B s

et

*, "
Ca

@ bow bR

L

L
B et
G RN
e el etet

atate!
++_.“._

®
al

s

mwom
L

Ll
Lk

)

L] I‘Ill -

W
R
e

L)

D
L
+I

&

s
PI-
Ta

£
I+I

R kA

S

I K




1] 4 L]
s
e
=
o
]
o
=
.‘.‘.
]
3
=

I am so glad to have completed this issue of
TRSTimes, because this is one that almost never
was...

The Sunday after issue 7.6 was finished and in
the mail, I just plain passed out. I had not slept for
3 days due to what I thought were ulcer pains. My
wife, Sylvia, and son, Steven, managed to drag me
down to the garage and into the car, and they drove
me to the Westlake Community Hospital. There, af-
ter several tests, it was determined that I needed a
gall-bladder operation. I didn’t care what was wrong
with me, I just wanted fo sleep!

Supposedly, the operation was no big deal. The
best-case scenario was that they might be able to
use a new technique to pluck out one or more offend-
ing gall-stones - and I would be good as new in a day
or so. The worst-case scenario was that they'd have
to use the old procedure and remove the gall-bladder
completely. Again, no big deal - my wife was told
that I'd be fine in a couple of days. They doped me
up and wheeled me to wherever it is they cut people
open. I was out like a light before we reached the
door.

It turned out to be somewhat more serious than
anticipated. My gall-bladder needed to be com-
pletely removed, and then complications set in - the
poison in my body spilled into my lungs, and I ended
up with double pneumonia.

When my wife next saw me I was not in the ex-
pected recovery room, but in the Intensive Care
Unit, fighting for my life. I had tubes down my
throat, tubes up my nose, tubes in my arms and my
hands were tied to the sides of the bed so I wouldn't
rip out those intrusive objects. I was hooked up to a
respirator - I must have been a pathetic sight. One
slight consolation was that I had a button to push if
I felt pain. Good stuff - legalize morphine!/

I was in ICU for 5 days, and then spent another
5 days in a regular hospital room. I have never been

sick before in my life, so this was, to say the least, an

interesting experience. The highlight of my stay was
my first meal - a breakfast of come kind of broth -
man, was that good!

10 days in the hospital is a long time and, after
I had accustomized myself to my plight, I tried to do
what I always do when I am away from my com-
puter and bored - I tried to write a program 1n my
head. But I couldn’t do it!!

That startled me. Why couldn’t I do now what
had been so easy for me just a few days ago? The

answer, of course, was that I was pumping mor-
phine into my body, causing my brain to slow down
| considerably.

This condition lasted even as I left the hospital
and took up residence in my own bed. My Model 4P
was sitting on a cart immediately next to me, and I
would turn it on at various times of the day and
night, hoping that I could do something productive.

| At first I struck out hopelessly, but eventually the
fog lifted; luckily, just in time to get down to work on
this issue of TRSTimes — and finish it on schedule.

I am very appreciative of the help and support 1
have received from my friends in the TRS-80 com-
munity. It certainly made putting out this issue
much easier than I had anticipated.

Frank Slinkman sent a super installment of his
C tutorial. I do hope that our readers are taking ad-
vantage of Frank’s knowledge and get started learn-
ing this powerful language.

Danny Myers provides all the answers to two of

the famous Scott Adams adventures. I am glad that
so many of you are now playing those games again.
To the ones expressing concern that the walk-
throughs diminishes the playing enjoyment, let me
say that I'm sure that it was never Mr. Myers' inten-
tion that you should use the articles as a playing
bible; rather, you should only usethis writings if you
get REALLY stuck.
' Chris Fara explains the mysteries of integers,
single- and double precision numbers. After reading
this article, you might just be qualified to help Intel
fix the problem with the Pentium chip.

These days there are a lot of Deskjets attached
to TRS-80. They are good printers and Doug Hyman
tells us how to save money by refilling those expen-
sive ink cartridges.

Kelly Bates shows how to use NEWDOS/80 to
transfer TRSDOS 1.3 files.

James Sowards presents a fun card trick for
Model 4. Try this one — you'll like it.

Roy Beck comes up with yet another of his es-
says on difficult subjects. The mixture of reminis-
cences and facts make reading :bout the Z-80 in-
struction set fun. Imagine that!

Finally, the Odds & Ends piece is my baby. I
hope that my foggy brain managed to produce some-
thing readable.

Welcome to the 8th year of TRSTimes.




No. 1 - Jan/Feb 1995 - $4.00

y disk format is
ease note on la-

LITTLE ORPHAN EIGHTY ..cccortcertecrenercenecsrencsnscsesereee 2
Editorial

ODDS AND ENDS FOR MODEL 4........ccccceveeeeerenrieeees D
Lance Wolstrup

Daniel Myers

PROGRAMMING TIDBITS....ccottiiruriernecissecrsecssssesnees 13
Chris Fara

REFILL YOUR DESKJET INK CARTRIDGES........ 17
Doug Hyman

Bates, Sowards

SOME HISTORY ON THE 8080 AND Z-80 CHIPS... 20
Roy T. Beck

C PROGRAMMING TUTORIAL part 5 ....cccceeeerreeeeeee 25
J.F.R. “Frank” Slinkman




TIRED OF SLOPPY DISK LABELS?
TIRED OF NOT KNOWING WHAT’S ON YOUR DISK?

YOU NEED “DL”

“DL” will automatically read your TRSDOS6/LDOS compatible disk
and then print a neat label, listing the visible files (maximum 16).
You may use the ‘change’ feature to select the filenames to print.

You may even change the diskname and diskdate.
“DL” is written in 100% Z-80 machine code for efficiency and speed.

“PL” is available for TRS-80 Model 4/4P/4D
using TRSDOS 6.2/1.S-DOS 6.3.0 & 6.3.1
with and Epson compatible or DMP series printer.

“DL” for Model 4 only $9.95

TRSTimes magazine - Dept. “DL”
5721 Topanga Canyon Blvd., Suite 4
Woodland Hills, CA 91367

HARD DRIVES FOR SALE

Genuine Radio Shack Drive Boxes with controller, Power Supply,
and Cables. Formatted for TRS 6.3, Installation JCL Included.
Hardware write protect operational.
Documentation and new copy of MISOSYS RSHARDS5/6 Included.
90 day warranty.

5 Meg $175 10 Meg $225 15 Meg $275 35 Meg $445

Shipping cost add to all prices

Roy T. Beck
2153 Cedarhurst Dr.
Los Angeles, CA 90027
(213) 664-5059




" TRSDOS/LS-DOS 6.3.x.

by Lance Wolstrup

When TRSTimes was
first published, I began a col-
umn called HUNTING FOR
BURIED TREASURE. The
purpose was to dispute the
‘experts’ who, along with the
Model 4 manual, claimed
that there was no longer any
reason to POKE values to
strategic DOS memory loca-
tions as had been the norm for BASIC programmers
on both the Model I and III.

JUPININT.

I quote from issue 1.1:

The author of TRSDOS/LS-DOS 6.x.x, Roy
Soltoff, was very careful to isolate us from the actual
addresses of important data areas and DOS rou-
tines. Instead, Assembly Language programmers
were given SuperVisor Calls, and the BASIC pro-
grammer was given the clumsy SYSTEM command.
Mr. Soltoff explains the reason for this:

“Irying to keep the memory locations data con-
stant across all implementations of the system is
quite restrictive and usually becomes limiting to the
healthy growth of the system. Keeping portability in
mind, the designers of the system have provided Su-
perVisor Calls which return pointers to data that
may be useful to a program. Thus, there should usu-
ally be no need to access data areas by memory ad-
dress.”

I went on to protest that since there would, most
likely, not be any growth, healthy or otherwise, we
need not concern ourselves with changing data loca-
tions; rather, we were free to explore and use what
we found.

As it turned out, I was wrong. There was to be
one more DOS upgrade - from LS-DOS 6.3 to LS-
DOS 6.3.1. However, the vast majority of the goodies
we unearthed were still valid in the new version.
Only a few programs, that for one reason or another
needed to break the rules, failed to work. The most
famous of these is probably the BOOT5/CMD pro-
gram which was fixed right here in the pages of
TRSTimes.

We proceeded to publish several hidden goodies,

TRSTimes magazine 8.1 - Jan/Feb 1995

some were straight forward, while some were of the
rather exotic variety, and I have written numerous
programs employing the techniques and memory lo-
cations described in our pages.

A good example is to imagine a program that
asks the user if he/she wishes to play again. That
would written something like this:

800 print"Would you like to play again (Y/N)”;

810 i$=inkey$:if inkey$="" then 810

820 if i$="Y” or I$="y” then 100 ‘play again

830 if i$="N” or i$="n" then cls:end ‘don’t play again
840 goto 810

Notice that the program needs to check either
response for both upper- and lowercase input. Well,
in this case, that is not a big deal.

However, now imagine that your program needs
to match the user input against an internal table,
such as, for example, a list of capitol cities. The user
might be asked:

What is the capitol of Ohio?

The correct answer residing in the internal list is
COLUMBUS, so if the user types Columbus,
COLUMBUES, or any other combination of upper- and
lowercase spelling, the answer will be deemed
wrong.

The obvious fix is to convert the entire user input
to uppercase, and then make the comparison against
the table. This would usually be done something like
this:

200 print”What is the capitol of OHIO?”;

210 input i$

220 for x=1 to len(i$)

230 if mid$@i$,x,1)=>"a" and mid$@i$,x,1)<="z" then
1=asc(mid$G$,x,1)) and 223:mid$3G$,x, )=chr$@)
240 next

250 if i$="COLUMBUS’ then print’Correct” else
print’"Wrong”

It is plain to see that the code in lines 220
through 240 is lengthy and difficult. It works, but
there certainly is a better way - and HUNTING FOR
BURIED TREASURE published it in issue 1.1:

Page b



POKE &H74,PEEK(&H74) OR 32

This sets bit 5 of memory location 74 hex (known
as KFLAGS). Bit 5 of this location controls the key-
board case setting. On (1) is uppercase, and Off (0) is
lowercase.

The problem with this POKE is that, while it
does force the keyboard into uppercase, it is possible
for the user to press <SHIFT><0>, changing the
case setting back to lowercase. I got around this lim-
itation by not using the INPUT command, but in-
stead route all user input through a special INKEY$
routine where each keystroke was forced to upper-
case. However, if the user really tried to defeat the
uppercase conversion, even this routine could fail by
leaving the very first character in lowercase.

It was time to solve this annoyance once and for
all, so I began reading THE SOURCE (Roy Soltoff's
commented disassembly of the entire TRSDOS 6).
While it is not your typical light reading, it is infor-
mative and, sure enough, before long the answer to
the problem appeared on the page.

The keyboard driver tests if the caps-lock key is
active and, if it is, it jumps to a routine that then

convert the character to uppercase. The code goes
like this:

0A09 CB6E BIT
0AOB 2031 JR

5,(HL) ;caps lock?
NZ,TGLCASE ;jump if yes

Right there at memory location 0AOB hex we
have the solution. All we need to do is to change the
byte from the conditional JR NZ to a simple, uncon-
ditional JR; that is, change:

0AOB 2031 JR NZ,TGLCASE
to
0AOB 1831 JR TGLCASE

In other words — we only need to change the
byte at 0AOB hex from 20 hex to 18 hex.

POKE &HA0B,&H18
Voila, we now have constant uppercase. This set-
ting will remain intact until the system is reset by a
reboot, or you poke back the original value:

POKE &HAO0B,&H20

This makes it much easier for a program to
check user input — just wish I'd thought of it sooner.

Page 6

Next on the agenda is an item that falls in the
“USELESS - BUT FUN” category.

The Model 4 is blessed with two library com-
mands that will display the names of the diskfiles on
the screen: DIR and CAT.

The DIR command displays a complete directory
listing, while the CAT command list 5 filenames per
line with no extra information. At first glance the
commands appear to be vastly different — but are
they?

The answer is NO. They are basically the same
command.

CAT (A=Y)
is the same as typing DIR

and

DIR (A=N)
is the same as typing CAT

Now you know!

A LITTLE BOOLEAN

I have often needed to determine whether a
number input by the user was odd or even. This is a
simple programming task, and I have usually writ-
ten the code as follows:

100 PRINT”Type a number ;
110 INPUT N

120 IF N/2<>INT(N/2) THEN PRINT”ODD” ELSE
PRINT”"EVEN”

Line 120 performs division before the compari-
son determines whether the number is odd or even.
A much more elegant way to accomplish this task is
to use Boolean logic. Change line 120 to:

120 IF N AND 1 THEN PRINT’ODD” ELSE
PRINT"EVEN”

MORE BOOLEAN

Did you know that ...

the + sign can be used instead of OR
10 IF A<32 OR A>122 THEN....

can be written

10 IF (A<32)+(A>122) THEN......

TRSTimes magazine 8.1 - Jan/Feb 1995



the * sign can be used instead of AND
10 IF A=2 AND B=3 THEN ...
can be written

10 IF (A=2)*(B=3) THEN...

the - sign can be used instead of XOR

10 IF A=2 XOR B=3 THEN PRINT"TRUE” ELSE
PRINT’FALSE”

can be written

10 IF (A=2)-(B=3) THEN PRINT"TRUE” ELSE
PRINT’FALSE”

Test this one by making line 5, first A=2; then
B=3, and finally A=2:B=38.

A GEOGRAPHY GAME

United States of America

Recently I borrowed a stack of IBM shareware
disks from schoolteacher Ann Collins, friend, VTUG
member and TRSTimes subscriber. Among the pro-
grams I looked through was one written in GW-
Basie, an educational geography game about U.S.
states and their capitols. This interested me, be-
cause I had written a similar one for my son, Steven,
which was published in TRSTimes some years ago.

The IBM program was not particularly well
written, but it did have a couple of interesting fea-
tures. It offered two games in one — What is the
capitol of... and What state has the capitol city... —
and it had a hint module. Boy, I wish I'd thought of
those when I wrote mine!

But since it is never too late to correct one’s

omissions, and since I needed a program to demon-
strate the tricks from this article, I stole the pro-

TRSTimes magazine 8.1 - Jan/Feb 1995

gram. Well, I didn’t really steal it, and I especially
did not steal the code; rather, I played with the PC
program a few times and then rewrote it from
scratch on my Model 4.

The program, now called States and Capitols,
opens with a menu of 3 choices. Option 1 plays the
“What is the capitol of’ game. Option 2 plays the
“What state has the capitol city of’ game. Option 3
exits the program back to Basic. Both the games ask
a series of 20 questions and a running score is kept
at the bottom of the screen. If the user gives an in-
correct answer, a hint is offered. The hint displays a
random letter in the answer.

Because I use the POKE to force the constant
uppercase, I also use the POKE that disables the
break key. This will force the user to exit through
my exit routine where all the POKEs are reset to
normal. Also note that most prompts accepts the
ESC sequence <Shift><Down Arrow> to move back
one level, or from the first menu, exit to Basic.

The game is easy to play, and it is, indeed, a
great teacher. Whether you are of school-age or, like
my wife and I, on the road to ‘senior-citizenship’,
STATES AND CAPITOLS can help you recall the
names of those cities far away. Type in the listing
below and have fun.

STATES AND CAPITOLS

1 'states and capitals

2 'for TRS-80 Model 4

3 'copyright 1994 by Lance Wolstrup
4 'all rights reserved

5 ]

10 DEFINT A-Z:SW=80

poke to force uppercase
11 POKE &HAOB,&H18

poke to disable break key
12 POKE &H7C,PEEK(&H7C) OR 16

15 DIM Q$(50,2),QF(50)
19 GOTO 100

universal print routine
20 H=0:GOTO 23
21 H=(SW-LEN(A$))/2:GOTO 23
22 H=SW-LEN(AS$)
23 PRINT@(V,H),A$;:RETURN

Page 7



universal input routine
30 FL=0:L=0:1$="":A$=STRING$(ML,46): GOSUB 23:
A$=CHR$(14):GOSUB 23
31 AS$=INKEY$:IF A$="" THEN 31
32 IF A$=CHR$(13) THEN PRINT CHR$(15);:RETURN
33 IF A$=CHR$(27) THEN FL=1:PRINT CHR$(15);:
RETURN
34 IF (A$=CHRS$(8))*(L=0) THEN 31

35 IF A$=CHR$(8) THEN L=L-1:I$=LEFT$($,L.):H=H-1:

A$=CHR$(46): GOSUB 23:A$="":GOSUB 23:GOTO 31
36 IF (A$<CHRS$(32))+(A$>CHR$(122)) THEN 31

37 IF L=ML THEN 31

38 GOSUB 23:H=H+1:L=L+1:1$=I$+A$:GOTO 31

hint routine
40 V=12:A$=CHRS$(30)+"Incorrect answer -- would you
like a hint (Y/N)? ":GOSUB 21:H=H+LEN(A$)
41 ML=1:GOSUB 30:IF I$="Y" THEN 42 ELSE IF
1$="N" THEN F=1:H=0:A$=CHR$(30):GOTO 20 ELSE
40
42 R1=RND(LEN(ANS)):IF MID$(HI$,R1,1)<>CHR$(46)
THEN 42
43 MID$(HI$,R1,1)=MID$(ANS$,R1,1)
44 V=12:A$=CHR$(30):GOSUB 20:
A$="Here is your hint; "+HI$:GOSUB 21:
H=H+LEN(AS$):HI=HI+1.IF HI$<>ANS$ THEN 47
45 V=15:A$="Press <ENTER> to continue ":GOSUB 21:
H=H+LEN(A$)
46 ML=1:GOSUB 30:IF I$="" THEN A$=CHR$(30):
GOSUB 20:F=1:V=12:GOTO 20 ELSE 45
47 RETURN

program begins here
100 PRINT CHR$(15):CLS
110 V=1:A$="STATES and CAPITOLS"
GOSUB 21
120 V=2:A$="an educational game for TRS-80 Model 4":
GOSUB 21
130 V=3:A$="copyright (c) 1994 by Lance Wolstrup":
GOSUB 21
140 V=4:A$=STRINGS$(SW,131):GOSUB 20
150 FOR X=1 TO 50:FOR Y=1 TO 2:READ Q$(X,Y):
NEXT:NEXT

display menu
200 V=9:A$=CHR$(31):GOSUB 20:H=20:
A$="1. What is the capitol of . . .":GOSUB 23
210 V=11:A$="2. What state has the capitol city . . .":
GOSUB 23
220 V=13:A%$="3. Exit program":GOSUB 23:Hl=H
230 H=H1:V=16:
A$="Please make your selection (1 -3 ) ":GOSUB 23
=240 H=H+LEN(A$)
250 ML=1:GOSUB 30:IF FL THEN 280
ELSE IF I$="" THEN 250
260 I=VAL(I$):IF (I<1)+(I>3) THEN 230
270 ON I GOTO 300,400,280

Page 8

exit routine
280 POKE &HAOB,&H20:
POKE &H7C PEEK(&H7C) AND 239:
PRINT CHR$(14);:CLS:END

select “What is the capitol of”’
300 Q=1:A=2:GOTO 500

select “What state has the capitol city
400 Q=2:A=1

initialize for new game
500 RANDOM:QA=0:QC=0:HQ=18:HC=77:HI=0
510
520 FOR X=1 TO 50:QF(X)=0:NEXT

display scoreboard
522 V=6:A$=CHR$(31):GOSUB 20
525 V=22:A%$=" Questions asked:":GOSUB 20:
PRINT@(V,HQ),USING"##",QA:H=60:
A$="Correct answers:":GOSUB 23:
PRINT@(V,HC),USING"##";QC:V=21:
A$=STRINGS$(SW,131):GOSUB 20

main gameloop
530 FOR X=1 TO 20
535 QA=QA+1
540 R=RND(50):IF QF(R) THEN 540 ELSE QF(R)=1
545 AN$=Q3$(R,A):HI$=STRING$(LEN(ANS),46)
550 IF Q=1 THEN A$=CHR$(30)+"What is the capitol of
"+Q$(R,Q)+"? ": ELSE A$=CHR$(30)+Q$(R,Q)+" is the
capitol of which state? "
560 V=9:GOSUB 20:H=H+LEN(AS$)
570 ML=LEN(AN$):GOSUB 30:IF FL. THEN X=50:
GOTO 600
580 F=0:IF (1$="")+(1$<>AN$) THEN GOSUB 40:
IF F THEN 595 ELSE 550
590 QC=QC+1:V=12:H=0:A$=CHR$(30): GOSUB 20
595 V=22:PRINT@(V,HQ),USING"##";QA:
PRINT@(V,HC),USING"##",QC
600 NEXT:IF FL. GOTO 200

display game result
610 V=12:A$="You correctly answered"+STR$(QC)+" out
of"+STR$(QA)+" questions":GOSUB 21
620 PC=(QC/QA)*100
630 V=14:A$="for a score of"+STR$(PC)+"%":GOSUB 21
635 V=16:A%$="You used"+STR$(HI)+" hints":GOSUB 21

play again routine
640 V=19:A$="Would you like to play again (Y/N)? ":
GOSUB 21:H=H+LEN(AS$)
650 ML=1:GOSUB 30:IF I$="" THEN 650 ELSE IF
I$="N" THEN 280 ELSE IF I$="Y" THEN 200 ELSE 650

data statements
1000 DATA ALABAMA MONTGOMERY,

TRSTimes magazine 8.1 - Jan/Feb 1995



ALASKA,JUNEAU

1010 DATA ARIZONA,PHOENIX,
ARKANSAS LITTLE ROCK

1020 DATA CALIFORNIA,SACRAMENTO,
COLORADO,DENVER

1030 DATA CONNECTICUT,HARTFORD,
DELAWARE,DOVER

1040 DATA FLORIDA, TALLAHASSEE,
GEORGIA,ATLANTA

1050 DATA HAWAIILLHONOLULU,
IDAHO,BOISE

1060 DATA ILLINOIS,SPRINGFIELD,
INDIANA,INDIANAPOLIS

1070 DATA IOWA,DES MOINES,
KANSAS, TOPEKA

1080 DATA KENTUCKY,FRANKFORT,
LOUISIANA,BATON ROUGE

1090 DATA MAINE,AUGUSTA,
MARYLAND,ANNAPOLIS

1100 DATA MASSACHUSSETTS,BOSTON,
MICHIGAN,LANSING

1110 DATA MINNESOTA,SAINT PAUL,
MISSISSIPPI,JACKSON

1120 DATA MISSOURLJEFFERSON CITY,
MONTANA,HELENA

1130 DATA NEBRASKA,LINCOLN,
NEVADA,CARSON CITY

1140 DATA NEW HAMPSHIRE,CONCORD,
NEW JERSEY,TRENTON

1150 DATA NEW MEXICO,SANTA FE,
NEW YORK,ALBANY

1160 DATA NORTH CAROLINA,
RALEIGH,NORTH DAKOTA,BISMARCK
1170 DATA OHIO,COLUMBUS,
OKLAHOMA,OKLAHOMA CITY

1180 DATA OREGON,SALEM,
PENNSYLVANIA HARRISBURG

1190 DATA RHODE ISLAND,PROVIDENCE,
SOUTH CAROLINA,COLUMBIA

1200 DATA SOUTH DAKOTA,PIERRE,
TENNESSEE,NASHVILLE

1210 DATA TEXAS,AUSTIN,
UTAH,SALT LAKE CITY

1220 DATA VERMONT,MONTPELIER,
VIRGINIA,RICHMOND

1230 DATA WASHINGTON,OLYMPIA,
WEST VIRGINIA,CHARLESTON

1240 DATA WISCONSIN,MADISON,
WYOMING,CHEYENNE

TRSTimes magazine 8.1 - Jan/Feb 1995

YES, OF COURSE !
WE VERY MUCH DO TRS-80 /

MICRODEX CORPORATION

SOFTWARE

CLAN-4 Mod-4 Genealogy archive & charting $69.95
Quick and easy editing of family data. Print elegant
graphic ancestor and descendant charts on dot-matrix
and laser printers. True Mod-4 mode, fast 100%
machine language. Includes 36-page manual. NEW/!

XCLAN3 converts Mod-3 Clan files for Clan-4 $29.95

DIRECT from CHRIS Mod-4 menu system $29.95
Replaces DOS-Ready prompt. Design your own menus
with an easy full-screen editor. Assign any command to
any single keystroke. Up to 36 menus can instantly call
each other. Auto-boot, screen blanking, more.

XT.CAD Mod-4 Computer Drafting $95.00

The famous general purpose precision scaled drafting
program! Surprisingly simple, yet it features CAD
functions expected from expensive packages. Supports
Radio Shack or MicroLabs hi-res board. Output to pen
plotters. Includes a new driver for laser printers!

XT.CAD BILL of Materials for xT.CAD $45.00
Prints alphabetized listing of parts from xT.CAD
drawings. Optional quantity, cost and total calculations.

CASH Bookkeeping system for Mod-4 $45.00

Easy to use, ideal for small business, professional or
personal use. Journal entries are automatically
distributed to user’s accounts in a self-balancing ledger.

FREE User Support Included With All Programs !

MICRODEX BOOKSHELF

MOD-4 by CHRIS for TRS/LS-DOS 6.3 $24.95
MOD-IIl by CHRIS for LDOS 5.3 $24.95
MOD-Ill by CHRIS for TRSDOS 1.3 $24.95 .
Beautifully designed owner's manuals completely
replace obsolete Tandy and LDOS documentation.
Better organized, with more examples, written in plain
English, these books are a must for every TRS-80 user.

JCL by CHRIS Job Control Language $7.95 :
Surprise, surprise! We've got rid of the jargon and JCL
turns out to be simple, easy, useful and fun. Complete
tutorial with examples and command reference section.

Z80 Tutor I Fresh look at assembly language $9.95
Z80 Tutor Il Programming tools, methods $9.95
Z80 Tutor I/l File handling, BCD math, etc. $9.95
Z80 Tutor X All Z80 instructions, flags $12.95
Common-sense assembly tutorial & reference for novice
and expert alike. Over 80 routines. No kidding!

Add S & H. Call or write MICRODEX for details
1212 N. Sawtelle Tucson AZ 85716 602/326-3502

Page 9




BEAT THE GAME

By Daniel Myers

THE COUNT
The Scott Adams Adventures

In this adventure, your goal is to find and kill
the evil vampire, Count Dracula. This is probably
the most boring of the Adams adventures because
you have to do a lot of waiting for some things to
happen, and exactly when they happen seems to be
+ random thing.

You start off in bed in Dracula's house. Get the
sheets, then get up. Go North into the hallway, then
West into the kitchen. Enter the dumb waiter and
raise it, then go room. You are now in the pantry.
Get the matches and the garlic, then return to the
dumb waiter.

At this point, you can do some exploring to waste
time, because you're waiting for the bell to ring (do
a little mapping!). This will tell you that the
postman has delivered some mail to the house. Once
you hear the bell, go to the front door. You will find
a postcard with a note clipped to it. Get the paper
clip and drop the note.

Now, return to the kitchen, get into the dumb

waiter, and lower it to the Work Room. Go into the
room. Pick the lock on the closet door (with the

Page 10

paper clip, of course), open the door, and enter the
closet. Drop the stake you're carrying, then get the
vial and leave.

Back in the Work Room, close and re-lock the
door, and drop the paper clip. Now it's time to get a
light source, so go Down to the dungeon. Tie the
sheets to the iron ring, then descend into the pit. Get
the torch (it's there even though you can't see it),
and climb out again. You don't have to bother with
the sheets again for now.

Now go back up to the kitchen. Empty the vial
(3 no-doz tablets come out) then drop it. Now you
have to wait until sunset, but you must be careful
here. Stop saying "wait" as soon as it starts to get
dark outside, and take a tablet. Then continue to
wait until nightfall, at which time, light your torch.

Wait a little longer, then enter the oven. It's a
solar oven, so you can never get in here during the
day. Get the nailfile that's inside, and leave the
oven. At this point, you have done all you can, so you
might as well go back to bed. Remember to unlight
the torch before going to sleep. This night you will
be bitten, and there is nothing you can do about it.

The next morning, you will notice that the
sheets are on the bed again. Get them, then get up.
Tie the sheet to the bed, then get the sheet (loose
end), open the window, go out the window, and drop
the end of the sheet over the ledge.

Now climb down the sheet, go to the Window
Box, then go through the window into the room. Get
the portrait of Dracula, then drop it. This will reveal
a secret passage. If you want to explore it, go ahead
(light torch first). Just make sure you unlight the
torch before trying to climb back up the sheets!

Well, here you have to do some more waiting, as
now you have plenty of time to kill until the
mailman brings a certain package. So, just mess
around again until the bell rings. At that point, go to
the front door again.

Open the package. Inside are a bottle of blood
and a pack of cigarettes. Get the cigarettes (make
sure you say "pack"!). Now go back to the kitchen
and get the tablets. After that, go back down the
sheets to the room with the secret passage. You

TRSTimes magazine 8.1 - Jan/Feb 1995



should do this before night falls.

Now wait for sunset the same way you did the
night before. Once the sun sets, light your torch and
go into the passage. Follow it along to the crypt. Get
a cigarette (you may have to drop something first),
then smoke it. Dracula's (empty) coffin will appear
(this is the only way to make the coffin appear).

Open the coffin and go inside. Use the file to
break the bolt on the coffin, then get out again. Drop
the cigarette, pick up anything else you may have
dropped, and leave the passage. Now, take a second
cigarette from night, it really isn't necessary, since
you can take three bites before succumbing. So, you
might just as well put out the torch and go to sleep.

Once again, you wake up in the bed, with the
sheets. Get them, and tie them to the bed as you did
the day before. Instead of climbing down however,
first go to the dumb waiter and from there to the
Work Room. Use the clip to pick the the lock on the
closet door so you can get the stake. Also make sure
you grab the mallet on your way out.

Now that you have the stake and the hammer,
go up to the kitchen again, and from there to the
bedroom and down the sheets to the secret passage.
Light the torch, enter the passage, and go to the
crypt. Smoke the cigarette, and the coffin will
appear again.

Open the coffin, go inside (yes, you must!), and
apply the coup-de-grace to the vampire. TA-DA!
You're a hero! (Hey, you're pretty good at this stuff.)

ADVENTURELAND
The Scott Adams Adventures

Here you stand in a forest, about to start your
adventure. Move along East, and tiptoe past the
sleeping dragon. Go East again to the lake. Get the
axe (leave the fish for now, since you have no way of
getting them yet), then head North into the
quicksand bog. Pick up the blue ox (WOW! A
treasure already!, then say the magic word on the
axe. Gee, where did everything go? Well, look at it
this way: at least you can "Swim" back to the lake.

Now go South to the bottomless hole. Carefully
"Go Hole," and pick up the flint and steel. Go up
(easy, it's a long way down!). Then it's West into the
swamp, and West again to the hidden grove.
Surprise! There's the axe and the ox, along with
another treasure. Get everthing, and go back East.
Climb the tree, get the keys, and climb down again.

TRSTimes magazine 8.1 - Jan/Feb 1995

Now, "Chop Tree." Drop the axe (you won't need it
again), get the mud, then, "Go Stump." Once inside
the stump, drop the mud, ox and fruit. Go down to
the root chamber, pick up the rubies, then go up and
drop them off. Easy, isn't it?

Okay, time for more treasures. Get the lamp and
rub it twice. Each time you rub the lamp, a genie
appears and leaves a treasure. Just make sure you
don't rub it more than two times, or the genie will
come out and TAKE AWAY a treasure! (Can't win
the game that way!) Now, go down into the root
chamber, and "Go Hole." Open the door and drop
the keys. Light the lamp (it's dark up ahead), and
"Go Hall." Then continue down to the cavern. From
the cavern, trek South and pick up the bladder.
Now it's time for a return trip, so move along North,
then up until you're out of the stump and back in the
swamp again (by the way, any time the chiggers
chomp on you, just get the mud, then drop it again.
Also, "Unlight Lamp" when you get back to the root
chamber...energy conservation helps!). "Get Gas,"
then "Go Stump."

Now head back down to the cavern (remember to
light the lamp before going into the hallway!), then
go South and up. Drop the bladder and "Ignite Gas."
*BOOOOM!* You just blew a hole in the bricked-up
window. "Go Hole," then jump (don't worry, you can
make it to the other side safely). Ummmm, hello,
bear! Well, he doesn't look too mean, but it's better
not to take any chances, so "Yell." As the startled
bear falls down towards the bottom of the chasm,
pick up the magic mirror (carefully, it's VERY
fragile!), then "Go Throne." Grab the crown and go
West to the ledge. Jump over again, then West.
Pick up the fire bricks on your way out (heavy stuff,
but you'll be needing them soon), and go down and
North. After that, make your way up again to the
treasure room in the stump.

Drop off ONLY the crown. DO NOT drop the
mirror! Okay, now get the bottle of water, and go
down again. This time, drop the flint just before you
go into the hallway. Go down to the cavern, and
from there, down again into the maze of pits. From
the "Opposite of Light" sign, go down, West, and
down. Pick up the rug, then go down again and
you're at the bottom of the chasm. "Build Dam,"
then drop the remaining bricks (you had a few left
over). "Look lava," and there's a firestone. It's still
pretty hot, so "Pour Water." Now get the stone and
the golden net. Hmmmm, but how to get out of
here? Well, that sign might help. Say Away" twice
and, voila! you're in the meadow again (ahhh! fresh
air!). Unlight the lamp, then go South (to the
swamp) and over to the stump.

Page 11



Drop the firestone, the rug, and the mirror.
Make sure that you drop the rug BEFORE you drop
the mirror! (Otherwise, seven years of bad luck and
you won't be able to finish the game!) Now, get out
of the stump, go East to

the hole, and North to the lake. "Get Water,"
then "Get Fish" (can't get them without the net, you
see). Return to the stump, and drop off the fish and
the net, in that order. Pick up the mud, and head
back down to the cavern. Remember to get the flint
and light the lamp before entering the hallway!

Once in the cavern, go North. At this point, you
should save the game. Up ahead are the African
bees, which you will need to get rid of the dragon.
Unfortunately, this part of the game seems to be
random, and sometimes the bees will suffocate and
die before you can bring them out. I have never
found a surefire method for keeping the bees alive,
so save the game here and hope you won't have to
restore it too many times! Okay, now that the game
is saved, go North again. Get the honey, pour out
the water, and get the bees. (If the bees sting you,
and you find yourself in limbo, either restore your
saved game or "Go Up" to return to life in the
outdoors.)

Once you have the bees, head back South to the
cavern, then all the way back up to the swamp. If
the mud hasn't fallen off yet, drop it here before
going on (the dragon HATES the smell of mud, and
will most certainly kill you if you go near her with it
-- yes, HER!>. All right, now head North and "Drop
Bees." The dragon will become annoyed and fly
away, leaving behind some precious and rare eggs.
Pick up the eggs, then return to the stump. Drop
the eggs and the honey, then say "Score."

**% YIPPPPEEEE! ***

You did it!! (Whew! You deserve to take some
time out now and relax! But wait...could that be a
pirate flag I see on the horizon...?)

Page 12

MODEL 4/4P/4D
OWNERS!

Forget
SYSRES & MEMDISK .

Now there’s
QuikDisk

QuikDisk converts the top 64K of your 128K
Model 4 to a large disk /O buffer.
Sophisticated data management techniques
ensure frequently accessed disk data is almost
always instantly available.

QuikDisk provides dramatic disk I/O speed
increases on both floppy and hard drive
systems.

“SmartDrive” is so good, they built it into the
latest MS-DOS so no one would be without it.
Don’t you be without this essential type of]
utility even one day longer.

QuikDisk is only $31.95 +$3 S&H (add $2
outside North America. VA residents please
add $1.44 (4 1/2%)). 128K required. Not
intended for systems with XLR8er or other
large memory expansion boards.

Order QuikDisk from

J.F.R. Slinkman,
1511 Old Compton Road
Richmond, VA 23233.

TRSTimes magazine 8.1 - Jan/Feb 1995




Copyright 1994 by Chris Fara (Microdex Corp)

Some numbers have a point

Integers are by far the most efficient numbers in
computers. Integer math is fast, memory storage
requirements are minimal, encoding and decoding
are quite straightforward. Integers are the
"natural" species of numbers in the binary world of
computers. Practically every programming text
emphasizes that integers should be used whenever
possible. The rub is in the "whenever" because in
many computations fractions cannot be avoided.
That's where the "floating point" numbers come in.
In our BASIC's they are known as "single precision"
and "double precision” numbers. In other
programming languages they may be called "real
numbers", "floats", "doubles", etc.

The basic principle of binary numbers with
fractional parts is similar to the decimal system. In
the decimal system a point divides the number in
two parts. To the left of the point the positions of
digits represent increasing positive powers of ten.
To the right of the point the positions of digits
represent decreasing negative powers of ten. A
negative power is the same as one divided by the
positive power. The first position to the right of the
point represents 10 to the power of -1 or 1/10, the
second position 10 to -2 or 1/100 and so on. The
value of the fraction is the sum of those powers, each
multiplied by the corresponding digit. For example
in decimal 0.23 it is 2*%(1/10)+3*(1/100) or 23/100.

TRSTimes magazine 8.1 - Jan/Feb 1995

Same idea holds in binary, except that the
positions of bits to the right of the "binary point"
represent decreasing negative powers of two,
instead of ten. The first bit to the right of the point
represents 2 to the power of -1 or 1/2, the second 2 to
-2 or 1/4, then 1/8, etc. In a way this is even easier
than decimal fractions, because bits can be only "1"
or "0". Thus the value of a fraction is simply the sum
of those negative powers of 2 which have a "1" in
their positions. For example the binary fraction.....

0.1011

has the value 1/2+0+1/8+1/16 or, after bringing
it all to the common denominator, 11/16 or decimal
0.6875. The concept is somewhat similar to the
traditional "English”" measuring system where
scales and tapes are calibrated in inches and
fractions of inches, using ever smaller ticks for each
next half of the previous fraction: 1/2, 1/4, 1/8, etc.

There wouldn't be any big mystery in all that,
except that here again as with the plus or minus in
"signed" integers, the computer has a handicap: it
knows nothing about any "point". In most
programming systems this problem has been solved
by associating the bits of a fractional number with a
separate "exponent" byte. To see how that works,
let's assume a very primitive "floating point" system
where all numbers are encoded in only one byte. In
such a system we might have a number like this.....

101.10000
whose value is 4+0+1+1/2+0+0+0+0 or decimal
5.5. Now if we move the point one place to the
10.110000
then the value is 2+0+1/2+1/4+0+0+0+0. As we
can see, the value of this number is exactly 1/2 of the
original value. If we now move the point two more
places to the left, we get.....
.10110000
The Value\of this "normalized" number is now.....

1/2+0+1/8+1/16+0+0+0+0

Page 13



or decimal 0.6875. In other words, each time we
move the point to the left, we divide the number by
2. To get back the original number, we would
multiply this "normalized" value by 2 as many times
as the point was shifted. Now suppose we have a
small fraction.....

.00001011

Its value is 1/32+0+1/128+1/256, decimal
0.04296875. To normalize it, we shift the point to
the right until it is in front of the first "1". After four
shifts we get the normal form (padded with zeros at
the end to fit a whole byte).....

.10110000

whose value is 1/2+0+1/8+1/16, decimal 0.6875.
To restore the original value, we would divide this
value by 2 as many times as the point was shifted.

The "floating point" numbers are stored in such
a normalized form called "mantissa", with the point
always assumed to be in front of the first significant
bit. The number of shifts is encoded in the
"exponent" byte.

The exponent byte must differentiate between
shifts to the left and right. Since a byte can hold an
absolute (unsigned) value up to 255, "Microsoft"
programming systems such as our TRS-80 BASIC,
adopted a convention that 128 (halfway between 0
and 255) means no shifts. If the shifts were made to
the left (i.e. the original value was 1.0 or greater)
then they are encoded as 128+E, while shifts made
to the right are encoded 128-E, where E is the
number of shifts. In our first example we have made
three shifts to the left, so the exponent would be
128+3 or 131. In the second example the four shifts
to the right would produce the exponent 128-4 or
124. The exponent byte goes in front of the
"mantissa". Thus in the computer's binary language
our two examples might look like this (of course in
the computer there is no "point"; we only write it
here as a reminder that we are talking about
"floats").....

10000011 .10110000
01111100 .10110000

decimal 5.5
decimal 0.04296875

Lo and behold, with this exponent trick two
totally different values got boiled down to identical
mantissas. The only difference is in the exponent.
Other examples.....

10000000 .10110000 decimal 0.6875

Page 14

10000100 .10110000
10001000 .10110000

decimal 11.0
decimal 176.0

In the first example the value of the exponent is
128, so there are no shifts and the mantissa bits are
taken at their "face value" 1/2+0+1/8+1/16 or 0.6875.
In the second example the exponent is 128+4, so 4
shifts restore the original binary. number 1011.0000
which is decimal 11.0. The third exponent 128+8
shifts the point just beyond the last bit and the value
of 10110000. gives 176.0. But what if the exponent
shifts the point way past the last bit? For
instance.....

10010000 .10110000 decimal ?

Now the exponent is 128+16, so to get the
encoded value, we just assume that an infinite trail
of 0's exists after the last bit of the mantissa, and
shifting 16 times we get (only the expanded
mantissa is shown below).....

10110000 00000000.000... decimal 45056.0

Similary, if the exponent is less than 128 then
we assume an infinite number of 0's in front of the
mantissa and keep shifting the point as far back as
necessary.

There is one special case in this system. When
the exponent is "zero" then the value of the number
is "zero", regardless of the mantissa bits. This is
relevant because of the way this system deals with
the "plus" or "minus" sign. Since by definition the
first bit of the normalized mantissa must be always
"1", we don't really need to keep this bit in the
matissa. It is "redundant". Instead, we use this bit
to represent the sign. The idea here is slightly
different and actually simpler than in "signed
integers" discussed last time (TRSTimes 7.6). The
sign is plus when the first bit of the mantissa is "0",
minus when that bit is "1", and that's it. Thus the
fina! form of signed "floating point" numbers looks
like this....

10000011 .00110000
10000011 .10110000

decimal +5.5
decimal -5.5

Unlike in "signed" integers, the only difference
between positive and negative numbers is the first
bit in the mantissa. To change a positive "{loat" to a
negative, or the other way around, we only need to
flip that one bit.

In summary, the encoding of floating point

numbers in our TRS-80 computers is a 5-step
process.....

TRSTimes magazine 8.1 - Jan/Feb 1995



[1] Express value as a sum of powers of 2.
[2] Write bit pattern, note position of the point.
[3] Shift the point left/right to normalize

mantissa.

[4] Add/subtract shifts to/from 128 to get
exponent.

[5] Put O or 1 into first bit of mantissa for
plus/minus.

Decoding is the reverse.....

[1] Determine sign, then put "1" into first bit of
mantissa.

[2] Subtract 128 from exponent to find how
many shifts.

[3] Shift the point.

[4] Add up absolute values of bits in the
mantissa.

[5] Make the total positive/negative depending
on the sign.

Since the decoding process always sticks a "1"
into the first bit of the mantissa, the result would be
misleading when the number is supposed to be
"zero". That's why, when we find a "zero" exponent,
we ignore the mantissa altogether, knowing that the
value of the whole thing is zero (to encode a zero
simply make all bytes zero).

This encoding system has two constraints: the
range of the values depends on the size of the
exponent, and the accuracy of encoding depends on
the size of the mantissa. In our computers the
single-byte exponent allows up to 127 shifts either
way. Thus the largest value that can be encoded is
approximately 2 to the power of 127 and the smallest
is 2 to the power of -127, or about 10 to the power of
plus/minus 38 (1 with 38 zeros), the range of both
our "single" and "double precision" numbers. The
"single precision” numbers are encoded in 4 bytes.
One byte is used by the exponent, leaving 3 bytes or
24 bits for the mantissa, enough to encode up to 7
decimal digits (the computer displays only 6, but we
can always enter 7-digit values to increase the
accuracy of the internal encoding). The "double
precision" numbers use 8 bytes. Their 7-byte or 56-
bit mantissa can encode up to 16 decimal digits, but
only 15 are displayed. Thus, even though we can
handle astronomic and subatomic quantities, only 6
or 15 digits are meaningful. The rest gets rounded
off. Maybe it's just as well. We would go nuts if we
had to deal with 38 digits.

Regardless of the "precision", most decimal
{ractions are encoded as approximations. Obviously
only those fractions that are exact sums of negative
powers of 2 can be encoded exactly, such as
0.756=1/2+1/4 (of course only if the number of digits

TRSTimes magazine 8.1 - Jan/Feb 1995

does not exceed the "precision"). Other decimal
fractions, when represented in terms of powers of 2,
produce a binary mantissa which strictly speaking is
infinite and at some point converges into a repetitive
series. For example the innocent-looking decimal
fraction 0.3 produces a binary mantissa in which a
four-bit "nibble" 1001 repeats forever.....

.0001 1001 1001 1001 1001 .....

But in the computer the mantissa gets chopped
down to fit in the available quantity of bits. When
the first bit of the chopped-off "tail" happens to be "1"
then the remaining mantissa is rounded up. Thus
the 24-bit "single-precision" mantissa for decimal 0.3
looks like this, with the last "nibble" rounded up
from 1001 to 1010.....

.0001 1001 1001 1001 1001 1010

These approximations and roundings are
usually not a problem, as long as all computations
are done consistently in the same precision. Using
higher precision numbers in computations which are
performed in lower precision (such as using double-
precision variables in single-precision trig functions
in BASIC) also works fine, because the computer
already knows how to do the "chopping". The
difficulty arises when lower precision fractions are
forced into higher precision. The computer has no
way of guessing what the continuation of the bit
pattern should look like, so it blindly fills the
additional mantissa bytes with zeros (another proof
positive that humans are smarter than computers,
in case you ever doubted it; we can often make such
guesses, given the initial pattern of a series; it is a
typical question in all IQ-tests). For example when
the single precision representation of decimal 0.3 1s
converted to double precision, the mantissa
becomes.....

.0001 1001 1001 1001 1001 1010 0000 0000 ...

Instead of continuing the "1001" pattern to the
end, the conversion leaves the rounded "1010" in the
middle, followed by meaningless 0's. This causes the
well-known problem in BASIC when such
conversions are done with the CDBL function or by
direct assignment.....

Al=03
A# = CDBL(A!)

The result is a strange-looking mess.....
PRINT A# displays .300000011920929

The first seven decimal digits are correct,
Page 15



because that was the limit of encoding accuracy in
the original single precision number. The rest is
garbage, and if the variable A# is now used in double
precision calculations, the error will distort all
subsequent results. Fortunately in our "Microsoft"
BASIC we have a way to get around it.....

Al=03
A$ = STR$ (A!): A# = VAL (A$)

Now A# will be .300000000000000 (normally
displayed as .3 unless you format it in PRINT
USING with 15 decimal places), because the VAL
function forces the computer to re-encode the
complete binary series "from scratch". The rounding
"nibble" 1010 is now properly placed at the end of
the mantissa, instead of remaining in the middle as
it did in the number-to-number conversion. You
might think that this trick could have been easily
built into the CDBL function, and you're probably
right, but, as Hillary Rodham Clinton put it (in a
different context), "coulda, shoulda, woulda, didn't".

If you'd like to take a look at the actual bit
patterns of the "floating point" numbers in our
BASIC's then try this simple program.....

11 clear 1000 ""this line for Mod-I or IIT only
12 print "Single or double precision (S/D)? ";
13 line input k$: if k$="" then END

14 z%=instr("SsDd" k$): if 2%=0 then 12

15 print "Enter number: ";

16 line input k$: if k$="" then 12

17 z!=val(k$): z#=valk$): gosub 700

20 for x=1 to len(z$)

21 print mid$(z$,x,1);

22 if (x/8)=fix(x/8) then print " ";
23 next: print

24 goto 15

700 'FLOATSTR subroutine
710 z$="": b=38: v=varptr(z')
720 if z%>2 then b=T: v=varptr(z#)

800 for y=0 to b: pP= peek(v+y)

820 for x=1to 8

830 k = p/2: p = fix(k)

840 if k>p then z$="1"+z$ else z$="0"+z$
850 next x, y

860 RETURN

The FLOATSTR routine evaluates either a
single precision (z!) or double precision (z#) number,
depending on the precision code (z%), and returns a
string (z$) of 0's and 1's. The 800-series of lines is a
loop that peeks at the bytes of the number, and
extracts the bits from each byte by a repetitive

Page 16

division by 2 (discussed last time in TRSTimes 7.6).
On return the string of bits is displayed in the 20-
series of lines. To improve its legibility a space is
inserted every 8 bits in line 22 (but if you use Model
I or IIT for looking at double precision numbers then
delete line 22, because the 64 bits with the extra
spaces would exceed the screen width). And
remember that the first 8 bits.are the "exponent"
byte.

AR YAV AAAAN
v TRSTimes on DISK 3
#14

is now available, featuring the
programs from the Jul/Aug,
Sep/Oct, and Nov/Dec 1994
issues.

U.S. & Canada:
Other countries:

$5.00 (U.S.)
$7.00 (U.S.)

TRSTimes on Disk

5721 Topanga Canyon Bl. #4
Woodland Hills, CA 91367

TRSTimes on Disk
#1 through #13
are still available
at the above prices

TRSTimes on Disk

S R R R N L R

FCLLeeee e el lldlddldldeed

PSSP PP PSSP

TRSTimes magazine 8.1 - Jan/Feb 1995



REFILL YOUR DESKJET
INK CARTRIDGES

by Doug Hyman

I have settled on the following procedure for suc-
cessfully refilling my cartridges (after reading the
compiled message threads in the CIS Deskjet Li-
brary and doing some additional experimentation.)
Materials: Syringe, 23 gauge 1" needle
Parker Quink Permanent Black Ink
($2.50/bottle at the Office Club).
Quink has an additive that reduces
clogging.

An empty ink cartridge weighs about 0.9 oz, and
a filled one about 1.6 oz.

DIRECTIONS:

1. Fill the syringe with ink. As with any sharp
object, handle it with great care.

2. Insert needle into the top hole in the car-
tridge. If you angle the needle towards the back of
the cartridge you can insert it almost to the bottom.

3. _Slowly_ (I repeat...slowly) inject the ink
it to the cartridge. If ink comes out of the hole you
ave injecting it too fast.

4. Weigh the cartridge at intervals (I use a
small hand-held postal scale) so its re-filled weight
w:th ink is about 1.6 oz.

Note: It appears from the message thread, and
my own experience, that it is best to refill the car-
tridge to a weight of at least 1.5 oz.

Remember when refilling that the inside of the
cartridge has delicate electrical connections that can
be broken with careless use of the syringe. In addi-
tion, injecting the ink too quickly can increase inter-
nal pressure to levels that will damage the cartridge.

When refilling it pays to have a new unused car-
tridge available in case the refill attempt fails.

When finished, wipe ink from the cartridge, the
jets, and electrical contact surfaces. Use a soft tissue
or paper towel wadded up and moistened with wa-
ter. Brush the surface lightly with the tissue, and
pi t the surface dry. Do not try to remove all the ink

TRSTimes magazine 8.1 - Jan/Feb 1995

from the surface of the jets. The idea is to remove
excess ink and stop clogs.

Install the cartridge and run the printer self-
test. The line at the top is a test printing of each jet.
If the line is uneven in intensity, or there are gaps,
then the jets need cleaning.

When finished reinking rinse the syringe and
needle immediately with water, put the protective
cap back on the needle, and store them. The car-
tridges I have refilled with this method have worked
immediately. While one or two jets show signs of
clogging when first tested, removing the cartridge
and cleaning the jets gets them going again. Print
quality is comparable to a new HP cartridge, though
the ink takes slightly longer to dry.

Clogging problems usually appear when [1] the
jets clog on a new or refilled cartridge when it is re-
moved from the printer, [2] the ink formulation dries
in the cartridge (here Parker Quink has an additive
to prevent this), and [3] not enough ink is added to
the cartridge and the ink does not wick through to
the jets, and [4] a filled cartridge is left out without
being sealed and protected, permitting air to dry out
the jets, and the internal ink.

STORAGE:

When storing cartridges to be refilled, or after
refilling, you must seal them to prevent air from en-
tering.

On opening a new HP ink cartridge I save the
empty cartridge box and the tape that protects the
jets. When I refill a cartridge, I clean it off, test it
out, reclean the jets, cover them with the protective
tape, and wrap it well in a plastic wrap. It is then
put in a plastic sandwich bag, sealed tightly, and
stored in the original box.

If you want to save an empty cartridge until you
reink it, store it the same way to prevent it from dry-
ing out.

Good luck on your attempts to reink.

Page 17



HINTS & TIPS

TRANSFERRING
TRSDOS 1.3 FILES
by Kelly Bates

After the format is complete, copy your files to
the disk in drive 1. You can now move the files any-
where you want to. I do this routinely as I move
fonts around.

Have noticed discussion on transferring files
from TRSDOS 1.8 to other places. I use NEWDOS/80
to do this - my method is as follows:

Boot NEWDOS/80, type PDRIVE 0 and select
the following pdrive spec as drive 1

TI=AM, TD=E, TC=40, SPT=18, TSR=3, GPL=6,
DDSL=17, DDGA=2

This format is usually number 4 on the pdrive
listing. So the command then would be PDRIVE,
0,1=4,A. Pressing <ENTER> will make the change
in pdrive occur.

Now issue this command:

COPY,1,0,09/26/93 NMFT,USR,CBF,CFWO,NDMW
<ENTER>

You will then be selective in which files you copy
to drive 0. The command parameters indicate 'date,
no format, USeR files only, Copy By File, Check File
With Operator, No Disk Mount Waits'. You can copy
with greater or fewer parameters, but this one works
fine.

After the files are copied, remove the TRSDOS
disk from drive 1.

The next step is usually to copy the files to a
single-density disk, so set the pdrive as follows to
format a single density disk in drive 1:
PDRIVE,0,1=5,A <ENTER>

It should read:

Ti=A, TD=A, TC=40, SPT=10, TSR=3, GPL=2,
DDSL=17, DDGA=2.

Now format a disk in drive 1 with the command
FORMAT :1 <<ENTER>>

Page 18

MODEL 4 CARD TRICK
By James Sowards

Hi, I'm your Model 4
computer! People are al-
ways asking me the
dumbest questions....

Can you do this? Can
you do that? Can you do
another thing?

The answer is YES! I
can do all of those things.
I can do Wordprocessing... I can do Databases... I can
do Spreadsheets... I can play games... I can even do
card tricks.

Wanna see a card trick? Good...

You will be given three rows of cards... choose a
card and tell me which row it is in 3 times, and I will
tell you which card it is!!!

10 'cardtrk/bas

20 'by James Sowards

30"

40'

50 DATA ACE,TWO,THREE,FOUR,FIVE,SIX,
SEVEN,EIGHT ,NINE,TEN

60 DATA JACK,QUEEN,KING

70"

80 °

90 REM ROUTINE TO MAKE THE DECK -
DECK$(,d)

100"

110 DIM DECK$(4,13),CARD$(21)

120 FORI=1TO 4

130 FOR J=1TO 13

140 IF I=1 THEN SUIT$=" OF HEARTS"

150 IF I=2 THEN SUIT$=" OF DIAMONDS"
160 IF I=3 THEN SUIT$=" OF CLUBS"

170 IF I=4 THEN SUIT$=" OF SPADES"

180 READ A$

TRSTimes magazine 8.1 - Jan/Feb 1995



190 DECKS$(,J)=A$+SUIT$

200 NEXT J

210 RESTORE

220 NEXT I

230"

240 FR$=STRING$(64,140)

250"

260 CLS

270 PRINT CHR$(15)

280"

290 REM SELECT CARDS FROM DECK AT
RANDOM AND REPLACE WITH *-1'

300 REM TO REMOVE THEM FROM THE DECK
SO THEY CAN'T BE SELECTED AGAIN
310"

320 RANDOM

330 FOR C=1TO 21

340 A=RND(4)

350 B=RND(13)

360 IF DECK$(A,B)="-1" THEN 340

370 CARD$(C)=DECKS$(A,B):DECK$(A,B)="-1"
380 NEXT C

390"

400 REM TO FORMAT THE CARDS IN THREE
ROWS AND PRINT

410"

420 K=0

430 FOR I=1TO 19 STEP 3

440 K=K+1

450 ROW1$(K)=CARD$(®):
ROW28(K)=CARD$(I+1):ROW3$K)=CARD$(I+2)
460 NEXTI

470 K=0

480 CLS

490"

500 REM TO PRINTOUT THE RESULTS
510"

520 PRINT@(3,7),FR$:PRINT

530 PRINT TAB(8)"ROW ONE";
TAB(32);"ROW TWO"; TAB(55);"ROW THREE"
540 PRINT TAB(8) FR$

550 PRINT :

560 FORI=1TO 7

570 PRINT TAB(8) ROW1$();TAB(32);ROW2$();
TAB(55);ROW3$®1)

580 NEXT I

590 PRINT TAB(8)FR$

600 PRINT

610 PRINT TAB(8)" --> Which row is the card in (1-

2-3)....": CHR$(14);

620 INPUT RW

630 PRINT CHR$(15)

640 COUNT=COUNT+1

650 ON RW GOTO 680,780,880
660 GOTO 400

670

680 REM FOR ROW ONE

TRSTimes magazine 8.1 - Jan/Feb 1995

690"’

700 FORI=1TO 7

710 CARD$(I)=ROW23(I)

720 CARD3I+7)=ROW 13

730 CARD$(I+14)=ROW33$(D)

740 NEXT I

750 IF COUNT=3 THEN 980

760 GOTO 400

770"

780 REM FOR ROW TWO

790"

800 FORI=1TO 7

810 CARD$(D)=ROW3${)

820 CARDS$(I+7)=ROW23()

830 CARD$(I+14)=ROW13$(D)

840 NEXT I

850 IF COUNT=3 THEN 980

860 GOTO 400

870"

880 'REM FOR ROW THREE

890"

900 FORI=1TO 7

910 CARD$I=ROW2$(1)

920 CARD$I+7)=ROW3$()

930 CARD$(I+14)=ROW 1$(I)

940 NEXT I

950 IF COUNT=3 THEN 980

960 GOTO 400

970"

980 REM TO DISPLAY THE CORRECT CARD
990

1000 COUNT=0

1010 PRINT:PRINT TAB(8)"... AND YOUR CARD
ISTHE ",

1020

1030 FOR I=1 TO LEN(CARD$(11))
1040 PRINT MID$(CARD$(11),1,1);
1050 FOR J=1 TO 200:NEXT J

1060 NEXT I

1070 PRINT:PRINT

1080 PRINT@(22,7),"Want to try again...
(Y/N)",CHR$(14);:INPUT Z$

1090 PRINT CHRS$(15);

1100 IF Z$="N" OR Z$="n" THEN CLS:END
1110 IF Z$="Y" OR Z$="y" THEN 320
1120 GOTO 1080

Page 19



=

by Roy

I was thinking recently
about the Z-80, the heart
(brain, really) of most of our
TRS machines, and thought I
might write a little about its
history, capabilities, and what
ever else came to mind. This is
the result.

The Pedigree of the Z-80

Like much of industry and technology, the Z-80
did not just suddenly appear, without parents, his-
tory, ete. Instead, it is the result of a series of techno-
logical and commercial developments over a period
of time, and, I believe, it is still going on.

Tts oldest ancestor, that I am aware of, was a 4
bit chip known as the 4004 which was originally
dreamed up as a calculator chip. That was in the
days when a 4 function desk calculator went for sev-
eral hundred dollars, and was a true technological
marvel of its day, which was around the 1960's if I
remember correctly. The 4004 was superseded by an
8 bit chip identified as the 8008. I don't know what
applications there were for that chip. Finally, Intel
(of Pentium fame) created the 8080 8 bit chip, which
was the chip chosen by the early kit builders and
Digital Research who created CP/M. The 8080 chip
was logically sound, but had some peculiar mechani-
cal and electrical quirks.

For reasons I don't know, a principal (maybe
chief) designer of the 8080 chip left Intel and opened
up a competing operation known as Zilog. At Zilog,
he developed our dear Z-80, since he had in his head
a complete understanding of the 8080, along with
knowledge of its rough edges. It's mechanical and
electrical interface was simplified and improved over
that of the 8080. The Z-80 had many new features,
but was intended to be completely upwardly logi-
cally compatible from the 8080. There is a small
tickle in my memory which reminds me there is a
wrinkle in the Z-80 where a flag was handled
slightly differently, which caused some trouble in
CP/M when that was THE operating system. A one
byte correction was sufficient to correct it, and the
whole problem faded into history.

Page 20

The last widely known successor to the 8080 was
an Intel chip known as 8085. This chip had the same
instruction set as the 8080, but with two additional
instructions. These two were RIM and SIM. Since
they were bit mapped, they were effectively many
instructions, and added a lot of 1/0 capability to the
chip. RS used the CMOS version of this chip in the
Model 100/102 family, with good results. The CMOS
construction greatly reduced power consumption,
making battery operation more feasible than if TTL
design was used.

There is also supposed to be a Z-800 and Z-8000
version of the Z-80. I am sure the Z-800 exists and is
available, but I know nothing of it, and I am not sure
the Z-8000 ever got past the public rumor stage.

The Instruction Set

The 8080 chip was equipped with a set of one
byte instructions (Opcodes), some of which expected
to be followed by one or more operands. The fact that
all the opcodes were one byte long meant that there
could only be 256 opcodes in the instruction set. This
is all the possible values in an 8 bit byte. Actually,
the 8080 only had 244 opcodes. The following values
were not valid opcodes:

08, 10, 18, 20, 28, 30, 38, CB, DD, D9, ED, FD.

While I am not sure of this, I am reasonably con-
fident these were handled internally as No Ops,
(NOP), so you could really say the 8080 had 13 NOP
codes instead of the one official value of 00.

Anyway, The Z-80 came along, complete with
696 opcodes. With only 12 unused opcodes, how did
they add 452 more? The answer was two fold. First,
8 new one byte opcodes were added, leaving 4 un-
used values, CB, DD, ED, and FD. These 4 values
were internally defined to be access ports into a fam-
ily of 2 and 3 byte opcodes. Of course adding opcodes
in this fashion increases the execution time of some
of the instructions, but it was a workable way of in-
creasing the size of the instruction set.

What kinds of instructions were added? The

8080 completely lacked relative jumps, so 5 opcodes
were added.

TRSTimes magazine 8.1 - Jan/Feb 1995



JR Jump Relative, Unconditional
JRZ  Jump Relative, Zero

JRNC Jump Relative, Non-Zero
JRC  Jump Relative, Carry

JRNC Jump Relative, No Carry

Unfortunately, the range of the Relative Jump is
limited to +127 and -128. This is certainly limiting,
but is far better than not having JR at all.

Another powerful instruction, DINZ was added,
to facilitate looping. Again, the range is limited to
256 loops, but this works well for many applications.
With some trickery, the programmer can easily ex-
tend this range.

Another major feature of the Z-80 is its Alter-
nate set of registers, about which I will say more
later. Two toggle-type instructions were added to fa-
cilitate swapping the registers, and these are EX
AF AF', and EXX.

One of the features of the Z-80 is its ability to
manipulate bits in registers and memory locations.
The generic instructions are SET, RESET and BIT.
SET will force a 1 in a given bit position, RESET will
force a 0, and BIT will report the present status of a
bit without altering it. For some purposes, such as
graphics, this opened up a whole new playing field!
Yes, I know you can set bits by means of bit masks
with ANDs, ORs, XORs and the like, but this allows
much more flexible operation.

The Z-80 is organized around the concept that
the world consists of seven 8 bit registers A, B, C, D,
E, H, and L, and one memory location, pointed to by
the HL register. On this basis, 8 register or memory
cells times the 8 bits in a byte times 3 instructions
equals 192 opcodes. Since each of the 4 "holes" in the
8080 instruction set can accommodate 256 two byte
instructions, all 192 bit manipulation instructions
can easily fit in one hole, in this case the CB opcode.
In fact, 256 less 192 leaves 64 more.

Another useful type of instruction is the bit shift
and rotate type. I am no expert on these, so I will

just remark that a batch of these were also tucked
into the CB hole.

Two other new registers, IX and 1Y were added
in the Z-80. These are useful in indexed operations
where the IX or IY instruction identifies the begin-
ning of a table, for example, and a following one byte
operand can signify offsets from the location where
the IX or IY is pointing. More than 40 instructions
were added for each of IX and IY. These instructions
are available in matching pairs, one for IX and one

""RSTimes magazine 8.1 - Jan/Feb 1995

for IY in each case. To accommodate these, the holes
at DD and FD were assigned. All the IX instructions
are in the DD hole, and all the IY instructions are in
FD.

Finally, hole ED was still available. This ap-
pears to have been used as a "catchall" for an assort-
ment of other features. Some of the items included
here are some additional IN and OUT instructions,
and most importantly, some block move and search
instructions, notably including LDIR.

Also included were some additional 16 bit load
instructions, and finally some additional Interrupt
handling capabilities.

Even some three byte instructions were added,
and these had to be accessed through two layers of
"holes". These additional instructions pertain to the
IX and IY opcodes, which means accessing them
through either DD or FD, and then through a hole
CB in those plains to the third byte of the opcodes.

Undocumented Opcodes

Officially, only 696 instructions exist in the Z-80.
However, clever programmers discovered some
other 2 and 3 byte instructions appeared to work re-
liably. Most of these weren't particularly useful, but
a couple were. I won't detail these, as I don't know
them, and of course they don't exist in the official
documentation. It is interesting to note that these
same "undocumented" opcodes appear in Mostek's
version of the Z-80, which was a second source to
Zilog. My guess is that Mostek simply used copies of
Zilog's photo mask drawings in order to prevent any
inconsistencies and to make them a reliable second
source. All of this is supposition on my part, so ac-
cept it on that basis. Anyone seriously interested in
the undocumented opcodes can find them written
up, I believe, in 80 Micro magazine.

There is an interesting story to be told about one
of the undocumented opcodes. A company named Hi-
tachi much later brought out a "super" version of the
Z-80 with some additional instructions and a greater
clock speed. It was named HD64180. They did not
copy the Zilog microcode; instead, they appear to
have started with a clean sheet of paper, and de-
signed from the ground up, following the "official"
Z-80 instructions. This had two effects. Those few
adventuresome individuals who were making use of
the undocumented Z-80 opcodes suddenly found
their code would no longer execute when run on a
machine equipped with the HD64180 chip. Of course
Hitachi and RS simply ignored this whole episode,

Page 21



on the basis that no one had any business attempt-
ing to use undocumented instructions. Now that was
probably an adequate answer for the peasants, and
could well have been the end of that story.

However, a few adventuresome souls installed
HD64180's in their Models 3 and 4. This indeed gave
a nice speed increase to the Model 4's running LS-
DOS, but lo and behold, the Model 11T and the Model
4 in the ITI mode simply refused to boot TRSDOS V
1.3. WHA HOPPEN?? The answer is that the anony-
mous programmer who wrote TRSDOS V 1.3 had
elected to use an undocumented opcode in his boot
loader, and the HD64180 choked on the "illegal” op-
code and hung. Why did RS do that? I never heard
an answer to that question. What was to be done
about it? Turned out that a one-byte patch (the best
kind) could fix the problem, and life went on, with
HD64180's clocking merrily (and rapidly) along in
some owner's machines. But I think it is hilarious
that good old RS should get caught doing something
like using illegal (undocumented) opcodes! The prob-
lem came about, of course, because Hitachi followed
literally and strictly the published Z-80 instruction
set, no ifs, ands, or buts.

Probably we are all very lucky that Mostek built
in the same, identical real opcodes that Zilog had de-
signed in. Imagine the confusion if we had to buy
programs, or write them, on the basis that some
users had slightly different CPU's than others.

That's not the only example of such deviations.
Radio Shack has used two different hard drive con-
trollers in the TRS series over the years, and the two
loards are NOT logically identical. Almost, mind
you but not quite. I got burned on the difference
once in dealing with NEWDOS/80, but that's an-
other story.

Disassemblers

As you all know, we have a number of good dis-
assemblers available for Z-80 code. An important
point is that these disassemblers should automati-
cally synchronize with the code. That is, the disas-
sembler should be able to get into step with the code
it is being fed, and should recognize an 04h, for in-
stance, as the instruction INC B, and not mistake it
for an operand of some other opcode, or as part or a
multiple byte opcode. While not perfectly self syn-
chronizing, the Z-80 disassembers are very good at
self synchronizing, largely due to the predominance
of one byte opcodes. In the simplest case, if there
were no operands, no ASCII data and only one byte
codes, the disassembler could never get out of syn-

Page 22

chronism. With mostly one byte opcodes, and the
disassembler designed to attempt to force every byte
as an opcode unless an operand or second byte is re-
quired by the previous byte, the problem of synchro-
nization is seldom much trouble.

Some, but not all disassemblers print the ASCIIT
value of every byte, if there is one, on the same line
as the source code in the printout.

One feature that I greatly enjoy in the disassem-
bler included in NEWDOS/80 is a reverse reference
table. This feature will point out every CALL,
JUMP, etc throughout your code which refers to any
given address anywhere in your machine's memory
map. It also identifies any instruction which loads,
for example a one or two byte address. If there is an
instruction which loads an "8" into a register or
memory location, the reverse reference table will
give you the address of every instruction which does
this. Another useful feature is its ability to identify
all instructions which reference a particular port.
Need to find all references to your printer port?
They are all shown.

Where code contains a block of ASCII code which
was intended to be displayed as a message on a
screen or printed out, the disassembler will attempt
to disassemble all the ASCII values as one byte op-
codes. The result, for a Z-80, is a succession of Loads,
most of which make no logical sense when analyzed.
Of course, if the disassembler simultaneously prints
out the ASCII values, then the ASCII text can be
read vertically down the page, and in such cases the
opcodes can be ignored as meaningless.

Silly Instructions

For simplicity, the 8080, and thus the Z-80 did
not suppress some of the instructions which showed
up in the pattern of opcodes. An instruction such as
LD B,B is just such a silly instruction. It means
move the contents of the B register into the B regis-
ter, which is a useless move. In the design of the
8080, there are a number of such moves. They could
have been suppressed at design time, but this would
have increased the design effort, and raised the de-
sign cost. The result is that such silly opcodes exist,
and are simply to be tolerated. A knowledgeable pro-
grammer knows to expect them in a disassembly,
and ignores them in most cases. I say most, because
there is one possible legitimate use for such codes;
they may be used as deliberate time wasters, where
a small time delay is needed for synchronization
purposes between chips.

TRSTimes magazine 8.1 - Jan/Feb 1995



Missing Instructions

From a programmers point of view, there are
some instructions missing from the Z-80 which
would have been nice to have, but sorry, they are not
there! An example is the shortness of range of the
relative jumps. The limit of +/- 128 bytes is some-
times a pain, especially if you want to create
portable code which can be loaded and made to run
anywhere in a Z-80 machine. Since there is no way
to relative jump more than the +/- 128 rule allows,
any greater jump must be hard coded with absolute
addresses in order to function. If you the program-
mer don't know where the code is to be loaded, then
you must do some clever tricks to find out where
your routine got loaded, adjust your hard coded
jumps, calls, etc to suit, and then go about your busi-
ness. This can be and is done, but it is a nuisance
which could have been avoided if the chip had a
longer relative jump range.

A funny story about RS again on just this point.
RS created an assembler which was first sold as a
tape version for the Model I, and later was offered as
a disk version for disk machines. When they wrote
the assembler, they forgot to check the code to be
assembled for the length of the relative jumps. If the
jump was short, no problem; if the jump was long,
the assembler would truncate a high bit or two, and
produce inoperable relative jump codes, and not
raise a flag! There were at least two versions of the
original assembler released with this error. I assume
RS eventually fixed it, but they turned out mucho
defective code at various times, usually saying noth-
ing until challenged by a knowledgeable user, and
sometimes not then. These were sometimes face-
tiously known as "undocumented features" in bull
sessions at clubs and restaurants.

Interrupt Handling

Another great feature of the Z-80 is its greatly
increased interrupt handling capabilities, relative to
the 8080. As you know, an interrupt can be used to
cause the CPU to drop whatever it is currently doing
and undertake a high priority task, which might be
areal-time task, such as controlling the temperature
of a steam boiler, or the speed of a turbine which
must not be allowed to overspeed. In fact, the Z-80 is
equipped to handle a whole series (up to 8, I believe)
of high priority tasks, handling them in sequence of
their priority, which must be assigned by the pro-
grammer. A further capability, in interrupt mode 2
iz for the Z-80 to fetch a portion (one byte) of the
interrupt handling code address from the computer's
bus, supplied by some other hardware of the com-
puter.

TRSTimes magazine 8.1 - Jan/Feb 1995

The Z-80 was never designed just for our per-
sonal computing amusement; it was designed as a
workhorse industrial chip, and it is widely used in
the industrial world. It is for such reasons of
overkill, as far as we are concerned, that some of its
features are not used in our machines. In fact inter-
rupt mode 2 is not available to us, as some of the
required hardware does not exist in our machines.

The Alternate Register Set

Getting back to high speed, high priority inter-
rupt processing, it is always possible to "save the en-
vironment" when interrupt duty calls by poking all
the register contents to memory somewhere, shift
over to the interrupt handler code, do whatever is
necessary, and then come back to the interrupted
foreground task. But all the registers would have to
be reloaded before the task could proceed. But the
Z-80 to the rescue! The Alternate Register set I men-
tioned much earlier can handle this type of situa-
tion. The Z-80 contains a duplicate set of A, F, B, C,
D, E, H, and L registers. These are identified in the
manuals as A', F', ete, all with superposed apostro-
phes. How are they used? The two extra instructions
EX AF,A'T' and EXX are simple toggles which swap
access from AF to A'F', for example, and the other
instruction swaps the BC, DE, and HL pairs en
masse in one transaction. The reason for this is that
the interrupt handler can count on the alternate
register set being preloaded with necessary values
required to service the high speed interrupt task
without having to save the environment before pro-
ceeding.

I have never written code using the alternate
register pairs, at least not on the Z-80. However, my
programmable HP-97 desk top calculator has a simi-
lar setup, and I did make use of it in one program
where I needed more registers than were available.
The problem I ran into while debugging the program
was to keep track of which set of registers were "up"
at any given moment. I made it work, but I had the
same problem there as I would have in the Z-80; no
flag to show whether primary or alternate registers
are presently in use.

Probably for just this reason, all Radio Shack
DOS and application programmers have made it an
inviolate rule; "Don't use the Alternate Registers"!

Restarts

A restart is a funny kind of Call instruction, al-
though I have never seen it described that way. It is
a one byte instruction which, like a call, saves the
current value of the Program Counter (PC) on the

Page 23



stack, and like a call jumps to a specific location in
memory. The difference is that you don't tell it
where in memory to jump to; it can only go to one
place, by definition of the microcode in the CPU, and
therefore is a one byte Call, instead of using three
bytes as normal Calls do. It is terminated by a Re-
turn, just as with any other Call. TRSDOS 6.X uses
Restarts extensively to conserve code. Go disassem-
ble and read some of Roy Soltoff's code if you want to
improve your own.

Another feature added to the Z-80 was Restarts
38h and 66h. Both of these are peculiar for the rea-
son that they are not opcodes, but are the result of
momentarily grounding their respective terminals
on the Z-80 chip itself. One terminal is identified
INT*, meaning "Interrupt". This one is maskable,
meaning it can be turned off in software. When it is
hot, it produces Restart 38. This is one of the pri-
mary means of introducing high priority interrupts
into the machine from external circuitry, etc. The
other one is identified as NMI¥*, and activates
Restart 66h. The NMI means "non-maskable inter-
rupt", and cannot be turned off in software. This one
obviously has greater priority than INT*.

As you may know, the "Reset" button on our ma-
chines does not connect directly to the RESET pin on
the CPU. On the Model I and IIT it went to the NMI*
pin, which caused it to go through some software
linkages before it causes the Z-80 to jump to 0000h,
mainly to avoid resetting pointers which will cause
everything to cold start. For most purposes, this is
OK, as it allows the firmware designer of the ma-
chine to design explicitly the response of the ma-
chine to the Reset button. I believe the Model 4 func-
tions the same way, but I haven't investigated it.
This type of "Reset" offers surgical precision, as op-
posed to a hammer blow, you might say. And that's
all well and good until a runaway program destroys
part of the Reset software chain. Then you can push
the Reset button futilely until your digit falls off,
and no useful result obtains. Turn the power switch
off, and start over. Sigh......

I am sure there are many more interesting
and/or humorous stories about the Z-80 and its kin
in existence, but I have just about used up my quota.
Accordingly, I will sign off here and say I have en-
joyed the telling of what I know, and hope you have
found a bit of pleasure in the reading of it.

Page 24

TRSuretrove BBS

8 N 1-24 hours
Los Angeles

213 664-5056

where the TRS-80 crowd meets

PUBLIC DOMAIN
GOOD GAMES
FOR MODEL I/III

GAMEDISK#1: amazin/bas, blazer/cnd, break-
out/cmd, centipede/ cmd, elect/bas, madhouse/bas,
othello/emd, poker/bas, solitr/bas, towers/cmd

GAMEDISK#2: cram/cmd, falien/emd, frank-
adv/bas, iceworld/bas, minigolf/bas, pingpong/bas,
reactor/bas, solitr2/bas, stars/cmd, trak/cmd

GAMEDISK#3: ashka/cmd, asteroid/cmd,
crazy8 /bas, french/cmd, hexapawn, hobbit/bas,
memalpha, pyramid/bas, rescue/bas, swarm/cmd

GAMEDISK#4: andromed/bas, blockade/bas,
capture/cmd, defend/bas, empire/bas, empire/ins,
jerusadv/bas, nerves/bas, poker/cmd, road-

race/bas, speedway/bas

Price per disk: $4.00

TRSTimes - PD GAMES
5721 Topanga Canyon Blvd. #4
Woodland Hills, CA 91367

TRSTimes magazine 8.1 - Jan/Feb 1995



C Programming Tutorial

Part 5
by J.F.R. "Frank" Slinkman

In the last chapter, I asked you to think about
how recursion could be used to program a computer
to play a perfect game of checkers.

To illustrate the concept, let's tackle a much
simpler game -- one of those annoying "keep you oc-
cupied so you won't notice how slow the service is"
games you find in many restaurants and truck
stops.

Specifically, the one with 15 holes arranged sym-
metrically within a triangle and 14 pegs or golf tees,
with the object being to jump and remove pegs chec-
kers-style until only one peg remains, preferably in
the hole which was initially empty.

The program pegwins.c is both overkill and un-
derkill at the same time. It's underkill because it
does not attempt to find ALL the possible solutions
-- just one solution for each starting point.

Finding all of them would take a lot longer, and
most of the extra solutions would merely be reflec-
tions or rotations of previously found solutions.

If you'll look at the map of the holes in the listing
below, you'll see there are only four unique starts,
namely with one of holes 0, 1, 3 or 4 empty. All other
starts are rotations or reflections of one of those four
situations.

Thus pegwins.c is overkill because finds a solu-
tion for each of the possible 15 starts, meaning many
of the solutions it finds are just reflections or rota-
tions of previously found solutions.

You'll notice that in this program some of the
variable names are in upper case letters. If you'll
think back to the very first article in this series,
you'll remember I mentioned there were some com-
monly used conventions regarding capital letters.

These are:

Defined variables such as these (MAP, SORC,
JUMP, DEST, DO and UNDO) are often in caps; and
Constant expressions, whose values are not to be
changed by the program, often have their first cha-
racter in caps. For example:

TRSTimes magazine 8.1 - Jan/Feb 1995

long  Ten_thou = 10000L;
double One_third = 1.0/ 3.0;

Now let's let the computer solve that annoying

peg game for us once and for all:

/* pegwins.c */

#include <stdio.h>
#option INLIB

#option ARGS OFF
#option FIXBUFS ON
#option MAXFILES 0O

#define MAP  struct map
#define SORC 0

#define JUMP 1

#define DEST 2

#define DO 1

#define UNDO 0

void get_best(), report(), find_moves();
void do_move();

char jumps[][3] =

/*

* 0

* 1 2

* 345

* 6 789

* 10 11 12 13 14

*

* SORC over JUMP to DEST

*/

{{0,1,34L{0 2 5}
{13 6}4L{1, 4, 8}
{24, 74L{2 5 9},
{3, 1, 04L{3, 4 5},
{3, 7,12}, { 3, 6,10},
{4, 7,11}, { 4, 8,13},
{5 812},{5, 4, 3},
{5 2 04L{5, 914},
{6 3 1},{6, 7 8}
{7 4, 24L,{17 8 9},
{8 7,6}{8 4, 1},
{9) 8’ 7}7{ )5J 2},
{10, 6, 3}, {10, 11, 12},
{11, 7, 4},{11,12, 13},
{12,11,10}, {12, 7, 8},
{12, 8, 5}, {12, 13, 14},

Page 25



{13,12,11},{ 13, 8, 4},
{14,13,12},{14, 9, 5} };

char Header[] ={"\
A\n\
B C\n\
D E F\n\
G H I J\n\
KL MNOY}
char Border[] =

{

\n" };

int pegs;
char best[13];

MAP { char map[15];
char move[36];
} master;

L N N N e

main()
{

static int 1;

puts( Header );
puts( Border );

for (i = 0; i < sizeof master.map; )
{ memset(master.map, 1, sizeof master.map );
master.mapli] = 0;
printf("Start with hole %¢ empty\n\n",
A’ + i),
get_best( &master, best );
report();
}

void get_best( old_map, bst_ptr)
MAP *old_map; char *bst_ptr;
{

MAP new_map;

int 1=0;

memcpy(&new_map, old_map, sizeof (MAP));
find_moves( &new_map );

while (1 < sizeof new_map.move )
{ if (new_map.move[i])
{ *bst_ptr=1;
do_move( &new_map, i, DO );
if (!( pegs = count_pegs(&new_map) ) )
break;
else
{ get_best( &new_map, bst_ptr + 1);
if (!pegs)

Page 26

break;
else
do_move( &new_map, i, UNDO );
}
}
++i;

}
}

K e K T e R

void report()

{
static int 1;
static char *ptr;

for (i = 0; i < sizeof best; )
{ ptr=jumps + best[i++];
printf( " Jump %c over %c to %c\n",

'A' + *(ptr + SORC),
'A' + *(ptr + JUMP),
'A' + *(ptr + DEST) );

}

puts( Border );

E .

void find_moves( map )
MAP *map;
{ .

static int i;

static char *ptr;

memset( map->move, 0, sizeof map->move );

for (i= 0; 1 < sizeof map->move; )
{ ptr =jumps + i;
if ( map->map][ *(ptr + SORC) ]
&& map->map[ *(ptr + JUMP) ]
&& 'map->map[ *(ptr + DEST) ])
map->moveli] = 1;
++i;
}
LA

int count_pegs( map )
MAP *map;
{

static int 1, count;
for (count = -1, 1= 0; i < sizeof map->map;)
if ( map->map[i++])
count++;

return

TRSTimes magazine 8.1 - Jan/Feb 1995



void do_move( map, move, code )
MAP *map; int move, code;

{

static char *ptr;
ptr = jumps + move;

map->map[ *(ptr + SORC) | =

map->map| *@tr + JUMP) | =

!(map->map|[ *(ptr + DEST) ] = code );
}

Note we haven't "optioned" out standard 1/0 re-
direction, since you probably will want to send the
output to your printer.

The first "define" is just a way to save some
typing and keep the listing clearer and simpler.
Defines are straight text substitution macros; so all
we've done here is tell the compiler to replace every
occurrence of "MAP" with "struct map."

The next three defines are to help keep the
listing easier to understand. "SORC," "JUMP," and
"DEST" will be used to reference the array elements
which describe the nature of each possible move.

DO and UNDO are switches for the do_move()
function -- again, because the words make the logic
of the program easier to follow for someone reading
the listing than would the values 1 and 0.

After the prototypes, we declare and initialize a
multi-dimensional array. Each of the elements in
this array describes one of the 36 possible moves on
the board.

But note its declared "jumps[][3]" instead of
"jumps[36][3]." How can we get away with that?

Remember, "jumps” is just a pointer to the first
byte of the first element. The fact there are two sets
of brackets tells the compiler the array has two
dimensions, and the definition "[3] tells it each ele-
ment has three bytes.

The fact is that the compiler doesn't CARE how
many 3-byte elements "jumps" has. It's up to you,
the programmer, to make sure no access to non-
existent elements is attempted.

This is both an advantage and disadvantage for
the programmer. It's an advantage because it lets
us play with the indexing of arrays, such as we did
with the "place" variable in prog06.c in Part 3.

It's a disadvantage because it makes it harder to
TRSTimes magazine 8.1 - Jan/Feb 1995

track down errors. BASIC, for example, throws up
a "subscript out of range" error if your program tries
to go outside the defined range. C doesn't.

As with everything else in life, greater freedom
means greater responsibility.

Also note how the array is initialized. The out-
side set of brackets contain the entire universe of
values, while each inside set of brackets contains
three values, one for each of the 3-char elements.

Next we declare two literal constants, "Header"
and "Border." All literals are stored in permanently
assigned RAM, regardless of their class; so there's
no additional RAM cost to declare them as globals.

I just felt it made the listing clearer to declare
them this way.

But note their lengths aren't contained within
the brackets. Again, the variables are pointers; so
the system doesn't have to know the length of what
is being pointed to. And the bytes to store in RAM
have been made obvious to the compiler through the
use of braces and quotation marks.

The "pegs" variable is used to hold the count of
the number of pegs on the board. The "best[]" array
is used to record a sequence of the moves described
by elements of "jumps[]."

Remember, the game begins with 14 pegs; each
move requires the removal of one peg; and, at mini-
mum, one peg remains at the end of the game. Thus
the maximum possible number of moves in a game is
13 -- hence "best[13]."

"Master" is a struct of type map. But we didn't
have to type "struct map" because of the definition of
MAP.

Structs of type map contain two char arrays:

"map[]" to hold the locations of the pegs re-
maining on the playing board; and

"move[]" to hold the available moves for that
specific situation. Each of the 36 move][] elements
relates, by position, to a 3-byte jump[] element.

Now, in the main() function, notice the declara-
tion of "i" to be of type int and class static.

But why use a static when we don't need one,
which is contrary to "good" C programming practice?

The answer is program efficiency. First, statics
Page 27



and globals are accessed faster than either autos or
register variables. Second, statics require less code
for access. This is not unique to the TRS-80 or Pro-
MG, but is pretty consistent for all processors.

On our systems, accessing a register int requires
code like:

PUSH
POP

IX
HL

;the register variable
;get value into HL

Accessing an auto int requires code like:

LD HL,4 ;offset from SP
ADD HL,SP ;HL points to value
CALL @GINTH# ;get value into HL

And the @GINT routine will be something like:

@GINT:

LD A,(HL) ;p/u LSB

INC HL

LD H,HL) ;p/u MSB

LD LA ;value now in HL,
RET

But accessing a static or global only needs:

LD HL,d$) ;get value into HL.

The amount of code (3 bytes) to access a static or
global is the same as is needed to access a register
variable, but it's 56% faster -- 16 T-states vs. 25 on a
standard Z80 or Z80a.

But look at all the code which has to be execu-
ted to access an auto integer.

Seven bytes worth of instructions vs. three (the
@GINT routine appears only once; so we won't count
the 5 bytes in that routine), and 72 T-states vs. 16!

More than twice as many bytes of code, and 4-1/2
times as long to execute!

The effects are compounded when you actually
DO something with the variable -- for example, just
incrementing a counter:

Class register:

PUSH IX ; 2 bytes 15T
POP HL ;1 10
INC HL 01 6
PUSH HL i1 11
POP IX 02 14

; 7 bytes 56 T

Page 28

Class auto:

LD HL4 ;3 10
ADD HL,SP ;1 11
PUSH HL | 11
CALL @GINT## ;3 17
;@GINT overhead 34
INC HL . | . 6
POP DE i1 10
CALL @PINT## ;3 17
;@PINT overhead 62

;13 bytes 178 T

Classes global and static:

LD HL,A$); 3 16
INC HL 1 6
LD a$) HL: 3 16

. 7 bytes 38T

For the reasons illustrated above -- compactness
and speed -- I usually make virtually all variables in
my programs either globals or statics.

Incrementing the register variable could be
MANUALLY optimized to INC IX (2 bytes, 10 T) be-
fore final compilation. But manually searching the
compiler-produced assembly language listing to
make such changes is a royal pain, and adds so
much programming time it's highly unlikely you'd
ever realize a net time saving. I suggest you forget
this kind of "efficiency overkill” unless you're
producing a pro-gram you intend to market
commercially.

Also, there's a portability drawback with
register variables. The 80x86 CPUs used in IBM-
compatibles are so register-poor that imple-
mentations of C for those machines have to convert
variables of class register to class auto. Thus the
speed advantage of register variables on good
computers (mainframes, 680x0-based machines like
the "Mac" and, of course, the TRS-80) is lost when
the code is ported to the MeSs-DOS environment.

Again, this is not "good programming practice;"
so you might not want to make such extensive use of
statics if the "political correctness” of your code is a
consideration. (The thought police are everywhere!
Now we even have PC on our PCs!)

The rest of main() is pretty straightforward.
After displaying explanatory information, it merely
initiates 15 games, each with a different hole empty
at the start, and causes the results to be output.

TRSTimes magazine 8.1 - Jan/Feb 1995



The sexy part of the program is the get_best()
function. This is a "brute force" recursive function
which goes through every possible combination of
moves until it finds one which results in a win (i.e.,
only one peg remaining on the board).

Because get_best() 1s recursive, it's variables
must be of class auto. This means at every level of
recursion, they are created anew on the stack -- even
the 51-byte struct "new_map."

Note that in pure K&R C, such as ours, UNIONS
AND STRUCTS CANNOT BE PASSED AS
ARGUMENTS TO FUNCTIONS, nor can they be
returned. But POINTERS to unions and structs can
be freely passed back and forth.

ANSI C allows structs and unions to be passed to
and from functions on the stack. But creating copies
of large data structures on the stack can be quite
slow; so should be done only if the original has to be
absolutely bulletproof (i.e., no chance can be taken
that the original struct or union will be altered by
the called function).

Look back at main() to see how get_best() was
originally called. The arguments for "old_map" and
"tmp_ptr" were the address of (i.e., a pointer to) the
struct "master" and "temp," which is really a pointer
to the first byte of temp]].

Because get_best() receives, as one of its argu-
ments, a pointer to the struct belonging to the next
higher level of recursion, it's possible for it to dupli-
cate that struct at the current level of recursion,
which 1is the first thing get_best() does, via the stan-
dard memcpy() function.

At the highest level of recursion, after the
memcpy(), "new_map" will point to an exact copy of
"master," and "bst_ptr" will point to the first element
of the best[] array.

After the current level of recursion has inherited
it's game board in this way, it calls the find_moves()
function.

Upon return, every available move will be’

indicated by a non-zero value in the corresponding
element of move[] of "new_map." Unavailable moves
will have zeroes in the corresponding elements.

For example, if we start with the first hole emp-
ty, the only available moves are #6 (3,1,0) and #14
(0,2,0). Therefore, "new_map.move[6]" and
"new_map.- move[14] will hold values of one, and all
other move|] elements will hold zeroes.

TRSTimes magazine 8.1 - Jan/Feb 1995

Notice how find_moves() uses triple array
Indexes to determine whether or not a move is
available,

The first index used is "1" from the "for" loop,
which determines which of the 36 three-byte
elements of the jump[] array to look at.

The address of that jump[] element is put into
the variable "ptr."

Next the offset (SORC, JUMP or DEST) deter-
mines which of that element's three bytes to use.

Look at the notation "*(ptr + SORC)." This is
IDENTICAL to "ptr[SORC]," since both pick up the
object at the specified address. However, the "object
at" method used here often generates more efficient
code in the final program.

This value (ptr[SORC]), in turn, 1s used as an
index to the map|[] member of the struct.

For each move defined in the jump|[] array, this
function determines whether or not the current
game board has a peg in the SORC hole (the peg to
be moved). If not, the "if" statement is exited so the
next move can be checked.

If so, it checks to see if there's a peg in the JUMP
hole (the peg to be jumped over). If not, the "if"
statement is exited.

If there are pegs in both of those holes, it checks
to see if there's a peg in the DEST hole (the hole into
which the SORC peg would go:if the jump were
made). Note the use of the "NOT" operator in this
test. If there's a peg in the DEST hole the jump is
blocked; so the "if" statement is exited.

Thus, if there are pegs in the SORC and JUMP
holes, and no peg in the DEST hole, the move will be
recorded in the move[] member as being available.

¢
Otherwise, it will be left with the value zero,
which each element in the move[] member was given
via the standard memset() function when this
function was first entered.

Understanding this requires some study,
thought and going back and forth between the
"find_moves()" code and the initialization of the
jumps|] array, but it's important for you to fully
understand the logic used in this function, and how
the various array elements are accessed.

Note how the use of "ptr=jumps+i" eliminates
the need to calculate the address of the proper
jumps|] element for each of the three tests. The use

Page 29




of this intermediate variable lets us get away with
calculating that address just once instead of three
times, making the routine far more efficient.

Also note how the use of the defined values
SORC, JUMP and DEST make the logic clearer than
it would have been had we used "0, 1 and 2."

O.K. Back in find_best(), now that all available
moves have been identified, we proceed to try each
and every one of them in turn.

For each available move, the first thing we do is
make the move via the do_move() function. The args
sent to do_move() tell it which struct ("new_map") to
use, which move described in the jumps[] array ("i")
to make or unmake, and a code (DO in this case) to
tell it whether to make the move or reverse it.

Note how DO and UNDO allow us to use the
same function to both make moves and reverse
them. Obviously, this is more efficient code-wise
than writing two separate functions (one to make
the moves, and another to unmake them) although
it does add slightly to do_move()'s execution time.

Also note how the do_move() function also makes
use of the intermediate variable technique to avoid

having to calculate the address of the jump]]
element three separate times.

Now, back in get_best(), we call count_pegs() to
get the number of pegs remaining on the board, and
load the count into the variable "pegs."

Note count_pegs() returns ONE LESS than the
actual number of pegs. This way, if only one peg
remains (i.e., we have won the game) "pegs" will
evaluate to FALSE. This makes it possible to test
"pegs" with more efficient code [i.e., "if (Ipegs)" is
much more efficient than "if (pegs==1)"].

Now "pegs" is tested to see if a win has occurred.
(Remember, this can only happen at the 13th level
of recursion.) If so, the "while" loop is exited and
oget_best() makes a recursive return to the next
higher level of recursion.

If more than one peg remains, then a recursive
call 1s made to get_best(), with pointers to the
current game board and the next best[] element as
arguments.

All recursive returns will be to the next
statement, namely "if (Ipegs) break;". This causes
the "while" loop to be exited, and an immediate
return to the calling routine.

Page 30

If the current move doesn't produce a win, then
it's reversed via a call to do_move() with an UNDO
code, and the next available move tested.

When all possibilities at this level have been
exhausted without a win, then return is made to the

next higher level of recursion, where the next of that
level's possible moves are tried.

And so it goes until a sequence of moves is found
which results in a win.

The fact that the very first statement which will
be executed after each recursive return is "if (Ipegs)
break;" is absolutely crucial.

This code ensures that, immediately a winning
sequence of moves is found (causing "pegs" to take
on a value of zero) it will generate an immediate
chain of recursive returns all the way back to
main().

At that point main() calls the report() function to
display the winning sequence of moves recorded in
best[], and start the next game.

Type in, compile, and pegwins.c now.

When compiling, use MC/JCL's "0o" switch. This
program takes a long time to run as it is, without
inefficient, unoptimized code making it even slower.

In other words, compile via the command:

do me (n=moves,o,k[,t=d])

To run it, turn on your printer and invoke via:

moves >*pr

and go make yourself a cup of coffee or five.

Well, that about does it this time. I had hoped to
get into disk I/0, but explaining pegwins.c took more

space than I had anticipated. So we'll have to wait
until Part 6 to learn how to handle files.

TRSTimes magazine 8.1 - Jan/Feb 1995

i




	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf



