codefor
the Z80 and 6502.

Better BASIC A beginner's guide to wr i t ing programs in BASIC.

Inside the Chip A simple and colourful account of how the chip works and what
it can do.

/ J 5 N Published in the USA bv
U a l ? EDC PUBLISHING, 8141E. 44th Street,
' & * " * ' T i rUa O H ! . h n m a 7 d U ^ ITS A PUBLISHING Tulsa, Oklahoma 74145, USA

Published in Canada by Hayes Publishing Published in Australia by Rigby
Ltd, 3312 Mainway, Burlington, Ontario, Publishing Ltd, Adelaide, Sydney,
Canada, L7M 1A7. Melbourne and Brisbane.

ISBN 0 86020 741 2

