TRSTimes

Volume 7. No.3 -

May/Jun 1994 - $4.00

Model I, I11 & 4

LITTLE ORPHAN EIGHTY

I have recently had a somewhat
interesting experience. My oldest
son, Alan, i1s attending a junior col-
lege here in the San Fernando Val-
ley, and one of his courses is Com-
puter programming using Basic.
Now, I always considered myself a
fair programmer and, having taught
Basic for some yeéars at a competing
college, I thought that I might be able
to help him.

Sure enough, after a couple of classes, Alan
asked his ol' Dad for assistance. The homework as-
signment was nothing special, but I realize, for a be-
ginner, it wasn’'t easy. Anyway, I sat down with him
in front of the computer and we proceeded to write
the program step by step.

Since Alan understood what we had done, I felt
really good about being able to help him with his
homework. But, as it turned out, it was the kind of
help he didn’t need. He received an ‘I’ on the assign-
ment. Why? Because we had used GOTO’s. It seems
that GOTO is, indeed, a modern four-letter word!

I hit the roof, and I am still angry about it. So
angry, in fact, that I am writing about it in this col-
umn.

What happened to Alan is not an isolated case. |
have talked to — make that argued with — teachers
who are proponents of structured code. Now, if the
language itself requires structure, such as Pascal,
then so be it! But I resent 1t when someone tells me,
or anyone else, to do a job, and then not allow the use
of all the available tools. I mean, how would you like
to write a novel — only one catch — you are not al-
lowed to use the letter E.

My view is, that if GOTO is good enough for the
program that wrote Basic (assembler has the JP in-
struction), then certainly it is good enough for Basic
itself.

But that view is not shared by the structure
freaks. They think that you, the programmer, are
too stupid to write code. You must do it their way, or
it is no good. They want to prevent you from pro-
gramming yourself into a corner, or if you somehow
should get lucky enough to write a program that ac-
tually works, it must be easy for someone else to un-
derstand it and maintain it.

This is pure BalderdaSh, and it is indicative of |

where we are heading, not only in computing, but
also as a country. It has been defined by a famous
radio personality as ‘the Dumbing of America’.

Over the past couple of decades, our schools have
changed drastically. No longer do we cater to the

students who excel, we now slow the learning down
to suit the least able. The result is that we now have
graduates that can neither read nor write. For the
first time in histor- we have a generation that is less
educated than the one before them. Heaven help us!

You may find this paranoid, but I see this trend
spill over to computers. We are now catering to the
lowest common denominator. For the most part, the
popular computers (PC and Mac) are being operated
with pictures. Could this be because the users can’t
read?

Going further, programming is being watered
down to cater to the unimaginative. In the old days
we were given a set of commands and told to go to it,
make something useful — anyway you want to; now,
it seems, the emphasis is not on whether the pro-
gram works, but rather if the code is easy to read.
Maybe, if we could somehow manage to print the ac-
tual code as pictures....!!

Programming, like any other art, requires many
years of study and practice. It is not easy. There are
people who have the talent for programming and
there are people who don’t, and that's as it should be.
I mean, you really don’t want EVERYBODY to play
professional baseball, do you? Going to a game
wouldn’t be much fun.

Programming classes should be taught to em-
phasize imagination. Forget structure. Let the stu-
dents break every rule; let them program themselves
hopelessly into a corner. The good ones will figure
out what they can and cannot do, and the no-talents
will give up.. I have no problem with that.

My favorite story about structured programming
is really about music. Many years ago I played with
a guitar player named Jimmy Amerson. Jimmy was
an extremely talented musician, but he was self-
taught. One night, Paul, a guitar teacher was in the
audience. During a break he merntioned to Jimmy
that his playing style was wrong. Hmm! Jimmy
asked he he’d brought his guitar with him, and since
he had, Paul was invited on stage to jam. If I remem-
ber correctly, we started on a medium-shuffle blues
with Jimmy and Paul trading choruses. Obviously,
before long it became a cutting session. Verse after
verse found Paul trying to keep up with Jimmy, but
he just couldn’t do it. In the end, Jimmy had blown
him off the bandstand. For all the correctness and
style, Paul just couldn’t compete.

The bottom line was not how the music was
played, but rather, how it sounded.

The bottom line in programming is not how ele-
gantly and structured the program is written, but

DOES IT WORK!!

TRSTimes magazine
Volume 7. No. 3 - May/Jun 1994 - $4.00

BLISHER-EDITOR
Wolstrup

v ‘format. Any disk format is
acceptable, but please note on la-
bel which formatisused. = .

LITTLE ORPHAN EIGHTY ..couiiiirerecrenecenesceserossonsecses 2
Editorial

Reader mail

Daniel Myers

UTILITY MLAD.NESS ... ttcieeeeenierecoeesessessesssscsessassssss 11
Dr. Allen Jacobs

NEW VERSION OF FOREM BBS SOFTWARE........ 16
TRSTimes vault

BITS & PIECES......cccvviiieiirscnnarsiiosssossnnssssssasessssesssssesss 1T
Lance Wolstrup

C LANGUAGE TUTORIAL, Part 1eeeereecreenncrennnnc 21
J.F.R. “Frank” Slinkman

SOME MEMORY MEANDERINGS, Part 2 30
Roy T. Beck

ISSUE 7.2

I read with complete absorption “Mrs.
TRSTimes” riveting account of the earthquake. Boy,
can she write a gripping narrative! It was almost
like being there! The only time I'm more ‘at the edge
of my seat’ is when I'm watching ‘Star Trek: The
Next Generation”. That's the greatest compliment I
can think of! I am glad that no one in your family
was hurt.

Anyway, I read on the back cover that there are
4 volumés of the “Z-80 Tutor” available. I didn't
know this! If mentioned in a past issue of TRSTimes,
I sure missed it. Where can I get all four volumes?
How much are they? Can they be gotten from you?

John E. Grant, Jr.

West Columbia, SC

I agree. Mrs. TRSTimes is, indeed, an excellent
writer. She is on the Board of Advisors of Men’s Fit-
ness’ magazine, where she writes frequent articles,
using the name Sylvia Cary. She has also written
several books, educational movies, as well as numer-
ous articles for various national magazines. I'm
proud of her.

We do not handle the Z-80 Tutor books, but they
can be obtained directly from the author, Chris Fara
of Microdex. He can be reached at 1212 Sawtelle,
Tucson, AZ 85716.

Ed.

I would just like to say a thank you to Sylvia for
her article on the ‘quake’; it brings a little under-
standing to us who rarely feel the effects of these
things, and even when we do, they are like that of a
very heavy lorry passing and nothing more.

Another line of enlightenment was Sylvia's de-
scription of the layout of your house and of your fam-
ilies; it brings things that much closer.

I hope you were not too affected by the recent
aftershocks we read about; it seems to me like living
with a time bomb and something I can well do with-
out,

Tom Ridge

Surrey, England

Page 4

Sylvia says ‘thank you’ for the kind words about
her article. We have had thousands of aftershocks
since the ‘Northridge Shake’, but we are getting so
used to them that we don’t even pay attention any-
more. On the other hand, there have been a few that,
had it not been for the 6.8, they would have been con-
sidered quakes in their own right, rather than after-
shocks - those we noticed with various degree of ner-
vousness.

A time bomb - yes, I guess you're right. But it is
so00 exciting. Hmmm/!

Ed.

HIDEE

Just a few words on HIDEE (see ad elsewhere in
this issue). The program was written by Jerry Gos-
mire, another TRS-80 nut here in South Dakota. We
have been hammering on it for about a year, and it
is now something that is really super fantastic. I told
Jerry that the program is so nice that everyone
should check it out!

It's truly amazing the way it runs - instead of
flipping regular screens, as in LOW-RES using DI-
RECT by Chris, this can be used to call
DMENU/X10....on and on.... to match the DI-
RECT/X10 files, so each file calls a Hi-Res screen
that you can create, or use the ones that will be in-
cluded in the package. It's really superb. We've also
included a Westminster Chime, instead of the usual
beep that's heard on the hour! Awesome - sometimes
I don’t know whether I'm using a Macintosh or a
Model 4...1!

The program has been written into a self-run
JCL file to install it into the DIRECT/CMD file.
Then you install it, just like DIRECT on SYS13 and
away you go! Real nice. Right now we are working
on a Moving Screen Saver, instead of the BLANK
screen when the screen times-out. Should be a real
winner.

Andrew Miller

Sioux Falls, SD

It is always nice when there’s new software for
our TRS-80’s. I wish you luck with the program.
Ed.

BIT FIDDLING

I just got a new pocket calculator from Texas In-
struments, a 35X, as an “update” for my old SR-51-
I, when TI was unable to replace its battery pack.
Charge: Can$ 17.5 (approx. $13.50 U.S.), and one
store in Windsor quoted me $33.54 for this model.
Not a bad discount!

TRSTimes magazine 7.3 - May/Jun 1994

The calculator has three functions on each key
(164 total), 3 memories, aside from the usual scien-
tific functions, one and two variable statistics, frac-
tions, 10 metric conversions, and best of all, Hex,
Oct & Bin, with Boolean logic functions, NOT, AND,
OR, XOR and XNOR (wherever that is).

Playing with it, I remembered Chris Fara's
“BASIC IMPS” article in 6.2 page 24, and your
“PEEKING & POKING” article in 1.1 page 4. It
seems that the XNOR is the equivalent to Chris’
EQV:0XNORO0O=1,0XNOR1=0,1XNOR1=1
No IMP on it, though.

But then it got confusing (probably one of the
reasons I never got far into assembler). Trying some
of the AND’s and OR’s in your article, and checking
what the computer put at that address and what the
calculator came up with, things got muddy. Except
for the error in the Break key address (which I think
I mentioned once before, it should have been 7CH,
rather than 74H as printed) your POKE'’s all work.

But, for instance, at 74H (86H) AND’ing 223
gets 16H on the cale, but the computer shows a 4H
at 74H?? Pencil and paper confirm the calc: 0011
0110 AND 1101 1111 gets 0001 0110, 16H. Why does
that not show up at the 74H address? Jump some-
where else? The reverse OR 32 miraculously re-
stores the 36H. As I said, too far out for me.

I also could never understand why go to the
lengthy POKE/PEEK/AND/OR syntax, why not
poke the proper Byte? It would make a Basic pro-
gram shorter and simpler! Is that a hangover from
working in binary, or does it have a valid reason? In
the above, POKE 116,4 as well as POKE 116,16
switch to lower case, while POKE 116,36 restores
upper case (which is my boot-up setting). Well, I am
confused.

Maybe an article going a bit more into depth
about Boolean logic, its use, what's in the FLAG
table, etc. would be of interest to some of us, not just
to me. I have no contact with anybody else to ask
these questions - my BASIC knowledge came mainly
from the childish looking, but very good, “Getting
Started With TRS-80 BASIC” book, and nothing sim-
ilar is around for Assembly Language. Maybe I
should start another attempt to dig through Chris’
Tutor.

Henry H. Herrdegen

LaSalle, Ontario, Canada

I have a calculator (Casio fx-115v) that is similar
to yours. It also has the Dec/Hex/Bin/Ocltal conver-
sions, as well as the Boolean logic functions
NOT/AND/OR/XNOR - which is why I bought it in
the first place. Sounds like you got a nice deal.

If you look a little closer at the XNOR function,
you'll see that it does not produce a results of 0 and

Page b

1, rather:
0 XNOR 0 =-1
0XNOR 1=-2
I1XNOR 1 =-1

Just for the record, the Model 4 EQV function
works exactly the same.

Henry, memory location 74H (on the Model 4),
among other things control the status of the key-
board. If bit 5 is ON (1), the keyboard is in upper-
case mode - if bit 5 is OFF (0), it is in lower-case
mode.

You have configured your Mod 4 to boot-up in
upper-case, so bit 5 of memory location 74H is ON.
But this is where you make your mistake, and thus
confuse yourself - if you check the contents of 74H
(from BASIC typing PRINT PEEK(&H74), you will
get 36. That is 36 decimal, not 36 Hexadectmal. BA-
SIC always returns PEEK values in decimal.

Now that we have the correct starting value, the
AND 223 (turning OFF bit 5) will produce 4 in the
machine, as well as on the calculator. The reverse
(turning ON bit 5), 4 OR 32 produce the number 36,
again, that is 36 decimal, not 36H.

All operating systems that I have ever worked on
have data tables that determine the configuration of
the computer. In the case of the Model 4 and LS-
DOS 6.x.x., one such table is the FLAGS, which be-
gins al memory location 6AH(106) and continue for
26 consecutive memory locations. Many of these
memory locations are bit-mapped; that is, each bit in
the 8-bit byte, holds a piece of information about the
machine configuration. A good example is memory
location 7DH, known as DFLAGS$ - it contains 8
pieces of crucial information, each depending on the
status of a particular bit.

if set

bit 0 - SPOOL is active

bit 1 - TYPE ahead is active

bit 2- VERIFY is on

bit 3 - SMOOTH active

bit 4 - MemDISK active

bit 5 - FORMS active

bit 6 - KSM active

bit 7 - accept graphics in screen print

On a virgin TRSDOS/LS-DOS 6.x.x disk, the
value of this memory location is 0AH or 10 decimal.
This translates to 0000 1010 in binary, which means
that Type ahead and SMOOTH are active. But when
you write programs that will be used by other people,
you just cannot assume that this (or any other mem-
ory location for that matter) will contain a specific
value. As you can tell, it is quite possible that TDH
has been changed to a different value; for example,

TRSTimes magazine 7.3 - May/Jun 1994

FORMS might be active - in which case the value
will be 2AH - 421in decimal - or 0010 1010 in binary.
If we now stimply POKEd 10 back into this location
in order to make TYPE ahead and SMOOQOTH active,
we also manage to turn off bit 5 (FORMS) whether
or not we wanted to. I am sure you can see that sim-
ply POKEing a predetermined value anywhere is not
a good idea.

Thus, in order to avoid chaos, we first pick up
the value that’s already stored in the particular lo-
cation, then we turn on/off the desired bii(s) with
AND/OR, and then we POKE in the new altered
value. Yes, the syntax is a smite longer and a little
more difficult to understand, but it is the only way
to fiddle with the bits. Hope this answered all your
questions - also see the ‘BITS & PIECES article else-
where in this issue.

Ed.

ELECTRIC WEBSTER

Rumaging through a box of diskettes (donated
by a friend a year or so ago), I came across Electric
Webster, the spelling checker and hyphen/grammar
package. I copied the files to my 3 1/2” disk and dis-
covered it had been set up to run with LeScript.

Looking further, I noted a CONF/CMD and a
CONFGRAM/CMD. Aha! Configuration files, which
allegedly will install Electric Webster to work with
LazyWriter, AllWrite, or LeScript. It runs OK, ex-
cept for one thing - I installed it to go back to All-
Write and it keeps asking me to put a floppy in with
ESCRIPT/CMD. Got no such, and I figure it really
is looking for LESCRIPT. But why? I installed it for
AllWrite, I thought...

So the CONFGRAM/CMD program has a prob-
lem. Got my DED6/CMD loaded (my trusty Disk-
Zapper) and asked it to find all occurrences of ES-
CRIPT on the 720K disk. Obviously, one (or more) of
them needs to be changed to AL/CMD. I found it on
track 59, sector 21. It was in the CORRECT2/EW
file. Did an ASCII change (easier than doing HEX,
right?), exited DEDG6 and ran EW (Electric Webster)
for effect. Fantastic - exited EW and brought up All-
Write - no more errors!

I now have my Wordprocessor, DotWriter, and
the Spelling-checker with the grammar/hyphen util-
ities all on the same floppy. Oh, the joys of having
720K disks.

The moral of this story is “you have to fix it
yourself” since everybody went out of business. I
had no idea that I would find the solution to the
problem - but I was sure going to try!

Electric Webster can be used without your word-
processor - just type EW and it comes up and asks
what file you want to process. But it is so nice when

Page 6

you can hit the ‘Hot Key’ in AllWrite, check your
work, and then return to AllWrite.

I now have all the above on TRSDOS/LS-DOS 6
on the Model 4, while in Model IIT mode on NEW-
DOS/80 I have AllWrite. DotWriter and Electric
Webster (without the grammar/hyphen feature). I
am pretty well set now using either of the machines.

It comes to mind that the reader might wonder
why Electric Webster had to be installed in the first
place if it will run without the word processor. Good
question! Most word processors have formatting
commands that are unique, so the spelling checker
needs to know which you are using. Keeps confusion
and crashes to a minimum...

Kelly Bates

Oklahoma City, OK

Yes, running into a problem, and then solving it,
is a very satisfying experience. Congratulations.
Having seen Roy Beck’s demonstrations of AllWrite
with Electric Webster at several club meetings, I rec-
ognize how powerful the programs are when used
together. Indeed, the TRS-80 is still a very capable
machine, blessed with superior software.

Ed.

to:Andy Miller
€02 W. 15th
H i B E E Eioux Falls,
free Shipping gD 57104
1 Finally! Hi-RESOLUTION Menu’s for DIRECT

| Users! Now you can use Either Hi or LOW
Res. MENU’S with your DIRECT by Chris.

With HR,CHR.or SHR files you can Create, or
with the Samples supplied. This is a SELF-
INSTALL file in less than 5 minutes! Also

included, Hestminster Chimes instead of the

usual BEEP. $29.95 no personal checks,pleace.
The MODEL-4 Now LOOKS like a MAC!

I For E1rHeR
HI-RES BOARD!

TRSTimes magazine 7.3 - May/Jun 1994

BEAT THE GAME

by Daniel Myers

CUTTHROATS

Welcome aboard, matey! Dust off your scuba
tank, shake out your flippers, and prepare to go trea-
sure hunting. But first, a word from our sponsor.
Cutthroats, like most Infocom games, has several so-
lutions. This walkthrough will show you one way of
completing the adventure. However, there are oth-
ers, so when you've finished, you might want re-play
the game, doing different things, to see if you can
come up with another way of recovering the trea-
sures successfully.

Also, you should be aware that you can only re-
cover treasures from 2 of the ships, the Sao Vera and
the S.S. Leviathan. The other wrecks are only red
herrings, and you don't have to bother with them.
Which of the two real wrecks you will dive for de-
pends on the item you are shown by Johnny Red. If
he shows you the gold coin, it's the Sao Vera; if it's
the dinner plate, then the ship is the Leviathan.

Further, most of your actions up to the dive itself
will be pretty much the same, so this section of the
walkthrough will take you up almost to the dive it-
self. After that, consult either the Sao Vera section,
or the Leviathan section, depending on which ship
you're investigating.

TRSTimes magazine 7.3 - May/Jun 1994

Ok! The game starts with a long lead in, explain-
ing how you came by the book of shipwrecks. You
will have to sit through this on each boot-up; no way
around it. After that, the game really begins, with
you lying in bed in your scruffy room at the Red Boar
Inn. The first thing to do is stand up, then wind your
watch (time is important in the game, and if your
watch runs down, you can't keep track of the time).

There's a note on the floor. Read that, then open
your dresser. Inside are the shipwreck book, your
bankbook, and a room key. Get the key, open the
door, go out, and lock the door again. You don't want
to leave the door open, or the Weasel will come by
later and steal the shipwreck book. If that happens,
the game is over before it even starts. You don't need
to take the book with you, so locking the door is ef-
fective here.

Now, go downstairs and out to the Wharf Road.
Follow the road East until you get to the Shanty. En-
ter the Shanty, and you will see Johnny Red and
Pete the Rat already there. Sit down and order
breakfast, then wait for Weasel to show. Order a
glass of water when you get thirsty. While you're
waiting, you might want to listen to the parrot. He
doesn't have anything important to say, but you
might get a chuckle out of him.

Eventually, Weasel will arrive, and Johnny will
ask if you're interested in doing some treasure hunt-
ing. Say yes, and then Johnny will have you all meet
again a little later at the lighthouse, in order to keep
McGinty from finding out what you're up to. After
that, leave the Shanty, go back West to the end of
Wharf Road, and from there Southwest twice and
Northwest once, which brings you to the lighthouse.
Now, wait for Pete, who will be the last person to
arrive.

Once Pete gets there, Johnny will show an ob-
ject, either the coin or the plate. This indicates
which wreck to dive for. After that, he'll give further
instructions, which you should read carefully. When
he's finished, go back to your room at the Red Boar.
Get your passbook. If you're diving for the
Leviathan, also get your scuba gear from the closet
(scuba gear not needed for the Sao Vera).

Leave the room (lock the door behind you!), and
go back out. Walk East along Wharf road to the end,

Page 7

and go Southeast to the Ocean Road. If you're going
to use your scuba gear for the dive, go Southwest
into the alley, and drop your scuba gear there. You
don't want McGinty to see you lugging it around.

Follow the Ocean Road south to the end, then go
Southwest to the Ocean Road, and North into the
bank. Make your withdrawal, then leave and return
to Ocean Road, where you go Southeast to Point
Lookout. Drop your passbook here (that Mcginty has
sharp eyes, and you don't want him to see you with
that, either), and wait for Johnny.

When Johnny arrives, show him the money you
just took from the bank. He'll be satisfied, and then
ask if the wreck is more than 200 feet underwater.
Answer yes if it's the Sao Vera, no if it's the
Leviathan. The two of you will then head back to
International QOutfitters to rent a ship and purchase
supplies and equipment. McGinty will be in the
store when you get there. However, just wait, and
he'll leave eventually.

Johnny will make his purchases first, and you
will have to chip in some of the cash you're carrying.
However, you will have plenty of money left over to
buy whatever you need. When it's your turn, buy the
flashlight and the shark repellent. If you're diving
for the Sao Vera, that's all you need. However, if you
are diving for the Leviathan, also buy the following
items: C battery, putty, and electromagnet, and also
rent the small air compresser (so you can fill your
tank). All these items will be delivered to the ship for
you, so you don't have to take them with you.

Now, it's time to uncover a little double-dealing.
Leave Outfitters, and go back East along Wharf
Road to the end, then Southeast again to Ocean
Road. Go along Ocean Road to the end, then South-
west to Shore Road, and continue West along Shore
Road until you reach the Ferry dock. Wait around.

Soon McGinty will appear, and a short while
later, Weasel. The two men will go off to a corner
and talk. Then Weasel will hand something to
McGinty, and board the Ferry (you can't get on it
yourself, but you have other things to do, anyway).
Ok, now you've seen that, go back to Ocean Road,
and then into the alleyway.

The alley runs behind all the buildings, and it
will come in very handy! Go West along the alley
(pick up your scuba gear if you dropped it here ear-
lier) , until you're standing behind the vacant lot,
which is next door to McGinty's. Wait here, and
McGinty will come by, heading from East to West.
Continue waiting, and he will soon re-appear, going
from West to East (he is walking along Wharf Road,

Page 8

of course).

Once you see him the second time, go West once,
and you're behind his store. The door is locked, but
you can open the window and get through into the
place. Here you will find an envelope that proves the
Weasel is out to double-cross you all. Get the enve-
lope, then leave by the window.

Go back along the alley to the Vacant lot, then
go straight North until you come to the dock where
the rental ships are moored. Both ships have ap-
proximately the same layout; they are slightly differ-
ent on the top deck, but below they are exactly the
same. Enter whichever ship has been rented for the
dive, and go below deck. Then go north until you
reach the crews quarters, and hide your envelope
under the bed. You don't want Weasel to know you
have it (he'll kill you), and if you show it to Johnny
now, you'll cancel the expedition.

Now you have to do some more waiting. The de-
livery boy will come around, and drop off the items
you've bought. Then the others will start to arrive.
When Johnny comes, go to the Captain's Cabin, and
tell him the longitude and latitude of the wreck,
which you can easily get by looking at the shipwreck
book that came in the game package. Then go back
to the crews quarters, and wait some more. Eventu-
ally, you'll reach the dive site. At this point, you
should now read either the Sao Vera section or the
Leviathan section, whichever is applicable.

LEVIATHAN

Ok, so it's time for the Leviathan. Get up, then
go North to the storage locker. Here you will find all
the things you bought at Outfitters. Put on your wet
suit and flippers. Get the drill and the C battery,
open the drill, put the battery inside, and close the
drill. Get the remaining items, except the com-
presser. Fill your tank with the compresser, then go
South. Along the way, get the envelope from under
the bed.

Stop in the galley to eat and drink, then con-
tinue on South to the Captain's Quarters. Show
Johnny the envelope. That will take care of Weasel!
Now go North and up. Put on your tank and mask.
Johnny will tell you about the orange line, but for
this dive, it won't be needed.

You're all set, so dive in! Once underwater, turn
on your flashlight, because it's going to get dark
pretty soon. Oops! A shark just showed up! Good
thing you have the repellent. Open the canister, and

TRSTimes magazine 7.3 - May/Jun 1994

the shark will take off. Now, just keep going down
until you reach the wreck.

You're on the top deck of the Leviathan, with a
hole at your feet. Go down through the hole, to the
Middle Deck. Here, you can only go up or down, so
go down again, to the Below Decks area. From there,
go South, to the room with the closed door. You
might want to read the sign on the door before you
open it.

Once past the door, you're in a mine locker. All
the mines are tied down, except for one loose one,
floating in front of a hole. Fortunately, you can take
care of that problem without difficulty. Touch the
magnet to the mine, then turn on the magnet. Drop
the magnet (why that doesn't blow you to bits, I
don't know, but that's how it works). Now you can go
up through the hole.

You're on the Middle Deck again, although a dif-
ferent part of it. The way South is narrow, so remove
your tank, then go due South until you come to the
room with the safe. This is the tricky part. Turn on
the drill, drill the lock, and then *immediately* turn
off the drill again. Otherwise, it will burn out, and
you'll have a big problem later!

Ok, inside the safe is a glass case containing
some valuable stamps. Alas, there is a crack in the
case, and water is starting to seep in. However, don't
be alarmed; you'll have enough time to fix that. Go
back North to the room with the hole in it. Put your
tank back on. Go through the hole into the mine
locker, then North, then up through another hole.

Surprise! This room still has air in it. Good
thing, too, because the water level in the case was
starting to get too high for comfort! Now, turn on the
drill, and drill a hole in the case. As the water drains
out, the drill dies (lasted just long enough). Now,
open the tube of putty, and put the glob of putty on
the hole. The putty will seal both the hole and the
crack.

And that's just about it for the Leviathan. All
you have to do now is go back through the ship, and
up to your own boat, where your comrades are wait-
ing. Congratulations! You're now a very rich diver!

SAO VERA

So, it's off to the Sao Vera. This one has a few
more obstacles than the Leviathan did, but none of
them are particularly difficult. The first thing is to
get off the bed, and head North to the Storage

TRSTimes magazine 7.3 - May/Jun 1994

Locker. Here you'll find the flashlight and repellent,
as well as a deap-sea diving outfit. There is also a
small machine here, that you won't be needing (it's
a locater box. If you really want to fiddle with it, you
have to buy a dry cell to make it work).

Get everything but the box, then go back South.
Get the envelope from under your bed, stop off in the
Galley to eat and drink, then continue on to
Johnny's cabin. Show him the envelope, which will
put an end to Weasel's double-cross. Now wear the
suit and go up on deck.

Johnny will be there, and will tell you about the
orange line. Keep in mind what he says. If you look
around, you'll see a large air compressor, with an air
hose. Attach that to your suit, and then turn on the
compressor. You're all set, so dive in!

Once underwater, turn on your flashlight.
There's that pesky shark again! Open your canister
to get rid of it, then keep on going down. It will be a
long way down, but you'll get there.

Now you're on the top deck of the Sao Vera, with
a hole at your feet. Go down the hole. Crash! Looks
like the ladder broke. You may have a problem get-
ting back up again! Then again, maybe not. Leave
that for now, and make your way South, into the
room with the iron bars. Get one, because it will
come in handy soon.

Then keep going South, until you come to the
room with the bunks barring the way. Move the
bunks with the bar, then wedge the bar under the
bunks to keep them from moving back. Now you can
go South again, to another room, with a ladder lead-
ing down. Climb down that one.

Oops! Crash again! This time, though, the whole
ladder didn't crumble. Still, it's going to be hard to
reach it on your way back. No matter, you still have
to find that treasure, so go North.

Uh Oh!! There's a giant squid here! Good thing
for you it's asleep. And if you're smart, you won't
wake it up! So, just go right on by, don't try doing
anything to the squid at all. In the next room is an
oak chest, along with a hole in the side of the ship.
Leave that for now, and keep going North.

In the next room are some skeletons, remains of
the crew. Examine them, and you'll see one wears a
scabbard. In the scabbard is a sword. Get that, and
go North again, to the last room. Here you will find
a maple chest. The chest is to heavy to carry, so push
it back South until you come to the oak chest (note:
you must say "Push Maple Chest South").

Page 9

Hmmmm, now, which chest to take? Let's try
the oak chest. Push that out West through the hole
(carefully! You don't want to cut your air supply!).
Wait awhile, and the orange line will appear. Get
that, tie it to the oak chest, and tug on the line. The
chest will slowly make its way upward, while you
return to the ship.

Now, push the maple chest south, past the
sleeping squid, and south again into the room with
the ladder. Climb on the chest, and you'll be able to
reach the ladder and climb back up to the middle
deck.

From there, go North until you reach the room
with the cask in it. Now, push the cask north with
you, until you come back to the room with the mast
and the rope tied around it. Climb on the cask, then
cut the rope with the sword. Drop the sword (you
can't leave with it), and then make your way up and
out.

Once on the top deck, just keep going up until
you're back on the boat. The chest will be opened to
display hundreds of gold coins. Congratulations,
you're now a very rich diver!

ANTASTI
DOT WRITER
FONTS

KELLY BATES %Z

$3.00 J0€ER DISK

CONTACT
MICKEY MEPHAM
9602 JOHN TYLER MEM HWY
CHARLES CITY, VA 23030

e

YES, OF COURSE !
WE VERY MUCH DO TRS-80 !

MICRODEX CORPORATION

SOFTWARE

CLAN-4 Mod-4 Genealogy archive & charting $69.95
Quick and easy editing of family data. Print elegant
graphic ancestor and descendant charts on dot-matrix
and laser printers. True Mod-4 mode, fast 100%
machine language. Includes 36-page manual. NEW!

XCLAN3 converts Mod-3 Clan files for Clan-4 $29.95

DIRECT from CHRIS Mod-4 menu system $29.95
Replaces DOS-Ready prompt. Design your own menus
with an easy full-screen editor. Assign any command to
any single keystroke. Up to 36 menus can instantly call
each other. Auto-boot, screen blanking, more.

XT.CAD Mod-4 Computer Drafting $95.00

The famous general purpose precision scaled drafting
program! Surprisingly simple, yet it features CAD
functions expected from expensive packages. Supports
Radio Shack or MicroLabs hi-res board. Output to pen
plotters. Includes a new driver for laser printers!

xT.CAD BILL of Materials for xT.CAD $45.00
Prints alphabetized listing of parts from xT.CAD
drawings. Optional quantity, cost and total calculations.

CASH Bookkeeping system for Mod-4 $45.00

Easy to use, ideal for small business, professional or
personal use. Journal entries are automatically
distributed to user's accounts in a self-balancing ledger.

FREE User Support Included With All Programs !

MICRODEX BOOKSHELF

MOD-4 by CHRIS for TRS/LS-DOS 6.3 $24.95
MOD-Ill by CHRIS for LDOS 5.3 $24.95
MOD-Ill by CHRIS for TRSDOS 1.3 $24.95 .
Beautifully designed owner's manuals completely
replace obsolete Tandy and LDOS documentation.
Better organized, with more examples, written in plain
English, these books are a must for every TRS-80 user.

JCL by CHRIS Job Control Language $7.95 ,
Surprise, surprise! We've got rid of the jargon and JCL
turns out to be simple, easy, useful and fun. Complete
tutorial with examples and command reference section.

Z80 Tutor I Fresh look at assembly language $9.95
Z80 Tutor Il Programming tools, methods $9.95
Z80 Tutor lll File handling, BCD math, etc. $9.95
Z80 Tutor X All Z80 instructions, flags $12.95
Common-sense assembly tutorial & reference for novice
and expert alike. Over 80 routines. No kidding!

Add S & H. Call or write MICRODEX for details
1212 N. Sawtelle Tucson AZ 85716 602/326-3502

TRSTimes magazine 7.3 - May/Jun 1994

UTILITY M.A.D.NESS

The M.A.D. Software Utilities Disk #1
Reviewed by Dr. Allen Jacobs

M.A.D. Software has produced a truly profes-
sional quality integrated set of TRS-80 utilities
called the Utilities Disk #1. It is a set of DOS level
UNIX-like programs that add a dimension of utility
unique to LS-DOS/TRS-DOS in the TRS-80 Model 4
family of computers. However, the manual occasion-
ally notes that some of the utilities can apparently be
ordered for the Model III if it is run under LS-DOS 5.

The *NIX family of systems provide small and
large network multitasking and multiprocessing the
resources that single user systems simply can not
utilize for most applications. Many of those "big sys-
tem" features are largely invisible to the single user.
In theory, the true location and processing of pro-
grams and data in a large networked system is sup-
posed to be invisible to the individual user. Thus, if
a task is actually running on some giant server in
another city rather than on a user's desktop ma-
chine, how would the user know or care? The truth
is, they wouldn't. Thus, what is really most impor-
tant to the user is how the computer reacts to the
user.

So, what makes the difference between a good
DOS and a great DOS to a user? Aside from the ap-
plications available that run on the DOS, the most
significant difference is the availability of utilities
that give the user direct knowledge and control over
both the performance of the operating system and its
files, wherever they may be. In the case of most per-
sonal computers, those files reside in our own ma-
chines.

To that end, M.A.D. Software has written a set
of utilities called the Utilities Disk #1 that give LS-
DOS 6.3.1 many of the user relevant features that
make the various members of the UNIX family of op-
erating systems say that they love their DOS. In
their documentation, M.A.D. Software refers to
these systems as the *NIX Systems. The use "*" is a
result of a legal dispute between Unix System Labs
(USL) and University of California at Berkeley (who
made Unix usable and got it out of the labs) over the
ownership of all or part of the Unix system. This dis-
pute was resolved in March 1994.

The M.A.D. in M.AD. Software stands for
Michael A. Durda, who is the brother of Frank
Durda The Fourth. Frank is the author of the boot
ROM running in every Model 4P TRS-80 machine
ever made. I am told that his signature appears

TRSTimes magazine 7.3 - May/Jun 1994

within the ROM code as "FDIV". Because Frank
worked for Tandy, who does not like employees sup-
porting or selling products for any type computers
on the side, he created M.A.D., using his brothers
name. While Michael ran things, Frank wrote nearly
all the software and firmware that the company
sells. However, he no longer works for Tandy, so
Frank now takes care of nearly all aspects of M.A.D.
Software. He has rewritten the ROMS to allow boot-
ing of all Model 4's, directly from a hard disk without
the requirement of a boot floppy. He also included
some other improvements. That is no small feat. I
have included this background just so that you
might become aware of who M.A.D. Software really
is, and so you would have some idea of the truly pro-
fessional level of the technical capabilities.

The disk utility set consists of nine major utili-
ties and their attendant overlay and configuration
files. There is also a well organized and extensive set
of documentation files for each of the utilities. The
documentation is available on two media. Both are
included in the package. The documentation comes
both professionally printed, and in ASCII (on disk).
That is the best combination possible. Printed docu-
mentation is easier to read while ASCII files are eas-
ier to search.

What makes these utilities unique is the rich
number of parameters each of them has and their
modular interconnectivity. While some are "just"
helpful, others virtually transform the essential
character of LS-DOS into a quasi-multitasking envi-
ronment. Thus, the TRS-80 begins to act much like
a UNIX system, which is what seems to be the over-
all intent of the utilities set.

The utilities included on the disk are: LOOK,
MAPMEM, MORE, LS, OOPS, WC, XLR8SET,
FORCEHI, and PIPES. They are all called from the
command line with parameters optionally entered
after the command, separated by a space and a "-"
preceding the first parameter, which is usually a sin-
gle character. Thus, help is provided for a utility by
typing in the utility's name followed by <SPACE><->
<?><ENTER>. Using <-><h> will also work.

With the daunting array of specifications avail-
able to the user within each of the programs of this
utility set, re-typing each desired option every time
the utility is invoked could become tedious. Also,
there will probably be a limited set of options for

Page 11

each of the utilities that a single user will finally de-
cide is useful for his or her purposes. In a file called
DEFAULTS/MAD, the desired configuration for
each of the utilities in the set can be saved. This file
is consulted by each of the programs when they run,
unless the "-!" option is specified. The file is an
ASCII text listing of the name of each utility. After
the name, the user may list the desired options to be
invoked each time the program is run. Each utility
can be saved under a number of different names in
order to provide multiple sets of options for the same
utility. This system provides a near "named macro"
convenience mechanism for calling the programs in
the utility set with pre-specified options. While I
don't recall reading any specific warning in the man-
ual against renaming a utility with the exact
spelling of a DOS command, it is not advisable to do
so. DOS will execute the command before it ever
searches for a program with the same name.

Some of the included utilities work with flexible
file specifications (filespecs) called wildspecs. When
using wildspecs for filenames, an asterisk ("*") be-
tween two characters specifies that a variable num-
ber of characters in a filename will be recognized as
being included within the specified group of files;
whereas, a "%" will allow variability only in the
character position in which it exists. A range of ac-
ceptable characters can be specified by a "-" between
the limiting character values; whereas, specific ac-
ceptable characters can be specified for a filename
position if they are surrounded in "[" and "]".
Drivespecs can also be selected in ranges. Filenames
are all converted to upper case. The examples shown
in the manual make the true file specifying power of
these wildspecs more apparent than can be pre-
sented here.

LOOK

Those of us who have used Super Utility Plus
know that by pressing "!" and a drive number, the
program will indicate which TRS-80 DOS was used
to format an unknown disk placed into that drive.
The problem with SU+ is that if the disk is not in a
TRS-80 format, there is no simple means we have of
identifying its DOS beyond TRS-80 systems. Thus,
having floppies that include CP/M and IBM formats,
we are forced to boot up almost every computer sys-
tem we have at home, only to determine that the
floppy 1is, in fact, not formatted. That determination
can take about 15 to 20 minutes and we're never
sure that our conclusion is correct. Alas, a TRS-80
program that can make that determination in one
pass has been an unfilled void in my wish list for a
long time.

LOOK addresses this deficiency by being able to
Page 12

determine the formats of TRS-80 (including Model
11/12/16/6000 formats), MS-DOS format, and those
formats of selected CP/M disks. Also, while it can not
read them, LOOK can actually determine if a 5 1/4"
floppy disk has been written in IBM AT High Den-
sity Format. The user can also supply additional for-
mats which LOOK can thereinafter recognize. On
an LDOS 5 or an LS-DOS/TRSDOS 6 disk, LOOK
can map the location of files on both physical and
logical drives (devices) including diskDISKS.

With LDOS 5 LS-DOS/TRSDOS 6 disks LOOK
will optionally display allocation information by
physical location on a disk or by any file or specified
combination of files, including, of course, all of them.
LOOK will accept drive (device), filename:drive,
cylinder, granule, and sector specifiers. The display
can always be paused with the familiar <SHIFT>@
combination and resumed by pressing any other key.
With the addition of a ">" specifier, LOOK will send
its output to a user specified file on any specified
drive (device). If the ">>" specifier is used, the out-
put will be appended to an existing file. The ";" com-
mand can be used to separate commands that will
then be executed sequentially. While LOOK's multi-
ple command execution capability from the com-
mand line is not quite as sophisticated as PIPES, the
differences will be explained later. Actually, LOOK
can optionally be run under PIPES.

Favored combinations of user specified options
can be stored in the DEFAULTS/MAD file. New and
previously unspecified disk formats can be added to
those already present in the LOOK/INI file. Once
specified, LOOK can recognize and identify these
formats again, on other disks.

MAPMEM

MAPMEM does for memory what LOOK does for
drives. It summarizes the amount of low and high
ram that is currently available and how much low
ram was available at the time the system booted.
Also, it detects the presence, size, and location of all
modules in memory and optionally displays the in-
formation in tables, in decimal or hex. MAPMEM
categorizes the information into four tables. They
are: available low and high memory, enabled disk
drivers, character drivers and filters, and other
modules not accessed as drives or character based
devices. The tables contain the starting address of
each module, its ending address, its length, its
name, and a brief description of its purpose.

A maximum of 50 entries with each entry con-
taining a 35 character description of a specifically
named module may be placed in a file referred to by
MAPMEM called MAPMEM/INI. This file is con-

TRSTimes magazine 7.3 - May/Jun 1994

sulted when the program runs. Newly developed
memory modules can thus be included in subsequent
memory mappings.

The options for MAPMEM are appropriate to its
function and follow those available for other pro-
grams in the set. Each of the tables may be included
or eliminated from the from the output. Addition-
ally, the length of each module may optionally be
displayed in decimal instead of hex. The normally
displayed headers for each table may optionally be
omitted. The display can be paused and resumed
with the <SHIFT>@ combination, alternated with
any other key to resume. The output can be redi-
rected to a file and optionally appended to an exist-
ing file with the ">>" specifier previously described.
As with the other utilities in this set, the output can
also be optionally redirected through MORE.

MORE

MORE is best described as the closest TRS-80
program to Vernon Buerg's "List" in the MS-DOS
world. It is a file display utility through which the
output of any of the programs in this set that pro-
duce output can be redirected. MORE can also dis-
play the contents of any file or group of files, using
the wildspec file specification options available in all
the utilities in this set. Also, its output can be redi-
rected to a file or other device.

MORE can display a file's contents a line at a
time if the <ENTER> key is pressed or a screen at a
time with the press of the <SPACE> bar. Pages are
normally advanced by scrolling new lines from the
bottom. However, new pages may optionally be
started from the top by sequentially erasing lines
from the old page before printing new lines. Pages
are normally displayed with a --More--prompt after
the last line of the page. If desired, MORE can dis-
play a brief help message each time the --More--
message is displayed. The "?" at the --More-- prompt
will always display help.

MORE has other display options. It can be made
to count logical lines rather than screen lines. Its ef-
fect is noticeable only with lines longer than 81 char-
acters. Recognition of the new page character (*L)
can be turned off to prevent MORE from prema-
turely paginating the output when it encounters a
new page character. Optionally, control characters
can be displayed with a caret (*) preceding a letter
rather than be ignored. Multiple blank lines can be
removed from the display of a file if desired. The de-
fault reverse video representation of underlined text
can be canceled by the user. MORE can optionally
ignore its default configuration in the DE-
FAULTS/MAD file by invoking the "-!" optional com-

TRSTimes magazine 7.3 - May/Jun 1994

mand. If specified as a number "-n", MORE will use
that number as the line count to display before an-
other --More-- prompt will appear. A "+n" number on
the command line will cause MORE to skip that
many lines before it begins to display the current
file.

A "/" with a user specified pattern will cause
MORE to skip the display of the lines in the current
file until the specified pattern is found. If the pat-
tern is preceded by a """, the specified pattern will
only be recognized if it begins a line. Pattern
searches are case sensitive. Also, the patterns
searched for may optionally be specified to be for a
range of characters in any position. If a search is un-
successful, the point of display is relocated to the be-
ginning of the specified file. However, if the file was
redirected from other programs such as PIPES, its
display point resides at the end of the file.

As previously described, MORE can use wild-
specs for filenames. As in other utilities, the output
of MORE can be redirected to a specified file or ap-
pended to an existing file. When MORE is invoked
by another program, the last screen of the last file
sent to the screen might be cleared from view before
it can be read as MORE terminates. To prevent this,
a warning message that MORE is about to terminate
can optionally be invoked. Thus, the prompt --No
More-- will precede the exit of MORE. Also,
<SHIFT>@ will pause the display, and an additional
command separated by a ";" on the command line
will be executed.

At the --More-- prompt, a number of commands
can be specified and the default values these com-
mands use can be altered. As previously noted, the
<SPACE> key causes the next screen of a file to be
displayed. While the default is 22 lines, a decimal
number of lines optionally specified before any
<SPACE> key will change the default number of
lines displayed to the screen to the number specified.
In a like manner, an optional decimal number of
lines to advance through the file each time the
<ENTER> key is pressed can be increased from its
default value of one. An optional number of lines to
advance instead of the default number of 11 for the
<CONTROL-D> combination can be specified in the
same manner. A decimal number preceding an "s"
will cause the display of that next number of lines to
be skipped. A decimal number preceding an "f" will
skip that number of screens. A decimal number pre-
ceding a "/ followed by a character pattern which
may include wildcards and the beginning of the line
specifier ("*") will locate the next occurrence of that
pattern in the file. After that, a decimal number pre-
ceding an "n" will skip the file to within four lines
before the specified number of occurrences of the

Page 13

last specified search pattern. An "=" will display the
current line number while a "." at the --More--
prompt will repeat the last command. A "q" or a
<BREAK> will both cause MORE to quit. However,
the <BREAK> will cause MORE to generate an
"abort" error.

If the file is not being read from a streaming de-
vice, then a " will reposition the file back to the
starting location of the previous search. A :f will dis-
play the current filename and line number. MORE
will advance to a specified number of files ahead of
the current file with an ":n" preceded by a decimal
number of files to advance. More will go to the same
number of previous files with a ":p" command. If zero
files are specified with the ":p" command (ie.: "0:p"),
MORE relocates its display to the beginning of the
current file.

In practical use, MORE allows printed files from
a word processing program to be viewed from the
command line. For example, it is very useful when
you don't have any means of commenting a file and
want to search through a bunch of letters you have
written to find a piece of information such as an ad-
dress. If you think about it, this is a way to redirect
the addresses of everyone to whom you have ever
written a letter to a single file without retyping. This
could be done with a word processor, but it would be
difficult to remember which files had been processed
and which had not. With wildeard multiple file specs
not being available on any word processor I have
ever heard of, I know of no other way this chore can
be accomplished in an automatic manner.

LS

LS is most certainly a natural companion to
MORE. As you can almost guess by now, the output
of LS can be redirected through MORE. What is LS?
Those who know anything about UNIX systems rec-
ognize LS to be the illogically chosen two letter des-
ignation for the command commonly known in al-
most every other DOS as "DIR". However, those "in
the know" also recognize that LS has far more op-
tions than any run-of-the-mill "DIR" command. LS is
a virtual command line directory listing system. If
LS is entered without options, a "CAT" like display
with all visible files alphabetized in lower case on all
active drives will appear on the screen. The optional
wildspec and filespec specifiers previously described
are fully operational with this utility. Additionally,
just about every aspect of file listing can be option-
ally displayed in a number of ways. Namely, files
can be listed one per line. Or, all files can be listed
including those that are invisible. They can be
sorted in regular or reverse order by name or by
date. The drive number may optionally be appended

Page 14

to the filename or the file may be listed in long for-
mat similar to the standard DIR (A) command.

In this format, various attributes of each file are
displayed. They indicate whether the file is a parti-
tioned data set or diskDISK subdirectory, a system
file, an invisible file, a fixed size file, an open file, a
copy-protected file, a user password protected file, or
a modified file that has not yet been backed-up. The
level of protection of each file is also listed in this
format. It is displayed as the level of access allowed,
from full access to none without the correct user
password.

Files may also be displayed in a stream sepa-
rated by commas. They may also be sorted by time
and date and displayed in uppercase or lowercase.
They can also be sorted horizontally and displayed
in columns. The time format may be switched be-
tween 12 and 24 hour format and the separator be-
tween the filename and its extension may be either
a "/ or a ".". Of course, selective files may be dis-
played on the basis of wildcard and drive specifica-
tions.

OOPS

OOPS is to the DOS command what the line edi-
tor in basic is to Basic itself. It is so useful that it is
simply essential. If you know how to use the line
editing capabilities of the Basic interpreter and/or a
word processor, then you know how to edit the DOS
command line with OOPS. There are some addi-
tional options but the essential concept of the pro-
gram can be no clearer than for the user to know
that the command line can now be selected from any
of those on the screen, and can be edited. What a
pleasure!

WC

WC, the word counting utility, is the feature left
out of most of the TRS-80 word processors. This is
because program space is precious in the available
TRS-80 ram space. Although useful, since the word
count is not essential to text editing, it is often
among the first features to be sacrificed to the limi-
tations of space. However, since WC is free standing,
it can do more than give a word count to the pro-
gram being edited. It can optionally give a character
count, a line count, and the word count of a file, in
any optional order. It can also give a total of these
counts across any wildcard group of files and drives
the user specifies. This includes character counts of
executable files. The added effectiveness of this com-
mand line level utility is that a wildcard set of files
may be word counted, with the result being dis-
played on the screen. If the total is less than the free

TRSTimes magazine 7.3 - May/Jun 1994

space on a disk, OOPS can be used to edit the WC
command line to copy the same wildcard set of files
that were "WC'ed" onto another target disk, while
documentation of the process is routed through
MORE to a diskfile that can later be printed. We can
begin to see the amazing level of integration possible
with these utilities. They are actually reusable mod-
ules rather than a set of separate utilities.

PIPES

PIPES is just what the name implies. It is the
basis of the "multiple process" concept for which
UNIX systems are renowned. Apparently, the only
difference between PIPES on the TRS-80 and an ac-
tual UNIX system is that true UNIX processes can
be run simultaneously on multiple processors while
our single Z-80 systems can only run one process at
a time. What PIPES does is to automatically route
the output of one program as input into the next pro-
gram in the "PIPES" line. This allows a program to
filter the output from the previous program in much
the same _manner as the "FILTER" command avail-
able in LLS-DOS. The main difference is that the pro-
grams do not have to be written as filters, as they
must be for LS-DOS/TRS-DOS. Indeed, the pro-
grams do not even have to "know" that they are fil-
ters at all! Also, they do not have to reside simulta-
neously, in memory modules.

Therefore, a number of programs can each have
been written to run as a single utility. Yet, a se-
quence of these programs (or even a single program)
can repeatedly be run with different arguments, on
a single data file or on multiple files. This can pro-
duce powerful effects on your data. The ability to se-
quentially place files through multiple processes is
what makes UNIX users wonder why anybody
works with any other DOS. I can only imagine how
convenient a conditionally controlled sequential
search and replace function would be for text files,
since Allwrite does not have one. If you have an ex-
ternal utility with that ability, then that power is
automatically available in PIPES. Of course, the
other single utilities on this disk can be run under
PIPES because they were especially designed to do
s0.

For those programs and processes that are de-
signed to be used with a keyboard to page their out-
put or delimit input through single strokes from the
keyboard, PIPES provides options that can substi-
tute for prompted keyboard inputs. It can optionally
be commanded to supply a <SPACE>, a <NULL>, an
<ENTER>, or an end of file error whenever key-
board entry is requested by the program currently
running. It does all this by taking over control of the
standard DOS 1/0 devices and redirecting them.

TRSTimes magazine 7.3 - May/Jun 1994

FORCEHI and XLRSSET

These programs are improvements to the drivers
for the XLR8ER adapter that many TRS-80 users
have. I do not personally have one nor do T know
anybody locally who has one installed. Thus, I do not
have any means of evaluating these particular pro-
grams. However, many of these cards were sold, so
those who have purchased used TRS-80's from their
"local-leading-technology-hardware-hacker" may be
pleasantly surprised to find a dormant XLRS8ER
board sitting in the card slot of a Model 4P where the
internal modem is supposed to fit. Desktop owners
will have to open their machines. Search through
your disks to find the necessary software drivers.
From what I have read, if your used Model 4 will
mysteriously NOT run TRSDOS 1.3 due to its use of
some undocumented Z-80 commands, you may dis-
cover a pleasant surprise in your machine.

SUMMARY

The concept of reusability is not new to comput-
ing. Programmers often reuse code. This is the basis
of the concept of subroutines. Namely, arguments
are passed to the subroutine and it processes data
accordingly. Subroutines however normally exist
within programs. The concept notable within UNIX
(and now within LS-DOS/TRS-DOS) is that subrou-
tines are available to the user at the level of the op-
erating system (DOS). That is the unifying concept
of the M.A.D. Utilities Disk #1.

How does it work? Basically, it works just as de-
scribed in the manual, without surprises. The man-
ual is as straight forward as are the programs. What
they do, in practice, is easy to understand and use.
They just become part of the operating system and I
find them to be "sort of" key words in a DOS level
"programming language" of its own. Namely, you
don't have to call up a language and load a program.
Rather, you just issue a command. If you don't re-
member the options, just type a <-><?> on the com-
mand line plus a space, after the program name. The
DEFAULTS/MAD file flattens the learning curve to

"intuitive".

The worst problem you will have with the
M.A.D. Utilities Disk #1 is deciding which way you
want to name and PIPE your utilities. It's the same
kind of problem you have when you go the clothing
store to buy a new ensemble. You sit there mixing
and matching while going "M.A.D." trying to decide
which items to buy. The only difference with this set
of utilities is that everything fits, and you already
own the entire store...

Order the Utility Disk #1 from: M.A.D. Software

PO Box 331323, Ft. Worth, TX 76163 $25.00

Page 15

NEW VERSION OF
FOREM BBS SOFTWARLE

Humor from the TRSTimes vault

A new release of FoReM ST arrived yesterday.
Among the features is yet another new file transfer
protocol, 'ZZZMODEM.' This new protocol transfers
data in blocks of 16 Megabytes, giving it the largest
block size of any file transfer protocol in the Known
Universe. The checksum for each block in a
ZZZMODEM transfer is sent via XMODEM, for
greater accuracy. "This new protocol will allow us to
transfer data at rates up to one one-hundredth of
one percent FASTER than by any previous method,"
explained Phil "Compu" Dweeb, a FoReM aficionado,
pausing occasionally to wipe the drool from his chin.

. Industry insiders were quick to point out that
using ZZZMODEM, it takes roughly 2 hours and 25
minutes to transfer a 20K file at 19,200 baud. Mr.
Dweeb said that this problem has been dealt with.
"Each block is padded with nulls, which take no time
to send,” he explained.

The new version of FoReM ST also has the new
"Recursive ARCing" feature. As Mr. Dweeb explains:
"All download files are recursively ARCed by FoReM
before being put online. Qur experience has shown
that when you ARC a file, it gets smaller. Therefore,
the approach we have taken is to repeatedly ARC
the file until it reaches a size of roughly 10K. At that
point, it's hardly worth the trouble, wouldn't you
say?"

Reportedly in the works for a future release is
the patented "One Length Encoding” process. Early
reports suggest that this procedure can reduce the
length of a file to just 1 bit. Mr. Dweeb takes up the
story: "One day we were sitting around doing some
hacken and phreaken, and one of us started
thinking. All binary data is encoded into bits, which
are represented by ones and zeros. This is because a
wire can either carry a current or not, and wires can
therefore be set up in a a series that can represent
strings of ones and zeros. "Notice, however, that the
real information is carried in the ones, since the
others carry no current. I mean, what good does a
wire do when it isn't carrying any current? So by
dropping all the zeros, you can easily cut file sizes in
half. So we decided that a cool way to speed up data
transfer would be to only send the one bits. The
results were phenomenal -- an average speed
increase of 50%!! "After we finished the initial

Page 16

implementation, we kept finding ways to make the
thing faster, and more efficient. But then we
realised that we hadn't gone all the way. If you think
about it, after you drop all the zeros, you're left with
a string of ones. Simply count all the ones, and
you're left with another binary string. Say you end
up with 7541 ones. In binary, that's 1110101110101.
So immediately we've reduced the number of bits
from 7541 to 13. But by simply repeating the
process, we can reduce it further. 1110101110101
becomes 111111111, or 9, which is 1001, which
becomes 2, which is 10, or 1.

Once we reach a string length of 1, we have
reached maximum file com-pression. We now have
the capability to encode virtually unlimited amounts
of information into a single digit! Long-distance bills
will never be the same! "Now, that's not to say that
there aren't a few problems. The biggest one we have
encountered is that for some reason, there seems to
be a certain amount of data loss during the re-
conversion process. It seems that sometimes the file
cannot be expanded into its original form. So, the
solution we came up with was to have an encryption
key associated with each file. When a One Length
Encoded file is received and is undergoing
decompression, the unique encryption key must be
supplied. That way, we end up with a 100% success
rate in our conversions!

"A problem which we are having difficulty
resolving lies in the fact that to ensure a 100%
success rate, the encryption key must be exactly as
long as the original file. We are confident, however,
that the use of our Recursive ARCing procedure will
help to solve this problem..."

TRSTimes magazine 7.3 - May/Jun 1994

Every so often I receive a letter that requires
more than just a short answer on the mail pages, it
requires an article of its very own. Such is the case
with the correspondence from Henry Herrdegen,
which is published in part on page 4 in this issue.
Henry brings up several interesting topics which I
hope are now cleared up. However, he also mentions
that he is having a difficult time understanding
Boolean logic. Don’t feel bad - it is a topic that all of
us have found troubling at one time or another. So,
to help not only Henry, but also other interested
readers, let's give it another shot and see if we can
shed some light on this mysterious concept.

1. A memory location can hold 1 byte.
This byte can have a value of:
0 to 255 (decimal)
0 to FF (hexadecimal)
0000 0000 to 1111 1111 (binary).

2. Using the binary notation it can be seen
that a byte is broken down into 8
separate pieces (called bits).

3. 'The bits are numbered from right to left:
7654 3210
and they have the following values:
7654 3210
12864 3216 84 2 1

Use the above table to see how values and bit
settings correspond - for example, the value 129
would be represented as 128+1

76514
0

10
100 1

32

129 = 128+1= 000

Another example might be the value 67. It can
be represented as 64+2+1, or in binary:

7654 3210

67=64+2+1 0100 0011

The value 0 has all bits turned off, while 255 has
all bits turned on:

TRSTimes magazine 7.3 - May/Jun 1994

0= 7654 3210
0000 0000O0
255=128+64+32+16+8+4+2+1
7654 3210
1111 1111

Play with this until you are thoroughly familiar
with how the values and bit settings relate.

OK, you’re back with us, so let's assume we can
continue on a somewhat quickened pace and we will
now concentrate on the bit settings, rather than the
values they produce.

As you can tell, a bit is either ON or OFF (ON=1,
OFF=0). This means that each byte has 8 individual
‘switches’ that can be manipulated on or off, depend-
ing on the whim of the programmer. People, such as
Randy Cook, Kim Watt, Roy Soltoff and other TRS-
80 greats, have used this to advantage, saving pre-
cious memory for their programs. They set up data
bit-tables where the setting of a bit would determine
the status of a particular device - thus, each byte
could handle up to 8 devices.

A handy example of bit-tables can be found in
LS-DOS 6.38.1. Here Roy Soltoff has set up a series of
data tables that are crucial to the workings of the
DOS. It is called the FILAG$ table and it begins at
memory location 6AH and continues through 83H
and contain the following information:

6AH AFLAGS$ Start CYL for Allocation search.
6BH BFLAGS$;appears to do nothing

6CH CFLAGS ;condition flag

0 - Can’t change high$ via SVC-100

1 - @CMNDR in execution

2 - @KEYIN request from SYS1

3 - System request for drivers,
filters, DCTs

4 - @CMNDR to only execute LIB
commands

5 - Sysgen inhibit bit

6 - @ERROR inhibit display

7 - @ERROR to user (DE) buffer

6DH DFLAGS ;device flag

- SPOOL is active

- TYPE ahead is active

- VERIFY is on

- SMOOTH active

- MemDISK active

- FORMS active

- KSM active

- accept graphics in screen print

ST DOUTARWN=O

Page 17

6EH EFLAGS$;This flag is for SYS13 usage.

Use only bits 4, 5, and 6 to indicate

user entry code to be passed to
SYS13. SYS13 will be executed

from SYS1 if this byte is non-zero,

bit 4, 5, and 6 will be merged into
the SYS13 (1000 1111) overlay
request.

6FH FFLAGS ;Port FE mask
70H GFLAGS ;appears to do nothing
71H HFLAGS ;appears to do nothing

72H IFLAG$;international flag
0 - French
1 - German
2 - Swiss
3.
4-
5 -
6 - Special DMP mode ON/OFF
7 - ‘T bit mode ON/OFF
.~ This byte is 0 for US mode.

738H JFLAGS$;appears to do nothing

74H KFLAGS$;keyboard flag

" 0-BREAK latch
1 - PAUSE latch
2 - ENTER latch
3 - reserved
4 - reserved
5 - CAPs lock
6 - reserved
7 - character in TYPE ahead

75H LFLAGS ;LDOS (LS-DOS) feature inhibit
0 - inhibit step rate question in
FORMAT
- reserved
- reserved
- reserved
- inhibit 8” query in
FLOPPY/DCT
5 - inhibit # sides question in
FORMAT
6 - reserved for
7 - IM 2 hardware
76H MFLAGS$;MODOUTS mask assignments
0 - reserved
1 - cassette motor on/off
2 - mode select
(0=80/64, 1=40/32)
3 - enable alternate character set
4 - enable external /0
5 - video wait states
O=disable, 1=enable)
6 - clock speed (0=2 mhz, 1=4mhz)

GO DD e

Page 18

7 - reserved

7TH NFLAGS$;network flag
0 - allow setting of file open bit in
DIR
1 - reserved
2 - reserved
3 - reserved
4 - reserved
5 - reserved
6 - set if in Task processor
7 - reserved

78H OFLAG$;OPREG$ mem mgmt image port
0 - SELO - select map overlay bit O
1 - SEL1 - select map overlay bit 1
2 - 80/64 - 0=64, 1=80
3 - inverse video
4 - MBITO - memory map bit O
5 - MBIT1 - memory map bit 1
6 - FXUPMEM - fix upper memory
7 - PAGE - page 1K video RAM

(set for 80x24)

79H PFLAGS ;printer flag
0 - reserved

1 - reserved

2 - reserved

3 - reserved

4 - reserved

5 - reserved

6 - reserved

7 - printer spooler is paused

7AH QFLAGS ;appears to do nothing

7BH RFLAGS$;FDC retry count >=2
set as 0000 1000
7CH SFLAGS$;system flag
0 - inhibit file open bit
1 - set to 1if bit 2 set & EXEC
file opened
2 - set by @RUN to permit load of
EXEC file
- SYSTEM (FAST)
- BREAK key disabled
- JCL active
- force extended error messages
- DEBUG to be turned on after
load

=3O UV W

7DH TFLAGS ;type flag
2 = Model 2
4 = Model 4
5 = Model 4P
12 = Model 12
16 = Model 16

TRSTimes magazine 7.3 - May/Jun 1994

7EH UFLAGS ;user defined flag

7FH VFLAGS$;video flag
0 - set blink rate
1 - 1=fastest
2 -and
3 - T=slowest
4 - display clock
5 - cursor blink toggle bit
6 - inhibit blinking cursor (user)
7 - inhibit blinking cursor (system)

80H WFLAGS$;WRINTS - interupt mask register

0 - enable 1500 baud rising edge

1 - enable 1500 baud falling edge

2 - enable real time clock

3 - enable I/0 bus interrupts

4 - enable RS-232 transmit
interrupts

5 - enable RS-232 receive data
interrupts

6 - enable RS-232 error interrupts

= 7 - reserved

81H XFLAGS$;appears to do nothing
82H YFLAGS ;appears to do nothing
83H ZFLAGS$;appears to do nothing

If you look closely at the FLAG$ table, you'll no
doubt notice the many bit-tables filled with goodies
that’s just waiting to be taken advantage of.

The trick to effectively manipulate the data ta-
bles is to know how to turn a particular bit on or off.
And this is where BOOLEAN logic comes in.

Boolean logic has several operators, but we shall
only concern ourselves with two of them - AND and
OR, as they are the ones that suit our purposes per-
fectly.

First, let’'s establish what each of the operators
do - let’s begin with AND:

The AND operator compares two numbers bit
for bit. If the compared bits are both 1, then the re-
sult will be 1. Any other time the result will be O.

1AND 1=1
0AND 1=0
1ANDO0=0
0ANDO=0

The OR operator compares two numbers bit for
bit. If both bits are 0, then the result will be 0. Any
other time the result will be 1.

10R1=1

TRSTimes magazine 7.3 - May/Jun 1994

OOR1=1
10R0O=1
OORO=0

This allows us to turn bits on and off at will. If
we wish to turn a particular bit ON, we simply OR
the number with another number where only that
bit is turned on. For example, imagine that we wish
to turn on bit 6 of the value stored in memory loca-
tion 500.

First, we would store the value from memory lo-
cation 500 in, let’s say, variable A.
A=PEEK(500)

Then we turn on bit 6 of variable A.
A=A or 64

Bit 6 is turned on if it was previously off - and
kept on if the bit was already set. So, now we just
need to store the new value back in memory location
500.

POKE 500,A

All of the above could, of course, been written
more concisely with this command:
POKE 500,PEEK(500) OR 64

The following table shows the OR values needed
to turn ON each bit in memory location 500.

POKE 500,PEEK(500) OR 1
POKE 500,PEEK(500) OR 2
POKE 500,PEEK(500) OR 4
POKE 500,PEEK(500) OR 8
POKE 500,PEEK(500) OR 16
POKE 500,PEEK(500) OR 32
POKE 500,PEEK(500) OR 64
POKE 500,PEEK(500) OR 128

turn on bit 0
turn on bit 1
turn on bit 2
turn on bit 3
turn on bit 4
turn on bit 5
turn on bit 6
turn on bit 7

To turn OFF a particular bit, you use the AND
operator. You AND the number with another num-
ber where all the bits are turned on EXCEPT for the
bit you wish to turn off. For example, imagine that
we wish to turn off bit 6 of the value stored in mem-
ory location 500.

First, we would store the value in memory loca-
tion 500 in, let’s say, variable A.
A=PEEK(500)

At this point we have no idea what is stored in
memory location 500, so we MUST make sure that
we only turn off bit 6; therefore, use a number with
all bits set except for bit 6 - that number is 1011
1111, also known as 191.

A=A and 191

Page 19

Now, store the new value back in memory loca-
tion 500.
POKE 500,A

Just as in the OR example, we could have done
this in one simple step:
POKE 500,PEEK(500) AND 191

The following table shows the AND values.
needed to turn OFF each bit in memory location 500.

turn off bit 0
turn off bit 1
turn off bit 2
turn off bit 3
turn off bit 4
turn off bit 5
turn off bit 6
turn off bit 7

POKE 500,PEEK(500) AND 254
POKE 500,PEEK(500) AND 253
POKE 500,PEEK(500) AND 251
POKE 500,PEEK(500) AND 247
POKE 500,PEEK(500) AND 239
POKE 500,PEEK(500) AND 223
POKE 500,PEEK(500) AND 191
POKE 500,PEEK(500) AND 127

Hope this lengthy piece has addressed at least
some of your questions about Boolean logic and bit-
fiddling, in particular. And thanks to Roy Soltoff’s
SOURCE for providing the information about the
Model 4 LS-DOS FLAGS tables.

Finally, type in the program listing below, which
I call BITS/BAS. It works on Models I/III & 4, and
should help all to get a better understanding of the
AND and OR functions.

BITS/BAS

10 IF PEEK(&H7D)=4 OR PEEK(&H7D)=5 THEN
SW=80 ELSE CLEAR 35000:SW=64

11 GOTO 100

20 H=0:GOTO 23

21 H=INT((SW-LEN(A$))/2):GOTO 23

22 H=SW-LEN(A$)

23 PRINT@SW*V+H,A$;:RETURN

30 A$=STRING$(ML,46):GOSUB 23:
A$=CHR$(14):GOSUB 23:L=0:FL=0:1$=""

31 A$=INKEY$:IF A$="" THEN 31

32 IF A$=CHR$(27) THEN FL=1:GOTO 39

ELSE IF A$=CHR$(13) THEN 39

33 IF A$=CHR$(8) AND L=0 THEN 31

34 IF A$=CHR$(8) THEN L=L-1:H=H-1:
I$=LEFT$(I$,L):A$=CHR$(46):GOSUB 23:
A$="":GOSUB 23:GOTO 31

35 IF A$<CHR$(48) THEN 31 ELSE IF A$>CHR$(57)
THEN IF A$<CHR$(65) OR A$>CHR$(122) THEN 31
36 IF L=ML THEN 31

37 1$=1$+A$:GOSUB 23:L=L+1:H=H+1:A$="":
GOSUB 23:GOTO 31

39 A$=CHR$(15)+CHR$(30):GOSUB 23:RETURN
40 I1=1:DV=128

41 FOR X=7 TO 0 STEP-1

Page 20

42 A=INT(I1/DV)

43 A$=RIGHT$(STR$(A),1):GOSUB 23

44 IF X=4 THEN H=H+2 ELSE H=H+1

45 11=11-(DV)*A:DV=DV/2

46 NEXT:RETURN

60 FL=0:FOR X=1 TO LEN(S$):

IF MID$(1$,X,1)<CHR$(48) OR MID$(1$,X,1)> CHR$(57)
THEN FL=1

61 NEXT:RETURN

100 CLS:V=0:A$=CHR$(15)+"BITS/BAS":GOSUB 20:
A$="Boolean Math & Bit Settings":GOSUB 22:
V=V+1:A$="(c) Copyright 1994 by Lance Wolstrup":
GOSUB 22:V=V+1:A$="All rights reserved":GOSUB 22:
V=V+1:A$=STRING$(SW,140):GOSUB 20

110 V=4:A$=CHR$(31):GOSUB 20:V=5:H=55:
AS$="BIT":GOSUB 23:V=6:H=52:FOR X=7 TO 0 STEP-1:
A$=RIGHTS$(STR$(X),1):GOSUB 23:

IF X=4 THEN H=H+2 ELSE H=H+1

111 NEXT:V=7:H=52:A$=STRING$(9,131).GOSUB 23
120 V=8:H=5:

A$=CHRS$(31)+"Enter first number (0-255):":

GOSUB 23:H=38

130 ML=3:GOSUB 30:IF FL. THEN CLS:END

ELSE IF I$="" THEN 120 ELSE GOSUB 60:

IF FL. THEN 120

140 I=VAL(I$):IF I>255 THEN 120 ELSE H=52:
GOSUB 40

145 N1=I:H=38:A%$="":GOSUB 23:

PRINT USING"###";N1

150 V=9:

A$=CHR$(30)+"Enter Boolean Operator (AND/OR):":
GOSUB 20:H=33

160 ML~=3:GOSUB 30:IF FL THEN 120 ELSE IF I$=""
THEN 150

170 FOR X=1 TO LEN(I1$):M=ASCMID$(1$,X,1)):

IF M>96 THEN M=M-32:MID$(1$,X,1)=CHR$(M)

180 NEXT

190 IF I$="AND" THEN B=0 ELSE IF I$="OR" THEN
B=1 ELSE 150

200 H=47:A%$=1$:GOSUB 23

210 V=10:H=4:

A$=CHRS$(30)+"Enter second number (0-255):":
GOSUB 23:H=38

220 ML=3:GOSUB 30:IF FL THEN 150 ELSE IF 1$=""
THEN 210 ELSE GOSUB 60:1F FL THEN 210

230 I=VAL($):IF I>255 THEN 210 ELSE H=52:
GOSUB 40

235 N2=I:H=38:A%$="":GOSUB 23:PRINT US-
ING"###";N2

240 V=11:H=37:A$=STRING$(5,131):GOSUB 23:H=52:
A$=STRING$(9,131):GOSUB 23

250 V=12:H=38:A%$="":GOSUB 23

260 IF B THEN I=N1 OR N2 ELSE I=N1 AND N2

270 PRINT USING"###";1:H=52:GOSUB 40

280 V=14:A$="Press <ENTER> to continue ":

GOSUB 21:H=H+LEN(A$)

290 ML=0:GOSUB 30:IF FL. THEN CLS:END ELSE 120

TRSTimes magazine 7.3 - May/Jun 1994

C Language Tutorial, Part I

By J.F.R. "Frank" Slinkman

Some hobby-level pro-
grammers I know, even
good ones, have either
shied away from, or given
up on, the C programming
language because it ap-
pears to be "too difficult" to
learn.

Yes, there IS a lot to
8l learn. But think back to
@ when you first started out
with BASIC or assembler.
}If you don't remember the
frustration of programs
that wouldn't run, error
messages you didn't understand, and anger at the
computer and at yourself for adding or leaving out a
single comma or parenthesis in a complex line of
code, either you're a programming genius, or one of
your cerebral RAM chips has died.

Even with all the frustrations -- all the nights
you sat at the keyboard 'til 3 a.m. because you were
inches away from finding that bug, or you'd just
thought of a much better way to solve a program-
ming problem -- you stuck with it because it's "fun!"
Well, as much "fun"” as it is to program in BASIC and
assembler, it's even MORE fun to program in C.

0O.K. You already know BASIC, and maybe even
assembler. So why learn C?

First, C has pretty much become the lingua
franca of professional programmers. It is the main
language they use to communicate programming
ideas, algorithms and procedures to each other.

But more importantly, even at the hobbyist pro-
gramming level, once you learn C, you can do many
more things than you can do with pure assembler,
such as work with floating point numbers and
trigonometric functions.

Also, the data organization capabilities built in
to the language will let you expand your program-
ming horizons, presenting exciting new ways to
solve old problems, and allowing you to tackle new
kinds of projects that would be very difficult using
only BASIC and/or assembler.

And, when the program is complete, it will run
much faster than the same program written in BA-
SIC with less code and, once you learn the language,
with less work.

In short, C allows you to do more things, and do
them far more productively, than other more limited
languages.

TRSTimes magazine 7.3 - May/Jun 1994

I forget where I read it, but I once saw a compar-
ison of the relative speed of programs written in var-
ious computer languages. The fastest, of course, is
pure assembler. To perform the same task, inter-
preter BASIC takes 30 to 50 times longer to run;
COBOL takes about 20 times longer; and compiled
BASIC 5 to 10 times longer, and C only about two
times longer.

Speaking of assembler, the output of a C com-
piler is not an executable program, but an assembly
language source code listing which you can edit or
optimize the same way you can with any assembly
language program.

This listing is then assembled like any other re-
locatable assembly language listing to create the ac-
tual executable /CMD (or, in the case of MeSs-
DOS,.EXE) program.

Thus, in a sense, C could be considered to be a
"shortcut" way of writing assembler, while retaining
the advantages of a higher level language like BA-
SIC.

One of the biggest differences between BASIC
and C is that the actual language contains very few
"statements," while BASIC includes a large number
of "commands".

In C, these simple building blocks are used to
construct often elaborate "functions" to perform de-
sired tasks. These functions can be saved in groups
called "libraries". Thus, when you write a function
you particularly like, you can give it a name and
save it. Thereafter, if you need the same function in
another program, all you have to do is "include" the
name of the library in which your function is stored,
and reference the function in your program by its
name.

This helps you avoid constantly "re-inventing
the wheel", and makes the time you spend program-
ming far more productive.

There are also "standard libraries" of functions
provided with C compilers, the contents of which are
closely regulated by standards committees to help
ensure C stays reasonably portable across all hard-
ware platforms.

Thus, the programs you write on your TRS-80
will, with only very minor modification, compile and
run on MeSs-DOS machines, Macs, Sun work sta-
tions, and even big mainframes. Likewise, C pro-
grams written for those machines can be easily mod-
ified to compile and run on your TRS-80.

To program in C, you need to learn the various

Page 21

ways data can be stored and represented, the con-
cept of ‘“indirection", C's "statements" and
"operators", and the "standard library" of "functions"
and "header" files.

You will also need a good text editor to write
your programs, and become familiar with your com-
piler's commands and options.

These articles will be written assuming the
reader has a Model ITI or 4, some knowledge of BA-
SIC, and the Pro-MC (Version 1.6b) and Pro-MRAS
packages from Misosys, Inc. The Pro-MC compiler
implements the original "K&R" C, and it's standard
libraries are UNIX System V compatible.

But C is C; so even if you have another compiler
and/or relocatable editor-assembler, most of what
you read here will be usable on your system, with
only minor adjustments and modifications.

Rather than give you long lists of things to mem-
orize right from the start, these articles will take a
more gradual approach.

. They -will start with very simple programs,
which will become more and more complex as we go
along, each of which will demonstrate various fea-
tures of the language.

So let's start with our very first, and very sim-
plest, program:

/* progOl.c */

#include<stdio.h>

main()

{ puts("This is a message string");

}

Note the code is in lower case (small) letters.
This is the normal way of doing things in C. There
are conventions regarding the use of upper case
(capital) letters, but we'll worry about that later.

With C, tab stops are put every 4th column, not
the usual 8. The SAID text editor included with the-
Pro MRAS package will automatically do this for you
if you invoke it with its (C) parameter. Also, the com-
piler ignores all "white space" characters, such as tabs,
spaces, carriage returns, etc. Instead, it relies on the pres-
ence of a semicolon at the end of each program statement,
and on braces to define related blocks of program code.

On the Model 4 keyboard, the left and right braces are
obtained by pressing <CLEAR><SHIFT> "<" and
<CLEAR><SHIFT> ">", respectively.

Now use your text editor to type in the program above.

The first line is a comment, equivalent to a REMark in
BASIC. In C, anything and everything between the begin-

Page 22

comment symbol ("/*") and the end-comment symbol
("*/"), is ignored by the compiler. In other words, it
appears in the listing strictly for the convenience
and/or edification of a human reading the program
listing.

The next line "includes" the header file,
STDIO.H. This file contains "prototypes” or "forward
declarations" for most of the standard library func-
tions you're likely to use, and loads other header
files which define certain types of variables.

When the compiler's preprocessor sees an
#include "preprocessor directive,” it will search for
the named file, read it, and put all declarations, defi-
nitions, directives, ete., found in that file into your
program. This feature saves you having to re-invent
the wheel each time you want to write a program.

In the future, you'll be writing your own header
files, but for now we'll just use the "standard" ones.

The third line, "main()", indicates the start of a
function. In C, the main() function is special. It is
always the starting point of the program, no matter
where it appears in the program listing.

Functions are indicated by opening and closing
parentheses immediately following their names, and
the code included in the function is placed within
opening and closing braces.

Unless a "return" statement is encountered first,
program control will return to the routine which
called the function after the last line of code within
the defining braces is executed. In this case, since
this is the main() function, control will return to LS-
DOS.

The one line of code in this function invokes
("calls") the standard library puts() function.

Puts() outputs a string to the "standard output
"which, on our systems, is the monitor screen.

If you look in your manual for the documenta-
tion of puts(), you'll see where puts() takes one
"argument”, namely the RAM address of the string
to be output.

In other words, the argument passed to puts(
isn't the string itself, but a 16-bit POINTER to the
string. This is a very simple introduction to the con-
cept of "indirection" -- namely variables which point
to data, rather than contain the data.

The puts() function returns a 16-bit code to the
calling routine to indicate whether or not it was able
to successfully execute. If successful, it returns
"NULL" (zero). If unsuccessful, it returns "EOF" (-1).

Our little program assumes puts() is always go-
ing to work, so does not check the return code to test
for failure.

TRSTimes magazine 7.3 - May/Jun 1994

The argument(s) sent to a function are listed, in
order, inside the parentheses following the function
name. They must be listed in the same order in
which the function expects them. In this case, there
is only one argument, so there's no argument order
to worry about. But many other functions are more
involved.

Now save the program with the name
PROGO1/CCC. (Some other compilers need it saved
with the namePROGO01/C.)

Now, from LS-DOS Ready, invoke the preproces-
sor. Under Pro-MC, you would do this with the com-
mand:

mcp prog01 +o=:d

where ":d" is the drive number where you want the
PROGOV/TOK file to be written.

This file is simply a tokenized version of the pro-
gram. Now invoke the compiler itself. Under Pro-
MC, you would use the command:

mec progO1 +o=:d

This reads the /TOK file, and outputs an assem-
bly language listing of the program which, in this
case, will be named PROGO01/ASM.

Now load PROGO1/ASM into your text editor,
and find the label "MAIN:",
You'll see code something like:

MAIN:

DSEG

DB 'This is a message string',0
CSEG

LD HL,$?1

PUSH HL

CALL PUTS

POP AF

RET

$?1:

Note the string at label "$?1:" ends with a zero
(a" null character”, equivalent to a CHR$(0) in BA-
SIC). This is the way C determines the end of a char-
acter string. For this reason you cannot have null
characters imbedded in ASCII strings as you can in
BASIC.

Note also the "DSEG" and "CSEG" in the listing.
These identify the start of "data segments" and "code
segments" of the program which tell the linker pro-
gram how to handle the code.

What this program does is create the string in
RAM, load the RAM address of the string into the

TRSTimes magazine 7.3 - May/Jun 1994

HL register, push the contents of HL onto the stack,
call the puts() function, clear the stack by popping
the first stacked value into the AF register, and re-
turn to whatever routine called it.

In C, arguments are passed to functions on the
stack, and become the property of the called func-
tion, which uses them as variables which can be al-
tered without affecting any variables in the calling
routine. This automatically protects variables in the
calling routine from being unintentionally altered,
making the programmer's life a little easier, since he
no longer has to keep track of such mundane details.

Now exit your text editor and get back to LS-
DOS Ready, and use your assembler program to as-
semble PROG01/ASM to PROGO1/REL. If using Pro-
MRAS, do NOT use the "-g¢" switch, since you want
to generate a /REL file, not a /CMD file.

If using Pro-MRAS, use the command:
mras mc +1=prog01 +o=prog01:d -nl

which tells MRAS to assemble Pro-MC's
MC/ASM file, include PROGO1/ASM, and send the
output to a file named PROGO1/REL on the desired
drive, and not to list the programs on the monitor
screen. Now invoke the linker to produce the final
/CMDprogram.

If you're using MLINK, the command is:
mlink prog01 -n=:d -e.

The linker searches the libraries included with
your compiler (as well as other libraries you may
have specified) for the functions utilized by
PROGO1, and link them together to create the final
executable /CMDfile.

Of course, all the above steps could have been
automated using Pro-MC's MC/JCL file, using the
command:

do me (n=prog01)

For this reason, we won't go through all the indi-
vidual compilation steps again, but simply use
MC/JCL. But it's important for you to know what's
going on as MC/JCL goes through its various steps:

1. Use the pre-processor to create the tokenized
file;
2. Compile the /TOK file to an assembly
language listing (/ASM) file;
3. (Optional, and not discussed above)
Optimize the /ASM file to an /OPT file;

Page 23

4. Assemble the /ASM (or /OPT) file to a /REL
file; and

5. Link the /REL file and the functions from
the included libraries into the final
executable /CMD file.

Now, at LS-DOS ready, enter PROGO01, and the
message, "This is a message string," should appear
on your screen.

0.K. Assuming you got that little program to
compile and run, you can REMOVE the files
PROGO1/TOK, PROGO1/REL, and PROGO1/ASM.

A "DIR PROGO1" command will reveal you still
have PROG01/CCC and PROGO01/CMD. You may re-
move these too, at your option, as we won't be using
them again.

Now it's time to write a similar, but slightly
more involved program

/* prog02.c */

#include <stdio.h>

main(

{
char *msgl, *msg2;
*msg1 = "First message";
*msg2 = "Second message";

puts(msgl);
puts(msg2);
}

In C, all variables must be "declared" before they
can be used. There are several "types" and "classes"
of variables. In this example, the first line inside
main() declares two variables, "msg1" and "msg2."

The "char" at the start of the declaration line
tells the compiler these variable(s) deal with "char”
data.

Char data is stored with each value contained in
one 8-bit byte, and an "array of chars" or "char ar-
ray" is the usual way to store strings of ASCII char-
acters.

The asterisk ("*") before each variable name in
this declaration line indicates that the variable does
not contain the data itself, but is a "pointer" to the
data.

Because these variables were not declared to be
of some other class, they are of the default class,
"auto". Auto variables are stored on the program
stack, are created anew each time the function is in-
voked, and cease to exist when the function is exited.

Page 24

At this point, even though the two pointer vari-
ables have been declared, they don't yet point to
anything useful. That's why the next two lines
"assign" values to them.

The first of these two lines causes the string,
"First Message" to be created in RAM, and then puts
the RAM address of the first character of the array-
into the variable "msg1."

In this case, the asterisk has a different meaning
than it does on the declaration line. In declarations,
the asterisk means "pointer." In all other cases, it
means "the object being pointed to" or, more simply,
the "object at."

In other words, the line
*msgl = "First message";

means "the object at 'msgl' is the string 'First
message™ or, more simply, "point 'msgl' to the

L)

string, 'First message'.

The next line both creates a second char array,
and causes the "msg2" variable to point to it.

The next two lines cause the two messages to be
displayed on the monitor screen, one after the other,
by calling puts() twice; first with the argument equal
to the value stored in "msg1” (i.e., the RAM address
of the first string), and then with the argument
equal to the value stored in "msg2" (the RAM ad-
dress of the second string).

The important thing to understand here is that
"msgl" and "msg2" are not themselves passed to
putsQ). The arguments passed to puts() are COPIES
of the specified variables, not the variables them-
selves.

Now compile the program via the command:

do me (n=prog02,k)

The MC/JCL "[K]ill" parameter removes all pre-
liminary files (i.e., the /TOK, /REL and /ASM files),
leaving only the original /CCC file and the exe-
cutable /CMD file.

Now run PROGO02. It should put the two strings
on your screen on two separate lines, just below

where you entered "PROGO02."

Now load PROG02/CCC back into your text edi-
tor, and go to the line:

*msg1 = "First message";

TRSTimes magazine 7.3 - May/Jun 1994

Edit or replace this line, to make it read:
*msg1 = "\x1c\x 1fFirst message";

On the Model 4 keyboard, the backslash is ob-
tained by pressing <CLEAR> "/". This character has
a special meaning in C, and is called the "escape"
character.

The escape character has many uses. In this
case it is used in conjunction with "x" to define two
characters by their hexadecimal values. If we chose,
we could have specified the same values as
"™N\034\037," the octal equivalents of \x1lec and \x1f.
Remember, the "\x" combination followed by exactly
two hexadecimal digits, and the "\" followed by ex-
actly three octal digits (which should never be larger
than "377," or 255 decimal), establishes an 8-bit
(char) value. Since octal numbers are rather passe,
I suggest you stick to hex when defining non-ASCII
char values.

The new, edited line is equivalent to the BASIC
line:

' MSG1 = CHR$(28) + CHR$(31) +
"First message"

Now save out the modified program, recompile
it, and runit. You'll notice that this time the screen
is cleared before the two messages are displayed.
That's because the codes for "home cursor" (28) and
"clear to end of frame" (31) were imbedded in the
first message string.

0.K. Assuming the modified PROGO02 compiled
and ran right, we're finished with it, and you can
REMOVE or PURGE all PROGO2 files and get to the
next step -- doing some simple math.

C has four types of math variables, namely short
(16-bit) integers, long (32-bit) integers, "floats"
(single precision floating point numbers), and
"doubles" (double precision floating point numbers).

Short integers are referred to as "ints,” and long
integers are referred to as "longs" or "long ints."

Both kinds of integers can be either signed or
unsigned. Signed ints range in value from -32768
to+32767. Unsigned ints range from zero to 65535.

Signed longs range in value from -2,147,483,648
to 2,147,483,647, and unsigned longs range from
zero to 4,294,967,295.

Signed short ints are exactly like BASIC inte-
gers, and floats and doubles are exactly like BASIC's
single- and double precision floating point numbers.

However, when it comes to floating point num-
bers, the default mode in C is double, not single pre-
cision. Unfortunately, double precision math is slow;
so most programmers, even when working on much

TRSTimes magazine 7.3 - May/Jun 1994

faster computers than ours, go to great lengths to
avoid floating point math unless it's absolutely nec-
essary.

Pro-MC does have a feature, and some special
non-standard math functions, which allow the de-
fault to be changed to much faster single precision
math. But this is NOT standard C, and should
NEVER be used if the portability of the code to other
hardware platforms is a consideration.

If you'll recall, all variables must be declared be-
fore use. Here is how the various types of math vari-
ables can be declared:

Signed short integers:

int variable_name;
short variable_name;
short int variable_name;

Unsigned short integers:
unsigned variable_name;
unsigned int variable_name;

Signed long integers:
long int variable_name;
long variable_name;

Unsigned long integers:
unsigned long variable_name;
unsigned long int variable_name;

Floats:

float variable_name;
Doubles:

double variable_name;

Of course, wherever "variable_name" appears in
the table above, you would substitute the actual
variable name.

In these articles, we will be using the shortest
forms of the above, namely "int," "unsigned," "long,"
and "unsigned long."

In a straight rip-off of Radio Shack's old BASIC
instruction manual, let's tackle solving the old "time,
rate and distance" problem, namely "distance = time
*rate."

/* prog03.c */
#include<stdio.h>
main()
{

int rate, time;
rate = 55;
time = 6;

Page 25

printf(
"Rate = %d, Time = %d, Distance = %d\n",
rate, time, rate * time);

}

In this program, the first line in the main() func-
tion declares two auto variables, "rate," and "time",
to be of type short integer.

The next two lines assign the values 55 and 6 to
"rate” and "time", respectively.

The last line invokes the standard library
printf() function to display the result in a formatted
manner.,

Unlike puts(), printf() takes multiple arguments:
a control string which tells the function how to for-
mat the data, and a list of the data items to display.
In this case, there are three items in the list -- the
two variables we have declared and their product.

In the control string are two codes. One is "%d,"
which tells the function to display the data in deci-
mal form _in the minimum number of characters nec-
essary.

Note there are exactly as many data items in the
list as there are "%d" codes. This is required for the
function to work correctly.

The other code is "\n," which is the code for the
"newline" character. You may have noticed that the
puts(function we used earlier didn't require this.
Puts() automatically adds its own newline character.
Printf(), however, doesn't; so if we want the next
data printed to be on the next line, we have to in-
clude it in the control string.

If we omitted the newline character, printf()
would behave rather like a BASIC PRINT command
with a semicolon at the end.

Actually, the whole "printfQ" line should be on
one program line, but the narrow column width here
forced me to break it into three lines. It doesn't mat-
ter, though, because, if you'll remember, all white
space characters are ignored; so the compiler will
still see these three lines as one.

The only exception is that you can't break a
string across two lines unless you use the escape
character to tell the compiler what you want it to do.

For example, the string:

"Now is the time for all qui\
ck foxes and lazy dogs to party"

will be interpreted as being on one line. How-
ever, if the escape character were omitted, the com-
piler would report an "unterminated string" error
because it got to the end of a line without finding a
closing quote.

Page 26

Now type in, compile and run prog03.c to see
how printf() formats and displays the data supplied
to it.

O.K. Now it's time to write a program which
makes some decisions; so we're going to radically
modify prog03.c to create a new program, prog03a.c.

Before you start, be reminded that, on the Model
4, the "|" symbol is obtained via <CLEAR> <SHIFT>
"/".

/* prog03a.c */
#include<stdio.h>

void clr_scr();

char inbuf[81];

main()
{

int rate =0, time = 0, distance = 0;

clr_scr(;
rate = get_val("Input rate: ");

do
time = get_val("Input time: ");
while (!rate && !time);

while (('rate | | 'time) && !distance)
distance = get_val("Input distance: ");

if (!rate)

rate = distance / time;
else if (!time)

time = distance / rate;
else

distance = rate * time;

printf(
"Rate = %d, Time = %d, Distance = %d\n",
rate, time, distance);

}

void clr_scr()
{ printf("\xlc\x1f");}

int get_val(msg)
char “*msg;

{
printf(msg);

if (!gets(inbuf))
return NULL;

else
return atoi(inbuf);

TRSTimes magazine 7.3 - May/Jun 1994

This program introduces lots of new things; so
we need to go slow here.

The first New Thing is the "forward declara-
tion." In C, functions can return either no value or
exactly one value. The default type of return values
(or "return codes") is a short signed integer.

Functions which return no value (ie., a "void"
function), or return a type other than "int," should
(and in most cases MUST) be declared in advance,
to tell the compiler how to handle the values they
return.

In this example, we're telling the compiler that
the function "clr_scr()" returns no value.

It is not necessary to make a forward declara-
tion for "get_val()" because this function returns an
int.

The next line introduces a new kind of variable,
the "global" variable. Our previous program exam-
ples only used auto variables local to the main(
function.

But because "inbuf" is declared before the first
line of executable code, it can be accessed anywhere
in the program. By contrast, the "rate", "time", and
"distance" variables in main() exist ONLY within
main(), and CANNOT BE ACCESSED by ANY code
outside the main() function.

The same is true of "msg" in the get_val() func-
tion. It exists ONLY in get_val().

This intentional limitation of the scope of vari-
ables is a boon to the programmer. One of the big
irritations of programming in BASIC or assembler
is keeping track of a large number of variables in a
big program.

But in C, you can use the SAME variable names
in different functions in the SAME program, and
the variables stay entirely independent of each
other!

Here, "inbuf" is declared as an array of 81 ele-
ments, each of type "char". In C, brackets ("[" and
"I") are used to reference array elements.

Why 81? Well, in C, a normal line of input from
the keyboard, or output to the monitor screen is 80
characters.

O.K, you say. That accounts for the first 80, so
what's the 81st character there for?

Well, all data read from the keyboard is ASCII
char data, and all strings in C are terminated by a
null character; so we've got to make the array large
enough to hold 80 characters plus the terminating
"\0" (null character).

In the first line of main(), we introduce a new

TRSTimes magazine 7.3 - May/Jun 1994

way to "initialize" variables. In the previous exam-
ples, we declared them and initialized them (put
values in them) in separate steps. But here, we both
declare and initialize them in the same step.

The next line of code calls the clr_scr() function.
When we cleared the screen before, we imbedded
the clear screen codes in a string. Here, we have
built a separate function to perform that process.
This is actually a more efficient way to do it if your
program will be clearing the screen more than once.
Every time you put "printf("\x1le\x1f");" in your
program, the compiler is going to generate 11 bytes
of data and machine language instructions:

DSEG
$?LABEL:

DB

CSEG

LD HI,$?LABEL

PUSH HL

CALL PRINTF

POP AF

28,31,0

But when the above code is put into a separate
function (with a RET instruction added at the end),
calling it generates only three bytes of machine
code:

CALL CLR_SCR

True, the call overhead will add a few millionths
of a second to the screen clearing process, but that's
a very small price to pay for saving 8 bytes of final
program size each and every time you clear the
screen.

In general, unless program speed is critical, the
best way to structure C programs (or any program,
for that matter) is to put all processes which will be
used more than once into their own separate func-
tions.

In the next line of code, we also do something we
haven't done before, namely call a function we
wrote ourselves: the get_val() function. Note that
there is absolutely no difference between calling one
of our own functions than calling one of the stan-
dard library functions. Functions are functions, and
they are all called the same way.

In this case, the argument passed to get_val() is
a pointer to the string, "Input rate: ". Now skip
down the listing to the get_val() function.

The first line, "int get_val(msg)" says three
things:

1. This function returns a short signed int;

2. It's name is "get_val;" and

3. Tt takes one argument.

Page 27

The next line describes the argument by declar-
ing it. In this case, it says "msg" is a pointer to char.

In some versions of C, the two lines would be
put together as, "int get_val(char *msg)".

Note that the left brace indicating the start of
the code for this function appears AFTER the func-
tion argument(s) is/are defined.

The first line of executable code passes "msg" to
the printf() function to display it on the screen.
Since there is no newline character in the string,
the cursor will stay to the immediate right of the
last character in the string.

Now we introduce one of the ten "statements" in
the C language: the "if" statement.
The general format for this statement is:

if (expression)
program_statement;

In pseudo-code, its logical sequence is:

1. is "expression" TRUE?
YES:
execute "program_statement"
NO:
skip "program_statement."

Also, one or more "else" clauses can be added,
and each "else" clause refers to the immediately pre-
ceding "if" statement.

Now, if you'll refer to the documentation for the
standard library gets(function, you'll see it accepts
a string up to 80 characters long from "stdin" (the
standard input device -- the keyboard, in our case),
and it does not add a newline character to it. It re-
turns NULL if there is an error, or a pointer to the
string which has been input if there is no error.

It requires an argument which is a pointer to a
char buffer large enough to hold the data.

Notice the exclamation point ("!") before "gets."
This is the NOT operator. In C, all values are either
TRUE or FALSE. If a value is zero or NULL, it is
FALSE. All non-zero values are TRUE.

The first thing that will happen is that gets()
will be called to get some keyboard input. When the
input is complete, the value returned by gets() will
be either NULL (zero) or a pointer, which cannot be
Zero.

If gets() returns NULL, which equals FALSE,
the "!" will logically reverse that to TRUE. In this
event, the whole expression, "!gets(inbuf)," will
evaluate to TRUE; so "return NULL;" will be exe-
cuted.

Page 28

This introduces another C statement, the
"return" statement.

In void functions, "return" simply causes pro-
gram control to return to the calling routine, much
as the RETURN command does in BASIC.

However, "return" is often unnecessary in void
functions, our clr_scr() function being one example.
As I mentioned earlier, when a function runs out of
code, it automatically returns to it's caller.

In functions which return values, "return" is re-
quired, and does two things at the same time: it
specifies the value which will be returned by the
function and it returns program control to the call-
ing function.

In this case, "return NULL;" will cause our
get_val() function stop execution, and return a
value of zero to the calling routine.

If gets(returns a pointer, which must be non-
zero and therefore TRUE, the "!" will logically re-
verse that to FALSE, which will cause the whole ex-
pression to evaluate to FALSE. In this case, the
"return NULL;" will be skipped and the "else" clause
executed.

The first thing the "else" clause does is pass a
pointer to the keyboard data at "inbuf" to the stan-
dard library function atoi(). Atoi() converts ASCIT
data to an integer value (somewhat similar to the
VAL command in BASIC), and returns that value.
The return statement causes this value to be re-
turned to the calling routine.

Now, going back to the main() function where
we first called get_val(), the value returned by
get_val() will be loaded into ("assigned" to) the vari-
able "rate". In other words, if nothing was input,
"rate" will be zero. Otherwise, "rate”" will hold the
value of the string which was input from the key-
board.

Now, to get a value for "time", we introduce the
"do" statement. "Do" is one of three ways to set up
program loops in C. Its general format is:

do
program_statement;
while (expression);

In pseudo-code, its logical sequence is:
1. execute "program_statement"
2. is "expression" TRUE?
YES:
goto 1
NO:

exit.

Here, the user will be prompted to input a value
for the "time" variable. Then both "rate" and "time"
will be evaluated via the expression "'rate &&
time."

TRSTimes magazine 7.3 - May/Jun 1994

The "&&" is the "logical AND" operator; so what
this expression really says is, "NOT 'rate' AND NOT
ltime'-"

In other words, this code will not accept a situa-
tion where both "rate" and "time" are equal to zero.
At most, only one of the two can be zero. As long as
both "rate" and "time" are zero, the program will
keep going through the "do" loop, prompting the
user to input a value for "time," until some non-zero
value is entered.

The BASIC equivalent of this "do" loop is:

50 INPUT"Time", TIME :
IF (RATE =0 AND TIME = 0) THEN GOTO 50

DO NOT read any further until you FULLY un-
derstand how this "do" loop works.

Next, we use C's "while" statement to set up a
loop to get a value for "distance". The format for
"while" is:

while (expression)
program_statement;

In pseudo-code, its logical sequence is:

1. is "expression” TRUE?

YES:
A. execute "program_statement"
B. goto 1
NO:
exit.
In this case, we first use the "| |" (logical OR)
operator to tell us if either "rate" or "time" is zero. If
neither is zero, then the "(!rate || !time)" expres-

sion will evaluate to FALSE, and no attempt will be
made to either evaluate "!distance" or to call
get_val() to get a value for "distance".

If this expression evaluates to TRUE (i.e., if one
or both of "rate" and "time" is zero), then, and only
then, will the current value of "distance" be evalu-
ated.

Remember, "distance" was initialized to zero
(FALSE); so, at least the first time through this
"while" loop, "!distance" will evaluate to TRUE.

Assuming one of "rate" and "time" is zero, then
the only way this "while" loop can be exited is for the
user to input some non-zero value for "distance".

The BASIC equivalent of this "while" loop is:

50 IF ((RATE =0 OR TIME =0) AND

DISTANCE = 0) THEN INPUT"Distance",
DISTANCE : GOTO 50

An overview of what main() has done so far may
help your understanding. First, we got a value for
"rate". We allow "rate" to be either zero or non-zero.

Second, we asked the user to input a value for
"time". If "rate" is non-zero, we will accept a zero

TRSTimes magazine 7.3 - May/Jun 1994

value for "time". Otherwise, we keep prompting the
user to enter a non-zero value for "rate.”

Third, because we only need values for two of
the three variables, we checked the values for both
"rate" and "time". If both are non-zero, we make no
attempt to get a value for the third variable,
"distance".

But if either "rate" or "time" are zero, then we
keep badgering the user to input a value for
"distance" until he enters some non-zero value.

Do NOT read any further until you understand
this logic, and how it is implemented in both the "do"
and "while" loops.

You understand it? Good!

Then this is a good time to point out the differ-
ence between "do" and "while" loops.

A "do" loop will always be executed at least once,
regardless of whether it's contingent expression is
TRUE or FALSE.

A "while" loop will be executed only if its contin-
gent expression is TRUE. It will be skipped if the
contingent expression initially evaluates to FALSE.

The rest of main() uses "if" statements with
"else" clauses to determine which one of the three
variables is unknown (zero).

When it finds the unknown variable, its value is
calculated, then all three variables are displayed on
the screen via a printf() call very much like the one
in the previous program example.

The BASIC equivalent of this if-then-else chain
is:

50 IF (RATE = 0) THEN RATE = DISTANCE /
TIME ELSE IF (TIME = 0) THEN TIME =
DISTANCE / RATE ELSE DISTANCE =
RATE * TIME

Now compile and run PROGO3A. Run it several
times, trying different combinations of unknowns
and values. Also, if you're "into" assembler, you
might want to study PROG0O3A/ASM to see how the
program is structured and how values are passed to
and returned from functions.

0.K. That's all for this time. You've got two
months to chew on all this, and get ready for the
next exciting episode, when we'll get into floating
point math and some other "fun" stuff. Don't remove
or kill PROGO3A/CCC -- we'll be using it again.

In the meantime, I suggest you beg, borrow (try
your local public library), or buy (stealing is a no-no)
a copy of "The New C Primer," written by the Waite
Group, published by SAMS. This is the best C tuto-
rial book I have seen so far which deals strictly with
the pure "K&R" C we use on our Model III's and 4's.
Don't get a book which deals with ANSI C or C++ at
this point -- it'll only confuse and confound you.

Page 29

Some Memory Meanderings

part 2
by Roy T. Beck

I have been doing a little looking at my favorite
hate; a 486-50 which resides next to my trusty 4P
and shares a LaserdJet with it. Kind of ironic; the
Model 4P drives a Model 4 Laser, and operates un-
der LS-DOS version 6.3 in competition with the 486
which operates under MS-DOS version 6.2. I guess
it is inevitable that MS-DOS will eventually have a
higher version number than LS-DOS!

As I mentioned last time, the IBM family has a
lot of memory, far more than the Z-80 equipped
Model 4 and 4P possess. The original IBM PC typi-
cally had 64 K to 256 K of RAM, depending upon the
depth of the owner's pocket book. The memory map
was actually much larger, 1 Meg to be exact. The
controlling factor, as always, is the number of ad-
dress lines-the CPU can manage. In the case of the
8088, 8086 and 80186, the address lines were 20 in
number. The memory map is 2 to the power of 20,
which is 1,048,576, decimal. In terms of K = 1024,
this number is 1024 x 1024.

Now, if the original PC had a memory map of 1
Meg, and only 64 K or 256 K of RAM, what was the
rest of the memory used for? Or was it used at all?
The answer is that the original designer of the PC
was thinking BIG, and he decided 10 x 64 K, or 640
K would obviously be more than ample space for
user programs. Thus he reserved the lower 640 K of
the 1 Meg as user program space, and then assigned
blocks of the remaining 384 K of memory for various
necessary housekeeping functions.

In the original layout, the memory assignment
was as follows:

Conventional Memory 640 K, 00000H to SFFFFH,
into which up to 640K of
DRAM could be addressed.
Upper Memory 384 K, AOOOOh to FFFFFH,
reserved for system devices,
as follows:

AOO00OH to BFFFFH was available for video dis-
play cards, the exact location and amount depending
upon the type of video display in use. VGA and EGA
require all of this area, but some older systems,
(Hercules, other monochrome and CGA cards) used
only a portion of it.

CO000H to DFFFFH was reserved for Hard
Page 30

Drive controllers and their ROMs and other
adapters and devices which could be expected to be
developed.

EO0000H to FFFFFH was intended for the ROM
BIOS and BASIC ROMs. The BASIC ROMs were ad-
dressed from F6000H to FDFFFH, and the BIOS
runs from FEQOOH to FFFFFH.

As a practical matter, the CO000H to DFFFFH
block is usually not fully populated, resulting in
blank spots in the memory..

Similarly, the The EQO000H to FFFFFH area is
also seldom fully used. The ROM BIOS is usually lo-
cated at or above FOOOOH. As an aside, it is interest-
ing to note that the CPU begins execution at
FFFFOH at power-on or when the hardware RESET
is actuated. The design of the CPU and the memory
map obviously had to be coordinated in choosing this
value. The good ol' Z-80, (and the 8080 and 8085)
CPU jumped to 0000H when RESET was actuated.

The memory map of the present PC's is a strange
and wonderful arrangement. The original layout
consisted of just two areas, the 640 K assigned for
program storage, and the 384 K reserved for house-
keeping purposes. Today, the 640 K is known as
"Conventional Memory", and the 384 K is termed
"Upper Memory". All memory in excess of the origi-
nal 1 Meg is now known as "Extended Memory". So
far, so good. But there is yet another kind of memory
which actually came along before "Extended Mem-
ory" was implemented. This was known as
"Expanded Memory", and it is really spooky. I say
that because it appears and disappears, and is only
accessible through holes, or windows, in Upper
Memory. More on this later.

As time marched along and newer CPU's were
designed '286, '386, etc, the world according to Garp
(Intel, that is) became larger, which was accom-
plished by adding additional memory address lines
to the newer CPU's. The original 20 address lines of
the 8086 family were increased to 24 in the 286,
which thereby increased the memory map to 16
Megs. 2 to the 24th power = 16,777,216, which, di-
vided by 1024 = 16,384 K. Dividing a second time by
1024 yields 16 Megs. This new extension of the mem-
ory map was all well and good, but there were in-
evitably several flies in the PC ointment.

TRSTimes magazine 7.3 - May/Jun 1994

First, the problem of compatibility had to be
faced, and a decision made as to whether the new
memory was to be contiguous with the original 640
K, which would require relocating all the ROMs and
adapters located in Upper Memory, or whether the
system area would be left as i1s, and the new memory
made non-contiguous, starting at 100000H and run-
ning upwards from there. Upward compatibility of
existing software dictated that all the system stuff
remain unchanged, with new memory starting from
100000H. I am sure the designers had begun to an-
ticipate further growth of memory, and realized relo-
cation of system stuff would only have to be done
again the NEXT time the memory map was ex-
panded, whereas if it was left at its original location,
the question would never arise. IFor whatever rea-
son, the system stuff was left in Upper Memory, and
all new memory above 100000H became a new world
known as "Extended Memory"

Fly #2 was that the 286 chip had certain
"limitations" in its behavior. It had several operating
modes, the first of which was the REAL mode, which
could only access the original 1 Meg memory map. It
has a second mode known as the VIRTUAL mode, in
which 1t could access the Extended Memory from
100000H to 1000000H. Sounded great; here was this
shiny new CPU which could access 16 whole Megs of
memory! But I said there was a fly in the ointment...
Intel had provided the necessary instructions to
shift from REAL mode to VIRTUAL mode, but for
whatever reason, deliberately omitted any instruc-
tions to shift it back to REAL mode. Why? Dunno,
you'll have to ask Intel what that was all about. But,
you say, the 286 really can use all 16 Megs. Yes, it's
true it can get into the VIRTUAL mode easily, and
can then access the additional 15 Megs of memory
using the additional 4 address lines. But how to get
back to the REAL mode where the lower 1 Meg 1s
situated? The answer was that the CPU had to do a
warm RESET, which required a relatively long pe-
riod of initialization time. Since in the normal course
of program execution of large programs, the chip has
to toggle between modes very often, the result i1s that
the chip spends an inordinate amount of time doing
warm RESETSs. That 1s the reason the 286, even at
33 mHz is such a poor performer in large programs.

Other CPU versions came along, including the
386 DX, the 486, and now the Pentium. All of these
chips can shift modes under software control, thus
eliminating the need for a soft RESET to return to
the REAL mode. Further all of these have 32 ad-
dress lines, allowing Extended Memory up to 4096
Megs, or 4 Gigabytes. Wow!

Besides the problem of the inherently "erippled”
286 CPU, there was another area of concern. There

TRSTimes magazine 7.3 - May/Jun 1994

were numerous machines in daily operation with
only the original 1 Meg of memory, but users of
spreadsheets such as Lotus were demanding more
than 640 K of memory as their size increased. Lotus
and Intel got together (later joined by AST, Mi-
crosoft and others) to develop a new form of memory,
named "Expanded Memory" which could be utilized
by the earlier chips, including the 8088 and its
cousins. The first widely used version of this concept
was 1dentified as the LIM EMS 3.2 standard, which
spelled out how this new "Expanded Memory" would
be software interfaced by all players. This scheme
allowed for the addition of 8 Megs of Expanded
Memory to all the existing PC's. In the case of the
8086 family, an additional card had to be added to
the machine which housed the additional memory.
(Note, this is not the memory added in the old "6
Pack" and similar cards; that was only part of the
original 640 K). A later version of the LIM standard
was numbered 4.0, and this allowed for a still larger
Expanded Memory, 32 Megs.

So how does Expanded Memory function? You
will remember I mentioned above that there are
"holes", or unoccupied spaces, in the Upper Memory.

The Expanded Memory really consists of bank-
switched blocks of memory, and makes four 16 K
blocks available through a 64 K window, the window
to be established somewhere in Upper Memory. The
original 8 Megs of Expanded Memory is divided into
512 pages of 16 K each, any 4 of which can be
"viewed" through the "window" in Upper Memory.
The 4 pages need not be contiguous. I told you this
was spooky, didn't I? A further problem is that not
all machines could be expected to have a 64 K win-
dow in exactly the same place in Upper Memory as
every other PC. I believe the installation program
takes care of finding a suitable 64 K block in any
specific machine, and I also think this can be over-
ruled by a knowledgeable operator, who can specifiy
where the window 1s to be located.

i

[don't care about these mechanics, only the con-
cept is important. If you think back to the Model 4
and 4P I discussed in Part 1, you will see that this

' bank switching of multiple 16 K pages in a window

1s closely analogous with switching of single 32 K
pages in the upper half of the Z-80's memory map,
except that the PC is inherently more complex. The
programmers claim anything can be done in soft-
ware, and in this case they surely made 1t work.

Note that in the 8086 family, an extra card was
required to house the LIM memory chips. In the case
of the 286 and later chips, the memory used to form
the 16 K pages is actually part of the Extended
Memory of the machine, with the CPU performing

Page 31

memory readdressing to bring the 16 K pages down
to the selected window in the Upper Memory. By so
doing, the software concepts developed for use by
large programs in the 8086 era remain applicable to
the 286 and later chips, thus avoiding obsolescence
of the application programs. Due to the changed
CPU configurations, a separate driver program is re-
quired in each case, usually named something like
EMMZ286, etc. The later Microsoft DOS's include this
driver. Where a board was supplied, the board ven-
dor had to provide the necessary software driver to
implement Expanded Memory on his board.

All of the above, so far, relates to memory map-
ping concepts. What about types of memory chips?
The PC world has popularized some new types in
addition to the dynamic RAMS (DRAMs) and ROMS
used in the Model 4 world. One type is the EEP-
ROM, which is an electrically erasable and writeable
PROM. This is used in the PC family to hold
semipermanent data which might have to be
changed at some time in the life of the machine. Ex-
amples might include hard drive parameters on a
controller card.

Another very important type is CMOS memory,
which is a form of static RAM which will hold its
memory contents indefinitely so long as a low DC
voltage is applied to one pin on the chip. The current
draw is microscopic, and can be neglected as in-
significant. CMOS memory is used to hold all the
startup parameters in 286 and later machines.
When the machine is turned off this voltage is sup-
plied by a small primary cell or nickel-cadmium stor-
age cell mounted on the motherboard. Since nothing
is forever, this battery will eventually fail, and the
CMOS contents will be lost. It is for this reason you
must periodically replace the battery, and certainly
you must record and save (on paper) the data nor-
mally present in the CMOS memory.

As a curiousity, many lap-top computers includ-
ing the TRS Models 100, 102 and 200 all have CMOS
main memory. It is for this reason that many files
are kept in memory even when the machine 1s
turned off, and are instantly available when the ma-
chine is turned on. It is a nice feature, but it does
tend to clutter up the memory with programs and
data not presently in use.

Those of you who go back to the Model I may
remember the presence of "snivvies" on the screen
when the Z-80 was writing to the screen. These were
the result of competition by the CPU and the screen
scanning circuitry for the attention of the screen
memory. The CPU had priority, so whenever it

wanted to write to the screen, the scan circuit was |

prevented from accessing the screen memory, so was

Page 32

simply given a blank character to display. Dan Dres-
selhaus of SAGATUG created a small circuit hack to
overcome this. His circuit required the CPU to defer
its access until the scanning circuit was doing a hori-
zontal or vertical retrace. The result was to slightly
slow the CPU's effective speed and eliminate the
snivvies on the screen. The hack wor! 1 beautifully,
and several club members installed it in their ma-
chines. Radio Shack also thought about the snivvies,
and in the Model 4 they added an equivalent of
Dan's circuit. Dan had a switch to turn his circuit on
or off, Radio Shack implemented it by way of a bit in
a port, with the default turning off the snivvies. If
you have special needs, you can flip the bit to the
other position.

All of the above paragraph is by way of introduc-
tion to another memory chip. There now exists a
dual-ported screen memory chip which will allow
unrestricted access by the CPU while simultane-
ously allowing the scanning circuit to access the
stored byte. This automatically eliminates the
snivvies without slowing the CPU. Here is a good
example of necessity being the mother of invention.

[believe I have about exhausted my store of
memory about memories, and so I will wrap this ar-
ticle up and send it to Lance. Good night, all.

RECREATIONAL & EDUCATIONAL
COMPUTING

-
..r

Ul *s w

o I‘ﬂ

L = -:.

; . 8 ’((’J‘;’*

REC is the only publication devoted to the playful
interaction of computers and 'mathemagic' - from
digital delights to strange attractors, from special
number classes to computer graphics and fractals.

Edited and published by computer columnist and
math professor Dr. Michael W. Ecker, REC features

F

[Iprograms, challenges, puzzles, program teasers, art,

editorial, humor, and much, much more, all laser
printed. _

REC supports many computer brands as it has done
since mnception Jan. 1986. Back 1ssues are available.
To subscribe for one year of 8 issues, send $27 US or
$36 outside North America to: REC, Attn: Dr. M.
Ecker, 909 Violet Terrace, Clarks Summit, PA
18411, USA or send $10 ($13 non-US) for 3 sample

issues, creditable.

TRSTimes magazine 7.3 - May/Jun 1994

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf

