TRSTimes

Volume 7. No. - Sep/Oct 1994

'] el II o '.I'II .Il- o 2
« BN LU F B, - i
& ™ - . L] L] L] L]
] .‘Illlll TR (LR i_ g N | . B i a ;I
WL L] R WS RO '
wi o “ll.l-l ‘l-"" J.l 5 # o]
" i '_l ¥ h-l _.q_'; A B e oE '_I__‘_ g il " w . R -
Ll L .',' hlll i l_‘.-‘l ' s Wi _.‘-it .I - " - s " i
l' 'I" = l-'l' iy . ® & “.",..' - L] " W "' s @ |"'.‘\;’
K a1 -'. ¥ r . o i B " oww s om ull
3 B "I* l."l‘lll rd II.I = F gl P "
. L] [] 1I- o . ‘ I. -- . . : lli..l +I L .r. » L] Ty . "
7 S | -.--- ' "ll W i i i & & w i a.i
i " ® . . r ¥ . L "-l . | +' - i'.‘il ."‘- - I"..I‘ i
¥ L Il." ih® 4w : = i . ' @ W W & .
y o LD N L joow l.ﬁ_‘ . . L
" o r w il R ¥ o L] o il e
= gorpd 1B e aw iwnd HE Y . ® T
- 'lt g i = i l.i- L] - A - wom
" - '| i own WA - W .l‘ “E WE «u 1 "-. i " » Foaw b
. " B &
s a el |‘. r L] ol B L PEPLE - s 00 _'
i . ..'.Illi B RN i g md W [} . eaE Lf
- - ' ¥ ' - ‘ L . ‘- i -. . L] ‘ - ‘ & @ .- L I
o o BN PR N x m BB " SRR L
4 im .'1 o] .:1.,] I‘- 4 = . .
™ - e . & I‘ [] [] - L] .‘ - W '] 'l
W - * ‘ l . ‘.l ‘I i - W i - . - ¥ & & 1.
- ® ll-‘l-.ll jow ea B o a = i mi = & LI LN L
i RO . 'IJ." i 5 -'lll?"-ﬂ-“' "o T e e Vo m
I.‘tlh..l.ll gl dngsmE R LM L i S B
"] . n el l'l-l 1-"." - 5 .l--.-‘ l' v h‘ .o A % .'l'h
p h'l.‘ll"‘- L ._' & ® #w l.‘%- F A . .' N -
o on o bl W IF e ats 0y el L s w wws s b F
& o - '\. = # L] ¥ L L W
s . By i '_H e L T - LI L
- imna . W RN I] L] L iy gl
= = = om i . .‘.li‘li'.'. ima. l.l LR i 5N .'.", & 'I..
3 e e IR e i .-J T Ty . '.‘n‘-l .ll‘l- Mgl e Tgw s Ill 4
" W . b - W I] & L] § @ - 00
i e .l'#l.l "r.lli" '] |l|' ll +-'-I"..I '::t N = W - (] .
- 5 lll' P | I‘.ill . w BN_ _* "_1 |.I|-| "l L}
e s e e - bw L
k 5 g ." = y s aamp=" ..1"
.] . = I B
W |]
. t'ilt“ llh-
L]

o
" .llil-'
" oo

oW mom on i

S e er—

— i —

=

- e e s TEC W

- - s e S
. —
-

- L & " .
- - —

-

— -

- = o c— R mee—— e a
- - — S —
-

- e — -

-
- - A
- - — — _ .. - w® P L
—_—
- - - E— .. - g — i am W — T ——
4 & o
- - - S E—— - - - . R - .
W - a - LI - s — - - - N - - .
& [m— - - — il W —

—— o — W - . < B ™

UTILITY FOR TRS-80 MODEL
4 AND LS-DOS 6.3.1

A'MUST HAVE' FOR ALL
LS-DOS 6.3.1 OWNERS.

DR. PATCH MODIFIES LS-DOS 6.3.1 TO DO
THINGS THAT WERE NEVER BEFORE POSSIBLE.

COMPLETELY SELF-CONTAINED - MENU-DRIVEN
FOR MAXIMUM USER CONVENIENCE.

FAST & SAFE - EACH MODIFICATION IS EASILY
REVERSED TO NORMAL DOS OPERATION.

DISABLE PASSWORD CHECK IN FORMAT/CMD DISABLE PASSWORD CHECK IN BACKUP/CMD

FORMAT DOUBLE-SIDED AS DEFAULT BACKUP WITH (I) PARAMETER AS DEFAULT
FORMAT 80 TRACKS AS DEFAULT BACKUP WITH VERIFY DISABLED

DISABLE VERIFY AFTER FORMAT DISABLE BACKUP 'LIMIT' PROTECTION
CHANGE 'DIR' TO 'D' DISABLE PASSWORD CHECK IN PURGE
CHANGE 'CAT' TO 'C' PURGE WITH (I) PARAMETER AS DEFAULT
DIR/CAT WITH (I) PARAMETER AS DEFAULT PURGE WITH (S,I) PARAMETERS AS DEFAULT
DIR/CAT WITH (S,I) PARAMETERS AS DEFAULT PURGE WITH (Q=N) PARAMETER AS DEFAULT
CHANGE 'REMOVE' TO 'DEL' IMPLEMENT THE DOS 'KILL' COMMAND
CHANGE 'RENAME' TO 'REN' CHANGE DOS PROMPT TO CUSTOM PROMPT
CHANGE 'MEMORY' TO 'MEM' TURN 'AUTO BREAK DISABLE' OFF

CHANGE 'DEVICE' TO 'DEV' TURN 'SYSGEN' MESSAGE OFF

DISABLE THE BOOT 'DATE' PROMPT BOOT WITH NON-BLINKING CURSOR
DISABLE THE BOOT 'TIME' PROMPT BOOT WITH CUSTOM CURSOR

DISABLE FILE PASSWORD PROTECTION BOOT WITH CLOCK ON

ENABLE EXTENDED ERROR MESSAGES BOOT WITH FAST KEY-REPEAT

’

DR. PATCH IS THE ONLY PROGRAM OF ITS TYPE EVER WRITTEN
FOR THE TRS-80 MODEL 4 AND LS-DOS 6.3.1.

DISTRIBUTED EXCLUSIVELY BY TRSTIMES MAGAZINE ON A STANDARD
LS-DOS 6.3.1 DATA DISKETTE, ALONG WITH WRITTEN DOCUMENTATION.

S

NO SHIPPING & HANDLING TO U.S & CANADA. ELSEWHERE PLEASE ADD $4.00
(U.S CURRENCY ONLY, PLEASE)

TRSTimes magazine - dept. DP
5721 Topanga Canyon Blvd. #4
Woodland Hills, CA 91367

DON'T LET YOUR LS-DOS 6.3.1 BE WITHOUT IT!

TRSTimes magazine
Volume 7. No. 5 - Sep/Oct 1994 - $4.00

Dri:mwn Jacobs
ECHNICAL ASSISTANCE

alley TRS-80 Users Group
ey Hackers' TRS-80 Users
SR “Group

briel Tandy Users Group [}

. published bi-
RSTimes Publica-
:5721 Topanga . Canyon
uite 4. Woodland Hills, CA
U.S.A. (818) 716-7154:

irface mail or $34.00
. (U.S.*cuxjrency only)

Article: submissions" from our
readers: are welcomed and en-
iraged. Anything pertaining to
2 TRS-80 will be ‘evaluated for
ible publication. Please send
py and, if at all possible a
disk with the material saved in
ASCII format. Any disk format is
acceptable, but please note on la-

bel "iVlliélj format is used.

T

T RE I ESES a4

PRE L g o
ek, A ooy

Lance Wolstrup

G. Michels

Daniel Myers

C PROGRAMMING TUTORIAL part 3cccoeeevenneeees 15
J.F.R. “Frank” Slinkman

PROGRAMMING TIDBITS....coevtttrerirereensersesesesssesessss 28
Chris Fara

SOME HACKING REMINISCENCES.......ccocccevvrenneeee. 26
Roy T. Beck

TRSPHONE

Model 4 - editor/assembler (EDAS)

by Lance Wolstrup

This month, 1
thought TI'd put to-
gether something use-
ful - a phonelist utility
for Model 4. Tt is cer-
tainly something that I
can use myself, as T am
undoubtedly the most
unorganized guy west
of Mississippi. My desk
is always cluttered
with scraps of paper
containing phone numbers of people that I need to
call back for one reason or another. Needless to say,
I'lose most of them - that is, until I began using my
Mod 4 to store the numbers.

I know that I could have used a big database,
such as Profile or PFS/file, to do the job, but that
was too clunky. I really didn’t want to load a pro-
gram and then go through a series of menus to find
the information; rather, I wanted to be able to type
a name from the DOS prompt - having my program
display that person’s phone number. Nothing fancy,
just quick and dirty — with the emphasis on quick.

I got out my favorite editor/assembler, EDAS,
and sat down in front of my Model 4P. The result of
the programming session is PHONE/CMD, a short
machine language program that searches an ASCII
datafile for the name specified at the command line
and, if found, displays the full name and phone
number,

PHONE/CMD is designed to read a plain ASCII
datafile containing your phone list. I used TED, but
you can use any text editor or wordprocessor, as
long as it is capable of saving the text in ASCII. The
list must be written uniformly with each line having
a person’s name, a space, a phone number, and a
carriage return indicating the end of the line. For
example:

Paula Jones (209) 555-1234 <cr>

Kathy Ferguson (505) 555-4321 <cr>
George Putnam (213) 555-3412 <cr>
Larry Nicholls (318) 555-2143 <cr>
TRSTimes magazine (818) 716-7154<cr>
ete.

Page 4

After the names and phonenumbers have been
entered, save the file as PHONE/DAT. You are now
ready to use PHONE/CMD. From the DOS com-
mand line, simply type:

PHONE name <cr>

For example, typing:

PHONE TRSTimes <er>

would display:

TRSTimes magazine (818) 716-7154

Since PHONE/CMD searches PHONE/DAT for
whatever name you specify following PHONE, you
need not type the entire name - you only need to
type enough characters to make the request unique;
otherwise, the first match will be displayed. Also,
PHONE/CMD’s search function is not case-
sensitive; you may type the name request in upper-
case, lowercase, or any combination thereof.

The concept of the program is simple. You type
the name of the program (PHONE), a space, and
then all or part of the name you wish to display.
PHONE/CMD reads the contents of the
PHONE/DAT datafile into a buffer and then pro-
ceeds to compare the name parameter to the begin-
ning of each record until there’s either a match or
the end of the datafile is detected. If a match is
found, the record is displayed on the screen and the
program returns to DOS. If no match is found,
PHONE/CMD simply returns to the DOS prompt.

This is one segment of the program that I would
like to see improved by one or more of the readers.
If no parameter follows the program name, I think
it would be a good idea to display the entire list, one
page at a time.

Consider it our fall programming challenge, so
get out the editor/assembler of your choice, type in
the program, and then modify it
as described. If anyone takes the
challenge, we will publish the
changes in the next issue.

TRSTimes magazine 7.5 - Sep/Oct 1994

PHONE/ASM

;phone/asm

;eopyright 1994 by Lance Wolstrup

;for TRS-80 Model 4
ORG 3000H

START LD A,(HL) ;get param

;the next two lines exits to DOS if no name

;was typed. These two lines should be eliminated

;if the proposed modification of displaying the

;entire list is to be implemented.

’ CP 13
RET Z

;none there?
sexit if not

,

;save pointer to name and convert the name
;to uppercase

b

PUSH HL ;save params
STRT1 CP 97 ;start of lowercase

JR C,STRT2 ;jump if smaller

CP 123 ;end of lowercase

JR NC,STRT2 jump if = or >

RES 5,(HL) ;make uppercase
STRT2 INC HL ;next chr

LD A,(HL) xfer to A

CP 13 ;is it terminator

JR NZ,STRT1 ;no, 80 repeat

;restore the name pointer and store address
;in the NAME buffer.

STRT3 POP HL
LD (NAME)HL

;restore params
;and save it

;setup FCB
LD HL,DATNAM ;point to datafile
) ;name
LD DE,FCB ;point to feb
LD A78 @fspec
RST 40

;now attempt to open PHONE/DAT

2

LD HL,JOBUF ;point to /o buffer

LD A,B9 ;@open
LD B,0 ;reclen 256
RST 40

;determine if OPEN succeeded

’

JR Z,0POK ;jump if file opened

’

TRSTimes magazine 7.5 - Sep/Oct 1994

;OPEN failed. Display error message and return
;to DOS.

’

LD HL,NOFIL ;file not found msg

LD A 10 ;@dsply
RST 40
RET ;exit to dos

;OPEN succeeded. Get number of 256 byte records
;in PHONE/DAT from FCB. Note that I am only
;reading FCB+12 (the LSB of record counter). I do
;not anticipate using more than 255 256-byte
;records (I figure this to be approximately 1000
;names and phone numbers - ought to be enough!)
;First check if any records exist.

OPOK LD A(FCB+12)
OR A
JR NZREAD

;get number of recs
;any there?
;yes, so jump

;PHONIE/DAT has no records, so display message
:and exit to DOS

’

LD HL,NREC ;point to msg

LD A10 :@dsply

RST 40

RET :return to dos
'No records found in datafile’,13

NREC DB

:read all records - extend buffer as needed.
;:Note that we take some liberties with FCB+3
;and FCB+4 - we keep plugging in the address
;of the new buffer segment.

READ LD BA
LD HLIOBUF

;get recs in b
:point to i/o buffer

RDLOOP PUSH HL ;save it
LD DE,FCB ;point to fcb
LD A67 @read
RST 40
LD DE,256 ;extend
POP HL ;1/0 buffer
ADD HL,DE ;by 256 bytes
LD AL ;and copy
LD FCB+3),A :new address
LD AH ;into

LD (FCB+4),A feb
DJNZ RDLOOP ;repeat until done

bl
:all records have been read - so close file

’

LD DE,FCB ;point to fcb
LD A,G0 :@close
RST 40

:Now we need to determine how many bytes
:in the file - and where the end-of-file marker is.

Page b

LD
LD
DEC
OR
JR
LD
LD

RLOOP ADD
DJNZ
LD
LD
LD
ADD
LD
ADD
LD

RECO

I.D
LD
LD
CP
JR
INC
INC
JR

GETO

GET1 LD
LD
LD
LD
PUSH
LD
Cp
JR
Cp
JR
RES
LD
LD
Cp
JR
INC
INC
DJNZ

GET2

GET3

GET4

; match found -

;and then exit

H

POP

EX
LD
RST
RET

Page 6

HL,0
A,FCB+12)
A

A

Z,RECO
DE,256
B,A

HL,DE
RLOOP
A,(FCB+8)
D,0

EA
HL,DE
DE,JOBUF
HL,DE
(EOR,HL

B,0
HL,(NAME)
A,(HL)

13

Z,GET1

B

HL

GETO

AB
(NAMLEN),A
DE,IOBUF
HL,(NAME)
DE

A,(DE)

97

C,GET4
123
NC,GET4
5,A

C,A

A,(HL)

C
NZ,NEXT
HL

DE

GET3

;sethlto 0

;get number of recs
;adjust for eof offset
;18 it now record 0?
;yes, so skip loop
;inc each rec by 256
;copy number of recs
;to register B

;add bytes to hl
;repeat until done
;end byte offset

;add eof offset

;to

:hl

;and then add

;the buffer offset
;and save eof address

;reset loop counter
;get param

;get chr

;s it er

;yes, so exit loop
;inc loop counter
;next chr
;continue loop

;copy loop ctr to a
;and store in buffer
;point to /o buffer
;get param

;save i/o pointer
;get chr

;1s 1t lowercase

;NO, jJump

;is it lowercase

;N0, SO jJump

;make uppercase
;copy chr to ¢

;get chr from param
;compare them
;jump if no match
;next param chr
;next /o buffer chr
;continue

display name & phone number

DE

DE,HL
A10
40

;restore start
;of record
;move it to hl
@dsply

;return to dos

:match not found - but before we can check the
;next record we must take care that we are not
;at the end of the file - if we are then exit to DOS.

NEXT POP

DE ;restore i/o buffer
;address
LD HL,(EOF) ;get eof address
SBC HL,DE ;compare them
JR NC,NLOOP ;jump if not at end
RET ;at end - so return
;to dos

;we are not at end, so loop until we get to the end
;of the record (end of record marker is cr)

NLOOP LD

A,(DE) ;get chr
Cp 13 ;is it er
JR Z,NLOOP1 ;jump if er
INC DE :next chr
JR NLOOP ;continue

;end of record found, so move pointer to beginning
;of the next record - pick up length of parameter
;and store in in regoster B - then go back and

;try to find a match.

i\ILOOPl INC DE ;move past cr

LD A, (NAMLEN) ;pick up param len
LD B,A ;and copy it to b
JR GET2 ;continue with the

next record
b
;messages and buffers

NOFIL

DB ‘Unable to find'
DATNAM DB 'PHONE/DAT'13
NAME DS 32
NAMLEN DB 0
FCB DS 32
EOF DS 2
IOBUF DS 256
' END START

el
uwe |15 E
Ol EE
I

TRSTimes magazine 7.5 - Sep/Oct 1994

MIXCASE

Model 4, Basic
by G. Michels

This is a program that allows persons with
hand and wrist problems to type in all upper case
letters (to avoid the trauma of reaching for the shift
keys) and convert the text to mixed case prior to
printout.

The program accesses your .ASC file saved in
ASCII format. Thus all enhancements, graphics,
bold letters, special characters ete. should be added
to the new mixed case file /ASC. If your word proces-
sor uses an extension other than /ASC, modify lines
110, 120, 130 and 140 of the program.

The rules are relatively simple. All letters that
follow two or more spaces are automatically capital-
ized, such as at the beginning of a sentence. All mid-
sentence letters that are to be capitalized should be
proceeded by a /. If a "/" is used within the text, then
precede it by another /. If a letter following two
spaces is not to be capitalized, then use a slash be-
fore it. Skip a line at the top of the text to avoid
picking up the software coding of your word proces-
sor. Enhancements (bolds, underlines, etc.) can be
added to the new text that has been run through
MIXCASE/BAS. Your letterhead can be cut and
pasted on at that time as well.

Suggestion: Name original text filel. Mixcase
file2. (rtjustify file3 if used).

Once you are accustomed to adding the "/" prior
to mid-sentence words or names that are to be capi-
talized, use of the program becomes a fairly simple
routine. -

The Basic program listing allows you to change
the "/" slash preceding each mid-sentence word that
is to be capitalized to any other special character
that you find easy to use. Also, remember to change
the .ASC extension if it is not appropriate for your
word processor.

ENV3/BAS
ENV4/BAS
ENV5/BAS

Written for a DMP33 printer since setting up la-
bels for every envelope that needs to be mailed gets
to be a chore. Hopefully these programs can be mod-
ified for your printer if you do not have software
that prints envelopes.

ENV3is for a 3 line address, ENV4 is for a 4 line
address -etc.

Before using, modify programs to print your re-
turn address where it says "type your name here",
"type your street address here","type city,type 2
char state and zip".

Place envelope so the top edge is just below the
top edge of the printer head. Align left side just as
you would paper. Adjust tension slightly looser than
you would for single sheets of paper. You can test
these programs on a plain sheet of paper in your
printer before actual use to see how they work out
for you.

EXAMPLE OF INITIAL TYPING
PRIOR TO USE OF MIXCASE/BAS
AND RTJUST/BAS

RTJUST/BAS

This program is a means of right justifying text
if that feature is not included with your word pro-
cessor. If you already have the feature, skip this pro-
gram since it is kind of a last resort.

TRSTimes magazine 7.5 - Sep/Oct. 1994

(see above)

THE RULES ARE RELATIVELY SIMPLE. ALL
LETTERS THAT FOLLOW TWO OR MORE
SPACES ARE AUTOMATICALLY CAPITALIZED -
SUCH AS AT THE BEGINNING OF A SEN-
TENCE: ALL MID-SENTENCE LETTERS THAT
ARE TO BE CAPITALIZED SHOULD BE PRO-
CEEDED BY A /. IF A"/ ISUSED WITHIN THE
TEXT, THEN PRECEDE IT BY ANOTHER //. IF A
LETTER FOLLOWING TWO SPACES IS NOT TO
BE CAPITALIZED, THEN USE A SLASH BE-
FORE IT. SKIP A LINE AT THE TOP OF THE
TEXT TO AVOID PICKING UP THE SOFTWARE
CODING OF YOUR WORD PROCESSOR. EN-
HANCEMENTS (BOLDS, UNDERLINES, PIC-
TURES ETC.) CAN BE ADDED TO THE NEW

Page 7

TEXT THAT HAS BEEN RUN THROUGH ENVS3/BAS
/M//X/CIA/S/E./B/A/S. IYOUR LETTERHEAD CAN
BE CUT AND PASTED ON AT THAT TIME AS

WELL. 1' ENVELOPE PRINTING WITH RETURN ADDRESS

copyright GMICHELS
MIXCASE/BAS 2!

3]

10 'MIXCASE/BAS copyright G.Michels 10 CLS:

15 'THIS PROGRAM CHANGES ALL UPPER- LINE INPUT "ENTER NAME OF ADDRESSEE: " N$:

CASE CHAR.TO MIXED CASE PRINT:LINE INPUT"ADDRESS: ",A$

16" 20 PRINT:LINE INPUT "CITY: ",CS$:

20'32=SP 91=[47=/ 10=LF 13=C/R 65-90= INPUT "STATE AND ZIP:",ST$

CAPITAL LETTERS 30 PRINT TAB(30) N$:PRINT:PRINT TAB(30) A$:

100 CLS PRINT:PRINT TAB(30)C$", "ST$

110 PRINT "WHICH .ASC FILE DO YOU WANT 40 PRINT:INPUT"IS THIS CORRECT? Y/N: ",ANS$

TO CHANGE TO MIXED CASE LETTERS? " 50 IF ANS$ <> "Y" GOTO 10

115 PRINT "/ASC EXTENSION IS ASSUMED 55 INPUT "PLEASE POSITION ENVELOPE IN

AND NEED NOT BE TYPED IN: " PRINTER. READY? Y/N: ", Y$

120 INPUT UPS$:UPP$=UPS+"/ASC" 57 IF Y$<>"Y" THEN 55

130 PRINT "NAME OUTPUT /ASC FILE: " 60 LPRINT CHR$(27),CHR$(0);CHRS$(2):

140 INPUT LW$:LOWS$=LW$+"/ASC" 70 LPRINT TAB(1)"type your name here":

145 'KILL LOWS$ LPRINT TAB(1)"type your street address here"

150 OPEN"R"#2,LOWS,70 80 LPRINT TAB(1) "type city,2 char state zip";CHR$(11)

160 FIELD #2,70 AS D3 90 LPRINT TAB(30)" ":.LPRINT TAB@3O)" "

170 OPEN "I" #1, UPP$ LPRINT TAB(30)" "

180 Y=0:Z=0:N=0 100 LPRINT TAB(30)" ":LPRINT TAB(30)" ":

190 A$=INPUTS$(1,#1) LPRINT TAB(30) N$:LPRINT TAB(30) A$

200 IF EOF(1) THEN 380 110 LPRINT TAB(30) C$ ", " ST$

210 IF A$<>CHR$(32) THEN Y=0 120 INPUT "PRINT MORE ENVELOPES TO

220 IF A3=CHRS$(91) THEN A$=INPUTS$(1,#1): ADDRESSEE? Y/N: ",ANS$

GOTO 280 130 IF ANS$ ="Y" THEN 55

230 IF A$=CHR$(10) THEN GOSUB 350: 160 END

A$=INPUTS3(1,#1):GOSUB 350:GOTO 190
235 'IF A$=CHR$(13) THEN Z=70:GOSUB 350:

GOTO 190 ENV4/BAS

240 IF A$=CHR$(32) THEN Y=Y+1:GOTO 310

250 IF A3=CHR$(47) THEN A$=INPUTS(1,#1): 1' ENVELOPE PRINTING WITH RETURN AD-
GOSUB 350:GOTO 190 DRESS copyright G.Michels

260 IF ASC(A$)<65 OR ASC(A$)>90 THEN 2"

GOSUB 350:GOTO 190 3'

270 IF EOF (1) THEN 380 5 CLS:PRINT"4 LINE ADDRESS":PRINT

280 X=ASC(A$)+32 10 LINE INPUT "ENTER NAME OF ADDRESSEE:
290 A3=CHR$X) " N§:

300 GOSUB 350:GOTO 190 PRINT:LINE INPUT"ADDRESS: " A$

310 IF Y=1 THEN GOSUB 350:GOTO 190 15 LINE INPUT "2ND LINE ADDRESS: ",A1$
320 IF Y=2 THEN GOSUB 350: 20 PRINT:LINE INPUT "CITY: ",C$:INPUT
AS$=INPUTS(1,#1):IF A$=CHR$(32) THEN Y=Y+1 "STATE AND ZIP:",ST$

330 IF A3<>CHR$(32) THEN Y=0 30 PRINT TAB(30) N$:PRINT:PRINT TAB(30) A$:
340 GOSUB 350:GOTO 190 PRINT:PRINT TAB(30) A1$

350 IF EOF(1) THEN 380 35 PRINT:PRINT TAB(30) C$","ST$

360 IF Z=70 THEN N=N+1:LSET D$=B$: 40 PRINT:INPUT"IS THIS CORRECT? Y/N:
PRINT D$;:PUT #2,N:B$=""B$=B$+A$:Z=1: ", ANS$

RETURN , 50 IFF ANS$ <> "Y" GOTO 10

370 Z=7+1:B$=B$+A$:IF Y=>2 THEN Y=Y+1 55 INPUT "PLEASE POSITION ENVELOPE IN
375 RETURN PRINTER. READY? Y/N: ", Y$

380 N=N+1:B$=B$+A$:L.SET D$=B$:PRINT D$;: 57 IF Y$<>"Y" THEN 55

PUT #2,N:CLOSE:END

Page 8 TRSTimes magazine 7.5 - Sep/Oct 1994

60 LPRINT CHR$(27);"C";CHR$(0);CHR$(2):
70 LPRINT TAB(1)"type your name here":
LPRINT TAB(1)"type your street address here"
80 LPRINT TAB(1) "type city, 2char state
zip";CHR$(11)

90 LPRINT TAB(0)"
LPRINT TAB@BO)" "
100 LPRINT TAB(30)" ":LPRINT TAB@BO)" ":
LPRINT TAB(30) N$:LPRINT TAB(30) A$
110 LPRINT TAB(30)A1$:

LPRINT TAB@30) C$ ", " ST$

120 INPUT "PRINT MORE ENVELOPES TO
ADDRESSEE? Y/N: ", ANS$

130 IF ANS$ ="Y" THEN 55

160 END

“LPRINT TAB(0)" ™

ENV5/BAS

1' ENVELOPE PRINTING WITH RETURN
ADDRESS copyright G.Michels

2 1

3 1

5 CLS:PRINT"5 LINE ADDRESS":PRINT

10 LINE INPUT "ENTER NAME OF ADDRESSEE:
" N$:PRINT:LINE INPUT "ADDRESS: ",A$

15 LINE INPUT "2ND LINE ADDRESS: ",A18$:
LINE INPUT "3RD LINE ADDRESS: ",A2$

20 PRINT:INPUT "CITY: ",C$:

INPUT "STATE AND ZIP:",ST$

30 PRINT TAB(30) N$:PRINT:PRINT TAB(30) A$:
PRINT:PRINT TAB(30) A1$

35 PRINT:PRINT TAB(30) A2$:PRINT:

PRINT TAB(30) C$","ST$

40 PRINT:

INPUT"IS THIS CORRECT? Y/N: ",ANS$

50 IF ANS$ <>"Y" GOTO 10

55 INPUT "PLEASE POSITION ENVELOPE IN
PRINTER. READY? Y/N: ", Y$

57 IF Y$<>"Y" THEN 55

60 LPRINT CHR$(27);"C";CHR$(0); CHR$(2):

70 LPRINT TAB(1)"type your name here":

LPRINT TAB(1)"type your street address here"

80 LPRINT TAB(1) "type city, 2 char state
zip";CHR$(11)

90 LPRINT TAB(30)"
LPRINT TAB@BO)" "
100 LPRINT TAB(30)" ":LPRINT TAB(30)" "
LPRINT TAB(30) N$:LPRINT TAB(30) A$

110 LPRINT TAB(30)A1$:LPRINT TAB(30)A2$:
LPRINT TAB(@30) C$ ", " ST$

120 INPUT "PRINT MORE ENVELOPES TO AD-
DRESSEE? Y/N: ",ANS$

130 IF ANS$ ="Y" THEN 55

160 END

"LPRINT TAB@30)" ™

TRSTimes magazine 7.5 - Sep/Oct 1994

RTJUST/BAS
10 'RTJUST.BAS copyright G.Michel
20"
30'

100 'A$=ONE CHAR READ

TB=CHAR COUNT PER LINE (CURSOR POS)
110 'LSC(SP)=LINE SPACE COUNT
SP=0CCURANCE OF SPACE IN A LINE

120 'INDENT=0 IF NO INDENT,
CR=CARRIAGE RETURN COUNT

130 'Y=COL WIDTH OF LINE

Z=LINE COUNTER

140 'X=TOTAL CHAR COUNT

OF=0VERFLOW OF CHAR TO BE CARRIED TO
NEXT LINE

150 'READS A SEQUENTIAL FILE FROM .DOC
OR DESKMATE TEXT AND

155 'RIGHT JUSTIFY AND SAVES TO NEW .DOC
FILE FOR FURTHER EDITING.

160"’

170"

180 CLS:

PRINT "LINE WIDTH IS 70 CHAR.. CHANGE?
YIN "

185 INPUT ANSS$:IF ANS$="Y" THEN
PRINT"EDIT 250 AND CHANGE Y TO DESIRED
LENGTH."

190 PRINT LW$"WHAT /ASC FILE DO YOU
WISH TO RIGHT JUSTIFY? :"

200 INPUT LW$:LOW$=LW$+"/ASC"

210 PRINT RJ$"NAME OF OUTPUT /ASC FILE? :*
220 INPUT RJI$:RTJ$=RJI$+"/ASC"

230 'LPRINT CHR$(27);CHR$(33):

LPRINT CHR$@7);CHR$(17)

240 INDENT=0:"***ADD INDENT FEATURE
LATER FOR 5 SPACES

250 Y=70:Z=1:S=1:

'REM Y=LINE LENGTH AND Z=LINE COUNTER.
S=A$S)DTSET END IN SPACE

260 X=1:TB=1:SP=1:

'"TB reflects cursor POSITION,X TOTAL CHAR
COUNT,SP SPACE COUNT

270 DIM A$(Y+1):DIM B$(30):SP=1:

'A$=CHAR READ,LSC=LINE SPACE COUNT,
SP=SPACE

280 "****WIDEST PRINT LINE "SET Y" IS 70
JUST AS IN DESKMATE TEXT***"

290"

300 OPEN "I" #1, LOWS

305 OPEN "O"#2,RTJ$

310 A$(TB)=INPUTS$(1,#1):0F$=0F3$+A3$(TB)
320 IF A$(TB)=""THEN GOTO 440

340 IF A$(TB)=CHR$(13) THEN GOTO 450

345 IF EOF (1) THEN 365

350 IIF TB=Y THEN GOTO 500

360 TB=TB+1:X=X+1:GOTO 310

Page 9

365 PRINT TAB(1),C$

370 PRINT #2,C$:CLOSE 1:PRINT:

PRINT "FILE CLOSING":PRINT"#LINES="Z
380 PRINT"#CHAR="X:END

390 C=(LEN(C$)-1):C$=LEFT$(C$,C)

395 PRINT #2, C$

400 PRINT TAB(1) C$;:C$="":2=7+1:S=1:
PRINT TAB(80)" "

410 IF LEN(OF$)>0 THEN TB=LEN(OF$)+1:ELSE
TB=1

420 GOTO 310:'PRINT TAB(70) LEN(OF$)" "X
430"

440 B3(S)=0F$:C3=C$+B3$(S):S=S+1:0F$="":
GOTO 345

450 C=(LEN(OF$)-1):0F$=LEFT$(0F$,C)

455 PRINT C$;0FS$;:PRINT #2,C$;0F$;

460 OF$=""TB=0:C$="":Z=7Z+1:S=1:GOTO 310
470 "**IF LINE NOT SKIPPED AFTER CAR.RET.
THAN LAST LINE OF PARA RUNS OVER***
480 "**IF NO PRINT TAB(NN) LINE 330, LINE
AFTER C/R OVERLAPS PRIOR LINE**

490"

500 IF LEN(OF$)=0 THEN GOTO 390

510 S=S-1:C$=""LO=LEN(OF$%)

520 S2=INT'(L.O/S):M=LO MOD S:

'PRINT TAB(G5)TB" "LLO" "S2" "M" "S

530"

540 LS=S*S2+M

550 FOR SC=1TO S

560 IF LS>0 THEN B$(SC)=B$(SC)+" "

570 IF LS>S-1 THEN B$(SC)=B$(SC)+""

580 L.S=LS-1

590 C$=C$+B3$(SC):NEXT SC

600 'PRINT"Z"

610 GOTO 390

YES, OF COURSE !
WE VERY MUCH DO TRS-80 !

MICRODEX CORPORATION

SOFTWARE

CLAN-4 Mod-4 Genealogy archive & charting $69.95
Quick and easy editing of family data. Print elegant
graphic ancestor and descendant charts on dot-matrix
and laser printers. True Mod-4 mode, fast 100%
machine language. Includes 36-page manual. NEW!

XCLAN3 converts Mod-3 Clan files for Clan-4 $29.95

DIRECT from CHRIS Mod-4 menu system $29.95
Replaces DOS-Ready prompt. Design your own menus
with an easy full-screen editor. Assign any command to
any single keystroke. Up to 36 menus can instantly call
each other. Auto-boot, screen blanking, more.

XxT.CAD Mod-4 Computer Drafting $£95.00

The famous general purpose precision scaled drafting
program! Surprisingly simple, yet it features CAD
functions expected from expensive packages. Supports
Radio Shack or MicroLabs hi-res board. Output to pen
plotters. Includes a new driver for laser printers!

XT.CAD BILL of Materials for xT.CAD $45.00
Prints alphabetized listing of parts from xT.CAD
drawings. Optional quantity, cost and total calculations.

CASH Bookkeeping system for Mod-4 $45.00

Easy to use, ideal for small business, professional or
personal use. Journal entries are automatically
distributed to user's accounts in a self-balancing ledger.

FREE User Support Included With All Programs !

MICRODEX BOOKSHELF

MOD-4 by CHRIS for TRS/LS-DOS 6.3 $24.95
MOD-IIl by CHRIS for LDOS 5.3 $24.95

MOD-IIl by CHRIS for TRSDOS 1.3 $24.95 .
Beautifully designed owner's manuals completely
replace obsolete Tandy and LDOS documentation.
Better organized, with more examples, written in plain
English, these books are a must for every TRS-80 user.

JCL by CHRIS Job Control Language $7.95)
Surprise, surprise! We've got rid of the jargon and JCL
turns out to be simple, easy, useful and fun. Complete
tutorial with examples and command reference section.

Z80 Tutor I Fresh look at assembly language $9.95
Z80 Tutor Il Programming tools, methods $9.95
Z80 Tutor I/l File handling, BCD math, etc. $9.95
Z80 Tutor X All Z80 instructions, flags $12.95
Common-sense assembly tutorial & reference for novice
and expert alike. Over 80 routines. No kidding!

Add S & H. Call or write MICRODEX for details
1212 N. Sawtelle Tucson AZ 85716 602/326-3502

TRSTimes magazine 7.5 - Sep/Oct 1994

BEAT THE GAME

by Daniel Myers

SEASTALKER

As you sit quietly at the workbench in your re-
search laboratory, you're startled into action by the
sound of the videophone alarm bell. You'd better act
quickly, because your buddy Tip Randall is raising
the roof. The first thing to do is turn on the video-
phone. As soon as you do that, though, you realize
that the picture is fuzzy. That's easy to correct; sim-
ply adjust the videophone. There is Commander Zoe
Bly, looking worried, and telling you about an ur-
gent problem at the undersea Aquadome. You'd bet-
ter pick up the microphone, then turn it on.

After asking Bly about the problem, question her
about the monster she's seen. Bly is sounding ever
more desperate, so tell her goodbye. Suddenly, how-
ever, something's wrong with the videophone, and
your score drops by 3 points!

Now is the time to go to the Computestor for a
clue. First, turn off the microphone and drop the mi-
crophone onto the workbench. Then, head for the
Computestor and turn it on. Since the machine is
now ready for questions, ask it about the video-
phone. Hmmmm...the problem could be one of many,
but you suspect that something may be wrong with
the electrical panel. The panecl is just down the hall-
way, so go to the panel, and examine it. Well. well,

TRSTimes magazine 7.5 - Sep/Oct 1994

apparently the circuit breaker is open. By fixing the
circuit breaker, you regain your 3 points. However,
you are starting to wonder whether treachery is
afoot here in the lab. It's time to have a chat with
your assistant, Sharon Kemp.

Go to the office and confront Sharon with your
suspicions. Her answers are evasive, and she seems
very nervous. Since time is growing short, you de-
cide to leave Sharon and head for your sub, the
"Scimitar." Realizing that the sub won't start unless
you have the atomic catalyst capsule, you first exam-
ine the work counter. There is the capsule, so you
grab it and head for the Scimitar.

Once settled in the pilot's seat, with Tip nearby,
you decide to check the sub for any problems. Push-
ing the test button gives you a positive readout, but
you're still apprehensive. You will need to open the
access panel in order to enter the sub's crawl space,
but you don't have a tool. Maybe Tip has such an
item? Tip comes through, handing you a Universal
Tool. Open the access panel, and carefully crawl into
the space. A check of the voltage regulator reveals
that it is damaged. Use the tool to fix the regulator.
Now all is A-OK, and you won't have any problems
going full throttle to the Aquadome.

You're ready to get underway, so crawl out of the
space, close the access panel, close the sub's hatch,
and put the catalyst capsule into the reactor. After
closing the reactor, you'll need to turn on the reactor
and fill the docking tank with seawater. Once the
tank is filled, turn on the engine, open the tank gate,
then open the throttle. Push the joystick to the east,
and you're off!

The surface of Frobton Bay isn't the safest spot
around, so the first thing you need to do is set your
depth to 5 meters and set the throttle to slow. You'll
want to check the sonar occasionally to make sure
you're not heading toward any obstacles. Your se-
quence of moves must be accurate to avoid destruc-
tion.

One quick way to reach the seawall opening is to
follow these moves: Northeast, then three Norths,
then Northeast again, then wait. The alarm bells
may be ringing, but you'll safely avoid a submerged
obstacle. Then, suddenly, an approaching ship is de-
tected by the sonar. You'll have to stop waiting and
set your depth to 15 meters to dive below the ship.

Page 11

Wait again, and you'll chug right on through the
seawall opening into the ocean.

Be sure to save the game here, since you won't
want to cross Frobton Bay again! You can turn on
the autopilot now, since the sub will head straight
for the Aquadome. Because you fixed the voltage
regulator, you can set the throttle to fast without
overheating. Wait now, as you continue diving
deeper and deeper. To check out an enormous
whale, aim your searchlight to starboard. The trip
will take a little while longer, so you might want to
ask Tip about that magazine he's reading. A close
study of a particular article in the magazine reveals
that Dr. Jerome Thorpe (an Aquadome staff mem-
ber) has succeeded in creating mutant sea creatures.
Further, Thorpe announces in the article that he
plans to marry your lab assistant, Sharon Kemp!
You're beginning to understand who's behind the at-
tack on the Aquadome, and you're even more anx-
ious to arrive.

Wait a while longer, and then, as you near the
structure, your sonarphone rings. It's Commander
Bly, asking to speak privately with you when you
arrive. You wait a few more turns, and the sub slows
to a stop in the docking tank. Open the throttle to
slide into the cradle. You wait while the water in the
tank empties, and you save the game again.

Before opening the hatch and exiting the sub,
you pick up the emergency oxgyen gear...just in
case. Leave the Scimitar and head straight for the
Aquadome's Reception Area where Bly and her crew
await you. Greet them, and then take a quick look
around. Your explorations are interrupted by a sud-
den realization that something is wrong with the air

supply.

Quickly using the oxygen gear you so intelli-
gently brought with you, head for the Dome Center.
Commander Bly and several crew members are
gasping for breath, so time is short. Use the univer-
sal tool to open the access door to the air supply as-
sembly. Instantly noticing that something has been
unscrewed from an important cylinder, you pick up
the object. It is an electrolyte relay. Put the relay
into the cylinder, and close the access door. Your ef-
forts are successful, and the air supply is now func-
tioning properly.

As you return to the Reception Area, you ob-
serve Doc Horvak with Bly's oxygen gear. You're
suspicious, so when Bly ask you to accompany her to
the office, you go with her. She volunteers some in-
teresting information: She suspects sabotage in the
Aquadome and shows you certain evidence. The evi-
dence consists of a black box which you open and

Page 12

examine. This device could be used to interfere with
the Aquadome’s sonar, and Tip has an idea about
how to trap the saboteur.

Go to the Storage Room with Tip and discuss his
idea. Before you reach the storage area, you notice
the special Fram Bolt Wrench lying under Bly's
desk. Realizing that the wrench must have been
used to tamper with the air supply, you show it to
Doc Horvak. His reaction proves most interesting.

Now you need to do some serious thinking. Con-
versations with various crew members will assist
you in your search for the traitor. Ask everyone
about everyone else, check the locker in the men's
dorm, set the black box onto the sonar, and observe
everyone's behavior.

Commander Bly will offer to supply you with a
bazooka so that you can hunt the monster (the
"Snark"). Get that from her and have Tip install it
on the sub's extensor claw. Find Doc Horvak and
show him the magazine article about Thorpe. Doc
will come up with some interesting conclusions, and
will offer to prepare a special tranquilizer gun for
you. Get the dart gun and have Tip install that as
well.

During your explorations and conversations,
Mick Antrim will check out the Scimitar then return
and ask you whether you'd like to have an Emer-
gency Survival Unit installed in the sub. You agree,
then poke around a while longer until the unit is in
place. It's time to think about improving your navi-
gation and sonar -- the Snark will be difficult to cap-
ture or kill. You ask Tip about installing a fine grid
and a fine throttle control in the sub, and he agrees
to do so.

You're about ready to head out into the ocean
again, but you still haven't come to a firm conclusion
about who the Aquadome traitor is. Once in your pi-
lot's seat, however, you notice that the survival unit
installed by Amy and Bill is equipped with a nasty
looking syringe. Grabbing the syringe, you head for
Doc Horvak and ask him to analyze it. His analysis
reveals that the hypo is filled with arsenic! You'd
better confront Amy and Bill with this evidence be-
fore you do anything else.

The instant you show the syringe to Bill, he
turns and runs away. He's heading for the sub, and
you race to the office to view his actions on the sta-
tion monitor. As you watch Bill climb down the in-
side ladder of the docking tank, you realize you have
only seconds to trap him. You quickly turn off the
docking tank electricity so Bill can't open the gate.
He knows he can't get out now, so he surrenders.

TRSTimes magazine 7.5 - Sep/Oct 1994

You turn the electricity back on, and leave the office.

Cheers follow you as you head back to the Scimi-
tar. After filling the docking tank with water, you
turn on the engine and open the gate. Turning the
joystick to the South, you open the throttle. Save the
game, and head out into the ocean.

You're finally ready to confront the Snark and,
perhaps, the evil Dr. Thorpe. Exit the Aquadome's
docking tank by going South, then set the throttle to
medium. Turn Southeast and wait until you reach
the Snark and the Sea Cat (piloted by Dr. Thorpe).
Thorpe will taunt you with his power, and admit his
plan to wreck the Aquadome.

Suddenly, Thorpe's transmission breaks off, and
Sharon Kemp begins to speak to you. She explains
how she only went along with Thorpe to try to trap
him, and she's ready to help you capture the Snark.
Sharon has a lot of interesting things to tell you, but
you don't have time to talk to her right now. The
Snark is moving quickly toward the Aquadome,
9-ady to batter it to bits.

Here is one method you can use to put the Sea
Cat out of commission before Thorpe has a chance to
attack you: East twice, then check your sonar to
make sure you're in position. Set throttle to slow,
then turn South. Head Northwest four times. Oh oh!
Dr. Thorpe has recovered consciousness and his
voice is crackling over the sonarphone. Ignore him,
and head Northwest twice more. The sub will be just
to the East of the Sea Cat, so, all on one line, enter
the following command: West then aim bazooka at
power pod then shoot power pod with bazooka.

There! You've done it! The Sea Cat is out of com-
mission and Thorpe's out cold again. Sharon guides
the Snark to its hidden cavern so that you can safely
study it later. You've completed your mission and
saved the Aquadome!

\

TRSTimes magazine 7.5 - Sep/Oct 1994

TRSUrefrove BBS

8 N 1-24 hours
Los Angeles
213 664-5056

where the TRS-80 crowd meets

FOR EITHER to:.‘xréd{ Hinc‘x‘
HI-RES BOARD! H i B E E ggcg%'g?ﬁi.

free Shipping

] Finally ! Hi-RESOLUTION Menu’s for DIRECT
Users! Now you can use Either Hl or LOW
Res. MENU'S with your DIRECT by Chris.

With HR,CHR.or SHR files you can Create, or
with the Samples supplied. This is a SELF-
INSTALL file in less than 5 minufes! flso

included, Westminster Chimes instead of the

usual BEEP. $29.95 no personal checks,please.

The MODEL-4 Now LODKS like a MAC!

‘Mid-Cities Tandy Radio Shack
Users Group

MCTRUG supports all of the Tandy computers
plus IBM compatibles. We have software
available for TRS-80 Models I, 111, 4, Color
Computers, Model 2000 and MS8-DOS. Write us
for more information. Please include your
name, mailing address, computer
model and which Disk Operating
System you use.

Write to:

MCTRUG
P.O. Box 171566
Arlington, TX 76003

Page 13

TIRED OF SLOPPY DISK LABELS?
TIRED OF NOT KNOWING WHAT’S ON YOUR DISK?

YOU NEED “DL”

“DL” will automatically read your TRSDOS6/LLDOS compatible disk
and then print a neat label, listing the visible files (maximum 16).
You may use the ‘change’ feature to select the filenames to print.

You may even change the diskname and diskdate.
“DL” is written in 100% Z-80 machine code for efficiency and speed.

“DL” is available for TRS-80 Model 4/4P/4D
using TRSDOS 6.2/L.S-DOS 6.3.0 & 6.3.1
with and Epson compatible or DMP series printer.

“DL” for Model 4 only $9.95

TRSTimes magazine - Dept. “DL”
5721 Topanga Canyon Blvd., Suite 4
Woodland Hills, CA 91367

HARD DRIVES FOR SALE

Genuine Radio Shack Drive Boxes with controller, Power Supply,
and Cables. Formatted for TRS 6.3, Installation JCL Included.
Hardware write protect operational.
Documentation and new copy of MISOSYS RSHARDS5/6 Included.
90 day warranty.

5 Meg $175 10 Meg $225 15 Meg $275 35 Meg $445

Shipping cost add to all prices

Roy T. Beck
2153 Cedarhurst Dr.
Los Angeles, CA 90027 {
(213) 664-5059

Part 3
By J.F.R. "Frank" Slinkman

When working with arrays in a BASIC program,
you don't have to worry about the size of array
elements.

It doesn't matter if it's an integer array, or an
array of single or double precision numbers, if you
want to access array element number 5, you just put
the value 5 in the subscript, and BASIC fetches the
desired value for you.

The same is true in C, of course, and in every
other programming language I know anything
about.

But in C, you can access array another way --
through the use of pointers.

The pointer method is a FAR more efficient way
to step sequentially through elements of an array
than, for example, a "for" loop.

In "prog04.c" in Part 2 of this series, we used a
"for" loop governed by the length of the string to look
at each character in sequence.

A much better way to do this is to declare a
"pointer-to-char" variable, initialize it with the
address of the start of the string, and keep bumping
it's value until it points to the character after the
end of the string.

This is easy to do with strings since, if you'll
recall, every string in C ends with a null character.

In other words, we just keep bumping the
pointer until it points to a zero character.

So, load prog0O4/cce into your text editor, and
make the following changes:

1. Change the name of the program to
"prog04a.c."

In the count_chars() function:
2. eliminate the "i" and "length" variables;

3. add a new variable declaration line, namely
char “ptr;

4. change the line
length = strlen(inbuf);

TRSTimes magazine 7.5 - Sep/Oct 1994

to
ptr = inbuf}

5. change the line
for (i=0;1 <length; i++)
to
while (¢ = *ptr++)

6. remove the line:

¢ = inbuf[i};
remembering that the left brace must NOT be
removed.
After you have made these changes, the first 6 lines
inside the function should be:

int
char

¢, alpha, numeric, space, punct;
*ptr;

alpha = numeric = space = punct = 0;
ptr = inbuf;

while (¢ = *ptr++)
{ if (isalpha(c)) alpha++;

Let's look at the statement "ptr = inbuf}".

"Inbuf" is the RAM address of the first character of
the string input from the keyboard. This statement
merely copies that address to "ptr" so it, too, points
to the same character.

The "while (¢ = *ptr++)" does several things.

First, it picks up the object at "ptr" (i.e., the
character being pointed to by "ptr"), and assigns
that value to the variable "c."

Second, it increments "ptr" to make it
point to the next character in the string.

Third, it evaluates the new value of "¢,"
and makes a decision based on its value.

If "¢" is a valid string character, the result will
be TRUE (non-zero), and the "while" loop's
compound statement will be executed. But if "¢"
picks up the null character at the end of the string,
the result will be FALSE (zero), and the loop will be

Page 15

exited.

It's important to understand the meaning of
"ptr++." As I stated above, it references the data
item being pointed to by "ptr,” and then increments
"pt,r-"

It could also be written "*(ptr++)." In other
words, it does NOT increment the VALUE being
picked up. It increments the POINTER.

By contrast, "(*ptr)++" would increment the
value being picked up, but not change the value of
'll)tr."

And "(*ptr++)++" would increment both the
pointer and the value.

Now save "prog04a/cee," compile and run it. You
will see it runs identically to the original version,
but is both smaller and faster. (Well, you may not
notice the increase in speed in a process this short
and simple, but take my word for it -- it's faster.)

There is one aspect to the operation of "ptr++"
which might be easier for BASIC programmers to
get used to than for assembly language
programmers.

And that is the idea of the "scaling” of pointers.
In this case, because "ptr" was declared a pointer-to-
char, each operation of "ptr++" adds one to it's actual
value.

But what if "ptr" was declared a pointer-to-int,
or pointer-to-long, or pointer-to-double, the values of
which are stored in 2, 4 and 8 bytes, respectively?

In these cases, unlike pointers in assembler,
"ptr++" causes "ptr" to point to the next element of
the array -- NOT to the next byte in RAM! In other
words, it 'will add 2 to the actual value for ints, 4 for
longs or floats, and 8 for doubles.

To confirm this, type in, compile and run the
following program:

/* prog05.c */

#include <stdio.h>
c_array[10], *c_ptr;
int i_array[10], *i_ptr;
long I_array[10], *I_ptr;
float f_array[10], *f_ptr;
double d_array[10], *d_ptr;

char

Page 16

main()
{ int 1

c_ptr = c_array;,
i_ptr =i_array;
I_ptr =1_array;
f ptr =f_array;
d_ptr = d_array;

printf("\x1le\x1f");
puts("count\tchar\tint\tlong\tfloat\
tdouble");
for(1=0;1<10;)
printf("%2d%8u%8u%8u%8u%8u\n",
it
c_ptr++,
i_ptr++,
I_ptr++,
f ptr++,
d_ptr++);

}

Did you notice where the "i++" was placed --
OUTSIDE the parentheses associated with the "for"
statement? Not only does this demonstrate that this
can be done, but in this case it's the most efficient
way to do it.

Also notice that while we declared the five
different arrays, we never initialized them. That is,
the number of bytes of RAM needed to hold ten
values of each type of data were allocated, but we
didn't put any meaningful data into that RAM space.

But it doesn't matter, because this program is
only interested in the behavior of pointers, not in the
contents of the arrays.

Prog05.c displays a chart on the monitor screen.
Except for the header and the "count" column, it
displays the RAM addresses, in decimal, of each of
the ten elements of each of the five arrays. It gets
these values from pointers to the elements.

Note that, going down each column, each value
in the "char" column is one greater than the value
above it. Each value in the "int" column is two bytes
greater; each value in the "long" column is four bytes
greater, etc. Proof positive, in other words, of the
automatic scaling of pointers.

Now, just for fun, turn your printer on and, from
LS-DOS Ready, invoke the program as follows:

prog05 >*pr

Instead of the chart being printed on our

TRSTimes magazine 7.5 - Sep/Oct 1994

screen, it has been routed to the "*pr" device,
through what is called "standard I/O redirection."

If you were to invoke the program via
prog05 >chart/asc:0
the chart would be written to the named disk file.

Try redirecting the output to a disk file, and
then LIST the file. You should see the chart on your
screen identically to what you saw when you ran the
program without redirection.

Now use your text editor to create a one-line
string (not to exceed 79 characters + CR), which
must be terminated by a carriage return. Save it out
to a file named "string/asc."

Now invoke "prog04a" as follows:
prog04a <string/asc

In this case, the data from string/asc was read
from disk and used as the data for the program
instead of input from the keyboard.

The string won't be displayed as it was when
obtained from the keyboard, but the program still
processes the data just fine.

Refer to your compiler manual (page 1-8 for
ProMC) for a more complete discussion of standard
I/0 redirection.

I'll leave it as an "exercise for the reader” (don't
you just hate those?) to alter progO4a.c in such a way
that it will display the string before it displays the
report.

Another exercise for the reader (especially
readers who are "into" assembly language and think
in hex) is to alter prog05.c to print the pointers in
hex, rather than decimal.

0O.K. It's now time to do a little review.
There are ten "statements" in the C language:

1 "Break" -- causes immediate exit from
within a "for," "while," or "do" loop, or from
a "switch" statement clause. We've covered
this pretty well, except for the switch
statement part.

2 "Continue" -- this statement is used in loops,
and causes any statements which follow it
to be skipped. The loop then goes to its next

TRSTimes magazine 7.5 - Sep/Oct 1994

iteration as normal. We haven't covered
this yet, but will soon.

3 "Do" -- creates a program loop. We've
covered this.

4 "For" -- creates a program loop, also
covered.

5 "Goto" -- yes, despite the influence of the
advocates of structured programming, you
can do a "goto" in C. We have not covered
this yet.

6 "I -- covered.

7 The "null" statement -- covered.

8 "Return" -- covered.

9 "Switch" -- we'll get to that shortly.
10 "While" -- covered.

In addition, some texts classify the ability to
combine multiple statements as an 11th
statement;:

11 Compound statements -- a number of
program statements combined into one
through the use of braces. These are also
known as "blocks” of code. We've pretty
much covered these, except for the fact that
blocks can also have their own, unique
variables, which are accessible only within
that block.

Not bad. We haven't even finished the third
lesson, and we've already covered 73% of the
statements. So let's see if we can't kill the last three
birds -- continue, goto, and switch -- with one stone.

We're going to go to Las Vegas and play craps.
Specifically, we're going to test an admittedly stupid
craps system: namely to place bet all the numbers on
the comeout, leave the bets up for three rolls, then
take them down until the start of the next pass.

While it's a silly system, it's perfect for
demonstrating the use of the three remaining
statements.

But before we start coding, you need to learn a
little about craps. A "pass" is a number of rolls of the
dice. If the shooter's first roll is 2, 3, 7, 11 or 12, the
pass is over. Seven or 11 are winners; 2, 3 and 12
are "craps" -- losers.

Page 17

Ifherolls 4, 5, 6, 8, 9 or 10, that number becomes

his "point."

From then on, he keeps rolling until he rolls
either a 7 or his point. Seven is a loser. The point is
a winner. Either of these rolls ends the pass.

You can "place bet" any or all of the numbers 4,
5, 6, 8, 9 and 10. If the number comes up, the bet
wins. If the shooter rolls a seven, the bet loses. The
4 and 10 pay 9:5. The 5 and 9 pay 7:5, and the 6 and

8 pay 7:6.
/* prog06.c */

#include <stdio.h>
#include <time.h>

#option INLIB

#option ARGS OFF
#option REDIRECT OFF
#option FIXBUFS ON
#option MAXFILES O

#define BREAK 0x80
void play_craps(;

long money = 0L;
int dummyl[7], *place;

main()
{ int 1

memset(dummy, 0, sizeof dummy);
place = dummy - 4;
srand((int)time(NULL));

for (i=4;1<=10;i++)
{ if(i==17)
continue;
place[i] =(i==6 || 1==8)?6:5;
}

while (rollem() '=7)

’

printf("\x1c\x1f");

play_craps(;
}

void play_craps()

int roll, action, c_point, roll_ctr;
long pass_ctr = 0L;

new_pass:
Page 18

}

cursor(24,6);

printf("After %ld passes, you have $%ld\x1e",

pass_ctr++, money);
cursor(17,8);

puts("Press BREAK to exit, any other key to \

continue");

if (gete(stdin) == BREAK)
return;

cursor(0,11); pute(\x1f, stdout);
money -= 32L;
roll_ctr = 0;

action = pay_place(roll = rollem());
if (action ==-1)
goto new_pass;
else if (action == -2)
{ money += 32;
goto new_pass;
}
else
c_point = roll;

new_roll:

if (++roll_ctr >=3)

{ money += 32L;
printf("o KwRN >’
do

roll = rollem();

while (roll I=7 && roll = ¢_point);
goto new_pass;

}

action = pay_place(roll = rollem());
if (action ==-1)

goto new_pass,
else if (action == -2)

goto new_roll;

if (roll == ¢_point)
{ money += 32L;
goto new_pass,

}
else
goto new_roll;

int pay_place(roll)

int roll;

{

int retcode = 0;

switch (roll)
{ case 4: case 10:
money += place[roll] * 9/5;
break;
case 5: case 9:

TRSTimes magazine 7.5 - Sep/Oct 1994

money += place[roll] * 7/ 5;
break;

case 6: case 8:
money += place[roll] * 7/6;
break;

case 7:
retcode = -1;
break;

default:
retcode = -2;

}

return retcode;

}

int rollem()

{
int diel, die2, total;
diel =rand() % 6;
die2 = rand() % 6;
printf("%4d", total = diel + die2 + 2);
return total;

0O.K. Lots of new stuff to cover here.

First are a bunch of "preprocessor directives,"
namely the #include, #option and #define lines.

Note we have included the time.h header. This
is because the time() function is not declared in
stdio.h.

It's the responsibility of the programmer to
make sure all the library functions he's using are
given forward "external" declarations, either those
appearing in a header file, or by a line like:

extern long time();

which would normally be either be grouped with the
other forward declarations (i.e., before the first
executable code in the program), or appear before
the first line of executable code in the function in
which the extern function is used (main(), in this
case).

The #include and #define are standard C, and
thus are fully portable. The #define is straight a
text substitution macro. In this case, it tells the
compiler, "from now on, whenever you see the
string, 'BREAK,' replace it with the string, '0x80"."

The "0x80" is the C way of expressing a
hexadecimal value, in this case decimal 128,
assembler 80H, or BASIC &HB80. However you
express it, it's the value of the "BREAK" key.

TRSTimes magazine 7.5 - Sep/Oct 1994

The five #option lines are not standard, and thus
are not portable. However, they can be very useful
to ProMC users.

"#option INLIB" instructs the compiler to search
the IN/REL library for some special, non-standard
functions. In this case, we want to use cursor().

While most versions of C have this function, it
isn't part of the defined standard libraries, which
means you can't assume it exists on other systems.

"#option ARGS OFF" tells the compiler there
will be no command line arguments required to
invoke the program; so the code to handle them can
be omitted, making your final /CMD program
smaller.

"#option REDIRECT OFF" tells the compiler to
omit the code to handle standard I/0 redirection,
which also makes the final /CMD program smaller.

“#option FIXBUFS ON" has to do with memory
management and allocation. C provides ways to
allocate and deallocate RAM (roughly similar to
defining and erasing arrays in BASIC). If the
program doesn't need this feature, the code
supporting it can be omitted, making the final /CMD
file smaller.

"#option MAXFILES 0," which operates in
conjunction with FIXBUFS, specifies the number of
file buffers your program needs (in addition to the
three standard files -- stdin, stdout, stderr -- which
are always present). ProMC provides for 13
additional file buffers. If FIXBUFS is ON, then RAM
will be allocated for all 13 whether you need them or
not. Thus, defining MAXFILES to the actual
number of file buffers needed will free up quite a bit
of RAM for use by your program.

In short, the last 4 of the options are used to
make the final /CMD program as small as possible
and give the program access to as much RAM as
possible.

Even though they're non-standard C, I make it
a habit of using all that apply to the program I'm
writing. After all, they're easy to remove if I ever
need to make the code portable.

Now notice the declaration and initialization of
the variable "money." It's declared to be a long int,
and is initialized with the value "OL," not just zero.

Just plain zero ("0") would work, but it would

require the compiler to take the 2-byte int zero and
convert it to a 4-byte long zero before storing it.

Page 19

The "OL" skips the conversion; so is more
efficient.

Next we declare an array of seven ints, and
declare "place" to be a pointer-to-int. We're going to
do some tricky things with "place" later.

The first thing we do in the main() function is to
zero out the "dummy" array, using the "sizeof"
operator. "Sizeof" is very handy and useful.

"Sizeof" can be used to get the size, in bytes, of
every data type used by the system. This includes
the standard ones like char, int, and double, but also
the ones you define, like arrays.

In this case, it knows how big the whole
dummy(] array is, and the size of each element of the
array; so we can use it in the memset() function to
write bytes of zero to the entire array.

If we had used "sizeof(dummy)," it would take on
the value of two, the size in bytes of one element (a
short int) of the array. Thus, if your program needs
to know how many eclements there are in the
dummyl[] array, it could find out via:

elements = sizeof dummy / sizeof(dummy);

Instead of memset(), we could have used the
ProMC function zero(), a la:

zero(dummy, sizeof dummy);

but this is non-standard. It's best to adopt the
habit of avoiding the non-standard functions as
much as possible, especially when there are
perfectly good standard functions which do the same
job. Unlike the #options discussed above, the use of
non-standard functions isn't that easy to change if
you want to make the code portable.

The next statement is a bit unusual. What "place
= dummy - 4" means is "make 'place' equal to the
address of element number minus four of 'dummy"."

This is an excellent example of the use of the
automatic scaling of arrays. At first glance, it looks
like the number 4 is being subtracted from
"dummy."

But, because "dummy" is a pointer to an array of
ints, what is actually being subtracted is 4 times the
size of an int.

The statement could also have been written:

place = &dummy/[-4];

Page 20

The "&" is the "address of" operator. It tells the
compiler to get the address of the data, rather than
get the data itself.

Of course, there is no element number -4 in any
array. We're just imagining it. But this statement
sets up a correlation between "dummy" and "place"
so that place[4] is actually dummy[0]; place[10] is
actually dummy[6]; etc.

We have no need of array elements 0 through 3;
so why waste RAM by allocating it to store data that
will never exist?

The next statement uses two standard library
functions, srand() and time(), to reseed the random
number generator. "Time(NULL)" returns the
UNIX time, which is the number of seconds since
00:00:00, January 1, 1970.

Time() returns a long (32-bit) int, which we
truncate to a short (16-bit) int by throwing away the
top 16 bits by casting the return value to "int." This
value is then used to seed the random number
generator via srand().

The "for" loop, by using values of "place" from 4
to 10, is actually talking about dummy[] elements 0
through 6, as discussed above.

We can't place bet the seven; so we skip this
value through the use of the "continue" statement.
In this case, if the value of "i" is 7, the rest of the loop
(one statement in this case) will be skipped.

Otherwise, the rest of the loop will be executed.

The next statement is a variation of the "if-then-
else" construction. It's called the "conditional
operator." The general form of this operator is:

variable = (expression) ? a : b;

Both "a" and "b" can be anything that has or
returns a value, including variables, numbers and
function calls, or even another conditional operator.

In pseudo code, the logic is:

1. is "expression" TRUE?
YES:
assign "a" to "variable"
NO:
assign "b" to "variable"

This particular statement is IDENTICAL to:

f(i==61]1i==8)
TRSTimes magazine 7.5 - Sep/Oct 1994

placeli] = 6;
else
place[i] = 5;

Next, we use while and null statements to keep
calling our rollem() function until it returns a 7. In
craps, every "pass" ends with a roll of 7; and we don't
want to start playing in the middle of a pass.

Next, we clear the screen and, now that all the
preparations are done, we're ready to play; so we call
play_craps(.

After the declarations you'll see, on the left
margin, followed by a colon, a program "label." This
location in the program is the start of the processing
of a new craps "pass." Later in the program, we'll
use "goto new_pass" statements, and "goto"
statements can only route program flow to a label.

First, we print a couple of messages (note the
use of cursor() to position them on the screen) and
use the standard library getc(function to get one
keystroke from the keyboard (stdin).

For your information, ProMC has a non-
standard function, getchar(), which is identical to
gete(stdin).

Whether you use getc() or getchar(), the function
waits for a key to be pressed, and returns its value.

Once the value is returned, this code tests it. If
it was the break key, the play_craps(function
terminates and returns to its caller.

(This gete(stdin) behavior is unusual. On
MeSsDOS machines, for example, the user has to
press the RETURN key before gete(stdin) will
return; so you can't program things like "Press any
key to continue" prompts. Score another one for the
TRS-80")

Next we position the cursor in column 0 of line
11, and clear the screen from there to the end of
frame by sending chr$(31) to the screen via putc(.

Then we subtract the total of the place bets from
"money" and set "roll_ctr" to zero.

Now we roll the dice by calling our rollem()
function, placing the return code in "roll", and
sending the value of "roll" to our pay_place(
function.

The value returned by pay_place is loaded into
"action." Pay_place() returns zero if it's argument is
4,5,6,8,90r 10; -1 if the argument is 7; or -2 if it is
sent any other value.

TRSTimes magazine 7.5 - Sep/Oct 1994

Thus, if "action" has the value -1, then the roll
was 7, causing the place bets to lose, and the pass is
over; so "goto new_pass" is executed.

If "action" is -2, then one of 2, 3, 11 or 12 was
rolled, which does not affect place bets, but do end
the pass; so the total amount of the bets is added
back to "money" before going to "new_pass."

Otherwise, the roll must be one of 4, 5, 6, 8, 9 or
10; which becomes the shooter's point; so "c_point" is
loaded with the value of "roll."

Why did we name the variable name "c_point"
instead of just "point?" Well, because we #included
IN/REL, which defines the function point(), which
returns the state of a screen pixel.

Avoiding variable names which are the same as
function names avoids the possibility of conflicts
which could confuse the compiler, resulting in error
messages, and/or create errors in the final program
which can be very hard to track down. Now you
know why most functions have weird names --
names you would be unlikely to choose as names for
variables or your own functions.

As the next label, "new_roll," indicates, it's time
for the shooter to roll the dice again. Labels MUST
be on the left margin and MUST be followed by a
colon.

If the pre-incremented value of "roll_ctr" has
reached three we, in effect, take the place bets down
by adding back the total of those bets to "money,"
printing a symbol on the screen indicating the bets
have been taken down, wait for rollem() to return
either 7 or the shooter's point, indicating the end of
the pass. Once this happens, program control goes
to the label "new_pass" by way of the "goto"
statement.

If roll_ctr is not yet 3, we roll the dice again and
test the result via the pay_place() function.

If "action" is -1, a 7 was rolled, the place best
lose, and the pass is over.

If "action" is -2, 11 or craps was rolled, which
doesn't affect place bets; so the shooter rolls again.

Otherwise, the roll was one of the place
numbers, and is checked to see if the shooter made
his point. If so, the place bets are taken down, and
the pass is over.

If not, the shooter rolls again.
Page 21

Obviously, this function could have been written
in structured programming style without the much
maligned "goto" statement.

I'll leave it as another obnoxious "exercise for
the reader" to rewrite it without the accursed
"goto's'“

Now we get to the pay_place() function, which is
basically a "switch" statement with a return code.

First we initialize "retcode" to it's most likely
value, zero.

"Switch" is the only statement which
REQUIRES the use of a compound statement. The
argument for "switch" must be a short int.

Within the "switch" statement's compound
statement, we use "case" clauses to call for desired
processing. In this example, "case 4: case 10:"
means "do the following if "roll" equals 4 or 10.

If you'll remember, place bets on the 4 and 10
pay 9:5; so we add 9/5ths of the bet to "money," and
exit the "switch" statement via the "break"
statement.

Similarly, bets on the 5 and 9 are paid 7:5, and
bets on the 6 and 8 are paid 7:6. In the case that
"roll" equals 7, "retcode” is set to -1. In all other
cases, "retcode" is set to -2.

Notice the "break" statements. They cause
program control break completely out of the "switch"
statement (i.e., to the statement immediately after
the "switch" statement's closing brace). Without the
"break" in the "case 4: case 10:" clause, for example,
the code in the "case 5: case 9:" clause would be
executed. Notice also that the last "case" doesn't
require a "break,” since program control from there
falls through to the statement after the "switch”
statement anyway.

Obviously, in situations where you WANT the
code in the next "case" clause executed, you would
DELIBERATELY omit the "break" statement.

Notice one clause can handle one or more cases,
and you can use "default:" to catch the non-specified
cases.

Anyway, once "switch" has paid off the bets or
assigned a new value to "retcode," it returns
"retcode” to the caller.

The rollem() function uses the random number

Page 22

generator to roll two dice.

For each die, it generates a random number via
the standard rand() function, which returns a short
int in the range 0 to 32767. We then use the modulo
division operator ("%"), to convert that to a value in
the range 0 to 5.

Except for the fact that rand() can return a
value of zero and BASIC's RND(command cannot,
the line:

diel = rand() % 6;
is identical to the BASIC
DIE1 =RND(32767) MOD 6

Then we take the total of the two dice, plus 2 to
compensate for the fact that the range of each
should be 1 to 6 instead of O to 5, and put that value
in the "total” variable, which we then display on the
screen.

Finally, we return "total” to the calling routine.
Type in prog06.c, and compile it via
me (n="prog06",0)

Now, before running it, do a DIR PROGO06, and
look at the difference in size between PROG06/ASM
and PROGOG/OPT. As you can see, ProMC's
optimizer, MCOPT, does a rather good job of making
assembler code more efficient.

Normally, because it can take a long time to
optimize even a moderately large program, what I
do with a newly written program is compile it
without optimization, just to see if it works right.
Only when I've got it perfect will I:

meopt progname:d

and then

mras mc +i=progname/opt +o=progname -nl

mlink progname -n=d -e
and remove the /TOK, /ASM, /OPT, and /REL files.

Well, that about does it for this issue. But be
sure to tune in two months from now for the next
exciting episode, when we'll explore the data

organization techniques built into the C language,
namely "structs”" and "unions."

TRSTimes magazine 7.5 - Sep/Oct 1994

Copyright 1994 by Chris Fara Microdex Corp)

A Short Boole Session
OR
The Imps Raise Their
Ugly Heads Again
AND
How To Put Them Back
Where They Came From

A year ago ("Basic Imps", TRSTimes 6.2) we
tried to explore all the "logical operators" of Model 4
BASIC, including the obscure IMP. One of the
conclusions of that review was that all programming
can be done just fine with the simple AND, OR and
NOT. The Mod-4 additions: EQV, IMP and XOR are
interesting and sometimes can make the code more
"elegant”, but that's about all. Case dismissed.

Recently, however, the "imps" surfaced again in
a letter from Henry Herrdegen and in the Editor's
response to it (TRSTimes 7.3). The Editor swiftly
unmasked the mysterious XNOR function on
Henry's calculator: it does exactly the same thing as
EQV in Model 4. But why there is no IMP on the
calculator? On this innocent question dangle some
2000 years of Western thought.

As noted in "Basic Imps", the IMP operator is the
only one for which the order of operands can make a
difference. For example "0 IMP 1" returns 1, but "1
IMP 0" returns 0. Other operators never care about
the order of operands: "1 OR 0" returns 1, and so
does "0 OR 1". You can check it out for AND, XOR,
and so on.

Because of the commutative and associative
laws of mathematics, the order of operands is
irrelevant in most cases. A calculator designed for
scientific math would have very little use for the
IMP operator, and that's probably why it is not
included.

Not so in human logic: the "implication” is one of
the basic tests of our reasoning. Consider this
statement: "the man never drinks, so he is sober
today" (here the colloquial "so" stands for the more
formal "implies that"). There are two factual
components (operands) of our sentence:

TRSTimes magazine 7.5 - Sep/Oct 1994

(a) man never drinks
(b) he is sober today

To verify our reasoning we can examine all
possible cases of the implication's truth table which
looks like this:

@ O (@IMPb)
0 0 1

0 1 1

1 0 0

1 1 1

Substituting the true and false instances of the
facts (a) and (b) into the 1's (true) and 0's (false) of
the table we get:

®
drunk today

sober today
drunk today
sober today

(a)

sometimes drinks
sometimes drinks
never drinks
never drinks

Obviously all combinations can be true exept the third:
it is not possible in real life to get drunk without ever
drinking. Thus our reasoning is correct: it fits the truth
table. But if we reverse the terms ("the man is sober today,
so he never drinks") then our reasoning fails at once, It is
perfectly possible for the first fact to be true (sober today)
while the second is false (sometimes drinks), and such
outcome is prohibited by the IMP truth table.

This "uni-directional" quality of implication, compared
with the "bi-directional” character of other logical
operations, puzzled Western thinkers ever since Greeks
invented philosophy. It was a source of occasional bitter
fights between various "schools” of logic until a Britisher
named George Boole in the XIX-th century extracted all the
"imps" from the messy jungle of human language and
organized them into a complete system of "Boolean
operators". As it turns out, even more "imps" exist than we
have in Model 4 BASIC: there are altogether 16.

How come 16? Two operands, each true or false,
can be arranged in 4 different ways in a "truth table"
where "true" is shown as "1" and "false" as "0". Now,
since cach table has 4 possible outcomes, there are
16 ways to arrange these results, and thus 16
different Boolean operators. Some have names such

Page 23

as AND, OR, etc, others have no names. Some are
useful, some are not, but there are computer
programming languages (for instance some variants
of LISP) that provide a general "Boole" function
capable of performing any of the 16 Boolean
operations.

However, there is no reason to be intimidated by
the sheer numbers of those "imps", because many of
them are more "bull" than Boole. First of all, half of
them are just opposites of the other half, obtained by
the application of the "unary" operand NOT to the
result. Take for example Henry's XNOR (or EQV as
it is called in Model 4). It is simply the opposite of
XOR, as we can see by comparing the "truth tables"
of both:

Operands XOR XNOR/EQV
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

For example if "0 XOR 1" returns 1, then "NOT
(0 XOR 1" returns 0 which is the same as "0 XNOR
1" or "0 EQV 1". The EQV (short for "equivalent") is
actually a better term, more expressive of what
happens in this operation: the result is true when
both operands are equal. Also, it would seem that
NOT XOR should be properly called NXOR to be
consistent with the names of other similar operators
whose truth tables are negations of their "siblings",
such as NAND (stands for NOT AND):

Operands AND NAND
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

The NAND truth table should be familiar to
hardware buffs. It is used extensively in electronic
circuits (the so-called "NAND gate" is a basic
building block of our computer's RAM memory). In
the same manner we can construct a NOR table by
NOTing the OR table, etec.

Okay, so we have exposed half of the "imps" as
being merely the NOT copies of the other half. That
still leaves 8, but three of those are rather
degenerate. A truth table where all results are
"true" (1) regardless of the truth of the operands is
called a "tautology" and obviously is useless: it
doesn't tell us anything about the operands. The
other two useless operators are when the result
depends only on the truth of one of the operands,
regardless of whether the other operand is true or

Page 24

not. In those two cases we simply ignore the
irrelevant operand and that's that.

Now we are down to 5, but since IMP is
directional, there are two possible arrangements of
an IMP truth table, depending on the order of the
operands:

Operands IMP Operands IMP'
0 0 1 0 0 1
0 1 1 1 0 0
1 0 0 0 1 1
1 1 1 1 1 1

In the second IMP' the operand columns are the
same as in the first, only their order is swapped.
The logic is still the same in both cases, and thus
only one IMP is relevant.

It seems we have now 4 useful operators, but why
stop here? Don't forget the trusty NOT. By
applying it to the first operand before ORing it with
the second the same results are obtained as with the
IMP:

@ NOT (a) () OR
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1

In BASIC this could be written as "(INOT a%) OR
b%". This operation (politely called "dissolution of
implication") hopefully kills the egregious IMP once
and for all and leaves us with the only three
essential operators:

Operands AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

But, you'll object, Christopher lover you said in
"Basic Imps" that XOR is not really essential, so
what gives? The answer is "both". In terms of
fundamental logic these three operators (plus the
NOT) are indeed necessary. As you look at the
above table, there is an elegant symmetry. This
symmetry is not accidental. It simply covers the
three basic statements that can be made about two
items of interest: both are true, both are false, or
they are different. Actually in formal symbolic logic
the EQV (the NOT counterpart of XOR) is used more
often than XOR, but it's the same idea. In
computing we prefer XOR because it is a handy
"toggle" for bit manipulations: each time we XOR

TRSTimes magazine 7.5 - Sep/Oct 1994

any bit with 1, that bit flips from 0 to 1, and from 1
to 0.

But if we relax the rules a little and agree to accept
expressions more complicated than just
sneaking a NOT here and there, then we can
also eliminate XOR. TFor example Model III
BASIC does not have XOR, but we can defline a
function like this (all in one line):

DETF FNXR%(a%,b%)=
(a% OR b%) AND (NOT (a% AND b%))

and then instead of:

z% = x% XOR y% 'Model 4
we can write:

2% = FNXR%(x%,y%) 'Model 1II

Similar functions in terms of AND, OR, NOT
could be written for any of the 16 Boolean operators.

Actually it's possible to express any Boolean
operator using only NOT plus AND, or NOT plus
OR. But the formulas get so absurdly convoluted
that the exercise is only of academic interest.

Anyway, next time any of the other "imps" come
bothering you again, you'll know where they are
coming from and how to get rid of them.

TRSTimes magazine 7.5 - Sep/Oct 1994

FONTS
GAILORIEK

FANTASTIC
DOTWRITER
FONTS

created by
Kelly Bates

$3.00 per disk
CONTACT

MICKEY MEPHAM
9602 JOHN TYLER MEM HWY
CHARLES CITY, VA 23030

ANYBODY have a Mac-Inker for sale?

Also interested in 80-US Magazin
& early issues of 80-Micro.
Buying Model I/I11/4/2000
programs and machines.
Buying Model 100 machines.

Copa International, Ltd.
Newark, I1 60541

Page 25

Some Hacking
Reminiscences

by Roy T. Beck

What is a "hacker"?

Originally, a hacker was a clever, but reason-
ably honest computerist who could modify or create
programs as needed to accomplish special functions,
overcome machine or program deficiencies, and
patch programs to solve problems the original pro-
grammer had failed to catch. (These latter problems
were sometimes described as "undocumented fea-
tures" when the users complained!)

As us old timers know, the term "hacker" has
been greatly corrupted since it was first introduced.
Nowadays, the term hacker is being applied to com-
puterists who break into other people's systems via
modems for the purpose of malicious mischief or out-
right theft.

In this article, I will describe some activities by
both present day hackers, as reported in the news-
press and other sources, and some along the original
meaning of hacker, including some personal experi-
ences.

Page 26

Recently, a hacker name William Allen Dan-
forth and his coconspirator Michael William Laz-
zarini have been found to have been operating as a
merchandiser of stolen programs and pornographic
images. The operation was run by the two employ-
ees of Lawrence Livermore National Laboratory at
Livermore, California. One was the mastermind, the
other was performing manual functions in the com-
puter room to enable the disemination of porn and
bootlegged commercial programs. According to pub-
lished reports, over 90,000 pornagraphic images,
some involving children, were stored on tapes, and
were sold to unscrupulous buyers via the Internet
system. Since graphic files are large, over 50 giga-
bytes of storage, paid for by you and me, the taxpay-
ers, were involved. The Alameda County District At-
torney is filing suit against the principal perpetra-
tor, with a possible penalty of three years in prison
and $10,000 fine for each of the two counts filed
against him. Lazzarini, his partner is facing lesser
penalties. The cache of materials was stored on
tapes; Lazzarini was mounting and storing tapes at
the direction of Danforth, the principal. Danforth
has "resigned" from the Laboratory, and could not be
reached by the L. A. Times reporter for comment.

When the Lab was tipped by the L. A. Times as
to what was going on, the Lab launched a serious
investigation, which was said to have cost an addi-
tional $13,000 to perform. More expense to us tax-
payers.

I am sure many of you have read "The Cuckoo's
Egg", which describes the activities of a pair of hack-
ers, based in Germany, who broke into many US
computer systems, looking for information and files
of value to the East German government. These
birds were utilizing the Internet system, which is an
informal network, interconnecting numerous gov-
ernment and university computers.

Their targets were government and university
computers containing data and programs of military
or political value. The author of The Cuckoo's Egg
was at the time employed at the University of Cali-
fornia, Berkeley doing the necessary programming

TRSTimes magazine 7.5 - Sep/Oct 1994

and accounting to allocate the various costs of oper-
ating the UC system to the appropriate users. He
became aware of the hackers because there were
small discrepancies in the accounting results; his ef-
fort to account for the small discrepancies revealed
the presence of the hackers. The author did some
detective work to discover what was going on, and
found the hackers had discovered various means of
entry into the computers, including "trap door” en-
try into some operating systems, which in effect
gave the hackers managerial control over the UC
system. The hackers set up their own accounts and
arranged to bypass the accounting routines in the
0OS, which for the most part made them invisible to
the legitimate system managers. Since the system
was large, with many users, the small discrepancies
in telephone company charges vs the recorded ac-
counts went unnoticed for a long time, the discrep-
ancies being ignored, or thought to be the result of
rounding errors, etc. The author basically decided on
his own initiative to pin down these accounting dis-
crepancies, and this led to his discovery of the pres-
ence of the hackers.

The book also reveals the difficulties in gaining coop-
eration between such agencies as the universities,
the FBI, and others who should be concerned. It lead
to great frustration, at times, on the part of the au-
thor. That book is recommended to all serious com-
puterists.

Coincidentally, the author of the Cuckoo's Egg, Cliff
Stoll, was formerly one of the system managers at
the Livermore Lab where the recent hackers were
doing their tricks. It would have made a great story
if stoll could have detected and trapped the hackers
abusing the Lab computers, but it didn't happen
that way. Instead, a reporter from the L. A. Times
discovered what was going on and tipped the Lab
managers.

Many years ago, I heard a story about a programmer
working in a NY City bank. His shtick was that he
thought about the small errors due to rounding off
when computing interest earned by the customers'
savings account. He proceeded to create a secret ac-
count in the computer system to which all the frac-
tions of cents of earned interest were credited. With
the large bank business flow, this account mounted
rapidly in size. The hacker then instructed the oper-
ating system to periodically write a check for the
balance in the secret account, which was mailed to
him in a roundabout fashion. He made a neat pile
out of it until another system programmer had rea-
son to review code in the OS, and tripped over this
undocumented routine which credited the fractions
of cents to the secret account. According to the story,

TRSTimes magazine 7.5 - Sep/Oct 1994

the hacker was fired, but not charged with any
crime, on the basis that the bank did not want to
reveal the ease with which the hacker had pene-
trated the security features of the bank's system.

My niece is a systems programmer for a local bank,
and she told me of an experience she had when she
first went to work for the bank. She was hired as a
replacement for another person. I gather the other
person, the hacker, was let go for some undisclosed
malfeasance. In any event, her first evening at the
bank was interrupted by the previous employee dial-
ing into the computer center via MODEM. I don't
know if he actually interfered with the computer
programs, but he had all the passwords required to
allow him to do something serious. My niece realized
the seriousness of the penetration, and tried to ex-
clude the hacker. The problem was there were nu-
merous MODEMs, each with separate phone num-
bers. Also, she could not find a way to exclude him
in software, since his calls had all the proper pass-
words. She then began an effort to exclude him by
disconnecting each MODEM he used. The problem
here was that the modems were housed in enclosed
racks, and she did not have keys available. But the
racks had openings near the bottom for cable entry.
My niece is very petite and was able to insert an arm
through the cable entries to disconnect the cables at
each MODEM. She spent an exciting evening dis-
connecting MODEMSs to kill each penetration by the
hacker! Of course, the passwords were changed the
following day, and the hardware restored, but she
had an exciting introduction to the bank's computer
system.

Another case of inadvertent hacking was done by
me, some years ago. [was then quite a novice and
was using my Model I with the terminal program
ST-80 by Lance Micklaus, and was accessing a CP/M
BBS in the local area. I was having some difficulties,
but was unaware that I was simultaneously giving
the SYSOP a bad time!

Pretty soon, I received a somewhat indignant voice
phone call from the SYSOP, wanting to know what
the #3%"&* I was up to in my efforts to crash his
BBS? I pleaded innocence, and he was a reasonable
man, so we cooperated. He was handicapped because
he was not a programmer; a third party was main-
taining the software. Anyway, the problem was
tracked down to the fact I was using the Model I
backspace character 08h to correct my typing errors.
This was OK of itself, but at his end, it meant I was
backing up in his incoming text buffer to correct er-
rors. In my own ignorance, I would occasionally
backspace to the beginning of a line, and then hit a
few more backspaces for good measure. This had no
effect on my terminal program, but it had a dramatic

Page 27

effect on his BBS software. It seems there was no
protection to keep a user from backspacing out of his
buffer into the prior code, and my backspacing
would clear his buffer, and then begin to clear his
operating code, which sooner or later crashed his
BBS! And all done innocently! I was hacking without
knowing it! The fellow maintaining the code then
put a check feature into his code to prevent a repeti-
tion of what I had inadvertently done.

Another of my adventures goes back to the earliest
times of the Model I. Some few of you may remember
the monitor program RSM, which was quite power-
ful. You may also remember the infamous tape cas-
sette system which worked some of the time. RSM
had provisions for the user to add one additional
command of his own creation. Some of the tapes of
that time were copy protected by some kind of
strange formatting, I naturally wanted to know how
they worked. Since the tape initially had to load un-
der Radio Shack's loading routine, I learned how
that worked by disassembling the appropriate part
of the ROM. I then created an 11 byte routine which
became the User command added to RSM. This com-
mand would call the RS loader, and execute it to a
point. It then proceeded to load all bytes from the
tape thereafter into memory, and return control to
me. I then studied and disassembled the code found
on the tape, and quickly discovered that some of the
"protected" tape programs simply used the RS loader
to load a special loader written by the tape program
author; once in place, this special loader code took
over the loading of the remainder of the program
and would cover its own tracks in various ways, one
of which, I discovered, was to erase itself after exe-
cution. Cute! Anyway, I learned a lot about Z-80
code and a little about hacking from the good old
RSM monitor. Incidentally, that monitor was origi-
nally written for CP/M, and was simply rewritten by
its publisher to operate in the Model I environment.
It also included a simple disassembler, which I used
to disassemble itself! One must be imaginative, don't
you know?

Roy Soltoff has written and sold a good disas-
sembler, DSMBLR, which with some careful atten-
tion by the user, can produce good disassemblies of
Z-80 code. Since one problem in disassembly is dis-
tinguishing between executable code and text and/or
graphics, the operator must get closely involved in
the process to make sense out of strange code. Roy's
disassembler allows you to guide it and tell it which
code is code to be disassembled, and which code is
just ASCII text to be compressed into sentences.
Roy's code also creates a reference table which sum-
marizes all forward references. This is very helpful
in disassembly analysis. A missing feature, however,
is back references. That is, it is very helpful to know

Page 28

how the program got to point B; that is, where is
point A that contains a call or other reference to
point B?

There is also a disassembler, DISASSEM, built
into NEWDOS80, Version 2, one of the more power-
ful alternate DOSes available on the Models I and
II1. This other, less powerful disassembler will, how-
ever, create a back reference table which, when used
with Roy Soltoff's disassembly, greatly facilitates
understanding of strange code.

Roy Soltoff writes sometimes mysterious code for
the purpose of compactness, and I have had to puz-
zle over the result more than once. One of his tricks
was to write a whole series of LD(IX+d) instructions,
each with a different value for d, the index. If you
began executing at the beginning of any of these in-
structions, you loaded the IX register several times,
and then ignored it. What was he up to? Careful
reading of the code showed he was entering, not at
the beginning of an instruction, but in the MIDDLE
of an instruction, effectively turning a 3 byte in-
struction into some other 2 byte instruction. Why?
the result was that he could enter a block of code at
two or more different points, set an index value in
register C, and then continue on in the sequence
with the desired index value in the C register, even
after executing several other LD(IX+d) loads. This
eliminated the need for a GOTO after each entry
point. Roy is clever!

Some code tricks I have run into may be of inter-
est to users. At one time, I spent a lot of time analyz-
ing Super Utility to learn how it was protected. T did
not analyze every version, but I will cite a couple of
tricks by Kim Watt, the very clever author of Super
Utility. He learned early on, that if you asked TRS-
DOS to copy a file, and if it discovered the checksum
on a sector header or a sector of data was missing or
incorrect, TRSDOS would simply supply the missing
checksum AND SAY NOTHING about it. Kim used
this feature in a clever way. Since the floppy disk
controller actually will report this as an error, Kim
would deliberately create a bad sector somewhere in
his code by omitting the instruction to write a check-
sum. When his protected code was loaded and exe-
cuted, it would examine the particular sector that
should have an error in it. If the error was present,
Super Utility knew the code had been loaded from
the original disk and would proceed to operate. But
if the disk was a bootleg copy, Super Utility would
NOT find the error in the sector where Kim had
placed it, and the code then knew it was from a
copied disk, and would bomb out with an error mes-
sage. Cute, eh? Another of his tricks I found on one
of his Model I versions was a track with only two
sectors on 1it, and these were 17h and 73h, both of

TRSTimes magazine 7.5 - Sep/Oct 1994

which were way above the normal sector numbers
expected by TRSDOS. The DOS copy function did
not know what to do with these two sectors, and ig-
nored them. If you tried to run Super Utility from
this version, it would examine that special track for
sectors 17h and 73h; if not present, Super Utility
knew it was a copy and would halt. The numbers 17
and 73 taken together are 1773, which was the type
number of the floppy disk controller chip in the
Model I, if you remember.

Many users objected to the fact that Super Util-
ity would only run on its own protected, original
disk, and could not be made inte a /CMD file. Origi-
nally, Kim would sell a backup copy for an extra fee,
$5, if I remember. Later, he made a /CMD version
available for extra dollars, which met the desires of
those who objected to having to boot a special disk.

While Super Utility was not written to do so, I
discovered a way to use it to read the second side of
Montezuma Micro CP/M disks, which extended its
utility. Of course, most of Super U's functions would
not work on CP/M, but the simple ability to read the
disks was very helpful. You simply had to tell Super
U it was going to read DOUBLE SIDED Model 111
disks, (which didn't even exist), but the Super U
code would then successfully handle double sided

CP/M. That sure helped me a lot when I was explor-
ing CP/M on the Model 4.

Super U will also read IBM floppies, but only the
first half of each sector, since IBM uses 512 byte sec-
tors, and Super U expects 256 bytes. Not much value
to it, but it works.

Thinking of other things I have found, I once dis-
assembled a diagnostic program in which the author
EXECUTED his Copyright notice! Since the notice
was all ASCII, the characters, taken as executable
code, consisted mostly of a bunch of register Loads,
which accomplished nothing in the CPU. After com-
pleting execution of the copyright notice, the code
continued on in a more customary fashion, but it
was momentarily confusing to me as I labored to un-
derstand what he did. This was the same program
which, after loading itself, went back and erased its
own special loader so that if you interrupted it with
the break key and executed DEBUG, the special
loader was nowhere to be found.....

This same program had a branch where it asked
the user if he wanted to test the memory or a disk
drive? After some little fooling around, the program
would load the L register, and immediately JP (HL).
What the heck was in H? I had to go back half a page
of code to discover where he had loaded H register to
determine where JP (HL) was going to take me.

TRSTimes magazine 7.5 - Sep/Oct. 1994

Self-modifying code is always described as a
TERRIBLE thing, and I agree it can sure lead to
trouble in exccuting a program. But it also provides
some cute tricks in hiding code! Overwriting a no
longer needed loader with later code 1s one example
of this. If you try to break the program and go in and
look around, part of the code 1s no longer there.

I remember a tape program which put a copy-
richt notice on the screen. At that time, many boot-
leggers would go in and look for the copyright notice
and delete it so they could pretend innocence about
having a bootleg copy of someone's copyrighted pro-
egram. In this particular program, the author had en-
cyphered his copyright notice and something else, I
forget what the other part was. He used two differ-
ent encyphering methods. In one case, he had added
a constant without carry to every byte of his copy-
right, which created bytes in the upper 128 charac-
ters of the ASCII series. To display the notice, he
then subtracted without carry the same value, and
put the resulting ASCII values up on the screen. In
the second block of text, he used a different trick.
There, he used a rotate instruction RRC to shift all
the bits of each byte by one position. At display time,
he would rotate the bits in the opposite direction
with the RLC instruction and then put the resulting
ASCII text on the screen.

How about a Radio Shack Hack? Old timers
know how unreliable the original cassette tape load-
ing scheme was. It required careful adjustment of
the playback volume control to find a setting where
the tape would load reliably. All kinds of tricks, both
hardware and software were tried by many people in
an attempt to get the darn thing to work properly.

The sad part of that story is that RS themselves
made a mistake in coding the Model I ROM. That
ROM, in fact, went through several revisions in its
lifetime, but it wasn't until nearly the end of the
Model I that RS found and corrected the error.
When they did discover the fix, they opted not to cor-
rect the earlier ROMs in the proper way, which
would have been to issue new ROMs. Cost, of course,
was the reason. They also did not publicly announce
the problem or its solution. What they did was to
come up with a small board with two chips on it,
called the XRX fix. IF you learned about its exis-
tence, you could turn in your Model I keyboard and
they would install the XRX. They might or might not
charge you for it. (They charged me). But the results
were miraculous. My machine went from having a
useable volume control range of about 1/2 number to
a range from #1 to#10 on the wheel, completely reli-
able. After that I just set it at 5 and forgot about it.
It always worked after that. The chip fix overcame a
software mistake in a timing loop, and that was it.

Page 29

Just imagine how much better the Model I would
have been if that ROM had been correct originally!
The tape system was well-designed, but the ROM
mistake earned it a terrible reputation.

How many of you remember and UNDER-
STAND PDRIVE as used in NEWDOS80? The
PDRIVE command was one of the things which gave
NEWDOS its great flexibility, but was simultane-
ously the bane of many users use of NEWDOS. It
was entirely possible to format a disk in an unusual
configuration, forget to write the PDRIVE on the
outside of the jacket, and then find yourself unable
to access the disk ever again. I know, I did it!

To resolve this, I did a little hacking. I found
that NEWDOSS80 creates a PDRIVE table on track
0, sector 1 in which all the PDRIVE information is
neatly recorded. Of course, a lot of it was Dbit-
mapped, which made understanding a bit difficult. I
sorted this out by simply changing one parameter at
a time, examining the sector 1 table after ecach
change to see what changed. I screen-printed them
for permanence. With this data in hand, it wasn't
difficult to discover and record what each byte and
bit accomplished. With this data in my notebook, I
could easily reconstruct the correct PDRIVE line for
any strangce NEWDOS80 disk. Just another bit of
hacking.

In conclusion, I can only regret the corruption of
the hacker label: Life used to be more fun. now we
are tagged (by the news media) as bad gu.s. What
can we call ourselves that reflects the old-time
hacker ethic, and which will not simultaneously
bring down disapproval upon us? All suggestions
welcomed.

[enjoyed exploring my personal memory for
items to put into this article; I hope you enjoyed
reading it.

Page 30

RECREATINAL &
EDUCATIONAL COMPUTING

REC is the only publication
devoted to the playful in-
teraction of computers and '}
'mathemagic’ - from digital 3
delights to strange attra
tors. from special numbe
classes to computer graph
ics and fractals. IKdited and
published by computer
columnist and math profes-
sor Dr. Michael W. Ecker, REC features pro-
erams, challenges, puzzles, program teasers, art,
editorial, humor, and much, much more, all laser
printed. REC supports many computer brands as
it has done since inception Jan. 1986. Back issues,
are available.

To subsecribe for one year of 8 issues, send $27 US
or $36 outside North America to:

REC
Attn: Dr. M. Ecker
909 Violet Terrace
Clarks Summit, PA 18411, USA
or send $10 (313 non-US) for

3 sample issues, creditable.

T

TRSTimes on Disk #13

is now available, featuring the
programs from the Jan/Feb
Mar/Apr, and May/Jun 1994 issues.

U.S & Canada S .00 (U.S.)
Other countries: $7.00 (U.S.)

TRSTimes on Disk

5721 Topanga Canyon Blvd., Suite 4
Woodland Hills, CA 91367

TRSTimes on Disk
#1 through #12

are still available
at the above prices

TRSTimes magazine 7.5 - Sep/Oct 1994

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf

