]
5
N

PRt s

e
e

s

T

aaea,
e i]

LR

te computer

1

my favor

TIRED OF SLOPPY DISK LABELS?
TIRED OF NOT KNOWING WHAT’S ON YOUR DISK?

YOU NEED “DL”

“DL” will automatically read your TRSDOS6/LDOS compatible disk
and then print a neat label, listing the visible files (maximum 16).
You may use the ‘change’ feature to select the filenames to print.

You may even change the diskname and diskdate.
“DL” is written in 100% Z-80 machine code for efficiency and speed.

using TRSDOS 6.2/LS-DOS 6.3.0 & 6.3.1
with and Epson compatible or DMP series printer.

“DL” for Model 4 only $9.95

TRSTimes magazine - Dept. “DL”

5721 Topanga Canyon Blvd., Suite 4
Woodland Hills, CA 91367

$
¢
§
5
¢
’
¥
3
8
0
: “DL” is available for TRS-80 Model 4/4 P/4D
#
¢
i
#
3
§
8
¢

HARD DRIVES FOR SALE

¢
A
¢
&
3
¢
'
£
¢
b
@
]
)
¥
Genuine Radio Shack Drive Boxes with controller, Power Supply, :
4
3
§
¥
¥
§
¢
$
?
¢
#
L
g
E

and Cables. Formatted for TRS 6.3, Installation JCL Included.
Hardware write protect operational.

Documentation and new copy of MISOSYS RSHARDS5/6 Included
90 day warranty. |

5 Meg $175 10 Meg $225 15 Meg $275 35 Meg $445

Shipping cost add to all prices

Roy T. Beck
2153 Cedarhurst Dr.
LLos Angeles, CA 90027
(213) 664-5059

- —
L1

Volume 8. No. 2 - Mar/Apr 1995 - $4.00

LITTLE ORPHAN EIGHTY SR |
Editorial

Daniel Myers

PHASES OF THE MOON....cotttreeieriirennessssseseeseeesseseeeees 8
Daniel P. Franco

ESCAPE FROM SOVIET SCIENCE
AND DETENTION BASE......cccceeveerrueeerserrnreeerecsssnsessens 10
David Meny

HINTS & TIPS ...oueeeeieieeeiiiiieereeereeseeneseeseseesesssssssssssssessess 17
Bates, Garr, Westmoreland, Herrdegen

C PROGRAMMING TUTORIAL part 6cceeeuuveenen. 20
J.F.R. “Frank” Slinkman

A FEW TROUBLE SHOOTING EFFORTS................ 28
Roy T. Beck

Who said that it never
~: rains in Southern California?
% The last couple of winters
: have been wet, especially this
:year. It seemed like it rained
:for weeks on end, dark,
i dreary and cold, and I now
* remember why I came here in
 the first place.

The rains also caused me to bang up my brand-
new car. A Dodge Shadow decided run a stop-sign
and cross a main thoroughfare against traffic.
Unfortunately, I was on the main thoroughfare and
I was the traffic, and even though I slammed on my
brakes when it darted out in front of me, because of
the rain, I skidded into it. The front of my car
collided with the Dodge, hitting the passenger side.

Steven, strapped in his seat belt, turns to me
and says: “Way to go, Dad!” He was fine, as was 1.
But, believe me, I was ticked. I jumped out of the
car, ran over to the other car and ripped open the
door. Boy, was I gonna yell at this guy.

But then I saw the driver, a little old lady,
cowering in the seat, scared to death, so my yelling
consisted of “Are you OK, Ma'am?”

As it turned out, she was fine also, not even a
scratch, but her Dodge was totalled, and my car
suffered $3000 worth of body damage. The good
news is that it runs fine and the body work will be
done as soon as the insurance company releases the
check - but it is annoying to drive a new car that is
dented. Oh, well!!

Because of my fling in the hospital in November,
our earthquake repair was postponed until - yes,
you guessed it — January. On the very first rainy
day (did I expect anything less?) I moved the family
and TRSTimes to a furnished apartment in a great
complex just a few blocks from our condominium.
This place has 4 swimming, pools, many tennis
courts, volleyball and basketball courts, as well as a
ping-pong table. Boy, we were going to get a nice
workout. It rained darn near every day we were
there. Oh, well!!

We were going to bring only the bare necessities,
so I brought a weeks worth of clothes — 7 pairs of
slacks, 7 shirts, 7 pairs of socks, etc. My clothes took
up about 1/8th of the 2 large walk-in closets in our
bedroom. My lovely wife managed to bring enough
clothes to fill up the other 7/8th — and a bit of

Page 4

overflow. “Never know when the Queen might come
to dinner!” she explained in her best British accent.
By the 3rd week there I realized that some of the
furniture was ours, having been moved in within the
last couple of days. I also recognized the microwave
oven, many of her favorite cooking utensils, as well
as her best china. I would have been content to eat
off of paper plates. Ah, the joys of marriage. Oh,
well!!

Finally, after 6 weeks, the main repairs on our
condo were completed, so we moved back (yes, it
rained that day). Moving has taken a lot of time and
we are still opening boxes and putting things away.
Isn’t it amazing how much junk you can accumu-
late? But it is so nice to be back home — with no
cracks in the walls and floors. Now we just bide our
time until the next one, hoping that it is not the BIG
ONE.

A bit of errata from the last issue - 8.1. It seems
that my brain is still foggy. For some reason, I
insisted on spelling the word CAPITAL as
CAPITOL. This occured in my article, ODDS &
ENDS FOR MODEL 4 beginning on page 4 and it
requires the program listing to be changed as
follows:
110 V=I:A$="STATES &CAPITALS"
GOSUB 21
200 V=9:A3$=CHR$(31):GOSUB 20:H=20:
A$="1. What is the capital of...”:GOSUB 23
210 V=11:A$="2. What state has the capital city...”:
GOSUB 23

Sorry about that!!

Now for the good news. I spent a little time
‘surfing the Internet’ last month, and I found a site
that has TRS-80 programs available free for the
downloading. The address is:

musie.phlab.missouri.edu

in the /pub/trs directory. There is Model I/II1
and 4 stuff, as well as material for CoCo and Model
100. Check it out.

Finally, many thanks to Danny Myers, Daniel
Franco, David Meny, Kelly Bates, Dave Garr,
Wayne Westmoreland, Henry Herrdegen, Frank
Slinkman and Roy Beck for their contributions to
this issue.

And now..... Welcome to TRSTimes 8.2

TRSTimes magazine 8.2 - Mar/Apr 1995

BEAT THE GAME

By Daniel Myers

MISSION

IMPOSSIBLE
The Scott Adams
Adventures

You've always
- wanted to be a secret
- agent, right? Right!
.. Well, now you have the
‘- chance...and there isn't
~much time left, so it's
best to get started. Play
he tape recorder, and
- listen carefully. Then get
: the recorder, and go west
- and south to the grey
room. Sit in the chair,
hen push the red button
irst and the white one
“next. Now, get up and
- look. There's a picture of
you here. Pick it up; it's
important!

PO

Now comes the hardest part of the game. You
have to kill a little time until the saboteur croaks,
then look in various rooms until you find him.
There's nothing you can do about that, so for a while
you're just going to be on your own. Think of it as a
good opportunity to practice map-making skills.

Once you've found the dead saboteur, frisk him
("Frisk Saboteur"). Get his picture, then get him
(yes, you're going to be lugging a dead body around
for a while). Now, make your way to the white door.
There's no way I can give you directions for this,
since there's no telling where you found the saboteur
(that's why you should have made a map!). When
you get there, "Show Picture." The program will
a'ways assume you're showing the right one, if you
I'we it. The door will open and you will be inside.
Now, drop the saboteur (whew! he was heavy!), and
break the window with the tape recorder.

The TV camera will come on and scan the room.
Show Picture" again...this time, it's the picture of
the saboteur. The camera will scan the picture, then
the saboteur, and turn itself off. Now you can go out
the window and pick up the yellow key on the
window ledge. Go back inside, and drop the two

TRSTimes magazine 8.2 - Mar/Apr 1995

pictures you're carrying, since you won't need them
anymore. Push the white button and the door will
open, allowing you to leave. Now, go South, down,
and South again to the grey room.

Sit in the chair and unlock the yellow button.
Press the yellow button first, then the white one.
Stand up and get the picture, then head North,
down, and North to the maintenance room. Get the
mop and shake it. Drop the mop and get the key.
Also pick up the wirecutters. Now, head back East to
the corridor and push the yellow button. Drop the
picture, then go South, up, and South to the grey
room again.

Sit in the chair and unlock the blue button. In
this order: blue, red, white, press each button and
get out of the chair. Drop the key, get the picture,
and go North. Then turn West and pick up the pail.
Now, go East, North, and North to the blue door,
and show the picture. Once inside, drop the key and
go West to the store room. Get the radiation suit
and wear it, then fill the pail with water. Return
East and open the control room door. It won't be
easy, but you can do it! After that, go East into the
break room and leave the pail there.

Now, go West into the control room, then down
to where the bomb is. Cut the wires and get the
bomb. Then, go up and East to the break room. Get
the pail, then pour water. WHEW!!! The bomb is
deactivated! You have successfully completed your
mission!! (Now you can take it easy for a while...let's
just hope you don't start glowing in the dark!)

GHOST TOWN
The Scott Adams Adventures

Okay, pardner, it's time for a little trip to a gen-
u-ine ghost town! But don't worry, them's friendly
ghosts. So, mount up and let's get going!

Start things off by going into the Barbershop,
where you'll find a Stetson hat. Shake the hat and
drop it. Get the key that fell out, then leave (you
don't need the hat for anything). Drop the key in the
street.

Go West along the street and you will come to
the Saloon and the Dry-Goods Store. First go to the

Page 5

Saloon and get the bell, then go to the Dry-goods
Store and pick up the matches, and shovel. Back in
the street, go West once again, which brings you to
the Telegraph Office and the Hotel.

Go into the Hotel, then East into the empty
room. Drop the bell and return to the street. Now
enter the Telegraph Office, and move the safe.
Connect the two loose wires so that the telegraph
key now works. You'll be needing it later. Leave the
Telegraph office, then go West until you come to the
fork in the road.

From the fork go South to the edge of the ravine.
Burn the sagebrush, then enter the ravine. Here you
will find charcoal (from the burnt brush) and the
entrance to a mine. Go into the mine. Although it's
dark and you can't see it, there is a silver bullet
here. Get the bullet, then go down.

You can move in the dark safely so long as you
always move in the right direction.

Now get the candle and light it. Ah, you can see
again! Go South, and dig roof. You have found your
second treasure, a gold nugget. Get that, and go
back North and Up out of the mine. Remember to
pick up the charcoal before leaving the ravine!

Now go to the fork in the road, and drop off the
shovel and the charcoal. From there, go East back
into town until you come to the stable. Enter the
stable, and then the stall. Get the horseshoe, then
make your way back out to the street.

Now head along East to the Dry-Goods store.
Drop the candle outside, treasures inside, then go
out and East again to the Jail. Pick up the key, then
use horseshoe. It's magnetic and will open the door
to the Jail. Enter the jail, and unlock the inner door
with the key. Drop the key, and go through the door
into the cell. Pick up the hammer, then leave the
dJail, making sure you also take the derringer with
you. Drop the derringer in the street.

It's time to play blacksmith, so go all the way
West to the stable, and then enter the stall. This
time, mount the horse, and you will into the manure
pile outside the stall. Get up (phew!) out of the
manure pile, and re-enter the stall. There will now
be a hole in the wall leading to a store room. Go
through the hole and get the keg of nail3s. Back in
the stall, empty the keg and drop it. Now get the
nails, and shoe the horse. Drop the hammer and
mount the horse.

Say giddyap (the magic word!), and the horse
will take off. Eventually, you will be thrown, and

Page 6

that's the last you'll ever see of Old Paint. Brush
yourself off, and enter the teepee in the hidden
canyon. Pick up the two treasures there, then go
back outside.

There doesn't seem to be any way out, but have
no fear! Beat the tom-tom, and the ghost of
Geronimo will appear. Say How, and ZAP! guess
where you are? Right, you're back in the manure
pile again (hehehe). Get out of that, then head along
to the Dry-Goods store and drop off the treasures
(don't forget to drop the spurs, too!).

Somewhere along the line here you may have
heard mysterious ghostly sounds and or voices. The
sound of the bell indicates that a ghostly piano
player is now visible in the Saloon, and the voice
gives you a clue as to what to do about him. If you
are near the Saloon when you hear the bell, go
inside, and applaud the ghost.

He (it?) will stand up, take a bow, and vanish.
The piano, however, will remain behind, as a solid
object. If you open the piano, a map will fall out. This
map tells you to "dig roof”, but since you've already
done that, you don't need the map, so you can just
leave it there.

Once you've dropped off the Indian treasures
and (possibly) applauded the ghost, return West to
the fork in the road. Get the shovel and charcoal,
then go North to the field. Dig here, and you will
find some yellow powder (it's sulphur). Get the
powder, then go to the manure pile in the stall.

Holding your nose, dig around in the manure,
and you will uncover some white crystals. Get those,
then head into the stall. Mix the stuff you're
carrying around, and you will make some
gunpowder. Fill the keg with that, then get the keg
and go to the Telegraph Office.

Drop the keg in the office. Under no
circumstances should you touch the telegraph key,
or BOOOOM! (time to restore the game!). By this
time, it's probably getting dark outside. Don't worry,
you'll be able to make it to the hotel before sunset.

Just leave the Telegraph Office, enter the Hotel,
and go East to the room where you dropped the bell.
Ring the bell, and, like magic, a bed appears! Drop
the bell, get into bed, and have a good night's sleep.

When morning arrives, get up, then move the
bed, revealing a roll of tape. Get the tape and leave
the room. On your way out, go to the counter and get
the cashbox. Now return to the Saloon, tape the

TRSTimes magazine 8.2 - Mar/Apr 1995

mirror, and break it, thus revealing a hidden office.
Drop the tape, go through the hole into the office,
and get the Go board.

Now it's time for another trip to the Dry-Goods
Store. Drop off the cashbox and the Go board. Now,
pass Go, and collect $200 (tricky, huh?). After that,
leave the store and head West to the fork, then
South to the ravine. This time, jump across the
ravine.

You are now in the mountains. Go West along
the trail to the line shack. Enter the shack, and tap
the telegraph key. Boom! The gunpowder in the keg
just went off! Now, look at the floor and you'll notice
a loose plank. Get the plank, drop it, then go down
the hole into the root cellar. Collect the pelts, then
go back up and make your way across the ravine and
into town. As you pass where the Telegraph Office
used to be, you'll see a smoking open safe. Look
inside, and pick up the gold dust.

Continue East and pick up the derringer, then
keep going East until you come to Boot Hill. Shoot
the rattlesnake with the derringer (it's a water
pistol)), then dig a grave and (gulp!) go into it. Here
you find a coin and a purple worm. If you want to
indulge in some gratuitous violence, you can kill the
worm. In any case, drop the shovel and get the coin.

Now climb back out, and make another trip to
the Dry-Goods store. Drop all the treasures, then go
back out into the street. Get the candle, then wait
for sunset. Once it's dark, go into the Saloon. A
ghostly square dance is in progress (that's what the
fiddle strings are all about). Still in the dark, do a
little dancing, and you will win a prize.

Now you can light the candle. The dancers will
vanish, and you can now make your final trip to the
Dry-Goods store. Drop the cup you just won, and say
"Score". All right! You did it, you collected all
thirteen ghost treasures! After all that, why not take
a vacation? I know this little deserted island that
would be just perfect.....

TRSTimes magazine 8.2 - Mar/Apr 1935

MODEL 4/4P/4D
OWNERS!

Forget
SYSRES & MEMDISK.

Now there’s
QuikDisk

QuikDisk converts the top 64K of your 128K
Model 4 to a large disk I/O buffer.
Sophisticated data management techniques
ensure frequently accessed disk data is almost
always instantly available.

QuikDisk provides dramatic disk 1/0 speed
increases on both floppy and hard drive
systems.

“SmartDrive” is so good, they built it into the
latest MS-DOS so no one would be without it.
Don’t you be without this essential type of]
utility even one day longer.

QuikDisk is only $31.95 +$3 S&H (add $2
outside North America. VA residents please
add $1.44 (4 1/2%)). 128K required. Not
intended for systems with XLR8er or other
large memory expansion boards.

Order QuikDisk from:

J.F.R. Slinkman
1511 Old Compton Road
Richmond, VA 23233.

Page 7

TRS-80 Model 4 - Basic

by Daniel P. Franco

This program calculates
the phase of the moon
for a given year and
month. The user inputs
the year, the month,
and the number of
consecutive months
data are required for.
Output includes Ephe-
meris Time of each
phase beginning with
the new moon.

10 '"* moonph/bas

20 “* for TRS-80 Model 4

30 '"* by Daniel P. Franco

40 *

50 “*

60 *

70 153

80 '"* input section

90 vk

100 CLS

110 DEFDBL A-Z

120 PRINT "Enter Year: ";;:INPUT YEAR

130 LEAP=YEAR MOD 4

'if leap = O then year is a leap year

140 PRINT "Enter Month: ";:INPUT MONTH

150 PRINT "Output For How Many Months: ";:
INPUT COUNT

160 IF LEAP <> 0 THEN 200 ELSE 330

170 '*

180 '* calculations for decimal years

190 '*

200 IFF MONTH =1 THEN YD = .0424375935815675#
210 IF MONTH = 2 THEN YD = .1232059168497121#
220 JF MONTH = 3 THEN YD = .20397424011785674#
230 IF MONTH = 4 THEN YD = .2874804726493284#
240 IF MONTH = 5 THEN YD = .3709867051808#
250 IF MONTH = 6 THEN YD = .4544929377122716#
260 IF MONTH =7 THEN YD = .537999170243743#
270 IF MONTH =8 THEN YD = .622874357406877%%#
280 IF MONTH = 9 THEN YD = .7063805899383497#
290 IF MONTH = 10 THEN YD = .7898868224698213#
300 IF MONTH = 11 THEN YD = .8733930550012927#
310 I[F MONTH = 12 THEN YD = .956899287532764T#
320 GOTO 460

330 IF LEAP = 0 GOTO 340

340 IF MONTH = 1 THEN YD = .0424375935815675#
350 IF MONTH =2 THEN YD = .1245748714813756#
360 IF MONTH = 3 THEN YD = .2053431947495202#
370 IF MONTH = 4 THEN YD = .2888494272809917#

Page 8

380 IF MONTH =5 THEN YD = .3723556598124635#
390 IF MONTH =6 THEN YD = .4558618923439348#
400 IF MONTH = 7 THEN YD = .5393681248754063#
410 IF MONTH =8 THEN YD = .6242433120385416#
420 JF MONTH =9 THEN YD = .7077495445700128#
430 IF MONTH = 10 THEN YD = .7912557771014848#
440 IF MONTH = 11 THEN YD = .874762009632956#
450 IF MONTH = 12 THEN YD = .958268242164428#
460 K= ((YEAR+YD) - 1900) * 12.3685

470 K = CINT(K)

480 COUNT = K + COUNT

490 T = K/1236.85

500T2=T"2

510T3=T"3

520 PI1=3.141592653589796#

530 R=PI1/180

540 '*

550 '* sun mean anomaly

560 '*

570 SMA = 359.22424# + (29.10535608000003# * K)-
(.0000333*T2)-(3.47E-06*T3)

580 IF SMA > 360 THEN SMA=SMA/360:
SMA=SMA-FIX(SMA):SMA=SMA*360

590 '*

600 '"* moon mean anomaly

610 '*

620 MMA = 306.0253#+(385.81691806#*K)+
(.0107306*T2)+(1.236E-05*T3)

630 IF MMA > 360 THEN MMA=MMA/360:
MMA=MMA-FIX(MMA):MMA=MMA*360

640 '*

650 '* moon's argument of lattitude

660 '*

670 F = 21.2964+(390.67050646#*K)-(.0016528*T2)-
(2.39E-06*T3)

680 IF' F > 360 THEN F=F/360:F=F-FIX(F):F=F*360
690 '*

700 '* mean phase of the moon

710 '*

720 JD=2415020.75933#+(29.53058868000003#*K) -+
(.0001178*T2)-(1.55E-07*T3)-+(.00033*SIN((R*166.56)+
(R*132.87)*T)-((R*.009173*T2)))

730 SMA=SMA*R

740 MMA=MMA*R

750 F=F*R

760 '*

770 '* true phase corrections for new and full moon
780 '*

790 IF K-FIX(I)=0 OR K-FIX(K) =.5 OR K-FIX(K)=-.5
THEN 800 ELSE 970

800 JD=JD+((.1734-.000393*T)*SIN(SMA))

810 JD=JD+(.0021*SIN(2*SMA))

820 JD=JD-(.4068*SIN(MMA))

TRSTimes magazine 8.2 - Mar/Apr 1995

830 JD=JD-+(.0161*SIN(2*MMA))

840 JD=JD-(.0004*SIN(3*MMA))

850 JD=JD+(.0104*SIN(2*F))

860 JD=JD-(.0051*SIN(SMA+MMA))

870 JD=JD-(.0074*SIN(SMA-MMA))

880 JD=JD+(.0004*SIN((2*F)+SMA))

890 JD=JD-(.0004*SIN((2*F)-SMA))

900 JD=JD-(.0006000001#*SIN((2*F)+MMA))
910 JD=JD+(.001*SIN((2*F)-MMA))

920 JD=JD+.0005*SIN(SMA+(2*MMA))

930 GOTO 1290

940 '*

950 '* true phase corrections for first and last quarter
960 '*

970 JD=JD+(.1721-.0004*T)*SIN(SMA)

980 JD=JD+.0021*SIN(2*SMA)

990 JD=JD-.628*SIN(MMA)

1000 JD=JD+.0089*SIN(2*MMA)

1010 JD=JD-.0004*SIN(3*MMA)

1020 JD=JD+.0079*SIN(2*F)

1030 JD=JD-.0119*SIN(SMA+MMA)

1040 JD=JD-.0047*SIN(SMA-MMA)

1050 JD=JD+.0003*SIN(2*F+SMA)

1060 JD=JD-.0004*SIN(2*F-SMA)

1070 JD=JD-.0006000001#*SIN@2*F+MMA)
1080 JD=JD+.0021*SIN(2*F-MMA)

1090 JD=JD+.0003*SIN(SMA+2*MMA)

1100 JD=JD+.0004*SIN(SMA-2*MMA)

1110 JD=JD-.0003*SIN(2*SMA-MMA)

1120 '*

1130 '* additional first quarter corrections
1140 '*

1150 IF K => 0 AND K-FIX(K) = .25 THEN 1170
ELSE 1160

1160 IF K < 0 AND K-FIX(K)=-.75 THEN 1170
ELSE 1220

1170 JD=JD+.0028-.0004*COS(SMA)+.0003* COS(MMA)
1180 GOTO 1290

1190 "*

1200 '* additional last quarter correction

1210 "*

1220 IF K => 0 AND K-FIX(K) = .75 THEN 1240
ELSE 1230

1230 IF K < 0 AND K-FIX(K) =-.25 THEN 1240
ELSE 1290

1240 JD=JD-.0028+.0004*COS(SMA)-.0003*COS(MMA)
1250 GOTO 1290

1260 '*

1270 '* calendar date calculation

1280 '*

1290 JD=JD+.5

1300 Z=INT@D)

1810 FRAC=JD-FIX(JD)

1320 IF Z < 2.29916E+06 THEN A=Z

1330 IF Z => 2.29916E+06 THEN
ALPHA=INT((Z-1867216.25%#)/36524.25%#)

1340 IF Z => 2.29916E+06 THEN
A=Z+1+ALPHA-INT(ALPHA/4)

1350 B=A+1524

1360 C=INT((B-122.1)/365.25)

1370 D=INT(365.25*C)

1380 E=INT((B-D)/30.6001)

1390 DOM=B-D-INT(30.6001*E)+FRAC

TRSTimes magazine 8.2 - Mar/Apr 1995

1400 IF E<13.56 THEN M=E-1

1410 IF E>13.5 THEN M=E-13

1420 IF M>2.5 THEN Y=C-4716

1430 IF M<2.5 THEN Y=C-4715

1440 DAYINT=INT(DOM)

1450 DAYFRAC=DOM-FIX(DOM)

1460 TOTSEC=DAYFRAC*86400!

1470 TOTHOURS=(TOTSEC/60)/60

1480 HOUR =INT(TOTHOURS)

1490 MINLEFT=TOTHOURS-FIX(TOTHOURS)
1500 TOTMIN=(MINLEFT*60)

1510 MIN=INT(TOTMIN)

1520 SECLEFT=TOTMIN-FIX(TOTMIN)

1530 SEC=(SECLEFT*60)

1540 IF K => 0 AND K-FIX(K)=0 THEN PHASE$="NEW
MOON-"

1550 IF K=> 0 AND K-FIX(K)=.25 THEN
PHASE$="FIRST QUARTER"

1560 IF K=> 0 AND K-FIX(K)=.5 THEN
PHASES$="FULL MOON"

1570 IF K=> 0 AND K-FIX(K)=.75 THEN
PHASES$="LAST QUARTER"

1580 IF K < 0 AND K-FIX(K) = 0 THEN PHASE$="NEW
MOON"

1590 IF K < 0 AND K-FIX(K) =-.75 THEN
PHASE$="FIRST QUARTER"

1600 IF K < 0 AND K-FIX(K) =-.56 THEN
PHASE$="FULL MOON"

1610 IF K < 0 AND K-FIX(K) = -.25 THEN
PHASE$="LAST QUARTER"

1620 PRINT USING "#HH ## ## #\ \ #\ \
#HHN NN\

\";Y,M,DAYINT,HOUR,"Hours", MIN,"Min.",SEC,"Sec.",
PHASES$

1630 K=K+.25

1640 IF K = COUNT GOTO 1660

1650 GOTO 490

1660 END

Page 9

Escape From Soviet Science

And Detention Base (SSADB)

Adventure Game for TRS-80 Model 4
by David Meny

Escape From SSADB
L is a text adventure in the
< tradition of great
 adventures like Zork by
t Infocom and the adven-
itures by Scott Adams.
This pro-gram isn't as
2 complicated as Infocom's
t full parser, but uses only
two word commands like

GET KEY or HIT
| COMPUTER.

In Escape From

{ SSADB, you are a

overnment agent

aptured by the Russians
i and taken to a secret base
% hidden somewhere in the
i United States. While you
are there you learn of the
Soviet's plans to fire
nuclear missiles from inside the US and make it look
like an inside job, thus making the Soviets safe from
counter attack. You must save the US from nuclear
attack by getting out of your cell, finding proof about
the missiles and escape the Top-Secret base. If you
succeed you will be a national hero; if you fail the US
is doomed.

Listed below are a few simple commands used by
the program. Remember, if you use a command like
THROW ROCK the program will follow by asking
you what you want to throw it at.

GET (object) to take an object

DROP (object) to put down an object

THROW (object) to throw an object at
something

SCORE to show your current
score

QUIT (or Q) to leave the game

INVENTORY (or 1) to show what you are

carrying
to go to the north
(The same for all

GO NORTH (or N)

Page 10

other compass directions
(N,S,E,W,U and D))

Now take your trusty brick and newspaper
(you'll see in the game) in hand and venture forth in
to the realm of spies and agents.

100 DIM A(17,10),P(5),01$(11),02$(11), M$(27),T(5),
ROOM$(17),IN$(11),TR(11)

110 REM ** *x
120 REM ** ESCAPE FROM **
130 REM ** S.S.A.D.B. *k
140 REM ** BY **
150 REM ** DAVID MENY **
160 REM ** **
170 REM ** **

180 POKE &HB94,PEEK(&HB94) OR 2

190 GOSUB 4230:REM INITIALIZE

200 REM

210 REM

220 REM

230 PRINT:GOSUB 3240:REM ROOM DESCRIPTION
240 GOSUB 1900:REM OBJECTS IN ROOM?

250 REM ** INPUT HANDLING **

260 KW=0

270 IF SIREN=1 AND SET=0 THEN MV=1:SET=1
280 IF SET=1 THEN MV=MV+1.IF MV=3 AND RO=6
AND BOX=0 THEN PRINT:

PRINT "A worker comes running in and glances around.
He sees you and calls the guards™:

PRINT "who take you away and torture you.":

GOTO 3140

290 IF MV=3 AND RO=6 AND BOX=1 THEN PRINT:
PRINT "A worker comes in and glances around. He
glances around and not noticing":

PRINT "anything, he heads to the balcony.":
TR(11)=7

300 IF MV=3 THEN TR(11)=7

310 PRINT:INPUT ">",A$

320 IF A$="" THEN PRINT:PRINT "What?":

GOTO 270

330 AS=ASC(AS)

340 IF AS<65 OR AS>90 THEN PRINT:

PRINT "Capital letters please.":GOTO 270

350 M=LEN(A$):IF M<7 THEN A$=A$+" "

GOTO 350

360 B$=LEFT$(A$,3)

370 IF B$="INV" OR B$="I " THEN GOSUB 730:
GOTO 270

380 IF B$="SCO" THEN GOSUB 820:GOTO 270

TRSTimes magazine 8.2 - Mar/Apr 1995

390 IF B$="QUI" OR B$="Q " THEN GOSUB 850:
GOTO 270

400 IF B$="HEL" OR B$="CLU" THEN PRINT:

PRINT "Sorry, there is no help for lost agents in this
game.":GOTO 270

410 IF B$="HID" THEN GOSUB 2360:GOTO 270

420 IF B$="STA" THEN GOSUB 2410:GOTO 270

430 IF B$="LOO" OR B$="L " THEN GOTO 230

440 IF B$="N " THEN C$="N ":GOSUB 920:GOTO 270
450 IF B$="S " THEN C$="S ":GOSUB 920:GOTO 270
460 IF B$="E " THEN C$="E ":GOSUB 920:GOTO 270
470 IF B$="W " THEN C$="W ":GOSUB 920:GOTO 270
480 IF B$="U " THEN C$="U ":GOSUB 920:GOTO 270
490 IF B$="D " THEN C$="D ":GOSUB 920:GOTO 270
500 N=1

510 IF MID$(A$,N,1)="" THEN C$=MID$(A$,N+1,3):
IF LEFT$(C$,1)<>" " THEN 540 ELSE 530

520 IF N<M THEN N=N+1:GOTO 510

530 PRINT:

PRINT "In that form, I don't know the word ";A$:

GOTO 270

540 IF B$="GO " OR B$="MOV" OR B$="WAL" THEN
KW=1:GOSUB 920:GOTO 270

550 IF B$="EXA" OR B$="SEA" THEN

GOSUB 2590:GOTO 270

560 IF B$="TAK" OR B$="GET" THEN KW=1:GOSUB
1600:GOTO 270

570 IF B$="DRO" OR B$="PUT" THEN KW=1:GOSUB
1140:GOTO 270

580 IF B$="UNL" THEN KW=1:GOSUB 2110:GOTO 270
590 IF B$="LOC" THEN KW=1:GOSUB 2440:GOTO 270
600 IF B$="OPE" THEN KW=1:GOSUB 1280:GOTO 270
610 IF B$="CLO" THEN KW=1:GOSUB 2510:GOTO 270
620 IF B$="REA" THEN KW=1:GOSUB 1440:GOTO 270
630 IF B$="PUS" OR B$="PRE" THEN KW=1:

GOSUB 2260:GOTO 270

640 IF B$="PUL" OR B$="UNP" THEN KW=1:

GOSUB 2980:GOTO 270

650 IF B$="TYP" THEN KW=1:GOSUB 3030:GOTO 270
660 IF B$="POU" OR B$="SPR" THEN KW=1:

GOSUB 2910:GOTO 270

670 IF B$="INS" THEN KW=1:GOSUB 1830:GOTO 270
680 IF B$="KIC" OR B$="HIT" THEN KW=1:

GOSUB 1970:GOTO 270

690 IF B$="MIX" OR B$="COM" THEN KW=1:

GOSUB 2800:GOTO 270

700 IF B$="THR" THEN KW=1:GOSUB 2190:GOTO 270
710 PRINT:

PRINT "I don't know that word.":GOTO 270

720 REM **** BEGIN SUBROUTINES ****

730 REM ** INVENTORY **

740 PRINT:PRINT " You are carrying:"

750 PRINT

760 FORI=1TO 8

770 IF TR(D)=200 THEN PRINT "
780 NEXT I

790 IF AADS<>1 THEN PRINT "
800 AADS=0

810 RETURN

820 REM ** SCORE **

830 PRINT:

PRINT "Out of 200 points, you got ";SCORE" points."
840 RETURN

"IN$I):AADS=1

nothing"

TRSTimes magazine 8.2 - Mar/Apr 1995

850 REM ** QUITING **

860 PRINT:

PRINT "Out of 200 points, you got "SCORE" points."
870 PRINT

880 INPUT "Are you sure you want to quit";F$

890 IF F'$="" THEN 870

900 IF F$="Y" OR F$="f" OR F$="YES" THEN END
910 PRINT:PRINT "Ok.":GOTO 270

920 REM ** MOVEMENT COMMAND **

930 C$=LEFT$(C$,1)

940 IF RO=10 AND GUARD=1 THEN PRINT:
PRINT "As you try to leave the guard spies you and
captures you. He alerts others":

PRINT "and soon you are tortured and killed.":
GOTO 3140

950 IF RO=9 AND C$="S" AND PLUG=0 THEN PRINT:
PRINT "As you step into the record room, the camera
spies you and alerts the guards.":

PRINT "They take you away and torture you which
eventually kills you.":GOTO 3140

960 IF RO=13 AND C$="S" AND TR(11)=16 THEN
PRINT:PRINT "As you step into the missile site, a
worker working on the MX-13":

PRINT "sees you and calls for guards. They take you
away and torture you. You":

PRINT "die in their hands.":GOTO 3140

970 IF RO=6 AND BOX=1 THEN PRINT:

PRINT "You can't go that way while you are crouching in
the box.":RETURN

980 IF RO=7 AND TR(11)=7 AND C$="W" THEN
PRINT:PRINT "As you try to leave, the worker grabs you
and calls for the guards. When the":

PRINT "guards come, they take you away to be tortured.
THE END!":GOTO 3140

990 IF C$="N" AND A(RO,1)=0 THEN PRINT:
PRINT "You can't go that way.":RETURN

1000 IF C$="S" AND A(RO,2)=0 THEN PRINT:
PRINT "You can't go that way.":RETURN

1010 IF C$="E" AND ARO,3)=0 THEN PRINT:
PRINT "You can't go that way.":RETURN

1020 IF C$="W" AND A(RO,4)=0 THEN PRINT:
PRINT "You can't go that way.":RETURN

1030 IF C$="U" AND A(RO,5)=0 THEN PRINT:
PRINT "You can't go that way.":RETURN

1040 IF C$="D" AND A(RO,6)=0 THEN PRINT:
PRINT "You can't go that way.":RETURN

1050 IF C$="N" THEN RO=ARO,1)

1060 IF C3="S" THEN RO=A(RO,2)

1070 IF C$="E" THEN RO=ARO,3)

1080 IF C$="W" THEN RO=A(RO,4)

1090 IF C$="U" THEN RO=A(RO,5)

1100 IF C$="D" THEN RO=ARO,6)

1110 IF RO=3 AND SOP1=0 THEN
SCORE=SCORE+10:SOP1=1:GOSUB 3100

1120 IF RO=10 AND DSF=0 THEN
SCORE=SCORE+30:DSF=1:GOSUB 3100

1130 GOTO 230

1140 REM ** DROP ROUTINE **

1150 FLAG=0:0BJECT=0

1160 PRINT

1170 FOR I=1 TO 8

1180 IF TR(I)=200 THEN FLAG=1

1190 NEXT I

1200 IF FLAG=0 THEN PRINT "You aren't carrying

Page 11

anything.": RETURN

1210 FOR I=1TO 8

1220 IF C$=018(I) AND TR()=200 THEN OBJECT=I
1230 NEXT I

1240 IF OBJECT=0 THEN PRINT "You're not holding
that item.":RETURN

1250 TR(OBJECT)=RO

1260 PRINT "Ok."

1270 RETURN

1280 REM ** OPEN ROUTINE **

1290 IF C$<>"DOO" AND C$<>"CAB" AND C$<>"VAU"
THEN PRINT:PRINT "You can't open that.":RETURN
1300 IF C$<>"DOO" THEN 1360

1310 IF C$="DOO" AND DOOR=0 AND RO=15 THEN
PRINT:PRINT "The door is locked.":RETURN

1320 IF C$="DOO" AND DOOR=1 AND RO=15 THEN
PRINT:PRINT "The door swings open, revealing a
passageway to the north.":
DOOR=2:A(10,2)=15:A(15,1)=10:RETURN

1330 IF C3="DOO" AND DOOR=1 AND RO=10 THEN
PRINT:PRINT "The door swings open, revealing a
passageway to the south.":
DOOR=2:A(10,2)=15:A(15,1)=10:RETURN

1340 IF C3="DOO" AND DOOR=2 AND RO=15 OR
RO=10 THEN PRINT:

PRINT "The door is already open.":RETURN

1350 PRINT:

PRINT "You can't see a door here.:RETURN

1360 IF C$<>"VAU" THEN 1400

1370 IF C$="VAUL" AND VAULT=0 AND RO=1 THEN
PRINT "You have to type in the correct code for the vault
to open.":RETURN

1380 IF C$="VAUL" AND VAULT=1 AND RO=1 THEN
PRINT "It's already open.":RETURN

1390 PRINT:

PRINT "You can't see the vault here.":RETURN

1400 IF C$="CAB" AND CAB=0 AND RO=14 THEN
PRINT "The cabinet is now open.":
CAB=1.TR(7)=14:RETURN

1410 IF C$="CAB" AND CAB=1 AND RO=14 THEN
PRINT "The cabinet is already open.": RETURN

1420 PRINT:PRINT "You can't see a cabinet here.":
RETURN

1430 RETURN

1440 REM ** READ ROUTINE **

1450 FLAG=0

1460 PRINT

1470 IF C$<>"PLA" THEN 1500

1480 IF RO<>6 THEN PRINT "You don't see the plaque
here.":RETURN

1490 PRINT "The plaque reads: 'Press in case of
emergency.":RETURN

1500 FOR I=1 TO 8

1510 IF C$=018$(I) AND TR(I)=200 THEN FLAG=1
1520 NEXT

1530 IF FLAG=0 THEN PRINT "You don't have that
item.":RETURN

1540 HH$=LEFT$(CS$,3)

1550 IF HH$<>"NOT" AND HH$<>"NEW" AND
HH$<>"SLI" AND HH$<>"FIL" THEN PRINT "You can't
read that!":RETURN

1560 IF HH$="NEW" AND TR(2)=200 THEN PRINT
"The newspaper reads: 'Signs of MX-13 missiles being
shipped to Russia...' It":)

Page 12

PRINT "goes on but you can't make anymore out.":
RETURN

1570 ITF HH$="SLI" AND TR(6)=200 THEN PRINT "The
slip reads: 'Porch needs fixing and new code is '971".":
RETURN

1580 IF HH$="FIL" AND TR(7)=200 THEN PRINT "The
file reads: "TOP-SECRET Information on MX-13 and
deployment.":RETURN

1590 IF HH$="NOT" AND TR(3)=200 THEN PRINT
"The note reads: 'New scientific breakthrough: analgesic
and liquid in beaker":PRINT "makes great acid!"':
RETURN

1600 REM ** GET ROUTINE **

1610 PRINT

1620 IF C$="GUA" THEN PRINT "You can't get that.":
RETURN

1630 IF C$="WOR" THEN PRINT "You can't get that.":
RETURN

1640 FLAG=0:HHG=0:0BJECT=0

1650 FOR I=1 TO 8

1660 IF TR(I)=200 THEN HHG=HHG+1

1670 NEXT

1680 IF HHG>=6 THEN PRINT "You can't carry
anymore.":RETURN

1690 FOR I=1 TO 8

1700 IF TR()=RO OR TR(2)=220 THEN FLAG=1

1710 NEXT I

1720 IF FLAG=0 THEN PRINT "There is nothing here to
pick up.":'RETURN

1730 IF TR(2)=220 AND C$="NEW" AND TR(4)=220
THEN OBJECT=2:INSERT=0:

TR(4)=15:GOTO 1790

1740 IF TR(2)=220 AND C$="NEW" THEN
OBJECT=2:INSERT=0:GOTO 1790

1750 FOR I=1 TO 8

1760 IF C$=01$(I) AND TR(I)=RO THEN OBJECT=I
1770 NEXT

1780 IF OBJECT=0 THEN PRINT "I don't see that object
here.": RETURN

1790 TR(OBJECT)=200

1800 PRINT "Ok.":IF TR(7)=200 AND SOP=0 THEN
SCORE=SCORE+50:S0P=1:GOSUB 3100

1810 IF OBJECT=4 AND DGF=0 THEN
SCORE=SCORE+20:DGF=1:GOSUB 3100

1820 RETURN

1830 REM ** INSERT ROUTINE **

1840 IF C$<>"NEW" THEN PRINT:

PRINT "You can't insert that.":RETURN

1850 INPUT " Under what";F$:F$=LEFTF',3)

1860 IF F$<>"DOOQO" THEN PRINT:

PRINT "You can't insert the newspaper under that.":
RETURN

1870 IF RO<>15 THEN PRINT:

PRINT "You can't see a door here.":RETURN

1880 PRINT:PRINT "Ok.":INSERT=1:TR(2)=220

1890 RETURN

1900 REM ** OBJECTS IN ROOM? **

1910 PRINT

1920 FOR I=1 TO 11

1930 IF TR([)=RO THEN PRINT 02$(I)

1940 NEXT I

1950 RETURN

1960 END

1970 REM ** HIT ROUTINE **

TRSTimes magazine 8.2 - Mar/Apr 1995

1980 PRINT

1990 IF RO<>15 AND RO<>7 THEN PRINT "I can't use
that word here.":RETURN

2000 IF C$<>"DOO" AND C$<>"WOR" THEN PRINT
"You can't hit that.":RETURN

2010 IF C$="WOR" THEN GOTO 2080

2020 IF RO=15 AND C$="DOO" AND KEE=0 THEN
PRINT "You hear a sound from the other sound of the
door.": KEE=1:GOTO 2040

2030 IF RO=15 AND C$="DO0O" AND KEE=1 THEN
PRINT "It doesn't work this time.":RETURN

2040 IF INSERT=0 THEN PRINT:PRINT "Sorry,
because of that last action, there is no way for you to
proceed.":GOTO 3140

2050 IF INSERT=1 THEN PRINT:

PRINT "There is now something on the newspaper."
2060 TR(4)=220

2070 RETURN

2080 IF RO=7 AND C$="WOR" AND WORKER=0 THEN
PRINT "The worker falls over the porch, yelling. As he
falls, something falls out":PRINT "of the worker's
pocket™:TR(8)=7:TR(11)=255:WORKER=1:RETURN
2090 IF RO=7 AND C$="WOR" AND WORKER=1 THEN
PRINT "The worker is dead, because of you!":RETURN
2100 RETURN

2110 REM ** UNLOCK ROUTINE **

2120 PRINT

2130 IF RO<>15 AND RO<>10 THEN PRINT "I can't
use that word here.":RETURN

2140 IF C$<>"DOO" THEN PRINT "I can't unlock
that.":RETURN

2150 IF TR(4)<>200 THEN PRINT "You have nothing to
unlock the door with.":RETURN

2160 IF DOOR=0 THEN PRINT "The door is now
unlocked.":DOOR=1:GOTO 2180

2170 IF DOOR=1 OR DOOR=2 THEN PRINT "The door
is already unlocked."

2180 RETURN

2190 REM ** THROW ROUTINE **

2200 IF RO<>10 THEN PRINT:

PRINT "I can't use that word here.":RETURN

2210 IF C$<>"BRI" THEN PRINT:

PRINT "You can't throw that.":RETURN

2220 INPUT " At what";F$:F$=LEFTSF',3)

2230 IF F$="GUA" AND GUARD=1 THEN
PRINT:PRINT "You hit the guard in the back of the head
with the brick and he becomes":

PRINT "unconscious.":TR(9)=255:TR(10)=10:
GUARD=0:TR(1)=10:SCORE=SCORE+20:

GOSUB 3100:RETURN

2240 IF F$="GUA" AND GUARD=0 THEN PRINT:
PRINT "The guard is already unconscious.":RETURN
2250 PRINT "You can't throw the brick at that.":
RETURN

2260 REM ** PUSH ROUTINE **

2270 IF RO<>6 AND RO<>11 AND RO<>12 AND
RO<>13 THEN PRINT:

PRINT "I can't use that word here.":RETURN

2280 PRINT

2290 IF C$="ONE" THEN PRINT "The elevator doors
close...":FOR I=1 TO 100:NEXT:

PRINT "Then they open....":RO=11:RETURN

2300 IF C$="TWO" THEN PRINT "The elevator doors
close...":FOR I=1 TO 100:NEXT:

TRSTimes magazine 8.2 - Mar/Apr 1995

PRINT "Then they open....":RO=12:RETURN

2310 IF C$="THR" THEN PRINT "The elevator doors
close...”:FOR I=1 TO 100:NEXT:

PRINT "Then they open....":RO=13:RETURN

2820 IF C$="BUT" AND RO=6 AND GHT=0 THEN
PRINT "A siren sounds and a worker will be in here any
minute. The button goes in so":

PRINT "you can't press it again.":SIREN=1:GHT=1:
RETURN

2330 IF C$="BUT" AND RO=6 AND GHT=1 THEN
PRINT "You can't push the button again.":RETURN
2340 PRINT "You can't push that.":RETURN

2350 RETURN

2360 REM ** HIDE ROUTINE **

2370 IF RO<>6 THEN PRINT:

PRINT "I can't use that word here.":RETURN

2380 INPUT " In what";F$:F$=LEFT$('$,3)

2390 IF F$="BOX" THEN PRINT:PRINT "Ok, you are
now crouching in the box.":BOX=1:RETURN

2400 PRINT:PRINT "You can't hide in there.": RETURN
2410 REM ** STAND ROUTINE **

2420 IF BOX=0 THEN PRINT:

PRINT "You are already standing.":RETURN

2430 IF BOX=1 THEN PRINT:PRINT "Ok, you are now
standing outside the box.":BOX=0:RETURN

2440 REM ** LOCK ROUTINE **

2450 IF RO<>10 AND RO<>15 THEN PRINT:

PRINT "I can't use that word here.":RETURN

2460 IF C$<>"DOO" THEN PRINT:

PRINT "You can't lock that.":RETURN

2470 IF TR(4)<>200 THEN PRINT:PRINT "You have
nothing to lock the door with.":RETURN

2480 IF DOOR=0 THEN PRINT:

PRINT "The door is already locked.":RETURN

2490 IF DOOR=1 OR DOOR=2 THEN PRINT:

PRINT "0k, the door is now closed and locked.":
DOOR=0:A(15,1)=0:A(10,2)=0:RETURN

2500 RETURN

2510 REM ** CLOSE ROUTINE **

2520 IF C$<>"DOO" AND C$<>"CAB" THEN
PRINT:PRINT "You can't close that.":RETURN

2530 IF C$="DOO" AND DOOR=2 AND RO=15 THEN
PRINT:PRINT "The door is now closed.":
DOOR=1:A(10,2)=0:A(15,1)=0:RETURN

2540 IF C$="DOO" AND DOOR=2 AND RO=10 THEN
PRINT:PRINT "The door is now closed.":
DOOR=1:A(15,1)=0:A(10,2)=0:RETURN

2550 IF C$="DOO" AND DOOR=0 OR DOOR=1 AND
RO=10 OR RO=15 THEN PRINT:

PRINT "The door is already closed.":RETURN

2560 IF C$="CAB" AND CAB=1 AND RO=14 THEN
PRINT:PRINT "The cabinet is now closed.":RETURN
2570 IF C$="CAB" AND CAB=0 AND RO=14 THEN
PRINT:PRINT "The cabinet is already closed.":RETURN
2580 PRINT "You can't close that here.":RETURN
2590 REM ** EXAMINE ROUTINE **

2600 PRINT

2610 IF C$="DOO" AND RO=15 OR RO=10 THEN
PRINT "The large, wooden door has a keyhole and a
small space below it. Through":PRINT "the keyhole you
can see a key, unreachable from this side.":RETURN
2620 IF C$="BRI" AND TR(1)=200 THEN PRINT "The
brick is just a normal, heavy brick.":RETURN

2630 IF C$="NEW" AND TR(2)=200 THEN PRINT "The

Page 13

newspaper just has some readable writing on
it.":RETURN

2640 IF C$="NOT" AND TR(3)=200 THEN

PRINT "The note just has some writing on it.":RETURN
2650 IF C$="KEY" AND TR(4)=200 THEN

PRINT "I see nothing special about that.":RETURN
2660 IF C$="BEA" AND TR(5)=200 THEN

PRINT "I see nothing special about that.":RETURN
2670 IF C$="SLI" AND TR(6)=200 THEN PRINT "The
slip of paper just has some writing on it.":RETURN
2680 IF C$="FIL" AND TR(7)=200 THEN PRINT "The
file contains top-secret information.":RETURN

2690 IF C$="ASP" AND TR(8)=200 THEN PRINT "The
aspirin has 'BUFFERIN' on it.":RETURN

2700 IF C$="GUA" AND TR(9)=RO THEN

PRINT "The guard is a hard working employee of the
Russians.":RETURN

2710 IF C$="GUA" AND TR(10)=RO THEN

PRINT "The guard is unconscious.":RETURN

2720 IF C$="WOR" AND TR(11)=RO THEN PRINT "The
worker has something in his back pocket.":RETURN
2730 IF C$="PLA" AND RO=6 THEN

PRINT "The plaque has writing on it.":RETURN

2740 IF C$="BOX" AND RO=6 THEN PRINT "The box is
big enough for you to HIDE in it.":RETURN

2750 IF C$="CAB" AND RO=14 AND CAB=1 THEN
PRINT "The cabinet is open.":RETURN

2760 IF C$="CAB" AND RO=14 AND CAB=0 THEN
PRINT "The cabinet is closed.":RETURN

2770 IF C$="PLU" AND RO=2 AND PLUG=0 THEN
PRINT "The plug is connected to an outlet.":RETURN
2780 IF C$="PLU" AND RO=2 AND PLUG=1 THEN
PRINT "The plug is not connected to an outlet.":
RETURN

2790 PRINT "I can't examine that now.":RETURN
2800 REM ** MIX ROUTINE **

2810 IF C$<>"ASP" AND C$<>"BEA" THEN
PRINT:PRINT "I can't mix that.":RETURN

2820 IF C$="BEA" THEN GOTO 2870

2830 IF C$="ASP" AND TR(8)=200 THEN

INPUT" In what";F$:F$=LEFTSF'$,3)

2840 IF F$="BEA" AND TR(5)=200 THEN PRINT:
PRINT "The beaker begins to bubble and inside there is
an acidy solution.":TR(8)=255:BEAKER=1:RETURN
2850 IF F$="BEA" THEN PRINT:PRINT "You don't have
the beaker.":RETURN

2860 PRINT:PRINT "You can't mix the aspirin with
that.":RETURN

2870 INPUT " With what";F$:F$=LEFTF',3)

2880 IF F$="ASP" AND TR(8)=200 THEN PRINT:
PRINT "The beaker begins to bubble and inside there is
an acidy solution.":BEAKER=1.TR(8)=255:RETURN
2890 IF F$="ASP" THEN PRINT:

PRINT "You don't have the aspirin.":RETURN

2900 PRINT:PRINT "You can't mix that with the
beaker.": RETURN

2910 REM ** POUR ROUTINE **

2920 PRINT

2930 IF RO<>8 THEN PRINT:

PRINT "I can't use that word here.":RETURN

2940 IF C$="BEA" OR C$="LIQ" AND BEAKER=0
THEN PRINT:PRINT "The liquid is stuck inside (for
now).":RETURN

2950 IF C$="BEA" OR C3$="LIQ" AND BEAKER=1

Page 14

THEN INPUT " On what";F$:F$=LEFT$¥$,3)

2960 IF F$="WAL" OR F$="NOR" THEN PRINT:PRINT

"The wall to the north, becomes a giant hole, allowing

you to go that way.":A(8,1)=3:TR(5)=255:RETURN

2970 PRINT:PRINT "You can't pour the liquid on

that.":RETURN

2980 REM ** PULL ROUTINE **

2990 IF RO<>2 THEN PRINT:

PRINT "I can't use that word here.":RETURN

3000 IF C$<>"PLU" THEN PRINT:

PRINT "You can't pull that.":RETURN

3010 IF PLUG=1 THEN PRINT:

PRINT "The plug is already unplugged.":RETURN

3020 PRINT "Ok, the plug is now unplugged.":

PLUG=1:RETURN

3030 REM ** TYPE ROUTINE **

3040 IF RO<>1 THEN PRINT:

PRINT "I can't use that word here.":RETURN

3050 IF C$<>"971" THEN PRINT:

PRINT "You type in the wrong code and a loud siren

sounds. Guards rush in and take":

PRINT "you away. You DON'T return.":GOTO 3100

3060 PRINT:PRINT "Congratulations! You got the right

code. You rush outside to find that you are™:

PRINT "inside a large sewer system. But, above you see

a manhole, so you climb out.":

PRINT "You rush to tell the police your story."

3070 IF TR(7)=200 THEN PRINT "You show the police

the file and you are rewarded with a hero's

reward!":SCORE=SCORE+70:GOSUB 3100:GOTO 3140

3080 PI:INT "You have no proof to show the police, so

they lock you up. In exactly five":PRINT "days, the

Soviets launch their supply of MX-13's on the U.S. All™:

PRINT "life as you know it, stops to exist. The human

race is never heard of again."

3090 GOTO 3140

3100 REM ** SCORE ROUTINE **

3110 REM

3120 PRINT@(0,39),"Score:";SCORE

3130 RETURN

3140 REM ** SCORING **

3150 PRINT:

PRINT "Out of 200 points, you got ";SCORE;" points."

3160 PRINT:INPUT "Would you like to play again";

F$:F$=LEFTS$($,1)

3170 IF F$="y" OR F$="Y" THEN GOTO 3210

3180 IF F$="n" OR F$="N" THEN PRINT:

PRINT "Ok.":PRINT:PRINT:END

3190 PRINT "Please answer the question."

3200 GOTO 3160

3210 RO=17:SOP=0:S0P1=0:DOOR=0:KEE=0:

SCORE=0:GUARD=0:BOX=0:BEAKER=0:DSF=0:

DGF=0

3220 TR(1)=17:TR(2)=17:TR(3)=8:TR(4)=255:

TR(5)=8:TR(6)=5:TR(7)=255:TR(8)=16

3230 CLS:GOTO 200

3240 REM ** ROOM DESCRIPTIONS **

3250 REM

3260 PRINT@(0,0),CHR$(31);ROOMS$RO);

3270 PRINT@(0,39),"SCORE:";SCORE

3280 PRINT

3290 REM

3300 ON RO GOSUB 3320,3380,3450,3500,3550, 3600,
3660,3700,3750,3790,3840,3890,3940,3990,4040,

TRSTimes magazine 8.2 - Mar/Apr 1995

4100,4160
3310 RETURN
3320 REM ROOM ONE
3330 PRINT "Vault Room"
3340 PRINT "You are inside a very large room which is
the exit to the outside world. But"
3350 PRINT "before every person gets outside, they must
pass through a giant, metal vault"
3360 PRINT "which has a large keyboard attached to it."
3370 RETURN
3380 REM ROOM TWO
3390 PRINT "Maintenance Room"
3400 PRINT "This is a room where maintenance
equipment is stored. There are many brooms,"
3410 PRINT "dustpans and mops around here. A dark
passage way leads to the south, while"
3420 PRINT "a lighted way leads to the east. There is a
plug on the east wall connected"
3430 PRINT "to an outlet."
3440 RETURN
3450 REM ROOM THREE
3460 PRINT "Secret Room"
3470 PRINT "You are in a secret room behind the base
laboratory. The hole in the south"
3480 PRINT "wall is smaller on this side, preventing you
from going south."
3490 RETURN
3500 REM ROOM FOUR
3510 PRINT "Hallway"
3520 PRINT "This is a non-descript hallway running
north and south."
3530 RETURN
3540 RETURN
3550 REM ROOM FIVE
3560 PRINT "Repair Closet"
3570 PRINT "This is a repair closet where hammers,
nails and screwdrivers are kept. The"
3580 PRINT "only exits is the way you came."
3590 RETURN
3600 REM ROOM SIX
3610 PRINT "Storage Room";:IF BOX=1 THEN PRINT "
(crouching in the box)"
3620 PRINT "You are in a storage room where
miscellaneous equipment is stored. There is a"
3630 PRINT "large, heavy box in the south corner. To the
east is a balcony. Also on the"
3640 PRINT "north wall, there is a button with a small
plaque beneath it."
3650 RETURN
3660 REM ROOM SEVEN
83670 PRINT "Balcony"
8680 PRINT "This is an old, crumbling balcony."
3690 RETURN
3700 REM ROOM EIGHT
3710 PRINT "Laboratory"
3720 PRINT "You are in a scientific laboratory where
great experiments are done. The usual”
8730 PRINT "array of supplies and equipment is here.
The north wall is a bit less solid":
PRINT "then the others."
3740 RETURN
3750 REM ROOM NINE
3760 PRINT "Hallway"

TRSTimes magazine 8.2 - Mar/Apr 1995

8770 PRINT "This is a very non-descript hallway
running east to west."

8780 RETURN

38790 REM ROOM TEN

3800 PRINT "Guard Room"

3810 PRINT "You are in a guard room, where a guard is
supposed to guard the cell to the"

3820 PRINT "south. Passageways run off in three
directions."

3830 RETURN

3840 REM ROOM ELEVEN

3850 PRINT "Elevator”

3860 PRINT "This is an elevator connecting all three
levels of the base. There is a panel"

3870 PRINT "here with three buttons labeled 1,2 and 3."
3880 RETURN

3890 REM ROOM TWELVE

3900 PRINT "Elevator"

3910 PRINT "This is an elevator connecting all three
levels of the base. There is a panel"

3920 PRINT "here with three buttons labeled 1,2 and 3."
3930 RETURN

3940 REM ROOM THIRTEEN

3950 PRINT "Elevator"

3960 PRINT "This is an elevator connecting all three
levels of the base. There is a panel"

8970 PRINT "here with three buttons labeled 1,2 and 3."
3980 RETURN

3990 REM ROOM FOURTEEN

4000 PRINT "Record Room"

4010 PRINT "This is a record room where top secret
information is kept. There is a file"

4020 PRINT "cabinet on the west wall and a camera on
the west wall near the ceiling."

4030 RETURN

4040 REM ROOM FIFTEEN

4050 PRINT "North Cell"

4060 PRINT "This is a north cell where top security
prisoners are kept. There is a"

4070 PRINT "large, wooden door on the north wall. To
the south a light can be seen."

4080 IF INSERT=1 THEN PRINT "Under the door, you
can see a newspaper."

4090 RETURN

4100 REM ROOM SIXTEEN

4110 PRINT "Missille site"

4120 PRINT "This is a large room in the shape of a
missile silo, where a very important"

4130 PRINT "missile is kept. The rounded ceiling is
partly open, awaiting the preparation"

4140 PRINT "of the MX-13, being kept in the center of
the room."

4150 RETURN

4160 REM ROOM SEVENTEEN

4170 PRINT "South Cell"

4180 PRINT "You are in a cell where prisoners are kept.
The second part of this two room"

4190 PRINT "cell is to the north while a crack in the
ceiling is letting in a large amount"

4200 PRINT "of light."

4210 RETURN

4220 END

4230 REM ** INITIALIZE **

Page 15

4240 CLS:PRINT "Please wait while [set the adventure"
4250 SCORE=0:RO=17:GUARD=1:FLAG=0:
KEE=0:DOOR=0

4260 A(15,7)=99:REM PROBLEM DOOR 1

4270 A(8,7)=100:REM PROBLEM DOOR 2

4280 FOR X=1 TO 17

4290 FORY=1TO®6

4300 READ AX)Y)

4310 NEXTY

4320 NEXT X

4330 FOR X=1 TO 11

4340 READ 013(X),028(X), TR(X),IN$X)

4350 NEXT X

4360 FOR I=1 TO 17

4370 READ ROOMS$()

4380 NEXT I

4390 RETURN

4400 REM ** ROOM DATA **

4410 DATA 0,4,0,0,0,0:REM ROOM 1

4420 DATA 0,8,3,0,0,0.REM ROOM 2

4430 DATA 0,0,0,2,0,0.REM ROOM 3

4440 DATA 1,10,5,0,0,0.REM ROOM 4

4450 DATA 0,0,0,4,0,0.REM ROOM 5

4460 DATA 0,12,7,0,0,0.REM ROOM 6

4470 DATA 0,0,0,6,0,0:REM ROOM 7

4480 DATA 0,0,9,0,0,0:REM ROOM 8

4490 DATA 0,14,10,8,0,0:REM ROOM 9

4500 DATA 4,0,11,9,0,0:.REM ROOM 10

4510 DATA 0,0,0,10,0,0.REM ROOM 11

4520 DATA 6,0,0,0,0,0.REM ROOM 12

4530 DATA 0,16,0,0,0,0.REM ROOM 13

4540 DATA 9,0,0,0,0,0.REM ROOM 14

4550 DATA 0,17,0,0,0,0.REM ROOM 15

4560 DATA 13,0,0,0,0,0:REM ROOM 16

4570 DATA 15,0,0,0,0,0.REM ROOM 17

4580 DATA "BRI","There is a brick on the floor near
you.",17,"a brick"

4590 DATA "NEW","On the floor, there is an old
newspaper.",17,"a newspaper"

4600 DATA "NOT","There is a note laying nearby.",8,"a
note"

4610 DATA "KEY","There is a shining key here.",255,"a
key"

4620 DATA "BEA","There is a scientific beaker full of
liquid near you.",8,"a beaker full of liquid"

4630 DATA "SLI","There is a slip of paper lying
here.",5,"a slip"

4640 DATA "FIL","A file containg important information
is here.",255,"a file"

4650 DATA "ASP","There is a aspirin here.",255,
"an aspirin"

4660 DATA "GUA","There is an alert guard here.”,10,""
4670 DATA "GUA","There is an unconscious guard
here.",255,""

4680 DATA "WOR","There is a missile worker
here.",16,""

4690 DATA Vault Room,Maintenance Room,Secret
Room,Hallway,Repair Closet

4700 DATA Storage Room,Balcony,Laboratory,
Hallway,Guard Room,Elevator

4710 DATA Elevator,Elevator,Record Room,North
Cell,Missille Site

4720 DATA South Cell

Page 16

YES, OF COURSE !
WE VERY MUCH DO TRS-80 /

MICRODEX CORPORATION

SOFTWARE

CLAN-4 Mod-4 Genealogy archive & charting $69.95
Quick and easy editing of family data. Print elegant
graphic ancestor and descendant charts on dot-matrix
and laser printers. True Mod-4 mode, fast 100%
machine language. Includes 36-page manual, NEW!

XCLAN3 converts Mod-3 Clan files for Clan-4 $29.95

DIRECT from CHRIS Mod-4 menu system $29.95
Replaces DOS-Ready prompt. Design your own menus
with an easy full-screen editor. Assign any command to
any single keystroke. Up to 36 menus can instantly call
each other. Auto-boot, screen blanking, more.

XT.CAD Mod-4 Computer Drafting $95.00

The famous general purpose precision scaled drafting
program! Surprisingly simple, yet it features CAD
functions expected from expensive packages. Supports
Radio Shack or MicroLabs hi-res board. Output to pen
plotters. Includes a new driver for laser printers!

XT.CAD BILL of Materials for xT.CAD $45.00
Prints alphabetized listing of parts from xT.CAD
drawings. Optional quantity, cost and total calculations.

CASH Bookkeeping system for Mod-4 $45.00

Easy to use, ideal for small business, professional or
personal use. Journal entries are automatically
distributed to user's accounts in a self-balancing ledger.

FREE User Support Included With All Programs !

MICRODEX BOOKSHELF

MOD-4 by CHRIS for TRS/ILS-DOS 6.3 $24.95
MOD-IIl by CHRIS for LDOS 5.3 $24.95
MOD-IIl by CHRIS for TRSDOS 1.3 $24.95 .
Beautifully designed owner's manuals completely
replace obsolete Tandy and LDOS documentation.
Better organized, with more examples, written in plain
English, these books are a must for every TRS-80 user.

JCL by CHRIS Job Control Language $7.95 .
Surprise, surprise! We've got nid of the jargon and JCL
turns out to be simple, easy, useful and fun. Complete
tutorial with examples and command reference section.

Z80 Tutor | Fresh look at assembly language $9.95
Z80 Tutor Il Programming tools, methods $9.95
Z80 Tutor Il File handling, BCD math, etc. $9.95
Z80 Tutor X All Z80 instructions, flags $12.95
Common-sense assembly tutorial & reference for novice
and expert alike. Over 80 routines. No kidding!

Add S & H. Call or write MICRODEX for details
1212 N. Sawtelle Tucson AZ 85716 602/326-3502

TRSTimes magazine 8.2 - Mar/Apr 1995

TIPS FROM KELLY
by Kelly Bates

I recently tried to install a 1.2
eg. floppy drive in my Model 4,
ut unfortunately it didn’t work.
sing TRSDOS 6, I tried to format
floppy (in external 3 position) in
very way that I knew how, but
he verify cycle failed on each and
every track.. Another idea that
won't work due to the limitation of
the hardware. The good news is
that the 3 1/2” drive (1.4) works great.

Here is a list of the DOSes I have converted to 3
1/2” 720K format for the 4P (will also boot in the Mod
4 desktop):

Model ITT mode:

+ LDOS 5.1.4 (80 track)

+ MULTIDOS 1.3 (80 track)

+ MULTIDOS 1.6 (80 track)

+ MULTIDOS 1.7 (80 track)

+ NEWDOS/80 (80 track)

+ SUPERDOS 1.3B (single-sided 40 track)

+ DOSPLUS 3.5 (80 track)

+ TRSDOS 1.3 (40 double-sided 40 track)

¢+ CP/M (Montezuma — 710K)

Model 4 mode:

+ DOSPLUS 1.0 (80 track)

¢ MULTIDOS 2.0 (80 track)

+ TRSDOS/LS-DOS 6 (double-sided 40 track)

I have also converted the PENETRATOR game
from Melbourne House. It is protected, but COPY-
CAT4 will copy it onto a 40 track 3 1/2” disk. Also
converted a special NEWDOS 2.0 system disk that is
primarily used to boot the 4P into Model IIT opera-
tion. SYS22/SYS is added, which contains the Model
III ROM. It is only 40 track, single-sided on the 3
1/2” disk, but now you don’t need to maintain a copy
of the MODELA/III file.

I will share this stuff for $8.00 per copy, but I
request that you send a 5 1/4” disk with the version
requested. This will insure that I am not breaking
any laws. Please note that I am not able to provide
manuals for the above DOSes.

If someone requests a conversion of a DOS that I
don’t own, I will attempt to convert the one that is
sent to me

TRSTimes magazine 8.2 - Mar/Apr 1995

IMPORTANT RULE
FOR SAFE FAX

from the TRSTimes Vault
original author unknown

®: Do I have to be married to have safe fax?

A: Although married people fax quite often, there
are many single people who fax complete strangers
every day.

Q: My parents say they never had fax when they
were young and were only allowed to write memos to
each other until they were twenty-one. How old do
you think someone should be before they can fax?

A: Faxing can be performed at any age, once you
master the correct technical details.

Q: If I fax myself, will I go blind?
A: Certainly not, as far as we can see.

Q: There is a place on our street where you can go
and pay for fax. Is this legal?
A: Yes. Many people have no other outlet for their
fax drives and must pay a "professional” when their
needs to fax become too great.

Q: Should a cover always be used for faxing?
A: Unless you are really sure of the one you're fax-
ing, a cover sheet should be used to insure safe fax.

Q: What happens when the wrong buttons get
pushed and I fax prematurely?

A: Don't panic. Many people fax prematurely when
they haven't faxed in a long time. Simply start over.
Most people won't mind if you try again.

Q: Sometimes when I fax, it's the other person who
isn't fully ready, so that faxing doesn't work right. Is
there any solution for this?

A: There is only one solution here: always be very
patient and compassionate with your fax partner.
Talk them through it carefully, and apply lots of fax-
play before you start. Explain to them the impor-
tance of pressing the F Spot before you begin, and
show them how to do this for themselves.

Q: Recently a completely unwanted fax was trans-
mitted into my office. Does this constitute rape? And
if so, can I bring charges and sue the responsible
party? Would I be able to collect damages?

A: So far our police departments and our justice

Page 17

system do not take fax rape too seriously as a
charge, even though we all know that many people
suffer greatly from this heinous crime. Concerned
citizens are now taking steps to combat fax rape and
faxism in all its forms, so write your Congressman
and hold on to your evidence. The legal climate sur-
rounding this offense may soon change.

®: I have a personal and business fax. Can trans-
missions become mixed up?

A: Being bi-faxual can be confusing, but as long as
you use a cover with each one, you won't transmit
anything you're not supposed to.

BOB-WHAT ABOUT HIM?
Humor by DAVE GARR

REDMOND, Washington--January 4, 1995

In response to customer inquiries, Microsoft to-
day clarified the naming policy for Bob(tm), its new
software product designed for computer beginners.
Contrary to rumors, Microsoft will not demand that
all persons formerly named "Bob" immediately select
new first names.

"T don't know where these rumors come from,"
commented Steve Balmer, Microsoft Executive Vice
President for Worldwide Sales and Support. "It's
ridiculous to think Microsoft would force people out-
side the computer industry to change their names.
We won't, and our licensing policies for people
within the industry will be so reasonable that the
Justice Department could never question them."

Balmer said employees of other computer com-
panies will be given the opportunity to select new
names, and will also be offered a licensing option
allowing them to continue using their former names
at very low cost.

The new licensing program, called Microsoft
TrueName(tm), offers persons who want to continue
being known by the name Bob the option of doing so,
with the payment of a small monthly licensing fee
and upon signing a release form promising never to
use OpenDoc.
censees will also be authorized to display the Win-
dows 95 logo on their bodies.

Persons choosing not to license the Bob name
will be given a 60-day grace period during which
they can select another related name. "We're being
very lenient in our enforcement of the Bob trade-
mark," said Bill Newkom, Microsoft's Senior Vice
President of Law and Corporate Affairs. "People are
still free to call themselves Robert, Robby, or even
Rob. Bobby however is derivative of Microsoft's
trademark and obviously can't be allowed.”

Microsoft also announced today that Bob(tm)
Harbold, its Executive Vice President and Chief Op-

tage 18

erating Officer, has become the first Microsoft True-
Name licensee and will have the Windows 95 logo
tattooed to his forehead.

It has come to our attention that Microsoft is al-
ready planning a scaled-down version for the seg-
ment of the population that is anticipated to find
BOB(tm) too difficult to learn. This revelutionary
new concept of utter simplicity will be named
BILLY-BOB. Ed.

GAMES FOR
THE MODEL I EMULATOR
by Wayne Westmoreland

As an added bonus, Bob name li-~

The following programs were written by myself
(Wayne Westmoreland) and Terry Gilman. I've
listed them in the order we wrote them, however I
don't remember the exact dates (old age I guess).
The programs display copyright notices but I hereby
release them into the public domain, do with them
as you please.

TANKZONE/CMD

ARMORED/CMD

These two programs are 2 different versions of
our first game, a version of the old coin-op game
BATTLEZONE. The original was called TankZone
2000 d hate that name!). We submitted it to Scott
Adams’ company adventure International whose
marketing droids made us change the pyramids to
houses, the flying saucer to a robot and the name to
Armored Patrol.

DEFENDER/CMD

ELIMINAT/CMD

This was our second program, a version of
William's Electronics DEFENDER, although I be-
lieve that it was the first to reach market. Once
again we had to make changes and renamed it Elim-
inator. However we ended being sued (or at least
threatened with suit) from William's Electronics. We
gave them a percentage and then it was the
"official" TRS-80 version of Defender.

SEADRAG/CMD

This game was our original idea, based on a sug-
gestion from my Dad after he saw the game SCRAM-
BLE, however we borrowed the ending from the
game PHOENIX. This game is without a doubt our
favorite.

REARGARD/CMD
This was the first game we did for business in-
stead of fun. We did it at the request of Adventure

TRSTimes magazine 8.2 - Mar/Apr 1995

International who wanted a TRS-80 version of a
game written for the Atari 800 by Neil Larimer.
This is our least favorite.

DONKKONG/CMD

We wrote this game just because we liked Nin-
tendo's Donkey Kong and played it so much. We
never marketed this game because we couldn't get
permission from Nintendo, however we had so much
fun writing it, we didn't care.

ZAXXON/CMD

This time we got permission first. Sega gave us
a license for the game ZAXXON and then we wrote
this. By this time, Tandy/Radio Shack had started
accepting third party programs for sale in their
stores and so we struck a deal with them instead of
Adventure International. However manufacturing
problems on our end limited the distribution.

I hope you enjoy them,
Wayne Westmoreland
wayne.westmoreland@srs.gov

P.S Except for Armored Patrol there aren't on-
line instructions, basically use the arrow keys and
the space bar. On Eliminator the enter key is your
"smart bomb" and the clear key is "hyperspace".
Shift/Break aborts all the games.

A Mod I emulator file entitled AI_GAMES/DSK
has been uploaded to the TRSuretrove BBS and is
available free of charge to all callers. Our thanks to
Wayne Westmoreland for sharing his creativity with
us. Ed.

TEMPCONV/BAS REVISITED
by Henry H. Herrdegen

Typing your conversion program and reading
Roy’s article (from TRSTimes 7.4), stretched my
memory: “RANKINE”? Seems I heard about it some-
where. But how about “REAUMUR”? It is a system
that has been widely used in the non-english speak-
ing Europe, with freezing point 0, and boiling point
80. I still remember the thermometers of my youth
in Austria: left side Celcius, right side Reaumur!

A little research turned up the following facts:
Reaumur, Rene Antoine Ferchault de, french physi-
cist, 1683 - 1757, invented the improved thermome-
ter 1731°, used mainly in Germany. I also found a
curio, a scale invented by a De Lisle (no reference to
him found), supposedly used in Russia, which has
the boiling point a 0 and the freezing point as +150
@it's cold in Siberia, and no negativism please!) My
admittedly not up-to-date encyclopediam gives the
two absolute zero temperatures as 273.10 and 459.58

TRSTimes magazine 8.2 - Mar/Apr 1995

(to refresh Roy’s memory only — it has no effect on
the calculations), and mentions a difference between
“absolute” and “natural’ zero. But let's not get into
that can of worms.

Here is what I did to your perfectly good pro-

gram:

To add the Reaumur scale, the loops in lines 14,
110 & 210 are increased; line 162 is added to the ON
- GOTO section; the TM(3) expression in line 200
added, incrementing the absolutes to 4 and 5.

I could not help, but thought that -999 Celcius is
a bit impossible, as tehere is no such thing as a mi-
nus degree Kelvin. Putting in the error trap line 202
necessitated another line, 204, to strip the equally
impossible minus sign from the Kelvin zero result at
Rankine 0 input> I also felt the old numbers could
be wiped out for a new conversion, so, the added GO-
SUB 24 in line 240 and line 24 itself. While I was at
it, the colons after the names seemed a good idea,
and got added in line 16.

Change or add the following lines to the line list-
ing from Issue 7.4.

14 FOR X=1TO 5:READ NM$X):NEXT

16 DATA “Celsius:”,”"Fahrenheit:” ”"Reaumur;”,
"Kelvin:”,”Rankine:”

24 V=9:H=45:A$=CHR$(30):FOR X=1 TO 4:
V=V+1:NEXT:RETURN

110 V=8:FOR X=1TO 5:A$=NM3$X):GOSUB 28:
V=V+1:NEXT

140 ON V-7 GOTO 160,160,162,170,180

162 TM(1)=VAL(IN$)*1.15:GOTO 200

200 TM(2)=TM(1)*9/5+32:TM(3)=TM(1)/1.25:
TM@)=TM(1)+273.11:TM(5)=TM(2)+459.6

202 IF TM(4)<-.1 THEN

A$="IMPOSSIBLE TEMPERATURE!":
V=14:GOSUB 21:GOTO 220

204 TF TM(4)<0 THEN TM(4)=0

210 V=8:H=45:FOR X=1 TO 5:
PRINT@SW*V+H,USING" ####HH# #"; TM(X);:
V=V+1:NEXT

240 IF I$="y” OR I$="Y” THEN V=14:
A$=CHR$(31):GOSUB 20:GOSUB 24:GOTO 120
ELSE IF I$="N”" OR 1$="n" THEN CLS: END
ELSE 220

I learn a great deal dissecting your programs,
and hope you are not miffed by my fooling around
with them,

On the contrary, I am happy that people find the
programs interesting enough to customize. I enjoy
seeing the add-on bells and whistles and, by the way,
I also learn a little something. Incidentally, line 22
can be deleted. It is my standard code for right-
Justifying text, but TEMPCONV/BAS does not use
it. Ed.

Page 19

C PROGRAYMING TUTORIAL

Part 6
by J.F.R. "Frank" Slinkman

The Microsoft BASIC for the TRS-80 offers two
methods of file I/0 and management: a serial byte
stream and "random" 1/0 of fixed block lengths up to
a maximum of 256 bytes per block.

In BASIC, there are three ways to open files:
OPEN"T",n filename/ext:d

(where "n" is the buffer number) to read a serial byte
stream;

OPEN"O" n,"filename/ext:d"
to write a serial byte stream; and
OPEN"R",n,"filename/ext:d"[,block_size]

(with an associated FIELD command) to read or
write to a file consisting of blocks of bytes, with the
block size fixed unless you close the file and reopen
it specifying another block size.

The C language supports these two file types,
but with much more versatility and power. It also
supports a third type of file -- a "directory" file,
which is essentially a block file, with records as
described by the struct in the header file dirent/h.

Also, C treats external devices, such as the
ksyboard, monitor and printer, as byte stream files.

There are three files which are always open,
namely "stdin," "stdout," and "stderr.” On most
microcomputers, stdin is the keyboard, and both
stdout and stderr are the monitor screen.

: This scheme gives the
J user the ability to use I/0
““|redirection to substitute
.‘|other devices for stdin
and stdout while keeping
error messages separate
from program output.

Devices like the
keyboard and printer are
|called "character special”

Page 20

or "tty" devices because they do not have full I/0
capabilities. You can't write to the keyboard, for
example, or read stored data from a printer.

So far, the only way we've sent any data to the
printer is by using standard I/O redirection.

But if we open the printer as a file, we can print
anything the printer is capable of printing.

First, we would declare a variable to be of a type
which is called a "file pointer" (pointer to object of
type "FILE") or "file designator," as follows:

FILE “*printer;
Of course, the variable doesn't have to be

"printer." It could be "fred," "laser_jet," "pr," or any
other legal variable name you care to use.

Then we would open the file using the standard
fopen() function, as follows:

" on

printer = fopen("*pr", "w");

We use "*pr" here because that is the name
TRS/LS-DOS uses for the printer device. If you are
using some other type of system, you need to use
that system's device name (e.g.: "LPT1:" for MeSs-
DOS). The printer file is opened in the "w" (write
only) mode for reasons which should be obvious.

Once the printer file is opened, there are a
number of standard functions can be used to send
data to it.

For example, "pute(X',printer);" will cause the
character "X" to be printed.

The standard fprintf() function can be used to
send formatted data to the printer (or any other file
stream, for that matter) in exactly the same way we
have used printf() in the past to send formatted
output to the monitor display.

For example:

fprintf(printer, "%s\n", "Hello!");

TRSTimes magazine 8.2 - Mar/Apr 1995

will cause the string "Hello!" to be printed, and the
printer to advance to the next line.

In fact, every time we have used printf() in the
past, the system has actually been executing
fprintf() similarly to the following:

PRINTF POP AF ;p/u RET address
LD HL,STDOUT ;p/u file ptr
PUSH HL ;put ptr on stack
PUSH AF ;restore RET addr
JP FPRINTF ;go output data

When a routine calls a function, it pushes the
arguments in reverse order before making the call.
This lets the called function see the arguments in
the correct order.

In the fprintf() example above, the first thing
pushed is a pointer to the string "Hello!" Next a
pointer to the control string is pushed, and then the
file pointer. The call to FPRINTF causes the return
address to be pushed.

Thus fprintf() will see the return address at
SP+0; the file pointer at SP+2; the control string
pointer at SP+4, and the pointer to "Hello!" at SP+6.

Hopefully, you now understand how the
assembler code above would convert

printf("control", data);
to
fprintf(stdout, "control”, data);

Each of the three file types (stream, block and
directory) is treated differently, and has its own set
of associated functions.

However, stream and block access aren't totally
discrete as they are in BASIC. There are functions
which enable you to access a file opened as a data
stream as though it was a block file, and vice versa.

Most of you BASIC programmers are going to be
shocked to learn just how limited you've been when
it comes to file access and management.

In BASIC, for example, you can only open a file
for stream output one way. If you're creating a file,
you have to start writing at the first byte. If you
open an existing file, you can only append new data
at the end.

You can also do those things in C if you want,
but you can also move to any desired point in the
stream, read existing data, and/or replace old data

TRSTimes magazine 8.2 - Mar/Apr 1995

virtually at will.

In fact, C offers SIX different ways to handle a
data stream file, not just the one offered by BASIC.

The following program writes a ASCII string to
a disk file and then reads it back in reverse order --
something that can only be simulated in BASIC:

/* proglO.c */

#include <stdio.h>

#option REDIRECT OFF

#option FIXBUFS ON

#option MAXFILES 1

char filename[] = { "prog10/dat:1" };

main(arge, argv)
int arge; char **argv;
{
static FILE
static int

*fp;
size;

if (arge '=2)
{ puts("usage: proglO string");
exit(1); }

if (!(fp = fopen(filename, "w+")))
perror("fopen()"); exit(l); }

size = strlen(argv[1]);
if (fwrite(argv[1],sizeof(char),size,fp) != size)
{ puts("fwrite() error"); exit(l); }

while (size)
{ fseek(fp, (long)--size, 0);
pute(gete(fp), stdout); }

pute(\n', stdout);
felose(fp);
remove(filename);

}

After we use some non-standard Pro-MC options
to reduce the final program size, we declare and
initialize the variable "filename" as a char array
large enough to hold the file name we'll be using.

Inside main(), we declare the static variable "{p"
to be of type pointer to "FILE," and the static
variable "size" to be of type int.

Now we check the command line to ensure there
are two arguments. The first, of course, will be the
program name, and the second will be the string we
wish to store on disk, then read back and display
backwards.

Note a slight programming style change with
this statement. The closing brace isn't on a line by

Page 21

itself but is on the same line as the last statement.

Personally, I think it's clearer to put the braces
on a separate lines, but this way saves space. Of
course, the compiler doesn't care, since it ignores all
white space characters anyway.

Look at "exit(1);". This causes immediate
program termination and return to TRS/LS-DOS
Ready. The argument is non-zero to indicate an
abort. A zero indicates successful completion.

This convention is valid across all platforms. On
the TRS-80, a non-zero value is useful because if the
program is invoked from a JCL file, a non-zero
return value will cause the JCL to terminate.

Next we open the file "prog10/dat:1" in the "w+"
mode. If you'll refer to the docs for fopen(), you'll see
where this allows us to both read and write to the
file. Also, if the file exists, it will be truncated (all
data erased). If the file does not exist, it will be
created.

If you want the file to exist somewhere other
than Drive 1, you need to change the drive number
in this string. Alternatively, as an "exercise for the
reader," you could eliminate this initialization of
"filename," and have main() take the file name
and/or drive number as command line arguments,
and build the "filename" string using command line
data.

If fopen() returns a NULL pointer, the file could
not be opened. If you'll refer to the docs, you'll see
where the associated error number will be stored in
the system's global "errno" variable; so perror() can
be used to report the specific error.

Next we use the standard strlen() function to get
the length of the string in argv[1] and assign it to
"SiZe.“

Now fwrite() is used to write the string to the
file. If you'll look at the docs for fwrite(), you'll see
that, if successful, this function returns the number
of data items (chars, in this case) actually written.

If there's an error, however, fwrite() doesn't put
the error number in "errno;" so we can't use perror().
Instead, we have to make up our own error message.

The null character at the end of the string will
not be written to the file because we told fwrite() to
write "size" characters, and strlen() doesn't count a
string's terminating null.

We could have performed a virtually identical
Page 22

write using:
fprintf(fp, "%s", argv[1]);

If you choose this method (and I hope you'll try
both ways), the string's terminating null character
will be written to disk. You'll also have to change
the error check, since fprintf() would return one (one
item printed) if successful, and EOF (-1) if an error
occurred.

Now we set up a "while" loop governed by the
"size" variable.

The location of bytes in a file is "base zero," just
as with arrays. Thus the first byte in a file is byte
#0, and the 15th byte is byte #14. This is why "size"
is pre-decremented before it is sent to fseek().

If you'll look at the fseek() docs, you'll see how
easy it is to step to any portion of the file within the
range of a long int (plus or minus 2 gigabytes) either
from the start, the current position or the end of the
file.

What this loop does is point to the file bytes in
reverse order (as determined by the value of "size")
via fseek(), read the pointed-to characters via getc(),
and display them on the monitor screen via putc(.

Note the pre-decremented value of "size" is cast
to a long to satisfy the requirements of fseek(). Had
we failed to do this, fseek() (and therefore the
program) would fail.

The resulting disk reads will be slow because
fseek() in combination with an update mode causes
the buffer to be flushed and the entire disk sector
read anew for each byte read.

After the loop is exited, an ending newline
character is sent to the screen via putce().

Finally, the file is closed and then removed via
fclose() and remove(), respectively. If you'll look at
the docs, you'll see files must be closed before they
can be remove()'d or unlink()'ed.

Now compile prog10.c, and invoke it as follows:

prog10 sdrawkecab si siht

Hey! It didn't work!
message. What happened?!!!

You got the "usage"

You input FOUR command line arguments,
dummy, not two; so the "arge!=2" check aborted the
program,

TRSTimes magazine 8.2 - Mar/Apr 1995

Rats! You mean this silly program can only
work with one word? Let's find out. Try entering
this:

progl0 "pu evig I ro krow retteb siht"

Ah. Much better. And you learned you can use
quote marks to delimit an ASCII string on the
command line.

Basically, there are four things you can do to a
byte stream file: read, write, append and/or update.
"Append" means new writes go to the end of the file.

"Update" means you can both read and write to the
file.

As I mentioned previously, there are six
different ways ("modes") a byte steam type file can
be opened.

"r" read only;
"w" write only -- if file exists, truncate it (erase
all data and start writing at byte #0); or create new

file for writing;

"a" append -- open existing file for appending, or
create new file for writing;
4" open for update;

"w+" truncate existing file or create new
file for update; and

Ila+"
(appending).

open or create for wupdate

The "r" mode is the equivalent of OPEN"I" in
BASIC. The "a" mode corresponds to OPEN"QO".
The "w" mode is the same as if, in BASIC, you

KILLed the file, and then created it anew via
OPEN"QO".

You cannot use "r" or "r+" to create a file.
Obviously, a file has to be created and written to
before it can be read.

Also, there are some restrictions on how a file is
accessed in an "update" mode. You may not read
immediately after a write without first calling
fseek() or rewind() to flush the file buffer and update
the drive control table. If a read of any kind returns
EOF, you must call cleareof() before attempting
another read operation.

You may not write immediately after a read
without an intervening fseek() or rewind().

TRSTimes magazine 8.2 - Mar/Apr 1995

O.K. Enough about byte stream type files for
now. Let's look at how directory files are accessed.

Progll.c below is taken from a larger program
which I wrote out of frustration over how BACKUP
copies individual files in the wrong order.

While David Goben's FBACKUP does process
files in the correct sequence, it's buggy and not
reliable enough to use when important data is
involved.

But FBACKUP did provide the inspiration
behind my BYDATE utility, of which the following
code, which handles the reading of directories, is
part.

/* progll.c */

#include <stdio.h>

#include <dirent.h>

#include <stat.h>

#include <time.h>

#include <ustat.h>

#option INLIB

#define CTRL_S0x13

#define RECD struct record

voidreport();

RECD { long size;
long date;
char name[15]; }

*array;

main(arge, argv)
int arge; char **argv;
{ register int count;

if Carge =2 | | argv[1][0]!="")
{ puts("usage: progll :d"); exit(EOF); }
{ struct ustat ubuf;
if (ustat(argv[1]{1] - '0', &ubuf))
{ perror{ "ustat()"); exit(EOF); }
}

if (!(array = calloc(256, sizeof(RECD))))
{puts("Not enough memory"); exit(EOF); }

count = get_dat(get_names(argv[l]));
realloc(array, count * sizeof RECD));
report(count);

free(array);

int get_names(drv_nam)
char *drv_nam;
{ RECD *this;

Page 23

DIR

struct dirent

*dirp;
*dptr;

if (!(dirp = opendir(drv_nam)))

{

puts("opendir() error"); exit(1); }

this = array;

while (dptr = readdir(dirp))

{ if (!(strfind(dptr->d_name, "/SYS", 0)))
{ strepy(this->name, dptr-
>d_name);
++this; } }
closedir(dirp);

return this - array;

int get_dat(count)

int count;

{ RECD
struct stat
register int

*this, *limit;
sbuf;
kill = 0;

this = array;
limit = array + count;

while (this < limit)

{

}

if (!(stat(this->name, &sbuf)))
{ this->size = sbuf.st_size;
this->date = sbuf.st_mtime; }

else

{ this->date = OxTfffffffL;
++kill; }

++this;

gsort(array, count, sizeof(RECD), compare);
return count - kill;

int compare(a, b)

RECD

*a] *b,

{ if (a->date > b->date)

return 1;

else if (a->date < b->date)

else

return -1;

return stremp(a->name, b->name);

void report(count)

int count;

{ structtm *tbuf;
RECD *this, *limit;
register int c;
long tl_bytes = OL;

this = array;
limit = array + count;

while (this < limit)

Page 24

printf("%s\t", this->name);

if (strlen(this->name) < 8)
putchar("\t');

tbuf = localtime(&this->date);

printf("%02d/%02d/%02d %02d:%02d",
tbuf->tm_mon + 1,
tbuf->tm_mday,
tbuf->tm_year,
tbuf->tm_hour,
tbuf->tm_min);
printf("%91d bytes\n", this->size);
tl_bytes += this->size;
++this;
if (inkey() == CTRL_S)
do ¢ = inkey();
while (lc | | ¢ == CTRL_S);

}
printf("\n%3d files, %ld total bytes\n",
count, tl_bytes);
}

Progl1.c makes fairly extensive use of allocated
memory; so it's probably a good time to explore that
subject a little deeper.

Pro-MC provides a number of functions to
enable your programs to allocate, deallocate and use
RAM for any purpose.

The principal ones are:

alloc(size) -- this NON-STANDARD function
reserves "size" (up to 65,535) bytes of RAM.

malloc(size) -- reserves a zeroed block "size" (up
to 65,535) bytes in size and, while the function name
is standard, what it does is NON-STANDARD.

calloc(number, size) -- reserves a zeroed block
of RAM large enough to hold "number" of elements
of "size" bytes each. The product of "number" and
"size" must not exceed 65,535. For example,
calloc(50, sizeof(int)) would null out and reserve 100
bytes of RAM -- enough to hold 50 two-byte short
ints.

realloc(ptr, size) can be used to change
(increase or decrease) the number of bytes in the
block pointed to by "ptr." The 65,535 limit applies.

freemem() is a NON-STANDARD function
which returns the size in bytes of the largest block
of memory which can be allocated by your program.

free(ptr) releases (deallocates) memory
previously allocated by alloc(), malloc(), calloc() or
realloc(), and pointed to by "ptr."

There are a couple of others [brk() and sbrk(]
but I don't recommend them.

In standard C, malloc() doesn't zero the allocated
memory block, and alloc() doesn't even exist.

TRSTimes magazine 8.2 - Mar/Apr 1995

Alloc() is one of Pro-MC's holdovers from the old
"Small C" days (before full C compilers for the Z80
microprocessor or the TRS-80 microcomputer were
available) to let Small C code be upward compatible.

Thus, if you're using a MeSs-DOS or other
computer to compile these example programs, you
would use malloc() whenever you see alloc() used in
this series. Also, be aware that calloc() is the only
STANDARD way to obtain a zeroed memory block.

Progll.c makes much more use of standard
header files than we've ever done before. If you'll
look at the docs for each, you'll see:

dirent.h contains definitions for the directory
I/0 functions;

stat.h defines a struct for storing certain
information about a file [see docs for fstat()];

time.h defines a struct for storing data about the
time (e.g., month, day, minute, etc.); and

ustat.h defines a struct for storing data about a
disk drive (e.g., free space, number of directory slots
in use, etc.).

It would be a good idea to list each of these
header files out to your printer so you can see what
data they contain, and how the progll.c accesses
and uses that data.

After some defines and a prototype for report(),
we declare "array” to be a pointer-to-struct of type
"record." This type of struct contains members
which can store the size of a file in bytes, the UNIX
time the file was created or last updated, and a 15-
char array to hold the file name.

Notice no memory has been allocated to hold the
actual data. The only thing that has been declared
is a pointer to a struct of type "record." This
declaration tells the compiler how to handle the data
which exists at the RAM address which will be
assigned to "array" later in the program.

Inside main(), we first check the command line
to make sure there are two arguments, and the
second argument starts with a colon character. If
either of these tests are FALSE, the user is informed
via the "usage" message.

Now we declare and use a variable which is
unique to a specific block of code within a function.

Braces define the block in which "ubuf" exists.
TRSTimes magazine 8.2 - Mar/Apr 1995

No code outside this block -- not even other code in
main() -- can access "ubuf," which is created on the
stack when the block is entered and which ceases to
exist after the last line of code in the block is
executed.

The reason "ubuf" is created this way instead of
as part of main() is because the original program
needed all the memory it could get for a large disk
buffer. Because we're still in main(), this is the only
way the memory used by "ubuf" can be released after
"ubuf" is no longer needed.

Yes, I could have used alloc(), but this is simpler
and requires less code.

What actually happens is that the code in this
block first reserves enough stack space to hold a
struct of type "ustat." Then it passes the drive
number and address of "ubuf" to the ustat() function,
and checks ustat()'s return code.

If there is an error (e.g., the specified drive
doesn't exist), ustatQ) returns EQF (-1). This non-
zero value causes the "if" statement to evaluate to
TRUE; so the error will be reported and the program
aborted with an error message.

If there is no error, then we've come to the end
of the code block; so "ubuf" simply ceases to exist.

The purpose of this call to ustat() is to make sure
the drive specified on the command line is valid and
ready.

Next, calloc() is used to allocate a block of zeroed
RAM large enough to hold 256 structs of type
"record." If the requested RAM cannot be allocated,
the program is aborted with an error message.

Why 256? That's the maximum number of
records TRS/LS-DOS can have in a directory file.
Other platforms may require a larger number.

If calloc() is successful, it returns a pointer to the
allocated block which is then loaded into the global
variable "array."

It's extremely important for you to understand
that "array" now points to the first element of an
array of 256 structs of type "record." There's no data
in the structs yet, but they're there.

If you don't understand this, go back and look at
the way "array" was declared, and at how "array"
received it's value (namely a pointer to a block of
allocated RAM).

Page 25

In actuality, not all the elements in this array
will be used. Let's follow the call to get_names() to
find out why.

The argument passed to get_names() is a pointer
to the ASCII string containing the drive number.

Inside get_names() we declare "this" to be a
pointer to struct of type "record;" "dirp" to be a
directory file pointer,; and "dptr" to be a pointer to
struct of type "dirent."

Now the directory file on the specified drive is
opened. If it cannot be opened, opendir() will return
the NULL pointer; which will cause program
termination with an error message.

Then "this" is pointed to the first element of the
"array" array, and each directory record is read in
sequence.

In each case, the file name from the directory
record is checked via the standard strfind() function
to see if contains the string "/SYS." If so, the record
is skipped.

If this is a non-/SYS file, it's name is copied to
the "name" member of the "array" element pointed
to by "this," and "this" is incremented.

In other words, /SYS files are ignored.

When all directory records have been read, the
readdir() function returns the NULL pointer, which
causes the "while" loop to be exited, and the
directory file is closed.

The next statement -- "return this - array" --
utilizes the automatic scaling of variables in C.

Remember, both "this" and "array" are pointers
to struct of type "record." Thus, after "array" is
subtracted from "this," the initial result will be the
number of bytes of RAM taken up by the structs of
type "record" which were actually used.

But this will automatically be divided by "sizeof
(struct record);" so the return value will be the
number of non-/SYS file names read from the
directory.

For example, suppose 20 file names were stored.
Because each struct of type "record" is 23 bytes,
"this" will contain a RAM address which is 20 x 23 =
460 higher than the RAM address stored in "array."

Because of scaling, this difference (460) will
automatically be divided by 23 [sizeof(struct

Page 26

record)], yielding a final result of 20, the value
which will be returned by the get_names() function.

Thus, the get_names() function does two things:
it stores all non-/SYS file names in the "name"
members of elements of the "array" array of structs
of type "record;" and it returns the number of the file
names it has stored.

Since every directory must contain at least two
/SYS files (BOOT/SYS and DIR/SYS), we will never
use all 256 elements of "array." The most we could
possibly ever use is 254.

Now, back in main(), get_name()'s return value
is passed to get_dat(; so let's follow that call.

Here we declare two pointers to struct of type
record, a struct of type "stat" and we declare and
initialize the integer "kilL."

"This" is then initialized to point to the first
element of "array," and "limit" is made to point to the
first byte of the "array" element AFTER the last
element actually used.

Thus, the "while" loop will step through only the
elements of "array" which are actually being used.

In this loop, stat() is used to obtain information
about each file. Each time stat() is successful the
"size" and "date" members of the struct pointed to by
"this" will be assigned data which stat() put in "sbuf"
-- namely the file size and last modification time and
date.

If statQ) returns an error, the file name is
invalid; so the highest possible date and time is
loaded into "this->date" and the "kill" counter
incremented.

After all the data has been obtained, the array is
sorted. If you'll look at compare(), you'll see the
sorting is done by time/date in ascending order, and
alphabetically within identical time/dates.

This causes any invalid array entries (in the
extremely unlikely event there are any) to be sorted
to the top.

Back in get_dat(), the number of valid entries is
returned and, back in main(), this value is loaded
into the variable "count."

Now the actual amount of RAM used by valid

"array" entries is calculated by multiplying the
number of valid entries times sizeof(struct record).

TRSTimes magazine 8.2 - Mar/Apr 1995

This value, along with the pointer to the block,
is passed to realloc(), which reduces the amount of
allocated RAM to what is actually needed, thereby
freeing the RAM not needed or used by "array."
Again, this was done because the original program
needed all the free memory it could get.

Now we call report(), which provides a listing, in
date and time order, of all non-/SYS files on the
specified drive.

Again, we use "this" and "limit" to govern a
"while" loop, and declare "tbuf" to be a struct of type
"tm" and declare and initialize a long int variable
named "tl_bytes."

The first thing done in this loop is to send the file
name to stdout (the monitor screen). If the name is
too short, an additional tab character is also sent to
make the listing line up properly.

Next, the last-modification date from the "array"
element pointed to by "this" is sent to localtime().

This standard function breaks down the UNIX
time stored in "this->date" to the year, month, day,
hour, minute, day of the week, ete., and stores this
data in struct of type "tm" pointed to by "tbuf."

Now data from "tbuf” is displayed in a formatted
manner, namely "MM/DD/YY HH:MM." You chaps
in Europe, Australia and most other places may
wish to change the date format to the proper
"DD/MM/YY" by swapping the two references to
"tm_mday" and "tm_mon." If you live in the former
Soviet bloc, you may wish to put the references to
the "YY/MM/DD" order you're more familiar with.

Next the number of bytes in the file is displayed
and accumulated in "tl_bytes," and "this"
incremented to point to the next element of"array."

Now we use the NON-STANDARD inkey(
function to see if any keys are being pressed. If so,
the key value returned by inkey() is checked to see
if it's the <CTRL><S> combination, which is the
standard "stop" combination.

TRS-80 wusers are accustomed to using
<SHIFT><@>; so if you want you can change
CTRL_S to PAUSE, and replace the #define line for
CTRL_S to "#define PAUSE 0x60." Personally, I
find <CTRL><S> easier to use on my non-clustered-
arrow-keys keyboard, but to each his own.

Anyway, if <CTRL><S> is detected, the
following "do" loop keeps scanning the keyboard
uatil some key other than the <CTRL><S>

TRSTimes magazine 8.2 - Mar/Apr 1995

combination is detected.

After all files have been listed, a final report line
containing the number of files and their total
number of bytes is displayed before the function
returns to main().

Finally, back in main(), the calloc()'ed and then
realloc()'ed block of memory pointed to by "array” is
released, and return made to TRS/LS-DOS Ready.

Type in and compile progll.c now, and see how
it runs. Save the source file, because next time the
full bydate.c program will be presented to show how
block disk I/0 is performed; and some of the code in
progll.c will be reused.

Now I am now issuing a call for "help" from
those readers following this series.

If you have a short or medium size BASIC
program you like a lot, and want to have it converted
to C to run faster and/or better, please send it to me.
These programs must be something you've written
yourself, or otherwise be clearly in the public
domain -- not copyrighted commercial programs.

Also, if you have an idea for a program --
something you want your Model 4 to do that it can't
do now -- perhaps something you've seen other
computers do that you'd like to be able to do on the
Model 4 -- please write me with the idea.

This will not only help me produce articles to
help you and others learn C, but could also result in
useful new programs to help keep the Model 4 alive.
After all, if it's something you want, the chances are
others will want it, too.

TRSuretrove BBS
8 N 1-24 hours
Los Angeles

| 213 664-5056

where the TRS-80 crowd meets

Page 27

A Few Trouble Shooting Efforts

by Roy T. Beck

Some of you may know
that I have some degree of
expertise on TRS hard drives.
Let me tell you about a case
where a little knowledge was
dangerous.

Recently, (Allen S.) a TRS
Model 4 user acquired some
hard drives, and wanted to get
them operating. He contacted
Stan Slater, who gave my phone number to Allen. In
the course of time, we got together by phone, and I
attempted to help him. Initially, he wanted to
operate his 5 Meg master drive. I advised him on
this, especially how to connect the infamous "three
wires" RS put into their master drives. Those three
wires were soldered directly to points on the pc
board of the bubble, and the locations varied with
the make and model of the bubble. He got the master
going OK, and then wanted to connect up his slave
drive. This is where my tunnel vision came into
action. Allen said "slave drive", and I immediately
assumed he was referring to the slave drive which
RS sold to accompany their 5 Meg master hard
drive. That slave contained a power supply, a
bubble, a fan, a small pc board containing one and
only one chip, and some lights on the front. It also
had a trick circuit consisting of a relay with a 12 V
dc coil which was energized by 12 volts from the
master drive. This relay then turned on the 110 V ac
for the power supply in the slave, thus avoiding the
need to turn on a separate power switch on the
slave.

Just to further complicate matters, RS added
"four wires" which were soldered to points on the pc
board of the bubble in the slave, three of which
corresponded to the "three wires" in the master, and
the fourth wire was involved with the 12 V dec relay.
RS didn't bother to match the colors of the wires in
the slave with the master, so corresponding
functions had different colored wires in the master
and the slave box.

In attempting to assist Allen, I told him to look
for the little pc board and the "four wires". He swore
up and down that there was no such pc board in his
slave, and I concluded someone must have removed
the little board and disposed of it. At the time of our
communications about the slave, I was located in a
hotel room in Richmond, California, and had no
access to my notes, manuals, etc. This also

Page 28

complicated communications between us.

Eventually, it occurred to me to ask him to verify
the Cat No on the bottom of the slave drive to be
sure it was the one that was designed to work with
the 5 Meg drive. SURPRISE! The catalog number,
(25-1041) was totally wrong for what I expected, but
fortunately I did recognize it for what it was. At
some time in the past, RS built up some outboard
hard drive packages for use with their 1000 series
machines, but they maintained enough
compatibility that these same outboard drives would
also function with Models I, ITI and 4/4P machines.
The outboard unit consisted of two small boxes
which stacked on each other. Each box was of the
height and width to accommodate a half height hard
drive, and contained a little power supply in the
back end of each one. One box contained only a hard
drive controller, and was identified as Catalog
number 26-1138, and the other housed only a half
height bubble, the 25-1041. It required one of each
box to make a functioning package, and, while I
have worked with these units, it never occurred to
me to think of the box containing the bubble as a
"slave". But that was what Allen had acquired, and
not knowing otherwise, he referred to the unit as a
slave, and expected to make it work as a slave to the
old 5 Meg box.

Now, knowing what Allen has, I can assist him
in making the "slave" drive actually function as a
slave to his 5 Meg unit. I have not done this before,
but having enough manuals, wiring diagrams and
whatnot about, I believe he can indeed make the
small outboard box function correctly as a slave to
the 5 Meg box.

Once I backed up and took a broader view of the
problem, all came clear, and I expect success the
next time Allen and I talk. As a matter of fact, I am
out of town at the moment, being located this week
in Mendocino County, northern California.

A little later: Well, T heard from Allen again,
and wouldn't you know, he still had a problem!
When I next spoke to him, he had smoked a resistor
in his hard drive controller box. It all goes back to
Radio Shack's infamous three wires monkey
business, in which they soldered wires directly to
points on the bubbles in both their master and slave
drive boxes. Their arrangements were OK and
logical as long as only the original Tandon drives

TRSTimes magazine 8.2 - Mar/Apr 1995

were used in the original boxes. Their circuits
worked because they were able to make use of
unused pins on the 34/C and 20/C cables to the
bubbles. Allen got in trouble because he had
installed a 20 meg bubble of unknown ancestry in
the small slave box. Unfortunately, the R/S design
applied 12 V dc to a line which was evidently
grounded in the strange bubble, leading to serious
overheating of the 15 ohm resistor which was in
series with the 12 V. That worked fine in the old R/S
slave box, but Allen wasn't using one of the old R/S
slave boxes, he was using the 25-1041 box which was
intended to work with the 26-1138 hard drive
controller, and that "slave" box was not equipped
with the 12 volt relay. Probably the line with 12
volts on it was grounded in the 25-1041. To solve
Allen's problem, I had him disconnect the 15 ohm
resistor 1in the master which fed the 12 V, as his
setup didn't require 12 V. Allen and his wife
attempted to unsolder the 15 ohm resistor, but
between them they broke it in two. Oh well, the
purpose was accomplished, if crudely!

This step allowed Allen to operate the 25-1041
box as a slave to his Model 4 and its master HD box.
But now the "slave box" reported it was write
protected, and could not accept formatting. Oh,
yeah, the three wires again! Allen was using a
master box with the old, large HDC board in it, and
without the proper connection of the three wires in
the slave, it believes the slave bubble is write
protected. I thought a bit and told Allen how to
install a resistor in the master which would pull the
write protect line for the slave high, which is the
ron-write protected condition. I also had him cut a
trace so no 5V dc would be fed back into the strange
bubble in the "slave" box. Of course, these
instructions required me to tell him where to solder
the resistor. I had selected two pins on a buffer chip,
because the 5V was available on pin 20, and pin 15
1s the write protect circuit for the slave drive. The
only problem with my instructions was that Allen, it
turned out, did not know how to count pins on a
chip. GRRR. Anyway after a while, I got him to draw
a sketch of a chip and locate the two pins on the
sketch. I hope he soldered the resistor to the correct

pins. Fortunately, TTL logic is fairly forgiving, and .

I don't think he can hurt anything. We'll see.

My Experience as a Beta Tester

Recently I had the pleasure of being a beta tester
for a hardware product, and it was most interesting.
Actually, the beta testing aspect of it was sort of
inadvertent; the sponsor of the product actually
wanted me to simply review the new instruction

TRSTimes magazine 8.2 - Mar/Apr 1995

manual for his product, which was in the process of
being rewritten. In order to do the review, he of
course gave me a complete hardware package to
work with, as I had to understand how the
equipment functioned in order to give the manual a
careful once over.

The device is a printer sharing network which
allows several computers to share access with
several printers. In fact, the network can be
expanded to a total of 32 computers plus printers,
although the system would probably suffer from
severe queuing delays if that many machines were
actually connected together. Functionally, the
system resembles a SCSI bus, in that all the devices
share a common bus, are each identified with an
unique ID, and can talk with any other device on the
bus. A significant difference is that the bus consists
of ordinary 4 wire telephone cable with RdJ-ll
modular plugs on each end of each piece of bus. The
system can have a total length of 1200 feet, and can
move data at 30kbytes per second.

Because the system can talk between devices,
and the computers are devices, the system can
readily move files between computers, as well as
allow any computer to use any printer. A typical
office application might include printers dedicated to
specific tasks. For example, one printer might do
nothing but address envelopes, another might be a
dot matrix assigned to printing multi-part invoices,
and a third might use letterhead paper for
correspondence. I am sure you could think of other
dedicated applications. Within the 32 device limit, a
number of computers in different offices could all
share the printers as needed.

To continue with my adventure. I took the basic
hardware and one expansion package with me when
I went to northern California last week, and my
total of functioning equipment consisted of a 486
machine and (believe it or not), an Epson MX-80
F/T, the oldest Epson in existence! My first task was
to read the draft of the new manual which had been
supplied to me. I went over it with a red pencil, and
did some significant marking-up. In the process, I
acquired a fair knowledge of what the system was
supposed to do. I carefully avoided reading the old
manual which came with the system, as I wanted to
read the new manual from the point of view of a
new, ignorant purchaser of the system.

After reading the new manual, I ventured to
connect up the hardware, following the instructions
in the new manual. I then powered up the system,
and immediately knew I was in trouble! Each
module of the system is equipped with an LED,

Page 29

whose blinking pattern corresponds to a status. Only
one module would blink at me at all, and its signal
indicated it wasn't seeing any communication with
the remaining parts of the system, which in this case
was simply a length of wire and the module attached
to the computer. Oh, dear....

Since the 486 and the Epson MX-80 had been
talking (slowly) to each other before, I reconnected
the MX-80 via its parallel cable to verify it and the
486 still functioned. Yup, all OK in that mode.

Since the hardware loaned to me in effect had
spare parts, I swapped computér modules, I swapped
cables, and I swapped printer modules since he had
loaned me an extra printer module. No soap, no
communications between any two modules.

At this point, I gave up and called the customer
service tech and got a very savvy man on the line. He
coached me through swapping of bits and pieces
again, to verify the trouble. He then asked me if I
had any more cables available. It happened, there
was one more in the extra printer package which I
had not tried. We tried that, and Yeah!, everything
came to life. To shorten the story, the trouble was
that the two modular plugs on each of the first two
cables were reversed relative to each other. Think of
it as pin #1 of one plug was corninected to pin #4 of the
other plug, and vice versa. In effect, it was connected
up as a sort of a null modem, whereas the hardware
requires pin 1 to be that all through the system, with
#2, #3, and #4 wired in similar fashion. By luck, the
third cable had been constructed correctly, and I
could make the system work. In fact, I am using it
here at the moment to drive my Laser 4. Now that
everything in the hardware is working satisfactorily,
I can get back to editing the new manual.

I have a rule which I apply in all
troubleshooting. Almost always, there is one, lone
cause of the trouble, which when identified, logically
explains all the observed symptoms and troubles.
Find that one glitch, and you usually have the
problem licked. Of course, in some cases the original
trouble causes progressive failure in the system.
This makes the trouble shooting more difficult, but
the principle still applies. Look for that one, original
trouble, and you stand a good chance of solving your
problems.

Page 30

PUBLIC DOMAIN
GOOL GAMES
FOR MODEL I/11I i
GAMEDISK#1: amazin/bas, blazer/cmd, break-
out/cmd, centipede/cmd, elect/bas, madhouse/bas, ||
othello/emd, poker/bas, solitr/bas, towers/cmd

GAMEDISK#2: cram/cmd, falien/emd, frank-

adv/bas, iceworld/bas, minigolf/bas, pingpong/bas,
reactor/bas, solitr2/bas, stars/cmd, trak/cmd

GAMEDISK#3: ashka/emd, asteroid/cmd,
crazy8/bas, french/cmd, hexapawn, hobbit/bas,
memalpha, pyramid/bas, rescue/bas, swarm/cmd

GAMEDISK#4: andromed/bas, blockade/bas, cap-
ture/cmd, defend/bas, empire/bas, empire/ins,
jerusadv/bas, nerves/bas, poker/cmd, roadrace/bas
speedway/bas

Price per disk: $4.00

TRSTimes - PD GAMES
5721 Topanga Canyon Blvd. #4
Woodland Hills, CA 91367

FOR SALE

TRS-80 MODEL 4
TRS-80 MODEL 4P
S MEG HARD DRIVE
TRS-80 MODEL 100

" ALL IN GOOD WORKING ORDER

$100 PER ITEM
(+ shipping)

CONTACT:
Lance Wolstrup
5721 Topanga Canyon Blvd. #4
Woodland Hills, CA 91367

(818) 716-7154

TRSTimes magazine 8.2 - Mar/Apr 1995

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf

