TRSTimes

Volume 7. No. 1 - Jan/Feb 1994 - $4.00

-




LITTLE ORPHAN EIGHTY

Immediately after mailing out
the Nov/Dec 1ssue of TRSTimes, the
world around us went up in flames
and, thanks to CNN, Topanga
Canyon Boulevard became known
the world over. The fires were dev-
astating and many people lost their
homes and possessions, including
some of Hollywood's rich and fa-
mous.

Topanga Canyon Boulevard's
northern boundary is the Simi Free-
way (Hwy. 118) in Chatsworth. It
goes through Canoga Park and into
Woodland Hills. Here, it crosses the
Ventura Freeway (Hwy. 101), and
immediately the flatlands ends, and
the boulevard then twists and turns its way south
through the Santa Monica mountains until it finally
ends at the Pacific Ocean in Malibu.

TRSTimes is located on Topanga Canyon Blvd.,
1 block north of the Ventura Freeway. The original

fire was started by person(s) unknown approxi- |

mately 4 miles to the south of us.

We were lucky, indeed. While several of my
friends and acquaintances had to leave their homes
behind and flee to safety, we merely spent a few days
nervously watching the direction of the fire. Thank
goodness, it kept going away from us and, other than
having to breathe a little smoke, we suffered no
harm.

We were worried about our friend, Jim King,
who lives in Fernwood up in Topanga Canyon. It
was good to see him safe at the computer meeting
the Friday after the fire was no longer a threat. Jim
eraces these pages with his account of what it was
like to be right in the middle of danger.

Allen Jacobs explains how the TRS-80 and the
hard drive communicate, along with a listing of the
port addresses and the function of each.

For those of you who enjoy playing games on
your TRS-80, Danny Myers walks through two of the
famous Infocom adventures, Starcross and Deadline.
I was never that enthused about Starcross, but being
a Sherlock Holmes buff, I naturally spent many
hours on Deadline. Suffice it to say, Baker Street
was much better off without me! But now, with
Danny’s help, I can go through the program to see
where my deductive abilities failed me - and you can
as well. I know that Danny has logged many hours
with the Infocom games, but I still marvel at the
skill with which he solves a puzzle. Oh, well!

TRSTimes has covered Basic and Assembly Lan-
guage, but we have given very little space to the C
language. Why? Mainly because ‘Ye faithful Editor’
is not well versed in that dialect of computer speak.
Not to worry though, Frank Slinkman is an accom-
plished C programmer (actually he is an accom-
plished programmer - period), and he brings us an
article and program that will expand Pro-MC'’s (from

| Misosys) abilities.

This issue presents two installments of
‘Programming Tidbits’ from Chris Fara of Microdex.
The first is a reprint of the article from the Nov/Dec
1993 issue where I, for various inexcusable reasons,
managed to make it unreadable. My sincere and
humble apologies. The second installment is for the
Model 4 and is full of good stuff. Programmers and
non-programmers alike will enjoy being able to auto-
mate screen layout. Also included is a good explana-
tion of of LS-DOS 6.3’s use of the USR11 function.

Roy Beck takes us through the various printers
he has used with his TRS-80's and, in the process,
talks about a famous local hardware whiz.

Our machines do not have ‘sound-blasters’,
midi’s, and ‘what-have-you’, but they are never-the-
less capable of producing sound. However, in order
to hear the sound you must have a speaker hooked
up - and Kelly Bates tells us how he has done it.

I am fascinated with the Model I emulator. This
issue I am presenting a patch to both the MAK-
FIL/CMD and MAKFILE4/CMD programs from our
last issue so they will be able to correctly create an
emulator ‘virtual disk’ file from double density New-
dos/80 disks.

The articles in this issue took up so much space
that I did not have room to write about the programs
that will convert an emulator ‘virtual disk’ file back
in to a real Model I disk. Well, I will get to that in
March. -

I would like to begin 1994 by thanking the
TRSTimes contributors for their fine articles and
programs. It is wonderful to have that many dedi-
cated people still caring for our machines. Unlike the
Apple II, Commodore 64 and Atari, the TRS-80 is
still being supported in grand style. And it is because
of you, the contributors. Thank you.

Also Thank You to the readers. Without you
there would be no need for new material.

Welcome to TRSTimes 7.1




TRSTimes magazine
Volume 7. No. 1 - Jan/Feb 1994

LITTLE ORPHAN EIGHTY ..cooeeuecieernreeeecsessossessoccoseses 2
Editorial

Reader mail

GETTING CONTROL OF HARD DISK 1/0......cceeeeee. 5
Allen Jacobs

BEAT THE GAME..........ccouueeeeeeeeeeeeereeesesenenes cecrsssssssseses 9
Daniel Myers

ROUND() FUNCTION FOR PRO-MC..........ccceeeeeeeee.. 13
J.F.R. “Frank” Slinkman

PROGRAMMING TIDBITS.....ccoceeeerrierrenrennsnnees eevnses .19
Chris Fara

MORE PROGRAMMING TIDBITS......cccceorvvueeceerennneee 23
Chris Fara

THE TOPANGA FIRE OF 1993 ........ccccovvvvnreivrcsrnnenns 27
Jim King

SMART PRINTERS......... ceeeeeeersranesnnnannnansasens ceereeeenes e 29
Roy T. Beck

HINTS & TIPS .....eereeeeeernrenneeeeeserssrsssnseescssssosesssssesenss 31
Bates, Wolstrup

ITEMS OF INTEREST .......ieiiirininsncnsnenseenssensanes 32




ALLWRITE, DOTWRITER FONTS
AND THE EMULATOR

I am usually not excited about running software,
but the TRS-80 emulator, running on a clone, is
exciting. It means that I do not have to use a new
word processor — and now most of my TRS-80
software will run on my PC.

I am using a wordprocessor written by Chuck
and Glenn Tessler in the 80’s for use on a TRS-80
(AllWrite), and I can now use it on both my antique
TRS-80 Model 111 and my clone, so I do not have to
adjust my thinking when I change machines. An
accompanying program called DotWriter, written by
William Mason, will let you format all your text in
fancy fonts. The distributors of DotWriter (Prosoft)
went out of business with about 290 fonts, but I have
personally generated another 140 or so that are
designated Shareware and are free for the price of
distribution from Mickey Mepham in Virginia (see
ad on page 21. Ed.) Font generation is an on-going
project of mine, so there will probably be more
releases in the future.

Since AllWrite runs so neat in the clone, the font
generation software ought to also. 1 have not
checked it out yet, but if so, [ may generate the new
fonts on my clone for TRS-80 emulator use.

Using AllWrite in the emulator I have to turn on
my printer after entering the emulator environment
since I operate it in the Star mode and not the IBM
mode. Other than that T maintain a DATA floppy on
one of the virtual drives to save my editing. The
floppy is 80 tracks, but if the directory entry shows
less, then I have to be sure the directory shows
enough free space or AllWrite will not write to it.
Maybe the author (Jeff Vavasour) can change
something, although I know he wants to maintain
Model I standards. Being pretty good I can work
around it, but other users may not do as I do.

So, how did I move all these files from the TRS
to the clone? My method — in IIT mode on the TRS-
80 (Model 4), copy the files to a single density disk.
Boot, in the Model 4 native mode and copy the files
from the single density disk to the Model 4 disk.
RESET the files. Run Hypercross and copy the files

Page 4

to a 360K PC formatted disk in drive one.. Then you
are ready to beot the clone, follow the emulator
instructions for making a virtual disk and install the
TRS programs on your clone. And Yes, it was not all
clear, and I did request some help, but I persisted.

I have never enjoyed using software as I now do
in the emulator and, wonder of wonders, it works as
advertised! There is one quirk that I am working
around. The keyboard can be in Model I mode or PC
mode. I want to use the arrow keys and am unable
to do so, as my DOS book does not tell me what the
scan codes are (perhaps I need help understanding
DOS books). I further believe we should use the keys
on the PC even when they a located in a different
place. Not complaining, just critiquing. The arrows
keys are used a lot when making fonts.

Kelly Bates

Oklahoma City, OK

CRYPTO/BAS

I am learning more and more about my Model 4,
and I have type in almost all the programs that are
in TRSTimes publications Jan-Dec. Most programs,
which I type and hard-copy, run without a hitch.
However, I am having trouble with the program
“CRYPTO/BAS”. I have typed it and hard copied it as
printed in 6.4, page 11. I have compared the hard
copy with the listing in the magazine. They are
identical. The program will ENCODE, but will not
DECODE. When I attempt to run the program, I get
an error message “FOR WITHOUT NEXT IN LINE
330”. Please help.

Also, the printout of Vigenere's code (grid) has
an error in it. Column Z as taken from the magazine,
readsZzabecsef, etc. It shouldread: Zzabcde
f, ete.

In closing I want to tell you how much I enjoy
your magazine and I feel that I am learning an awful
lot from it.

Hooked on the TRS-80

Anthony E. Luczak

Armada, M1

I plead guilty to the grid error. It should read, as
you pointout, Zzabc def, etc. The program listing,
however, is correct as printed. Just to be sure, I typed
in the code from the magazine, and it works
correctly. The error message indicates that you have
a loop error. Check lines 330 and 340. Do you have
FOR Z=and NEXT Z2 Check lines 350 and 420. Do
you have FOR Z=and NEXT Z? Check lines 360 and
380. Do you have FOR X=and NEXT X? Check lines
390 and 410. Do you have FOR Y= and NEXT Y? [
will bet that you have omitted one or more of these
commands.

Ed.

TRSTimes magazine 7.1 - Jan/Feb 1994



GETTING CONTROL
OF HARD DISK I/O

as explained to Allen Jacobs

Vernon Hester once challenged TRS-80 owners to
write a hard disk driver for Multidos. At that time,
I realized that while I have a "foggy" idea about
assembly language, I had no idea about how to write
a driver since I really didn't know what a hard disk
driver does. As it turned out, nobody accepted his
challenge. So, he wrote a hard disk driver himself.

A while ago, when Roy Beck was investigating the
inner workings of the Radio Shack hard drives and
their controller boards, I was trying to acquire a
basic concept of what he was doing. Namely, I
couldn't quite discern exactly how hard drives
operate. Anyone who has read the many articles Roy
has written on the subject knows that he is very
generous with his knowledge. Fortunately, I am
privileged to be a member in some of the same
computer clubs he attends.

While he would discuss the various aspects of hard
drives as he does in his articles, I always thought
that I was missing some essential information that
would unify all the various elements of hard drive
operation into a single concept. It's what I call
getting a clear "vision" of the system.

For me, the missing element was how the computer
actually communicates with the hard drive. I
reasoned that if I could know what messages were
being passed between the computer and the drive, I
could clarify the picture of the system I had in my
mind. Those messages are carried through ports
between the computer and the hard disk itself via

TRSTimes magazine 7.1 - Jan/Feb 1994

the hard disk controller and host adapter.

One evening I called Roy and asked him if he knew
what was going through each of the ports. He said
that he did. However, when I asked him if there was
a single published listing available of all the related
ports and what they do, his answer was: "Not that I
know of. Not in one place."

Roy then took over an hour while I was on the phone
and sifted through his notes. The result of that
search is the listing you will see later in this article.
Over the next couple of months, I sorted and
formatted the information, constantly checking with
Roy for its accuracy and completeness in order to
make the listing as you finally see it.

I believe that I learned a great deal in compiling it.
I think that if you look at it closely, you will develop
a clearer idea of just how a hard drive functions.
Then, you can almost picture in your own mind how
a hard disk driver might work.

THE ELEMENTS

To review, the system hardware consists of the
computer, the host adapter, the hard disk controller,
and the hard disk. The software consists of the DOS
and the hard disk driver.

The computer communicates with peripheral
storage devices through its ports (the Model 1 floppy
drive being an exception). The Z-80 has 256 ports,
numbered 0-255. Ports are not actual physical
electronic passageways. Rather, think of the ports as
another block of 256 one byte "memory addresses"
separate from the addressable memory in the
computer's "core". The Z-80 has these addresses
located elsewhere on the computer's bus.
Theoretically, all of the ports can be tied to one
single "plug" attached to the bus.

How are the ports distinguishable from each other?
That is done by their unique addresses. Part of each
IN instruction the Z-80 executes contains a second
byte, the port address. That byte tells the Z-80 that
the next data byte it detects on the bus is coming
from the external device with that specifically
assigned port address.

Page 5



How are the ports assigned? Each external device
connected to the bus has an electronic circuit, that is
activated by only one specific bit pattern
corresponding to its assigned address. When it
detects a match, it turns on and outputs its current
byte. Otherwise, it continues to store its current
byte, if it has one.

What if more than one device responds? You would
then have a port conflict and resulting chaos. This is
the only way the TRS-80 has to distinguish from
which port a byte of information is coming.
Otherwise, all data bytes on the bus would appear to
be coming from any and all ports at the same time.
Actually, there is another way the Z-80 has of
dealing with ports that the TRS-80 doesn't use
called an interrupt, however, we won't discuss that
here.

The same process holds for any information to be
passed OUT of the machine on the bus. Basically,
the Z-80 announces that the next data byte to
appear on the bus is intended only for the device on
the bus that is activated by the port address
contained in the current instruction. All the other
devices with other port addresses should thus ignore
it.

In hex, the ports are numbered from 00-FF, which
correspond to decimal 0-255. Radio Shack was kind
enough to assign ports 0-127 to users and after
market manufacturers, promising that they would
never assign a port number below number 128 to
any Radio Shack device, to prevent conflicts as
much as possible. This explains the port
assignments we will encounter later on.

Why can't this information go directly to the hard
drive? Because not all hard drives are constructed in
the same way. They have different capacities,
numbers of platters, numbers of heads, numbers of
cylinders, numbers of sectors, numbers of bytes per
sector, and some other characteristics, that the
TRS-80 running on a given DOS simply can't
automatically know about. Don't forget, these drives
were built to run on any given computer made at
that time.

Therefore, something has to be placed in between
these two devices that can translate between hard
disk I/0 and the TRS-80 bus. That something is
called the hard disk controller. Yes, there are also a
number of those out there. Thus, we have to settle
on one type if we are to make any headway in
understanding the overall process. Since it is the
most common and most elegant for its time. Radio
Shack settled on the Western Digital controller. So,
did Roy. If you own a Radio Shack Hard Drive as I

Page 6

do, so did you.

That's not the end of it, however. The Western
Digital 1000 Series Disk Controllers were likewise
designed to connect to any computer on the market.
Therefore, an accommodation specific to the TRS-80
bus has to be included to insure that the bus
connections between the computer, the controller,
and the hard disk all go where they are supposed to
and are interpreted correctly at every point. That
accommodation is called the host adapter. Roy Beck
has investigated and written about this device, to no
small extent.

Now, with all that equipment constructed, installed,
and operating, how does the DOS tell the hard disk
what to store and how to store it? Also, how do you
tell the DOS whether it was stored correctly
through all this equipment and that a given
requested byte, previously stored on the disk is
ready for retrieval? That is the job of a piece of
software called the Hard Disk Driver.

While I don't propose to write such a driver
program, it is interesting to understand the
information it is dealing with. If you want a hard
disk driver, Roy Soltoff has written "RS Hard". RS
Hard, and thus, Roy Soltoff know all about the
information in this article.

Since the Radio Shack Host Adapter is actually built
into the Western Digital Controller Boards used in
Radio Shack Hard Drives, a number of port
assignments and other lines have been changed to
accommodate the Radio Shack convention of not
assigning ports below number 128 (80 Hex). Others
have been added. Both Roys know which they are. 1
don't.

THE SYSTEM

The listing is organized into a simple hierarchy. The
PORT NAMES section lists a descriptive name for
each of the ports used by the Radio Shack Hard
Drive. Not all of the ports are named. Not all of the
names are official. Hopefully, all of them are
descriptive. The port addresses are listed in hex.
The hex port addresses CO-CF correspond to ports
number 192-207. Personally, I think they make
more sense in hex.

The PORT DETAILS describe every last known byte
that passes through the port and what it means. The
Read-Write convention is what information the
TRS-80 Reads from the hard disk system, and what
it Writes to the hard disk system.

TRSTimes magazine 7.1 - Jan/Feb 1994



Some details not apparent in the listing are the
meaning of Write Precompensation, Write Current
Reduction, and Ramped Seek. The distance between
the magnetic bits on the inner tracks of any disk are
spaced closer together than they are on the outer
tracks. This means that a strong write current could
begin to effect the value of adjacent bits on the inner
tracks. Reduction of the current in the head during
a write reduces this problem.

Another form of write precompensation was also
made by advancing or delaying the writing of
adjacent bits that may interfere with each other.
The time alteration is by fractions of a single timed
pulse within the controller. The time alterations are
created by taking advanced or retarded taps of the
data to be written from a delay line located in the
hard drive circuitry. The fractional separation of
pulses in this manner makes the data easier to read.

On earlier drives, reduction of the write current on
the inner tracks and write precompensation were
not done automatically. The controller had to tell
the drive to reduce the write current and initiate
write precompensation, above a given track number.

Ramped Seek was available on later drives to allow
faster access when the head travels between
cylinders. In Ramped Seek mode, the number of
cylinders to move in or out could be given at a
higher rate of speed than the stepping rate of the
drive and it would just store the number. Earlier
drives would lose the track count. Thus, Ramp Seek
can only be used if your drive can handle it.
Otherwise the number of cylinders the head should
move should be written to the drive as they are
executed.

Beyond these terms, most of the items in the listing
should be self descriptive (famous last words). If you
look at what information is passing through the
ports you can see how the whole process works.

The Radio Shack Hard Disk
is accessed through ports
COH - CFH. These assigned
ports are found at the host
adapter on the outside of
the drive. They do not
correspond to the ports of
the  Western Digital
1001/1010 type hard disk
controller, because the host
adapter is interposed
between the external
connector and the
controller itself.

. —":]
E k.‘
N L\L: ,l:" o)

TRSTimes magazine 7.1 - Jan/Feb 1994

THE RADIO SHACK
HARD DISK CONTROLLER

PORT ASSIGNMENTS
(from Roy Beck's distillation
of his own notes and information)

PORT NAMES
R=READ W = WRITE
R W PORT# NAME/FUNCTION
R Cco Write protect register
RW C1 Control register
R C2 Device present register
C3 Ignore - used on Western
Digital board - but not RS
hosts
C4 Ignore - same as above
Cb Ignore - same as above
Cé6 Ignore - same as above
C7 Ignore - same as above
RW C8 Data register
R C9 Error register
W C9 Write precompensation
RW CA Sector count
RW CB Sector number
RW CC Cylinder number (LSB)
RW CD Cylinder number (MSB)
RW CE Sector size/drive#/head#
R CF Status register
W CF Command register
PORT DETAILS
R Co WRITE PROTECT REGISTER
bit 7  write protect switch
of master drive 0
bit 6 Write protect switch
of slave drive 1
bit 5 Write protect switch
of slave drive 2
bit 4 Write protect switch
of slave drive 3
bit 3 No connection (floats to zero?)
bit 2 No connection (floats to zero?)
bit 1  Hard disk write protect logic
bit 0 Interrupt request

in the above register:

0 = write protect is not on., 1 =write protect is on

RW

C1
bit 7
bit 6

CONTROL REGISTER

Page 7



RW

R W

RW

RW

RW

Page 8

bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

C2
bit 0
C3

C4
C5
Cé
C7

C8

C9

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

C9

CA

CB

CC

CD

Soft reset

Device enable

Wait enable (wait state enable)
Set during a write

Set during a read?

DEVICE PRESENT REGISTER
always bit pattern 0000 0001
is tied to +5 volts (logical 1) always

IGNORE

(used on Western Digital board,
but not with RS host)

IGNORE (same as above)
IGNORE (same as above)
IGNORE (same as above)
IGNORE (same as above)

DATA REGISTER
passes the actual data during
reads & writes

N

ERROR REGISTER

bad block detect

CRC error data field

CRC error ID field

ID not found

no meaning

aborted command

track 000 error

DAM not found

lower bit set = more sertous error

WRITE PRECOMPENSATION
REGISTER

contains the cylinder number with
which to begin precompensation,
divided by 4 (cyH/4)

SECTOR COUNT

the number of sectors/cylinders to
place during format. This value
must be re-written as it is
decremented during formatting.

SECTOR NUMBER

the sector number to read or write to
(or the one that has just been read or
written to).

CYLINDER NUMBER
the low byte (Isb)

CYLINDER NUMBER
the high byte (msb) (1024 max)

RW CE SECTOR SIZE/DRIVE#HEAD#
bit 7 0 (always)
bit 6 sector size (0-4)
(128, 256, 512 or 1024 bytes)
bit 5 sector size
bit4 drive select (0-3)
(4 drives may be controlled)
bit 3 drive select
bit 2 head number (0-7)
(a drive may have up to 8 heads)
bit1 head number
bit 0 head number
R CF STATUS REGISTER
bit 7  busy (f set, no other bits are valid)
bit6 ready
bit 5 write fault _
bit 4 seek complete
bit 3 data request
bit2 NC (ignore)
bit1 NC (ignore)
bit 0  error (if set, error register
C9 is valid)
W CF COMMAND REGISTER
BITS
COMMANDS 76543 2 1 0 HEX
1 track O restore 0001r3r2r1 r010
2 seek track 0111r3r2rl1 r070
3 read sector 001000 0 0 20
4 write sector 001100 0 O 30
5 format track 010100 O 0 50

restore = to return to track 0 (the reference track)

RO - R3 -> STEPPING RATE

r3r2rlr0
00000 =10 uSEC RAMPED SEEK)
10001 =05mSEC
20010 =10mSEC
30011=15mSEC
40100=20mSEC
50101=25mSEC
60110=380mSEC
70111=385mSEC
81000 =40mSEC
91001 =45mSEC
101010 = 50mSEC
111011 =55mSEC
121100 =60mSEC
131101 =65mSEC
141110 = 70mSEC
151111=175mSEC

D =DMA OR PROGRAMMED 1/0 MODE
D=0 -> programmed 1/0 mode (only mode we use)
if D=1 -> DMA mode

TRSTimes magazine 7.1 - Jan/Feb 1994



BEAT THE GAME

by Daniel Myers

STARCROSS

Ah, outer space! No
dank and dusty
dungeons here....but
you can be sure that
the puzzles are no
easier than they
were in the Great
Underground
Empire! So, settle in
and get ready for
lift-off.

There you are,
floating around space in your ship, alarm bells
ringing in your ears. Obviously, something's-about
to happen. Get the tape library, then get up and go
Starboard into the Bridge. Push the red button,
which will shut off the alarm bell, and read the
screen. This will tell you which object on your map
is the one to head for.

Now, there's no way I can tell you the exact
coordinates, as the destination changes from game
to game. However, it isn't hard to figure out what
they are. Once you've done that, sit down in the
control couch and fasten the belt. Now you have to
enter the course into the computer, which is done as
follows: Computer, range is x, theta is y, phi is z.
The computer will ask you to confirm the new
course, which you do by saying: Computer, confirm
new program. After that, you're off!

And now it's time for the hallmark of all Infocom
games: Waiting! You'll sit in the couch, and wait
until you arrive at the alien ship and you are
captured by it <however, you can enjoy the verbose
descriptions while you wait>. Once your ship is
down on the dock, unfasten the belt, get up, and go
Starboard into the storage room. Get the suit, put it
on, then get the line. Head Portwards back to the
bridge.

Fun times with airlocks begin now. Open the inner
door, go out, close the inner door, open the outer
door, and go out. Get used to doing that, because
you'll be doing it again, and again! So, now you're
on the Red Dock, and there's a strange-looking
sculpture here. Closer examination, and a little
thought, shows that it's a representation of the solar
system.

TRSTimes magazine 7.1 - Jan/Feb 1994

Aha! Could it be...? You press the fourth bump, and
strange things happen. Press the small bump, and a
black rod appears...get the rod, and the outer airlock
door opens!

Okay, go inside <close outer, open inner, etc.>, and
you are in a Red Hall. At this point, you might want
to save the game, and just wander around, doing
some mapping. Actually, I recommend that you do
so, since there will be a point in the game where I
won't be able to give you specific directional
instructions.

Now that you've checked out the territory a bit,
restore to your original entry point. You're ready for
the great rod hunt....because the object of the game
is to activtate and control the artifact, which is done
via different colored rods. Right now, you want the
red one, so, go North, then West into the Room on
Ring Two. From there, North into the Zoo, and East
into the rat-ant cage.

The red rod is part of the nest, and you just can't
reach over and get it. This is one of the very few
times in an Infocom where violence is necessary:
Throw the tape library at the nest, which will be
smashed. While the rat- ants look at you in terror,
grab the red rod and the tape library.

Now it's time for the yellow rod, so head along West,
South, West, which will bring you to the Blue Hall.
Go South once and you're at the Blue Airlock. Open
the door, go down, close inner door, etc. When you
reach the Blue Dock, go Aft until you come to the
Spider-like alien. It's quite intelligent and even
friendly. Give it the tape library, and in return you
will get the yellow rod. Take that, and make your
way back to the Blue Hall.

You have two rods, and you will be using them now.
From the Blue Hall, go up, and you're in the
Grasslands. Go South to the Thin Forest, open the
hatch there, and go down into the Repair Room. Put
the yellow rod in the yellow slot. That turns on the
lights in the Yellow Hallway. Put the red rod in the
SECOND red slot. Make sure it's the second; this
will provide a breathable atmosphere for you.

Now, get the metal square, and go up, then North,
then down again to the Blue Hall. From there, West
to the Yellow Hall and Yellow Airlock. You know
the drill by now, but there's an extra feature this
time: You will have to try to open the outer door

Page 9



twice <it's balky>. Also, while you're in the Yellow
Airlock, pick up the basket; it will come in very
handy!

Once on the Yellow Dock, tie the line to the suit and
then to the hook. Head Portwards, get the pink rod,
put it in the basket, then go back Starboard to the
dock, untie yourself, and return to the Yellow Hall.

Now, it's time for the blue rod. Go South twice, then
East once. You are in a laboratory with a mysterious
silver globe floating in mid-air. Inside the globe,
although you can't see it now, is a blue rod. It's easy
to get, however. Take the two disks off the wall.
Put one on the floor, and one under the globe. It
doesn't matter which way you do it, the result will
be the same. Put the basket on the globe, then turn
the dial to 4. Ta-da! The basket suddenly appears
on the disk on the floor, with the blue rod! Turn the
dial to 1, then get both disks, the basket, and the
blue rod. Put the rod in the basket. In fact, put all
rods in the basket when you get them.

Okay, there's still plenty of rods to collect, so let's
keep moving! Head West, then North four times to
the end of the hallway, then West to the Room on
Ring One, and South from there into the Computer
Room. Open the panel on the computer, then insert
the metal square into the slot. Turn on the
computer, and you will get a gold rod. Don't worry
about all the displays; they aren't important to you.

Now comes more waiting. What you're waiting for
this time is the mechanical "mouse" that collects
trash. So, move around until it makes an
appearance. As soon as it does, drop one of the disks
<either one>. The mouse will pick it up. After that,
you must follow the mouse around until it
disappears into a secret door in one of the rooms.
There are several different rooms where the mouse
can do this, so you *must* follow it.

Wait there until it reappears and leaves, wait a little
longer to make sure it won't come back, then drop
the other disk on the floor and step on it. Zap!!
You're in the Garage! <Hurray for transporter
disks!>. Pick up the disk, then empty the trash bin
<yuck!> until you find the green rod. Go North and
you will be in the Room on Ring Four.

You are now in the Room on Ring Four. Now, this
is why you had to do some mapping on your own:
You must get the other disk you dropped, and
there's no telling exactly in which room that was.
So, you must explore on your own until you find the
disk. Once you've done that, make your way to the
Blue Hall where the airlock is. From there, go
North twice, then West into the Observatory. Drop

Page 10

off one of the disks, then hike along East, South,
East, East, South, East into the Weasel Village, and
then East once more to the Village Center. Wait
around a short while, and the Weasel chief will
appear.

He will indicate that he wants your space suit.
That's no problem, since the air will remain
breathable, and you don't need the suit anymore.
So, give it to him. Then, when he wants to give you
something in return, point to the brown rod he
wears around his neck. He will give it to you, and
start to leave. Follow him! <Think of all this
following around as good practice for "Deadline.">

Continue to follow him, until you arrive at the
Center of the Warren. Then climb down the ladder
to the Green Airlock <yep, another one!>, and do the
usual job with the doors. From the dock, go West to
the Umbilical, then West again to the Cargo Hold.
Pick up the visor fragment, then go Forward into
the Control Room of the wrecked ship. Move the
skeleton, and you will find a violet rod. Now, drop
the disk on the floor, and step on it. If you attempt
to leave the way you came, the Weasels will kill you
for disturbing their shrine.

So, now you've materialized in the Observatory, and
it's time to pick up another rod: Look at projector
through visor. Aha! A clear rod. Sneaky, huh? Get
the rod, drop the visor, then move along East, then
South three times to the Melted Spot, then West
into the Weapons Deck. Get the genuine Ray-gun,
and look inside it.

Sonuvagun! A silver rod! Get that, then East and
North, and up to the Grasslands, 'cause it's time to
get this show on the road. Now, trek on South twice
to the Dense Forest, then East to the base of the
tree. Climb the tree, all the way up to the top, then
jump to the Drive Bubble.

Insert the silver rod into the slot, then enter the
bubble. There's a white rod here; get that and put it
into the white slot. Under no circumstances should
you insert the black rod into the black slot!! That
will shut everything down! Okay, the drive
mechanism has been activated; now you have to
make the thing move. So, out, and up to the top of
the Bubble, and....jump! Isn't floating in air fun?
However, you still have some things to do yet, so
shoot the gun at the Drive Bubble three times,
which will bring you to the Control Bubble. Go
Down, then put the gold rod in the slot, and enter
the Bubble. Inside, you will find the slots for the
remaining rods. Put each rod in the slot of its own
color.

TRSTimes magazine 7.1 - Jan/Feb 1994



Now, at last, you're ready to bring the artifact to life!
Touch the large pink square, and the scene in the
small one will change to show the inner solar
system. Now touch the brown spot until a picture of
Earth appears.

Press the violet one until a ellipse shows <it *must*
be an ellipse!>, then press the green spot, and
flashing lights appear. And last, but certainly not
least, the final move: Touch the blue spot, which
activates everything, and brings the alien ship
safely to Earth!

Of course, it isn't over yet! That final remark by the
alien sounded a little ominous....I have a feeling
you'll be heading out again into space sooner than
you might think!

DEADLINE

Here is the solution for solving Infocom's mystery
game, Deadline.

From the front path of the Robner's estate, go [N] to
the front door of the house. Type "OPEN DOOR"
and go [N] into the Robners' house. From inside the
door, go [N,E] and type "CLIMB STAIRS" twice (or
you can just go [U,U]) to get to the second level of
the estate. From there, go [W,W,W,W,N] to the
library where you will start the first of a series of
Sherlock Holmes-type activities.

In Deadline, you need to establish the motive and
method for the murder beyond all reasonable doubt
before you can arrest the guilty party. If you don't
have an air-tight case, the jury will acquit the
defendant. It is here in the library where we go
about establishing the method by which poor Mr.
Robner was done in.

First off, type "EXAMINE RUG" (or just "LOOK
RUG"). You will find some mud spots which is your
first clue. Now, "GET THE CUP, PAD, CALENDAR

TRSTimes magazine 7.1 - Jan/Feb 1994

AND PENCIL" and "RUB PENCIL ON PAD" and
then "TURN PAGE OF CALENDAR." Aha! Perhaps
a clue as to the motive? Let's see if we can
substantiate the method a little more...that mud on
the rug was very interesting. Type "OPEN
BALCONY DOOR" and go [N] onto the balcony.
Check out the railing by typing "EXAMINE
RAILING" and you will see some scratches, lending
credence to the theory that perhaps the murderer
climbed up the balcony from the ground below
where he (or she) got mud on his shoes. Let's have
a look below and check for some indication that the
murderer was indeed below the balcony.

To leave the balcony, go [S,S,E,E,E,E,D,D,W,S].
Type "OPEN DOOR" and go [S] back to the front
door. Now go [E,E,SE] to the shed where you will
see a ladder. Type "EXAMINE LADDER."

Hmmm! This ladder- and-balcony theory is looking
good! Let's see if we can prove the ladder was below
the balcony. This will have to wait a while, though,
because it's getting late in the morning and we have
to do some more checking in the house before the
reading of the will takes place. And besides that, we
need to talk to Mr. McNabb and he doesn't seem to
be in the mood right now.

Go back to the house by heading [N,S,N] and head
back upstairs with [N,N,E,U,U]. Let's see what else
we can find upstairs. Go [S,S] into Dunbar's
bathroom. Type "OPEN CABINET" and "EXAMINE
LOBLO." Aha, again!

Now we go back downstairs and see if we can find
Mr. McNabb to see if he knows anything about a
ladder under the balcony. Go [N,N,D,D,W,S,S].
Let's take a break for a while. Type "WAIT UNTIL
11:30."

And now for Mr. McNabb. Let's try the garden path
first with [E,NE,E,W]. If McNabb is not around,
just wait for a while or snoop around the area and
he will soon show up. Deadline is very
unpredictable when it comes to the various
characters moving around the scenario. Once you
spot McNabb, go to him and say "HEY MCNABB"
followed by "WHAT IS WRONG." He will tell you
about some holes he found in his garden so,
naturally, you say "SHOW ME THE HOLES." He
will take off and you "FOLLOW HIM." When he
stops, type "EXAMINE HOLES." Eureka! The
ladder was here and the depth of the holes proves
somebody climbed it up to the balcony!

To make sure we cover every angle, type
"EXAMINE GROUND" and "DIG AROUND
HOLES." Hmmm...wonder what this could be
about? To find out, type "ANALYZE FRAGMENT
FOR LOBLO." Oops, it's later than we thought!

Page 11



Back to the house for the reading of the will. Go
[N,SW,SE,E] to the house and [N,N,W] into the
living room. Now just "WAIT" for the will to be read.

After the will is read, you decide to see if you can
roust some of those present into giving you some
clues as to the guilty party and, perhaps, the motive
for the crime. Let's start with George. Type "SHOW
GEORGE THE CALENDAR." He will get very
nervous and start heading out of the room.

Type "FOLLOW HIM" until he finally goes to his
room. He will keep telling you to leave him alone,
but just keep following him until he enters his room.
At this point, you decide to see if George knows more
then he's telling. You aren't going to get anything
from him here, so let's go to the balcony and wait to
see if he does anything. Go [W,N,N] to the balcony
and type "WAIT 10 MINUTES." Voila! Here he
comes! Wait until he goes behind the bookshelf and
then type "WAIT 4 MINUTES" to give him time to
really get his hands into the cookie jar.

When your 4 minutes are up, go [S], "EXAMINE
BOOKSHELF," "PRESS BUTTON," and go [E]. Ha!
Caught him red-handed!" Type "GET WILL,"
"LOOK SAFE,” "GET PAPERS,"” and "READ
PAPERS." Things are beginning to look up! Let's see
if we can substantiate some of this stuff. Go back to
the living room with [W,S,E,EE,.E,D,D,W,W]. My,
isn't this cozy! Type "HEY BAXTER," "WHAT
ABOUT FOCUS." You know he's lying so you
"SHOW PAPERS TO BAXTER." Ah, that's better!
Now for some clever psycho-detective work. Type
"SHOW LAB REPORT TO DUNBAR" and "SHOW
LAB REPORT TO BAXTER." Whip around and
"ACCUSE DUNBAR." Hmmm...a tad nervous, 1sn't
she? Perhaps we should go off and wait to see what
develops. Go [E] to leave the room and "WAIT FOR
DUNBAR." Just as we suspected! When she passes
you, type "FOLLOW HER." Once outside the house,
she will drop a ticket. Type "GET TICKET" and
"READ TICKET." WOW! This is getting good!
Type "SHOW TICKET TO DUNBAR." You know
you've got her on the run now so head off to the shed
to wait and see what develops. Go [E,E,SE] and
"WAIT FOR BAXTER." When they both show up,
"SHOW TICKET TO BAXTER" and "ARREST
BAXTER AND DUNBAR." You didn't believe them
for a minute, did you?

Due to the dynamic nature of Deadline, there are
several ways to end up accusing Baxter and Dunbar
of the murder. There are also more puzzles to solve,
but this is all that is necessary to put together an
air-tight case against them. If you have other
methods of solving Deadline, let us know!

Page 12

YES, OF COURSE !
WE VERY MUCH DO TRS-80 !

VIICRODEX CORPORATION

SOFTWARE

CLAN-4 Mod-4 Genealogy archive & charting $69.95
Quick and easy editing of family data. Print elegant
graphic ancestor and descendant charts on dot-matrix
and laser printers. True Mod-4 mode, fast 100%
machine language. Includes 36-page manual. pfEWN//

XCLAN3 converts Mod-3 Clan files for Clan-4 $29.95

DIRECT from CHRIS Mod-4 menu system $29.95
Replaces DOS-Ready prompt. Design your own menus
with an easy full-screen editor. Assign any command to
any single keystroke. Up to 36 menus can instantly call
cach other. Auto-boot, screen blanking, more.

xT.CAD Mod-4 Computer Drafting $95.00

The famous general purpose precision scaled drafting
program! Surprisingly simple, yet it features CAD
functions expected from expensive packages. Supports
Radio Shack or MicroLabs hi-res board. Output to pen
plotters. Includes a new driver for laser printers!

xT.CAD BILL of Materials for xT.CAD $45.00
Prints alphabetized listing of parts from xT.CAD
drawings. Optional quantity, cost and total calculations.

CASH Bookkeeping system for Mod-4 $45.00

Easy to use, ideal for small business, professional or
personal use. Journal entries are automatically
distributed to user's accounts in a self-balancing ledger.

FREE User Support Included With All Programs !

MICRODEX BOOKSHELF

MOD-4 by CHRIS for TRS/LS-DOS 6.3 $24.95
MOD-lIt by CHRIS for LDOS 5.3 $24.95
MOD-11l by CHRIS for TRSDOS 1.3 $24.95
Beautifully  designed  owner's manuals  completely
replace obsolete Tandy and LDOS documentation.
Better organized, with more examples, written in plain
English, these books are a must for every TRS-80 user.

JCL by CHRIS Job Control Language $7.95
Surprise, surprise! We've got rid of the jargon and JCL
turns out to be simple, easy, useful and fun. Complete
tutorial with examples and command reference section.

Z80 Tutor I Fresh look at assembly language $9.95
Z80 Tutor Il Prograrmming tools, methods §9.95
Z80 Tutor lll File handling, BCD math, etc. $9.95
Z80 Tutor X All 280 instructions, flags $12.95
Common-sense assembly tutorial & reference for novice
and expert alike. Over 80 routines. No kidding!

Add S & H. Call or write MICRODEX for details
1212 N. Sawtelle  Tucson AZ 85716 602/326-3502

TRSTimes magazine 7.1 - Jan/Feb 1994




"ROUND() FUNCTION
FOR PRO-MC

by J.F.R. "Frank" Slinkman

One function which is found in some
implementations of the C programming language,
but which is not included in the Pro-MC package
from Misosys, Inc., is a function to round floating
point numbers to their nearest integer value.

Of course, numbers can be rounded in code in C just
as they can in BASIC, through code something like:

double round( value )

doubie value;

{ return floor( fabs(value) + 0.5) * dsgn(value );
}

While the above does the job, it calls several
subroutines built into the libraries (e.g., DSGN to
get the sign, FABS to get the absolute value,
@ADDD to add 0.5 to the absolute value, FLOOR to
calculate an integer, @MULTD to multiply, not to
mention several hidden calls to move data to and
from various RAM -locations), which make the
operation fairly slow.

Obviously, both convenience and speed are valid
reasons for adding a round() function to the Pro-MC
math library.

But, before we can start playing with double
precision floating point numbers, we first have to
learn how these numbers work, and how their
values are stored (which is exactly the same in
Pro-MC and TRS-80 BASIC).

Double precision numbers are stored in 8 bytes. The
first seven bytes hold the mantissa and the sign of
the value, in order of least-significant to most
significant bytes. The 8th byte carries the exponent,
which is the power of two by which the mantissa in
the first seven bytes must be multiplied.

This exponent is stored "base 128," which means 127
means -1; 128 means 0, 129 means +1, ete. This
gives us an exponent range from -127 to +127. By
convention, an exponent of zero, instead of meaning
-128, means the entire stored value is zero.

The first 7 bytes are always considered to hold a
value of at least 0.5 but less than 1.0. This puts an
implied radix point (like a "decimal" point, but this

TRSTimes magazine 7.1 - Jan/Feb 1994

is a binary system, not a decimal system) to the left
of the most significant bit. Also, the most significant
bit under this scheme will always be "1;" so it, too,
can be implied. Thus, bit 7 of the 7th byte is free to
be used to hold the sign of the number, under a
convention where "1" = negative and "0" = positive.

Thus:

+0.5 is stored as 00 00 00 00 00 00 00 80 (hex);
- 0.5 is stored as 00 00 00 00 00 00 80 80

+3.5 is stored as 00 00 00 00 00 00 60 82

- 7.0 is stored as 00 00 00 00 00 00 EO 83; etc.

To fully understand how values are stored, let's
break down the "+3.5" example. First arrange all the
significant bits in correct order. To do this, because
in this example there are no set bits in the first 6
bytes, we need only take the 7th (the most
significant) byte (60H), and express it in binary with
it's implied radix point:

60H -> 0.01100000 (binary)
Now set the implied high order bit to get:
0.11100000 (binary).

In this binary system, the first bit position to the
right of the radix has a place value of 2%-1 (0.5); the
second has a place value of 27-2 (0.25), and so on
through descending powers of 2.

Thus the first bit in this example means 1/2. The
2nd bit means 1/4; and the 3rd means 1/8. When we
add all that together, we get 7/8ths, or 0.875.

Now we take the exponent (82H = 130) and subtract
128 from it to get 2.

The total value, then, is (0.875 * 22) = (0.875 * 4) =
3.5.

Now, if you think about it, you'll realize that the
integer portion of the number (3 in this case) has to
have exactly as many bits as the value of the
exponent (2 in this case). Therefore, since there are
56 bits available to express both the integer and
fractional portions, there must be 56 minus the

Page 13



exponent value bits available to express the fraction
(56 - 2 = 54, in this case). Remember these facts --
we will make use of them later.

So, to round the number, all we have to do is look at
the first bit after the bits which express the integer
portion. If it's zero, we don't have to round up. If
it's one, we must round up. In this case, the 3rd bit
is one; so we would have to round up. This would be
done as follows:

0.11100000B = (0.875 * 272) = (0.875 * 4) = 3.5
+0.00100000B = (0.125 * 272) = (0.125 * 4) = 0.5

1.00000000B = (1.000 * 2*2) = (1.000 * 4) = 4.0

But now we have to do some juggling, since our
rounded result no longer fits the rule that all binary
values must be in the range 0.5 <= value < 1.0.
To fix this, we have to shift the mantissa right one
bit (the same as dividing by 2), and increment the
exponent (the same as multiplying by 2). After
these operations, the result becomes:

0.10000000B = (0.500 * 273) = (0.500 * 8) = 4.0.

Putting this back in double precision storage format,
we get.:

00 00 00 00 00 00 80 83.
Now we reset the implied bit, to get:

00 00 00 00 00 00 00 83.
And we're done.
Of course, the above example is simple, because all
the bits to the right of the ones we looked at were
zeros. Suppose, for example, we had to round a
numbers like 9.335 and -16.728.
These two numbers are stored (in hex) as follows:

9.335 as 6B 8F C2 F5 28 5C 15 84; and
-16.728 as 6C E7 FB A9 F1 D2 85 85;

While 9.0 and -17.0 (the rounded values to be
derived from the above) would be expressed as:

9.0 as 00 00 00 00 00 00 10 84; and
-17.0 as 00 00 00 00 00 00 88 85.

Obviously, in addition to keeping track of the sign,
possibly adding, shifting, and adjusting exponents,

Page 14

a round() function will also have to reset all bits in
the fractional part of the number to zero.

0.K. Now that we know what we have to do, let's
look at one way to go about actually doing it. It's
now time to look at the listing of ROUND/ASM.

Since this is going to be a function to be added to the
Pro-MC libraries, we have to be aware of the way
double precision values are passed to and from
functions.

An argument is passed TO the function on the stack;
which means it starts at SP+2, since the return
address will be at SP+0. Values are returned FROM
the function in a special 8-byte buffer. Values are
loaded into this buffer by pointing HL to the 1st byte
of the value, and calling a Pro-MC routine named
@GINTO. Using @GINTO means we don't have to
know where the buffer is -- we just let the system
take care of that for us.

Also, because "register" variables can be held in the
index registers IX and 1Y, we can only use those
registers if we make sure they hold the same values
they did upon entry into our routine.

Thus, the first instruction at ROUND is to PUSH
IX, saving it so it can be restored for a clean exit.
This means the argument (the double precision
value passed to the function) is no longer at SP+2,
but at SP+4.

So we utilize the MCMACS/ASM macro "$HS" to
point HL to the argument. All "$HS 4" does is load
HL with 4, then add SP to it, causing HL to point to
the stacked argument.

Now we copy this pointer to IX, and pick up the 7th
byte (@ IX+6), which contains the sign bit, which we
isolate and store in the C register.

Now the exponent in the 8th byte is picked up and
examined. If its value is < 128 (i.e., < 0), then the
absolute value of the argument is <(0.5. Because the
rounded result will be zero; we just set the exponent
to zero and return the altered argument.

If the exponent is equal to 128 (i.e., 0), then 0.5 <=
absolute value < 1, which means we round the
absolute value to 1.0, restore the sign bit, and exit.

If the exponent is >= 184 (128 + 56), then all 56 bits
in the first 7 bytes are integer bits (i.e., the whole
value is so large it's already an integer); so there is
no need to do anything but return the original
argument.

TRSTimes magazine 7.1 - Jan/Feb 1994



However, if the exponent is in the range 129 (2*1) to
183 (2755), the program actually has to do some
work. First at the NEG instruction at RND030+2,
we calculate the number of bits contained in the
fractional portion of the number.

(f you'll recall, we determined above that the
integer portion will have the same number of bits as
the value of the exponent.)

Next, we set the implied bit to fully express the
value, and generate a pair of masks in registers D
and E. The mask in the D register maps the location
of the most significant bit of the fractional portion of
the number, while the mask in E maps the integer
bits which must be preserved. You'll note in the
comments above label RNDO50 that the single set
bit in the D mask is one bit to the right of the
rightmost set bit in the E mask.

At RNDO050, the number of full bytes to be cleared is
calculated, and from that is derived the number of
bytes which are either wholly or partially used by
the integer portion of the value, which number is
stored in B.

In the loop starting at RNDO60, every byte which
can be safely nulled out is set to 00H. Note this loop
tests for 9 bits, rather than the normal 8 bits per
byte, since the possibility exists that the break
between integer bits and fraction bits could occur at
an even byte boundary.

If the break is not at a byte boundary, the program
goes to RNDO08O0.

If the break is at a byte boundary, the value in D is
added to the byte pointed to by HL to determine
whether or not rounding up is needed, and then the
byte at (HL) is set to O0H, completing the resetting
of all fraction bits.

If the C flag is reset, then the fraction was < 0.5; so
we're essentially finished. All we have to do is go to
RND130 to restore the original sign bit and return
the altered argument as the function return value.

If the C flag is set, then we must bump the counter
in B to compensate for the fact HL points to the last
fraction byte and not the first integer byte,
whereafter control goes to RNDO090.

At RNDOSO, the break between integer and fraction
occurs in the same byte; so the value in D is added
to the byte, and then the fractional bits are set to
zero through application of the mask in the E
register. Again, if the C flag is reset, no round up is
needed; so control passes to RND130, where the sign

TRSTimes magazine 7.1 - Jan/Feb 1994

bit is restored and the altered argument returned.

The code at RND090 does the rounding up by
adding the carry flag from each byte to the next
throughout the entire integer portion. If, at the end
of this process, the C flag is reset, then the value in
the first seven bytes is still < 1.0; so we're essentially
finished.

However, if the C flag is set, then the value is 1.0 or
greater; so it is adjusted by incrementing the
exponent, and shifting the mantissa one bit right.
The reasons behind this were explained earlier.

Finally, at RND130, the implied bit is reset, and the
sign bit copied to that location. The pointer to the
LSB of the altered argument is copied from IX to
HL, the original IX popped off the stack, and the
return value copied to the Pro-MC system buffer via
a call to @GINTO.

The operation is now complete; so the routine
returns to its caller.

To determine the efficiency of this routine, I wrote a
short program which recorded the time it took to
make 30,000 calls to round up and store the value
6.666667. On my XLR8er equipped Model 4D, it
accomplished this in about 10.5 seconds.

By contrast, the same test applied to the "normal"
method of rounding (see example code above) took
about 75 seconds.

Because this routine does not use any of the other
functions in MATH/REL, including it in your
Pro-MC libraries is easy. Basically, you have two
equally good options:

1. If you have the Misosys, Inc., utility MLIB, you
can load MATH/REL, and add the module, giving it
the name ROUND. I put it between the INTRND
and CEIL modules because it seems like it
"belonged" there, but the location really doesn't
matter;

2. You can add the module to MATH/REL by
issuing the LS-DOS command: -

APPEND MATH/REL ROUND/REL (STRIP)

Once you have added the ROUND module to
MATH/REL, you should edit MATH.H to include
"round()" (excluding the quotes) to the list of
declared extern doubles. This eliminates the need to
remember to declare it in every program you write.

Also, in programming, remember that round()

Page 15



expects a double argument. Normally, floats are
automatically converted to doubles before being
passed as arguments to a function. However, if you
use the Pro-MC compiler "+f" option, this is no
longer true, and any float to be rounded must be
explicitly cast to double before being passed to the
function.

Using the Pro-MC documentation format, the
documentation for round() follows:

round(MATH) round(MATH)

#include <math.h>
double round( darg );
double darg;

darg is the double whose
rounded integer value is
to be determined.

This function is used to obtain the rounded integer
portion of a double.

Description

This function will obtain the rounded integer
portion of its double precision argument and return
a double precision result.

Return Code
There is no special return code other than the
double precision result.

Warning

Round() expects a double precision argument.
Passing another type of argument will produce
erroneous and unpredictable results. When using
the compiler "+ switch, float arguments must be
explicitly cast to double before being passed to
round().

Example

#include <stdio.h>

#include <math.h>

char inbuf[81];

double d1, d2;

main()

{ puts("round: enter your number: EOF to exit" );
while( gets( inbuf) )
{ d2=round(dl = atod(inbuf) );

printf( "% f rounds to % f\n", d1, d2);

}

}

round: enter your number: EOF to exit

3.333 | 3.333000 rounds to 3.000000
-6.6667 |-6.666700 rounds to -7.000000
0.4825 | 0.482500 rounds to 0.000000

Page 16

ROUND/ASM

; ROUND/ASM

; Author: J.F.R. "Frank" Slinkman

; 1511 Old Compton Road, Richmond, VA 23233

; CompuServe 72411,650

; Date:  4-Oct-93

; Copyright (c)1993, J.F.R. "Frank" Slinkman

; All rights reserved. Individuals are hereby granted per-

; mission to make private, non-commercial use of this code.

;Register usage:

IX, HL pointers

counter

sign storage (80H = minus, 00H = plus)
fraction msb bit mask (rounding bit)
integer bit mask (bits to save)

moaow

;In comments, LSB & MSB refer to bytes, Isb & msb
; refer to bits .

;double round( arg )

;double arg;

; returns value of "arg" rounded to nearest whole number

*GET MCMACS

b

PUBLICROUND
ROUND:
PUSH IX ;save poss reg variable
$HS 4 ;-> LSB of arg
PUSH HL
POP X
LD A,(IX+6)
AND 80H ;isolate sign bit
LD CA ;and store
LD A,(IX+7) ;p/u exponent
CP 128 ;arg >=0.57
JR NC,RNDO010 ;go if so
LD (IX+7),0 selse if < 0.5,
;round to zero
JR RND140 ;20 to ret modified arg
RNDO010:
JR NZ,RND030 ;goif exp >= 129
; (i.e. arg >=1.0)
XOR A selse 0.5 <=arg < 1.0;
;so return 1.0
LD B,7
RNDO020:
LD (HL),A ;nul out 56 fractional
;bits (7 bytes)
INC HL
DINZ RNDO020
INC (HL) ;bump exponent to 129
JR RND130 ;80 to return 1.0
RNDO030:
SUB 128+56 ;is arg so large it's

TRSTimes magazine 7.1 - Jan/Feb 1994



;already an int?
JR NC,RND140 ;return entry value if so
NEG ;calc # of bits in
;fractional portion
LD B.A ;shift counter
SET 7,(IX+6) ;set implied bit
LD DE,128<8!255 ;D =80H, E = 0FFH
LD A7
AND B ;A = # of bits to shift
JR Z RNDO050 ;go if shifts evenly
;divisible by 8
RNDO040:
RLC D ;shift rounding bit
SLA E ;reset rightmost bit
DEC A
JR NZ RND040
;shifts D E
;0 10000000 11111111 O is special case
(mask different bytes)
31 00000001 11111110 all others mask
12 00000010 11111100 same byte
;3 00000100 11111000
34 00001000 11110000
;5 00010000 11100000
;6 00100000 11000000
37 01000000 10000000
RNDO050:
LD AB ;# of bits to clear in A
PUSH AF
SRL A ;divide # of bits by 8
. ;bits/byte
SRL A ;quotient range: 0 to 6
SRL A
SUB 7 ;calc # whole or partial
;bytes which will
NEG ;contain integer bits
; (range 1t0'7)
LD B,A
POP AF
RNDO060:
CP 9 ;can this byte be nulled
;out?
JR C,RND070 ;go if not, or not yet
LD (HL),0 ; else null out the byte
INC HL ;=> next byte
SUB 8 ;reduce by one byte's
;worth of bits
JR RNDO060
RNDO070:
Cp 8 ;int Isb & fraction msb
;in different bytes?
JR C,RNDO080 ;go if not
LD AD ;p/u roundup value
;(must be 80H if here)
ADD A,HL) :add it
LD (HL),0 ;now null out the last

TRSTimes magazine 7.1 - Jan/Feb 1994

INC

RNDO080:

LD

ADD
PUSH

LD
POP

RND090:
LD
INC
DINZ

RND100:
LD
ADC

LD
INC

DINZ
RND110:

INC

LD
RND120:
DEC

DINZ
RND130:
LD
RES
OR
LD
RND140:
PUSH
POP
POP

CALL

RET
END

NC,RND130
B

RND090

AD
A,(HL)
AF

E
(HL),A
AF

NC,RND130
D,0

HL
RND100
RND110
AD

A,(HL)
(HL),A

HL

RND100

NC,RND130

(HL)
B,7

HL

(HL)
RND120

A,(IX+6)
7,A

C
(IX+6),A

X
HL
IX

@GINTO##

;nullable byte

;g0 if no round up
;needed
;compensate for byte
;boundary situation

;here if int Isb and
;fraction msb in same
;byte

;p/u value to add to
;round up

;add it

;save C flag

;preserve only int bits
;this resets fract bits
;restore C flag

;g0 if no round up
;needed

;for efficiency

;-> next byte

;go if not at last byte
;(adjusts B)

;if at last byte,

;HL -> exponent

;perform carry from
;previous byte
;replace value

;when done,

;HL will -> exponent

;g0 if rounded value
;still < 1.0

;else bump exponent

; (multiply by 2)

;& divide fraction by 2

;p/u MSB of mantissa
;reset implied bit
;apply sign mask
;replace

;=> LSB of modified arg
;restore poss reg var
; (clears stack)

;get arg into MC system
; buffer to return

Page 17



TIRED OF SLOPPY DISK LABELS?
TIRED OF NOT KNOWING WHAT’S ON YOUR DISK?

YOU NEED “DL”

“DL” will automatically read your TRSDOS6/LDOS compatible disk
and then print a neat label, listing the visible files (maximum 16).
You may use the ‘change’ feature to select the filenames to print.

You may even change the diskname and diskdate.
“DL” is written in 100% Z-80 machine code for efficiency and speed.

“DL” is available for TRS-80 Model 4/4P/4D
using TRSDOS 6.2/LS-DOS 6.3.0 & 6.3.1
with and Epson compatible or DMP series printer.

“DL” for Model 4 only $9.95

TRSTimes magazine - Dept. “DL”
5721 Topanga Canyon Blvd., Suite 4
Woodland Hills, CA 91367

HARD DRIVES FOR SALE

Genuine Radio Shack Drive Boxes with Xontroller, Power Supply,
and Cables. Formatted for TRS 6.3, Installation JCL Included.
Hardware write protect operational.
Documentation and new copy of MISOSYS RSHARDS5/6 Included.
90 day warranty.

5 Meg $175 10 Meg $225 15 Meg $275 35 Meg $445

Shipping cost add to all prices

Roy T. Beck
2153 Cedarhurst Dr.
Los Angeles, CA 90027
(213) 664-5059




PROGRAMMING TIDBITS

Copyright 1993 by Chris Fara (Microdex Corp)

This article is a reprint from our last issue where
we, unfortunately, succeeded in completely
mangling Chris Fara’s fine submission to the point
that it became unreadable. In reviewing the problem,
I found that some text was missing, while other text
was printed out of sequence — and more than once.
How did this happen? Was it a glitched disk? No, 1
checked that. The disk is good. Could it be the
software? Yes, but in all honesty I must say
“probably not”. Could it be the hardware? Yes, but
again, “probably not”. So, what is the problem? 1
haven't a clue — but the bottom line is that I should
have caught the mess before it went to print. My
sincere apologies to Chris and all the readers.

Ed.

SCREEN ROBOT III

Why couldn't a computer automatically write
programs for us? It has been attempted, but so far
with more hype than meat. Some day, maybe.
Meanwhile, instead of wasting money on dubious
promises, we might try something simple yet useful
on our own. For instance, one tedious programming
chore is the layout of screens: menus, help screens,
data entry forms, and similar displays. So here is an
idea that might help a bit. It will instantly produce
a file with a screen display subroutine that later can
be simply MERGEA into any BASIC program. dJust
so you Mod-III people know we care, we'll start with
a Mod-III version (Mod-4 later).

SCREEN EDITOR

First we need some sort of "editor" to lay out the
screen. We'll sketch here only its simplest skeleton.
If you like the idea, you can make it more fancy
later.

TRSTimes magazine 7.1 - Jan/Feb 1994

10 clear 5000: cls: defint a-z

11 x=0:y=0:xx=64:yy=16 ‘video size
12 d$=chr$(9)+chr$(®+chr$(10)+chr$O1)

18 d$=d$+chr$(13): g$=chr$(34)

20 print @ y*xx+x, chr$(14); ‘cursor
30 k$=inkey$: if k$="" then 30
31 print chr$(15); ‘cursor off

32 on instr(d$,k$) goto 41,42,43,44,50
33 if k$>="" then print k$;:else 20

41 x=x - (x+1 < xx): goto 20 'right
42 x=x + (x > 0) :goto 20 left
43 y=y - (y+1 <yy): goto 20 'down
44 y=y + (y > 0) :goto 20 'up

After the usual start-up chores (clear string
space, etc.) define variables: X and Y are cursor
coordinates, XX and YY are screen limits, D$ holds
ASCII codes for arrows: right, left, down and up,
plus the ENTER key, and Q$ is a quotation mark for
writing strings to file.

In line 20 calculate the screen position from X
and Y, and turn on the cursor. In line 30 wait for a
key, and when one is hit, turn off the cursor in case
we need to move it. Then try INSTR to see if an
arrow or ENTER was pressed: if so, then branch to
one of the arrow handling lines, or to the “save”
routine in line 50 to be discussed in a moment. If
none of the codes match then the program “falls
thru” to line 33: if we have a displayable character
(blank space or higher) then display it. Otherwise go
back for another key.

After displaying the character (semi-colon
prevents cursor from dropping to the next screen
row) our program goes to next line which also
happens to be handling the right arrow. Even
though PRINT already moved the cursor to the
right, we need to calculate the new X-coordinate
here: it will increase by 1, but only if the cursor is
not yet at the right edge of the screen. In BASIC a
comparison such as.....

A<B

generates -1 if true, 0 if false. So, if adding one will
result in a column number X lower than XX (ie. 63
or less) then the cursor will advance by 1 step,
because.....

X-(X+1<XX)=X-(-)=X+1

Page 19



Otherwise the comparison is "false" and leaves
the cursor position unchanged...

X-(X+1<XX)=X-(0=X

In a similar way coordinates are calculated in
lines 42-44 for other arrows. Then go back to line
20, turn on the cursor at the calculated position and
wait for a key.

Even with this rudimentary “editor” we can now
easily scribble all over the screen: use arrows to
move around, type something, change, erase with
SPACE bar, and so on. More code can be added to
copy and move text, etc, but that's not the point
here.

PROGRAM WRITER

When the screen looks right, press ENTER to
start generating a BASIC program file. Three steps
are involved: get the screen rows from memory, trim
all blanks from left and right sides of each row, and
construct BASIC command lines for output to file.
The program lines in that file will have this
"syntax".....

PRINT @ position,"text";

The semicolon at the end comes in handy when
something is displayed in the bottom line: it
prevents scrolling of text (as long as no character is
in the rightmost corner of the screen). Let's try it.

50 '------ save screen

51 open "O", 1, "SCREEN/SUB"

52 print #1, "10000 CLS"

53 a$ = string$(64,32)

54 for y=0 to yy-1 'get screen rows
55 poke varptr(a$)+1, y*64 and 255

56 poke varptr(a$)+2, &H3C + fix(y/4)

We name the file SCREEN/SUB but you can
change it to anything you want. Similarly, the lines
of our subroutine will be 10000 and up, but could be
anything convenient. The first line will simply clear
the screen. If for some reason you don't want to
clear the screen every time the subroutine is called,
then omit the CLS, but make sure that we have a
line 10000 (or whatever number you choose),
perhaps with some REMark, so that the subroutine
can always be called with the same standard line
number. As will be seen later, the remaining files of
the subroutine may not always be consecutive.

Next, create a string A$ with the same length as
the screen width (64 blanks) and start a FOR loop to

Page 20

scan all the screen rows. The next two lines change
the “variable pointer” of string A$ so that it now
points to the screen memory. That memory in Mod-
IIT starts at hex ‘3C00 where the image of the top
screen row #0 is stored. The second row #1 is stored
at hex'3C00 plus 64, and so on. Our POKEs
calculate the low and high byte of those addresses
for each Y=row number. When Y*64 gets to be 256
or more (after row #3), the AND will mask out the
excess of 256. Thus for the row #4 we'll poke 0
(same as for the top row), for the row #5 we'll poke
64, and so on. At the same time the high byte poke
will be incremented for every fourth row whenever
we pass the 256-byte boundary.- If you're not
comfortable with such "binary" capers then just take
my word for it: it is so.

Anyway, after the two POKEs the picture of a
screen row sits in the string A$. But we don't want
to clutter our subroutine file with useless blank
spaces, so the next task is to trim all leading and
trailing blanks. And, if in the process we discover
that an entire row is blank, then we'll ignore it
altogether.

60 j=xx+1 ‘trim string

61 for x=1 to xx 'leading blanks
62 if mid$(a$,x,1)>" "then i=x:x=j;j=i

63 next: if j>xx then 80 '

65 for x=xx to 1 step -1 ‘trailing

66 if mid$(@a$,x,1)>" "then k=x:x=1

67 next: k=k-j+1

First scan the string from the beginning. When
a non-blank character is found, then the counter
variable X is swapped with J. Therefore now J
contains the position X in the string where the first
non-blank was found (the column on the screen
where the text begins) while X equals XX+1 and
thus forces NEXT in line 63 to terminate the scan.

Now, if all characters were blank then after
NEXT the value of J is still XX+1 (it was pre-set in
line 60 and never got swapped), J>XX is true, and
we skip to line 80 to try the next row (see next
program segment below). If the string is not blank
then lines 65-67 scan backwards for trailing blanks,
and calculate the length K of that portion of A$
which will remain after discarding any leading and
trailing blanks. '

You will notice that, when the screen is mostly
blank, the "trimming" takes a couple of seconds
(hundreds of MID$ comparisons are made). But this
is time well spent, because it eliminates tons of
useless blanks from the resulting subroutine file.

The next, final segment of our "robot" program

TRSTimes magazine 7.1 - Jan/Feb 1994



writes a line to the disk. For educational purposes
the PRINT#1 command has been split here into
three pieces, but it could be just as well written in
one line. In any case on the disk it will create one
BASIC command line.

70 print #1,10000+1+y; 'write

71 print #1, "PRINT @" y*xx-+j-1"";

72 print #1, q$ mid$@$,j k) q$";"

80 next 'go get next row
81 print #1,"10029 RETURN"

82 close: end

First, a line number is constructed by adding
the current row number (0-15) to a "base" number
(in our case 10000+1, because the "header" line in
our subroutine was at 10000). Then the PRINT@
keyword and screen position is added. The position
is calculated from row Y and column J where the
non-blank part of the screen row begins. We must
subtract 1 because J=1 if the string starts at the
leftmost column, but in PRINT@ this must be
column 0, etc. Finally, write the text .of A$
surrounded by quotes O$, plus semicolon to stop the
cursor from dropping down.

Note that the subroutine lines generated by our
"robot" are numbered sequentially, but not
necessarily consecutively: for example if the top
screen row (row 0) is blank then the subroutine will
not have line 10001, and so on. That's why it is a
good idea to start the subroutine with some
"neutral" line that will be always present, as we
have done with our line number 10000.

After all rows are done, write the RETURN
command and close the file. The file looks just like
any BASIC program file saved with the "A" (ASCII)
option and can be now included in any program.....

MERGE "SCREEN/SUB"
Then, to display the screen.....
GOSUB 10000

Pretty sleek for being so simple, isn't it? Next
time we'll look at Mod-4. By the way, both Mod-IIT
and Mod-4 versions of the "screen robot" are
available, along with other "goodies" on the...
"Goodies" disk from Microdex ($12.95+SH; address
and phone number see Microdex ad elsewhere in
this issue).

TRSTimes magazine 7.1 - Jan/Feb 1994

FANTASTIC
PDOT WRITER
FONTS

$3.00 PER DISK
CONTACT
MICKEY MEPHAM
9602 JOHN TYLER MEM HWY
CHARLES CITY, VA 23030

TRSTimes on DISK
issue #12

is now available, featuring the
programs from the Jul/Aug,
Sep/Oct, Nov/Dec 1993 issues.

U.S. & Canada: $5.00 (US)
Other countries: $7.00 (US)

TRSTimes on DISK

5721 Topanga Canyon Blvd. # 4
Woodland Hills, CA 91367

TRSTimes on DISK
#1 through #11
are still available
at the above prices




ANNOUNCING "SYSTEM 1.5.", THE MOST COMPREHENSIVE 1.3. U

MORE SPEED!! MORE POWER!! NEW LOW PRICE!!

) s WEEN

PGRADE EVER OFFERED!

While maintaining 100% compatibility to TRSDOS 1.3., this upgrade advances DOS into the 90's!

SYSTEM 1.5. supports 16k-32k bank data storage and 4MGHZ clock speed (4/4P/4D).

DOUBLE SIDED DRIVES ARE NOW 100% UTILIZED! (all models).

config=y/n creates config boot up filedate=y.n date boot up prompt on/off
time=y/n time boot up prompt on/off cursor='xx’ define boot up cursor character
blink=y/n set cursor boot up default caps=yn set key caps boot up default
line="xx' set *pr lines boot up wp=d.y/n write protect any or all drives
alive=ym graphic monitor on/off trace=y/n turn sp monitor on/off

tron=yhn add an improved tron memory=yn basic free memory display monitor
type=b/hiym high/bank type ahead on/off fast 4 mghz speed (model 4)

slow 2 mghz speed (model 3) basic2 enter rom basic (non-disk)

cpy (parm,parm) copy/list/cat ldos type disks sysres=h/b/xx' movelsys overlay(s) to hi/lbank mem
sysres=y/n disable/enable sysres macro define any key to macro
spool=h/b.size spool is high or bank memory spool=d.size='xx' link mem spooling to disk file
spool=n temporarily disable spooler spool=y reactivate disabled spooler
spool=reset reset (nil) spool buffer spool=open opens, reactivates disk spooling
spool=close closes spool disk file filter *pr.adlf=y/n add line feed before printing0dh
filter *pr.iglf ignores 'extra’ line feeds filter *pr.hard=y/m send Och to printer (fastest tof)
filter *pr filter adds 256 byte printer filter filter *pr.orig translate printer byte to chng
filter *pr.find translate printer byte to chng filter *pr.reset reset printer filter table

filter *pr.lines define number of lines per page filter *pr.width define printer line width

filter *pr.tmarg  adds top margin to printouts filter *pr.bmarg  adds bottom margin to printout
filter *pr.page number pages, set page number filter *pr.route sets printer routing on/off

filter *pr.tof
filter *ki.echo

moves paper to top of form
echo keys to the printer

attrib :d password change master password

filter *pr.newpg
filter *pr.macro
device

set dcb line count to 1
turn macro keys on/off
displays current config

All parms above are installed using the new LIBRARY command SYSTEM (parm,parm). Other new LIB options include DBSIDE
(enables double sided drive by treating the "other side” as a new independent drive, drives 0-7 supported) and SWAP (swap drive code
table #s). Dump (CONFIQG) all current high and/or bank memory datafroutines and other current config to a disk data file. If your type
ahead is active, you can (optional) store text in the type buffer, which is saved. During a boot, the config file is loaded back into high/bank
memory and interrupts are recognized. After executing any active auto command, any stored type ahead data will be output. FANTAS.-
TIC! Convert your QWERTY keyboard to a DVORAK! Route printer output to the screen or your RS-232. Macro any key,even F1, F2 or
F3. Load *01-*15 overlay(s) into high/bank memory for a memory only DOS! Enter data faster with the 256 byte type ahead option. Run
4MGHZ error free as clock, disk I/O routines are properly corrected! Spool printing to high/bank memory. Link spooling to disk (spooling
updates DCB upon entering storage). Install up to 4 different debugging monitors. Print MS-DOS text files, ignoring those unwanted line
feeds. Copy, Lprint, List or CATalog DOSPLUS, LS-DOS, LDOS or TRSDOS 6.x.x. files and disks. Add top/bottom margins and/or page
numbers to your hard copy. Rename/Redate disks. Use special printer codes eg: LPRINT CHR$(3); toggles printer output to the ROUTE
device. Special keyboard codes add even more versatility. This upgrade improves date file stamping MM/DD/YY instead of just MM/YY.
Adds optional verify on/off formatting, enables users to examine *01-*15, DIR, and BOOT sectors using DEBUG, and corrects all known
TRSDOS 1.3. DOS errors. Upgrade includes LIBDVR, a /CMD driver that enables LIBRARY commands, such as DIR, COPY, DEBUG,
FREE, PURGE, or even small /CMD programs to be used within a running Basic program, without variable or data loss.

SYSTEM 1.5. is now distributed exclusively by TRSTimes magazine.
ORDER YOUR COPY TODAY!

TRSTimes - SYSTEM 1.5.
5721 Topanga Canyon Blvd., Suite 4
Woodland Hills, CA. 91367




wﬁ)

& PROGRAMMING TIDBITS

Copyright 1993 by Chris Fara (Microdex Corp)

SCREEN ROBOT 4

Last time we've explored a simple BASIC
program for Model ITI, to automate writing of screen
display routines. A simple screen editor was used to
lay out the display, and another routine translated
the display into BASIC program lines to be
MERGEQd into other programs. In Mod-4 the idea
works the same way, except for a minor obstacle:
video memory is not directly accessible. The only
way to get at that memory is via machine programs.

Fortunately there is LS-DOS 6.3. The BASIC
included with it has a new special "user" call
command, USR11. This command provides direct
access from BASIC to DOS SuperVisor Calls (SVC).
It works like this: DIMension an integer array, for
example.....

DIM Z% (5)
then load element(0) with the number of the desired
SVC, load other elements of the array with values
for Z80 registers needed by the SVC, and call SVC
7% =USR11 (VARPTR(Z%(0)))
We are interested in SVC 15 to get a row from

screen into BASIC. This SVC expects the following
780 registers.....

TRSTimes magazine 7.1 - Jan/Feb 1994

H row number 0-23
DE address of our storage buffer
B 9 (function number)

1 (copy from screen to buffer)
Other registers are irrelevant.

As with Robot-III, we'll get the screen row into a
string variable, except it will have 80 characters.
But there is another twist to that. Strings normally
are stored in high memory. When SVC 15 is
executed, that high memory is temporarily swapped
with video memory and some strings may become
inaccessible. So we must force our string into a lower
part of memory. One way to do that is to write a
"literal" string right near the beginning of the
program, and never assign to it any new value
(which would move it into string area in high
memory and thus defeat its purpose).

MOD-4 SCREEN EDITOR

With this in mind, let's outline the first part of
our program.

10 cls: defint a-z

11 x=0:y=0:xx=80:yy=24 'video size

12 d$=chr$(9)+chr$(8)+chr$(10)+chr$(11)

13 d$=d$+chr$(13): q$=chr$(34)

15 z=0: dim z(5) ‘array for USR11
16 a$="Here type exactly 80 characters"

20 print @ y*80+x,;

30 k$=inkey$: if k$="" then 30

32 on instr(d$,k$) goto 41,42,43,44,50

33 if k$>=" " then print k$;: else 20

41 x=x - (x+1 < xx): goto 20 'right
42 x=x + (x > 0) :goto 20 'left

43 y=y - (y+1 <yy): goto 20 'down
44 y=y+(y>0) :goto20 'up

50 '-----save

Predefine a variable Z and array Z(5) for USR11.
The string A$ will be used for transfer of video rows.
Type 80 blanks, or anything else, as long as there
are exactly 80 characters between the quotes. The
rest is like in the Mod-III "robot", except for different
screen limits and different code for "up" arrow. Also,
there is no need to turn the cursor on and off. Again,
this is a very rudimentary editor, and if you like the
whole idea, you'll probably want to improve it later.

Page 23



MOD-4 PROGRAM WRITER

The main difference from Mod-III robot is the
way we get the screen row with the "special” USR11
command (remember, it works only with DOS 6.3
BASIC).

50 '-----save screen subroutine
51 open "O", 1, "SCREEN/SUB"
52 print #1, "10000 CLS"
52 for y=0 to yy-1
53 z(0)=15 'SVC number 15
54 z(1)=256*Y ‘H=row number
55 z(2)=peek (varptr(a$)+1) +

256*peek (varptr(a$)+2) - 65536
56 z(3)=256*9+1 'B=9 C=1
57 z=USR11 (varptr(z(0)))

'get screen rows

Line 55 calculates the address of our A$ string
(write it as one single line). This could be also pre-
calculated once near the beginning of the program,
because that string by definition will not move. But
the address must be inserted into Z(2) before every
call, because SVC may change it.

The result at this point is that the picture of a
screen row sits in the string A$. Run the program,
type something in the bottom row of your screen
layout, and then LIST the program: you'll see a bit
of magic. The bottom screen row will now sit in line
16 of your very own program listing, even though
you didn't put it there!

The rest is the same as in the Mod-III version of
the "robot". In line 62 you may use the convenient
Mod-4 command SWAP.....

60 j=xx+1 '-e---trim string
61 for x=1 to xx '...leading blanks
62 if mid$(a$,x,1)>" "then swap j,x

63 next: if j>xx them 80

65 for x=xx to 1 step-1  'trailing

66 if mid$(a$,x,1)>" "then k=x:x=1

67 next: k=k-j+1

70 print #1,10000+1+y;  'write

71 print #1, "PRINT @" y*xx+j-1"," ;

72 print #1, q$ mid$@$,j k) q$";"

80 next 'go get next row
81 print #1,"10029 RETURN"

82 close: end

Again, MERGE the subroutine into any
program and then GOSUB 10000 to display the
screen.

Page 24

MORE ABOUT USR11

If you don't have LS-DOS 6.3 yet, then get it.
Besides extending the date range into the 21-st
century, it is altogether a better DOS for MOD-4
("Mod-4 by Chris" manual fully updated for 6.3.1 is
now also available from Microdex, see ad elsewhere
in this issue).

The direct access to DOS SuperVisor Calls, via
USR11 command in the BASIC included with DOS
6.3 upgrade, is so handy that it may be useful to
review its details here. As noted earlier, USR11
needs an integer array, such as.....

DIM Z% (5

The name of the array may be one or two
characters, but no more, else an error occurs. Also,
DEF USRI11 is not needed and not even allowed
(causes "syntax error").

In the first element put the number of the
desired SVC, and in the remaining elements put the
values for Z80 registers, expected by the SVC. The
values go into the array like this.....

Z% (1) = value for register HL,
Z% (2) = value for DE

Z% (3) = for BC

7% (4) = for IX

Z% (b) =for IY

The array must always have the subscripts 0-5
and the SVC number in element (0), but in elements
(1) through (5) only those values need to be specified
which are actually required by a given SVC.

Finally execute the SVC like this.....
Z% = USR11 (varptr(Z% (0) ) )

Upon return to BASIC the element Z%(0)
contains the value of register pair AF (F are the
flags), and other elements contain the values of the
other registers as may or may not have been

modified by the SVC.

Say, for example, you want to change the cursor
shape from BASIC. In Mod-III this is easy with a
simple POKE, for instance.....

POKE 16419,95 'Mod-III only!
to change the standard block cursor to an
underscore. In Mod-4 BASIC we could of course use
the SYSTEM command. For example.....

TRSTimes magazine 7.1 - Jan/Feb 1994



SYSTEM "SYSTEM (BLINK=143)"

will change the cursor to a graphic block. But that's
a lot of disk grinding for a tiny cursor. The same
thing can be done instantly and silently via

Z%0) = 15 'video SVC 15
Z%(3) = 256*8 + 143 'B=8, C=cursor
Z% = USR11 (varptr(Z%(0)))

Or perhaps your BASIC program needs to know
the amount of free disk space before saving a big
file. Elementary, my dear Watson. Try drive 1....

A$ = string$(20,32) ‘buffer for SVC
Z%(0) = 34 ‘directory SVC
Z%(1) = peek(varptr(A$)+1) +
256*peek(varptr(A$)+2) - 65536

Z%(3) = 256*4 + 1 'B=4, C=drive #
USR11 (varptr(Z%(0)))

FREE% = cvi (right$ (A$,2)

Now the variable FREE% contains the amount
of free disk space in K-bytes.

And so on. Each SVC expects and returns
various values in registers (and sometimes in
"buffers") as described, for example, in "Mod-4 by
Chris". Since each element of an integer array
consists of 2 bytes, we multiply the value for the
"high" register times 256 and add the value for the
"low" register. In the above example SVC 34 needs
"function number" 4 in register B and drive number
in register C. So the expression.....

Z%(3) = 256 * 4 + 1

packs both values into one 2-byte integer. If the
value for the "high" register is 128 or greater, then
after multiplying times 256 we must as usual
subtract 65536 (to prevent "integer overflow™)

TRSTimes magazine 7.1 - Jan/Feb 1994

MODEL I
GOODIES

by Lance Wolstrup

Try this short BASIC program on your Model I
(or in the Model I emulator) and you'll know
just what Jerry Lee Lewis was singing about.

10 I$=INKEY$

20 OUT 255,8

30 OUT 255,0

40 IF I$="" THEN 10

It does produce a rather interesting display.
And, NO, it doesn’t work on the Model III, this
program is for Model I only.

Another goodie is the hidden copyright mes-
sage in TRSDOS. To see it, type the following
directly from DOS Ready:

BOOT/SYS.WHO

and press ENTER. Now, while TRSDOS is
looking for the file, hold down both the 2 and
the 6 key. This will produce a full screen Radio
Shack message you may never have seen be-

fore.




UTILITY FOR TRS-80 MODEL
4 AND LS-DOS 6.3.1

A'MUST HAVE' FOR ALL
LS-DOS 6.3.1 OWNERS.

DR. PATCH MODIFIES LS-DOS 6.3.1 TO DO
THINGS THAT WERE NEVER BEFORE POSSIBLE.

COMPLETELY SELF-CONTAINED - MENU-DRIVEN
FOR MAXIMUM USER CONVENIENCE.

FAST & SAFE - EACH MODIFICATION IS EASILY
REVERSED TO NORMAL DOS OPERATION.

DISABLE PASSWORD CHECK IN FORMAT/CMD DISABLE PASSWORD CHECK IN BACKUP/CMD

FORMAT DOUBLE-SIDED AS DEFAULT BACKUP WITH (I) PARAMETER AS DEFAULT
FORMAT 80 TRACKS AS DEFAULT BACKUP WITH VERIFY DISABLED

DISABLE VERIFY AFTER FORMAT DISABLE BACKUP 'LIMIT' PROTECTION
CHANGE 'DIR' TO 'D' DISABLE PASSWORD CHECK IN PURGE
CHANGE 'CAT' TO 'C' PURGE WITH (I) PARAMETER AS DEFAULT
DIR/CAT WITH (I) PARAMETER AS DEFAULT PURGE WITH (S,I) PARAMETERS AS DEFAULT
DIR/CAT WITH (S,I) PARAMETERS AS DEFAULT PURGE WITH (Q=N) PARAMETER AS DEFAULT
CHANGE 'REMOVE' TO 'DEL' IMPLEMENT THE DOS 'KILL' COMMAND
CHANGE 'RENAME' TO 'REN' CHANGE DOS PROMPT TO CUSTOM PROMPT
CHANGE 'MEMORY' TO 'MEM' TURN 'AUTO BREAK DISABLE' OFF

CHANGE 'DEVICE' TO 'DEV' TURN 'SYSGEN' MESSAGE OFF

DISABLE THE BOOT 'DATE' PROMPT BOOT WITH NON-BLINKING CURSOR
DISABLE THE BOOT 'TIME' PROMPT BOOT WITH CUSTOM CURSOR

DISABLE FILE PASSWORD PROTECTION BOOT WITH CLOCK ON

ENABLE EXTENDED ERROR MESSAGES BOOT WITH FAST KEY-REPEAT

DR. PATCH IS THE ONLY PROGRAM OF ITS TYPE EVER WRITTEN
FOR THE TRS-80 MODEL 4 AND LS-DOS 6.3.1.

DISTRIBUTED EXCLUSIVELY BY TRSTIMES MAGAZINE ON A STANDARD
LS-DOS 6.3.1 DATA DISKETTE, ALONG WITH WRITTEN DOCUMENTATION.

NO SHIPPING & HANDLING TO U.S & CANADA. ELSEWHERE PLEASE ADD $4.00
(U.S CURRENCY ONLY, PLEASE)

TRSTimes magazine - dept. DP
5721 Topanga Canyon Blvd. #4
Woodland Hills, CA 91367

DON'T LET YOUR LS-DOS 6.3.1 BE WITHOUT IT!




THE TOPANGA FIRE of 1993

by Jim

King

Topanga Canyon, a "Y" shaped area named for a
tribe of Indians who once lived there, is in the moun-
tains 21 miles West of downtown Los Angeles, just
inland and NE of coastal Malibu. One of the highest
of the mountains in the canyon is 2800 feet (860 me-
ters). The coast in that section runs nearly East and
West, rather than North and South. Topanga
Canyon Boulevard, which snakes through Topanga
Canyon, stretches for about 20 miles from the sea to
what's known as the Simi Freeway.

On Nov. 2, 1993 a series of devastating fires
broke out in and around Topanga Canyon. It made
headlines around the world. CNN showed dramatic
shots of "Topanga Canyon" in flames. TRSTimes
(and Lance Wolstrup) reside on Topanga Canyon
Boulevard.. Fortunately, Lance is in Woodland Hills
down on the "flatlands" of the San Fernando Valley,
more than 4 miles (6.5 Km) north of the origin of the
fire.

I wasn't quite as safely situated as TRSTimes
since I happen to live deep in the heart of Topanga
Canyon itself and very near the fire's origin. My
house is end of a 150 foot driveway on a ridge with 4
other homes off what's known as Medley lane, off
Tuna Canyon Road, in the town of Topanga. My
house is stucco (i.e. covered with a layer of wire &
cement), and all the others are wood. All homes in
the canyon are required to have fire resisting roofs.

TRSTimes magazine 7.1 - Jan/Feb 1994

Because I live in what is known to be a "fire
area,” I put in some volunteer on Arson Watch. By
the end of October, conditions were growing ripe for
a fire. It was hot. It was dry. Winds, especially Santa
Ana winds, could spell trouble. On October 26th the
'‘Santa Ana' wind (up to 50 mph) from the North did
start up, the humidity dropped, and a 'Red Flag' was
declared. Allen Emerson, the leader of the Arson
Watch, called out the volunteers. I picked up a
transceiver and AW signs at the fire station and
drove to Mulholland Highway, named for the man
who, ironically, pioneered the delivery of water to
Los Angeles. About a half hour later smoke was seen
in the direction of Thousand Oaks, west of us. The
winds whipped up that fire and it burned for two
straight days, all the way from Thousand Oaks to
the ocean. We thought that was the end of it.

Tuesday, November 2nd, was election day, and I
had planned to change ths power input to a house
down on Topanga Canyon Blvd. (I'm an electrician),
then go to my friend Marco's house (the polling
place) and vote. At 11 in the morning I got a call
telling me there was a new fire, this one in Old
Topanga Canyon (off Topanga Canyon). I could see a
lot of smoke over the ridge to the NW. I postponed
the job and started loading my van with valuables:
all my tools, 2 of my 3-4P computers, a hard drive, a
floppy drive, about 4 feet of computer manuals, elec-
tronic tools, heavy jackets, clothes, money. All the
while I kept my eye on the TV to follow the progress
of the fire. It had already burned up dozens of
homes.

My next door neighbor had left for work. At this
point, no one was being allowed back into the fire
area. I phoned him and, at his request, I went over
and got his files, keys, a video camera, and a bag of
something, and put them in my van along with my
things.

Bonnie, my neighbor to the north, an excitable
woman anyway, was near hysterics trying to pack
things and deal with her three children and a big
unruly dog. I helped her get her papers and com-
puter files, and she hastily left for relatives in
Pasadena.

By Tuesday evening the fire had reached the
sea, at which point it turned both East and West.
The Eastern branch of the fire traveled along the
beach to the beginning of Topanga Canyon Blvd.,
threatening to jump across. It also came up Tuna

Page 27



Canyon, uncomfortably close to my house. It was
burning brightly. At the rate it was moving East 1
thought it would reach my house before 11pm. I did
not expect my house to survive if the fire came any-
where close since I have too many trees, too close by.

I called my ex-wife, Anna-Kria. She wanted me
to make sure to takes our daughters' paintings if I
had to evacuate. My plan was to wait until the sher-
iff came and told me to leave. I thought that when I
saw the flames come over the ridge, it would be time
to leave. I could see that the sky was red from the
flames below.

Another neighbor put two hoses on his roof,
turned the water on full blast -- and then he left. It
was 10 pm. That angered me so much that I turned
one of the hoses off and turned the other down to a
trickle.

Now the three houses near me on the ridge were
empty. I called my ex again at one in the morning.
The fire beyond the West ridge looked like it would
come over the crest at any moment, so I decided to
evacuate to her house, even though the wind had
died down somewhat.

At about 3 a.m. I put my cat 'Blackie’ in the van
and left. I drove slowly down Tuna Canyon to
Topanga Canyon Boulevard. On the way I met fire-
men walking up the road and was told I was the last
one to leave the area. Apparently there had been an
evacuation order earlier and I hadn't heard it!
There must have been 50 firetrucks parked EVERY-
WHERE!

I drove down TCB to my daughter and son-in-
law's house. I knocked on their window: "Eve! Dan!
Time to Go!" From her living room we could see the
flames behind the ridge. They had already loaded

their possessions in their camper/pickup and car.

I left and drove on down TCB, discovered it was
blocked to the South, so I turned and drove slowly
north again on the eerily deserted canyon road to
the San Fernando Valley, then on to the freeway
and East to Hollywood and Anna-Kria's house.
Blackie howled the whole way. Eve and Dan arrived
early the next morning.

On Wednesday the fires were still going. We
watched TV most of the day. A friend told me they'd
seen a shot of my house and it was still standing.
When we phoned and got my answering machine we
figured it was still there.

On Thursday morning November 4th Eve was
permitted to go back to her house, but my ridge was

Page 28

still considered to risky. There was a police road
block on TCB at Mulholland, another one just over
the top of the ridge, and another at the intersection
of Old and New TCB.

At 10 o'clock Thursday night I was finally given
permission to return home. But when I rolled down
my window to ask a fireman a question, Blackie
jumped out. I was frantic. I spotted my friend Marco,
gave him a flashlight and the two of us went run-
ning around the intersection calling 'KITTY,
KITTY'. Finally Marco saw Blackie in his light, and
I managed to grab her and stuff her back in the van.
Relief! Once home, I got Blackie inside and fed, un-
loaded a few things and went to bed. I slept late.

Friday November 5th: I learned that the fire had
come down the west ridge to nearby Tuna Canyon
Road in three separate places, but had stopped
there. No houses in that area were lost. That night I
went out on Arson watch again.

Saturday November 6th: I drove down Stunt
Road, East on Mulholland Highway, back South on
Old Topanga Road, past the point of origin of the
fire, ground zero. We learned that the fires had been
started by an arsonist. Our Arson Patrols hadn't
been enough. Now with so many houses vacated, the
area was ripe for looting, but the CHP (California
Highway Patrol) were everywhere, checking every-
one coming in. As I drove on, I saw a firetruck from
Barstow, 50 miles Northeast, then a firetruck from
Redding, more than 500 miles North. There were
even firefighters, including some women, from other
states.

Sunday November 7th: The fires were mostly
out although helicopters were still dropping sea wa-
ter on a few hot spots.

Wednesday the 10th: We had a light rain, about
3/4 inch. It turned the grey burned hillsides to black.
In Malibu, which only a week earlier had been in
flames, people now had flooding and mud slide prob-
lems. It never stops!

* If you can get AAA Maps of Los Angeles &
Vicinity I am at G4 and you can see where I am in
relation to the city, or Ventura County (N11). If you
cannot, send me SASE (Self Addressed Stamped En-
velope) and I will return a copy of the Ventura map.

Topanga Canyon Blvd. (TCB) goes up the East-
ern branch of the canyon, Old Topanga Road goes up
the West branch. Fernwood is the area Southwest of
the intersection of Old & New Topanga roads.

TRSTimes magazine 7.1 - Jan/Feb 1994



SMART PRINTERS

by Roy T. Beck

I'm sure all of you have heard of smart terminals
vs. dumb terminals, but I am using these adjectives
to separate printers into two categories.

Actually, it is difficult to determine whether any
given printer is a "smart printer" or a "dumb
printer". There is no neat dividing line between,
them, as the smart printers have gradually evolved
over the years, and did not suddenly appear, full
blown, on the market. In fact, I don't think I will
even try to classify them, this will be left to the stu-
dent as an exercise, as one of my old profs liked to
say.

I will hark back to my oldest printer, an NCR
thermal dot matrix printer. It was, by any standard,
a DUMB printer. Its greatest virtue was that it was
very quiet in an era when impact type dot matrix
printers would fairly scream at you, driving persons
with tender ears out of the room. This NCR used
thermal paper, and formed letters by selectively
heating dots on the face of the printhead. The heat-
ing process was silent; its only noise was caused by
"patting" the head against the paper for a few mil-
liseconds. But that printer was S L. O W, (10 charac-
ters per second) its thermal paper with blue charac-
ters was prone to fading with age, the paper was
only 8.2 inches wide, and it had other tiresome fea-
tures. It had never heard of a form feed. But it was
my first printer, and I still have fond remembrances
of it. After all, if your computer images cannot be
recorded on paper, what good are the results?

My next printer was the ubiquitous EPSON MX-
80/F'T. This one began to take toddling steps up the
ladder to intelligence. Bear in mind, EPSON did put
some nice features in this printer, including the abil-
ity to underline, italicize, print condensed and dou-
ble wide, double strike, emphasize, and print 8 lines
per inch. But the only way to access these features
was to send certain control code sequences from the
computer. If you were in the middle of some other
program, there was no convenient way to insert the
necessary control code from the keyboard.

But not all of its ultimate smarts were courtesy
of the factory. How many of you remember Dan
Dresselhaus, a former (and I believe, founding mem-
ber) of SAGATUG, the San Gabriel Valley TRS users
group, one of the oldest TRS groups around? Well,
Dan also had an MX-80, and he very soon became
excessively aggravated by the fact that BASIC list-
ings just ran on and on, spilling over from one page

TRSTimes magazine 7.1 - Jan/Feb 1994

to another, without regard to the precut tear lines on
the fan-fold paper. The usual result was loss of one
line of BASIC when you LLISTed your program, and
a mess when you tried to save the printout in a
binder. But, besides cussing, Dan did something
about it. He first found the documentation for the
machine code embedded in the ROM in the MX-80.
Next, he wrote a disassembler for that language, and
proceeded to disassemble the MX-80 ROM contents
and document all the code. He then worked out a
way to modify the factory code in such a way that the
machine could be, optionally, told to leave 6 blank
lines after every 60 print lines.

The technique which Dan invented was to allow
the built-in features of the printer to be accessed by
manipulating the four buttons mounted on top of the
printer. By taking the machine off-line, and doing a
little finger twiddling on the buttons, you could turn
on or off, selectively, the features the factory had
built in, plus you could control some additional fea-
tures added by DAN.

Presto, Dan had invented an after-market pack-
age named PERF-SKIP, which, in addition to the
factory supplied features, would skip over the perfo-
rations and allow a three blank line header at top
and bottom of each page. He began selling this de-
vice at local club meetings, and it was an instant suc-
cess. It has since gone through several name
changes, the last one being, I think, "FingerPrint".
Shortly after its introduction, yours truly advised
him to add another optional feature, that being a
1/2" left hand margin to allow three-hole punching of
the pages without punching out the line numbers.
(Since this small feature is about my only claim to
fame, I had to work it in here!) Still other features
rapidly sprang from Dan's fertile imagination, and
soon he was literally in business for himself, which
he continues to be today, under the name (I believe)
of Dresselhaus Industries, Inc.

But to continue with printer intelligence, let me
describe some of the other features added by Dan
and others.

At some later date, the concept of Near Letter
Quality dot matrix printing came about. I don't
know who actually invented it, but again Dan did
some inspired thinking and imagining. The MX-80
was by then superseded by numerous other models,
but by golly, there were an awful lot of them still in
use. One of its shortcomings was lack of a NLQ

Page 29



mode. Dan next dreamed up a replacement ROM
scheme which would allow the user to switch from
the factory default type face to an NLQ face which
was a vast improvement!

Another feature added by manufacturers was
the ability to print in both directions as the head
flew back and forth from left to right, right to left,
etc. Implementing this bi-directional printing re-
quired a small internal buffer in the printer. From
here it was only a small step to adding large after-
market buffers to printers, either inside or external
to the printer. The earliest aftermarket buffers I
know about were only 16K, which would hold typi-
cally 3 or 4 pages of text. Later ones got much larger,
up to 1 Meg, I believe.

Back to Dan for a moment. With some printer
buffers, there was no convenient way to empty the
contents if you suddenly realized there was a typo in
the middle of a 10 page document, and you no longer
wanted to print the document. Dan to the rescue! He
added another feature to his keypad control system,
which caused the printer to accept the contents of
the buffer at a very high rate of speed, but didn't
print anything. Thus, the buffer was emptied in a
matter of a few seconds, and the user could proceed
to his corrections, ete.

Unfortunately for Dan, all the features he added
to the EPSON family (and to certain other printers)
were not eligible for patent protection. Fortunately
for all the rest of us users, the manufacturers saw
the utility of Dan's fundamental idea (making con-
trol accessible on the printer keypad) and promptly
incorporated these features into their future models.
The result was a significant improvement in printer
intelligence, to the advantage of all of us. Don't feel
too badly about Dan, as his imagination continued to
come up with other ideas, and he continues in busi-
ness for himself,

After the dot matrix and daisy wheel printers
came the two latest entries in the evolving printer
world. These are the ink jet and the laser printers.
The inkjet printer uses electrostatic attraction to
squirt ink though very fine apertures in the print-
head onto the paper. This can be done with great
accuracy and controllability, yielding nicely formed
characters without physical impact between the
printhead and the paper. Just don't ask for carbon
copies! The latest ink jets can even print in multiple
colors,

And of course, we now have laser printers. Laser
printers actually contain a specialized computer
with a significantly large memory capacity, and
most of the essential components of a Xerox copying

Page 30

machine. Where a copier scans a document and uses
the reflected light from the document to selectively
discharge the surface of a statically charged drum,
the laser printer uses a laser light source controlled
by the internal computer to selectively discharge the
charged drum. In either case, the partially dis-
charged drum then picks up toner particles from a
supply and transfers them to the output paper, After
which they are fused in place to form a very perma-
nent image on the paper. If your pockets are deep
enough, you can have laser printing in colors, and
quite good ones, at that. In fact, the latest Xerox
copiers are so good, they are actually being used to
print counterfeit paper money. This has required the
US Treasury to make some significant changes in
the design of our paper money. But that's another
story for another day.

In conclusion, there has been a remarkable im-
provement in the 1.Q. of our printers over the last
ten or so years, but just you wait! Take a careful look
back by the year 2000 and you will see things not
even dreamed of today.

Anticipating the future, I remain your faithful
scribe.

Roy.

RECREATIONAL &
EDUCATIONAL COMPUTING

REC is the only publication
, p devoted to the playful in-
.' \:i r‘,_ 4 teraction of computers and
AT ¢ 'mathemagic' - from digital
o delights to strange attrac-
> tors, from special number
TN classes to computer graph-
~ ics and fractals. Edited and
(yz“ published by computer
it ‘ columnist and math profes-
sor Dr. Michael W. Ecker, REC features pro-
grams, challenges, puzzles, program teasers, art,
editorial, humor, and much, much more, all laser
printed. REC supports many computer brands as
it has done since inception Jan. 1986. Back issues
are available.

To subscribe for one year of 8 issues, send $27 US
or $36 outside North America to:

REC
Attn: Dr. M. Ecker
909 Violet Terrace
Clarks Summit, PA 18411, USA
or send $10 ($13 non-US) for
3 sample issues, creditable.

TRSTimes 7.1 - Jan/Feb 1994



HINTS & TIPS

TRS-80 SPEAKERS
by Kelly Bates

I have speakers in all my computers and thought
you might like to know how and why. Some folks zap
their games so the correct sound will be sent to the
right port, but I prefer the speaker installed. That
way my disk programs remain original and always
work as written.

The Model ITI has no sound, so first get a speaker
and mini-switch, some wire and 2 mini alligator
clips. Wire a clip to one side of the speaker (8 ohm),
wire the switch to the other side of the speaker with
the other clip at the end of the wire. Now you have a
test circuit.

Open the Model III and expose the CPU board.
Find U78. R21 (7.5 meg) and R20 (220K) both con-
nect to pin 6 of U78. Connect your circuit to that
junction, and connect the other end of your circuit to
ground. With the electrical connections made on the
computer, boot it up and load a program that has
sound. If you do not hear sound, toggle your switch.
When you have it working, shut everything down
and mount your switch next to the Cass plug on the
rear of the computer. Mount the speaker anywhere.
I glued mine to the bottom of the computer. Yes, you
will have to drill a hole for the switch to mount into.
You are tapping into the Cass-Out circuit, and the
switch lets you normal up the computer so you can

use the cassette recorder. Also lets you turn off the
sound. So much for sound in the Model III.

In the 4P, remove the transducer and disconnect
one end of R19 (22 ohms). Put in a speaker and vol-
ume adjust in lieu of R19. The 4P has no cassette
circuit, so this mod is straight forward. I mounted
my speaker in the cavity behind the drives.

Standard Model 4 - Expose the CPU and locate
U27 pin 8, R55 (7.5K) and R29 (220K). Connect your
test circuit to that junction and see how your sound
works. That i1s again the Cass-Out circuit, like the
Model III, so you will need the switch to re-enable
the Cass-Out circuit for its original function. You
now have two sound circuits, and at least one will
work in most operations without having to zap the
software.

The 4D should be the same, but I have no draw-
ings for it. The 4D also has a separate speaker board,

so you will have two sound sources there when you
finish.

Page 31

MODEL I EMULATOR

& DOUBLE DENSITY DISKS
by Lance Wolstrup

There has been much discussion as to “why the
Model I emulator cannot read double-density disks.”
First of all, the question is bogus. The emulator does
not read disks — it reads files — and files have no
density. Are you with me so far?

Now, Mr. Vavasour hard-wired the emulator to
expect the file (virtual disk) to begin the directory at
record 170 (AAh). “‘Why at record 1707, you might
ask. Because record 170 is the product of the number
of tracks and sectors it takes to get to the directory
on a standard Model I single-density disk (17 tracks
times 10 sectors). Incidentally, that is why some
Model I LDOS or DOSPLUS disks will not work on
the emulator — they aren’t standard — the directory
is probably on track 20!

We have now established that single-density
disks with the directory beginning at track 17, sector
0 will work correctly. So, the question now becomes
‘What if we transfer a double-density disk to an emu-
lator file?” The immediate answer is that it won’t
work because the directory will be in the wrong
place; that is, it will be located at record 306 (17
tracks times 18 sectors). But if we leave our think-
ing caps on a bit, we would come to the realization
that if we could somehow manage to place the direc-
tory so it would begin at record 170, rather than 306,
it just might work!

Trying to convert the position of the directory to
another place is not a programming exercise that I
recommend, so we are fortunate that we don’t have
mess with it. You see, NEWDOS/80 v2 has solved the
problem for us. Believe it or not, a standard Model
I/IIT NEWDOS/80 vZ double-density disk begins its
directory on track 9, sector 8. If you do a little calcu-
lation, you will see that 9x18+8 does indeed equal
170 — the directory begins at record 170 — just what
the emulator expects.

I have transferred most of my NEWDOS/80
Model III (double-density) disks to the emulator, and
they work perfectly (do note that the programs will
only work if they are Model I compatible). Transfer-
ring the double-density disks to virtual files was an
easy task. I simply patched my MAKFILE/CMD and
MAKFILE4/CMD programs which were listed in our
last issue to work with double-density disks. I would
recommend that you copy MAKFILE/CMD to a new
file called DD2FILE/CMD, and copy MAK-
FILE4/CMD to DS42FILE/CMD. Then patch the two

new files as follows:
TRSTimes magazine 7.1 - Jan/Feb 1994




PATCH DD42FILE/CMD (D01,93=12:F01,93=0A)
PATCH DD42FILE/CMD (D01,B3=12:F01,B3=0A)

This alters the Model 4 version of the program
to read and write 18 sectors per track, instead of 10.

Now, if you prefer to use your Model I or III to
transfer the double-density disks to virtual files, you
will need to patch DD2FILE/CMD in the same man-
ner. If vou use LDOS 5.3.x to patch, type:

PATCH DD2FILE/CMD (D01,A2=12:F01,A2=0A)
PATCH DD2FILE/CMD (D01,C2=12:F01,C2=0A)

If you are a Model I/III NEWDOS/80 fan, you
will have to use SUPERZAP to modify the file. Enter
SUPERZAP and choose:

DFS

Answer the FILESPEC? prompt with:

DD2FILE/CMD.

Answer RELATIVE-SECTOR-WITHIN-FILE #
prompt by typing: 1

Now type MOD A2

The cursor appears on top of the OA at byte AZ2.
Type 12.

Use the arrow keys to move the cursor down to
byte C2. There, overstrike the OA by typing 12.

After this is done, press ENTER.

SUPERZAP will ask you if it is OK to write the
changes to disk. Answer by pressing Y.

Pressing ENTER returns you to the newly modi-
fied record. Type EXIT and you are back in DOS.

If you have double-density disks that you want
to transfer to emulator virtual disk files, you can
now use NEWDOS/80 as the transfer vehicle. Sim-
ply copy all files from whatever DOS they were on
over to NEWDOS, and then use DD42FILE/CMD to
read the disk and write the file (from Model 4), or
use DD2FILE/CMD to do the same from Model I/I11
LDOS. Sorry, but as explained in last months arti-
cle, MAKFILE/CMD and DD2FILE/CMD will only
work from LDOS, as it is the only DOS that, to my
knowledge, has documented its RDSEC, RDSSEC,
WRSEC and WRSSEC routines. I simply have not
had time to go hunting for the addresses in NEW-
DOS — and they ARE different than in LDOS. You
will just have to live with that — unless you know
what the NEWDOS addresses are. In that case,
please write a short article and let me (and subse-
quently, the readers) know.

Meanwhile, enjoy your double-density disks
running on the Model I emulator. And they said it
couldn’t be done. Ha!!

Page 32

mﬂtm '*03’ M (2‘ 3) 534-5059

£
(s

‘ Contant BarbaraBeck (213) 664-5059 _

-
> < &) 3

o - ‘: . "’l"

.._.:_:;_fﬁ:ﬁ:ﬁ'l-'l'lﬁets the semnd Frlday ot each month atl i
Cltlzens Center. 405 8. Santa Anlta Aw.

THE club for TRSDOS, us-nos cpm

[ |
9 > < 65D

e
&1

b#%‘,?#

i

' (e
&3

- 7:00 pm at the Arcadia Park Senior

P> <

e
iﬁr

Arcadla, C.A

!ﬁ'
> < &

> <

l.arge publlc dmnaln llbrarlas
Bemote membershlps avallahle

i E t-‘%ﬂ# e..m-:» ﬂg&"# -:;&ﬁ: ﬂt 3>

TRSTimes magazine 7.1 - Jan/Feb 1994




	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf



