
Using Professional OS-9 v2.4 (1991)(Microware Systems Corp).pdf

USING
PROFESSIONAL

OS-9®

i Using Professional OS-9

COPYRIGHT AND REVISION HISTORY

Copyright 1991 Microware Systems Corporation. All Rights Reserved. Reproduction of this document, in part or
whole, by any means, electrical, mechanical, magnetic, optical, chemical, manual, or otherwise is prohibited, without
written permission from Microware Systems Corporation.

This manual reflects Version 2.4 of the OS-9 operating system.

Publication Editor: Walden Miller, Kathie Flood, Ellen Grant
Revision: D
Publication date: March 1991
Product Number: UPR-68-NA-68-MO

DISCLAIMER

The information contained herein is believed to be accurate as of the date of publication. However, Microware will
not be liable for any damages, including indirect or consequential, from use of the OS-9 operating system, Microware-
provided software or reliance on the accuracy of this documentation. The information contained herein is subject to
change without notice.

REPRODUCTION NOTICE

The software described in this document is intended to be used on a single computer system. Microware expressly
prohibits any reproduction of the software on tape, disk or any other medium except for backup purposes. Distribution
of this software, in part or whole, to any other party or on any other system may constitute copyright infringements
and misappropriation of trade secrets and confidential processes which are the property of Microware and/or other par-
ties. Unauthorized distribution of software may cause damages far in excess of the value of the copies involved.

For additional copies of this software and/or documentation, or if you have questions concerning the above notice, the
documentation and/or software, please contact your OS-9 supplier.

TRADEMARKS

OS-9 and Microware are registered trademarks of Microware Systems Corp.
UNIX is a trademark of Bell Laboratories.

Microware Systems Corporation • 1900 N.W. 114th Street
Des Moines, Iowa 50325-7077 • Phone: 515/224-1929

Using Professional OS-9 ii

Table Of Contents Table Of Contents

An Overview of OS-9
What Is an Operating System ?.. 1-1
Using OS-9 as Your Operating System ... 1-2

Using OS-9’s Functions... 1-2
Storing Information.. 1-3
Multi-tasking and Multi-user Features .. 1-4
The Memory Module and Modular Software .. 1-6

Starting OS-9
Booting OS-9 ... 2-1
Backing Up the System Disk ... 2-3

Formatting a Disk .. 2-3
The Backup Procedure... 2-5

Directories Contained on the System Disk .. 2-8

Basic Commands and Functions
Learning the Basics.. 3-1
Logging on to a Timesharing System .. 3-2
An Introduction to the Shell... 3-3
Using the Keyboard ... 3-5

The Page Pause Feature ... 3-6
Basic Utilities... 3-7

Table
Of

Contents

iii Using Professional OS-9

Table Of Contents Table Of Contents

The Help Utility and the -? Option .. 3-8
Free and Mfree... 3-9

The OS-9 File System
OS-9 File Storage... 4-1

Text Files ... 4-3
Executable Program Module Files... 4-3
Random Access Data Files .. 4-3
File Ownership... 4-4
Attributes and the File Security System .. 4-4

The OS-9 File System.. 4-6
Current Directories .. 4-7

The Home Directory .. 4-7
Directory Characteristics ... 4-8

Accessing Files and Directories: The Pathlist ... 4-9
Basic File System Oriented Utilities.. 4-11

Dir: Displaying the Contents of Directories .. 4-11
Chd and Chx: Moving Around in the File System .. 4-13
Climbing Directory Trees .. 4-14
Using the Pd Utility ... 4-16
Using Makdir to Create New Directories .. 4-16
Rules for Constructing File Names.. 4-17
Creating Files ... 4-17
Examining File Attributes with Attr .. 4-18
Listing Files ... 4-19
Copying Files ... 4-20
Dsave: Copying Files Using Procedure Files .. 4-22
Del and Deldir: Deleting Files and Directories ... 4-25

The Shell
The Function of the Shell... 5-1
The Shell Environment .. 5-3

Changing the Shell Environment ... 5-4
Built-In Shell Commands .. 5-6
Shell Command Line Processing ... 5-7

Special Command Line Features ... 5-8
Execution Modifiers .. 5-9
Additional Memory Size Modifier .. 5-9
I/O Redirection Modifiers.. 5-10
Process Priority Modifier... 5-12
Wildcard Matching .. 5-13

Using Professional OS-9 iv

Table Of Contents Table Of Contents

Command Separators ... 5-14
Sequential Execution ... 5-15
Multi-tasking: Concurrent Execution .. 5-15
Pipes and Filters... 5-16
Un-named Pipes ... 5-17
Named Pipes .. 5-17

Command Grouping .. 5-19
Shell Procedure Files ... 5-20

The Login Shell and Two Special Procedure Files: .login and .logout 5-21
The Profile Command.. 5-22

Setting up a Time-Sharing System Startup Procedure File ... 5-23
The Password File.. 5-24

Creating a Temporary Procedure File.. 5-25
Multiple Shells ... 5-27

The Procs Utility .. 5-28
Waiting For The Background Procedures ... 5-30
Stopping Procedures .. 5-31

Error Reporting .. 5-33
Running Compiled Intermediate Code Programs.. 5-34

Making Files
The Make Utility.. 6-1

Implicit Definitions.. 6-3
Macro Recognition .. 6-4
Make Generated Command Lines ... 6-6
Make Options... 6-6
Examples of the Make Utility .. 6-7

Example One: Updating a Document .. 6-8
Example Two: Compiling C Programs.. 6-9

Refining the C Compiler Example... 6-9
Example Three: A Makefile that Uses Macros.. 6-11
Example Four: Putting It All Together .. 6-12

Making Backups
Incremental Backups.. 7-1
Making an Incremental Backup: The Fsave Utility... 7-2

The Fsave Procedure.. 7-3
Example Fsave Commands.. 7-4

Restoring Incremental Backups: The Frestore Utility ... 7-6
The Interactive Restore Process... 7-7
Example Command Lines.. 7-11

Incremental Backup Strategies .. 7-12

v Using Professional OS-9

Table Of Contents Table Of Contents

The Small Daily Backup Strategy ... 7-12
The Single Tape Backup Strategy ... 7-13
Use of Tapes/Disks .. 7-14

The Tape Utility... 7-15

OS-9 System Management
Setting Up the System Defaults: the Init Module .. 8-2
Extension Modules .. 8-8
Changing System Modules .. 8-9

Using the Moded Utility .. 8-9
Editing the Systype.d File .. 8-10

Making Bootfiles ... 8-14
Bootlist Files .. 8-14
Bootfile Requirements ... 8-14
Making RBF Bootfiles... 8-14
Making Tape Bootfiles .. 8-15

Using the RAM Disk ... 8-16
Making a Startup File .. 8-17

Initializing Devices .. 8-18
Loading Utilities Into Memory .. 8-20
Loading the Default Device Descriptor ... 8-20
Initializing the RAM Disk ... 8-21
Multi-user Systems .. 8-21

System Shutdown Procedure ... 8-22
Installing OS-9 On a Hard Disk... 8-24

Checking the Hard Disk Device Descriptor .. 8-24
Formatting the Hard Disk .. 8-24
Copying the Distribution Software onto the Hard Disk .. 8-25
Making the Hard Disk the System Boot Disk.. 8-26
Test Booting from the Hard Disk .. 8-26

Managing Processes in a Real-time Environment ... 8-27
Manipulating Process’ Priority .. 8-27
Using D_MinPty and D_MaxAge to Alter the System’s Process

Scheduling ... 8-27
Using System State Processes and User State Processes... 8-28

Using the Tmode and Xmode Utilities .. 8-29
Using the Tmode Utility .. 8-29
Using the Xmode Utility.. 8-30

The Termcap File Format .. 8-31
Termcap Capabilities ... 8-33
Example Termcap Entries.. 8-37

Using Professional OS-9 vi

Preface Preface

Appendices:

A: ASCII Conversion Chart
B: The ROM Debugger
C: Glossary

OS-9® is a powerful and versatile operating system that can help you fully use your 68000 system’s capa-
bilities. OS-9 offers a wide selection of functions because it was designed to serve the needs of a broad
audience. Whether you are a casual user or a professional programmer, you will find many useful features
in OS-9.

Professional OS-9 is designed to provide a friendly software interface for personal computers, educational
systems, and the professional programmer. The Professional OS-9 package includes over 70 utility
programs.

Using Professional OS-9 has been designed for use as a reference and learning guide. It is divided
into three distinct parts. Chapters 1-4 discuss the file structure and utilities available for using OS-9.
Chapter 5, 6, and 7 discuss some of the advanced utilities in detail. Chapter 8 discusses topics of interest
to system managers.

This manual is the basic user reference manual for OS-9. The OS-9 Technical Manual is a companion
manual for advanced programmers who wish to learn about the internal operation and function of the
system.

At first glance, the OS-9 manual set, especially the OS-9 Technical Manual, may seem overwhelming.
Fortunately, you only need to know a fairly small percentage of the material presented in this manual to

Preface

vii Using Professional OS-9

Preface Preface

use OS-9 effectively. You will find that it is easy to learn about OS-9 as you continue to work and
experiment with it.

The secret to getting up to speed quickly with OS-9 is to first identify and learn only the basic, everyday
functions necessary to run applications programs and programming languages.

This manual contains eight chapters:

Chapter 1 is a general introduction to OS-9. It introduces the concept of an operating system and
explains some of OS-9’s basic features.

Chapter 2 describes how to get OS-9 up and running. This includes formatting and backup
procedures.

Chapter 3 helps you get started using the operating system. The more frequently used system
commands are discussed. These are utilities that every user should be familiar with.

Chapter 4 is a detailed explanation of the tree-structured file and directory system of OS-9. This
includes:

• Directories

• Types of files

• File security

• Movement around the file/directory system

Chapter 5 contains a detailed description of the shell, the OS-9 user interface.

Chapter 6 explains the make utility in detail. This utility is used to maintain and regenerate
software from a group of files.

Chapter 7 explains the concept of incremental backups. The OS-9 utilities to create the backups
are detailed here. This chapter also offers two different strategies for making backups.

Chapter 8 contains information of interest to system managers. Some of the topics covered
include setting up your system defaults, making a startup file, and installing OS-9 on a hard disk.

Detailed descriptions of all OS-9 commands are located in the OS-9 Utilities section.

Using Professional OS-9 viii

What Is an Operating System?

An operating system is the master supervisor of the resources and functions of a computer system. Com-
puter resources consist of memory, CPU time, and input/output devices such as terminals, disk drives, and
printers.

OS-9 is a sophisticated operating system for microcomputers. OS-9’s basic functions are to:

• Provide an interface between the computer and the user.

• Manage the input/output (I/O) operations of the system.

• Provide for the loading and execution of programs.

• Create and manage a system of directories and files.

• Manage timesharing and multi-tasking.

• Allocate memory for various purposes.

1

An Overview
of OS-9

Using Professional OS-9 1-1

Using OS-9 as Your Operating System An Overview of OS-9

Using OS-9 as Your Operating System

The most visible function of the operating system is its role as an interface between you and the complex
internal hardware and software functions of the system. OS-9 was designed to make its powerful features
easy to use, even by persons with limited technical knowledge.

Because an operating system provides only part of the overall software necessary to make the computer
useful, application programs such as word processors and accounting packages tend to be the most
frequently used programs. They are not part of the operating system, but they rely heavily on services such
as input and output provided by the operating system. Most application programs are written by users or
obtained from commercial software suppliers.

Similarly, programming languages are tools used to create application programs. These rely heavily on
and are closely related to the operating system.

To help make OS-9 easy to use, a set of over 70 programs called utilities are included. Utilities are not
part of the basic operating system. Instead, they are actually small application programs that provide
essential housekeeping, management, customization, and maintenance functions. Some utilities, such as
the µMACS text editor, are useful, general-purpose application programs.

Using OS-9’s Functions

OS-9’s many capabilities and functions can be used in two basic ways.

The first method uses the utility command set and the shell command interpreter program. This allows
you to type OS-9 commands directly on your keyboard. These commands are translated into the more
complex internal system calls actually required to carry out the desired operations. The OS-9 utilities are
described in detail in the OS-9 Utilities section.

The second method uses system calls. System calls are requests made to OS-9 within programs written in
assembler or a high-level language. These system calls are available to load programs into memory; create
new tasks; create or delete files; read, write, open, or close files; and so on. All OS-9 programming
languages have statements that cause the program to use OS-9 system calls, often in a hidden manner.
System calls are largely of interest to advanced programmers and are discussed in detail in the OS-9
Technical Manual.

1-2 Using Professional OS-9

An Overview of OS-9 Storing Information

Storing Information

Another basic function of any operating system is storing information. Without some way to store and
organize your programs, data, and text, working on a computer would be extremely complicated.

OS-9 organizes all files into organizational structures called directories. A directory is actually a special
file containing the names and locations of each file it contains. Directories can contain files and subdirec-
tories. In turn, these subdirectories may contain other files and subdirectories. This is called a tree struc-
ture, or hierarchical, organization for file storage.

For more information, refer to the chapter on the OS-9 file system.

OS-9 stores information in files and directories located on mass-storage devices such as
floppy disks. OS-9 provides easy access methods for updating, storing, and retrieving files
and directories through standard utilities.

+

Using Professional OS-9 1-3

Multi-tasking and Multi-user Features An Overview of OS-9

Multi-tasking and Multi-user Features

OS-9 is a multi-tasking and multi-user operating system.

Multi-tasking, or multi-processing, allows the computer to run many different programs at the same time.
By rapidly switching from one program to the next, many times per second, programs appear to be running
at the same time.

Each program running on the system is called a task, or process. OS-9 allows you to have one or more
tasks running in the background, while a task is running in the foreground.

A foreground process is a task that requires your interaction. For example, if you are editing a file, it is a
foreground process because you are actively using it. A program that prompts you for information is also
a foreground process because you need to respond to it.

A background process is a task that does not require your attention. For example, if you are printing a text
file, you do not have to supervise the printing process. Therefore you can have the file printing in the
background while you edit another file. This frees the computer from the limitation of doing only one
thing at a time.

OS-9’s multi-tasking capabilities make it possible for efficient memory use, CPU time, and I/O operations
to be shared by all programs without conflict.

A foreground process requires your interaction.

A background process does not require your attention.
+

Editing a file (foreground process)
Listing a file to a printer (background process)
Sorting and merging datafiles (background process)

Typical Multi-tasking Usage:

1-4 Using Professional OS-9

An Overview of OS-9 Multi-tasking and Multi-user Features

Multi-user, or timesharing, operation is a natural extension of the system’s basic multi-tasking functions.
It allows several people to use the computer simultaneously. OS-9 provides additional security-related
timesharing functions to control access to the system and privacy within the system.

The multi-tasking and multi-user capabilities tremendously increase OS-9’s versatility. OS-9 is often used
as a single-user/multi-tasking system on small computers. It is also used as a multi-user/multi-tasking
system on larger computer systems. In either case, there is no difference in OS-9 itself, the application
software, or how either works.

Typical Multi-user System Configuration:
Four terminals on one OS-9 Computer

Using Professional OS-9 1-5

The Memory Module and Modular Software An Overview of OS-9

The Memory Module and Modular Software

A unique feature of OS-9 is its support of modular software techniques based on memory modules. The
use of memory modules can:

• Provide more efficient use of available disk and memory storage.

• Make the system run faster.

• Simplify programming jobs.

• Make it easy to customize and adapt OS-9 itself.

All OS-9 programs are kept in the form of one or more program modules containing pure program code.
They do not contain variable storage; OS-9 assigns variable storage in a separate block of memory at run-
time. Each module has a unique name and can be loaded into memory or stored on disk or tape. OS-9
automatically keeps track of the names and locations of all modules present in memory.

An important characteristic of memory modules is the sharing of one module by several tasks or users at
the same time. For example, if four users want to run BASIC at the same time, only one copy of the BASIC
program module will be loaded into memory. Other operating systems would typically load four exact
copies of BASIC into memory, thus requiring 300% more memory. The shared module system is com-
pletely automatic and usually transparent to the user.

Another advantage of memory modules is that frequently used functions can share common library
modules. For example, a standard OS-9 module called Math provides basic floating point arithmetic
operations for virtually all programming languages and programs. Again, this eliminates the need for each
program to include its own math package. It also means that if you add a hardware floating point processor
to your system, you only need to replace this one module and all your other software will automatically be
converted without modification. In addition, large and complex programs can be split up into smaller,
testable modules.

End of Chapter 1

1-6 Using Professional OS-9

Booting OS-9

Before using OS-9 on your computer, you must boot the system. Booting is also called a cold start or
bootstrapping. It involves the computer reading a portion of the system disk (or tape) into memory.

If your system is a standard disk-based computer, the system disk contains all the modules that make up
OS-9. The system disk usually contains other files and directories frequently used during normal opera-
tions. This includes a directory for each user, a shared commands directory, and files used by the system.
A description of the directories commonly supplied with Professional OS-9 is provided at the end of this
chapter.

Two files, which are called startup and OS9Boot by convention, need to be discussed here. startup is a
shell procedure file that is processed immediately after the system starts running. startup may contain any
legal OS-9 command or program. OS9Boot contains the OS-9 system modules that are read into memory.
The chapter on OS-9 system management contains information on changing the startup and OS9Boot
files.

2

Starting
OS-9

The boot procedure varies depending on the requirements of the specific hardware. The
manufacturer supplies detailed instructions outlining the boot procedure for the specific
system involved. You should follow the instructions as specified.

+

Using Professional OS-9 2-1

Booting OS-9 Starting OS-9

If the system fails to boot, recheck the hardware setup instructions, especially if you made any
modifications to your computer. Make sure the disk (or tape) was inserted correctly, and try the boot
sequence again. If the boot sequence fails several times, contact your supplier.

When the system boots correctly, a welcoming message is displayed followed by the setime prompt. The
setime utility starts the system clock and allows OS-9 to keep track of the date and time of the creation of
new files. The clock must be running for multi-tasking to take place.

The clock may be started by the Init module (refer to the chapter on OS-9 system management for more
information). If it is not started and you have a system with a battery-backed clock, type the following
command to start the system clock:

$ setime -s

Otherwise, execute setime by typing:

$ setime

setime prompts with the following:

yy/mm/dd hh:mm:ss [am/pm]
Time ?

At the prompt, enter the year, month, day, hour, minutes, seconds, and optionally am or pm. Unless am
or pm is specified, setime uses the 24 hour clock. For example, 15:20 is the same as 3:20 pm. The input
is one or two digit numbers with a space, colon, semicolon, comma, or slash used as a field delimiter. If
a semicolon is used, the entire date string must be within quotes. For example, to set the time on May 14,
1991 at 1:24 pm, type:

91/5/14/1/24/pm or 91 05 14 1 24 pm or 91,5,14,13,24 or
91:5:14:13:24 or 91/5/14/13/24 or "91;5;14;13;24"

To find out if the system clock is running or if the date and time was set correctly, use the date command.
For example:

$ date
July 2, 1990 Monday 1:25:26pm

Once the time and date have been properly set, the system displays the following prompt:

$

The $ prompt means the operating system is active and waiting for you to enter a command line. This
prompt is the default system prompt. This manual uses the $ prompt for all examples. For information on
changing the shell prompt, refer to the chapter on the shell.

2-2 Using Professional OS-9

Starting OS-9 Backing Up the System Disk

Backing Up the System Disk

Before experimenting with OS-9, you should make a backup of your master system disk. The backup
procedure involves making an exact copy of a disk. If for any reason your system disk becomes damaged,
it may become unreadable. For this reason, it is important to have another copy stored safely away.

Before you can backup your system disk, you need a properly formatted disk. New disks cannot be read
from or written to until they have been formatted. The format utility initializes new disks for reading and
writing. backup, the OS-9 utility that makes copies of disks, requires the backup disk to be the same size
and format as the original disk.

The following section describes the steps to be taken to backup a disk on a typical OS-9 system that boots
from a floppy drive (usually called /d0).

NOTE: Before formatting your first disk, it is strongly recommended that you read the entire section on
formatting disks.

Formatting a Disk

The format of OS-9 system disks vary by the type of disk drive and by manufacturer. Usually, the format
is set to be the maximum capacity of the disk drive.

You can place several parameters on the command line with the format command:

-sd for single density disks
-dd for double density disks
-ss for single sided disks
-ds for double sided disks

Refer to your hardware documentation for the maximum capacity of your drives. Refer also to the label
of your system disk for the proper format of your backup copy. Consult the format utility description in
the OS-9 Utilities section for other available parameters.

NOTE: The following sections are specifically intended for systems distributed with floppy
disk system disks. These sections are also of general interest in terms of formatting and back-
ing up floppy disks. If you have a hard disk or are booting from a media other than a disk,
refer to the OS-9 system management chapter.

+

NOTE: A list of the naming conventions OS-9 uses is located in the chapter on the shell. +

Using Professional OS-9 2-3

Formatting a Disk Starting OS-9

Multiple Drive Format

If your system has two disk drives, place the system disk in the first drive and the new disk in the second
drive. The second drive is usually called /d1. At the $ prompt, type format, the drive name of the new
disk, any desired options and press the <return> key to enter the command line:

$ format /d1

This command line specifies that the disk in the second drive will be formatted as a double-sided, double-
density disk. If your disk is different, your options will be different.

Single Drive Format

If your system has only one disk drive, you will need to load the format utility into memory. The load
utility puts a copy of a program into the memory of the computer. Once format has been loaded into mem-
ory, you can remove your system disk from the drive. OS-9 can execute the copy of format that resides
in memory. Any OS-9 utility can be loaded and executed in this fashion.

To load the format utility into memory, type the following command at the $ prompt:

load format

When format has been loaded, remove the system disk from the drive. Place the disk to format into the
drive. At the $ prompt, type:

format /d0

This command line formats the disk.

Continuing the Formatting Process with Either a Single Drive or a Multiple Drive

In the case of both single and multiple drive systems, format displays the specific disk format settings,
followed by a prompt:

Formatting device: <drive name>
proceed?

NOTE: <drive name> is replaced by the name of the device on which you are trying to format. For
example, /d0.

If the drive name in the prompt is not the name of the drive with the blank disk, type q to quit, or
your only system disk may be erased.

If the drive name and parameters in the prompt are correct, type y for yes. If you type y at the prompt,
there will be a pause while the disk is being formatted. format then prompts for the name of the disk:

volume name:

After you have entered the volume name, format prints:

2-4 Using Professional OS-9

Starting OS-9 The Backup Procedure

verifying media, building bitmap...

During the final phase of the process, the hexadecimal number of each track is displayed as each track is
verified to see if any sectors are bad. If any bad sectors are found, an error message is displayed along
with the number of the bad sector. The number of good sectors, the number of unusable sectors, and the
total number of verified sectors is also displayed.

The Backup Procedure

After a disk is formatted, you can run backup. The backup utility makes an exact copy of the OS-9 sys-
tem disk. There are other ways to make a copy of a disk, but this method is the least complicated. The
backup process involves copying everything from your system disk to a formatted disk. During the backup
procedure, the system disk is referred to as the source disk. The backup disk is called the destination disk.

NOTE: This procedure makes copies of any disk, not just the system disk.

backup makes two passes. The first pass reads a portion of the source disk into a buffer in memory and
writes it to the destination disk. The second pass verifies that everything was copied to the new disk cor-
rectly.

If an error occurs on the first pass, something is wrong with the source disk or the drive it is in.

If an error occurs during the second pass, the problem is with the destination disk. If backup repeatedly
fails on the second pass, reformat the disk to make sure it has no bad sectors. If the disk reformats
correctly, try the backup procedure again.

WARNING: Never backup a system disk to a disk that has any bad sectors reported
by format.!

Write Protect Tab

NOTE: You may wish to write protect your source
disk with a write protect tab when using the backup
procedure. This prevents any accidental confusion in
exchanging the source and destination disks.

Using Professional OS-9 2-5

The Backup Procedure Starting OS-9

Multiple Drive Backup

If your system has two disk drives, place the source disk in the first drive (/d0) and the destination disk in
the second drive (/d1). At the $ prompt, type backup and press the <return> key.

The system assumes you want to backup the disk in /d0. It responds to backup with the following prompt:

ready to BACKUP /D0 to /D1?

If you have placed the correct disks in the correct drives, type y for yes. Otherwise, type q for quit. If you
type y, the system copies all information on the disk in /d0 on to the disk in /d1 and returns the $ prompt.

Single Drive Backup

If your system has only one drive, the backup utility needs to be loaded into memory. Make sure your
system disk is in /d0 and type the following command:

load backup

After you have loaded backup, you may proceed with the backup procedure. Type the following
command:

backup /d0 -b=100k

This tells the system that you are performing a single drive backup and that you want to use a 100K buffer
for the backup. If your system will allow you to use a larger buffer, increase this number. The larger the
buffer, the fewer swaps you will have to make. The system responds with the following prompt:

ready to BACKUP /D0 to /D0?

2-6 Using Professional OS-9

Starting OS-9 The Backup Procedure

Type y if you are ready to perform the backup. Otherwise, type q for quit. If you type y, the system begins
a series of prompts to complete the backup procedure. This consists of swapping the source and destina-
tion disks in the disk drive as prompted by the system.

The first prompt is:

ready destination, hit a key

At this prompt, remove the source disk from the drive and insert the destination disk. Once this is done,
press any key to continue the backup procedure. The next system prompt is:

ready source, hit a key

At this prompt, remove the destination disk from the drive and insert the source disk. Once this is done,
press any key to continue the backup procedure. The exchanging of disks continues until the backup
procedure is completed.

+ When you have backed up the system disk, store the original disk in a safe place and use the
duplicate as your working system disk.

Using Professional OS-9 2-7

Directories Contained on the System Disk Starting OS-9

Directories Contained on the System Disk

The following is a list of directories commonly distributed with Professional OS-9. They are all contained
in the primary directory (the root directory) of your system:

BOOTOBJS Contains the system modules for bootstrap files, system-specific files, etc.

C Contains Cstart source code and an example of trap handlers for user education.

CMDS Contains all the system utilities such as backup, load, setime, etc. Many of the
utilities are discussed in the following chapters. The OS-9 Utilities section con-
tains descriptions of each utility distributed with Professional OS-9.

DEFS Contains several files of symbolic definitions that are useful when using
programming languages.

IO Contains the device descriptor source for system customization. For more
information on changing device descriptors, refer to the chapter on OS-9 system
management.

LIB Contains system library files.

MACROS Contains general macros used in driver development, etc.

SYS Contains system files including:

Errmsg Contains text for descriptions of error messages. An appendix listing
the error messages is included with this manual set.

password Contains a sample password file for timesharing systems. The pass-
word file contains information such as the user name, password, initial
process, etc. for each user. For more information on the password file,
refer to the chapter on the shell in this manual and the login utility in
the OS-9 Utilities section.

termcap Contains descriptions of your terminal characteristics. For more in-
formation on the termcap file, refer to the chapter on OS-9 system
management.

SYSMODS Contains the source for SysGo and init for system customization. For more
information on SysGo and init, see the OS-9 Technical Manual.

End of Chapter 2

2-8 Using Professional OS-9

Learning the Basics

Now that your system is up and running, it is time to learn about OS-9’s basic features and utility
commands. This chapter and the chapter on the OS-9 file system provide a “fast-track” introduction to
OS-9 designed to get you started quickly.

The secret of getting up to speed quickly with OS-9 is to first identify and learn only the basic, everyday
functions necessary to run application programs and programming languages. It is fairly easy to learn
more as you continue to work with the system.

The general topics covered in this chapter are:

• Logging on timesharing systems

• An introduction to the shell

• Use of the keyboard and display

• The page pause feature

• help, free, and mfree utilities

3

Basic
Commands

and
Functions

HELP!

Using Professional OS-9 3-1

Logging on to a Timesharing System Basic Commands and Functions

Logging on to a Timesharing System

If you are using a single user system such as a personal computer, you can skip this section. Otherwise,
you need to know how to log on to a multi-user system. This applies to both hardwire and dial-up
terminals.

Until you press the <return> key, idle terminals on multi-user systems do nothing but beep at you. Press-
ing the <return> key starts the log-on program called login. login’s function is to maintain system security
and start each user with a personalized environment.

The system asks you for your user name and the password the system manager assigned to you. The
system echoes your user name but for security purposes, your password is not echoed. You have three
chances to enter a valid user name and password.

An example of the login procedure is given below:

OS-9/68000 V2.4 Microware Systems P32 90/11/24 14:51:12

User Name: smith
Password: [not echoed]

Process #10 logged on 90/11/24 14:51:20

Welcome!

$

Depending on how the system is set up, a system-wide message of the day may be displayed on your
screen. You can also automatically run one or more initial programs. In addition, you are normally set up
in your own main working directory.

To log off, simply press the <escape> (end-of-file) key or type logout any time your main shell is active.

For more information, see the login and tsmon utility descriptions in the OS-9 Utilities section.

3-2 Using Professional OS-9

Basic Commands and Functions An Introduction to the Shell

An Introduction to the Shell

Every operating system has a command interpreter. A command interpreter is a translator between the
commands you type in and the commands the operating system understands and executes.

The shell is normally started as part of the system startup sequence on a single user system or after logging
on to a timesharing system. It is the primary interface with the system. When you enter a command, it is
the shell’s job to translate the command into something OS-9 can understand.

The shell provides many functions and options. A chapter is exclusively devoted to an in-depth discussion
of the features available. This section is intended to provide just enough familiarity with the shell for you
to run basic OS-9 commands.

The shell functions in two ways:

• Accepting interactive commands from your keyboard.

• Reading a sequence of command lines from a special type of file called a procedure file. The
shell executes each command line in the procedure file just as if the command lines had been
typed in manually from the keyboard. Procedure files are a convenient way to eliminate typing
frequently used, identical sequences of commands.

When the shell is ready for command input, it displays a $ prompt. You can now enter a command line
followed by a carriage return.

The first word of the command line is the name of a command. It may be in upper or lower case. The
command may be the name of:

• An OS-9 utility command

• An application program or programming language

• A procedure file

Most commands require or accept additional parameters or options. These parameters and options provide
the program and/or the shell with additional information such as file names and directory names to search.
Almost all options are preceded by a hyphen (-) character. All parameters are separated by space charac-
ters.

The shell follows a special searching sequence to locate the command in memory or on disk. If it cannot
find the command you specified, the error #000:216, "file not found" is generally reported.

OS-9’s command interpreter is called the shell.+

Using Professional OS-9 3-3

The Shell and Command Lines Basic Commands and Functions

Here is an example of a simple shell command line:

$ list myfile

The name of the program is list. The file name myfile is passed to the program.

3-4 Using Professional OS-9

Basic Commands and Functions Using the Keyboard

Using the Keyboard

Most input to OS-9, programming languages, and application programs is line oriented. This means that
as you type, the characters are collected but not sent to the program until you press the <return> key. This
gives you a chance to correct typing errors before they are sent to the program.

OS-9 has several features to make data entry and error correction simple. These are called line editing
features. Each of these features use control keys generated by simultaneously pressing the <control> key
and some other character key.

The line editing control keys are:

Key Function
<control>A Repeats the previous input line. The last line entered is redisplayed but not executed. The

cursor is positioned at the end of the line. You may enter the line as it is or you can add
more characters to it. You can edit the line by backspacing and typing over old charac-
ters.

<control>D Redisplays the current input line. This is mainly used for hardcopy terminals that cannot
erase deleted characters.

<control>H Backspaces to erase previous characters. Most keyboards have a special <backspace>
key that can be used directly without using the <control> key.

<control>Q Resumes the input and output previously stopped by <control>S. The <control>Q
function is known as X-on.

<control>S Halts input and output until <control>Q is entered. The <control>S function is known
as X-off. This is a function used by many serial I/O devices such as printers to control
output speed.

<control>W Temporarily halts output so you can read the screen before data scrolls off. Output re-
sumes when any other key is pressed. See the section on the page pause feature.

<control>X Deletes line; erases the entire current line.

ESCAPE or Indicates the end-of-file: all OS-9 I/O devices, including terminals, are
<control>[accessed as files. This simulates the effect of reaching the end of a disk
 file.

Using Professional OS-9 3-5

The Page Pause Feature Basic Commands and Functions

There are also two important control keys called interrupt keys. They work differently than the line edit-
ing keys because they can be used at any time, not just when a program has requested input. They are
normally used to halt or alter a running program.

Key Function
<control>C Sends an interrupt signal to the most recent program. This functions differently from pro-

gram to program. If a program does not make specific interrupt provisions, it aborts the
program. If a program has provisions for interrupts, <control>C usually provides a way
to stop the current function and return to a master menu or command mode. In the shell,
<control>C can be used to convert the foreground program to a background program,
if the program has not begun I/O to the terminal.

<control>E Sends a program abort signal to the program presently running. In most cases, this key
prematurely aborts the current program and returns you to the shell.

The control keys described above are the key assignments commonly used in most OS-9 systems. The
correspondence between control keys and their functions is changeable, so your keys may be different.
You can use the tmode utility to redefine the function of control keys. This command allows you to cus-
tomize OS-9 to the specific computer’s keyboard layout.

NOTE: For more information about tmode, see the chapter on OS-9 system management and the OS-9
Utilities section.

The Page Pause Feature

The page pause feature eliminates the annoyance of having output scroll off the screen before you can read
it. OS-9 counts output lines until a full screen has been displayed. It then halts output until you press any
key. This is repeated for each screen of output.

Page pause can be fooled by lines longer than the physical width of the screen. These long lines wrap
around to the next line. The system does not distinguish this, and consequently does not count them prop-
erly.

tmode may be used to turn this feature on and off, or to change the number of lines per screen:

Key Function
tmode pause Turns the page pause mode on.

tmode nopause Turns the page pause mode off.

tmode pag=10 Sets the page length to ten lines.

3-6 Using Professional OS-9

Basic Commands and Functions Basic Utilities

Basic Utilities

OS-9 provides over seventy standard utilities and built-in shell commands. The majority of them are used
rarely, if ever, by casual users. You will frequently use less than a dozen of them and less frequently use
about a dozen more.

The utilities have been broken down into three groups to give you an idea of what you should and should
not bother learning immediately. You should get acquainted with the first group now, and the second
group as time permits. If you plan to do advanced programming or systems-level work, you can study the
third group at your convenience.

Group 1: Basic Utilities

attr backup build chd chx copy date
del deldir dir dsave echo edt format
free help kill list makdir merge mfree
pd pr procs rename set setime shell
w wait

Group 2: Programmer Utilities

binex cfp cmp code compress count dump
ex exbin expand frestore fsave grep load
logout make printenv profile qsort save setenv
tape tee tmode touch tr unsetenv

Group 3: System Management Utilities

break dcheck deiniz devs diskcache events fixmod
ident iniz irqs link login mdir moded
os9gen romsplit setpr sleep tapegen tsmon unlink
xmode

Using Professional OS-9 3-7

The Help Utility and the -? Option Basic Commands and Functions

The Help Utility and the -? Option

The most important command to learn when beginning to use the OS-9 utilities is help. The help utility
is an on-line quick reference manual. To use this utility, type help, a utility name, and a carriage return.
The utility function, syntax, and available options are listed. For example, if you cannot remember the
function or syntax of the backup utility, you could type help backup after the $ prompt:

$ help backup
Syntax: backup [<opts>] [<srcpath> <dstpath>] [<opts>]
Function: backup disks
Options:

-b=<size> use larger buffer (default is 4k)
-r don’t exit if read error occurs
-v do not verify

$

The descriptions are short and precise. Try it. This is a quick way to find information without looking up
the utility in the documentation.

The same information is also available by typing the utility name followed by a question mark (-?). Each
utility has the -? option.

Typing help by itself displays the syntax and use of the help utility.+

3-8 Using Professional OS-9

Basic Commands and Functions Free and Mfree

Free and Mfree

During the format procedure, a disk is divided into data sectors of a pre-defined number of bytes. These
sectors, in turn, are allocated into groups called clusters. The number of sectors per cluster is dependent
on the storage capacity and physical characteristics of the given device. This means that small amounts of
free space, given in sectors, may not be divisible into the same number of files.

free displays the amount of unused disk space in the number of sectors and in the number of bytes. It also
displays the disk name, its creation date and the cluster size of the device. For example:

$ free
“Tazz: /H0 Wren V” created on: Oct 6, 1989
Capacity: 2347860 sectors (256-byte sectors, 8-sector clusters)
1477296 free sectors, largest block 1356000 sectors
378187776 of 601052160 bytes (360.66 of 573.20 Mb) free on media (62%)
347136000 bytes (331.05 Mb) in largest free block

free uses a 4K buffer by default. To increase the buffer size, use the -b option. For example, to use a 10K
buffer you could type:

$ free -b=10

or
$ free -b10

mfree displays the address and size of unused memory available for allocation. For example:

$ mfree
Current total free RAM: 164.00 K-bytes

Using Professional OS-9 3-9

Free and Mfree Basic Commands and Functions

For even more information concerning the unused memory, the -e option may be used with mfree. For
example:

mfree -e
Minimum allocation size: 4.00 K-bytes
Number of memory segments: 6
Total RAM at startup: 8192.00 K-bytes
Current total free RAM: 2084.00 K-bytes

Free memory map:

 Segment Address Size of Segment
 ----------------- --------------------------
 $5B000 $1000 4.00 K-bytes
 $5F000 $2000 8.00 K-bytes
 $99000 $1E3000 1932.00 K-bytes
 $29C000 $3000 12.00 K-bytes
 $2A1000 $1F000 124.00 K-bytes
 $2C5000 $1000 4.00 K-bytes

End of Chapter 3

3-10 Using Professional OS-9

OS-9 File Storage

All information stored on an OS-9 computer system is organized into files and directories. Files and di-
rectories provide a way for you to organize your information. A file may contain a program, data, or text.
A directory is a file containing the names and locations of the files and directories it contains. This allows
you to organize your files by topic, work group, etc.

When a file is created, the information is stored as an ordered sequence of bytes. These bytes are organized
into sectors. A sector is a pre-defined group of bytes. For example, a sector may be composed of 256
bytes. This means that every 256 bytes are grouped together as a sector.

During the format procedure, each sector is marked as being unused. The allocation map keeps track of
each sector. If a sector is in use, it is marked in the allocation map located at the beginning of each disk
as being in use. When a file is created, the information is stored in sectors. When a file is expanded, the
new information is stored in sectors. When a file is shortened or deleted, the previously used sectors are
unmarked in the allocation map and are available for use by other files.

Within a text file, each byte contains one character. Data is written to a file in the order it is provided.
Data is read from a file exactly as it is stored in the file.

When a file is created or opened, a file pointer is also created and maintained for it. The file pointer holds
the address of the next byte to be written or read (see Figure 4a). As data in the file is read or written, the
file pointer is automatically moved. Therefore, successive read or write operations transfer data sequen-
tially (see Figure 4b).

4

The OS-9
File System

Using Professional OS-9 4-1

OS-9 File Storage The OS-9 File System

You can directly access any part of a file by positioning the file pointer to any location in the file using an
OS-9 system call: seek. You can access the seek system call through the various languages available
for OS-9 or directly with the macro assembler command: I$SEEK. I$SEEK is described in the OS-9
Technical Manual.

r o b e r

Figure 4a: When creating or opening a file, the file pointer is positioned to read from
or write to the first component.

1 2 3 4 5

r o b e r

Figure 4b: After reading or writing the first component of a file, the file pointer points
to the second component.

1 2 3 4 5

r o b e r

Figure 4d: The next write operation adds a new component to the file and moves the
file pointer to the new end-of-file.

1 2 3 4 5

r o b e r

Figure 4c: The file pointer is pointing to the current end-of-file. Attempting another
read operation causes an error. Another write operation increases the size
of the file.

1 2 3 4 5

t

6

4-2 Using Professional OS-9

The OS-9 File System OS-9 File Storage

Reading up to the last byte of the file causes the next read operation to return an end-of-file status (see
Figure 4c). Trying to read past the end-of-file mark causes an error. To expand a file, simply write past
the previous end of the file (see Figure 4d).

Because all OS-9 files have the same physical organization, you can generally use file manipulation
utilities on any file regardless of its logical usage. The main logical types of files used by OS-9 are:

• Text files

• Executable program module files

• Data files

• Directories

Directory files are an exception and are discussed separately.

Text Files

Text files contain variable length lines of ASCII characters. Each line is terminated by a carriage return
(hex $OD). Text files typically contain documentation, procedure files, program source code, etc. You
can create text files with any text editor or the build utility.

Executable Program Module Files

Executable program modules store programs generated by assemblers and compilers. Each file may con-
tain one or more modules with standard OS-9 module format. See the OS-9 Technical Manual for more
information on modules.

Random Access Data Files

A random access data file is created and used primarily by high level languages such as C, Pascal, and
BASIC. The file is organized as an ordered sequence of records of varying sizes. If each record has ex-
actly the same length, its beginning address within the file can be computed to allow records to be accessed
in any order. OS-9 does not directly deal with records other than providing the basic file manipulation
functions high level languages that support random access records require.

Using Professional OS-9 4-3

OS-9 File Storage The OS-9 File System

File Ownership

When you create a file or directory, a group.user ID is automatically stored with it. The group.user ID is
formed from your group number and your user number. The group number allows people that work on
the same project or work in the same department to share a common group identification. The user number
identifies a specific user. Therefore, a group.user ID identifies a specific user in a specific group or
department.

The group.user ID determines file ownership. OS-9 users are divided into two classes:

• The owner

• The public

The owner is any user with the same group or user number as the person who created the file. This means
that any user with the same group number as the person who created the file can access the file in the same
way as the creator of the file. Likewise, any user with the same user number is considered the owner.

The public is any person with a group.user ID that differs from the person who created the file.

On multi-user systems, the system manager generally assigns the group.user ID for each user. This
number is stored in a special file called a password file. A super user on a multi-user system is generally
the system manager, although other people such as group managers or project leaders may also be super
users.

NOTE: Password files are discussed in the chapter on the shell.

On single-user systems, users have super user status by default.

Attributes and the File Security System

File use and security are based on file attributes. Each file has eight attributes. These attributes are
displayed in an eight character listing.

The term permission is used when one of the eight possible attribute characters is set. Permission
determines who can access a file or directory and how it can be used. If a permission is not valid for the
file or directory being examined, a hyphen (-) is in its position.

A user with a group.user ID of 0.0 is referred to as a super user. A super user can access
and manipulate any file or directory on the system regardless of the file’s ownership. +

4-4 Using Professional OS-9

The OS-9 File System OS-9 File Storage

Here is an attribute listing for a directory in which all permissions are valid:

dsewrewr

By convention, attributes are read from right to left. They are:

Attribute Abbreviation Description
Owner Read r The owner can read the file. When off, this denies any access to

the file.

Owner Write w The owner can write to the file. When off, this attribute can be
used to protect files from accidentally being deleted or modified.

Owner Execute e The owner can execute the file.

Public Read pr The public can read the file.

Public Write pw The public can write the file.

Public Execute pe The public can execute the file.

Single user s When set, only one user at a time can open the file.

Directory d When set, indicates a directory.

Using Professional OS-9 4-5

The OS-9 File System The OS-9 File System

The OS-9 File System

OS-9 uses a tree-structured, or hierarchical, organization for its file system on mass storage devices such
as disk systems (see Figure 4e). Each mass storage device has a master directory called the root directory.

The root directory is created automatically when a new disk is formatted. It contains the names of the files
and the sub-directories on the disk. Every file is listed in a directory by name, and each file has a unique
name within a directory.

An OS-9 directory can contain both files and sub-directories. Each sub-directory can contain more files
and sub-directories. This allows subdirectories to be imbedded within other subdirectories. The only limit
to this division is the amount of available disk space.

With the exception of the root directory, each file and directory in the system has a parent directory. A
parent directory is the directory directly above the file or directory being discussed. For example in Figure
4e, the parent directory of file2 is SUB-DIRECTORY1. Likewise, the parent directory of SUB-
DIRECTORY1 is the root directory.

ROOT DIRECTORY

file1 SUB-DIRECTORY1 SUB-DIRECTORY2 ETC

file2 SUB-DIRECTORY3 file3 file4 SUB-DIRECTORY4 file5

ETC

Figure 4e: The File System

ETC

4-6 Using Professional OS-9

The OS-9 File System Current Directories

Current Directories

Two working directories are always associated with each user or process. These directories are called the
current data directory and the current execution directory.

The current directory concept allows you to organize your files while keeping them separate from other
users on the system. The word current is used because you can use the chd command to move through
the tree structure of the OS-9 file system to a different directory. This new directory then becomes your
current data or execution directory.

NOTE: The chd utility is discussed later in this chapter.

On a single user system, OS-9 chooses the root directory of your system disk as your initial current data
directory. Your initial current execution directory is the CMDS directory. The CMDS directory is located
in the root directory of the system disk.

On a multi-user system, your current data and execution directories are established for you as part of the
initial login sequence. When you login, your initial directories are set up according to your password file
entry. A password entry is established for each user on a multi-user system. This entry lists the user’s
password, current directories, etc. For more information on password files, see the chapter in this manual
on the shell and the login utility in the OS-9 Utilities section.

Your execution directory on a multi-user system is usually the CMDS directory. The CMDS directory is
shared with other users. CMDS contains OS-9 utilities and other executable files. If all users had their
own copy of all OS-9 commands, a great deal of disk space would be wasted. Private execution directories
are also possible and are discussed later in this chapter.

The Home Directory

On typical multi-user systems, all users have their own data directory, but share an execution directory.
The private data directory allows you to organize your own files by project, function, or any other method
without affecting other user’s files. The data directory specified in the password file entry is known as
your home directory. When you first login to the system, you are placed in this directory. Using the chd
utility with no parameters also places you in this directory. The chd utility is discussed later in this
chapter.

On single user systems, you may establish a home directory by setting the HOME environment variable.
Refer to the chapter on the shell for more information on setting the HOME environment variable.

A data directory is where you create and store your text files.

An execution directory is where executable files such as utilities and
programs you have created are located.

+

Using Professional OS-9 4-7

Current Directories The OS-9 File System

Directory Characteristics

Some important characteristics relating to directory files are:

• Directories have the same ownership and attributes as regular files. However, directories
always have the d attribute set.

• Each file name within a directory must be unique. For example, you cannot store two files with
the name of trial in the same directory. Files can have identical names, as long as they are
stored in different directories.

• All files are stored on the same device as the directory in which they are listed.

• The only limit to the number of files that can be stored in a directory is the amount of free disk
space.

4-8 Using Professional OS-9

The OS-9 File System Accessing Files and Directories: The Pathlist

Accessing Files and Directories: The Pathlist

You can access all files or directories in your current data directory by specifying the name of the file or
directory after the proper command. When only a file or directory name is given, OS-9 will not look
outside your current data directory to find it.

If you want to access a file that is not in your current data directory or run a program that is not in your
current execution directory, you must either change your current directory or specify a pathlist through the
file system for OS-9 to follow.

A full pathlist begins at the root directory
regardless of where your current data di-
rectory is located. It lists each directory
located between the root directory and a
specific file or subdirectory.

Example: Your data directory is
RESEARCH. A full pathlist to current
is /h0/work/current.

Full Pathlist:

/H0

WORK

FUTURE oldstuff current

+

RESEARCH

There are two types of pathlists:

• Full pathlists

• Relative pathlists

A full pathlist starts at the root directory and
follows the directory names in the list down the file
structure to a specific file or directory. A full
pathlist must begin with a slash character (/).
Slashes separate names within the pathlist.

The following example is a full pathlist from the
root directory, /d1, through two subdirectories,
PASCAL and TESTS, to the file futureval.

/d1/Pascal/tests/futureval

The next example specifies a path from the root di-
rectory, /h0, through the USR subdirectory to the
NICHOLLE subdirectory.

/h0/usr/nicholle

Using Professional OS-9 4-9

Accessing Files and Directories: The Pathlist The OS-9 File System

NOTE: Using these name substitutes does not change the actual directory’s name.

The following example is a relative pathlist which begins in your current directory and goes through the
subdirectories DOC and LETTERS to the file jim.

doc/letters/jim

The next pathlist goes up to the next directory above your current directory and then through the
subdirectory CHAP to the file page.

../chap/page

The next pathlist specifies a file within your current directory. No directories are searched other than the
current directory.

accounts

A relative pathlist begins at your cur-
rent directory regardless of its location
in the overall file structure.

Example: Your data directory is RE-
SEARCH. A relative pathlist to cur-
rent is .../current .

Relative Pathlist:

/H0

WORK

FUTURE oldstuff current

+

RESEARCH

A relative path starts at the current directory and
proceeds up or down through the file structure to
the specified file or directory. A relative pathlist
does not begin with a slash (/). Slashes separate
names within a relative pathlist.

When you use a relative pathlist and the desired
destination requires going up the directory tree,
you can use special naming conventions to make
moving around the pathlist easier. A single period
(.) refers to the current directory. Two periods (..)
refer to the current directory’s parent directory.
Add a period for each higher directory level. For
example, to specify a directory two levels above
the current directory, three periods are required.
Four periods refer to a directory three levels above
the current directory.

4-10 Using Professional OS-9

The OS-9 File System Basic File System Oriented Commands

Basic File System Oriented Utilities

This section explains some of the OS-9 utility commands that manipulate the file system. The utilities
include dir, chd, chx, pd, build, makdir, list, copy, dsave, del, deldir, and attr. The examples given refer
to the file system diagram in Figure 4f.

Dir: Displaying the Contents of Directories

The dir utility displays the contents of directories. Typing dir by itself displays the contents of your current
data directory. For the following example, the current data directory is /h0 in Figure 4f:

$ dir

 directory of . 13:56:58
C CMDS DEFS IO LIB
MACROS SYS SYSMODS USR startup

To look at directories other than your current data directory, you must either provide a pathlist to the
desired directory or change your current data directory. Changing directories is discussed later in this
chapter.

For example, if you are in the root directory and you want to see what is in the DEFS directory, type:

Root Directory:

CMDSDEFS IOC startup USR SYS MACROS LIB

map gee

list copy etc.

greenick.c icefall

Figure 4f: Diagram of a Typical File System

/h0

SYSMODS

CHRIS PAUL ELLEN

TEXT letter PROG

manual funct main

To display the contents of another directory without changing your current data directory,
type dir and the pathlist to the directory. +

Using Professional OS-9 4-11

Dir: Displaying the Contents of Directories The OS-9 File System

dir defs

dir now displays the names of the files in the DEFS directory. The name defs is a relative pathlist. You
can type dir defs because DEFS is in your current data directory. You can also use the full pathlist, dir
/h0/defs, and get the same result.

To display the contents of your current execution directory, type dir -x.

You may also use wildcards with the dir utility and with most other utilities as well. OS-9 recognizes two
wildcards: the asterisk (*) and the question mark (?). An asterisk is replaced by any number of letter(s),
number(s), or special characters. Consequently, an asterisk by itself expands to include all of the files in
a given directory. A question mark is replaced by a single letter, number, or special character.

For example, the command dir * lists the contents of all directories located in the current data directory.
The command dir /h0/cmds/d* lists all files and directories in the CMDS directory that begin with the
letter d. The command dir prog_? lists all files in your current directory that have a file name with prog_
followed by a single character.

For more information, see the section on wildcards in the chapter on the shell.

Dir Options

dir has several options which are fully documented in the OS-9 Utilities section. Some of these options
are discussed here. Try each of the options and see what information is displayed.

The -e option gives an extended directory listing. An extended directory listing displays all files within
the specified directory with their attributes, the size of the file, and the sector where the file is stored. The
following example uses the file structure shown in Figure 4f.

$ dir usr/chris -e

Directory of USER/CHRIS 12:30:00
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 89/06/17 1601 ------wr 3458 5744 letter
 12.4 89/07/03 1148 d-----wr 104A0 15944 PROG
 12.4 89/05/13 1417 d-----wr DODO 11113 TEXT

4-12 Using Professional OS-9

The OS-9 File System Chd and Chx: Moving Around in the File System

The -r option displays the contents of the specified directory and any files contained within its
subdirectories. Using Figure 4f as an example, typing dir usr/chris -r lists the following:

Directory of . 12:30:15
PROG TEXT letter

Directory of PROG 12:30:15
 funct main

Directory of TEXT 12:30:15
 manual

You can use the dir options with each other. Typing dir -er displays all files within the current data
directory, all files within its sub-directories, and provides an extended listing of their attributes, sizes, etc.

Chd and Chx: Moving Around in the File System

The chd and chx utilities allow you to travel around the file system.

To change your current data directory, type chd followed by a full or relative pathlist. For example, if
your current data directory is /h0 and you want your current data directory to be USR, you would type
chd and the pathlist of USR.

For example, with a relative pathlist, type:

chd usr

With a full pathlist, type:

chd /h0/usr

Your current data directory is now USR. If you type dir, you will see the contents of USR:

directory of . 14:04:32
CHRIS ELLEN PAUL

If you want to see which files are in the CHRIS directory, type dir chris. Or change directories by typing
chd chris and after the new prompt, type dir.

If you want to return to your home directory, which in this case is /h0, type chd without a pathlist. After
changing directories, dir displays the contents of /h0.

• The chd utility allows you to change your current data directory.

• The chx utility allows you to change your current execution directory.
+

Using Professional OS-9 4-13

Climbing Directory Trees The OS-9 File System

The chx command allows you to redefine an existing directory as a personal execution directory. This
may be important if you have programs you do not want other people to execute. To use this command,
type chx, followed by a full or relative pathlist to the directory. When using a relative pathlist with chx,
the pathlist is relative to your current execution directory.

If your current data directory is USR and you want to change your current execution directory from
CMDS to PAUL, you could type the relative pathlist chx ../usr/paul or the full pathlist chx /h0/usr/paul.
When you type a command after you have changed your current execution directory, PAUL is searched
instead of CMDS.

Typing dir -x displays the contents of your current execution directory, PAUL:

directory of . 14:05:06
gee ick.c map

Climbing Directory Trees

You can use OS-9’s special naming conventions to move around the file system. As a reminder, the
naming conventions are periods specifying the current directories and directories higher in the file
structure. For example:

. refers to the current directory

.. refers to the parent directory

... refers to two directory levels higher

etc.

When used as the first name in a path, you can use these naming conventions in conjunction with relative
pathlists.

NOTE: If you are planning to port your code to other operating systems, you must remember that most
operating systems only use this convention as it refers to the current and parent directories. For example,
if you use ... to refer to the directory above a parent directory, most operating systems require you to use
../.. instead.

The examples below relate to the file structure in Figure 4g. The examples assume your initial current
data directory is PROG.

The following example displays the contents of PROG. It is functionally the same command as dir:

dir .

 directory of . 14:04:32
funct main

4-14 Using Professional OS-9

The OS-9 File System Climbing Directory Trees

The next command displays the contents of PROG’s parent directory, CHRIS.

dir ..

 directory of .. 14:05:58
PROG TEXT letter

This example displays the contents of TEXT by specifying a path starting with the parent directory (..):

dir ../text

 directory of ../text 14:06:47
manual

The following command changes the current data directory from PROG to ELLEN:

chd .../ellen

You can use any number of periods (.) to access higher directories. One period is added for each additional
level. An error is not returned if you specify a greater number of directory levels above your current data
directory than actually exist. Instead, this indicates the root directory on your system. For example, this
command displays the contents of the root directory:

dir

ELLEN is accessed from PROG using the
relative path .../ellen.

CMDSDEFS IOC startup USR SYS MACROS LIB

map gee

list copy etc.

greenick.c icefall

/h0

SYSMODS

CHRIS PAUL ELLEN

TEXT letter PROG

manual funct main

Figure 4g: Accessing Directories Using a Relative Path

/h0

Using Professional OS-9 4-15

Using the Pd Utility The OS-9 File System

This may be helpful if you are not sure how far down you are in the directory structure. The next example
changes your current data directory from PROG to MACROS:

chd/macros

Using the Pd Utility

When the file system becomes complex, you may become confused as to where the directory you are cur-
rently working in is located in relation to the overall file system.

For example, if your current data directory is PAUL:

pd
/h0/USR/PAUL

Likewise, if you forget which directory is your current execution directory, type pd -x to display the
pathlist to the current execution directory.

Using Makdir to Create New Directories

The pd utility displays the complete pathlist from the root directory to
your current data directory. +

The makdir /h0/usr/MARKET command
creates a new directory called MARKET
in the USR directory.

/h0

USRCMDS

PAUL

SYS

MARKT

+

CHRIS MARKET

You create new directories using the makdir
utility. For example, to create a directory called
BUS.DEPT, type:

makdir BUS.DEPT

BUS.DEPT now is a new entry in your current
directory.

If you want the new directory created somewhere
other than your current directory, you must specify
a pathlist. For example, makdir
/h0/usr/BUS.DEPT creates the new directory in
USR.

4-16 Using Professional OS-9

The OS-9 File System Rules for Constructing File Names

Rules for Constructing File Names

When creating files and directories, you must follow certain rules. Any file name can contain from 1 to
28 upper or lower case letters, numbers, or special characters as listed below. While the file name may
begin with any of the following characters or digits, each file name must contain at least one letter or
number. Within these limitations, a name can contain any combination of the following:

upper case letter: A - Z underscore: _
lower case letter: a - z period: .
decimal digits: 0 - 9 dollar sign: $

File names may not contain spaces. Instead, use the underscore (_) or the period (.) to improve the
readability of file and directory names. OS-9 does not distinguish upper case letters from lower case
letters. The names FRED and fred are considered the same name.

Here are some examples of legal names:

raw.data.2 project_review_backup
X6809 $SHIP.DIR
...c 12345

Here are some examples of illegal names:

Max*min * is not a legal character

open orders name cannot contain a space

this.name.obviously.has.more.than.28.characters too long

NOTE: File names that start with a period are not displayed by dir unless the -a option is used. This
allows you to hide files within a directory.

Creating Files

You can create files in many ways. Text files are generally created with the build utility, the edt utility,
or the µMACS text editor. These file building tools are provided with the Professional OS-9 package for
your convenience.

NOTE: By OS-9 convention, directory names are in upper case and file names are in low-
er case. This allows you to easily distinguish directories from files. This is only a recom-
mendation for easy use; you may develop your own style.

+

Using Professional OS-9 4-17

Examining File Attributes with Attr The OS-9 File System

Use the build utility to create short text files. To use the build utility, type build, followed by the name of
the file you want to create. build responds with the prompt:

?

This tells you that build is waiting for input. To terminate build, type a carriage return at the ? prompt.
For example:

$ build test
? Some programmers have been known to
? howl at full moons.
?

$

You cannot edit files with build.

You may also use the edt utility to create files. edt is a line-oriented text editor that allows you to create
and edit source files. To use the edt utility, type edt and the desired pathlist. If the file is new or cannot
be found, edt creates and opens the file. edt then displays a question mark (?) prompt and waits for an
edit command. If the file is found, edt opens it, displays the last line, and then displays the ? prompt. edt
is fully detailed in the OS-9 Utilities section.

The preferred method of creating and editing files is with µMACS. µMACS is a screen-oriented text
editor designed for creating and modifying test files and programs. Through the use of multiple buffers,
µMACS allows you to display different files or different portions of the same file on the same screen. In
addition, extensive formatting commands allow you to reformat paragraphs with new user-defined
margins, transpose characters, capitalize words, and change words or sections into upper or lower case.
For a more detailed description, see the Using µMACS manual.

Examining File Attributes with Attr

When you create a file using build or µMACS, only the owner read and owner write permissions are set.
When you create a directory, it initially has all the permissions set except the single user permission.

To examine file attributes, use the attr utility. To use this utility, type attr, followed by the name of a file.
For example:

$ attr newtest
------wr

4-18 Using Professional OS-9

The OS-9 File System Listing Files

The file newtest has the permissions set for owner reading and owner writing. Access to this file by
anyone other than the owner is denied.

If you use attr with a list of one or more attribute abbreviations, the file’s attributes are changed
accordingly, provided you have the proper write permission to access the file. The attribute abbreviations
do not have to be listed in any particular order. The letter n preceding an attribute removes that permission.

The following command enables public read and write permission and removes execution permission for
both the owner and the public:

$ attr newtest -pw -pr -ne -npe

If you are the owner of a file, you can change the access permissions regardless of what the permissions
indicate. Thus, the owner always has the right to delete a file, change the user privileges, etc. Users in the
same group have the same permissions as the owner.

The directory attribute is somewhat different than the other attributes. It could be dangerous to be able to
change directory files to normal files or a normal file to a directory. For this reason, you cannot use attr
to turn the directory (d) attribute on; use makdir to turn this attribute on. Furthermore, you can only use
attr to turn the directory attribute off if the directory is empty.

Listing Files

Use the list utility to display the contents of files. By default, list displays the lines of text on your terminal
screen. To examine a file, type list, followed by the name of the file. For example:

$ list test
Some programmers have been known to
howl at full moons.
$

It is important to remember that you cannot list a directory. If you type the command list USR, the fol-
lowing error message and error number are returned:

list: can’t open "USR". Error# 000:214.

This means that you cannot access USR because it is a directory.

Just a reminder: Users with the same group.user ID as the person who created the file are
considered owners. However, if the file is created by a group 0 user, only users in the super
group can read, write, or execute the file.

+

Using Professional OS-9 4-19

Copying Files The OS-9 File System

list displays text files. All distributed files in CMDS are executable program module files. If you try to
list the contents of a random access data file or an executable program module file, you see what appears
to be random data displayed on your screen. This may also include unprintable characters, such as escape
or delete, that could change your terminal’s operating parameters. If the operating characteristics of your
terminal are affected, first try turning the terminal off and on. If this does not re-initialize the terminal,
consult your terminal operating manual.

Copying Files

Use the copy utility to make a duplicate of a file. To copy a file, type copy, followed by the name of the
file to be copied, followed by the name of the duplicate file. For example:

$ copy test newtest

If you list the file newtest, it is an exact copy of test.

The file you are copying and the duplicate file may be located in any directory; they do not have to be in
your current data directory. For files located outside of your current data directory, you may use full or
relative pathlists. The following example uses Figure 4h. The first command copies the file gee in the
PAUL directory to a file named new.info in the TEXT directory:

copy /h0/usr/paul/gee /h0/usr/chris/text/new.info

Assuming your data directory is USR, the following commands would have the same effect:

copy /h0/usr/paul/gee chris/text/new.info
copy paul/gee chris/text/new.info

4-20 Using Professional OS-9

The OS-9 File System Copying Files

If you try to copy the contents of one file into an existing file, you will receive Error #000:218 Tried to
create a file that already exists. If you know the file exists but you want to overwrite it anyway, use
the -r option. For example, the following command replaces the contents of green with the contents of
fall.

$ copy fall green -r

If you list the contents of both files, you will see that they are identical.

At some point, you may want to copy more than one file at a time into another directory. By using the -
w=<dir> option of copy, you can copy more than one file with a single command. For example, if your
current directory is PROG and you want to copy all of the files in PROG into the TEXT directory, you
could type the following command line:

$ copy * -w=../text

This option will print the name of the file after each successful copy. If an error occurs, the prompt
continue (y/n) is displayed.

Remember that an asterisk is a wildcard. For more information about wildcards, refer to the section on
wildcards in the chapter on the shell.

gee is copied from PAUL/gee to
CHRIS/TEXT/new.info using the command
copy paul/gee chris/text/new.info.

Figure 4h

CMDSDEFS IOC startup USR SYS MACROS LIB

map gee

list copy etc.

greenick.c icefall

/h0

SYSMODS

CHRIS PAUL ELLEN

TEXT letter PROG

manual funct mainnew.info

/h0

copy uses a 4K memory buffer by default. This means that only 4K of information is read
from the original file and written to the new file at one time.+

Using Professional OS-9 4-21

Dsave: Copying Files Using Procedure Files The OS-9 File System

If you have a large file, the copy procedure may be slow because the system has to perform multiple read
and write statements. The -b option may be used to increase the buffer size. This would make the copy
procedure faster for large files. To use the -b option, type copy, the original file name, the new file name,
and -b=<num>k.

For example, typing copy gee mine -b=20k allocates a 20K buffer for copying the file gee into the file
mine.

NOTE: You must have permission to copy the file. That is, you must be the owner of the file to be copied
or the public read permission must be set in order to copy the file. You must also have permission to write
in the directory you specify. In either case, if the copy procedure is successful, the new file has your
group.user number unless you are the super user. If you are the super user, the new file will have the same
group.user number as the original file.

For more information concerning copy, refer to the OS-9 Utilities section.

Dsave: Copying Files Using Procedure Files

Use the dsave utility to copy all files and directories within a specified directory by generating a procedure
file. The procedure file is either executed later to actually perform the copy or, by specifying the -e option,
executed immediately.

NOTE: A procedure file is a special OS-9 file. It contains OS-9 commands. Each command is specified
on a line, one command per line. When the procedure file is executed, the OS-9 commands it contains are
executed in the order they are listed in the procedure file. Procedure files are discussed in more detail in
the chapter on the shell.

If no pathlist is specified for the destination, the files are copied to the current data directory at the time
the procedure file is executed. If you do not specify the -e option or redirect the output to a file, dsave
sends the output to the terminal.

To use the dsave utility, type dsave followed by the pathlist of the directory into which
the files are copied, followed by any options you wish to use.

+

4-22 Using Professional OS-9

The OS-9 File System Dsave: Copying Files Using Procedure Files

The example below uses the following directory structure:

If PROGMS is your current data directory and you type dsave ../notes, the following appears on your
screen:

$ dsave ../notes
-t
chd ../notes
tmode -w=1 nopause
load copy
Makdir MY.PROJ
Chd MY.PROJ
Copy -b=10 /h0/PROGMS/MY.PROJ/prog1
Copy -b=10 /h0/PROGMS/MY.PROJ/test.c
Chd ..
Makdir CONVERSION
Chd CONVERSION
Copy -b=10 /h0/PROGMS/CONVERSION/temp.c
Copy -b=10 /h0/PROGMS/CONVERSION/tally.c
Chd ..
unlink copy
tmode -w=1 pause
$

Because the output was not redirected to a procedure file and the -e option was not used, the above com-
mands were not executed. They were just echoed to your screen.

If you now type dsave ../notes -e, the commands are again echoed to the screen. However, the contents
of the PROGMS directory are copied into the NOTES directory.

You can also redirect the output of dsave to a file. When you redirect the output, the commands that are
output from dsave are essentially captured in a file. You can later execute this file to actually perform the
dsave operation.

To redirect the output from dsave to a file, use the redirection modifier for standard output. The standard
output modifier is the > symbol.

/h0

NOTES

CONVERSION

PROGMS

MY.PROJ

temp.c test.cprog1tally.c

prog.names

Using Professional OS-9 4-23

Dsave: Copying Files Using Procedure Files The OS-9 File System

For example, from the PROGMS directory, you can redirect the output from dsave into a file called
make.bckp by typing:

dsave >make.bckp

This command creates make.bckp in the current data directory. To perform the dsave, type make.bckp
at the command line.

Redirecting the output to a file is helpful when you want to save most, but not all, of the files in the direc-
tory or directories being saved. You can edit make.bckp before performing the dsave. This allows you
to save only selected files.

Regardless of how you decide to perform the dsave, if dsave encounters a directory file, it automatically
creates a new directory and changes to that directory before generating copy commands for files in the
subdirectory.

In the dsave example, the directory structure looks like the following after dsave has finished:

If the current working directory is the root directory of the disk, dsave creates a file that backups the entire
disk, file by file. This is useful when you need to copy many files from different format disks or from a
floppy disk or a hard disk.

If an error occurs during the dsave process, the following prompt is displayed:

continue (y,n,a,q)?

A y indicates that you wish to continue with dsave. An n indicates that you do not wish to continue with
dsave. An a indicates that all possible files should be copied and the prompt should not be displayed on
error. A q indicates that you want to exit the dsave procedure.

If for any reason you do not wish to be bothered by the prompt, the -s option is available. This skips any
file which cannot be copied and continues the dsave routine without the error prompt.

/h0

NOTES

CONVERSION

PROGMS

MY.PROJ

temp.c test.cprog1tally.c

listing

CONVERSION MY.PROJ

temp.c test.cprog1tally.c

4-24 Using Professional OS-9

The OS-9 File System Del and Deldir: Deleting Files and Directories

When you copy several subdirectories, you can use the -i option to indent for directory levels. This helps
to keep track of which files are located in which directories.

You can use dsave to keep current directory backups. Use the -d or -d=<date> options to compare the
date of the file to be copied with a file of the same name in the directory where it is to be copied. The -d
option copies any file with a more recent date. The -d=<date> option copies any file with a date more
recent than that specified. The following example shows the use of dsave with the -d option:

$ chd /d0/BACKUP
$ dir

Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 90/11/12 1417 ------wr 20CO 11113 program.c
 12.4 90/10/05 1601 ------wr 313D 5744 prog.2
$ chd /d0/WORKFILES
$ dir

Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 90/11/12 1417 ------wr DODO 11113 program.c
 12.4 90/11/12 1601 ------wr 3458 5780 prog.2
$ dsave -deb32 /d0/BACKUP
$ chd /d0/BACKUP
$ dir

Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 90/11/12 1417 ------wr 5990 11113 program.c
 12.4 90/11/12 1601 ------wr A12B 5780 prog.2

Only prog.2 was copied to the BACKUP directory because the date was more recent in the WORKFILES
directory.

For more information about dsave, refer to the OS-9 Utilities section.

Del and Deldir: Deleting Files and Directories

Use the del and deldir utilities to eliminate unwanted files and directories. If you no longer need a file,
deleting the file frees disk space. You must have permission to write to the file or directory in order to
delete it.

To delete a file, type del, followed by the name of the file that you want deleted. For example, to delete
the file test that you created with build, you would type:

• del deletes a file.
• deldir deletes a directory.+

Using Professional OS-9 4-25

Del and Deldir: Deleting Files and Directories The OS-9 File System

del test

If you execute dir you see that test is no longer displayed.

When deleting files, you may use wildcards. For example, if you have three files, trial, trial1, and trial.c,
in a directory and you want to use wildcards to delete trial and trial1, you may be tempted to type del trial*,
but this would also delete trial.c, a file you want to keep. Use caution when you use wildcards with
utilities like del and deldir. It is easy to unintentionally delete files you want to save.

NOTE: Wildcards are discussed in the chapter on the shell.

The del -p option displays the following prompt before deleting a file:

delete <filename> ? (y,n,a,q)

Type y to delete the file; n if you do not want to delete the file; a if you want to delete all specified files
without further prompts; and q if you want to quit the deleting process. This helps prevent deleting files
you want to keep.

Deleting a directory is a little different. Use the deldir utility to delete directories. deldir first deletes all
the files and directories in the given directory, and then, if no errors occur, finally deletes the directory
name. For example:

$ deldir USER2

Deleting directory: USER2
Delete, List, or Quit (d, l, or q) ?

At the prompt, type l to list the contents of the directory, d to delete the directory, or q to quit and not delete
anything.

Just a reminder: Never delete a file or directory unless you are sure you do not need it.

End of Chapter 4

4-26 Using Professional OS-9

The Function of the Shell

The shell is the OS-9 command interpreter program. The shell translates the commands you enter into
commands the operating system understands and executes. This allows you to use commands such as dir,
copy, and procs without knowing the complex machine language OS-9 understands.

The shell also provides a user-configurable environment to personalize the way OS-9 works on your
system. You can use the shell to change the shell prompt, send error messages to a file, or backup your
disk before you log out.

The shell command starts the shell program. This command is automatically executed following system
startup or after logging on to a timesharing terminal. When the shell is ready for commands, it displays
the prompt:

$

This prompt indicates that the shell is active and waiting for a command from your keyboard. You can
now type a command line followed by a carriage return.

A number of options are available to the shell. By default, some are automatically turned on following
startup or log on. The available shell options are:

Option Description
-e=<file> Prints error messages from <file>. If no file is specified, /dd/sys/errmsg is

used. Without this option, the shell prints only error numbers with a brief
message description. Each error is described in the appendix on error codes.

5

The Shell

Using Professional OS-9 5-1

The Function of the Shell The Shell

Option Description
-ne Prints no error messages. This is the default option.

-l The logout built-in command is required to terminate the login shell. <eof>
does not cause the shell to terminate.

-nl <eof> terminates the login shell. <eof> is normally caused by pressing the
<Esc> key. This is the default option.

-p Displays prompt. The default prompt is a dollar sign ($).

-p=<string> Sets the current shell prompt equal to <string>.

-np Does not display the prompt.

-t Echoes input lines.

-nt Does not echo input lines. This is the default option.

-v Verbose mode: displays a message for each directory searched when executing
a command.

-nv Turns off verbose mode. This is the default option.

-x Aborts process upon error. This is the default option.

-nx Does not abort process upon error.

You can change shell options with either of two methods. The first method involves typing the option on
the command line or after the shell command. For example:

$ -np Turns off the shell prompt.

$ shell -np Creates a new shell that does not prompt. When the new shell is exited, the
original shell will prompt.

The second method uses set, a special shell command. To set shell options, type set, followed by the op-
tions desired. When using the set command, a hyphen (-) is unnecessary before the letter option. For ex-
ample:

$ set np Turns off the shell prompt.

$ shell set np Creates a new shell that does not prompt. When the new shell is exited, the
original shell will prompt.

As you can see, the two methods accomplish the same function. They are both provided for your
convenience. You should use the method that is clearer to you.

5-2 Using Professional OS-9

The Shell The Shell Environment

The Shell Environment

The shell maintains a unique list of environment variables for each user on an OS-9 system. These
variables affect the operation of the shell or other programs subsequently executed and can be set
according to your preference.

You can access all environment variables by any process called by the environment’s shell or by
descendant shells. This essentially allows you to use the environment variables as global variables.

Four environment variables are automatically set up when you log on to a time-sharing system:

Variable Description
PORT This specifies the name of the terminal. An example of a valid name is /t1. PORT

is automatically set up by the tsmon utility.

HOME This specifies your home directory. The home directory is specified in your pass-
word file entry and is your current data directory when you first log on the system.
This is also the directory used when the command chd with no parameters is exe-
cuted.

SHELL This is the first process executed when you log on to the system.

USER This is the user name you typed when prompted by the login command.

On single user systems, you can set these variables with the setenv command. You can also set up a
procedure file with your normal configuration of these variables. This procedure file could then be
executed each time you startup your terminal.

There are four other important environment variables:

Variable Description
PATH This specifies any number of directories. A colon (:) must separate directory paths.

The shell uses PATH as a list of commands directories to search when executing a
command. If the default commands directory does not include the file/module to
execute, each directory specified by PATH is searched until the file/module is
found or the list is exhausted.

Variable Description

If a subsequent shell redefines an environment variable, the variable is only redefined for that
shell and its descendents. The environment variable is not redefined for the parent shell.+

Using Professional OS-9 5-3

The Shell Environment The Shell

PROMPT This specifies the current prompt. By specifying an “at” sign (@) as part of your
prompt, you may easily keep track of how many shells you have running under each
other. @ is a replaceable macro for the shell level number. The base level is set by
the environment variable _sh.

_sh This specifies the base level for counting the number of shell levels. For example,
set the shell prompt to “@howdy: ” and _sh to 0:

$ setenv _sh 0
$ -p="@howdy: "
howdy: shell
1.howdy: shell
2.howdy: eof
1.howdy: eof
howdy:

TERM This specifies the type of terminal being used. TERM allows word processors,
screen editors, and other screen dependent programs to know what type of terminal
configuration to use.

NOTE: Environment variables are case sensitive. OS-9 does not recognize a variable if you do not use
the proper case.

Changing the Shell Environment

Three utility programs are available to use with environment variables: setenv, unsetenv, and printenv.

setenv declares the variable and sets its value. The variable is put in an environment storage area accessed
by the shell. For example:

$ setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds
$ setenv _sh 0

These variables are only known to the shell in which they are defined and any descendant processes from
that shell. This command does not change the environment of the parent process of the shell which issued
setenv.

setenv: Declares the variable and sets the value of the variable.
unsetenv: Clears the value and removes the variable from storage.
printenv: Prints the variables and their values to standard output.

+

5-4 Using Professional OS-9

The Shell The Shell Environment

unsetenv clears the value of the variable and removes it from storage. For example:

$ unsetenv PATH
$ unsetenv _sh

printenv prints the variables and their values to standard output. For example:

$ printenv
PATH=..:/h0/cmds:/d0/cmds:/dd/cmds
PROMPT=howdy
_sh=0

These three commands are described in the OS-9 Utilities section.

Using Professional OS-9 5-5

Built-in Shell Commands The Shell

Built-In Shell Commands

The shell has a special set of commands, or option switches, built-in to the shell. You can execute these
commands without loading a program and creating a new process. You can execute them regardless of
your current execution directory.

The built-in commands and their functions are:

Command Description
* <text> Indicates a comment: <text> is not processed. This is especially

useful in procedure files.

chd <path> Changes the current data directory to the directory specified by
the path.

chx <path> Changes the current execution directory to the directory speci-
fied by the path.

ex <name> Directly executes the named program. This replaces the shell
process with a new execution module.

kill <proc ID> Aborts the process specified by <proc ID>.

logout Terminates the current shell. If the login shell is to be
terminated, the .logout file in the home directory is executed and
then the login shell is terminated.

profile <path> Reads input from a named file and then returns to the shell’s
original input source.

set <options> Sets options for the shell.

setenv <env var> <value> Sets environment variable to the specified value.

setpr <proc ID> <priority> Changes the process’s priority.

unsetenv <env var> Deletes an environment variable from the environment.

w Waits for a child process to terminate.

wait Waits for all child processes to terminate.

5-6 Using Professional OS-9

The Shell Shell Command Line Processing

Shell Command Line Processing

The shell reads and processes command lines one at a time from its input path, which is usually your
keyboard. Each line is first scanned, or parsed, to identify and process any of the following parts which
may be present:

keyword A name of a program, procedure file, built-in command, or pathlist.

parameters The names of files, programs, values, variables, constants, etc. to pass
to the program being executed.

execution modifiers These modify a program’s execution by redirecting I/O or changing
the priority or memory allocation of a process.

separators When multiple commands are placed on the same command line, sep-
arators specify whether they should execute sequentially or concur-
rently.

The shell can process a command line with only the keyword present. Parameters, execution modifiers,
and separators are optional. After it identifies the keyword, the shell processes any execution modifiers
and separators. The shell assumes that any text not yet processed are parameters; they are passed to the
program called.

The keyword must be the first word in the command line. If the keyword is a built-in command, it is
immediately executed.

If the keyword is not a built-in command, the shell assumes it is a program name and attempts to locate it.
The shell searches for the command in the following sequence:

¿ The shell checks the memory to see if the program is already loaded into the module directory.
If it is already in memory, there is no need to load another copy. The shell then calls the
program to be executed.

¡ If the program was not in memory, your current execution directory is searched. If it is found,
the shell attempts to load the program. If this fails, the shell tries to execute it as a procedure
file. If this fails, the shell attempts the same procedure using the next directory specified in the
PATH environment variable. This continues until the command is successfully executed or the
list of directories is exhausted.

Ç¬ The shell searches your current data directory. If it finds the specified file, it is processed as a
procedure file. Procedure files are assumed to contain one or more shell command lines. These
command lines are processed by a newly created, or child, shell as if they had been typed in
manually. After all commands from the procedure file execute, control returns to the old, or
parent, shell. Because the child shell processes the commands, all built-in commands in the
procedure file such as chd and chx only affect the child shell.

Using Professional OS-9 5-7

Shell Command Line Processing The Shell

The shell returns an error if the program is not found. If the program is found and executed, the shell waits
until the program terminates. When the program terminates, it reports any errors returned. If there are
more input lines, the shell gets the next line and the process is repeated.

This sample command line calls a program:

$ prog #12K sourcefile -l -j >/p

In this example:

prog Is the keyword.

#12K Is a modifier which requests that an alternate memory size be assigned
to this process. In this case, 12K is used as memory.

sourcefile -l -j Are parameters passed to prog.

> Is a modifier, which redirects output to a file or device. In this case, >
redirects the output to the printer (/p).

/p Is the system’s printer.

Special Command Line Features

In addition to basic command line processing, the shell facilitates:

• Memory allocation

• I/O redirection, including filters

• Process priority

• Wildcard pattern matching

• Multi-tasking: concurrent execution

These functions are accessed through the use of execution modifiers, separators, and wildcards. There are
virtually unlimited combinations of ways to use these capabilities.

Characters which comprise execution modifiers, separators, and wildcards are stripped from the part(s) of
the command line passed to a program as parameters. These characters cannot be passed as parameters to
programs unless contained in quotes:

Modifiers: # Additional memory size
^ Process priority
> Redirect output
< Redirect input
>> Redirect error output

5-8 Using Professional OS-9

The Shell Shell Command Line Processing

Separators: ; Sequential execution
& Concurrent execution
! Pipe construction

Wildcards: * Matches any character
? Matches a single character

Execution Modifiers

The shell processes execution modifiers before the program is run. If an error is detected in any of the
modifiers, the run is aborted and the error reported.

Additional Memory Size Modifier

Every executable program is converted to machine language for storage. During the conversion process,
a module header is created for the program. A module header is part of all executable programs and holds
the program’s name, size, memory requirements, etc. You can find a complete explanation of module
headers in the OS-9 Technical Manual.

When the shell processes an executable program, it allocates the minimum amount of working memory
specified in the program’s module header. To increase the default memory size, you can assign memory
in 1K increments using the pound sign modifier (#), followed by a number of allocated kilobytes: #10k
or #10. If the specified memory allocation is smaller than would otherwise be used, the modifier is ig-
nored.

The increase in memory allocation only affects one command. If you want to increase the allocation for
the next command, you must add the modifier (#) again.

NOTE: Programs written in C use the additional memory for stack space only.

Using Professional OS-9 5-9

Shell Command Line Processing The Shell

I/O Redirection Modifiers

Redirection modifiers redirect the program’s standard I/O paths to alternate files or devices. Usually, pro-
grams do not use specific file or device names. This makes the redirection of standard I/O to any file or
device fairly simple, without altering the program.

Programs which normally receive input from a terminal or send output to a terminal use one or more of
these standard I/O paths:

• Standard Input Path: Normally passes data from a terminal’s keyboard to a program.

• Standard Output Path: Normally passes output data from a program to a terminal’s display.

• Standard Error Path: Can be used for either input or output, depending on the nature of the
program using it. This path is commonly used to output routine status messages such as
prompts and errors to the terminal’s display. By default, the standard error path uses the same
device as the standard output path.

A new process can only be created by an existing process. The new process is known as the child process.
The process that created the child process is known as the parent process. Each child process inherits the
parent process’s standard I/O paths.

When the shell creates a new process, it inherits the shell’s standard I/O paths. Upon startup or logging
in, the shell’s standard input is the terminal keyboard. The standard output and standard error are directed
to the terminal’s display. Consequently, the child’s standard input is the terminal keyboard. The child’s
standard output and standard error are directed to the terminal’s display.

When a redirection modifier is used on a shell command line, the shell opens the corresponding paths and
passes them to the new process as its standard I/O paths.

When you use redirection modifiers on a command line, they must be immediately followed by a path de-
scribing the file or device to or from which the I/O is to be redirected.

 The three redirection modifiers are:

< Redirects the standard input path.

> Redirects the standard output path.

>> Redirects the standard error path.

+

5-10 Using Professional OS-9

The Shell Shell Command Line Processing

Each physical input/output device supported by the system must have a unique name. Although the device
names used on a system are somewhat arbitrary, it is customary to use the names Microware assigns to
standard devices in OS-9 packages. They are:

Device Description
TERM Primary System Terminal
t1, t2, etc. Other Serial Terminals
p Parallel Printer
p1 Serial Printer
dd Default Disk Drive
d0 Floppy Disk Drive Unit 0
d1, d2, etc. Other Floppy Disk Drives
h0, h1, etc. Hard Disk Drives (Format-inhibited)
h0fmt, h1fmt, etc. Hard Disk Drives (Format-enabled)
n0, n1, etc. Network Devices
mt0, mt1 Tape Devices
r0 Ram Disk
pipe Pipe Device
nil Null Device

NOTE: The h0fmt, h1fmt, etc. device descriptors have a bit set that allows you to use the format and
os9gen utilities on them. To prevent accidentally formatting a hard disk, you should normally use the
device names h0, h1, etc.

You may only use device names as the first name of a pathlist. The device name must be preceded by a
slash (/) to indicate that the name is an I/O device. If the device is not a mass storage multi-file device like
a disk drive, the device name must be the only name in the path. This restriction is true for devices such
as terminals and printers.

For example, you can redirect the standard output of list to write to the system printer instead of the
terminal:

$ list correspondence >/p

The shell automatically opens or creates, and closes (as appropriate) files referenced by I/O redirection
modifiers. In the next example, the output of dir is redirected to the path /d1/savelisting:

$ dir >/d1/savelisting

If list is used on the path /d1/savelisting, output from dir is displayed as follows:

$ List /d1/savelisting

 directory of . 10:15:00
file1 myfile savelisting

Using Professional OS-9 5-11

Shell Command Line Processing The Shell

You can use redirection modifiers before and/or after the program’s parameters, but you can use each mod-
ifier only once in a given command line. You can use redirection modifiers together to cause more than
one redirection of the standard paths. For example, shell <>>>/t1 causes redirection of all three standard
paths to /t1.

The addition and hyphen characters (+ and -) can be used with redirection modifiers. The “>-” modifier
redirects output to a file. If the file already exists, the output overwrites it. The “>+” modifier adds the
output to the end of the file. The following example overwrites dirfile with output from the execution di-
rectory listing:

dir -x >-dirfile

The next example adds the listing of newfile to the end of oldfile.

list newfile >+oldfile

NOTE: Spaces may not occur between redirection operators and the device or file path.

Process Priority Modifier

On multi-user systems or when multi-tasking, many processes seem to execute simultaneously. Actually,
OS-9 uses a scheduling algorithm to allocate execution time to active processes.

All active processes are sorted into a queue based on the age of the process.

On a timesharing system, the system manager assigns the initial priority for processes started by each user.
This priority for the initial process is listed in the password file. The initial process is usually the shell.
On a single user system, processes have their priority set in the Init module. All child processes inherit
their parent process’s priority.

NOTE: Password files are discussed later in this chapter.

When a process enters the active queue, it has an age set to its initial priority. Every time a new active
process is submitted for execution, all earlier processes’s ages are incremented. The process with the
highest age executes first.

If you want a program to run at a higher priority, use the caret modifier (^). By specifying a higher priority,
a process is placed higher in the execution queue. For example:

$ format /d1 ^255

In this example, the process format is given the assigned priority of 255. By assigning a lower number,
you can specify a lower priority.

The age is a number between 0 and 65535 based on how long a process has waited for ex-
ecution and its initial priority. +

5-12 Using Professional OS-9

The Shell Shell Command Line Processing

Wildcard Matching

The shell uses some alternate ways to identify file and directory names. It accepts wildcards in the com-
mand line. The two recognized wildcard characters are the asterisk and the question mark (* and ?).

An asterisk (*) matches any group of zero or more characters. A question mark (?) matches any single
character. The shell searches the current data directory or the directory given in a path for matching file
names.

For the following examples, a directory containing the following files is used:

 directory of FILES 14:45:20
diary diary2 form form.backup forms
login.names logistics logs old oldstuff
setime.c shellfacts sizes sizes.backup utils1

The command list log* lists the contents of login.names, logistics, and logs. The pattern log* matches
all file names beginning with log followed by zero or more characters. The following commands
demonstrate the function of this wildcard.

list s* Lists all files in the current data directory beginning with s: Shellfacts,
setime.c, and sizes.

del * Deletes every file in the directory FILES.

dir ../*.backup Lists all files in the parent directory that end with .backup.

dir -x d* Lists all files in the current execution directory that start with the letter d.
This can be helpful if you are unsure of the spelling of a particular utility.

The question mark (?) matches any single character in the position where the wildcard character is located.
For example, the command line list log? only lists the contents of the file logs. The following commands
demonstrate the function of this wildcard.

del form? Deletes the file forms but not form.

list s???? Lists the contents of sizes, but not setime.c or shellfacts.

In both examples, the shell only searches for names with five characters.

WARNING: Specifying too high of a priority for a process can cause all other pro-
cesses to be locked out until their ages mature. For example, if you specify a priority
of 2000 for a large program and all the other processes have an age of less than 100,
your program is the only process executed on the system until either your program ter-
minates or another process’s age reaches 2000. If another process’s age reaches 2000,
it is run once and entered back in the queue at its initial priority. Once again, your pro-
gram either runs until it terminates or until another process’s age reaches 2000.

!

Using Professional OS-9 5-13

Shell Command Line Processing The Shell

Wildcards may also be used together. For example, the command list *.? lists any files that end in a period
followed by any letter, number, or special character, regardless of what comes before the period. In this
case, list *.? lists the contents of the file setime.c.

The shell only attempts to expand a character string containing a wildcard if the character string could be
a pathlist. The shell does not expand wildcards used in the keyword of a command line. For example,
the shell does not expand the asterisk in the following:

d* forms

NOTE: The shell disregards wildcard characters enclosed in double quotes. For example:

echo "*"

This echoes an asterisk (*) to standard output, which is usually the terminal. If you left out the double
quotes around the asterisk, the shell would expand the wildcard to include every file name in the current
directory and output each name to the terminal. Try it.

Command Separators

A single shell input line can include more than one command line. These command lines may be executed
sequentially or concurrently. Sequential execution causes one program to complete its function and ter-
minate before the next program is allowed to begin execution. Concurrent execution allows several com-
mand lines to begin execution and run simultaneously.

Execute commands sequentially by separating the command lines with a semicolon (;). Execute
commands concurrently by separating the command lines with an ampersand (&).

Sequential Execution

When you enter one command per line from the keyboard, programs execute one after another, or sequen-
tially. All programs executed sequentially are individual processes created by the shell. After initiating
execution of a program to be executed sequentially, the shell waits until the program it created terminates.
The command line prompt does not return until the program has finished.

For example, the following command lines are executed one after another. The copy command is
executed first, followed by the dir command.

$ copy myfile /D1/newfile
$ dir >/p

WARNING: You must be careful when using wildcards with utilities such as
del and deldir. You should not use wildcards with the -x or -z options of most
utilities.!

5-14 Using Professional OS-9

The Shell Shell Command Line Processing

Specify more than one program on a single shell command line for sequential execution by separating each
program name and its parameters from the next one with a semicolon (;). For example:

$ copy myfile /D1/newfile; dir >/p

The shell first executes copy and then dir. No command line prompt appears between the execution of the
copy and dir commands. The command line executes exactly as the previous two command lines, unless
an error occurs.

If any program returns an error, subsequent commands on the same line are not executed regardless of the
-nx option. In all other regards, a semicolon (;) and a carriage return act as identical separators.

The following example copies the contents of oldfile into newfile. When the copy command is finished,
oldfile is deleted. Then, the contents of newfile are listed.

$ copy oldfile newfile; del oldfile; list newfile

In the next example, the output from dir is redirected into myfile in the d1 directory. The output from list
is then redirected to the printer. Finally, temp is deleted.

$ dir >/d1/myfile ; list temp >/p; del temp

Multi-tasking: Concurrent Execution

Use the ampersand (&) separator to execute programs concurrently. This allows programs to run at the
same time as other programs, including the shell. The shell does not wait to complete a process before
processing the next command. Concurrent execution is how a background program is started.

Use the concurrent execution separator for multi-tasking. The number of programs that can run at the same
time is not fixed; it depends on the amount of free memory in the system and the memory requirements of
the specific programs.

Here is an example:

$ dir >/P& list file1& copy file1 file2 ; del temp

The dir, list, and copy utilities run concurrently because they are separated by an ampersand (&). del does
not run until copy terminates because sequential execution (;) was specified.

If you add an ampersand (&) to the end of a command line, regardless of the type of execution specified,
the shell immediately returns command to the keyboard, displays the $ prompt, and waits for a new com-
mand. This frees you from waiting for a process or sequence of processes to terminate.

This is especially useful when making a listing of a long text file on a printer. Instead of waiting for the
listing to print to completion, you can use the concurrent execution separator to use your time more effi-
ciently.

Using Professional OS-9 5-15

Shell Command Line Processing The Shell

If you have several processes running at once, you can display a status summary of all your processes with
the procs utility. procs lists your current processes and pertinent information about each process. The
procs utility is discussed later in this chapter.

Pipes and Filters

The third kind of separator is the exclamation point (!) used to construct pipelines. Pipelines consist of
two or more concurrent programs whose standard input and/or output paths connect to each other using
pipes.

A pipe is simply a way to connect the output of a process to the input of another process, so the two run as
a sequence of processes: a pipeline. Pipes are one of the primary means by which data is transferred from
process to process for interprocess communications. Pipes are first-in, first-out buffers. They may hold
up to 90 bytes of data at a time.

All programs in a pipeline are executed concurrently. The pipes automatically synchronize the programs
so the output of one never gets ahead of the input request of the next program in the pipeline. This ensures
that data cannot flow through a pipeline any faster than the slowest program can process it.

Any program that reads data from standard input can read from a pipe. Any program that writes data to
standard output can write data to a pipe. Several utilities are designed so that the standard output of one
can be piped to the standard input of another. For example:

$ dir -e ! pr

This example causes the standard output of dir to be piped to the standard input of the pr utility instead of
on the terminal screen. pr reads the output of dir even though pr reads standard input by default. pr then
displays the result.

OS-9 uses two types of pipes: named pipes and un-named pipes.

The standard output of the dir -e command is piped to the standard input of the pr
command through an un-named pipe. The pr utility displays the results of the dir -e
command.

/pipe/tempdir -e pr
(WRITES) (READS)

5-16 Using Professional OS-9

The Shell Shell Command Line Processing

Un-named Pipes

Un-named pipes are created by the shell when an input line with one or more exclamation point (!) sepa-
rators is processed. For each exclamation point, the standard output of the program named to the left of
the exclamation point is redirected by a pipe to the standard input of the program named to the right of the
exclamation point. Individual pipes are created for each exclamation point present. For example:

$ update <master_file ! sort ! write_report >/p

In this example, the input for the program update is redirected from master_file. update’s standard out-
put becomes the standard input for the program sort. sort’s output, in turn, becomes the standard input
for the program write_report. write_report’s standard output is redirected to the printer.

Named Pipes

Named pipes are similar to un-named pipes with one exception: a named pipe works as a holding buffer
that can be opened by another process at a different time.

Create named pipes by re-directing output to /pipe/<file>, where <file> is any legal OS-9 file name. For
example:

$ list letters >/pipe/letters

The output from the list command is redirected into a named pipe, /pipe/letters. The information remains
in the pipe until it is listed, copied, deleted, or used in some other manner.

The output from the merge command is redirected to the named pipe, /pipe/these. /pipe/these
remains open until the contents are used in some way. In this example, another user could later grep
for a word in the file /pipe/these:

grep newone /pipe/these -nc

Once the file has been used, the named pipe is deleted.

merge this that >/pipe/these

grep newone /pipe/thse -nc

/pipe/these

/pipe/these

Using Professional OS-9 5-17

Shell Command Line Processing The Shell

You can also create named pipes by writing to the named pipe from a program. Named pipes are similar
to mass-storage files. Named pipes have attributes and owners. They may be deleted, copied, or listed
using the same syntax one would use to delete, copy, or list a file. You may change the attributes of a
named pipe just as you would change the attributes of a file.

dir works with /pipe. This displays all named pipes in existence. A dir -e command may be deceiving.
If any utility other than copy creates a named pipe, the pipe size equals 90 bytes. copy expands the size
of the pipe to the size of the file. This indicates that the first 90 bytes of the output are in the named pipe.
However, if the procs utility is executed, you will see that a path remains open to /pipe. If you were to
copy or list the pipe, for example, the pipe would continue to receive input and pass it to its output path
until the input process is finished. When the pipe is empty, the named pipe is deleted automatically.

Some of the most useful applications of pipelines are character set conversion, data
compression/decompression and text file formatting. Programs which are designed to process data as
components of a pipeline are often called filters.

5-18 Using Professional OS-9

The Shell Command Grouping

Command Grouping

You can enclose sections of shell input lines in parentheses (()). This allows you to apply modifiers and
separators to an entire set of programs. The shell processes them by calling itself recursively as a new
process to execute the enclosed program list. For example, the following commands produce the same
result:

$ (dir /d0; dir /d1) >/p
$ dir /d0 >/p; dir /d1 >/p

However, one subtle difference exists. The printer is continuously controlled by one user in the first ex-
ample, while in the second case, another user could conceivably use the printer in between the dir com-
mands.

Command grouping can be used to cause a group of programs to be executed sequentially with respect to
each other and concurrently with respect to the shell that initiated them. For example:

$ (del *.backup; list stuff_* >p)&

This command begins to sequentially delete all files ending in .backup and then list to the printer the
contents of any files that start with stuff_. At the same time, a $ prompt will appear, indicating that the
shell is waiting for a new command.

A useful extension of this form is to construct pipelines consisting of sequential and/or concurrent
programs. For example:

$ (dir CMDS; dir SYS) ! makeuppercase ! transmit

This command line outputs the dir listings of CMDS and SYS, in that order, through a pipe to the program
makeuppercase. The total output from makeuppercase is then piped to the program transmit.

It is important to remember that OS-9 processes commands from left to right. In the following example,
the dir command is executed first, instead of the procs and del commands located inside the parentheses.

$ dir& (procs; del whatever)

Using Professional OS-9 5-19

Shell Procedure Files The Shell

Shell Procedure Files

A procedure file is a text file containing one or more command lines that are identical to command lines
manually entered from the keyboard. The shell executes each command line in the exact sequence given
in the procedure file.

A simple procedure file could consist of dir on one line and date on another. When the name of this pro-
cedure file is entered from the command line, dir would run, followed by date.

Procedure files have a number of valuable applications. They can:

• Eliminate repetitive manual entry of commonly used command sequences.

• Allow the computer to execute a lengthy series of programs in the background unattended, or
while you are running other programs in the foreground

• Initialize your environment when you first log in.

In addition, you can use a procedure file to redirect the standard input, standard output, and standard error
paths from programs and utilities to procedure files. This has many useful purposes. For example, instead
of receiving the sometimes annoying output of shell messages to your terminal at random times, you could
redirect the shell’s output to a procedure file and review the messages at a more convenient time.

You can also run procedure files in the background by adding the ampersand operator:

$ procfile&
+4

Notice the +4 returned by the shell in the example above. This is the process number assigned to the shell
running procfile. You could achieve the same effect by using the <control>C interrupt:

$ procfile
[<control>C is typed]
+4

Using <control>C to place a procedure in the background only works if the procedure has not yet
performed I/O to the terminal. Another limitation of the <control>C interrupt occurs when the shell has
not had time to set up the command for execution. If the shell has not loaded files from the disk,
established pipelines, etc., the <control>C causes the shell to abort the operation and return the shell
prompt. For this reason, you should usually use the ampersand to place a procedure in the background.

WARNING: If a procedure file is run in the background, it should not contain any ter-
minal I/O. Any terminal I/O caused by a background procedure file will minimally
cause confusion as two or more processes try to control the same I/O path.!

5-20 Using Professional OS-9

The Shell Shell Procedure Files

OS-9 does not have any limit on the number of procedure files that can be simultaneously executed as long
as memory is available.

NOTE: Procedure files themselves can cause sequential or concurrent execution of additional procedure
files.

The Login Shell and Two Special Procedure Files: .login and .logout

The login shell is the initial shell created by the login sequence to process the user input commands after
logging in.

To make use of these files, they must be located in the home directory.

.login is executed each time the login command is executed. This allows you to run a number of
initializing commands without remembering each and every command. .login is processed as a command
file by the login shell immediately after successfully logging on to a system. After all commands in the
.login file are processed, the shell prompts the user for more commands. The main difference in handling
.login is that the login shell itself actually executes the commands rather than creating another shell to
execute the commands.

You can issue commands such as set and setenv within .login and have them affect the login shell. This
is especially useful for setting up the environment variables PATH, PROMPT, TERM, and _sh.

Here is an example .login file:

setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds:/h0/doc/spex
setenv PROMPT "@what next: "
setenv _sh 0
setenv TERM abm85h
querymail
date
dir

The .login and .logout procedure files provide a way to execute desired commands
when logging on to and leaving the system.+

Using Professional OS-9 5-21

Shell Procedure Files The Shell

.logout is executed to exit the login shell and leave the system. .logout is processed before the login shell
terminates. It only processes the .logout file when given to the login shell; other subsequent shells simply
terminate. You could use this to execute any cleaning up procedures that should be performed on a regular
schedule. This might be anything from instigating a backup procedure of some sort to printing a reminder
of things to do. Here is an example .logout file:

procs
wait
echo "all processes terminated"
* basic program to instigate backup if necessary *
disk_backup
echo "backup complete"

The Profile Command

The profile built-in shell command can be used to cause the current shell to read its input from the named
file and then return to its original input source, which is usually the keyboard. To use the profile command,
enter profile and the name of a file:

profile setmyenviron

The specified file (in this case, setmyenviron) may contain any utility or shell commands, including
commands to set or unset environment variables or to change directories. These changes will remain in
effect after the command has finished executing. This is in contrast to calling a normal procedure file by
name only. If you call a normal procedure file without using the profile command, the changes would not
affect the environment of the calling shell.

Profile commands may be nested. That is, the file itself may contain a profile command for another file.
When the latter profile command is completed, the first one will resume.

A particularly useful application for profile files is within a user’s .login and .logout files. For example,
if each user includes the following line in the .login file, then system-wide commands (common
environments, news bulletins, etc.) can be included in the file /dd/SYS/login_sys:

profile /dd/SYS/login_sys

A similar technique can be used for .logout files.

5-22 Using Professional OS-9

The Shell Setting up a Time-Sharing System Startup Procedure

DIR_9

Setting up a Time-Sharing System Startup Procedure File

OS-9 systems used for timesharing usually have a procedure file that brings the system up by means of
one simple command or by using the system startup file. This procedure file initiates the timesharing mon-
itor for each terminal. It begins by starting the system clock and initiating concurrent execution of a num-
ber of processes that have their I/O redirected to each timesharing terminal.

tsmon is normally used to monitor I/O devices capable of bi-directional communication, such as CRT
terminals. However, you can also use tsmon to monitor a named pipe. If you do this, tsmon creates the
named pipe and then waits for data to be written to it by some other process.

You can run several tsmon processes concurrently, each one watching a different group of devices.
Because tsmon can monitor up to 28 device name pathlists, you must run multiple tsmon processes when
more than 28 devices are to be monitored. Multiple tsmon processes can be useful for other reasons. For
example, you may want to keep modems or terminals suspected of hardware trouble isolated from other
devices in the system.

Here is a sample procedure file for a timesharing system with terminals named T1, T2, T3, and T71:

* system startup procedure file
echo Please Enter the Date and Time
setime
tsmon /t1 /t2 /t3&
tsmon /t71 * This terminal has been mis-behaving

NOTE: This login procedure will not work until a file called /d0/SYS/Password with the appropriate
entries has been created.

NOTE: For more information on tsmon, see the OS-9 Utilities section.

tsmon is a special program which monitors a terminal for activity. Typically, tsmon is
executed as part of the start-up procedure when the system is first brought up and remains
active until the system shuts down.

+

Using Professional OS-9 5-23

The Password File The Shell

The Password File

A password file is found in the SYS directory. Each line in the password file is a login entry for a user.
The line has several fields separated by a comma. The fields are:

¿ User name. The user name may contain up to 32 characters including spaces. If this field is
empty, any name will match.

¡ Password. The password may contain a maximum of 32 characters including spaces. If this
field is omitted, no password is required for the specified user.

Ç¬ Group.user ID number. Both the group and the user portion of this number may be from 0
to 65535. 0.0 is the super user. The file security system uses this number as the system-wide
user ID to identify all processes initiated by the user. The system manager should assign a
unique ID to each potential user.

Ð Initial process priority. This number may be from 1 to 65535. It indicates the priority of the
initial process.

ƒ Initial execution directory. This field is usually set to /d0/CMDS. Specifying a period (.) for
this field defaults the initial execution directory to the CMDS file.

Ý Initial data directory. This is usually the specific user directory. Specifying a period (.) for
this directory defaults to the current directory.

ý Initial Program. This field contains the name and parameters of the program to be initially
executed. This is usually shell.

NOTE: Fields left empty are indicated by two consecutive commas.

The following is a sample password file:

superuser,secret,0.0,255,.,.,shell -p="@howdy"
suzy,morning,1.5,128,.,/d0/SUZY,shell
don,dragon,3.10,100,.,/d0/DON,Basic

For more information on password files, see the login utility in the OS-9 Utilities section.

5-24 Using Professional OS-9

The Shell Creating a Temporary Procedure File

Creating a Temporary Procedure File

You can create temporary procedure files to perform tasks which require a sequence of commands. The
cfp utility creates a temporary procedure file in the current data directory and calls the shell to execute it.
After the task is complete, cfp automatically deletes the procedure file, unless you use the -nd option to
specify that you do not want the procedure file deleted.

The following is the syntax for the cfp utility:

cfp [<opts>] [<path1>] {<path2>} [<opts>]

To use the cfp utility, type cfp, the name of the procedure file (<path1>), and the file(s) (<path2>) used
by the procedure file. The name of the procedure file may be omitted if the -s=<string> option is used.

All occurrences of an asterisk (*) in the procedure file are replaced by the given pathlist(s) unless preceded
by the tilde character (~). For example, ~* translates to *. The command procedure is not executed until
all input files have been read.

For example, if you have a procedure file in your current data directory called copyit that consists of a
single command line: copy *, you could put all of your C programs from two directories, PROGMS and
MISC.JUNK, into your current data directory by typing:

$ cfp copyit ../progms/*.c ../misc.junk/*.c

If you do not have a procedure file, you can use the -s option. The -s option causes the cfp utility to read
the string surrounded by quotes instead of a procedure file. For example:

$ cfp -s="copy *" ../progms/*.c ../misc.junk/*.c

In this case, the cfp utility creates a temporary procedure file to copy every file ending in .c in both
PROGMS and MISC.JUNK to the current data directory. The procedure file created by cfp is deleted
when all the files have been copied.

Using the -s option is convenient because you do not have to edit the procedure file if you want to change
the copy procedure. For example, if you are copying large C programs, you may want to increase the
memory allocation to speed up the process. You could allocate the additional memory on the cfp com-
mand line:

$ cfp "-s=copy -b100 *" ../progms/*.c ../misc.junk/*.c

Using Professional OS-9 5-25

Creating a Temporary Procedure File The Shell

You can use the -z and -z=<file> options to read the file names from either standard input or a file. The -
z option is used to read the file names from standard input. For example, if you have a procedure file called
count.em that contains the command count -l * and you want to count the lines in each program to see
how large the programs are before you copy them, you could type the following command line:

$ cfp -z count.em

The command line prompt does not appear because the cfp utility is waiting for input. Type in the file
names on separate command lines. For example

$ cfp -z count.em
../progms/*.c
../misc.junk/*.c

When you have finished typing the file names, press the carriage return a second time to get the shell
prompt.

If you have a file containing a list of the files that you want copied, you could type:

$ cfp -z=files "-s=copy *"

For more information, read the cfp utility discussion in the OS-9 Utilities section.

5-26 Using Professional OS-9

The Shell Multiple Shells

Multiple Shells

Like all OS-9 utilities, the shell can be simultaneously executed by more than one process. This means
that in addition to each user having their own shell, an individual user can have multiple shells.

New shells can be created with procedure files. For example, to execute a shell whose standard input is
obtained from procfile, type:

$ shell <procfile

The new shell automatically accepts and executes the command lines from the procedure file instead of a
terminal keyboard. This technique is sometimes called batch processing.

Shells can also fork new shells by simply processing the procedure file:

$ procfile

Basically, both of the above commands execute the commands found in the procfile file.

By creating new shells, you can also move around the file system more efficiently. To demonstrate this
concept, the directory system in Figure 5a is used.

If your current data directory is DIR_9 and you want to work on file_8, you would normally change your
current data directory to DIR_8 and access the file by typing:

chd /d0/DIRECTORY_3/DIR_8

To return to DIR_9 you would execute a similar command. This is somewhat inconvenient and involves
always knowing the path to each directory.

file_8

Root directory of device d0:

DIRECTORY_1

DIR_4 file_1 DIR_5

file_5

Figure 5a: An example directory

DIRECTORY_2

DIR_6 file_2 file_3

file_6

DIRECTORY_3

file_4 DIR_7

file_7DIR_9

DIR_8

Using Professional OS-9 5-27

The Procs Utility The Shell

Instead, you can create a shell and change directories:

$ (chd /d0/DIRECTORY_3/DIR_8)

This makes your current directory DIR_8, but you can return to DIR_9 by pressing the <escape> (Esc)
key. By this method, you may use any directory as a base directory and fork a shell out to any other
directory.

You may continue to imbed as many shells as you like. Each time you press the <Escape> key, you are
taken to the previous shell. In this fashion you could conceivably escape from DIRECTORY_2 to DIR_8
to DIR_6 to DIR_9.

REMINDER: Because of the nature of jumping from shell to shell, it is easy to get lost. pd displays a
complete pathlist from the root directory to your current data directory. Likewise, when running multiple
shells, it is easy to forget how many shells are running. If the _sh environment variable is set to 1 and the
shell prompt includes an “at” sign (@), the number of shells replaces the @ in the prompt. For example,
if three shells are run under each other, the prompt might look like this:

3.what next:

The Procs Utility

Because of OS-9’s multi-tasking abilities, you often have more than one process executing at a time. You
may become confused as to which processes are still running and which processes have run to completion.
The procs utility displays a list of processes running on the system that are owned by the user running
procs. This allows the user to keep track of their current processes.

procs displays ten pieces of information for each process:

Id The process ID

PId The parent process ID

Grp.usr The group and user number of the owner of the process

Prior The initial priority of the process

MemSiz The amount of memory the process is using

Sig The number of any pending signals for the process

You should experiment with the multiple shell aspects to fully use OS-9.+

Processes can switch states rapidly, usually many times per second. Therefore, the procs dis-
play is a snapshot taken at the instant the command is executed and shows only those pro-
cesses running at that exact moment.

+

5-28 Using Professional OS-9

The Shell The Procs Utility

S The process status:

w Waiting
s Sleeping
a Active
* Currently executing

CPU Time The amount of CPU time the process has used

Age The elapsed time since the process started

Module & I/O The process name and standard I/O paths:

< Standard input
> Standard output
>> Standard error output

If several of the paths point to the same pathlist, the identifiers for the paths are
merged.

The following is an example of procs:

$ procs

Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term
 6 0 0.0 128 4.00k 0 s 0.02 01:12 tsmon <>>>t1
 7 0 0.0 128 4.00k 0 s 0.01 01:12 tsmon <>>>t2

procs -a displays nine pieces of information: the process ID, the parent process ID, the process name and
standard I/O paths, and six new pieces of information:

Aging The age of the process based on the initial priority and how long it has waited
for processing

F$calls The number of service request calls made

I$calls The number of I/O requests made

Last The last system call made

Read The number of bytes read

Written The number of bytes written

The following is an example of procs -a:

$ procs -a

Id PId Aging F$calls I$calls Last Read Written Module & I/O

Using Professional OS-9 5-29

Waiting For The Background Procedures The Shell

 2 1 129 5 1 Wait 0 0 sysgo <>>>term
 3 2 132 116 127 Wait 282 129 shell <>>>term
 4 3 11 1 0 TLink 0 0 xhog <>>>term
 5 3 128 7 4 GPrDsc 0 0 procs <>>>term
 6 0 130 2 7 ReadLn 0 0 tsmon <>>>t1
 7 0 129 2 7 ReadLn 0 0 tsmon <>>>t2

The -b option displays all information from procs and procs -a. The -e option displays information for
all processes in the system.

For more information on procs, see the OS-9 Utilities section.

Waiting For The Background Procedures

If you use OS-9’s multi-tasking ability, there will be times when a number of procedures are running in
the background. If it is important to wait for these tasks to finish before running a new procedure, use the
w or wait built-in shell command.

REMINDER: A child process is a process that the current shell or a child of the shell is executing.

For example, if a document needs to be created from three different files and each file has to be sorted by
different fields, the following procedure files can be used to create the same result:

start of first procedure file
qsort -f=1 file1&
qsort -f=2 file2&
qsort -f=3 file3&
wait
merge file1 file2 file3 >report

start of second procedure file
qsort -f=1 file1
qsort -f=2 file2
qsort -f=3 file3
merge file1 file2 file3 >report

The first procedure file is much quicker because each of the files are processed concurrently.

w waits for a child process to be executed to finish.
wait waits for all child processes running in the background to finish.+

5-30 Using Professional OS-9

The Shell Stopping Procedures

Stopping Procedures

You can use two methods to stop a procedure. The first method involves the <control>C or <control>E
signals. The second method uses the kill utility.

The shell handles these keyboard generated signals in the following manner. If either of these signals are
received while the shell is waiting for keyboard input, the following messages are issued:

$ Read I/O error - Error #000:002 [^E typed]
$ Read I/O error - Error #000:003 [^C typed]

These are the standard messages given whenever an I/O error occurs when reading command input data.
These keyboard signals are useful to get the shell’s attention while it is waiting for a process to terminate.

If the shell is waiting for keyboard input and <control>E is typed, the shell forwards the keyboard abort
signal to the current process and immediately prompts for command input:

$ sleep 500
[^E is typed]
abort
$

The abort message is typed by the shell to acknowledge receipt of the interrupt.

If the shell is waiting for keyboard input and <control>C is typed, the shell stops waiting for the current
process to terminate and prompts for command input. This action is similar to using an ampersand on the
command line. For example:

$ sleep 500
[^C is typed]
+8
$

It is important to remember that using <control>C in this fashion is possible only if the command in
question has not yet performed I/O to the terminal. The signal is only received by the last process to
perform I/O. If the shell has not yet finished setting up the command for execution, the signal causes the
shell to abort the operation and return the prompt.

You can also use the kill utility to terminate background processes by specifying the process number of the
process to kill. Obtain the process number of the process to kill from procs. kill is used in the following
manner:

<control>C stops the shell from waiting for the process to terminate and returns a prompt
for a command.

<control>E forwards the keyboard abort signal to the process and immediately prompts
for input.

+

Using Professional OS-9 5-31

Stopping Procedures The Shell

kill <proc num>

For example, if you want to terminate a process called xhog, you would first execute a procs:

$ procs

Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 3 2 7.03 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 7.03 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 7.03 128 8.50k 0 * 0.08 00:00 procs <>>term

From procs, you can see that the process number for xhog is 4. You then type:

$ kill 4

When you execute procs again, xhog is no longer shown.

Either of these methods terminate any process running in the background with one exception: if a process
is waiting for I/O, it may not die until the current I/O operation is complete. Therefore, if you terminate a
process and procs shows it still exists, it is probably waiting for the output buffer to be flushed before it
can die.

NOTE: You must either own the procedure or be the super user to kill a specified process.

To use the kill utility:

• Get the process number using the procs utility

• Type kill <proc num>

+

5-32 Using Professional OS-9

The Shell Error Reporting

Error Reporting

Many programs, including the shell, use OS-9’s standard error reporting function. This displays a brief
description of the error and an error number on the standard error path. An appendix listing all of the
standard error codes is included with this manual.

If a longer description of errors is desired, set the -e and the -v shell options. This prints error messages
from /dd/SYS/errmsg on standard output.

Using Professional OS-9 5-33

Running Compiled Intermediate Code Programs The Shell

Running Compiled Intermediate Code Programs

Before the shell executes a program, it checks the program module’s language type. If its type is not 68000
machine language, the shell calls the appropriate run-time system for that module. Versions of the shell
supplied for various systems are capable of calling different run-time systems

For example, if you wanted to run a BASIC I-code module called adventure, you could type either of the
two commands given below; they accomplish exactly the same thing:

$ BASIC adventure
$ adventure

End of Chapter 5

5-34 Using Professional OS-9

6

Making Files

The Make Utility

Many types of files are dependent on various other files in their creation. If the files that make up the final
product are updated, the final product becomes out-of-date. The make utility is designed to automate the
maintenance and re-creation of files that change over a period of time.

make maintains the files by using a special type of procedure file known as a makefile. The makefile
describes the relationship between the final product and the files that make up the final product. For the
purpose of this discussion, the final product is referred to as the target file and the files that make up the
target file are referred to as dependents.

¿ A dependency entry specifies the relationship of a target file and the dependents used to build
the target file. The entry has the following syntax:

<target>:[[<dependent>],<dependent>]

A makefile contains three types of entries:

• Dependency entries

• Command entries

• Comment entries

+

Using Professional OS-9 6-1

 dependents Making Files

The list of files following the target file is known as the dependency list. Any number of
dependents can be listed in the dependency list. Any number of dependency entries can be
listed in a makefile. A dependent in one entry may also be a target file in another entry. There
is, however, only one main target file in each makefile. The main target file is usually specified
in the first dependency entry in the makefile.

¡ A command entry specifies the particular command that must be executed to update, if neces-
sary, a particular target file. make updates a target file only if its dependents are newer than
itself. If no instructions for update are provided, make attempts to create a command entry to
perform the operation.

make recognizes a command entry by a line beginning with one or more spaces or tabs. Any
legal OS-9 command line is acceptable. More than one command entry can be given for any
dependency entry. Each command entry line is assumed to be complete unless it is continued
from the previous command with a backslash (\). Comments should not be interspersed with
commands. For example:

<target>:[[<file>],<file>]
<OS-9 command line>
<OS-9 command line>\
<continued command line>

¬ A comment entry consists of any line beginning with an asterisk (*). All characters following
a pound sign (#) are also ignored as comments unless a digit immediately follows the pound
sign. In this case, the pound sign is considered part of the command entry. All blank lines are
ignored. For example:

<target>:[[<file>],<file>]

* the following command will be executed if the dependent
* files are newer than the target file
<OS-9 command line> # this is also a comment

Any entry may be continued on the following line by placing a space followed by a backslash (\) at the end
of the line to be continued. All entries longer than 256 characters must be continued on another line. All
continuation lines must adhere to the rules for its type of entry. For example, if a command line is
continued on a second line, the second line must begin with a space or a tab:

FILE: aaa.r bbb.r ccc.r ddd.r eee.r \
fff.r ggg.r
 touch aaa.r bbb.r ccc.r \
 ddd.r eee.r fff.r ggg.r

NOTE: Spaces and tabs preceding non-command, continuation lines are ignored.

6-2 Using Professional OS-9

Making Files Implicit Definitions

make processes the makefile three times.

During the first pass, make examines the makefile and sets up a table of dependencies. This table of
dependencies stores the target file and the dependency files exactly as they are listed in the makefile.
When make encounters a name on the left side of a colon, it first checks to see if it has encountered the
name before. If it has, make connects the lists and continues.

After reading the makefile, make determines the target file on the list. It then makes a second pass through
the dependency table. During this pass, make tries to resolve any existing implicit dependencies. Implicit
dependencies are discussed below.

make does a third pass through the list to get and compare the file dates. When make finds a file in a
dependency list that is newer than its target file, it executes the specified command(s). If no command
entry is specified, make generates a command based on the assumptions given in the next section.
Because OS-9 only stores the time down to the closest minute, make re-makes a file if its date matches
one of its dependents.

When a command is executed, it is echoed to standard output. make normally stops if an error code is
returned when a command line is executed.

To understand the relationship of the target file, its dependents, and the commands necessary to update the
target file, the structure of the makefile must be carefully examined.

Implicit Definitions

Any time a command line is generated, make assumes that the target file is a program to compile. There-
fore if the target file is not a program to compile, any necessary command entries must be specified for
each dependency list. make uses the following definitions and rules when forced to create a command
line.

object files: Files with no suffixes. An object file is made from a relocatable file and
is linked when it needs to be made.

relocatable files: Files appended by the suffix: .r. Relocatable files are made from source
files and are assembled or compiled if they need to be made.

source files: Files having one of the following suffixes: .a, .c, .f, or .p.

default compiler: cc

default assembler: r68

To run the make utility, type make, followed by the name of the file(s) to be created
and any options desired.

+

Using Professional OS-9 6-3

 Macro Recognition Making Files

default linker: cc

default directory
for all files: current data directory (.)

NOTE: The default linker should only be used with programs using Cstart.

Macro Recognition

In addition to recognizing compilation rules and definitions, make recognizes certain macros. make rec-
ognizes a macro by the dollar sign ($) character in front of the name. If a macro name is longer than a
single character, the entire name must be surrounded by parentheses. For example, $R refers to the macro
R, $(PFLAGS) refers to the macro PFLAGS, $(B) and $B refer to the macro B, and $BR is interpreted
as the value for the macro B followed by the character R.

Macros may be placed in the makefile for convenience or on the command line for flexibility. Macros are
allowed in the form of <macro name> = <expansion>. The expansion is substituted for the macro name
whenever the macro name appears.

To increase make’s flexibility, special macros can be defined in the makefile. make uses these macros
when assumptions must be made in generating command lines or when searching for unspecified files. For
example, if no source file is specified for program.r, make searches either the directory specified by
SDIR or the current data directory for program.a (or .c, .p, .f).

make recognizes the following special macros:

Macro Definition
ODIR=<path> make searches the directory specified by <path> for all files with no suffix

or relative pathlist. If ODIR is not defined in the makefile, make searches the
current directory by default.

SDIR=<path> make searches the directory specified by <path> for all source files not
specified by a full pathlist. If SDIR is not defined in the makefile, make
searches the current directory by default.

RDIR=<path> make searches the directory specified by <path> for all relocatable files not
specified by a full pathlist. If RDIR is not defined, make searches the current
directory by default.

If you define a macro in your makefile and then redefine it on the command line, the com-
mand line definition overrides the definition in the makefile. This feature is useful for com-
piling with special options.

+

6-4 Using Professional OS-9

Making Files Macro Recognition

Macro Definition
CFLAGS=<opts> These compiler options are used in any necessary compiler command lines.

RFLAGS=<opts> These assembler options are used in any necessary assembler command lines.

LFLAGS=<opts> These linker options are used in any necessary linker command lines.

CC=<comp> make uses this compiler when generating command lines. The default is cc.

RC=<asm> make uses this assembler when generating command lines. The default is
r68.

LC=<link> make uses this linker when generating command lines. The default is cc.

Some reserved macros are expanded when a command line associated with a particular file dependency is
forked. These macros may only be used on a command line. When you need to be explicit about a com-
mand line but have a target program with several dependencies, these macros can be useful. In practice,
they are wildcards with the following meanings:

Macro Definition
$@ Expands to the file name made by the command.

$* Expands to the prefix of the file to be made.

$? Expands to the list of files that were found to be newer than the target on a
given dependency line.

Using Professional OS-9 6-5

 Make Options Making Files

Make Generated Command Lines

make can generate three types of command lines: compiler command lines, assembler command lines
and linker command lines.

¿ Compiler command lines are generated if a source file with a suffix of .c, .p or .f needs to be
recompiled. The compiler command line generated by make has the following syntax:

$(CC) $(CFLAGS) -r=$(RDIR) $(SDIR)/<file>[.c, .f, or .p]

¡ Assembler command lines are generated when an assembly language source file needs to be
re-assembled. The assembler command line generated by make has the following syntax:

$(RC) $(RFLAGS) $(SDIR)/<file>.a -o=$(RDIR)/<file>.r

¬ Linker command lines are generated if an object file needs to be relinked in order to re-make
the program module. The linker command line generated by make has the following syntax:

$(LC) $(LFLAGS) $(RELS)/<file>.r -f=$(ODIR)/<file>

Make Options

Several options allow make even greater versatility for maintaining files/modules. These options may be
included on the command line when you run make or they may be included in the makefile for conve-
nience.

When a command is executed, it is echoed to standard output, unless the -s, or silent, option is used or the
command line starts with an "at" sign (@). When the -n option is used, the command is echoed to standard
output but not actually executed. This is useful when building your original makefile.

make normally stops if an error code is returned when a command line is executed. Errors are ignored if
the -i option is used or if a command line begins with a hyphen.

Sometimes, it is helpful to see the file dependencies and the dates associated with each of the files in the
list. The -d option turns on the make debugger and gives a complete listing of the macro definitions, a
listing of the files as it checks the dependency list and all the file modification dates. If it cannot find a file
to examine its date, it assumes a date of -1/00/00 00:00, indicating the necessity to update the file.

WARNING: When make is generating a command line for the linker, it looks at its
list and uses the first relocatable file that it finds, but only the first one. For example:

prog: x.r y.r z.r

 generates

cc x.r, not cc x.r y.r z.r or cc prog.r

!

6-6 Using Professional OS-9

Making Files make utility:options

If you want to update the date on a file, but do not want to remake it, you can use the -t option. make
merely opens the file for update and then closes it, thus making the date current.

If you are quite explicit about your makefile dependencies and do not want make to assume anything, you
may use the -b option to turn off the built-in rules governing implicit file dependencies.

Options Description
-? Displays the options, function, and command syntax of make.

-b Does not use built in rules.

-bo Does not use built in rules for object files.

-d Prints the dates of the files in makefile (Debug mode).

-dd Double debug mode. Very verbose.

-f- Reads the makefile from standard input.

-f=<path> Specifies <path> as the makefile. If <path> is specified as a hyphen (-), make
commands are read from standard input.

-i Ignores errors.

-n Does not execute commands, but does display them.

-s Silent Mode: executes commands without echo.

-t Updates the dates without executing commands.

-u Does the make regardless of the dates on files.

-x Uses the cross-compiler/assembler.

-z Reads a list of make targets from standard input.

-z=<path> Reads a list of make targets from <path>.

Examples of the Make Utility

The rest of this chapter is designed to show you different ways to maintain programs with make. These
examples are not meant to be totally inclusive of the ways in which make can be used.

Using Professional OS-9 6-7

 Example One: Updating a Document Making Files

Example One: Updating a Document

The following example shows how make can be used to maintain current documentation that is made up
of different sections:

utils.man: chap1 chap2 apdx
 del utils.man.old;rename utils.man utils.man.old
 merge chap1 chap2 apdx >utils.man
chap1: c1a c1b c1c c1d
 del chap1.old rename chap1 chap1.old
 list c1a c1b c1c c1d ! lxfilter >chap1
chap2: c2a c2b c2c
 del chap2.old rename chap2 chap2.old
 list c1a c1b c1c c1d ! lxfilter >chap1
apdx: functions header footer
 del apdx.old rename apdx apdx.old
 qsort functions >/pipe/func
 list header /pipe/func footer ! lxfilter >apdx

The above makefile creates the file utils.man. utils.man is created from three files: chap1, chap2, and
apdx. Each of these files is in turn created from the files listed in their dependency lists.

If chap1, chap2, and/or apdx have dependencies with a more recent date, the commands following their
respective dependency entries are executed. If chap1, chap2, and/or apdx are re-created, the commands
following the initial dependency entry are executed.

6-8 Using Professional OS-9

Making Files Example Two: Compiling C Programs

Example Two: Compiling C Programs

In this example, make is used to compile high level language modules. Each command and dependency
is specified.

program: xxx.r yyy.r
 cc xxx.r yyy.r -xf=program
xxx.r: xxx.c /d0/defs/oskdefs.h
 cc xxx.c -r
yyy.r: yyy.c /d0/defs/oskdefs.h
 cc yyy.c -r

This makefile specifies that program is made up of two .r files: xxx.r and yyy.r. These files are dependent
upon xxx.c and yyy.c respectively and both are dependent on the oskdefs.h file.

If either xxx.c or /d0/defs/oskdefs.h has a date more recent than xxx.r, the command cc xxx.c -r is
executed. If yyy.c or /d0/defs/oskdefs.h is newer than yyy.r, then cc yyy.c -r is executed. If either of
the former commands are executed, the command cc xxx.r yyy.r xf=program is also executed.

In this example, make specifies each command it must execute. Often this is unnecessary as make uses
specific definitions, macros, and built-in assumptions to facilitate program compilation to generate its own
commands.

Refining the C Compiler Example

Knowing how make works and understanding the implicit rules can simplify coding immensely:

program: xxx.r yyy.r
 cc xxx.r yyy.r -xf=program
xxx.r yyy.r: /d0/defs/oskdefs

The above makefile now exploits make’s awareness of file dependencies. No mention is made of the C
language files; therefore, make looks in the directory specified by the macro definition SDIR = <path>
and adjusts the dependency list accordingly. In this case, make looks in the current directory by default.
make also generates a command line to compile xxx.r and yyy.r if one or both needs to be updated.

Further simplification would be possible, if program was made up of only one source file:

program:

make assumes the following from this simple command:

• program has no suffix. It is an object file and therefore needs to rely on relocatable files to be
made.

• No dependency list is given; therefore, make creates an entry in the table for program.r.

Using Professional OS-9 6-9

 Refining Example Two Making Files

• After creating an entry for program.r, make creates the entry for a source file connected to the
relocatable file.

Assuming it found program.a, it checks the dates on the various files and generates one or both of the
following commands if required:

r68 program.a -o=program.r

cc program.r -f=program

6-10 Using Professional OS-9

Making Files Example Three: A Makefile that Uses Macros

Example Three: A Makefile that Uses Macros

Using these inherent features of make can be especially helpful if you have several object files you want
make to check:

* beginning
ODIR = /d0/cmds
RDIR = rels
UTILS = attr copy load dir backup dsave
SDIR = ../utils/sources

utils.files: $(UTILS)
 touch utils.files

* end

make looks in rels for attr.r, copy.r, etc. and looks in ../utils/sources for attr.c, copy.c, etc. make then
generates the proper commands to compile and/or link any of the programs that need to be made. If one
of the files in UTILS is made, the command touch utils.files is forked to maintain a current overall date.

Using Professional OS-9 6-11

 Example Four: Putting It All Together Making Files

Example Four: Putting It All Together

The following example is a makefile to create make:

* beginning
ODIR = /h0/cmds
RDIR = rels
CFILES = domake.c doname.c dodate.c domac.c
RFILES = domake.r doname.r dodate.r
PFLAGS = -p64 -nh1
R2 = ../test/domac.r
RFLAGS = -q
make: $(RFILES) $(R2) getfd.r
 linker
$(RFILES): defs.h
$(R2): defs.h
 cc $*.c -r=../test
print.file: $(CFILES)
 pr $? $(PFLAGS) >-/p1
 touch print.file
*end

The makefile in this example looks for the .r files listed in RFILES in the directory specified by RDIR:
rels. The only exception is ../test/domac.r, which has a complete pathlist specified.

Even though getfd.r does not have any explicit dependents, its dependency on getfd.a is still checked.
The source files are all found in the current directory.

Notice that this makefile can also be used to make listings. By typing make print.file on the command
line, make expands the macro $? to include all of the files updated since the last time print.file was
updated. If you keep a dummy file called print.file in your directory, make will only print out the newly
made files. If no print.file exists, all files are printed.

End of Chapter 6

6-12 Using Professional OS-9

7

Making Backups

Incremental Backups

Whether it’s caused by system failure or accidental erasure, loss of stored data is a programmer’s night-
mare. Consequently, backups of files, programs, and disks are a normal part of existence. Backing up a
hard disk is usually slow and tedious because the entire system is backed-up.

You can use incremental backups instead of full system backups. Incremental backups save only the files
that have changed since the last backup. You must still perform a full system backup, but by using
incremental backups you can perform them less often.

Certain terms must be defined to discuss incremental backups. A full system backup is referred to as a
level 0 backup. Consequent incremental backups are referenced by different level numbers. For example,
a level 5 backup includes all files changed since the most recent backup with a level less than 5. While
this sounds complex, it is actually quite easy to use and extremely helpful.

Two other terms need to be defined. A source device is the directory structure or file you are backing up.
A target device is the tape or disk you are using to hold your backup information.

OS-9 provides two utilities that may be used with either tape or disk media to facili-
tate the use of incremental backups:

• fsave

• frestore

+

Using Professional OS-9 7-1

Making an Incremental Backup: The fsave Utility Making Backups

Making an Incremental Backup: The fsave Utility

The fsave utility performs an incremental backup of a directory structure to tape(s) or disk(s). The syntax
for the fsave utility is:

fsave [<opts>] [<path>] [<opts>]

Typing fsave by itself on the command line makes a level 0 backup of the current directory onto a target
device with the name /mt0.

/h0/sys/backup_date is a backup log file maintained by fsave. Each time you execute an fsave, the
backup log is updated. The backup log keeps track of the name of the backup, the date it was created, and
more importantly, the level of the backup. When you execute fsave, this backup log is examined to find
the specified level of the current backup and the previous backups with the same name. Once the backup
is finished, a new entry is made in the file indicating the date, name, level, etc. of the current backup.

During the discussion of the actual fsave procedure, references to fsave’s options are made. The options
are:

Option Description
-? Displays the use of fsave.

-b[=]<int> Allocates <int>k buffer size to read files from the source disk.

-d[=]<dev> Specifies the target device to store the backup. The default is /mt0.

-e Does not echo file pathlists as they are saved to the target device.

-f[=]<path> Saves to the file specified by <path>.

-g[=]<int> Specifies a backup of files owned by group number <int> only.

-j[=]<number> Specifies the minimum system memory request.

-l[=]<int> Specifies the level of the backup to be performed.

-m[=]<path> Specifies the pathlist of the date backup log file to use. The default is /h0/sys/
backup_dates.

-p Turns off the mount volume prompt for the first volume.

-s Displays the pathlists of all files needing to be saved and the size of the entire
backup without actually executing the backup procedure.

-t[=]<dirpath> Specifies the alternate location for the temporary index file.

NOTE: /mt0 is the default OS-9 device name for tape device just as /h0 is the de-
fault OS-9 device name for a hard disk.+

7-2 Using Professional OS-9

Making Backups The fsave Procedure

Option Description
-u[=]<int> Specifies a backup of files owned by user number <int> only.

-v Does not verify the disk volume when mounted.

-x[=]<int> Pre-extends the temporary file. <int> is given in kilobytes.

The fsave Procedure

Upon starting an fsave procedure, fsave prompts you to mount the first volume to use. Volume in this
case refers to the disk or tape used to store the backup:

fsave: please mount volume.
(press return when mounted).

If a disk is used as the backup medium, fsave verifies the disk and displays the following information:

verifying disk

Bytes held on this disk: 546816
Total data bytes left: 62431
Number of Disks needed: 1

NOTE: The numbers above are used only as an example.

If a tape is used as the backup medium, no preliminary information is displayed and the backup begins at
this point.

As each file is saved to the backup device, its pathlist is echoed to the terminal. If this is a long backup,
you may want to use the -e option to turn off the pathlist echoing.

If fsave receives an error when trying to backup a file, it displays the following message and continues
the fsave operation:

error saving <file>, error - <error number>, its incomplete

NOTE: The most common error found when executing fsave is a record lock error. Record lock errors
are caused when another user has the file in question open.

If the backup requires more than one volume, fsave prompts you to mount the next volume before
continuing.

To prevent record lock errors, perform fsave operations only when no one else is
using the system.+

Using Professional OS-9 7-3

The fsave Procedure Making Backups

At the end of the backup, fsave prints the following information:

fsave: Saving the index structure

Logical backup name:
Date of backup:
Backup made by:
Data bytes written:
Number of files:
Number of volumes:
Index is on volume:

The index to the backup is saved on the last volume used.

fsave performs recursive backups for each pathlist if one or more directories are specified on the com-
mand line. You can specify a maximum of 32 directories on the command line.

The following options are provided:

-d Specifies an alternate target device. The default device is /mt0.

-m Specifies an alternative backup log file. The default pathlist is /h0/sys/backup_dates.

-l Specifies different levels of backups. A higher level backup only saves files that have
changed since the most recent backup with the next lower number. For example, a level 1
backup saves all files changed since the last level 0 backup.

Example fsave Commands

Typing fsave by itself on a command line specifies a level 0 backup of the current directory. This assumes
the /mt0 device is used and that /h0/SYS/backup_dates is used as the backup log file for this backup.

The following command specifies a level 2 backup of the current directory using the /mt1 device. /h0/
misc/my_dates is used as the backup log file:

$ fsave -l=2 -d=/mt1 -m=/h0/misc/my_dates

WARNING: When using disks for backup purposes, fsave does not use an RBF file
structure to save the files on the target disk. It creates its own file structure. This makes
the backup disk unusable for any purpose other than fsave and frestore without
reformatting the disk. Any data stored on the disk before using fsave is destroyed by the
backup.

!

7-4 Using Professional OS-9

Making Backups The fsave Procedure

The following command specifies a level 0 backup of all files owned by user 0.0 in the CMDS directory,
if CMDS is in your current directory:

$ fsave -pb=32 -g=0 -u=0 -d=/d2 CMDS

This backup uses /d2 as the target device and /h0/sys/backup_dates as the backup log file. The mount
volume prompt is not generated for the first volume. A 32K buffer is used to read the files from the CMDS
directory.

Using Professional OS-9 7-5

Restoring Incremental Backups: The frestore Utility Making Backups

Restoring Incremental Backups: The frestore Utility

The frestore utility restores a directory structure from multiple volumes of tape or disk media. The syntax
for the frestore utility is:

frestore [<opts>] [<path>] [<opts>]

Typing frestore by itself on the command line attempts to restore a directory structure from the /mt0
device to the current directory.

Specifying the pathlist of a directory on the command line causes the files to be restored in that directory.
fsave creates the directory structure and an index of the directory structure.

If more than one tape/disk is involved in the fsave backup, each tape/disk is considered to be a different
volume. The volume count begins at one (1). When you begin an frestore operation, you must use the
last volume of the backup first because it contains the index of the entire backup.

frestore first attempts to locate and read the index of the directory structure of the source device. frestore
then begins an interactive session with you to determine which files and directories in the backup should
be restored to the current directory.

During the discussion of the actual frestore procedure, references are made to frestore’s options. The
options are:

Option Description
-? Displays the use of frestore.

-a Forces access permission for overwriting an existing file. You must be the
owner of the file or a super user to use this option.

-b[=]<int> Specifies the buffer size used to restore the files.

-c Checks the validity of files without using the interactive shell.

-d[=]<path> Specifies the source device. The default is /mt0.

-e Displays the pathlists of all files in the index, as the index is read from the
source device.

-f[=]<path> Restores from a file.

-i Displays the backup name, creation date, group.user number of the owner of the
backup, volume number of the disk or tape, and whether the index is on the vol-
ume. This option will not cause any files to be restored. The information is dis-
played, and frestore is terminated.

-j[=]<int> Sets the minimum system memory request.

-p Suppresses the prompt for the first volume.

7-6 Using Professional OS-9

Making Backups The Interactive Restore Process

Option Description
-q Overwrites an already existing file when used with the -s option.

-s Forces frestore to restore all files from the source device without an interactive
shell.

-t[=]<dirpath> Specifies an alternate location for the temporary index file.

-v Displays the same information as the -i option, but does not check for the index.
This option will not cause any files to be restored. The information is displayed
and frestore is terminated.

-x[=]<int> Pre-extends the temporary file. <int> is given in kilobytes.

The Interactive Restore Process

Once you call frestore, the following prompt is displayed:

frestore> mount the last volume
(press return when ready)

When you are ready, frestore attempts to read in the index and create the directory structure of the backup.
It then displays the prompt:

frestore>

This prompt tells you that you are in the interactive shell. If the index is not on the mounted volume, fre-
store displays an error message and again prompts you to mount the last volume.

Using Professional OS-9 7-7

The Interactive Restore Process Making Backups

Once in the interactive shell, the frestore commands and options are displayed when you type a return at
the prompt:

frestore> commands:
 add [<path>] [-g=<#> -u=<#> -r -a] -- marks files for restoration
 del [<path>] [-g=<#> -u=<#> -r -a] -- unmarks files for restoration
 dir [<dir names>] [-e] -- displays a directory or directories
 chd <path> -- changes directories within the restore file structure
 pwd -- gives the pathlist to current dir in the restore file structure
 cht <path> -- changes directories on target system
 rest [<path>] [-f -q] -- restores marked files in and below the current dir
 check [-f] -- checks validity if marked files in and below the current dir
 dump [<file>] -- dumps the contents of a file to stdout
 $ -- forks a shell
 quit -- quit frestore program
options:
 -g=<group#> -- only mark files with ’group#’
 -u=<user#> -- only mark files with ’user#’
 -r -- mark directories recursively
 -e -- display directory with extended format
 -f -- force restoration of already restored files
 -q -- overwrite already existing files without question
 -a -- force marking or unmarking of an already restored file or dir
 * -- matches any string of characters on ’add’ or ’del’ only
 ? -- matches any single character on ’add’ or ’del’ only
frestore>

The index from the source device sets up a restore file structure that parallels the usual OS-9 file/directory
structure.

Use the dir and chd shell commands to display the restore file structure. For example:

frestore>dir
 Directory of .
DIR1 file1 file2 file3

All files to be backed up on to the source device appear in the restore file structure regardless of what
volume they appear in. Information concerning the file structure is available using the -e option with the
dir command:

frestore>dir -e

Directory of .

 Owner Last modified Attributes Volume Block Offset Size Name
------ -------------- ----------- ------ ----- ------ ----- ------

 1.23 89/08/22 16/14 ----r-wr 1 0 0 CF12 file1
 1.23 89/08/25 11/00 ----r-wr 1 2 0 A356 file2
 1.23 89/08/21 11/12 ----r-wr 1 4 0 45F0 file3
 1.23 89/08/24 10/57 d-ewrewr 0 5 0 120 DIR1

7-8 Using Professional OS-9

Making Backups The Interactive Restore Process

The interactive shell allows you to mark the files you want restored with the add command. You can mark
groups of files using the options of the add command:

 -g Marks files by group number.

 -u Marks files by user number. You can mark all directories within a specified directory using
the -r option.

Marking files does not restore them. It merely marks them as to be restored. You can see this when you
use the dir command. Each file added to the “to be restored” list is marked by a plus sign (+) by its
filename.

For example, the following directory has file1 and file2 marked for restoration, but file3 is not marked.
The directories DIR1 and DIR2 also have marked files:

frestore>add file1 file2 dir1/file5 dir1/file6 dir2/file7

frestore>dir
 Directory of .
+DIR1 +DIR2 +file1 +file2
file3

frestore>dir dir1
 Directory of DIR1
file4 +file5 +file6

frestore>dir dir2
 Directory of DIR2
+file7 file8

• Files may be marked one at a time by specifying relative or complete pathlists
within the restore file structure.

• Entire directories may be marked by specifying a pathlist of a directory.

+

Using Professional OS-9 7-9

The Interactive Restore Process Making Backups

The del command can unmark files. Entire directories may be unmarked by specifying the directory’s
name on the command line. If the -r option is also used, all files and directories included in the specified
directory are unmarked. For example:

frestore>del -r dir2

frestore>dir
 Directory of . 10:42:32
+DIR1 DIR2 +file1 +file2
file3

frestore>dir dir2
 Directory of DIR2
file7 file8

Once files are marked, the rest command may be used to restore the target device’s current directory.

Files existing on the target system with the same name are overwritten without prompting if del -q is used.
Otherwise, frestore displays the following prompt:

frestore> file1 already exists
 write over it or skip it (w/s)

The cht command allows you to change directories on the target device. This allows you to selectively
restore files to specific directories.

After restoring files, you may continue marking and unmarking files. Files previously restored have a
hyphen (-) displayed next to their names in the restore file structure:

frestore>dir
 Directory of . 10:42:32
-DIR1 DIR2 -file1 -file2
file3

frestore>dir dir1
 Directory of DIR1
file4 -file5 -file6

There are two methods of restoring files more than once. The first method uses the -a option with the add
command. This forces the file(s) previously marked as restored to be marked as “to be restored.” The
second method requires the -f option to be used with the rest command. This forces any file previously
marked as restored to be restored in the current directory.

An asterisk (*) preceding the name of a file in a dir listing indicates an error occurred
while backing up this file. This file is incomplete and should not be restored.

+

7-10 Using Professional OS-9

Making Backups The Interactive Restore Process

The -s option forces frestore to restore all files/directories of the backup from the source device without
the interactive shell.

Using the -d option allows you to specify a source device other than /mt0. For example, to restore all files/
directories found on the /mt1 source device to the directory BACKUP without using the interactive shell,
type:

$ frestore -d=/mt1 -s BACKUP

The -v option causes frestore to identify the name and volume number of the backup mounted on the
source device. The date the backup was made and the group.user number of the person who made the
backup is also displayed. This option does not restore any files. For example:

$ frestore -v

Backup: DOCUMENTATION
Made: 1/16/91 10:10
By: 0.0
Volume: 0

The -i option displays the above information and also indicates whether the index is on the volume. Both
the -v and -i options terminate frestore after displaying the appropriate information. These options are
useful when trying to locate the last volume of the backup if any mix-up has occurred.

The -e option echoes each file pathlist as the index is read off the source device.

Example Command Lines

To restore files/directories from the source device /mt0 to the current directory by way of an interactive
shell, type:

$ frestore

The following example restores files/directories from the source device /d0 to the current directory using
a 32K buffer to write the restored files. As each file is read from the index, the file’s pathlist is echoed to
the terminal.

$ frestore -eb=32 -d=/d0

Using Professional OS-9 7-11

Incremental Backup Strategies Making Backups

Incremental Backup Strategies

Many different strategies are available for those concerned with regularly scheduled backups. Most strat-
egies are well documented in computer books and magazines. The following two strategies are offered as
examples of methods that can be used.

The Small Daily Backup Strategy

This strategy requires making a level 0 backup once every four weeks. Level 1, level 2, level 3, and level
4 backups are made on the weeks following the level 0 backup. Between each major backup, four daily
backups would be made: level 5, 6, 7, and 8. A recommended daily schedule is graphically presented
below.

This strategy is ideal for small microcomputer systems backed up by floppy disks. Mounting disks is much
easier and faster than tapes. Each daily backup can usually be kept on one disk to make warehousing sim-
ple. This strategy is perfect for small timely backups with little redundancy in the backups.

One major disadvantage of this scheme is the restore time necessary in case of a major system failure such
as a hard disk being formatted, erased, or corrupted. Because of the lack of redundancy, more frestore
operations are necessary to re-create the systems file structure. On large systems with tape backups, this
is a major consideration.

 Small Daily Backup Strategy

 Level

0
1
2
3
4
5
6
7
8

Day of Backup

S M T W T F M T W T F M T W T F

(
(

(
(

((((
(

(
(

(
(

(

(
(

(

(
(

(

M T W T F S
((

7-12 Using Professional OS-9

Making Backups The Single Tape Backup Strategy

The Single Tape Backup Strategy

While most strategies rely on scheduled backup level changes, the single tape backup strategy depends on
the size of the backup. The idea behind this strategy is to increase the level of the backup only when the
backup cannot fit on a single tape. The only scheduled level backup is the level 0 backup. The level 0
backup occurs only when a higher level backup would not fit on a single tape or once a month, whichever
occurs first. An example month’s schedule is graphically presented below.

Single Tape Backup Strategy

Level

Day of Backup

0

1

2

3

S M T W T F M T W T F M T W T F M T W T F S

(
(

(
(

(
(

(

(
(

(
(

(

(
(

(
(

(

(
(

(

((

Using Professional OS-9 7-13

Use of Tapes/Disks Making Backups

This strategy is designed for tape backups of larger systems. Tapes are used efficiently because a question
as to how many tapes are needed never arises. This strategy also cuts down on person hours, tape
mounting, and storage space used for tapes. It allows for enough redundancy to make restoring a full
system fairly painless.

Disadvantages, however, do exist. Each time you do a backup, you must determine the size of the back
using fsave -s. As you near a full tape’s worth of data, this takes an increasing amount of time.

Use of Tapes/Disks

Whatever strategy you use, you must make a decision concerning the number of tapes or disks to use. This
decision must weigh the emphasis placed on redundancy, resources, person-hours, and storage. It must be
offset with the possibility of tape or disk failure and system restoration.

In the first example strategy, you must make the daily backups on different volumes to overcome the lack
of redundancy. You can use the four daily volumes week after week as daily backup volumes because of
the lower level backups at the beginning of each week.

In the second example, theoretically, you could use the same tape for each day until a new level backup is
reached. This insures no redundancy and minimal storage. It is also the most dangerous in case of tape
failure. Using a number of alternating tapes for each level cuts down on storage and still allows a safety
net in the case of tape failure. Using alternating level 0 tapes is another possibility.

7-14 Using Professional OS-9

Making Backups The tape Utility

The tape Utility

OS-9 provides a tape controller utility to facilitate setting up, reading, and rewinding tapes from the
terminal. When using tape media to backup or restore your system, the tape utility is very practical. The
syntax of the tape utility is:

tape {<opts>} [<dev>] {<opts>}

tape uses the default device /mt0 if you do not specify the tape device <dev> on the command line and
you do not use the -z option.

tape has the following available options:

Options Description
-? Displays the use of tape.

-b[=<num>] Skips a specified number of blocks. Default is one block. If <num> is negative,
the tape skips backward.

-e=<num> Erases a specified number of blocks of tape.

-f[=<num>] Skips a specified number of tapemarks. Default is one tapemark. If <num> is
negative, the tape skips backward.

-o Puts tape off-line.

-r Rewinds the tape.

-s Determines the block size of the device.

-t Retensions the tape.

-w[=<num>] Writes a specified number of tapemarks. Default is one tapemark.

-z Reads a list of device names from standard input. The default is /mt0.

-z=<file> Reads a list of device names from <file>.

If you specify more than one option, tape executes each option function in a specific order. Therefore, it
is possible to skip ahead a specified number of blocks, erase, and then rewind the tape all with the same
command. The order of options executed is as follows:

¿ Gets device name(s) from the -z option.
¡ Skips the number of tapemarks specified by the -f option.
¬ Skips the number of blocks specified by the -b option.
Ð Writes a specified number of tapemarks.
ƒ Erases a specified number of blocks of tape.
Ý Rewinds the tape.
ý Puts the tape off-line.

Using Professional OS-9 7-15

The tape Utility Making Backups

For example, the following command skips four files on the /mt0 device, erases the next two blocks,
rewinds the tape, and takes the tape off-line:

tape -e=2 -f=4 -ro

The next example determines the block size of the device:

tape -s

The next example retensions the tape, rewinds it, and then takes it off-line:

tape -rot

End of Chapter 7

7-16 Using Professional OS-9

 8

OS-9
System

Management

System managers have a range of options to consider. OS-9 allows system managers to tailor their system
to the needs of users by changing system modules, setting up the system defaults, etc. OS-9 also allows
system managers to maximize the performance of their system by using RAM disks, making bootfiles,
making a startup file, etc.

This chapter discusses the following topics of importance to system managers:

• Setting the system defaults using the Init module

• Adding customization modules

• Changing system modules

• Making bootfiles

• Using a RAM disk

• Making a startup file

• Shutting down the system

• Installing OS-9 on a hard disk

• Managing processes in a real-time environment

• Using the tmode and xmode utilities

• Using termcap

Using Professional OS-9 8-1

Setting Up the System Defaults: the Init Module OS-9 System Management

Setting Up the System Defaults: the Init Module

The Init module is sometimes referred to as the configuration module. It is a non-executable module lo-
cated in memory in the OS9Boot file or in ROM. The Init module contains system parameters used to
configure OS-9 during startup. The parameters set up the initial table sizes and system device names. For
example, the amount of memory to allocate for internal tables, the name of the first program to run (usually
either SysGo or shell), an initial directory, etc. are specified. You can examine the system limits in the
Init module at any time.

The values in the Init module’s table are the system defaults. You can change these defaults in two ways.
The first method involves editing the CONFIG macro in the systype.d file. The systype.d file is located
in the DEFS directory. After systype.d is edited, the Init module is remade and placed in the new boot-
file. The second method involves modifying the Init module with the moded utility. Both methods are
discussed later in this chapter. Regardless of the method you use, the changes become the system defaults.

The following is a list of the system defaults listed in the Init module. The term offset refers to the location
of a module field, relative to the starting address of the module. Module offsets are resolved in assembly
code by using the names shown here and linking the module with the relocatable library: sys.l or usr.l .

Offset Name Description
$30 Reserved This field is currently reserved for future use.

$34 M$PollSz Number of Entries in the IRQ Polling Table
This is the number of entries in the IRQ polling table. One entry is re-
quired for each interrupt generating device control register. The IRQ poll-
ing table has 32 entries by default. Each entry in the IRQ polling table is
18 bytes long.

$36 M$DevCnt Device Table Size
This is the number of entries in the system device table. One entry is re-
quired for each device in the system. The system device table has 32 en-
tries by default. Each entry in this table is 18 bytes long.

Offset Name Description
$38 M$Procs Initial Process Table Size

This indicates the initial number of active processes allowed in the system.
If this table becomes full, it automatically expands as needed. By default,
64 active processes are allowed. Each entry in the initial process table
requires 4 bytes.

NOTE: The Init module MUST be present in the system in order for OS-9 to work.+

8-2 Using Professional OS-9

OS-9 System Management Setting Up the System Defaults: the Init Module

$3A M$Paths Initial Path Table Size
This is the initial number of open paths in the system. If this table
becomes full, it automatically expands as needed. By default, 64 open
paths are allowed. Each entry in the initial path table requires 4 bytes.

$3C M$SParam Offset to Parameter String for Startup Module
This is the offset to the parameter string (if any) to be passed to the first
executable module. An offset of zero indicates that no parameter string is
required. The parameter string itself is located elsewhere, usually near the
end of the Init module.

$3E M$SysGo First Executable Module Name Offset
This is the offset to the name string of the first executable module; usually
SysGo or shell.

$40 M$SysDev Default Directory Name Offset
This is the offset to the initial default directory name string; usually /d0 or
/h0. The kernel does a chd and chx to this device prior to forking the ini-
tial device. If the system does not use disks, this offset must be zero.

$42 M$Consol Initial I/O Pathlist Name Offset
This is the offset to the initial I/O pathlist string. This offset usually points
to the /TERM string. This pathlist is opened as the standard I/O path for
the initial process. It is generally used to set up the initial I/O paths to and
from a terminal. This offset should contain zero if no console device is in
use.

Offset Name Description
$44 M$Extens Customization Module Name Offset

This is the offset to a name string of a list of customization modules (if
any). A customization module is intended to complement or change OS-
9’s existing standard system calls. These modules are searched for during
startup. Typically these modules are found in the bootfile. They are exe-
cuted in system state if found. Modules listed in the name string are sep-
arated by spaces. The default name string to be searched for is OS9P2.
If there are no customization modules, set this value to zero.

NOTE: A customization module may only alter the d0, d1, and ccr reg-
isters.

NOTE: Refer to the following section for more information on customi-
zation modules.

Using Professional OS-9 8-3

Setting Up the System Defaults: the Init Module OS-9 System Management

$46 M$Clock Clock Module Name Offset
This is the offset to the clock module name string. If there is no clock
module name string, set this value to zero.

$48 M$Slice Timeslice
The number of clock ticks per timeslice. The number of clock ticks per
timeslice defaults to two.

$4A Reserved This field is currently reserved for future use.

$4C M$Site This is the offset to the installation site code. This value is usually set to
zero. OS-9 does not currently use this field.

$50 M$Instal Offset to Installation Name
This is the offset to the installation name string.

$52 M$CPUTyp CPU Type
CPU type: 68000, 68008, 68010, 68020, 68030, 68040, 68070, or
683XX. The default is 68000.

$56 M$OS9Lvl Level, Version, and Edition
This four byte field is divided into three parts:

level: 1 byte version: 2 bytes edition: 1 byte

For example, level 1, version 2.4, edition 1 would be 1241.

Offset Name Description
$5A M$OS9Rev Revision Offset

This is the offset to the OS-9 level/revision string.

$5C M$SysPri Priority
This is the system priority at which the first module (usually SysGo or
shell) is executed. This is generally the base priority at which all process-
es start. The default is 128.

$5E M$MinPty Minimum Priority
This is the initial system minimum executable priority. The default is
zero. M$MinPty is discussed later in this chapter and in the OS-9
Technical Manual.

$60 M$MaxAge Maximum Age
This is the initial system maximum natural age. The default is zero.
M$MaxAge is discussed later in this chapter and in the OS-9 Technical
Manual.

8-4 Using Professional OS-9

OS-9 System Management Setting Up the System Defaults: the Init Module

$62 Reserved This field is currently reserved for future use.

$66 M$Events Number of Entries in the Events Table
This is the initial number of entries allowed in the events table. If the table
becomes full, it automatically expands as needed. The default is zero.
Each entry in the events table requires 32 bytes. See the OS-9 Technical
Manual for a discussion of event usage. This value is no longer used.

$68 M$Compat Revision Compatibility
This byte is used for revision compatibility. The default is 0. The follow-
ing bits are currently defined:

Bit 0: Set to save all registers for IRQ routines.

Bit 1: Set to prevent the kernel from using stop instructions.

Bit 2: Set to ignore “sticky” bit in module headers.

Bit 3: Set to disable cache burst operation (68030 systems).

Bit 4: Set to patternize memory when allocated or deallocated.

Bit 5: Set to prevent kernel cold-start from starting system
clock.

Offset Name Description
$69 M$Compat2 Compatibility Bit #2

This byte is used for revision compatibility. The following bits are cur-
rently defined:

Bit Function
0 0 External instruction cache is not snoopy*

1 External instruction cache is snoopy or absent
1 0 External data cache is not snoopy

1 External data cache is snoopy or absent
2 0 On-chip instruction cache is not snoopy

1 On-chip instruction cache is snoopy or absent
3 0 On-chip data cache is not snoopy

1 On-chip data cache is snoopy or absent
7 0 Kernel disables data caches when in I/O

1 Kernel does not disable data caches when in I/O

* snoopy = cache that maintains its integrity without software interven-
tion.

Using Professional OS-9 8-5

Setting Up the System Defaults: the Init Module OS-9 System Management

$6A M$MemList Colored Memory List
This is an offset to the memory segment list. The colored memory list
contains an entry for each type of memory in the system. The list is
terminated by a long word of zero. If this field contains a 0, colored
memory is not used in this system. For a complete discussion on colored
memory, see the OS-9 Technical Manual.

$6C M$IRQStk This field contains the size (in longwords) of the kernel’s IRQ stack. The
value must be 0 or between 256 and $ffff. If the value is zero, the kernel
uses a small default IRQ stack. A larger IRQ stack is recommended. The
default value is 256 longwords.

$6E M$ColdTrys This is the retry counter if the kernel’s initial chd to the system device
fails. The default value is zero.

+ Throughout this chapter, the system directories referred to are the defaults found in the Init
module, unless otherwise specified.

8-6 Using Professional OS-9

OS-9 System Management Setting Up the System Defaults: the Init Module

The following is a portion of the distributed init.a file:

_INITMOD equ 1 flag reading init module

CPUTyp set 68000 cpu type (68008/68000/68010)
Level set 1 OS-9 Level One
Vers set 2 Version 2.4
Revis set 3
Edit set 1 Edition
IP_ID set 0 interprocessor identification code
Site set 0 installation site code
MDirSz set 128 initial module directory size (unused)
PollSz set 32 IRQ polling table size (fixed)
DevCnt set 32 device table size (fixed)
Procs set 64 initial process table size (divisible by 64)
Paths set 64 initial path table size (divisible by 64)
Slice set 2 ticks per time slice
SysPri set 128 initial system priority

For more information on the Init module, see the OS-9 Technical Manual.

Using Professional OS-9 8-7

Customization Modules OS-9 System Management

Customization Modules

Customization modules can be attached to OS-9 during the system’s cold-start procedure to increase OS-
9’s functionality and to allow hardware customization such as special bus arbitration modes. While
customization modules extend its capabilities, OS-9 itself is not changed.

NOTE: A customization module may only alter the d0, d1, and ccr registers.

In the Init module, the M$Extens offset points to a list of module names. By default, the name of the list
is OS9P2. If the modules are found during cold-start, they are called. If an error is returned, the system
stops. Two of these modules are listed here:

• Syscache: The syscache module allows the system to enable and control any hardware caches
present. The default syscache module supplied by Microware controls the on-chip cache(s) for
the 68020 and 68030. You can customize this module to take advantage of any external (off-
chip) cache hardware the system may have. The syscache module installs the F$CCtl system
call routines. If the syscache module is not installed, no system caching takes place.

• SSM: The system security module (SSM) allows memory protection. The SSM uses the mem-
ory management unit (MMU) hardware to grant and deny users permission to access memory.

8-8 Using Professional OS-9

OS-9 System Management Changing System Modules

Changing System Modules

The provided system modules are configured to satisfy the needs of the majority of users. However, you
may wish to alter the existing modules or create new modules. You can make new system modules and
alterations to existing system modules by either using the moded utility or changing the defaults in the
systype.d file. The system modules most commonly altered are the device descriptors and the Init
module.

Using the Moded Utility

Use the moded utility to edit individual fields of certain types of OS-9 modules. You can change the Init
module and any OS-9 device descriptor modules with moded.

To use the moded utility, type moded, the name of the desired device descriptor, and any options.

The moded: prompt shows that the editor’s command mode has been entered.

When moded is invoked, it attempts to read the moded.fields file. moded.fields contains module field
information for each type of module to edit. Without this file, moded cannot function.

The provided moded.fields file comes with module descriptions for standard RBF, SBF, SCF, PIPE,
NETWORK, UCM, and GFM module descriptors. It also includes a description for the Init module.

To edit the current module, use the e command. If there is no current module, the editor prompts for the
module name to edit. The editor prints the name of a field, its current value, and prompts for a new value.

You can enter the following edit commands:

Command Description
<expr> A new value for the field
- Re-display last field
. Leave edit mode
? Print edit mode commands
?? Print description of the current field
<cr> Leave current value unchanged

If the definition of any field is unfamiliar, use the ?? command. This provides a short description of the
current field.

Once you have made all necessary changes to the module, exit the edit mode by reaching the end of the
module or by typing a period. At this point, the changes made to the module exist only in memory. To
write the changes to the actual file, use the w command. This also updates the module header parity and
CRC.

Using Professional OS-9 8-9

Editing the Systype.d File OS-9 System Management

NOTE: moded is mainly used for editing existing descriptors. It is somewhat restrictive, and as a result,
if you are building a device descriptor or changing a field such as the file manager names, you may not
want to use moded.

Complete documentation is available for the moded utility in the OS-9 Utilities section.

Editing the Systype.d File

The second method of changing system modules requires editing the systype.d file located in the DEFS
directory. The systype.d file contains macros such as TERM, DiskH0, etc. for each device descriptor
and the Init module. These macros contain basic memory map information, exception vector methods (for
example, vectors in RAM or ROM), I/O device controller memory addresses, and initialization data, etc.
for each device descriptor and the init module.

The systype.d file consists of five main sections that are used when installing OS-9:

• Init module CONFIG macro

• SCF Device Descriptor macros and definitions

• RBF Device Descriptor macros and definitions

• ROM configuration values

• Target system specific definitions

The CONFIG macro is used when creating the Init module to determine six or more system dependent
variables:

Name Description
MainFram MainFram is a character string programs such as login use to print a banner which

identifies the system. You can modify this string.

SysStart SysStart is a character string the OS-9 kernel uses to locate the initial process for
the system. This process is usually stored in a module called SysGo. Two general
versions of SysGo have been provided in the files: SysGo.a for disk-based OS-9
and SysGo_nodisk.a for ROM-based OS-9.

SysParam SysParam is a character string that is passed to the initial process. This usually
consists of a single carriage return.

8-10 Using Professional OS-9

OS-9 System Management Editing the Systype.d File

Name Description
SysDev SysDev is a character string containing the name of the path to the initial system

disk. The kernel coldstart routine sets the initial execution and data directories to
this device prior to forking the SysStart process. Set this label to zero for a ROM-
based system. For example, SysDev set 0.

ConsolNm ConsolNm is a character string that contains the name of the path to the console
terminal port. Messages to be printed during startup appear here.

ClockNm ClockNm is a character string that contains the name of the clock module.

You can set other system parameters in this macro to override the default values created by the init.a
source file. This allows you to perform “system tuning” without modifying the generic init.a file.

The following is a portion of an example systype.d file:

CONFIG macro

 endm
 Slice set 10
 ifdef _INITMOD
 Compat set ZapMem patternize memory
 endc

When editing the Init module, constants may use either values or labels. CPUTyp set 68020 is an exam-
ple of a constant that uses a value. These constants may appear anywhere in the systype.d file. Compat
set ZapMem is an example of a constant that uses a label. These constants must appear outside the CON-
FIG macro and must be conditionalized to be invoked only when init.a is being assembled. If these values
are placed inside the CONFIG macro, the old defaults are still used. If a constant that requires a label is
placed outside the macro and not conditionalized, illegal external reference errors result when making
other files. You can use the _INITMOD label to avoid these errors.

Using Professional OS-9 8-11

Editing the Systype.d File OS-9 System Management

The SCF and RBF device descriptor macro definitions are used when creating device descriptor modules.
Five elements are common to SCF and RBF:

Name Description
Port Port is the address of the device on the bus. Generally, this is the lowest address

that the device has mapped. Port is hardware dependent.

Vector Vector is the vector that is given to the processor at interrupt time. Vector is
hardware/software dependent. Some devices can be programmed to produce
different vectors.

IRQLevel IRQLevel is the interrupt level (1 - 7) for the device. When a device interrupts the
processor, the level of the interrupt is used to mask out lower priority devices.

Priority Priority is the interrupt polling table priority and is software dependent. A non-zero
priority determines the position of the device within the vector. Lower values are
polled first. A priority of zero indicates that the device desires exclusive use of the
vector. OS-9 does not allow a device to claim exclusive use of a vector if another
device has already been installed on the vector, nor does it allow the vector to be
used by another device once the vector has been claimed for exclusive use.

DriverName DriverName is the module name of the device driver. This name is determined by
the programmer and is used by the I/O system to attach the device descriptor to the
driver.

RBF macros may also contain an optional sixth element to describe various standard floppy disk formats.
These values are defined in the file rbfdesc.a in the IO directory.

SCF macros contain two additional elements: Parity and BaudRate. The driver uses these values to
determine the parity, word length, and baud rate of the device. These values are usually standard codes
used by device drivers to access device specific index tables. These codes are defined in the OS-9
Technical Manual.

You should place definitions such as control register definitions that are system specific in systype.d.
This allows you to maintain all system specific definitions in a single, system specific file.

Examine the systype.d file. If it does not accurately describe your system, use any text editor to edit the
appropriate macro(s) in the systype.d file.

After editing the macro, change your data directory to the IO directory. Use the make utility to generate
the required descriptors. For example, the make d0 would generate the descriptors d0 and dd.d0. The
output files are placed in the CMDS/BOOTOBJS directory. Include these new descriptors in the bootfile.

NOTE: For more information on the make utility, refer to the chapter on making files and the make util-
ity description in the OS-9 Utilities section.

8-12 Using Professional OS-9

OS-9 System Management Making Bootfiles

Making Bootfiles

A bootfile contains a list of modules to be loaded into memory during the system’s bootstrap sequence.
The provided bootfiles have been configured to satisfy the majority of users, but you may want to add or
remove modules from an existing bootfile.

Bootlist Files

Bootfiles are usually created using a bootlist file and the -z option of the OS9Gen or TapeGen utilities.
The bootlist files contain a list of files, one file per line, to use in creating the bootfile. Using a bootlist
file is a convenient way to maintain bootfile contents, as the bootlist file can easily be edited.

The bootlist files are usually located in the CMDS/BOOTOBJS directory, along with the individual files
used for constructing the bootfile.

Bootfile Requirements

The contents and module order of a bootfile are usually determined by the end-user’s system configuration
and requirements. However, note the following points when you construct a bootfile:

• The kernel MUST be present in the system, either in ROM or in the bootfile. If the kernel is
in the bootfile, IT MUST BE THE FIRST MODULE.

• The Init module must be present in the system, either in ROM or in the bootfile.

All other modules are dependent upon the system configuration.

Making RBF Bootfiles

To make a bootfile for an RBF device (hard disk or floppy disk), you need to edit the bootlist file to match
your requirements and then run the OS9Gen utility:

chd /h0/cmds/bootobjs
<edit bootlist file>
OS9Gen <device> -z=<bootlist>

The <device> you specify is the disk that you wish to install the bootfile on. If this device is a hard disk,
specify the “format-enabled” device name.

Using Professional OS-9 8-13

Making Bootfiles OS-9 System Management

For example, to make a floppy-disk bootfile, type:

OS9Gen /d0 -z=bootlist.d0

To make a hard disk bootfile, type:

OS9Gen /h0fmt -z=bootlist.h0

NOTE: Some systems may not support boot files that are greater than 64K in length and/or non-contig-
uous.

Making Tape Bootfiles

To make a bootfile for an SBF device (tape), you need to edit the bootlist file to match your requirements
and then run the TapeGen utility:

chd /h0/cmds/bootobjs
<edit bootlist file>
TapeGen /mt0 -bz=bootlist.tape

8-14 Using Professional OS-9

OS-9 System Management Using the RAM Disk

Using the RAM Disk

OS-9 provides support for RAM disks. These disks reside solely in Random Access Memory (RAM). The
information stored on a RAM disk can be accessed significantly faster than the same information stored
on a hard or floppy disk. Any files may be stored and accessed on a RAM disk.

To use a RAM disk, you must have a device descriptor, a RAM disk driver, and the RBF file manager.
You may use multiple RAM disks as long as each RAM disk has a different port address. The only real
limitation to the number of RAM disks is the size of the memory. However, some practical considerations
exist. For example, using one large RAM disk is more efficient than using many small RAM disks.

In many system configurations, a RAM disk is used as the default system device. When the RAM disk is
used as the default system device, it is known as device dd, instead of r0. The name of the device descrip-
tor is dd.r0. Using this descriptor allows compilers to use the RAM disk as a “fast access” device for tem-
porary files, etc. The RAM disk is usually initialized at startup with definition and library files, if it is to
be used as the default system device. The init.ramdisk procedure file provided in the root directory ac-
complishes this.

Volatile RAM disks may be allocated memory either from free system memory or from outside free sys-
tem memory. The number of volatile RAM disks allocated from free system memory is governed by the
port address. There can be up to 1024 different disks, with each disk having a unique address from 0 to
1023.

Volatile RAM disks not allocated from the free system memory must not be part of the system memory
list, and they must have a port address greater than or equal to 1024. This port address indicates the actual
start address of the RAM disk.

A non-volatile RAM disk may not be located in any memory search list known to the system’s general
memory lists. That is, the RAM disk must be “outside” the system’s knowledge. If it is located in a mem-
ory search list known to the system’s general memory lists, the RAM disk may be wiped out because the
memory is assumed to be un-allocated and may later be given to another module. In addition, the format
protect bit must be set for non-volatile RAM disks and the port address must be greater than or equal to
1024.

+ RAM disks may be volatile or non-volatile. A volatile RAM disk disappears when the sys-
tem is reset or the power is shut off. A non-volatile RAM disk resides in a place such as
battery backed up RAM and does not disappear when the system is reset or powered down.

Using Professional OS-9 8-15

Making a Startup File OS-9 System Management

Making a Startup File

Using bootfiles is not the only way of loading modules and devices into memory at the time of startup. A
startup procedure is executed each time OS-9 is booted and the standard SysGo is used. On disk-based
systems, the startup procedure executes a startup file. The startup file is located in the root directory of
the system disk.

While some modules and devices, such as the kernel, should be loaded from the bootlist file, loading most
modules and devices from the startup file can be advantageous. For example, it is easier to upgrade a
system by adding modules to the startup file, or the files contained in the startup file. To change these
files, you simply use a text editor and make the changes. To change the bootlist file, you must also use
the os9gen utility.

Remember: A procedure file is made up of executable commands. Each command is executed exactly
as if it were entered from the shell command line. Each line that begins with an asterisk (*) is a comment
and is not executed.

From the root directory, you can examine the startup file by entering:

$ list startup

A listing similar to the following is displayed:

-t -np
*
* OS-9
* Copyright 1984 by Microware Systems Corporation
*
* The commands in this file are highly system dependent and should
* be modified by the user.
*
* setime ; * start system clock
link shell cio ; * make "shell" and "cio" stay in memory
load math ; * load math module
* iniz r0 h0 d0 t1 p1 ; * initialize devices
* load -z=sys/loadfile ; * make some utilities stay in memory
* load bootobjs/dd.r0 ; * get default device descriptor
* init.ramdisk>/nil >>/nil & ; * initialize it if its the ramdisk
* tsmon /t1 & ; * start other terminals
list sys/motd

The first executable line, -t -np, turns on the talk mode option of the shell and turns off the OS-9 prompt
option for the duration of this procedure. The talk mode option echoes each executed command to the ter-
minal display. This allows you to see what commands are being executed.

The startup file is an OS-9 procedure file. It contains OS-9 commands to be executed
immediately after booting the system.+

8-16 Using Professional OS-9

OS-9 System Management Initializing Devices

The other executable lines in the distributed startup file are followed by a comment explaining the purpose
of the command. Some standard commands are provided as comments. If you want the command exe-
cuted during the startup procedure, use a text editor to remove the asterisk preceding the command.

For example, to execute the setime command when the startup file is executed, remove the asterisk pre-
ceding the command.

NOTE: For systems with battery backed clocks, run setime to start time-slicing, but use the -s option.
The date and time will be read from the clock.

Initializing Devices iniz r0 h0 d0 t1 p1

The iniz r0 h0 d0 t1 p1 commented command initializes the following specific devices:

r0 RAM Disk
h0 Hard Disk
d0 Floppy Disk
t1 Terminal
p1 Serial Printer

Whenever OS-9 opens a path to a device, it first checks to see if the device is known to OS-9. To be
known, a device must be initialized and memory must be allocated for its device driver. If the device is
unknown at the time of the request, OS-9 initializes the device, allocates memory, and opens the path. For
example, a simple dir /d0 command initiates this sequence of events if d0 has not been previously initial-
ized.

The iniz utility initializes devices. iniz performs an I$Attach system call on each device name passed to
it. This initializes and links the device to the system.

To initialize a device after the system has been started, type iniz and the name(s) of the device(s) to attach
to the system. iniz goes through the procedure of initializing the device(s) and allocating the memory
needed for the device. If the device is already attached, it is not re-initialized, but the link count is incre-
mented.

For example, to increment the link count of modules, t2 and t3, type:

$ iniz t2 t3

You can read the device names from standard input with the -z option or from a file with the -z=<file>
option. To increment the link counts of devices listed in a file called /h0/add.files, type:

iniz -z=/h0/add.files

Using Professional OS-9 8-17

Loading Utilities Into Memory OS-9 System Management

You can use the deiniz utility to close a path to a device. deiniz checks the link count before removing
the device from storage. If the link count is greater than one, deiniz lowers the link count. If the link count
is one, deiniz lowers the link count, making it zero, and removes the device from the system device table.
The device then becomes unknown to OS-9.

To use the deiniz utility, type deiniz followed by the name(s) of the devices(s) to be removed from the
system.

For example, to decrement the link count of module p2, type:

$ deiniz p2

deiniz can read the device names from standard input with the -z option or from a file with the -z=<file>
option. To remove the files listed in a file called /h0/not.needed, type:

$ deiniz -z=/h0/not.needed

NOTE: Non-sharable devices must be placed in a bootfile to become known to the system. If a non-shar-
able device is iniz-ed, it is unusable because the link count will have been incremented, causing it to appear
to be in use.

iniz-ing the connected device at startup initializes the device and allocates memory for its driver for the
duration of the time that the system is running, unless specifically deiniz-ed. For example, a system with
two floppy drives and one hard disk would iniz these devices in the startup file:

iniz h0 d0 d1 t1 p1 p

NOTE: For more information on the iniz and deiniz utilities, refer to the OS-9 Utilities section.

Loading Utilities Into Memory load -z=sys/loadfile

The next line of the startup file loads a number of utilities into memory. If a utility is not already in mem-
ory, it must be loaded into memory before it is used. Pre-loading basic utilities at startup time avoids the
necessity of loading the utility each time it is executed.

To load utilities into memory at startup, you must create a file containing the names of each utility to load,
one utility per line. While the file may have any desired name, Microware recommends loadfile for obvi-
ous reasons. This file can be located in any directory as long as you specify its location on the command
line. If loadfile were located in the SYS directory, the startup file command line is:

This initialize/de-initialize sequence can result in slower execution of programs and could
cause memory fragmentation problems. To avoid these symptoms, Microware recommends
that all devices connected to the system at startup be iniz-ed in the startup file.

+

8-18 Using Professional OS-9

OS-9 System Management Loading Utilities Into Memory

load -z=sys/loadfile

Previous versions of the Professional OS-9 package had the following commented line in the startup file:

load utils

This method involved creating a utils file by merging the desired utilities into a single file in the commands
directory. While this method may still be used, using loadfile is preferable because it uses less disk space
and is easier to edit.

Loading the Default Device Descriptor load bootobjs/dd.r0

Many OS-9 compilers and application programs look for definition files and libraries in directories located
on the default system device. The default system device is known as dd. dd may be defined as any disk
device, but it is usually synonymous for one of the following devices:

r0 RAM Disk
h0 Hard Disk
d0 Floppy Disk

If a default device is to be used (dd) and the device descriptor is not in the bootfile, then you must load the
device descriptor. The next line in the startup file loads the device descriptor. The default device is the
RAM disk named r0. If you want another device to be the default device descriptor, change the .r0
extension to reflect the appropriate device. If you have a dd device in your bootfile or if no default device
is to be used, leave this line as a comment.

Using Professional OS-9 8-19

Multi-User Systems OS-9 System Management

Initializing the RAM Disk init.ramdisk>/nil >>/nil &

If you are going to use the RAM disk, a library and definition file structure may be built on the RAM disk.
The next line in the startup file executes the init.ramdisk procedure file. init.ramdisk is located in the
root directory. It sets up LIB and DEFS directories on /dd. To name the RAM disk /r0, you must change
a single line in init.ramdisk; change chd /dd to chd /r0.

NOTE: RAM disks are discussed elsewhere in this chapter.

Multi-User Systems tsmon /t1 &

The tsmon utility is used to make your system a multi-user system. This utility supervises idle terminals
and initiates the login procedure for multi-user systems. The startup file command line: tsmon /t1& ini-
tiates the time-sharing monitor on the serial port /t1.

tsmon can monitor up to 28 device name pathlists. Therefore, if you have multiple devices for tsmon to
monitor, you can specify up to 28 devices on each tsmon command line. You can use the ex built-in shell
command to execute tsmon without creating another shell. This conserves system memory. For example:

ex tsmon term t1 t2 t3 t4 t5&

When a carriage return is typed on any of the specified paths, tsmon automatically forks login and stan-
dard I/O paths are opened to the device.

The login procedure uses the password file located in the SYS directory for individual login validation.
The provided password file has two example login entries. Each of the fields in an entry in the password
file is explained in the chapter on the shell and in the login utility description in the OS-9 Utilities section.
If login fails because you could not supply a valid user name or password, control returns to tsmon.

For more information on the tsmon utility, refer to the OS-9 Utilities section.

8-20 Using Professional OS-9

OS-9 System Management System Shutdown Procedure

System Shutdown Procedure

There will be times when, for one reason or another, you want to bring your system down. When you reset
or power down your system, you may need to do more than just press the reset button. Certain programs
need to be shut down gracefully. For example, most network communications, print spoolers, and inter-
system processes need special attention. These processes may have options or other arrangements that
need to be considered before shutting down your system.

In addition to taking care of processes that require special attention, you should prepare the system’s users
for the shutdown. If at all possible, allow users enough time to save their files and get off the system. One
way of alerting users that the system is going down is by echoing a message using the echo and tee
utilities. However, you should realize that messages sent over the system in this manner will not be seen
by users who do not press a carriage return after the message has been sent. For example, if a programmer
is sitting at a shell prompt, the message will not appear on the terminal screen until a carriage return is
entered.

You can simplify the process of actually shutting down your system by creating a procedure file. Once
created, you can run the procedure either from the shell command line prompt or you can create a separate
password entry for the sole purpose of shutting down the system.

For example, if you have a procedure file called shutdown.sys, you could create the following password
file entry:

sys,shutdown,0.0,128,.,sys,shell shutdown.sys

Once you login as user sys with password shutdown, the shut down procedure begins because the system
immediately has the shell execute the shutdown.sys file.

In this case, verbal warnings are important. This means that in addition to sending a warning
message out over the system, you may want to use either an intercom system or the telephone
to talk to each person connected to the system.

+

Using Professional OS-9 8-21

System Shutdown Procedure OS-9 System Management

The following is an example of a useful procedure file for shutting down the system:

-t -nx -np
*
* System Shutdown Procedure
*
echo WARNING The system will shut down in 3 minutes ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 60
echo WARNING The system will shut down in 2 minutes ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 115
echo WARNING 5 seconds to system shut down ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 5
spl -$; * terminate spooler
nmon /n0 -d ; * shutdown network
sleep -s 3 ; * wait 3 seconds
break ; * call ROM debugger

The first six commands after the comment identifying the function of the procedure broadcast three warn-
ings to the terminals on the system. The first warning tells the users that the system is going down. The
other two warnings serve as reminders. Remember that you should also give verbal warnings.

The remaining command lines shut down the system:

spl -$ This command terminates the spooler. All unfinished jobs are lost when the spooler
is terminated.

nmon /n0 -d This command brings the network down. Users from other networks will no longer
be able to login to the system being shut down.

sleep -s 3 This command causes the system to wait three seconds before executing the next
command line. This allows the previous commands time to complete execution.

break This command sends a break call to the ROM debugger. When the ROM debugger
receives this call, the system shuts down.

8-22 Using Professional OS-9

OS-9 System Management Installing OS-9 On a Hard Disk

Installing OS-9 On a Hard Disk

Once you have brought up the system and tested its basic operations, install OS-9 on the hard disk and use
it as the system boot device. Installing the distribution software on the hard disk involves five steps:

• Checking the hard disk device descriptor

• Formatting the hard disk

• Copying the distribution software on to the hard disk

• Making the hard disk the system boot disk

• Test-booting from the hard disk

Checking the Hard Disk Device Descriptor

The installed hard disk may not necessarily match the parameters in the provided /h0 and /h0fmt device
descriptors. For example, the number of cylinders, heads, etc. for your hard disk may be different than the
default parameters specified in the device descriptors. Before attempting to use the hard disk, carefully
examine the disk macros in systype.d.

If the parameters match the drive in use, the supplied descriptors will work. If not, edit systype.d and
remake the descriptors or use the moded utility to remake the descriptors. The moded utility
makes/changes any device descriptor module and updates its CRC.

Once the descriptors are made, make a new bootfile with the new descriptors replacing the old ones.

Formatting the Hard Disk

Once the descriptors match the type of drive in use, format the hard disk. Formatting the hard disk builds
an OS-9 file structure on the media and tests the media for defective areas. Any new descriptors are also
checked.

WARNING: If you have any vital information such as data or programs on this disk,
you should perform backups to floppy or tape of this information. The format process
completely erases any data on the disk.!

Using Professional OS-9 8-23

Copying the Distribution Software on to the Hard Disk OS-9 System Management

To turn off page pause and format the hard disk, enter:

$ tmode nopause
$ format /h0fmt -c=<cluster size>

NOTE: /h0fmt must be the device name, as /h0 is format protected. Use the -c option for large drives
only.

The format utility asks whether you want to perform a physical format and a physical verify. Answer y
to both questions. The physical format operation is a lengthy process. The larger your hard disk is, the
longer you can expect to wait. The logical verify reads each cluster from the disk.

Copying the Distribution Software on to the Hard Disk

Once the hard disk has been formatted correctly, use the dsave utility to copy the distribution software on
to the hard disk.

To copy the distribution files:

¿ Insert the first system disk in drive /d0. The first system disk contains the CMDS directory.

¡ Change your current data directory to /d0:
 $ chd /d0

¬ Copy all files from /d0 to /h0:
$ dsave -eb50 /h0

If you have more than one floppy disk to copy:

Ð Remove the disk in /d0 and replace it with the new disk to copy.

ƒ Change your execution directory to /h0/CMDS:

$ chx /h0/cmds

The hard disk is now your current execution directory.

Ý Copy all files from /d0 to /h0:
$ dsave -eb50 /h0

Repeat this step until all floppy disks have been copied to the hard disk.

NOTE: The first disk copied to the hard disk is the distribution disk containing the CMDS directory.

Making the Hard Disk the System Boot Disk

Copying files on to the hard disk installs the software on the hard disk. It does not make the hard disk a
bootable disk. To make the hard disk the system boot disk, use the os9gen utility.

8-24 Using Professional OS-9

OS-9 System Management Test Booting from the Hard Disk

The OS9Boot file is distributed with your system software. An OS9Boot.h0 bootfile may also be includ-
ed. The only difference between these files is the default system device name string in the Init module.
OS9Boot refers to /d0, while OS9Boot.h0 refers to /h0.

Assuming that these files have been copied on to the hard disk, do the following to make the hard disk
bootable:

¿ Change your current data directory to /h0:
$ chd /h0

¡ Rename OS9Boot to retain a copy to use with a floppy system:
$ rename OS9Boot OS9Boot.d0

¬ Make the hard disk bootable with the correct bootfile. NOTE: You must specify /h0fmt as
the device.

$ os9gen /h0fmt OS9Boot.h0

Test Booting from the Hard Disk

Once you have completed the above steps, test that the system actually boots from the hard disk.

If the system fails to boot correctly, reboot the system. Carefully examine the results of the actions
previously described.

Using Professional OS-9 8-25

Managing Processes in a Real-time Environment OS-9 System Management

Managing Processes in a Real-time Environment

The ability to manage processes in a real-time environment is one of OS-9’s advantages. OS-9 has three
main methods by which system managers can manage processes in a real-time environment:

• Manipulating process’ priority

• Using D_MinPty and D_MaxAge to alter the system’s process scheduling

• Having system state processes and user state processes

Manipulating Process’ Priority

When you execute processes on the command line, you can change their initial priorities using the process
priority modifiers discussed in the chapter on the shell. This allows you to set the priority on crucial tasks
higher so that they run sooner and more often than processes that are less crucial.

NOTE: The initial priority is also a parameter for the fork and chain system calls.

Using D_MinPty and D_MaxAge to Alter the System’s Process Scheduling

The way OS-9 schedules processes can be affected by the D_MinPty and D_MaxAge system global vari-
ables. D_MinPty and D_MaxAge are available to super users through the F$SetSys system call. These
system variables can be used to effect the aging of processes. Remember: A process’ initial priority is
aged each time it is passed by for execution while it is waiting for CPU time.

D_MinPty defines a minimum priority below which processes are neither aged nor considered candidates
for execution. Processes with priorities less than D_MinPty remain in the waiting queue and continue to
hold any system resources that they held before D_MinPty was set.

If you have a critical process that needs to be run and several other users have processes that they want to
run, use the process priority modifier to increase the priority of the critical process. Then, set D_MinPty
to a value that is less than the priority you assigned to the critical process but greater than the priority of
the other processes. The critical process now continues using the CPU until another process with a priority
greater than D_MinPty is entered into the waiting queue or the critical process is finished.

For example, if D_MinPty is set to 500 and you set the priority of your process at 600, your process con-
tinues to use the CPU while processes with priorities less than 500 cannot run until D_MinPty is reset.

D_MinPty is usually set to zero. All processes are eligible for aging and execution
when this value is set to zero because all processes have an initial priority greater than
zero.

+

8-26 Using Professional OS-9

OS-9 System Management Using System-State Processes and User-State Processes

CAVEAT: D_MinPty is potentially dangerous. If the minimum system priority is set above the priority
of all running tasks, the system will completely shut down and can only be recovered by a reset. It is cru-
cial to restore D_MinPty to zero when the critical task finishes or to reset D_MinPty or a process’ priority
in an interrupt service routine.

When set, D_MaxAge essentially divides tasks into two classes: low priority and high priority. A low
priority task is any task with a priority below D_MaxAge. Low priority tasks continue aging until they
reach the D_MaxAge cutoff, but they are not executed unless there are no high priority tasks waiting to
use the CPU.

A high priority task is any task with a priority above D_MaxAge. A high priority task will receive the
entire available CPU time, but it will not be aged. When the high priority task(s) are inactive, the low pri-
ority tasks are run.

For example, if D_MaxAge is set to 2000 and three processes with initial priorities of 128 are in the active
queue, the processes run just as if D_MaxAge had not been set. Then, if a process with an initial priority
of 2500 is entered into the active queue, it receives CPU time when the process currently in the CPU has
finished. Once using the CPU, the high priority process runs uninterrupted until a process with a higher
priority enters the active queue or the process finishes. When the process finishes executing, the low pri-
ority processes will again be able to use the CPU.

NOTE: Any process performing a system call is not pre-empted until the call is finished, unless the pro-
cess voluntarily gives up its timeslice. This exception is made because these processes may be executing
critical routines that affect shared system resources and could be blocking other unrelated processes.

Using System-State Processes and User-State Processes

The second method that OS-9 uses to manage real-time priority processing is the existence of system-state
processes. System-state processes are processes running in a supervisor or protected mode. System-state
processes basically have unlimited access to system memory and other resources. When a process in sys-
tem state wants to use the CPU, it waits until it has the highest age. Once it is available to use the CPU, a
process in system state runs until it finishes instead of running for a specified timeslice.

Processes that are in user state do not have access to all points in memory and do not have access to all of
the commands. When a process in user state gains time in the CPU, it runs only for the time specified by
the timeslice. When it finishes using its timeslice, it is entered back in the waiting queue according to its
initial priority.

D_MaxAge defines a maximum age over which processes are not allowed to mature. By
default, this value is set to zero. When D_MaxAge is set to zero, it has no effect on the
processes waiting to use the CPU.

+

Using Professional OS-9 8-27

Using the Tmode and Xmode Utilities OS-9 System Management

Using the Tmode and Xmode Utilities

The tmode and xmode utilities are also available to help you customize OS-9. Use the tmode utility to
display or change the operating parameters of the user’s terminal. tmode affects open paths, not the device
descriptor itself, so the changes made by it are temporary. The changes made by tmode are inherited if
the paths are duplicated, but not if the paths are opened explicitly.

The xmode utility is similar to tmode. Use xmode to display or change the initialization parameters of
any SCF-type device such as a video display, printer, RS-232 port, etc. xmode actually updates the device
descriptor. The change persists as long as the computer is running even if paths to the device are
repetitively opened and closed. Some common uses of xmode are to change the baud rates and control
definitions.

In SSM systems, you must have write permission for the descriptor module in order for xmode to work.
You can use the fixmod utility to change the permissions.

NOTE: tmode and xmode work only on SCF and GFM devices.

Using the Tmode Utility

To use the tmode utility, type tmode and any parameter(s) to change. If you give no parameters, the
present values for each parameter are displayed. Otherwise, the parameter(s) given on the command line
are processed. You can give any number of parameters on a command line. Use spaces or commas to
separate each parameter.

If a parameter is set to zero, OS-9 no longer uses the parameter until it is re-set to a code OS-9 recognizes.
For example, the following command sets xon and xoff to zero:

tmode xon=0 xoff=0

Consequently, OS-9 will not recognize xon and xoff until the values are re-set.

To re-set the values of a parameter to their default as given in this manual, specify the parameter with no
value.

Use the -w=<path#> option to specify the path number affected. If a path number is not provided,
standard input is affected.

NOTE: If you use tmode in a shell procedure file, you must use the -w=<path#> option to specify one
of the standard paths (0, 1, or 2) to change the terminal’s operating characteristics. The change remains in
effect until the path is closed. To effect a permanent change to a device characteristic, you must change
the device descriptor. You may alter the device descriptor to set a device’s initial operating parameters
using the xmode utility.

8-28 Using Professional OS-9

OS-9 System Management Using the Tmode and Xmode Utilities

Five parameters need driver support in order to be changed by tmode: type, par, cs, stop, and baud. If
you try to change these parameters without driver support, tmode has no effect.

The tmode parameters are documented in the OS-9 Utilities section.

Using the Xmode Utility

To use the xmode utility, type xmode and any parameter(s) to change. If you give no parameters, the
present values for each parameter are displayed. Otherwise the parameter(s) given on the command line
are processed. You can give any number of parameters on a command line. Use spaces or commas to
separate each parameter. You must specify a device name if the given parameter(s) are to be processed.

Like tmode, if a parameter is set to zero, the device no longer uses the parameter until it is re-set to a rec-
ognizable code. To re-set the values of parameters to their default, specify the parameter with no value.
This re-sets the parameter to the default value as given in this manual.

Five parameters require further explanation: type, par, cs, stop, and baud. xmode changes these pa-
rameters only if the device is iniz-ed directly after the xmode changes and the driver supports these chang-
es. Changing these parameters is usually done in the startup file or by first deiniz-ing a file. For example,
the following command sequence changes the baud rate of /t1 to 9600:

$ deiniz t1
$ xmode /t1 baud=9600
$ iniz t1

This type of command sequence changes the device descriptor and initializes it on the system. Only the
five parameters mentioned above need this special sequence to be changed. All other xmode parameters
are changed immediately.

xmode’s parameters are documented in the OS-9 Utilities section.

Using Professional OS-9 8-29

The Termcap File Format OS-9 System Management

The Termcap File Format

The termcap file is a text file that contains control code definitions for one or more types of terminals.
Each entry is a complete description list for a particular kind of terminal.

The first section of a termcap entry is divided into three parts.

• A two character entry

• The most common name

• A long name

Each part is a different way of naming the terminal. A | character separates the parts of a termcap entry.
The first part is a two character entry. This is a holdover from early UNIX editions. The second part is
the most common name for the terminal. This name must contain no blanks. The final part is a long name
fully describing the terminal. This name may contain blanks for readability. For example:

kh|abm85h|kimtron abm85h:

The TERM environment variable must be set to the name used in the second part of the name section. In
the following example, TERM is set to abm85h:

$ setenv TERM abm85h

NOTE: You can check the values stored in TERM by using the printenv command:

$ printenv
TERM=abm85h

The rest of the entry consists of a sequence of control code specifications for each control function. Use
a colon (:) character to separate each item in the list. You can continue an entry on to the next line by using
a backslash (\) character as the last character of the line. It must appear after the last colon of the previous
item. The next line must begin with a colon. For example:

ka|amb85|kimtron abm85:\
:ct=\E3: ...

Each item begins with a terminal capability. Each capability is a two character abbreviation. Each
capability is either a boolean itself or it is followed by a string or a number. If a boolean capability is
present in the termcap entry, then the capability exists on that terminal.

8-30 Using Professional OS-9

OS-9 System Management The Termcap File Format

All numeric capabilities are followed by a pound sign (#) and a number. For example, the number of col-
umns capability for an 80 column terminal could be described as follows:

co#80:

All string capabilities are followed by an equal sign (=) and a character string. You can enter a time delay
in milliseconds directly after the equal sign (=) if padding is allowed in that capability. The padding char-
acters are supplied by tputs() after the remainder of the string is transmitted to provide the time delay. The
time delay may be either an integer or a real. The time delay may be followed by an asterisk (*). The
asterisk specifies that the padding is proportional to the number of lines affected.

NOTE: It is often useful to specify the time delay using the real format. For example, the clear screen
capability is specified as ^z with a time delay of 3.5 milliseconds by the following entry:

cl=3.5*^z:

Escape sequences may be indicated by an \E to indicate the escape character. A control character is
indicated by a circumflex (^) preceding the character. The following special character constants are
supported:

\b Backspace ($08)
\f Formfeed ($0C)
\n Newline ($0A)
\r Return ($0D)
\t Tab ($09)
 \\ Backslash ($5C)
\^ Circumflex ($5E)

Characters may be specified as three Octal digits after a backslash (\). For example, if a colon must be
used in a capability definition, it must be specified by \072. If it is necessary to place a null character in
a capability definition use \200. C routines using termcap strip the high bits of the output, therefore \200
is interpreted as \000.

Using Professional OS-9 8-31

Termcap Capabilities OS-9 System Management

Termcap Capabilities

The following is a list of termcap capabilities recognized by termcap. Not all of these capabilities need to
be present for most programs to use termcap. They are provided for completeness. (P) indicates that pad-
ding may optionally be specified. (P*) indicates that the optional padding may be based on the number of
lines affected:

Name Type Padding Description
ae string (P) End alternate character set

al string (P*) Add new blank line

am boolean End alternate character set

as string (P) Start alternate character set

bc string Backspace if not ^H

bs boolean Terminal can backspace with ^H

bt string (P) Back tab

bw boolean Backspace wraps from column 0 to last column

CC string Command character in prototype if terminal settable

cd string (P*) Clear to end of display

ce string (P) Clear to end of line

ch string (P) Horizontal cursor motion only, line stays some

cl string (P*) Clear screen

cm string (P) Cursor motion

co numeric Number of columns in line

cr string (P*) Carriage return (default ^M)

cs string (P) Change scrolling region (VT100), like cm

cv string (P) Vertical cursor motion only

da boolean Display may be retained above

dB numeric Number of milliseconds of backspace delay needed

db boolean Display may be retained below

dC numeric Number of milliseconds of carriage return delay needed

dc string (P*) Delete character

dF numeric Number of milliseconds of formfeed delay needed

dl string (P*) Delete line

8-32 Using Professional OS-9

OS-9 System Management Termcap Capabilities

Name Type Padding Description
dm string Delete mode (enter)

dN numeric Number of milliseconds of newline delay needed

do string Down one line

dT numeric Number of milliseconds of tab delay needed

ed string End of delete mode

ei string End insert mode NOTE: If ic is used, enter :ec=:

eo string Can erase overstrikes with a blank

ff string (P*) Hardcopy terminal page eject (default ^L)

hc boolean Hardcopy terminal

hd string Half-line down (1/2 linefeed)

ho string Home cursor (if no cm)

hu string Half-line up

hz string Hazeltime: cannot print tildas (~)

ic string (P) Insert character

if string Name of file containing initialization string

im boolean Insert mode (enter).
NOTE: If ic is specified use :im=:

in boolean Insert mode distinguishes nulls on display

ip string (P*) Insert pad after character inserted

is string Terminal initialization string

k0-k9 string Sent by other function keys 0-9

kb string Sent by backspace key

kd string Sent by down arrow key

ke string Take terminal out of keypad transmit mode

kh string Sent by home key

kl string Sent by left arrow key

kn numeric Number of other keys

ko string Termcap entries for other non-function keys

kr string Sent by right arrow key

ks string Put terminal in keypad transmit mode

ku string Sent by up arrow key

Using Professional OS-9 8-33

Termcap Capabilities OS-9 System Management

Name Type Padding Description
l0-l9 string Labels on other function keys

li numeric Number of lines on screen or page

ll string Last line, first column (if no cm entry)

ma string Arrow key map

mi boolean OK to move while in insert mode

ml string Memory lock on above cursor

ms boolean OK to move while in standout and underline mode

mu string Turn off memory lock

nc boolean Carriage return down not work

nd string Non-destructive space

nl string (P*) Newline character

ns boolean Terminal is a non-scrolling CRT

os boolean Terminal overstrikes

pc string Pad character (rather than null)

pt boolean Has hardware tabs

se string End stand out mode

sf string (P) Scroll forwards

sg numeric Number of blank characters left by se or so

so string (P) Begin stand out mode

sr string (P) Scroll reverse

ta string Tab (other than ^I or without padding)

tc string Entry of terminal similar to last termcap entry

te string String to end programs that use cm

ti string String to begin programs that use cm

uc string Underscore one character and move past it

ue string End underscore mode

ug numeric Number of blank characters left by us or ue

ul boolean Terminal underlines but doesn’t overstrike

up string Upline (cursor up)

us string Start underscore mode

8-34 Using Professional OS-9

OS-9 System Management Termcap Capabilities

Name Type Padding Description
vb string Visible bell

ve string Sequence to end open/visual mode

vs string Sequence to start open/visual mode

xb boolean Beehive terminal (f1=<esc>, f2=^C)

xn boolean Hewline is ignored after wrap

xr boolean Return acts like ce \r\n

xs boolean Standout not erased by writing over it

xt boolean Tabs are destructive

Of the capabilities, the most complex and important capability is cm: cursor addressing. The string spec-
ifying the cursor addressing is formatted similar to the C function: printf(). It uses % notation to identify
addressing encodings of the current line or column position. The line and the column being addressed
could be considered the arguments to the cm string. All other characters are passed through unchanged.
The following is the notation used for cm strings:

%d a decimal number (origin 0)

%2 same as %2d

%3 same as %3d

%. ASCII equivalent of value

%+x adds x to value, then %

%>xy if value > x adds y, no output

%r reverses the order of row and column, no output

%i increments line/column (for 1 origin)

%% gives a single %

%n exclusive or row and column with 0140

%B BCD (16*(x/10) + (x%10), no output

%D reverse coding (x-2*(x%16)), no output

The following examples illustrate the use of the preceding notations:

cm=6\E&%r%2c%2Y: This terminal needs a 6 millisecond delay, rows and columns reversed,
and rows and columns to be printed as two digits. The <esc>& and Y
are sent unchanged. (HP2645)

Using Professional OS-9 8-35

Example Termcap Entries OS-9 System Management

cm=5\E[%i%d;%dH: This terminal needs a 5 millisecond delay, rows and columns separated
by a semicolon (;), and because of its origin of 1, rows and columns are
incremented. The <esc>[, ; and H are transmitted unchanged. (VT100)

 cm=\E=%+ %+ : This terminal uses rows and columns offset by a blank character.
(ABM85H)

Example Termcap Entries

 ka|abm85|kimtron abm85:\
:ce=\ET:cm=\E=%+ %+ :cl=^Z:\
:se=\Ek:so\Ej:up=^K:sg#1

If two entries in the same termcap file are very similar, one can be defined as identical to the other with
certain exceptions. To do this, tc is used with the name of the similar terminal. This capability must be
the last in the entry. All exceptions to the other terminal must appear before the tc listing. If a capability
must be cancelled, use <cap>@. For example, this might be a complete entry:

 kh|abm85h|kimtron abm85h:\
:se=\EG0:so\EG4:tc=abm85:

End of Chapter 8

8-36 Using Professional OS-9

OS-9 System Management NOTES

NOTES

Using Professional OS-9 8-37

System Command Descriptions

This chapter contains descriptions and examples of each of the OS-9 command programs. While you gen-
erally execute these programs from a shell command line, you can also call them from most other OS-9
programs.

At the time of this edition, OS-9 supports 78 utilities and built-in shell commands. They range from com-
monly used functions such as dir, chd, and copy to advanced system management tools such as dcheck
and iniz. For quick reference purposes, the format of the information on the utilities is standardized. Each
utility has a section concerning syntax, function, options (if any), examples, and any special uses.

The utilities are broken down into three categories:

¿ Basic Utilities: Every user should become familiar with these utilities. Many of them have been
discussed in the earlier chapters because of their importance.

attr backup build chd chx copy date
del deldir dir dsave echo edt format
free help kill list makdir merge mfree
pd pr procs rename set setime shell
w wait

The OS-9
Utilities

Using Professional OS-9 1

 System Command Descriptions The OS-9 Utilities

¡ Programmer Utilities: These utility programs are extremely helpful to the intermediate or ad-
vanced programmer. They allow greater exploration of OS-9’s timesharing environment and more
dynamic file manipulation.

binex cfp cmp code compress count dump
ex exbin expand frestore fsave grep load
logout make printenv profile qsort save setenv
tape tee touch tmode tr unsetenv

¬ System Management Utilities: These utility programs are used primarily by system managers
and advanced assembly language programmers. Beginning programmers rarely need to use these
commands:

break dcheck deiniz devs diskcache events fixmod
ident iniz irqs link login mdir moded
os9gen romsplit setpr sleep tapegen tsmon unlink
xmode

Formal Syntax Notation

Each command section includes a syntactical description of the command line. These symbolic
descriptions use the following notations:

[] = Enclosed items are optional

{ } = Enclosed items may be used 0, 1, or many times

< > = Enclosed item is a description of the parameter to use:

<path> = A legal pathlist

<devname> = A legal device name

<modname> = A legal memory module name

<procID> = A process number

<opts> = One or more options specified in the command description

<arglist> = A list of parameters

<text> = A character string ended by end-of-line

<num> = A decimal number, unless otherwise specified

<file> = An existing file

<string> = An alpha-numeric string of ASCII characters

2 Using Professional OS-9

The OS-9 Utilities General Notes

General Notes

• The utility syntax specified in the command section does not include the shell’s built-in options
like alternate memory size, I/O redirection, piping, etc. The shell filters out these options from
the command line before processing the program being called.

• The equal sign (=) used in many utility options is generally optional. The k used in the alternate
memory size option is also generally optional. For example, you may write -b=256k as -b256,
-b256k, or -b=256.

• Utilities that use the -z option expect one file name to be input per line. If you use the -z=<file>
option of a utility, <file> may contain comments.

• Unless otherwise specified, command line options may appear anywhere on the command line.
For example, the following command lines provide the same results:

attr -a junk -pw
attr junk -a -pw
attr junk -pw -a

• Utilities with only the -? option do not allow you to list any other options on the command line.
Also, built-in shell commands, such as chd and set, do not have any options including the -?
option.

• cio, the utility trap handler, must be in the execution directory or pre-loaded into memory. By
using special I/O techniques, cio allows the utilities to be much smaller. Most utility programs
fail to execute if cio is missing. cio is typically loaded into memory at startup.

Using Professional OS-9 3

 attr The OS-9 Utilities

SYNTAX: attr [<opts>] {<path>} {<permissions>}

FUNCTION: attr is used to examine or change the security attributes (<permissions>) of the spec-
ified file(s).

To use the attr utility, type attr, followed by the pathlist for the file(s) whose security
permissions you want to change or examine. Then, enter a list of permissions to turn
on or off.

You turn on a permission by giving its abbreviation preceded by a hyphen (-). You turn
it off by preceding its abbreviation with a hyphen followed by the letter n (-n). Permis-
sions not explicitly named are unaffected.

If no permissions are specified on the command line, the current file attributes are
displayed.

You cannot examine or change the attributes of a file you do not own unless you are the
super user. A super user can examine or change the attributes of any file in the system.

The file permission abbreviations are:

d = Directory file
s = Single user file. s denotes a non-sharable file.
r = Read permission to owner
w = Write permission to owner
e = Execute permission to owner
pr = Read permission to public
pw = Write permission to public
pe = Execute permission to public

NOTE: The owner is the creator of the file. Owner access is given to any user with
the same group ID number as the owner. The public is any user with a different group
ID number than the owner. You can determine file ownership with the dir -e command.

SPECIAL USE: You can use attr to change a directory file to a non-directory file if
all entries have been deleted from it. You may also use the deldir utility to delete
directory files. You cannot change a non-directory file to a directory file with this
command. The directory attribute can only be turned on when a directory is created
with the makdir utility.

attr Change/Examine File Security Attributes

4 Using Professional OS-9

The OS-9 Utilities attr

OPTIONS: -? Displays the options, function, and command syntax of attr.

-a Suppresses the printing of attributes.

-x Searches for the specified file in the execution directory. The file must
have execute permission to be found using -x.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: $ attr myfile Displays the current attributes of myfile.

$ attr myfile -npr -npw Turns off the public read and public write
permissions.

$ attr myfile -rweprpwpe Turns on both the public and owner read, write, and
execute permissions.

$ attr -z Displays the attributes of the file names read from
standard input.

$ attr -z=file1 Displays the attributes of the file names read from
file1.

$ attr -npwpr * Turns off public write and turns on public read for all
files in the directory.

$ attr *.lp Lists the attributes of all files that have names ending
in .lp.

Using Professional OS-9 5

 backup The OS-9 Utilities

SYNTAX: backup [<opts>] [<srcpath> [<destpath>]]

FUNCTION: backup physically copies all data from one device to another. A physical copy is
performed sector by sector without regard to file structures. In most cases, the devices
specified must have the same format and must not have defective sectors.

In the following discussions, the source disk is the disk you are backing up. The
destination disk is the disk to which you are copying.

Single Drive Backup
A single drive backup requires exchanging disks in and out of the disk drive.

NOTE: Before backing up a disk, you should write protect the source disk with the
appropriate write protect mechanism to prevent accidentally confusing the source disk
and the destination disk during exchanges.

To begin the backup procedure, put the source disk in the drive and type backup. The
system asks if you are ready to backup. Type y if you are ready.

Initially, backup reads a portion of the source disk into memory. backup then
prompts you to exchange disks. Remove the source disk from the drive, and insert the
destination disk. backup writes the previously stored data on to this disk. When the
backup is finished, an exchange is again requested. This places the source disk back
in the drive. This exchange process continues until all of the data on the disk is copied.

The -b option increases the amount of memory the backup procedure uses. This
decreases the number of disk exchanges required.

Two Drive Backup
On a two drive system, the names /d0 and /d1 are assumed if both device names are
omitted on the command line. If the second device name is omitted, a single unit back-
up is performed on the drive specified.

To begin the backup procedure, put the source disk in the source drive and the
destination disk in the destination drive. By default, the source drive is /d0 and the
destination drive is /d1. Enter backup, the name of the source drive, and the name of
the destination drive. The system asks if you are ready to backup. Enter y if you are
ready. If no error occurs, the backup procedure is complete.

ERRORS: The backup procedure includes two passes. The first pass reads a portion of the source
disk into a buffer in memory and then writes it to the destination disk. The second pass
verifies that the data was copied correctly.

backup Make a Backup Copy of a Disk

6 Using Professional OS-9

The OS-9 Utilities backup

If an error occurs on the first pass, something is wrong with the source disk or its drive.

If an error occurs in the second pass, the problem is with the destination disk. If backup
fails repeatedly on the second pass, re-format the destination disk and try to backup
again.

OPTIONS: -? Displays the options, function, and command syntax of backup.

-b=<num>k Allocates <num>k of memory for the backup buffer to use. backup
uses a 4K buffer by default. backup runs faster if more memory is
used.

-r Causes the backup to continue if a read error occurs.

-v Prevents backup from making a verification pass.

EXAMPLES: This example backs up the disk in /d2 to the disk in /d3:

$ backup /D2 /D3

This example backs up the disk in /d0 to the disk in /d1 without making a verification
pass:

$ backup -v

This example allocates 40K of memory to use in backing up /d0 to /d2.

$ backup -b40 /d0 /d2

Using Professional OS-9 7

 binex/exbin The OS-9 Utilities

SYNTAX: binex [<opts>] [<path1> [<path2>]]

exbin [<path1> [<path2>]]

FUNCTION: binex converts binary files to S-record files. The exbin utility converts S-record files
to binary.

S-record files are a type of text file containing records that represent binary data in
hexadecimal form. This Motorola-standard format is often directly accepted by com-
mercial PROM programmers, emulators, logic analyzers, and similar devices that use
the RS-232 interface. It can be useful for transmitting files over data links that can only
handle character type data. It can also be used for converting OS-9 assembler or com-
piler generated programs to load on non-OS-9 systems.

binex converts the OS-9 binary file specified by <path1> to a new file with S-record
format. The new file is specified by <path2>. S-records have a header record to store
the program name for informational purposes and each data record has an absolute
memory address. This absolute memory address is meaningless to OS-9 because OS-
9 uses position-independent code.

binex currently generates the following S-record types:

S1 records Use a two byte address field
S2 records Use a three byte address field
S3 records Use a four byte address field
S7 records Terminate blocks of S3 records
S8 records Terminate blocks of S2 records
S9 records Terminate blocks of S1 records

To specify the type of S-record file to generate, use the -s=<num> option. <num> =
1, 2, etc., corresponding to S1, S2, etc.

exbin is the inverse operation. <path1> is assumed to be an S-Record format text file
which exbin converts to pure binary form in a new file, <path2>. The load addresses
of each data record must describe contiguous data in ascending order. exbin does not
generate or check for the proper OS-9 module headers or CRC check value required to
actually load the binary file. You can use ident to check the validity of the modules if
they are to be loaded or run. exbin converts any of the S-record types mentioned above.

Using either command, standard input and output are assumed if both paths are omitted.
If the second path is omitted, standard output is assumed.

OPTIONS: -? Displays the options, function, and command syntax of binex/exbin.

binex/exbin Convert Binary Files to S-Record/S-Record to Binary

8 Using Professional OS-9

The OS-9 Utilities binex/exbin

-a=<num> Specifies the load address in hex. This is for binex only.

-s=<num> Specifies which type of S-record format is to generate. This is for binex
only.

-x binex searches for <path1> in the execution directory. This is for
binex only.

EXAMPLES: The following example downloads a program to T1. This type of command downloads
programs to devices such as PROM programmers.

$ binex scanner.S1 >/T1

The next example generates prog.S1 in S1 format from the binary file, prog .

$ binex -s1 prog prog.S1

The following example generates CMDS/prog in OS-9 binary format from the S1 type
file, program.S1 .

$ exbin prog.S1 cmds/prog

Using Professional OS-9 9

 break The OS-9 Utilities

SYNTAX: break

FUNCTION: break executes an F$SysDbg system call. This call stops OS-9 and all user processes
and returns control to the ROM debugger. The debugger g[o] command resumes
execution of OS-9.

You should only call break from the system’s console device, because the debugger
only communicates with that device. If break is invoked from another terminal, you
must still use the system’s console device to communicate with the debugger.

Only super users can execute break.

NOTE: break is used only for system debugging. It should not be included with or
run on a production system.

NOTE: If there is no debugger in ROM or if the debugger is disabled, break will reset
the system.

CAVEAT: You must be aware of any open network paths when you use the break
utility as all timesharing is stopped.

OPTION: -? Displays the function and command syntax of break.

break Invoke Sytem Level Debugger or Reset System

10 Using Professional OS-9

The OS-9 Utilities build

SYNTAX: build <path>

FUNCTION: build creates a file specified by a given pathlist.

To use the build utility, type build and a pathlist. A question mark prompt (?) is dis-
played. This requests an input line. Each line entered is written to the output file. En-
tering a line consisting of only a carriage return causes build to terminate. The build
utility also terminates when you enter an end-of-file character at the beginning of an in-
put line. The end-of-file character is typically <escape>.

OPTION: -? Displays the function and command syntax of build.

EXAMPLE: $ build newfile
? Build should only be used
? in creating short text files.
? [RETURN]

$ list newfile
Build should only be used
in creating short text files.

build Build a Text File from Standard Input

Using Professional OS-9 11

 cfp The OS-9 Utilities

SYNTAX: cfp [<opts>] [<path1>] {<path2>}

FUNCTION: cfp creates a temporary procedure file in the current data directory and then invokes the
shell to execute it.

To create a temporary procedure file, type cfp, the name of the procedure file
(<path1>), and the file(s) (<path2>) to be executed by the procedure file.

All occurrences of an asterisk (*) in the procedure file (<path1>) are replaced by the
given pathlists, <path2>, unless preceded by the tilde character (~). For example, ~*
translates to *. The command procedure is not executed until all input files have been
read.

For example, if you have a procedure file in your current data directory called copyit
that consists of a single command line, copy *, all of your C programs from two
directories, PROGMS and MISC.JUNK, are placed in your current data directory by
typing:

$ cfp copyit ../progms/*.c ../misc.junk/*.c

If you use the “-s=<string>” option, you may omit the name of the procedure file, but
you must enclose the option and its string in quotes. The -s option causes the cfp utility
to use the string instead of a procedure file. For example:

$ cfp "-s=copy *" ../progms/*.c ../misc.junk/*.c

NOTE: You must use double quotes to force the shell to send the string -s=copy * as
a single parameter to cfp. The quotes also prevent the shell from expanding the asterisk
(*) to include all pathlists in the current data directory.

In the above examples, cfp creates a temporary procedure file to copy every file ending
in .c in both PROGMS and MISC.JUNK to the current data directory. The procedure
file created by cfp is deleted when all the files have been copied.

Using the -s option is convenient because you do not have to edit the procedure file to
change the copy procedure. For example, if you are copying large C programs, you
may want to increase the memory allocation to speed up the process.

cfp Command File Processor

12 Using Professional OS-9

The OS-9 Utilities cfp

You can allocate the additional memory on the cfp command line:

$ cfp "-s=copy -b100 *" ../progms/*.c ../misc.junk/*.c

You can use the -z and -z=<file> options to read the file names from either standard
input or a file. Use the -z option to read the file names from standard input. For exam-
ple, if you have a procedure file called count.em that contains the command count -l
* and you want to count the lines in each program to see how large the programs are
before you copy them, enter the following command line:

$ cfp -z count.em

The command line prompt does not appear because cfp is waiting for input. Enter the
file names on separate command lines. For example

$ cfp -z count.em
../progms/*.c
../misc.junk/*.c

When you have finished entering the file names, press the carriage return a second time
to get the shell prompt.

If you have a file containing a list of the files to copy, enter:

$ cfp -z=files "-s=copy *"

OPTIONS: -? Displays the options, function, and command syntax of cfp.

-d Deletes the temporary file. This is the default.

-nd Does not delete the temporary file.

-e Executes the procedure file. This is the default.

-ne Does not execute the procedure file. Instead, it will dump to standard out-
put. This option causes -d and -nd to have no effect because the tempo-
rary procedure file is not created.

-s=<str> Reads <str> instead of a procedure file. If the string contains characters
interpreted by the shell, the entire option needs to be enclosed in quotes.
It does not make sense to specify both a procedure file and this option.

-t=<path> Creates the temporary file at <path> rather than in the current working di-
rectory.

-z Reads the file names from standard input instead of <path2>.

-z=<file> Reads the file names from <file> instead of <path2>.

Using Professional OS-9 13

 cfp The OS-9 Utilities

EXAMPLE: In this example, test.p is a procedure file that contains the command line list * >/p2.
The command cfp test.p file1 file2 file3 produces a procedure file containing the fol-
lowing commands:

list file1 >/p2
list file2 >/p2
list file3 >/p2

The following command accomplishes the same thing:

$ cfp "-s=list * >/p2" file1 file2 file3

14 Using Professional OS-9

The OS-9 Utilities chd/chx

SYNTAX: chd [<path>]
chx <path>

FUNCTION: chd and chx are built-in shell commands used to change OS-9’s working data directory
or working execution directory.

To change data directories, type chd and the pathlist to the new data directory. To
change execution directories, type chx and the pathlist to the new execution directory.
In both cases, a full or relative pathlist may be used. Relative pathlists used by chd and
chx are relative to the current data and execution directory, respectively.

If the HOME environment variable is set, the chd command with no specified directory
will change your data directory to the directory specified by HOME.

NOTE: These commands do not appear in the CMDS directory as they are built-in to
the shell.

EXAMPLES: $ chd /d1/PROGRAMS

$ chx ..

$ chx binary_files/test_programs

$ chx /D0/CMDS; chd /D1

chd/chx Change Current Data Directory/Current Execution Directory

Using Professional OS-9 15

 cmp The OS-9 Utilities

SYNTAX: cmp [<opts>] <path1> <path2>

FUNCTION: cmp opens two files and performs a comparison of the binary values of the correspond-
ing data bytes of the files. If any differences are encountered, the file offset (address),
the hexadecimal value, and the ASCII character for each byte are displayed.

The comparison ends when an end-of-file is encountered on either file. A summary of
the number of bytes compared and the number of differences found is displayed.

To execute cmp, type cmp and the pathlists of the files to be compared.

OPTIONS: -? Displays the options, function, and command syntax of cmp.

-b=<num>[k] Assigns <num>k of memory for cmp to use. cmp uses a 4K memory
by default.

-s Silent mode. Stops the comparison when the first mismatch occurs
and prints an error message.

-x Searches the current execution directory for both of the specified files.

EXAMPLES: The following example uses an 8K buffer to compare file1 with file2.

$ cmp file1 file2 -b=8k

Differences
 (hex) (ascii)
byte #1 #2 #1 #2
======== == == == ==
00000019 72 6e r n
0000001a 73 61 s a
0000001b 74 6c t l

Bytes compared: 0000002d
Bytes different: 00000003

file1 is longer

The following example compares file1 with itself.

$ cmp file1 file1

Bytes compared: 0000002f
Bytes different: 00000000

cmp Compare Two Binary Files

16 Using Professional OS-9

The OS-9 Utilities code

SYNTAX: code

FUNCTION: code prints the input character followed by the hex value of the input character.
Unprintable characters print as a period (.). The keys specified by tmode quit and
tmode abort terminate code. tmode quit is normally <control>E, and tmode abort is
normally <control>C.

The most common usage of code is to discover the value of an unknown key on the
keyboard or the hex value of an ASCII character.

OPTION: -? Displays the function and command syntax of code.

EXAMPLE: $ code
ABORT or QUIT characters will terminate CODE
a -> 61
e -> 65
A -> 41
. -> 10
. -> 04
$

code Print Hex Value of Input Character

Using Professional OS-9 17

 compress The OS-9 Utilities

SYNTAX: compress [<opts>] {<path>}

FUNCTION: compress reads the specified text file(s), converts it to compressed form, and writes
the compressed text file to standard output or to an optional output file.

To use compress, type compress and the path of the text file to compress. If no files
are given, standard input is used.

compress replaces multiple occurrences of a character with a three character coded se-
quence:

 aaaaabbbbbcccccccccc would be replaced with ~Ea~Eb~Jc.

Each compressed input file name is appended with _comp. If a file with this name al-
ready exists, the old file is overwritten with the new file. Typical files compress about
30% smaller than the original file.

compress reduces the size of a file to save disk space. See the expand utility for de-
tails on how to expand a compressed file.

WARNING: Only use compress and expand on text files.

OPTIONS: -? Displays the options, function, and command syntax of compress.

-d Deletes the original file. This is inappropriate when no pathlist is spec-
ified on the command line and standard input is used.

-n Creates an output file.

-z Reads file names from standard input.

-z=<file> Reads file names from <file>.

EXAMPLES: In the first example, file1 is compressed, file1_comp is created, and file1 is deleted.

$ compress file1 -dn

In this example, file2 is compressed, file3 is created from the redirected standard out-
put, and file2 is deleted.

$ compress file2 -d >file3

compress Compress ASCII Files

18 Using Professional OS-9

The OS-9 Utilities copy

SYNTAX: copy [<opts>] <path1> [<path2>]

FUNCTION: copy copies data from <path1> to <path2>. If <path2> already exists, the contents
of <path1> overwrites the existing file. If <path2> does not exist, it is created. If no
files are given on the command line and the -z option is not specified, an error is re-
turned.

You can copy any type of file. It is not modified in any way as it is copied. The
attributes of <path1> are also copied exactly.

NOTE: You must have permission to copy the file. You must be the owner of the file
specified by <path1> or have public read permission in order to copy the file. You
must also be able to write to the specified directory. In either case, if the copy proce-
dure is successful, <path2> has your group.user number unless you are the super user.
If you are the super user, <path2> has the same group.user number as <path1>.

If <path2> is omitted, the destination file has the same name as the source file. It is
copied into the current data directory. Consequently, the following two copy com-
mands have the same effect:

$ copy /h0/cmds/file1 file1

$ copy /h0/cmds/file1

copy is also capable of copying one or more files to the same directory by using the -
w=<dir> option. The following command copies file1 and file2 into the BACKUP
directory:

$ copy file1 file2 -w=backup

If used with wildcards, the -w=<dir> option becomes a selective dsave. The following
command copies all files in the current data directory that have names ending with .lp
into the LP directory:

$ copy *.lp -w=lp

Data is transferred using large block reads and writes until an end-of-file occurs on the
input path. Because block transfers are used, normal output processing of data does not
occur on character-oriented devices such as terminals, printers, etc. Therefore, the list
utility is preferred over copy when a file consisting of text is sent to a terminal or
printer.

copy Copy Data from One File to Another

Using Professional OS-9 19

 copy The OS-9 Utilities

NOTE: copy always runs faster if you specify additional memory with the -b option.
This allows copy to transfer data with a minimum number of I/O requests.

OPTIONS: -? Displays the options, function, and command syntax of copy.

-a Aborts the copy routine if an error occurs. This option effectively can-
cels the continue (y/n) ? prompt of the -w option.

-b=<num>k Allocates <num>k memory to be used by copy. copy uses a 4K mem-
ory by default.

-f Rewrites destination files with no write permission.

-p Does not print a list of the files copied. This option is only for copying
multiple files.

-r Overwrites the existing file.

-v Verifies the integrity of the new file.

-w=<dir> Copies one or more files to <dir>. This option prints the file name after
each successful copy. If an error such as no permission to copy occurs,
the prompt continue (y/n) ? is displayed.

-x Uses the current execution directory for <path1>.

-z Reads file names from standard input.

-z=<file> Reads file names from <file>.

EXAMPLES: The following example copies file1 to file2. If file2 already exists, error #218 is
returned.

$ copy file1 file2

This example copies file1 to file2 using a 15K buffer.

$ copy file1 file2 -b=15k

This example copies all files in the current data directory to MYFILE.

$ copy * -w=MYFILE

This example copies all files in the current data directory that have names ending in .lp.

$ copy *.lp -w=MYFILE

This example copies /d1/joe and /d0/jim to FILE.

$ copy /d1/joe /d0/jim -w=FILE

This example writes file3 over file4.
$ copy file3 file4 -r

20 Using Professional OS-9

The OS-9 Utilities count

SYNTAX: count [<opts>] {<path>}

FUNCTION: count counts the number of characters in a file and optionally prints a breakdown
consisting of each unique character found and the number of times it occurred.

To count the number of characters in a file, enter count and the pathlist of the file to
examine. If no pathlist is specified, count examines lines from standard input.

count recognizes the tab, line feed, and form feed characters as line delimiters.

By using the -w option, count counts the number of words in a file. A word is defined
as a sequence of nonblank, non-carriage-return characters.

By using the -l option, the number of lines in a file is displayed. A line is defined by
zero or more characters ending in a carriage-return.

OPTIONS: -? Displays the options, function, and command syntax of count.

-b Counts characters and gives a breakdown of their occurrence.

-c Counts characters.

-l Counts lines.

-w Counts words.

-z Reads file names from standard input.

-z=<file> Reads file names from <file>.

EXAMPLE: $ list file1
first line
second line
third line

$ count -clw file1
"file1" contains 34 characters
"file1" contains 6 words
"file1" contains 3 lines

count Count Characters, Words, and Lines in a File

Using Professional OS-9 21

 date The OS-9 Utilities

SYNTAX: date [<opts>]

FUNCTION: date displays the current system date and system time. The system date and time are
set by the setime utility.

OPTIONS: -? Displays the options, function, and command syntax of date.

-j Displays the Julian date and time.

-m Displays the military time (24 hour clock) after the date.

EXAMPLES: $ date

December 18, 1990 Tuesday 2:20:20 pm

$ date -m

December 18, 1990 Tuesday 14:20:24

The following example redirects the current date and time to the printer:

$ date >/p

date Display System Date and Time

22 Using Professional OS-9

The OS-9 Utilities dcheck

SYNTAX: dcheck [<opts>] <devname>

FUNCTION: dcheck is a diagnostic tool used to detect the condition and the general integrity of the
directory/file linkages of a disk device.

To use dcheck, type dcheck, the option(s) desired, and the name of the disk device to
check.

dcheck first verifies and prints some of the vital file structure parameters. It moves
down the tree file system to all directories and files on the disk. As it moves down the
tree file system, the integrity of the file descriptor sectors (FDs) is verified. Any
discrepancies in the directory/file linkages are reported.

From the segment list associated with each file, dcheck builds a sector allocation map.
This map is created in memory.

If any FDs describe a segment with a cluster not within the file structure of the disk, a
message is reported:

*** Bad FD segment (xxxxxx-yyyyyy)

This indicates that a segment starting at sector xxxxxx (hexadecimal) and ending at
sector yyyyyy cannot be used on this disk. The entire FD is probably bad if any of its
segment descriptors are bad. Therefore, the allocation map is not updated for bad FDs.

While building the allocation map, dcheck ensures that each disk cluster appears only
once in the file structure. If a cluster appears more than once, dcheck displays a
message:

Sector xxxxxx (byte=nn bit=n) previously allocated

This message indicates the cluster at sector xxxxxx has been found at least once before
in the file structure. byte=nn bit=n specifies in which byte of the bitmap this error
occurred and in which bit in that byte. The first byte in the bitmap is numbered zero.
For dcheck’s purposes, bits are numbered zero through seven; the most significant bit
is numbered zero. The message may be printed more than once if a cluster appears in
a segment in more than one file.

Occasionally, sectors on a disk are marked as allocated even though they are not asso-
ciated with a file or the disk’s free space. This is most commonly caused by media de-
fects discovered by format. These defective sectors are not included in the free space
for the disk. This can also happen if a disk is removed from a drive while files are still
open, or if a directory containing files is deleted by a means other than deldir.

dcheck Check the Disk File Structure

Using Professional OS-9 23

 dcheck The OS-9 Utilities

If all the sectors of a cluster are not used in the file system, dcheck prints a message:

xxxxxx cluster only partially used

The allocation map created by dcheck is then compared to the allocation map stored
on the disk. Any differences are reported in messages:

Sector xxxxxx (byte=nn bit=n) not in file structure
Sector xxxxxx (byte=nn bit=n) not in bit map

The first message indicates sector number xxxxxx was not found as part of the file
system but is marked as allocated in the disk’s allocation map. In addition to the causes
previously mentioned, some sectors may have been excluded from the allocation map
by the format program because they were defective. They could be the last sectors of
the disk, whose sum is too small to comprise a cluster.

The second message indicates that the cluster starting at sector xxxxxx is part of the file
structure but is not marked as allocated in the disk’s allocation map. This type of disk
error could cause problems later. It is possible that this cluster may later be allocated
to another file. This would overwrite the current contents of the cluster with data from
the newly allocated file. All current data located in this cluster would be lost. Any
clusters reported as previously allocated by dcheck have this problem.

Repairing the Bitmap
dcheck is capable of repairing two types of disk problems using the -r and the -y
options. If a cluster was found in the file structure but not in the bitmap, the bit may be
turned on in the bitmap to include the cluster. If the cluster was marked in the bitmap
but not in the file structure, the bit in the bitmap may be turned off.

WARNING: Do not use either of these options unless you thoroughly understand what
you are doing. These errors could be caused by previously mentioned problems and
perhaps should not be repaired.

Restrictions:
¿ Only the super user (user 0.n) may use this utility.

¡ dcheck should have exclusive access to the disk being checked. dcheck
can be fooled if the disk allocation map changes while it is building its
bitmap file from the changing file structure.

OPTIONS: -? Displays the options, function, and command syntax of dcheck.

-d=<num> Prints the path to the directory <num> deep.

-r Repair mode. Prompts to turn on or off bits in the bit map.

-y Repair mode. Does not prompt for repair, but answers yes to all

24 Using Professional OS-9

The OS-9 Utilities dcheck

prompts. This option must be used with the -r option.

EXAMPLE: $ dcheck /d2
Volume - ’Ram Disk (Caution: Volatile)’ on device /dd
$001000 total sectors on media, 256 bytes per sector
Sector $000001 is start of bitmap
$0200 bytes in allocation map, 1 sector(s) per cluster
Sector $000003 is start of root dir
Building allocation map...
$0003 sectors used for id sector and allocation map
Checking allocation map...

’Ram Disk (Caution: Volatile)’ file structure is intact
5 directories, 60 files
580096 of 1048576 bytes (0.55 of 1.00 meg) used on media

Using Professional OS-9 25

 deiniz The OS-9 Utilities

SYNTAX: deiniz [<opts>] {<modname>}

FUNCTION: When a device is no longer needed, use deiniz to remove the device from the system
device table. deiniz uses the I$Detach system call to accomplish this. Information
concerning I$Detach is located in the OS-9 Technical Manual.

To remove a device from the system device table, type deiniz, followed by the name of
the module(s) to detach. <modname> may begin with a slash (/). The module names
may be read from standard input or from a specified pathlist if the -z option is used.

WARNING: Do not deiniz a module unless you have explicitly iniz-ed it. If you do
deiniz a device that you have not iniz-ed, you could cause problems for other users who
may be using the module.

OPTIONS: -? Displays the options, function, and command syntax of deiniz.

-z Reads the module names from standard input.

-z=<file> Reads the module names from <file>.

EXAMPLE: $ deiniz t1 t2 t3

deiniz Detach a Device

26 Using Professional OS-9

The OS-9 Utilities del

SYNTAX: del [<opts>] {<path>}

FUNCTION: del deletes the file(s) specified by the pathlist(s). You must have write permission for
the file(s) to be deleted. You cannot delete directory files with this utility unless their
attribute is changed to non-directory.

OPTIONS: -? Displays the options, function, and command syntax of del.

-e Erases the disk space that the file occupied.

-f Delete files with no write permission.

-p Prompts for each file to be deleted with the following prompt:
delete <filename> ? (y,n,a,q)

y = yes. n = no. a = delete all specified files without further prompts.
q = quit the deleting process.

-x Looks for the file in the current execution directory.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: These examples use the following directory structure:

$ dir
 Directory of /D1 14:29:46
junk myfile newfile number_five
old_test_program test_program

$ del newfile Deletes newfile.

$ del *_* Deletes all files in the current data directory with an
underscore character in their name.

After executing the preceding two examples, the directory has the following files:

$ dir
 Directory of /D1 14:30:37
junk myfile

To delete all files in the current directory, type:

$ dir -u ! del -z

SEE ALSO: The attr and deldir utility descriptions

del Delete a File

Using Professional OS-9 27

 deldir The OS-9 Utilities

SYNTAX: deldir [<opts>] {<path>}

FUNCTION: deldir deletes directories and the files they contain one file at a time. deldir is only used
to delete all files in the directory.

When deldir is run, it prints a prompt message:

$ deldir OLDFILES

Deleting directory: OLDFILES
Delete, List, or Quit (d, l, or q) ?

A d response initiates the process of deleting files. An l response causes dir -e to run
so you can have an opportunity to see the files in the directory before they are deleted.
A q response aborts the command before action is taken. After listing the files, deldir
prompts with:

delete ? (y,n)

The directory to be deleted may include directory files, which may themselves include
directory files, etc. In this case, deldir operates recursively (that is, lower-level direc-
tories are also deleted). The lower-level directories are processed first.

You must have correct access permission to delete all files and directories encountered.
If not, deldir aborts upon encountering the first file for which you do not have write per-
mission.

deldir automatically calls dir and attr, so they must reside in the current execution
directory. When deldir calls dir, it executes a dir -a command to show all files
contained in the directory.

NOTE: You should never delete the current data directory (.).

OPTIONS: -? Displays the options, function, and command syntax of deldir.

-f Deletes files regardless of whether write permission is set.

-q Quiet mode. No questions are asked. The directory and its sub-
directories are all deleted, if possible.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

deldir Delete All Files in a Directory

28 Using Professional OS-9

The OS-9 Utilities devs

SYNTAX: devs

FUNCTION: devs displays a list of the system’s device table. The device table contains an entry for
each active device known to OS-9. devs does not display information for uninitialized
devices.

The devs display header lists the system name, the OS-9 version number, and the max-
imum number of devices allowed in the device table.

Each line in the devs display contains five fields:

Name Description
Device Name of the device descriptor

Driver Name of the device driver

File Mgr Name of the file manager

Data Ptr Address of the device driver’s static storage

Links Device use count

NOTE: Each time a user executes a chd to an RBF device, the use count of that device
is incremented by one. Consequently, the Links field may be artificially high.

OPTION: -? Displays the function and command syntax of devs.

devs Display System’s Device Table

Using Professional OS-9 29

 devs The OS-9 Utilities

EXAMPLE: The following example displays the device table for a system named Tazz:

$ devs
TAZZ_VME147 OS-9/68030 V2.4.x82 (128 devices max)

 Device Driver File Mgr Data Ptr Links
---------- ---------- ---------- --------- ------
term sc8x30 scf $007fda40 7
h0 rbsccs rbf $007fcbe0 31175
d0 rb320 rbf $007e94a0 1
dd rbsccs rbf $007fcbe0 23
t10 sc335 scf $006d3a70 5
t11 sc335 scf $006d3850 5
t12 sc335 scf $006d3630 5
t13 sc335 scf $006d3410 5
t20 sc335 scf $006d31f0 5
t21 sc335 scf $006d2fd0 5
t22 sc335 scf $006d2db0 5
t23 sc335 scf $006d2b90 5
5803 rb320 rbf $007e94a0 20
3803 rb320 rbf $007e94a0 1
mt2 sbgiga sbf $006d9640 1
n0 n9026 nfm $006d63a0 372
nil null scf $006d6340 10
socket sockdvr sockman $006c0500 4
lo0 ifloop ifman $006c0380 4
le0 am7990 ifman $006bed60 1
pipe null pipeman $0068ecc0 3
pk pkdvr pkman $0048dc90 1
pkm00 pkdvr pkman $00427b50 1
3807 rb320 rbf $007e94a0 12
pcd0 rb320 pcf $007e94a0 3
pks00 pkdvr scf $004279b0 2

SEE ALSO: The iniz and deiniz utilities

30 Using Professional OS-9

The OS-9 Utilities dir

SYNTAX: dir [<opts>] {<path>}

FUNCTION: dir displays a formatted list of file names of the specified directory file on standard
output.

To use the dir utility, type dir and the directory pathlist, if desired. If no parameters are
specified, the current data directory is shown. If you use the -x option, the current
execution directory is shown. If a pathlist of a directory file is specified, the files of the
indicated directory are shown.

If the -e option is included, each file’s entire description is displayed: size, address,
owner, permissions, date, and time of last modification. Because the shell does not in-
terpret the -x option, wildcards do not work as expected when this option is used.

Unless the -a option is used, file names that begin with a period (.) are not displayed.

Unformatted Directory Listing
You can print an unformatted directory listing using the -u option. This allows only the
names of the entries of a directory to be displayed. No directory header is displayed.
Entries are printed as follows:

$ dir -u
file1
file2
file3
DIR1

The output of a dir -u can be sent through a pipe to another utility or program that can
use a pipe. For example:

$ dir -u ! attr -z

This displays the attributes of every entry in the current directory.

The -e option can be used to display an extended directory listing without the header
by adding the -u option.

dir Display Names of Files in a Directory

Using Professional OS-9 31

 dir The OS-9 Utilities

OPTIONS: -? Displays the options, function, and command syntax of dir.

-a Displays all file names in the directory. This includes file names begin-
ning with a period.

-d Appends a slash (/) to all directory names listed. This does not affect the
actual name of the directory.

-e Displays an extended directory listing excluding file names beginning
with a period.

-n Displays directory names without displaying the file names they contain.
This option is especially useful with wildcards.

-r Recursively displays the directories. This does not include file names be-
ginning with a period.

-r=<num> Displays the directories recursively up to the <num> level below the cur-
rent directory. This does not include file names beginning with a period.

-s Displays an unsorted listing. This does not include file names beginning
with a period.

-u Displays an unformatted listing. This does not include file names begin-
ning with a period.

-x Displays the current execution directory. This does not include file names
beginning with a period.

-z Reads the directory names from standard input.

-z=<file> Reads the directory names from <file>.

EXAMPLES: The first example displays the current data directory:
$ dir

Directory of . 12:12:54
BK BKII RELS ed10.c ed11.c
ed2.c

In the second example, the parent of the working data directory is displayed:
$ dir ..

This example displays the NEWSTUFF directory:
$ dir NEWSTUFF

32 Using Professional OS-9

The OS-9 Utilities dir

The next example displays the entire description of the current data directory:
dir -e
 Directory of . 13:54:44
 Owner Last modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 1.78 90/11/28 0357 d-ewrewr 383C8 160 NOTES
 1.78 90/11/28 0357 d-ewrewr 383E8 608 PROGRAMS
 1.78 90/11/28 0357 d-ewrewr 383D8 160 TEXT
 1.78 90/11/14 0841 ------wr F4058 438 arrayex.c
 1.78 90/11/12 0859 ------wr F4068 538 arrayex.r
 1.78 90/11/09 0852 ------wr F2AB0 312 asciiinfo
 0.0 90/04/27 1719 ----r-wr 71EC8 4626 atari.doc
 1.78 90/11/14 0911 ------wr B4548 636 bobble.c
 1.78 90/11/14 0910 ------wr B4AA8 815 bobble.r
 1.78 90/10/18 1259 ------wr BD418 619 cd.order
 1.78 90/06/06 1009 ---wr-wr 82B8 5420 cdichanges
 1.78 90/11/28 1102 ------wr E0C68 1478 checks.c
 1.78 90/11/28 1102 ------wr E1D08 1075 checks.r
 1.78 90/09/07 0848 ------wr 708B8 274 datafile
 0.78 90/04/12 1206 ---wr-wr 70EE8 1065 drvr.a
 1.78 90/11/13 1544 ------wr B1650 112 exloop

To display the execution directory, type:
$ dir -x

To display the entire description of the execution directory, type:
$ dir -xe

To display the contents of the current directory and all directories one level below this
directory, type:

$ dir -r=1

The next example displays the entire description of all files within the current directory.
This includes files within all subdirectories of the current directory.

$ dir -er

This example displays all directory and file names that begin with B.
$ Dir -n B*

Using Professional OS-9 33

 diskcache The OS-9 Utilities

SYNTAX: diskcache [<opts>] [<dev>]

FUNCTION: diskcache enables, disables, or displays the status of the cache. Caching may be
enabled for any type of RBF device, and more than one device may be cached at a time.

The total amount of system memory used for caching all enabled drives can be set by
the utility’s -t option. If not explicitly defined, the diskcache utility automatically
selects a reasonable value based upon the amount of free system memory.

Caching may be dynamically enabled or disabled on a per drive basis while the system
is running using the -e and -d options.

Statistical information regarding the hit/miss ratios, amount of memory allocated, etc.
can be inspected on a drive by drive basis using the -l option. An example output of this
information follows:

Current size = 1047552
 Size limit = 1048576

Device: /h0:1:1
 Requests Sectors Hits Zaps >2 Xfr Hit Rate
 Reads: 47592 55436 21874 143 662 39.5%
 Writes: 7723 8065 7342 68
 Dir Reads: 54048 54048 34526 18387<-Sctr Zero 63.9%
Dir Writes: 0 0
 Hit compares = 63399 (1/hit)
Miss compares = 92685 (3/miss)

CAVEATS: Caching should only be invoked on devices that are known to the I/O system (that is,
the devices should have been initialized with the iniz utility).

If caching is to be enabled on drives with different sector sizes, the device with the larg-
est sector size should be included in the initial cache enabling. Attempting to add a
drive (with a sector size larger than any currently cached drive) to the cache system af-
ter initial cache startup results in continuous “misses” for that drive, as the sector size
is too large.

diskcache Enable, Disable, or Display Status of Cache

34 Using Professional OS-9

The OS-9 Utilities diskcache

OPTIONS: -? Displays the options, function, and command syntax of diskcache.

-d Disables cache for <dev>.

-e Enables cache for <dev>.

-l Displays the cache status for <dev>.

-t=<size>[k] Specifies the size limit of the total cache.

Using Professional OS-9 35

 dsave The OS-9 Utilities

SYNTAX: dsave [<opts>] [<path>]

FUNCTION: dsave is used to backup or copy all files in one or more directories. It generates a
procedure file, which is either executed later to actually do the work or is executed
immediately using the -e option.

To use dsave, type dsave and the path of the new directory. When dsave is executed,
it writes commands on standard output to copy files from the current data directory to
the directory specified by <path>. If no <path> is specified, the copies are directed to
the current data directory when the procedure file is executed.

dsave’s standard output should be redirected to a procedure file that can be executed
at a later time or the -e option should be used to execute dsave’s output immediately.

If dsave encounters a directory file, it automatically includes makdir and chd
commands in the output before generating copy commands for files in the subdirectory.
The procedure file duplicates all levels of the file system connected downward from the
current data directory.

If the current working directory happens to be the root directory of the disk, dsave cre-
ates a procedure file to backup the entire disk, file by file. This is useful when you need
to copy many files from different format disks, or from a floppy disk or a hard disk.

If an error occurs, the following prompt is displayed:

continue (y,n,a,q)?

A y indicates you want to continue. An n indicates you do not want to continue. An a
indicates you want to copy all possible files and you do not want dsave to display the
prompt on error. A q indicates you want to quit the dsave procedure. If for any reason
you do not wish to be bothered by this prompt, the -s option is available. This skips
any file which cannot be copied and continues the dsave routine with no prompt.

dsave helps keep up-to-date directory backups. When the -d or -d=<date> options are
used, dsave compares the date of the file to copy with a file of the same name in the
directory it is to be copied to. The -d option copies any file with a more recent date.
To copy a file with a date more recent than that specified, use the -d=<date> option.

A common error occurs when using dsave if the destination directory has files with the
same name as the source directory. Because a file name must be unique within a
directory, this produces an error. Use the -r option to prevent this error.

OPTIONS: -? Displays the options, function, and command syntax of dsave.

dsave Generate Procedure File to Copy Files

36 Using Professional OS-9

The OS-9 Utilities dsave

-a Does not copy any file that has a name beginning with a period.

-b[=]<n>k Allocates <n>k bytes of memory for copy and cmp if needed.

-d Compares dates with files of the same name and copies files with more
recent dates.

-d=<date> Compares the specified date with the date of files with the same name
and copies any file with a more recent date than that specified.

-e Executes the output immediately.

-f Uses copy’s -f option to force the writing of files.

-i Indents for directory levels.

-l Does not save directories below the current level.

-m Does not include makdir commands in the procedure file.

-n Does not load copy or cmp if -v is specified.

-o Uses os9gen to create a bootfile on the specified destination device if a
bootfile exists on the source device. The default name used for the
bootfile is OS9Boot. This option is used to create a bootable disk.
Merely copying OS9Boot to a new disk does not make it bootable.

-o=<name> Uses os9gen to create a bootfile on a new device, using the specified
name. This option is used to create a bootable disk. Merely copying
OS9Boot to a new disk does not make it bootable.

-r Writes any source file over a file with the same name in the destination
directory. Effectively, this uses the copy utility with the -r option.

-s Skips files on error. This effectively turns off the prompt to continue the
dsave routine when an error occurs.

-v Verifies files with the cmp utility.

Using Professional OS-9 37

 dsave The OS-9 Utilities

EXAMPLES: The first three examples effectively accomplish the same goal: copying all files in
/d0/MYFILES/STUFF to /d1/BACKUP/STUFF. Each example highlights a differ-
ent method of using dsave.

In the first example, no path is specified in the dsave command and a procedure file is
generated. Therefore, you must change data directories before executing the procedure
file. If the directory is not changed, an error message occurs: #218--file already ex-
ists in this directory under the same name.

$ chd /d0/MYFILES/STUFF Selects the directory to be copied.
$ dsave >/d0/makecopy Makes the procedure file makecopy.
$ chd /d1/BACKUP/STUFF Select the destination directory for makecopy.
$ /d0/makecopy Runs makecopy.

The second example uses the path /d1/BACKUP/STUFF in the dsave command.
Consequently, you do not need to change directories before executing the procedure
file. This example also allocates 32K of memory for the copy procedure. Allocating
more memory for the copy procedure usually saves time.

$ chd /d0/MYFILES/STUFF
$ dsave -ib=32 /d1/BACKUP/STUFF >saver
$ saver

The third example effectively accomplishes the same thing, but without using a
procedure file.

$ chd /d0/MYFILES/STUFF
$ dsave -ieb32 /d1/BACKUP/STUFF

38 Using Professional OS-9

The OS-9 Utilities dsave

In the following example, dir -e shows the creation dates of the files. This shows the
-d option of dsave.

$ chd /d0/BACKUP
$ dir -e
 Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 90/12/01 1417 ------wr 1A2B 11113 program.c
 12.4 90/06/05 1601 ------wr 8543 5744 prog.2
$ chd /d0/WORKFILES
$ dir -e
 Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 90/12/01 1417 ------wr DODO 11113 program.c
 12.4 90/12/01 1601 ------wr 3458 5780 prog.2
directory of . 14:14:40
$ dsave -deb32 /d0/BACKUP
$ chd /d0/BACKUP
$ dir -e
 Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 90/12/01 1417 ------wr DD33 11113 program.c
 12.4 90/12/01 1601 ------wr 4356 5780 prog.2

In this example only prog2 was copied because the date was more recent in the
WORKFILE directory.

Using Professional OS-9 39

 dump The OS-9 Utilities

SYNTAX: dump [<opts>] [<path> [<addr>]]

FUNCTION: dump produces a formatted display of the physical data contents of <path>. <path>
may be a mass storage file or any other I/O device. dump is commonly used to examine
the contents of non-text files.

To use this utility, type dump and the pathlist of the file to display. An address within
a file may also be displayed. If <path> is omitted, standard input is used. The output
is written to standard output. When <addr> is specified, the contents of the file are
displayed starting with the appropriate address. <addr> is presumed to be a
hexadecimal number.

The data is displayed 16 bytes per line in both hexadecimal and ASCII character format.
Data bytes that have non-displayable values are represented by periods in the character
area.

The addresses displayed on the dump are relative to the beginning of the file. Because
memory modules are position-independent and stored in files exactly as they exist in
memory, the addresses shown on the dump are relative to the load addresses of the
memory modules.

OPTIONS: -? Displays the options, function, and command syntax of dump.

-c Does not compress duplicate lines.

-m Dumps from a memory resident module.

-s Interprets the starting offset as a sector number. This is useful for RBF devices
with a sector size not equal to 256.

-x Indicates that <path> is an execution directory. You must have execute
permission for the pathlist.

EXAMPLES: $ dump Displays keyboard input in hex.

$ dump myfile >/P Dumps myfile to printer.

$ dump shortfile Dumps shortfile.

SAMPLE
 OUTPUT: (starting (data bytes in hexadecimal format) (data bytes in

address) ASCII format)

 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
00000000 6d61 696e 2829 0d7b 0d09 696e 7420 783b main().{..int x;
00000010 0d09 0d09 6765 745f 7465 726d 5f64 6566get_term_def
00000020 7328 293b 0d09 783d 6d65 6e75 2829 3b0d s();..x=menu();.

dump Formatted File Data Dump in Hexadecimal and ASCII

40 Using Professional OS-9

The OS-9 Utilities echo

SYNTAX: echo [<opts>] {<text>}

FUNCTION: echo echoes its parameter to the standard output path. echo is typically used to gen-
erate messages in shell procedure files or to send an initialization character sequence to
a terminal.

To use the echo utility, type echo and the text to output. echo reads the text until a
carriage return is encountered. The input then echoes on the output path.

A hexadecimal number representing a character may be imbedded in a character string
but you must precede it with a backslash (\). The shell removes all but one imbedded
space from character strings passed to echo. Therefore, to allow for more than one
blank between characters, you must enclose the string with double quotes. A single
backslash (\) is echoed by entering two backslashes (\\).

NOTE: Do not include any of the punctuation characters used by the shell in the text
unless you enclose the string with double quotes.

OPTIONS: -? Displays the options, function, and command syntax of echo.

-n Separates the text with carriage returns.

-r Does not send a carriage return after <text>.

-z Reads the text from standard input.

-z=<file> Reads the text from <file>.

EXAMPLES: $ echo "Here is an important message!"
Here is an important message!

$ echo \1b >/p1 Sends an <escape> character to a printer (/p1).

$ echo column1 column2 column3
column1 column2 column3

$ echo "column1 column2 column3"
column1 column2 column3

echo Echo Text to Output Path

Using Professional OS-9 41

 edt The OS-9 Utilities

SYNTAX: edt [<opts>] <path>

FUNCTION: edt is a line-oriented text editor that allows you to create and edit source files.

To use the line-oriented text editor, type edt and the pathlist desired. If the file is new
or cannot be found, edt creates and opens it. edt then displays a question mark prompt
(?) and waits for a command. If the file is found, edt opens it, displays the last line,
and then displays the ? prompt.

The first character of a line must be a space if text is to be inserted. If any other char-
acter is typed in the first character position, edt tries to process the character as an edt
command. edt command format is very similar to BASIC’s editor.

edt determines the size of the file to edit and uses the returned size plus 2K as the edit
buffer. If the file does not already exist, the edit buffer is initialized to 2K. When the
end of the edit buffer is reached, a message is displayed.

OPTIONS: -? Displays the options, function, and command syntax for edt.

-b=<num>k Allocates a buffer area equal to the size of the file plus <num>k bytes.
If the file does not exist, a buffer of the indicated size is assigned for the
new file.

edt Line-Oriented Text Editor

42 Using Professional OS-9

The OS-9 Utilities edt

EDT
COMMANDS: All edt commands begin in the first character position of a line.

<num> Moves the cursor to line number <num>.

<esc> Closes the file and exits. q also does this.

<cr> Moves the cursor down one line (carriage return).

+<num> Moves the cursor down <num> lines. Default is one.

-<num> Moves the cursor up <num> lines. Default is one.

<space> Inserts lines.

d[<num>] Deletes <num> lines. If <num> is not specified, the default value of
<num> is one.

l<num> Lists <num> lines. <num> may be positive or negative. The default
value of <num> is one.

l* Lists all lines in the entire file.

q Quits the editing session. Command returns to the program that called
the editor or the OS-9 shell.

NOTE: For the following search and replace commands, <delim> may be any
character. The asterisk (*) option indicates that all occurrences of the pattern are
searched for and replaced if specified.

s[*]<delim><search string><delim>

Search command: searches for the occurrences of a pattern. For example:

s/and/ Finds the first occurrence of and.

s*,Bob, Finds all occurrences of Bob.

c[*]<delim><search string><delim><replace string><delim>

Replace command: finds and replaces a given string. For example:

c/Tuesday/Wednesday/ Replaces the first occurrence of Tuesday
with Wednesday.

c*"employee"employees" Replaces all occurrences of employee
with employees.

Using Professional OS-9 43

 events The OS-9 Utilities

SYNTAX: events

FUNCTION: events displays a list of the active events on the system and information about each
event. The events header line lists the system name and the OS-9 version number.

Each line in the events display contains six fields:

event ID Event ID number

name Name of the event

value Current contents of the event variable

W-inc Wait increment. Assigned when the event is created and does not
change.

S-inc Signal increment. Assigned when the event is created and does not
change.

links Event use count. When the event is created, links is assigned the
value one. links is incremented each time a process links to the
event.

An event cannot be deleted unless the link count is zero.

If no active events are currently on the system, events displays the message “No active
events.”

OPTION: -? Displays the function and command syntax of events.

events Display Active System Events

44 Using Professional OS-9

The OS-9 Utilities events

EXAMPLE: The following example displays the active system events for a system named Calvin:

Calvin OS-9/68K V2.4

event ID name value W-inc S-inc links
--------- ------------ ---------- ------ ------ ------
 10000 evtfffe4000 1 -1 1 1
 20001 irqfffe4000 0 -1 1 1
 30002 SysMbuf 121952 0 0 1
 40003 net_input 0 -1 -1 1
 50004 Sur00227750 0 0 0 1
 60005 Str002261f0 0 0 0 1
 70006 Stw002261f0 0 0 0 1
 80007 Str00227380 0 0 0 1
 90008 Stw00227380 0 0 0 1
 a0009 Str00232a50 0 0 0 1
 b000a Stw00232a50 0 0 0 1
 c000b Str0020ac30 0 0 0 1
 d000c Stw0020ac30 0 0 0 1
 e000d pkm00i 0 0 0 1
 f000e pkm00o 0 0 0 1
 10000f teln.1 0 -1 -1 1
 130012 Str0020adf0 0 0 0 1
 140013 Stw0020adf0 0 0 0 1

SEE ALSO: F$Event service request in the OS-9 Technical Manual

Using Professional OS-9 45

 ex The OS-9 Utilities

SYNTAX: ex <path> [<arglist>]

FUNCTION: ex is a built-in shell command that causes the process executing the command to start
executing another program. It permits a transition from the shell to another program
without creating another process, thus conserving system memory.

ex is often used when the shell is called from another program to execute a specific pro-
gram, after which the shell is not needed. For example, applications which use only
BASIC need not waste memory space on shell.

ex should always be the last command on a shell input line because any command lines
following it are never processed.

NOTE: Because this is a built-in shell command, it does not appear in the CMDS
directory.

EXAMPLES: $ ex BASIC

$ tsmon /t1& tsmon /t2& ex tsmon /term

ex Execute Program as Overlay

46 Using Professional OS-9

The OS-9 Utilities expand

SYNTAX: expand [<opts>] {<path>}

FUNCTION: expand restores compressed files to their original form. It is the complement
command of the compress utility.

To expand a compressed file, type expand and the name of the file to expand. If no
file names are given on the command line, standard input is assumed.

OPTIONS: -? Displays the options, function, and command syntax of expand.

-d Deletes the old version of the file. This option is not appropriate when
no pathlist is specified on the command line and standard input is used.

-n Sends output to a file instead of the standard output. The file has _exp
appended to it, unless the file name already has a _comp suffix. In this
case, the _comp is removed.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: $ expand data.a -nd Expands and then deletes data.a, creating
data.a_exp.

$ expand file1_comp Expands file1_comp and displays output on
standard output.

$ expand -nd file2_comp file2_comp is expanded and then deleted, creating
file2 with the expanded output.

expand Expand a Compressed File

Using Professional OS-9 47

 fixmod The OS-9 Utilities

SYNTAX: fixmod [<opts>] {<modname>}

FUNCTION: fixmod verifies and updates module parity and module CRC (cyclic redundancy
check). You can also use it to set the access permissions and the group.user number of
the owner of the module.

Use fixmod to update the CRC and parity of a module every time a module is patched
or modified in any way. OS-9 cannot recognize a module with an incorrect CRC.

You must have write access to the file in order to use fixmod.

Use the -u option to recalculate and update the CRC and parity. Without the -u option,
fixmod only verifies the CRC and parity of the module.

The -up=<perm> option sets the module access permissions to <perm>. <perm>
must be specified in hexadecimal. You must be the owner of the module or a super user
to set the access permissions. The permission field of the module header is divided into
four sections from right to left:

owner permissions
group permissions
public permissions
reserved for future use

Each of these sections are divided into four fields from right to left:

read attribute
write attribute
execute attribute
reserved for future use

The entire module access permissions field is given as a four digit hexadecimal value.
For example, the command fixmod -up=555 specifies the following module access
permissions field:

-----e-r-e-r-e-r

The -uo<g>.<u> option allows the super user to change the ownership of a module by
setting the module owner’s group.user number.

fixmod Fix Module CRC and Parity

48 Using Professional OS-9

The OS-9 Utilities fixmod

OPTIONS: -? Displays the options, function, and command syntax of fixmod.

-u Updates an invalid module CRC or parity.

-ua[=]<att.rev> Changes the module’s attribute/revision level.

-ub Fixes the sys/rev field in BASIC packed subroutine modules.

-up=<perm> Sets the module access permissions to <perm>. <perm> must
be specified in hexadecimal.

-uo<g>.<u> Sets the module owner’s group.user number to <g>.<u>. Only
the super user is allowed to use this option.

-x Looks for the module in the execution directory.

-z Reads the module names from standard input.

-z=<file> Reads the module names from <file>.

EXAMPLES: $ fixmod dt Checks parity and CRC for module dt.

$ fixmod dt -u Checks parity and CRC for module dt and updates them if
necessary.

SEE ALSO: Refer to the OS-9 Technical Manual for more information concerning CRC and
parity. For a full explanation of module header fields, see the ident utility.

Using Professional OS-9 49

 format The OS-9 Utilities

SYNTAX: format [<opts>] <devname>

FUNCTION: format is used to physically initialize, verify, and establish an initial file structure on a
disk. You must format all disks before using them on an OS-9 system. format can
format almost any type of disk, including hard disks.

To use the format utility, type format, the name of the device to format, and any
options. format will determine whether the device is autosize (for example, devices
such as SCSI CCS drives) or non-autosize (such as standard floppy disks and many hard
disks). An autosize device is one which can be queried to determine the capacity of
the device. format checks a bit in PD_Ctrl to determine whether or not a device is
autosize. If this bit is zero, the device is non-autosize. If one, the media is autosize.

Format on Non-Autosize Devices

If format determines that your device is non-autosize, format reads a description of the
disk from the device descriptor module. The default values for the number of sides,
number of tracks, sector size, and density are determined by the values in the descriptor.
At this time, the default cluster size is set at one. format determines the media capacity
by multiplying together the number of cylinders (PD_CYL), tracks (PD_TKS), and
sectors per track (PD_SCT, PD_T0S). Because format calculates the device capacity
in this way, the -t=<num> and -ss/-ds options can be used to affect the capacity of the
device.

format Initialize Disk Media

50 Using Professional OS-9

The OS-9 Utilities format

The following information is displayed before formatting begins:

 Disk Formatter
OS-9/68K V2.4 Delta MVME147 - 68030
------------ Format Data ------------

Fixed values:
 Physical floppy size: 5 1/4"
 (Universal Format)
 Sector size: 256
 Sectors/track: 16
 Track zero sect/trk: 16
 Sector offset: 1
 Track offset: 1
 LSN offset: $000000
Total physical cylinders: 80
 Minimum sect allocation: 8

Variables:
 Recording format: MFM all tracks
 Track density in TPI: 96
Number of log. cylinders: 79
 Number of surfaces: 2
Sector interleave offset: 1

Formatting device: /d0
proceed?

You can change the values in the variables section when formatting floppy disks by
command line options or by answering n to the prompt. format asks for any required
options not given on the command line.

When formatting hard disks, answering n to the prompt returns control to the shell.
You can change hard disk parameters only by command line options or by changing the
device descriptor.

The values in the Fixed values section can only be changed by altering the device de-
scriptor module of the specific unit.

Format on Autosize Devices

If format determines that the device has the autosize feature, format performs an
SS_DSize SetStat call to the drive to request the capacity of the device. Typically, the
driver then queries the actual drive. The value returned to format is the capacity of the
device. Because format performs no calculations when determining the capacity, the -
t and -ss/-ds options do not affect the capacity of the device.

Using Professional OS-9 51

 format The OS-9 Utilities

The following information is displayed before formatting commences:

 Disk Formatter
OS-9/68K V2.4 Delta MVME147 - 68030
------------ Format Data ------------

Fixed values:
 Disk type: hard
 Sector size: 512
 Disk capacity: 208936 sectors
 (106975232 bytes)
 Sector offset: 0
 Track offset: 0
 LSN offset: $000000
 Minimum sect allocation: 8

Variables:
Sector interleave offset: 1

Formatting device: /h1
proceed?

When formatting hard disks, answering n to the prompt returns control to the shell.
You can only change the sector interleave offset. The other values cannot be changed
by the format utility.

The values in the Fixed values section can only be changed by altering the device de-
scriptor module of the specific unit.

Continuing the Format Procedure

The formatting process works as follows:

¿ The disk surface is physically initialized and sectored.

¡ Each sector is read back and verified. If the sector fails to verify after sev-
eral attempts, the offending sector is excluded from the initial free space on
the disk. As the verification is performed, track numbers are displayed on
the standard output device for non-autosize devices; logical sector numbers
are displayed for autosize devices.

¬ The disk allocation map, root directory, and identification sector are written
to the first few sectors of track zero. These sectors cannot be defective.

52 Using Professional OS-9

The OS-9 Utilities format

NOTE: format uses a fast verify mode. This means that format reads a minimum of
32 sectors. If the cluster size is greater than 32 sectors, then one cluster worth of sectors
is read. If the cluster size is less than 32 sectors, 32 sectors are read. If you want format
to use the cluster size regardless of the number of sectors per cluster, you must use the
-nf option. For example, if your cluster size has one sector, 32 sectors are read by
default, while only one sector would be read if you specify -nf.

NOTE: You must run os9gen to create the bootstrap after the disk has been formatted
if you use the disk as a system disk,

OPTIONS: -? Displays the options, function, and command syntax of format.

-c=<num> Specifies the number of sectors per cluster. <num> must be decimal
and must be a power of 2. The default is 1.

-dd Double density (floppy) disk

-ds Double sided (floppy) disk

-e Displays elapsed verify time. This is useful for checking the sector
interleave values.

-i=<num> Specifies the number for sector interleave offset value. <num> is
decimal.

-nf Specifies no fast verify mode.

-np Specifies no physical format.

-nv Specifies no physical verification.

-r Inhibits the ready prompt. This option is ignored if the device is a hard
disk. This makes it necessary to explicitly state that you want to format
a hard disk.

-sd Single density (floppy) disk

-ss Single sided (floppy) disk

-t=<num> Specifies the number of cylinders given in decimal.

-v=<name> Volume name. This name can be 32 characters maximum. NOTE: If
the name contains blanks, enclose the option and name with quotation
marks. For example, “-v=Name of disk”.

EXAMPLES: $ format /D1 -dsdd -v="database" -t=77

$ format /D1 -sssd -r

Using Professional OS-9 53

 free The OS-9 Utilities

SYNTAX: free [<opts>] {<devname>}

FUNCTION: free displays the number of unused 256-byte sectors on a device available for new files
or for expanding existing files. free also displays the disk’s name, creation date, cluster
size, and largest free block in bytes.

To use the free utility, type free followed by the name of the device to examine. The
device name must be the name of a mass-storage, multi-file device.

Data sectors are allocated in groups called clusters. The number of sectors per cluster
depends on the storage capacity and physical characteristics of the specific device. This
means that small amounts of free space, given in sectors, may not be divisible into the
same number of files.

For example, a given disk system uses 8 sectors per cluster. A free command shows
the disk has 32 sectors free. Because memory is allocated in clusters, a maximum of
four new files could be created even if each had only one sector.

OPTIONS: -? Displays the option, function, and command syntax of free.

-b=<num> Uses the specified buffer size.

EXAMPLE: $ free
“Tazz: /H0 Wren V” created on: Oct 6, 1990
Capacity: 2347860 sectors (256-byte sectors, 8-sector clusters)
1508424 free sectors, largest block 1380120 sectors
386156544 of 601052160 bytes (368.26 of 573.20 Mb) free on media (64%)
353310720 bytes (336.94 Mb) in largest free block

free Display Free Space Remaining on a Mass-Storage Device

54 Using Professional OS-9

The OS-9 Utilities frestore

SYNTAX: frestore [<opts>] [<path>]

FUNCTION: frestore restores a directory structure from multiple volumes of tape or disk media.

Typing frestore by itself on the command line attempts to restore a directory structure
from the device /mt0 to the current directory. Specifying the pathlist of a directory on
the command line causes the files to be restored in the specified directory. fsave cre-
ates the directory structure and an index of the directory structure.

If more than one tape/disk is involved in the fsave backup, each tape/disk is considered
a different volume. The volume count begins at one (1). When you begin a frestore
operation, you must use the last volume of the backup first. The last volume of the
backup contains the index of the entire backup.

frestore first attempts to locate and read in the index of the directory structure from the
source device. The device you are restoring from is the source device. It then begins
an interactive session with you to determine which files and directories in the backup
should be restored to the current directory. The -s option forces frestore to restore all
files/directories of the backup from the source device without the interactive shell.

The -d option allows you to specify a source device other than /mt0.

The -v option causes frestore to identify the name and volume number of the backup
mounted on the source device. It also displays the date the backup was made and the
group.user number of the person who made the backup. This option does not restore
any files. After displaying the appropriate information, frestore terminates. This is
helpful for locating the last volume of the backup if a mix-up has occurred. The -i op-
tion duplicates the -v option and also checks to see if the index is on the volume being
checked.

The -e option echoes each file pathlist as the index is read off the source device.

CAVEATS: frestore cannot restore a file that requires more than four disks.

If the backup index requires more than a single volume, frestore fails with a header
block corrupt error.

NOTE: For a full description of the fsave, frestore, and tape utilities, read the chapter
on making backups. The information in the chapter on making backups includes work-
through examples and backup strategies for disk and tape.

OPTIONS: -? Displays the options, function, and command syntax of frestore.

frestore Directory Backup Restoration

Using Professional OS-9 55

 frestore The OS-9 Utilities

-a Forces access permission for overwriting an existing file. You must
be the owner of the file or a super user (0.n) to use this option.

-b[=]<int> Specifies the buffer size used to restore the files.

-c Checks the validity of files without the interactive shell.

-d[=]<path> Specifies the source device. The default source device is /mt0.

-e Displays the pathlists of all files in the index as the index is read
from the source device.

-f[=]<path> Restores from a file.

-i Displays the backup name, creation date, group.user number of the
owner of the backup, volume number of the disk or tape, and wheth-
er the index is on the volume. This option will not restore any files.
The information is displayed, and frestore is terminated.

-j[=]<int> Sets the minimum system memory request.

-p Suppresses the prompt for the first volume.

-q Overwrites already existing files when used with the -s option.

-s Forces frestore to restore all files from the source device without an
interactive shell.

-t[=]<dirpath> Specifies an alternate location for the temporary index file.

-v Displays the backup name, creation date, group.user number of the
owner of the backup, and volume number of the disk or tape. This
option will not restore any files. The information is displayed, and
frestore is terminated.

-x[=]<int> Pre-extends a temporary file. <int> is specified in kilobytes.

56 Using Professional OS-9

The OS-9 Utilities frestore

EXAMPLES: The following command restores files and directories from the source device /mt0 to
the current directory by way of an interactive shell.

$ frestore

The next command restores files and directories from the source device /d0 to the
current directory using a 32K buffer. As each file is read from the index, the file’s
pathlist is echoed to the terminal.

$ frestore -eb=32 -d=/d0

The next command restores all files/directories found on the source device /mt1 to the
directory BACKUP without using the interactive shell.

$ frestore -d=/mt1 -s BACKUP

The following command displays the backup and the volume number:

$ frestore -v

Backup: DOCUMENTATION
Made: 11/30/90 10:10
By: 0.0
Volume: 0

This command does not restore the backup.

Using Professional OS-9 57

 fsave The OS-9 Utilities

SYNTAX: fsave [<opts>] [<dir>]

FUNCTION: fsave performs an incremental backup of a directory structure to tape(s) or disk(s).

Typing fsave by itself on the command line makes a level 0 backup of the current
directory onto the target device /mt0.

Use the -l option to specify different backup levels. A higher level backup only saves
files changed since the most recent backup with the next lower number. For example,
a level 1 backup saves all files changed since the last level 0 backup.

The backup log file, /h0/sys/backup_dates, is updated each time an fsave is
executed. The backup log keeps track of the name of the backup and the date it was
created. More importantly, it keeps track of the level of the backup. When fsave is
executed, this backup log is examined for the specified level of the current backup and
the previous backups with the same name. Once the backup is finished, a new entry is
entered in the file indicating the date, name, level, etc. of the current backup.

fsave does not accept a device name as a directory. For example, if fsave /ho is
entered, error #216 is returned.

The Fsave Procedure
Upon starting an fsave procedure, fsave first builds the directory structure. You are
then prompted to mount the first volume to use:

fsave: please mount volume.
(press return when mounted).

If a disk is used as the backup medium, fsave verifies the disk and displays the
following information:

verifying disk

Bytes held on this disk: 546816
Total data bytes left: 62431
Number of Disks needed: 1

NOTE: The numbers above are used as an example. If a tape is used as the backup
medium, the backup begins at this point.

As each file is saved to the backup device, its pathlist is echoed to the terminal. If this
is a long backup, use the -e option to turn off the echoing of pathlists.

fsave Incremental Directory Backup

58 Using Professional OS-9

The OS-9 Utilities fsave

If fsave receives an error when trying to backup a file, it displays a message and
continues the fsave operation.

If the backup requires more than one volume, fsave prompts you to mount the next
volume before continuing.

At the end of the backup, fsave prints the following information:

fsave: Saving the index structure

Logical backup name:
Date of backup:
Backup made by:
Data bytes written:
Number of files:
Number of volumes:
Index is on volume:

By specifying one or more directories on the command line, fsave performs recursive
backups for each specified pathlist. You can specify a maximum of 32 directories on
the command line.

Use the -d option to specify an alternative target device. The default device is /mt0.

Use the -m option to specify an alternative backup log file. The default pathlist is
/h0/sys/backup_dates.

WARNING: When using disks for backup purposes, be aware that fsave does not use
an RBF file structure to save the files on the target disk. It creates its own file structure.
This makes the backup disk unusable for purposes other than fsave and frestore with-
out reformatting. Any data on the disk before using fsave is destroyed by the backup.

NOTE: For a full description of the fsave, frestore, and tape utilities, read the chapter
on backups in this manual. The information in the chapter on backups includes work
through examples and backup strategies for disk and tape.

Using Professional OS-9 59

 fsave The OS-9 Utilities

OPTIONS: -? Displays the options, function, and command syntax of fsave.

-b[=]<int> Allocates <int>k buffer size to read files from source disk.

-d[=]<dev> Specifies the target device to store the backup. The default target de-
vice is /mt0.

-e Does not echo the file pathlist as it is saved to the target device.

-f[=]<path> Saves to a file.

-g[=]<int> Specifies a backup of files owned by group number <int> only.

-j[=]<num> Specifies the minimum system memory request.

-l[=]<int> Specifies the level of backup to be performed.

-m[=]<path> Specifies the pathlist of the date backup log file to be used. The de-
fault is /h0/sys/backup_dates.

-p Turns off the mount volume prompt for the first volume.

-s Displays the pathlists of all files needing to be saved and the size of
the entire backup without actually executing the backup procedure.

-t[=]<dirpath> Specifies an alternate location for the temporary index file.

-u[=]<int> Specifies a backup of files owned by user number <int> only.

-v Does not verify the disk volume when mounted.

-x[=]<int> Pre-extends the temporary file. <int> is specified in kilobytes.

EXAMPLES: The following command specifies a level 0 backup of the current directory. It assumes
the device /mt0 is to be used. /h0/SYS/backup_dates is used as the backup log file.

$ fsave

This command specifies a level 2 backup of the current directory. The device /mt1 is
used. /h0/misc/my_dates is used as the backup log file.

$ fsave -l=2 -d=/mt1 -m=/h0/misc/my_dates

The next command specifies a level 0 backup of all files owned by the super user in the
CMDS directory, assuming CMDS is in your current directory. /d2 is the target
device used for this backup. The backup log file used is /h0/sys/backup_dates.
The mount volume prompt is not generated for the first volume, and a 32K buffer is
used to read the files from the CMDS directory.

$ fsave -pb=32 -g=0 -u=0 -d=/d2 CMDS

60 Using Professional OS-9

The OS-9 Utilities grep

SYNTAX: grep [<opts>] [<expression>] {[<path>]}

FUNCTION: grep searches the input pathlist(s) for lines matching <expression>.

To use the grep utility, type grep, the expression to search for, and the pathlist of the
file to search. If no <path> is specified, grep searches standard input.

If grep finds a line that matches <expression>, the line is written to the standard
output with an optional line number of where it is located within the file. When
multiple files are searched, the output has the name of the file preceding the occurrence
of the matched expression.

Expressions
An <expression> is used to specify a set of characters. A string which is a member of
this set is said to match the expression. To facilitate the creation of expressions, some
metacharacters are defined to create complex sets of characters. These special
characters are:

Char Name/Description

. ANY. The period (.) is defined to match any ASCII character except new line.

~ BOL or NEGATE. The tilde (~) is defined to modify a character class as de-
scribed above when located between square brackets ([]). At the beginning of
an entire expression, it requires the expression to compare and match the string
at only the beginning of the line.

The NEGATE character modifies the character class so it matches any ASCII
character not in the given class or newline.

[] CHARACTER CLASS. The square brackets ([]) define a group of characters
which match any single character in the compare string. grep recognizes cer-
tain abbreviations to aid the entry of ranges of strings:

[a-z] Equivalent to the string abcdefghijklmnopqrstuvwxyz

[m-pa-f] Equivalent to the string mnopabcdef

[0-7] Equivalent to the string 01234567

grep Search a File for a Pattern

Using Professional OS-9 61

 grep The OS-9 Utilities

Char Name/Description
* CLOSURE. The asterisk (*) modifies the preceding single character expres-

sion, so it matches zero or more occurrences of the single character. If a choice
is available, the longest such group is chosen.

$ EOL. The dollar sign ($) requires the expression to compare and match the
string only when located at the end of line.

\ ESCAPE. The backslash (\) removes special significance from special
characters. It is followed by a base and a numeric value or a special character.
If no base is specified, the base for the numeric value defaults to hexadecimal.
An explicit base of decimal or hexadecimal can be specified by preceding the
numeric value with a qualifier of d or x, respectively. It also allows entry of
some non-printing characters such as:

\t = Tab character
\n = New-line character
\l = Line feed character
\b = Backspace character
\f = Form feed character

Example Expressions
You can combine any metacharacters and normal characters to create an expression:

Expression Same as
abcd abcd
ab.d abcd, abxd, ab?d, etc.
"ab *d" “abd”, “ab d”, “ab d”, “ab d”, etc.
~abcd abcd (only if very first characters on a line)
abcd$ abcd (only if very last characters on a line)
~abcd$ abcd (only if abcd is the complete line)
[Aa]bcd abcd, Abcd
abcd[0-9a-zA-z] abcd followed by any alphanumeric character
bcd[~a-d] bcd followed by any ASCII char except a, b, c,
 d, or new line

62 Using Professional OS-9

The OS-9 Utilities grep

OPTIONS: -? Displays the options, function, and command syntax of grep.

-c Counts the number of matching lines.

-e=<expr> Searches for <expr>. This is the same as <expression> in the com-
mand line.

-f=<path> Reads the list of expressions from <path>.

-l Prints only the names of the files with matching lines.

-n Prints the relative line number within the file followed by the matched
expression.

-s Silent Mode. Does not display matching lines.

-v Prints all lines except for those that match.

-z Reads the file names from standard input.

-z=<path> Reads the file names from <path>.

NOTES: -l and -n cannot be used at the same time. -n and -s cannot be used at the
same time.

EXAMPLES: To write all lines of myfile that contain occurrences of xyz to standard output, enter:

$ grep xyz myfile

This example searches myfile for expressions input from words, counts the number of
matches, and gives the line number found with each occurrence:

$ grep -f=words myfile -nc

Using Professional OS-9 63

 help The OS-9 Utilities

SYNTAX: help [<utility name>]

FUNCTION: help displays information about a specific utility.

For information about a specific utility, type help and the name of the desired utility.
help displays the function, syntax, and options of the utility. After the information is
displayed, control returns to the shell.

For information about the help utility, type help by itself. help lists the syntax and
function of the help utility.

NOTE: Built-in shell commands do not have help information.

EXAMPLES: $ help build

$ help attr

help On-Line Utility Reference

64 Using Professional OS-9

The OS-9 Utilities ident

SYNTAX: ident [<opts>] {<modname>}

FUNCTION: ident displays module header information and the additional information that follows
the header from OS-9 memory modules. ident also checks for incomplete module
headers.

ident displays the following information in this order:

module size
owner
CRC bytes (with verification)
header parity (with verification)
edition
type/language, and attributes/revision
access permission

For program modules it also includes:

execution offset
data size
stack size
initialized data offset
offset to the data reference lists

ident prints the interpretation of the type/language and attribute/revision bytes at the
bottom of the display.

With the exception of the access permission data, all of the above fields are self-explan-
atory. The access permissions are divided into four sections from right to left:

owner permissions
group permissions
public permissions
reserved for future use

Each of these sections are divided into four fields from right to left:

read attribute
write attribute
execute attribute
reserved for future use

If the attribute is turned on, the first letter of the attribute (r, w, e) is displayed.

ident Print OS-9 Module Identification

Using Professional OS-9 65

 ident The OS-9 Utilities

All reserved fields are displayed as dashes unless the fields are turned on. In that case,
the fields are represented with question marks. In any case, the kernel ignores these
fields as they are reserved for future use.

Owner permissions allow the owner to access the module. Group permissions allow
anyone with the same group number as the owner to access the module. Public permis-
sions allow access to the module regardless of the group.user number. The following
example allows the owner and the group to read and execute the module, but bars access
to the public:

Permission: $55 ---------e-r-e-r

OPTIONS: -? Displays the options, function, and command syntax of ident.

-m Searches for modules in memory.

-q Quick mode. Only one line per module.

-s Silent mode. Quick, but only displays bad CRCs.

-x Searches for modules in the execution directory.

-z Reads the module names from standard input.

-z=<file> Reads the module names from <file>.

EXAMPLE: $ ident -m ident
Header for: ident
Module size: $1562 #5474
Owner: 0.0
Module CRC: $FA8ECA Good CRC
Header parity: $2471 Good parity
Edition: $C #12
Ty/La At/Rev: $101 $8001
Permission: $555 -----e-r-e-r-e-r
Exec. off: $4E #78
Data size: $15EC #5612
Stack size: $C00 #3072
Init. data off: $1482 #4250
Data ref. off: $151A #5402
Prog mod, 68000 obj, Sharable

66 Using Professional OS-9

The OS-9 Utilities iniz

SYNTAX: iniz [<opts>] {<devname>}

FUNCTION: iniz performs an I$Attach system call on each device name passed to it. This initializes
and links the device to the system.

To attach a device to the system, type iniz and the name(s) of the device(s) to be at-
tached to the system. OS-9 searches the system module directory using the name of the
device to see if the device is already attached.

If the device is not already attached, an initialization routine is called to link the device
to the system.

If the device is already attached, it is not re-initialized, but the link count is incremented.

The device names may be listed on the command line, read from standard input or read
from a specified pathlist.

NOTE: Do not iniz non-sharable device modules as they become “busy” forever.

OPTIONS: -? Displays the options, function, and command syntax of iniz.

-z Reads the device names from standard input.

-z=<file> Reads the device names from <file>.

EXAMPLES: $ iniz h0 term Increments the link counts of modules h0 and term.

$ iniz -z Increments the link count of any modules with names read
from standard input.

$ iniz -z=/h0/file Increments the link count of all modules whose names are
supplied in /h0/file.

iniz Attach Devices

Using Professional OS-9 67

 irqs The OS-9 Utilities

SYNTAX: irqs

FUNCTION: irqs displays a list of the system’s IRQ polling table. The IRQ polling table contains a
list of the service routines for each interrupt handler known by the system.

The irqs display header lists the system name, the OS-9 version number, the maximum
number of devices allowed in the device table, and the maximum number of entries in
the IRQ table.

Each line in the irqs display contains seven fields:

vector Exception vector number used by the device. A second number,
the hardware interrupt level, is displayed for auto-vectored inter-
rupts.

prior Software polling priority.

port addr Base address of the interrupt generating hardware. The
operating system does not use this value, but passes it to the
interrupt service routine.

data addr Address of the device driver’s static storage.

irq svc Interrupt service routine’s entry point.

driver Name of the module which contains the interrupt service routine,
usually a device driver.

device Name of the device descriptor. NOTE: If no device name is
displayed, the entries relate to IRQ handlers that support
“anonymous” devices (for example, the clock ticker, DMA
devices associated with other peripherals).

OPTION: -? Displays the function and command syntax of irqs.

irqs Display System’s IRQ Polling Table

68 Using Professional OS-9

The OS-9 Utilities irqs

EXAMPLE: The following example displays the IRQ polling table for a system named Calvin:

$ irqs

Calvin OS-9/68K V2.4 (max devs: 32, max irqs: 32)

 vector prior port addr data addr irq svc driver device
------- ----- --------- --------- --------- --------- ------
 68 0 $fffe1800 $00230b90 $00215084 am7990
 69 5 $fffe4000 $003bd560 $00012ad2 scsi147
 70 5 $fffe4000 $003bd560 $00012ad2 scsi147
 72 0 $fffe1000 $00000000 $0000ccda tk147
 88 5 $fffe3002 $003be3f0 $0000dacc sc8x30 term
 88 5 $fffe3000 $003bd300 $0000dacc sc8x30 t1
 89 5 $fffe3800 $002044a0 $0000dacc sc8x30 t3
 89 5 $fffe3802 $003bbeb0 $0000dacc sc8x30 t2
 90 5 $ffff1001 $003bc560 $0000e6b6 sc68560 t4
 91 5 $ffff1041 $003bc120 $0000e6b6 sc68560 t5
255 5 $ffff8800 $00245a50 $002458e0 n9026 n0

SEE ALSO: F$IRQ system state service request in the OS-9 Technical Manual

Using Professional OS-9 69

 kill The OS-9 Utilities

SYNTAX: kill {<procID>}

FUNCTION: kill is a built-in shell command. It sends a signal to kill the process having the specified
process ID number. This unconditionally terminates the process.

To terminate a process, type kill and the ID number(s) of the process(es) to abort. The
process must have the same user ID as the user executing the command. Use procs to
obtain the process ID numbers.

If a process is waiting for I/O, it cannot die until it completes the current I/O operation.
Therefore, if you kill a process and procs shows it still exists, the process is probably
waiting for the output buffer to be flushed before it can die.

The command kill 0 kills all processes owned by the user.

NOTE: Because kill is a built-in shell command, it does not appear in the CMDS
directory.

EXAMPLES: $ kill 6 7
$ procs
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term
 6 0 0.0 128 4.00k 0 s 0.02 01:12 tsmon <>>>t1
 7 0 0.0 128 4.00k 0 s 0.01 01:12 tsmon <>>>t2
$ kill 4
$ procs
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term

kill Abort a Process

70 Using Professional OS-9

The OS-9 Utilities link

SYNTAX: link [<opts>] {<modname>}

FUNCTION: link is used to link a previously loaded module into memory. To use this utility, type
link and the name(s) of the module(s) to lock into memory. The link count of the mod-
ule specified is incremented by one each time it is linked. Use unlink to unlink the mod-
ule when it is no longer needed.

OPTIONS: -? Displays the options, function, and command syntax of link.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: $ link prog1 prog2 prog3

$ link -z=linkfile Links modules from linkfile.

$ link -z Links modules from standard input.

link Link a Previously Loaded Module into Memory

Using Professional OS-9 71

 list The OS-9 Utilities

SYNTAX: list [<opts>] {<path>}

FUNCTION: list displays text lines from the specified path(s) to standard output.

To use the list utility, type list and the pathlist. list terminates upon reaching the end-
of-file of the last input path. If more than one path is specified, the first path is copied
to standard output, the second path is copied next, etc. Each path is copied to standard
output in the order specified on the command line.

list is most commonly used to examine or print text files.

OPTIONS: -? Displays the options, function, and command syntax of list.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: To redirect the startup listing to the printer and place the entire command in the back-
ground, enter:

$ list /d0/startup >/P&

The following example lists text from files to standard output in the same order as the
command line:

$ list /D1/user5/document /d0/myfile /d0/Bob/text

To list all files in the current data directory, enter:

$ list *

The following example reads the name(s) of the file(s) to list from namefile and lists
their contents.

$ list -z=namefile

list List the Contents of a Text File

72 Using Professional OS-9

The OS-9 Utilities load

SYNTAX: load [<opts>] {<path>}

FUNCTION: load loads one or more modules specified by <path> into memory.

Unless a full pathlist is specified, <path> is relative to your current execution directory.
Consequently, if the module to load is in your execution directory, you only need to
enter its name:

load <file>

If <file> is not in your execution directory and if the shell environment variable PATH
is defined, load searches each directory specified by PATH until <file> is successfully
loaded from a directory. This corresponds to the shell execution search method using
the PATH environment variable. By using the -l option, load prints the pathlist of the
successfully loaded file.

The names of the modules are added to the module directory. If a module is loaded with
the same name as a module already in memory, the module having the highest revision
level is kept.

File Security
The OS-9 file security mechanism enforces certain requirements regarding owner and
access permissions when loading modules into the module directory.

You must have file access permission to the file to be loaded. If the file is loaded from
an execution directory, the execute permission (e) must be set. If the file is loaded from
a directory other than the execution directory and the -d option is specified, only the
read permission (r) is required.

NOTE: Unless the file has public execute and/or public read permission, only the own-
er of the file or a super user can load the file. Use the dir -e command to examine a
file’s owner and access permissions.

You must have module access permission to the file being loaded. This is not to be con-
fused with the file access permission. The module owner and access permissions are
stored in the module header; use ident to examine them. To prevent ordinary users
from loading super user programs, OS-9 enforces the following restriction: if the mod-
ule group ID is zero (super group), then the module can be loaded only if the process’
group ID and the file’s group ID is also zero.

If you are not the owner of a module and not a super user, the public execute and/or read
access permissions must be set. The module access permissions are divided into three

load Load Module(s) from File into Memory

Using Professional OS-9 73

 load The OS-9 Utilities

groups: the owner, the group, and the public. Only the owner of the module or a super
user can set the module access permissions.

OPTIONS: -? Displays the options, function, and command syntax of load.

-d Loads the file from your current data directory, instead of your current
execution directory.

-l Prints the pathlist of the file to be loaded.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLE: $ mdir
 Module Directory at 14:44:35
kernel init p32clk rbf p32hd
h0 p32fd d0 d1 ram
r0 dd mdir

$ load edit

$ mdir
 Module Directory at 14:44:35
kernel init p32clk rbf p32hd
h0 p32fd d0 d1 ram
r0 dd edit mdir

74 Using Professional OS-9

The OS-9 Utilities login

SYNTAX: login [<name>] [,] [<password>]

FUNCTION: login is used in timesharing systems to provide login security. It is automatically called
by the timesharing monitor tsmon, or you can explicitly invoke it after the initial login
to change a terminal’s user.

login requests a user name and password, which is checked against a validation, or
password file. If the information is correct, the user’s system priority, user ID, and
working directories are set up according to information stored in the file. The initial
program specified in the password file is also executed. This initial program is usually
the shell. The date, time, and process number are also displayed.

If you cannot supply a correct user name and password after three attempts, the login
attempt is aborted.

NOTE: If the shell from which you called login is not needed again, you may discard
it using the ex utility to start the login command: ex login.

To log off the system, you must terminate the initial program specified in the password
file. For most programs, including shell, you can do this by typing an end-of-file
character (escape) as the first character on a line.

If the file SYS/motd exists, a successful login displays the contents of motd on your
terminal screen.

login Timesharing System Login

Using Professional OS-9 75

 login The OS-9 Utilities

The Password File
The password file must be present in the SYS directory being used: /h0/SYS,
/d0/SYS, etc. The file contains one or more variable-length text entries; one for each
user name. These entries are not shell command lines. Each entry has seven fields.
Each field is delimited by a comma. The fields are:

¿ User name. This field may be up to 32 characters long. It cannot include
spaces. The user name may not begin with a number, a period, or an
underscore, but these characters may be used elsewhere in the name. If this
field is empty, any name matches.

¡ Password. This field may contain up to 32 characters including spaces. If
this field is omitted, no password is required for the specified user.

¬ Group.User ID number. This field allows 0 to 65535 groups and 0 to
65535 users. 0.n is the super user. The file security system uses this number
as the system-wide user ID to identify all processes initiated by the user.
The system manager should assign a unique ID to each potential user.

Ð Initial process priority: The initial process priority can be from 1 to
65535.

ƒ Initial execution directory pathlist. The initial execution directory is
usually /d0/CMDS. Specifying a period (.) for this field defaults the initial
execution directory to the CMDS file located in the current directory,
usually /h0 or /d0.

Ý Initial data directory pathlist. This is the specific user directory. Speci-
fying a period (.) for this field defaults to the current directory.

ý Initial Program. The name and parameters of the program to initially
execute. This is usually shell.

Sample Password File:
superuser,secret,0.0,255,.,.,shell -p="@howdy"
brian,open sesame,3.7,128,.,/d1/STEVE,shell
sara,jane,3.10,100,/d0/BUSINESS,/d1/LETTERS,wordprocessor
robert,,4.0,128,.,/d1/ROBERT,Basic
mean_joe,midori,12.97,100,Joe,Joe,shell

Using password file entries, login sets the following shell environment variables. Pro-
grams can examine these environment variables to determine various characteristics of
the user’s environment:

Name Description

76 Using Professional OS-9

The OS-9 Utilities login

HOME Initial data directory pathlist

SHELL Name of the initial program executed

USER User name

PATH Login process’ initial execution directory. If a period (.) is specified,
PATH is not set.

NOTE: Environment variables are case sensitive.

To show how login uses the password file to set up environment variables, examine the
previous sample password file. Assume login’s data and execution directories are /h0
and /h0/CMDS, respectively, logging in as mean_joe executes a shell with the data
directory of /h0/Joe and the execution directory of /h0/CMDS/Joe. The environment
variables passed to the shell are set as follows:

HOME=/h0/Joe
SHELL=shell
USER=mean_joe
PATH=/H0/Cmds

OPTION: -? Displays the function and command syntax of login.

Using Professional OS-9 77

 logout The OS-9 Utilities

SYNTAX: logout

FUNCTION: logout terminates the current shell. If the shell to terminate is the login shell, logout
executes the .logout procedure file before terminating the shell.

To terminate the current shell, type logout and a carriage return. This terminates the
current shell in the same manner as an end-of-file character, with one exception. If the
shell to be terminated is the login shell, logout executes the procedure file .logout. The
login shell is the initial shell created by the login utility when you log on the system.
In order for logout to execute the .logout file, .logout must be located in the directory
specified by the HOME environment variable.

EXAMPLE: 3.lac list .logout
procs
wait
date
echo "see you later. . ."
3.lac logout
2.lac logout
1.lac logout
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term
 5 0 0.0 128 4.00k 0 s 0.02 01:12 tsmon <>>>t1
July 7, 1989 11:59 pm
see you later . . .

logout Timesharing System Logout

78 Using Professional OS-9

The OS-9 Utilities makdir

SYNTAX: makdir [<opts>] {<path>}

FUNCTION: makdir creates a new directory file specified by the given pathlist.

To create a new directory, type makdir and the pathlist specifying the new directory.
You must have write permission for the new directory’s parent directory. The new
directory is initialized and does not initially contain files except for the pointers to itself
(.) and its parent directory (.). All access permissions are enabled except single use, or
non-sharable.

It is an OS-9 convention to capitalize directory names to distinguish them from lower
case file names. This is not required; it is just a convention.

OPTIONS: -? Displays the options, function, and command syntax of makdir.

-x Creates the directory in the execution directory.

-z Reads the directory names from standard input.

-z=<file> Reads the directory names from <file>.

EXAMPLES: $ makdir /d1/STEVE/PROJECT

$ makdir DATAFILES

$ makdir ../SAVEFILES

$ makdir RED GREEN BLUE ../PURPLE

makdir Create a Directory File

Using Professional OS-9 79

 make The OS-9 Utilities

SYNTAX: make [<opts>] [<target>] {[<target>]} [<macros>]

FUNCTION: make determines whether a file needs to be updated. It examines the dates of the target
file and the files used to create the target file. If make determines that the file must be
updated, it executes specified commands to re-create the file. make has several built-
in assumptions specifically designed for compiling high-level language programs;
however, you may use make to maintain any files dependent on updated files.

make executes commands from a special type of procedure file called a makefile. The
makefile describes the dependent relationships between files used to create the
<target> file(s). A makefile may describe the commands to create many files. If make
is invoked without a target file on the command line, make attempts to make the first
target file described in the makefile. If one or more target file’s are entered on the
command line, make reads and processes the entire makefile and only attempts to make
the appropriate file(s).

A makefile contains three types of entries:

¿ Dependency Entry: This specifies the relationship of a target file and the
file(s) used to build the target file. The entry has the following syntax:

<target>:[[<file>],<file>]

The list of files following the target file is known as the dependency list.

¡ Command Entry: This specifies the command that you must execute to
update a particular target file, if the target file needs to be updated. make
updates a target file only if it depends on files newer than itself.

If no instructions for update are provided, make attempts to create a com-
mand entry to perform the operation. make recognizes a command entry
by a line beginning with one or more spaces or tabs. Any legal OS-9 com-
mand line is acceptable. You can list more than one command entry for any
dependency. Each command is forked separately unless continued from the
previous command with a backslash (\). Do not intersperse comments with
commands. For example:

<target>:[[<file>],<file>]
<OS-9 command line>
<OS-9 command line>

make Maintain, Update, and Regenerate Groups of Programs

80 Using Professional OS-9

The OS-9 Utilities make

¬ Comment Entry: This consists of any line beginning with an asterisk (*).
All characters following a pound sign (#) are also ignored as comments with
one exception: a digit following a pound sign is considered part of a
command entry. All blank lines are ignored. For example:

<target>:[[<file>],<file>]

* the following command will be executed if the dependent
* files are newer than the target file
<OS-9 command line> # this is also a comment line

You may continue entries on the next line by placing a space followed by a backslash
(\) at the end of each line to continue. If a command line is continued, a space or tab
must be the first character in the continued line. With non-command lines, leading
spaces and tabs are ignored on continuation lines. Entries longer than 256 characters
must be continued on the next line. For example:

FILES = aaa.r bbb.r ccc.r ddd.r eee.r fff.r ggg.r \
 hhh.r iii.r jjj.r

make starts by reading the entire makefile and setting up a table of dependencies ex-
actly as listed in the makefile. When make encounters a name on the left side of a co-
lon, it first checks to see if it has encountered the name before. If it has, make connects
the lists and continues.

After reading the makefile, make determines the target file(s). The target file is the
main file to be made on the list. It then makes a second pass through the dependency
table. During the second pass, make looks for object files with no relocatable files in
their dependency lists and for relocatable files with no source files in their dependency
lists. This facilitates program compilation. If make needs to find any source files or
relocatable files to complete the dependency lists, it looks for them in the specified data
directory, unless a macro is specified.

make does a third pass through the list to get the file dates and compare them. When
make finds a file in a dependency list that is newer than its target file, it executes the
specified command(s). If no command entry is specified, a command is generated
based on the assumptions given in the next section. Because OS-9 only stores the time
down to the closest minute, make remakes a file if its date matches one of its depen-
dents.

When a command is executed, it is echoed to standard output unless the -s, or silent,
option is used or the command line starts with an “at” sign (@). When the -n option is
used, the command is echoed to standard output but is not actually executed.

If your system runs out of memory while executing a command, you can redirect the
output of make into a procedure file and execute the procedure file.

Using Professional OS-9 81

 make The OS-9 Utilities

make normally stops if an error code is returned when a command line is executed.
Errors are ignored if the -i option is used or a command line begins with a hyphen.

Sometimes, it is helpful to see the file dependencies and the dates associated with each
of the files in the list. The -d option turns on the make debugger and gives a complete
listing of the macro definitions, a listing of the files as it checks the dependency list, and
all the file modification dates. If it cannot find a file to examine its date, it assumes a
date of -1/00/00 00:00, indicating the necessity to update the file.

To update the date on a file without remaking it, use the -t option. make merely opens
the file for update and then closes it, thus making the date current.

If you are quite explicit about your makefile dependencies and do not want make to
assume anything, use the -b option to turn off the built-in rules governing implicit file
dependencies.

82 Using Professional OS-9

The OS-9 Utilities make

Implicit Rules, Definitions, and Assumptions
Any time a command line is generated, make assumes the target file is a program to
compile. Therefore, if the target file is not a program to compile, make sure the
command entries are included for each dependency list. make uses the following
definitions and rules when forced to create a command line.

Object Files: Files with no suffixes. An object file is made from a
relocatable file and is linked when it needs to be made.

Relocatable Files: Files appended by the suffix .r. Relocatable files are made
from source files and are assembled or compiled if they need
to be made.

Source Files: Files having one of the following suffixes: .a, .c, .f, or .p.

Default Compiler: cc

Default Assembler: r68

Default Linker: cc

Default Directory
for All Files: current data directory (.)

NOTE: Only use the default linker with programs that use Cstart.

Macro Recognition
make recognizes a macro by the dollar sign ($) character in front of the name. If a
macro name is longer than a single character, the entire name must be surrounded by
parentheses. For example, $R refers to the macro R, $(PFLAGS) refers to the macro
PFLAGS, $(B) and $B refer to the macro B, and $BR is interpreted as the value for
the macro B followed by the character R.

Macros may be placed in the makefile for convenience or on the command line for
flexibility. Everywhere the macro name appears, the expansion is substituted for it.
Macros are allowed in the form of <macro name> = <expansion>.

NOTE: If a macro is defined in your makefile and then redefined on the command line,
the command line definition overrides the definition in the makefile. This feature is
useful for compiling with special options.

Using Professional OS-9 83

 make The OS-9 Utilities

In order for make to be more flexible, you can define special macros in the makefile.
make uses these macros when assumptions must be made in generating command lines
or searching for unspecified files. For example, if no source file is specified for pro-
gram.r, make searches the specified directory, SDIR, or “.”, for program.a (or .c, .p,
.f).

make recognizes the following special macros:

Macro Definition
ODIR=<path> make searches the directory specified by <path> for all files

that have no suffix or relative pathlist. If ODIR is not defined in
the makefile, make searches the current directory by default.

SDIR=<path> make searches the directory specified by <path> for all source
files not specified by a full pathlist. If SDIR is not defined in the
makefile, make searches the current directory by default.

RDIR=<path> make searches the directory specified by <path> for all relo-
catable files not specified by a full pathlist. If RDIR is not de-
fined, make searches the current directory by default.

CFLAGS=<opts> These compiler options are used in any necessary compiler
command lines.

RFLAGS=<opts> These assembler options are used in any necessary assembler
command lines.

LFLAGS=<opts> These linker options are used in any necessary linker command
lines.

CC=<comp> make uses this compiler when generating command lines. The
default compiler is cc.

RC=<asm> make uses this assembler when generating command lines. The
default assembler is r68.

LC=<link> make uses this linker when generating command lines. The de-
fault linker is cc.

84 Using Professional OS-9

The OS-9 Utilities make

Some reserved macros are expanded when a command line associated with a particular
file dependency is forked. These macros may only be used on a command line. They
are useful when you need to be explicit about a command line but have a target program
with several dependencies.

In practice, these reserved macros are wildcards with the following meanings:

Macro Definition
$@ Expands to the name of the file made by the command.

$* Expands to the prefix of the file made.

$? Expands to the list of files found to be newer than the target on a given
dependency line.

Make Generated Command Lines
make is capable of generating three types of command lines:

¿ Compiler Command Lines: These are generated if a source file with a suffix
of .c, .f, or .p needs to be recompiled. The compiler command line
generated by make has the following syntax:

$(CC) $(CFLAGS) -r=$(RDIR) $(SDIR)/<file>[.c, .f, or .p]

¡ Assembler Command Lines: These are generated if an assembly language
source file needs to be re-assembled. The assembler command line gener-
ated by make has the following syntax:

$(RC) $(RFLAGS) $(SDIR)/<file>.a -o=$(RDIR)/<file>.r

¬ Linker Command Lines: These are generated if an object file needs to be
relinked in order to re-make the program module. The linker command line
generated by make has the following syntax:

$(LC) $(LFLAGS) $(RDIR)/<file>.r -f=$(ODIR)/<file>

WARNING: When make is generating a command line for the linker, it
looks at its list and uses the first relocatable file it finds, but only the first
one. For example:

prog: x.r y.r z.r

would generate

cc x.r, not cc x.r y.r z.r or cc prog.r

Using Professional OS-9 85

 make The OS-9 Utilities

OPTIONS: -? Displays the options, function, and command syntax of make.

-b Does not use built-in rules.

-bo Does not use built-in rules for object files.

-d Debug Mode. Prints the dates of the files in the makefile.

-dd Double debug mode, very verbose.

-f- Reads the makefile from standard input.

-f=<path> Specifies <path> as the makefile. If <path> is specified as a hyphen (-
), make commands are read from standard input.

-i Ignores errors.

-n Does not execute commands, but does display them.

-s Silent Mode. Executes commands without echo.

-t Updates the dates without executing commands.

-u Does the make regardless of the dates on files.

-x Uses the cross-compiler/assembler.

-z Reads a list of make targets from standard input.

-z=<path> Reads a list of make targets from <path>.

Options may be included on the command line when running make, or they may be
included in the makefile for convenience.

CAVEAT: The make language is highly specific. Therefore, use caution when using
dummy files with names like print.

CAVEAT: make is always case-dependent with respect to directory names and file
names.

Unless a file is specifically an object file or the -b option is used to turn off the implicit
rules, use a suffix for your dummy files. For example, use print.file and xxx.h for your
header files.

86 Using Professional OS-9

The OS-9 Utilities mdir

SYNTAX: mdir [<opts>] [<modname>]

FUNCTION: mdir displays the present module names in the system module directory. The system
module directory contains all modules currently resident in memory. By specifying in-
dividual module names, only specified modules are displayed if resident in memory.

If you use the -e option, an extended listing of the physical address, size, owner,
revision level, user count, and the type of each module is displayed.

The module type is listed using the following mnemonics:

Mnemonic Type of Module
Prog Program Module
Subr Subroutine Module
Mult Multi Module
Data Data Module
Trap Trap Handler Module
Sys System Module
FMan File Manager
Driv Device Driver Module
Desc Device Descriptor Module

NOTE: User-defined modules not corresponding with this list are displayed by their
number.

By using the -a option, the language of each module is displayed instead of the type in
an extended listing. The language field uses the following mnemonics:

Mnemonic Module Language
Obj 68000 Machine Code
Bas Basic09 I Code
Pasc Pascal I Code
C C I Code
Cobl Cobol I Code
Fort Fortran I Code

NOTE: If the language field is inappropriate for the module, a blank field is displayed.
For example, d0, t1, or init.

mdir Display Module Directory

Using Professional OS-9 87

 mdir The OS-9 Utilities

WARNING: Not all modules listed by mdir are executable as processes; always check
the module type code to make sure it is executable before executing an unfamiliar
module.

OPTIONS: -? Displays the options, function, and command syntax of mdir.

-a Displays the language field instead of the type field in an extended
listing.

-e Displays the extended module directory.

-t=<type> Displays only the modules of the specified type.

-u Displays an unformatted listing used for piping the output etc.

EXAMPLES: To save space, the following examples are fairly incomplete. Module directories are
generally much larger.

$ mdir
 Module Directory at 15:32:38

kernel syscache ssm init tk147
rtclock rbf

$ mdir -e
 Addr Size Owner Perm Type Revs Ed # Lnk Module name
-------- -------- ----------- ---- ---- ---- ----- ----- --------------
00006f00 27562 0.0 0555 Sys a000 83 2 kernel
0000daaa 368 0.0 0555 Sys a000 10 1 syscache
0000dc1a 1682 0.0 0555 Sys a000 29 1 ssm
0000e2ac 622 0.0 0555 Sys 8000 20 0 init
0000e51a 322 0.0 0555 Sys a000 7 1 tk147
0000e65c 494 0.0 0555 Subr a000 8 0 rtclock
0000e84a 8952 0.0 0555 Fman e000 79 26 rbf

$ mdir -ea
 Addr Size Owner Perm Lang Revs Ed # Lnk Module name
-------- -------- ----------- ---- ---- ---- ----- ----- --------------
00006f00 27562 0.0 0555 Obj a000 83 2 kernel
0000daaa 368 0.0 0555 Obj a000 10 1 syscache
0000dc1a 1682 0.0 0555 Obj a000 29 1 ssm
0000e2ac 622 0.0 0555 8000 20 0 init
0000e51a 322 0.0 0555 Obj a000 7 1 tk147
0000e65c 494 0.0 0555 Obj a000 8 0 rtclock
0000e84a 8952 0.0 0555 Obj e000 79 26 rbf

88 Using Professional OS-9

The OS-9 Utilities merge

SYNTAX: merge [<opts>] {<path>}

FUNCTION: merge copies multiple input files specified by <path> to standard output. merge is
commonly used to combine several files into a single output file.

Data is copied in the order the pathlists are specified on the command line. merge does
no output line editing such as automatic line feed. The standard output is generally re-
directed to a file or device.

OPTIONS: -? Displays the options, function, and command syntax of merge.

-b=<num> Allocates a <num>k buffer size for use by merge. The default memory
size is 4K.

-x Searches the current execution directory for files to be merged.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: $ merge compile.list asm.list >/p

$ merge file1 file2 file3 file4 >combined.file -b=32k

$ merge -x load link copy >Utils1

$ merge -z=/h0/PROGS/file1 >merged_files

merge Copy and Combine Files to Standard Output

Using Professional OS-9 89

 mfree The OS-9 Utilities

SYNTAX: mfree [<opts>]

FUNCTION: mfree displays a list of areas in memory not presently in use and available for
assignment. The address and size of each free memory block are displayed.

OPTIONS: -? Displays the option, function, and command syntax of mfree.

-e Displays an extended free memory list.

EXAMPLES: $ mfree
Current total free RAM: 1392.00 K-bytes

mfree -e
Minimum allocation size: 4.00 K-bytes
Number of memory segments: 25
Total RAM at startup: 4095.00 K-bytes
Current total free RAM: 1392.00 K-bytes

Free memory map:

 Segment Address Size of Segment
 ----------------- --------------------------
 $55000 $7000 28.00 K-bytes
 $6A000 $B000 44.00 K-bytes
 $80000 $8A000 552.00 K-bytes
 $10E000 $1A000 104.00 K-bytes
 $12F000 $1E000 120.00 K-bytes
 $151000 $60000 384.00 K-bytes
 $1B5000 $2000 8.00 K-bytes
 $1B8000 $E000 56.00 K-bytes
 $1DE000 $1000 4.00 K-bytes
 $208000 $4000 16.00 K-bytes
 $21C000 $5000 20.00 K-bytes
 $245000 $1000 4.00 K-bytes
 $249000 $1000 4.00 K-bytes

mfree Display Free System RAM

90 Using Professional OS-9

The OS-9 Utilities moded

SYNTAX: moded [<opts>] [<path>]

FUNCTION: moded is used to edit individual fields of certain types of OS-9 modules. Currently,
you can use moded to change the Init module and any OS-9 device descriptor module.
moded can edit modules which exist in their own files and modules which exist among
other modules in a single file such as a bootstrap file. moded updates the module’s
CRC and header parity if changes are made.

Regardless of how you invoke moded, you always enter the editor’s command mode.
This is designated by the moded: prompt.

If no parameters are specified on the moded command line, no current module is
loaded in memory.

If a file is specified on the command line, it is assumed to contain a module of the same
name. This module is loaded into the editor’s buffer and becomes the current module.

If the -f option is used, the specified file is loaded into the editor’s memory. If a module
of the same name exists in the file, it becomes the current module. If no such module
exists, there is no current module.

If the -f option is used and a module name is specified on the command line, the
specified module becomes the current module.

The following commands may be executed from command mode:

Command Description
e(dit) Edits the current module.
f(ile) Opens a file of modules.
l(ist) Lists the contents of the current module.
m(odule) Finds a module in a file.
w(rite) Updates the module CRC and writes to the file.
q(uit) Returns to the shell.
$ Calls the OS-9 shell.
? Prints this help message.

Once moded is invoked, it attempts to read the moded.fields file. This file contains
module field information for each type of module to edit. Without this file, moded
cannot function.

moded Edit OS-9 Modules

Using Professional OS-9 91

 moded The OS-9 Utilities

moded searches for moded.fields in the following directories in this order:

• Search device /dd first.

• Search the default system device, as specified in the Init module
(M$SysDev). If the Init module cannot be linked to, the SYS directory is
searched for on the current device.

If this file cannot be found, an error is returned.

Selecting the Current Module
If you do not specify a module or file on the command line, you may open a module or
file from command mode using the e or f commands, respectively. The e command
prompts for a file name and a module name if different from the file name. This module
then becomes the current module.

The f command prompts for the name of a file containing one or more modules. If a
module in the file has the same name as the file, it becomes the current module by
default. Use the m command to change the current module.

Edit Mode
To edit the current module, use the e command. If there is no current module, the editor
prompts for the module name to edit. The editor prints the name of a field, its current
value, and prompts for a new value. At this point, you can enter any of the following
edit commands:

Command Description
<expr> A new value for the field.
- Re-displays the last field.
. Leaves the edit mode.
? Prints the edit mode commands.
?? Prints a description of the current field.
<cr> Leaves the current value unchanged.

If the definition of any field is unfamiliar, use the ?? command for a short description
of the current field.

Once you have made all necessary changes to the module, exit edit mode by reaching
the end of the module or by typing a period. At this point, the changes made to the
module exist only in memory. To write the changes to the actual file, use the w
command. This also updates the module header parity and CRC.

92 Using Professional OS-9

The OS-9 Utilities moded

Listing Module Fields
To examine the field values of the current module, use the l command. This displays a
formatted list of the field names and their values.

The Moded.fields File

The moded.fields file consists of descriptions of specific types of modules. Each
module description consists of three parts: the module type, the field descriptor, and the
description lines. Comments may be interspersed throughout the file by preceding the
comment line with an asterisk. For example:

* this is a comment line
* it may appear anywhere in the moded.fields file

¿ The Module Type: This is a single line consisting of the module type as specified
in M$Type in the module header and the device type as specified in PD_DTP in
the device descriptor. Both values are specified as decimals and are separated from
each other by a comma. The module type line is the only line which begins with a
pound sign (#). The following example line describes an RBF device descriptor
module:

#15,1

Two module type values are accepted:

Value Description
12 System Module (Init module only)
15 Device Descriptor Module

The device type value is only used when a device descriptor module is being
described. The following device type values are accepted:

Value Description
0 SCF
1 RBF
2 PIPE
3 SBF
4 NET
6 UCM
11 GFM

Using Professional OS-9 93

 moded The OS-9 Utilities

¡ The Field Descriptor: This consists of two lines. The first is a textual
description of the module field; the baud rate, parity. and descriptor name. moded
uses this description as a prompt to change this field’s value.

The second line has the following format:

<type>,<offset>,<base>,<value>[,<name>]

<type> specifies the field size in bytes. This is a decimal value. The following
values are accepted:

1 byte
2 word
3 3 byte value
4 long word
5 long word offset to a string
6 word offset to a string

<offset> specifies the offset of the field from the beginning of the module. This is
a hexadecimal value. NOTE: For device-specific fields (see <name> below), this
offset is the offset of the field within the DevCon section of the descriptor (and not
the module start).

<base> specifies the numeric base in which the field value is displayed in moded.
The following bases are supported:

0 ASCII
8 Octal
10 Decimal
16 Hexadecimal

<value> specifies the default value of the field. This is currently unused; set it to
zero.

<name> specifies the driver name for this and each field description that follows
until a new <name> is specified or a module type line is encountered. This field is
optional. For example, <name> allows descriptors with DevCon sections specific
to certain drivers to be edited.

The following lines describe a “descriptor name” field:

descriptor name
5,c,0,0

The field consists of a long-word offset to a string. It is offset 12 bytes from the
beginning of the module. The display base is in ASCII.

94 Using Professional OS-9

The OS-9 Utilities moded

¬ Description Lines: After the Field Descriptor lines, you can use any number of
lines to describe the field. This description is displayed when the edit mode com-
mand, ??, is used. Each description line must begin with an exclamation point (!)
to differentiate it from a Field Descriptor. These lines are optional, but they are use-
ful when editing uncertain module fields. The following lines might be used to de-
scribe the example used for the Field Descriptor:

! This field contains the name that the descriptor
! will be known by when in memory.

Example Module Description in Moded.fields:
The following example shows how you could set up a module description:

**
*the following section describes an RBF device descriptor *
**
#15,1
descriptor name
5,c,0,0
! This field contains the name that the descriptor will
! be known by when in memory.
port address
4,30,16,0
! This is the absolute physical address of the hardware
! controller.
irq vector
1,34,10,0
! This is the irq vector that the device will assert.
! Auto-vectored interrupt devices will use vectors 25-31.
! Vectored interrupt devices will use vectors 64-255.

The Provided Moded.fields File:
The provided moded.fields file comes with module descriptions for standard RBF,
SBF, SCF, PIPE, NETWORK, UCM, and GFM module descriptors. It also includes a
description for the Init module.

OPTIONS: -? Displays the help message.

-d=<path> Use <path> for the field descriptions (moded.fields).

-e=<path> Use <path> for the error message file.

-f=<path> Specifies a file consisting of one or more modules to be loaded into
the moded buffer.

Using Professional OS-9 95

 os9gen The OS-9 Utilities

SYNTAX: os9gen [<opts>] <devname> {<path>}

FUNCTION: os9gen creates and links the OS9Boot file required on any disk from which OS-9 is
to be bootstrapped. You can use os9gen to make a copy of an existing boot file, add
modules to an existing boot file, or create an entirely new boot file for a different sys-
tem. These are just a few examples.

To use the os9gen utility, type os9gen and the name of the device on which the
OS9Boot file is to be installed. os9gen creates a working file called TempBoot on
the device specified. Each file specified on the command line is opened and copied to
the TempBoot file.

NOTE: Only super users (0.n) may use this utility. os9gen can also only be used on
format-enabled devices.

After all input files are copied to TempBoot, any existing OS9Boot file on the target
device is renamed OldBoot. If an OldBoot file is already present, it is deleted before
OS9Boot is renamed.

TempBoot is then renamed OS9Boot. Its starting address and size are linked in the
disk’s Identification Sector (LSN 0) for use by the OS-9 bootstrap firmware.

If your boot file is non-contiguous or larger than 64K, use the -e option. NOTE: Your
bootstrap ROMs must support this feature. If they do not, you should not use this
option.

If the -z option is used, os9gen first uses the files specified on the command line and
then the file names from its standard input, or from the specified pathlist, one pathlist
per line. If the names are entered manually, no prompts are given and the end-of-file
key (usually <escape>) or a blank line is entered after the line containing the last path-
list.

To determine what modules are necessary for your boot file, use the ident utility with
the OS9Boot file that came with your system.

The -q option updates information in the disk’s Identification Sector by directing it to
point to a file already contained in the root directory of the specified device.

The -q option is useful when restoring the OldBoot file as the valid boot on the disk.
os9gen renames the specified file to be OS9Boot and saves the current boot as
described previously.

os9gen Build and Link a Bootstrap File

96 Using Professional OS-9

The OS-9 Utilities os9gen

The -r option removes the pointer to the boot file but does not delete the file. This is
useful if you delete the bootfile from your disk (using the del command). Deleting the
bootfile from the file structure does not remove the bootfile pointers from the disk’s
Identification Sector. It can also be used to make a disk non-bootable without deleting
the actual bootfile.

OPTIONS: -? Displays the options, function, and command syntax of os9gen.

-b=<num> Assigns <num>k of memory for os9gen. Default memory size is 4K.

-e Extended Boot. Allows you to use large (greater than 64K) and/or non-
contiguous files. NOTE: Bootstrap ROMs must support this feature.

-q=<file> Quick Boot. Sets sector zero pointing to <file>.

-r Removes the pointer to the boot file. This file is not deleted.

-x Searches the execution directory for pathlists.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: This command manually installs a boot file on device /d1 which is an exact copy of the
OS9Boot file on device /d0.

$ os9gen /d1 /d0/os9boot

Using Professional OS-9 97

 os9gen The OS-9 Utilities

The following three methods manually install a boot file on device /d1. The boot file
on /d1 is a copy of the OS9Boot file on device /d0 with the addition of modules stored
in the files /d0/tape.driver and /d2/video.driver:

Method 1:
$ os9gen /d1 /d0/os9boot /d0/tape.driver /d2/video.driver

Method 2:
$ os9gen /d1 /d0/os9boot -z
/d0/tape.driver
/d2/video.driver
[ESCAPE]

Method 3:
$ os9gen /d1 -z
/d0/os9boot
/d0/tape.driver
/d2/video.driver
[ESCAPE]

You can automatically install a boot file by building a bootlist file and using the -z
option to either redirect os9gen standard input or use the specified file as input:

$ build /d0/bootlist Create file bootlist
? /d0/os9boot Enter first file name
? /d0/tape.driver Enter second file name
? /d2/video.driver Enter third file name
? * V1.2 of video driver Comment line
? [RETURN] Terminate build
$ os9gen /d1 -z </d0/bootlist Redirects standard input
$ os9gen /d1 -z=/d0/bootlist Reads input from pathlist

NOTE: os9gen treats any input line preceded by an asterisk (*) as a comment.

The following command makes the OldBoot file the current boot and saves the current
OS9BOOT file as OldBoot:

$ os9gen /d1 -q=oldboot

98 Using Professional OS-9

The OS-9 Utilities pd

SYNTAX: pd [<opts>]

FUNCTION: pd displays a pathlist showing the path from the root directory to your current data
directory. Programs can use pd to discover the actual physical location of files or by
users to find their whereabouts in the file system. pd -x displays the pathlist from the
root directory to the current execution directory.

OPTIONS: -? Displays the option, function, and command syntax of pd.

-x Displays the path to the current execution directory.

EXAMPLES: $ chd /D1/STEVE/TEXTFILES/MANUALS
$ pd
/d1/STEVE/TEXTFILES/MANUALS

$ chd ..
$ pd
/d1/STEVE/TEXTFILES

$ chd ..
$ pd
/d1/STEVE

$ pd -x
/d0/CMDS

pd Print the Working Directory

Using Professional OS-9 99

 pr The OS-9 Utilities

SYNTAX: pr [<opts>] {<path>}

FUNCTION: pr produces a formatted listing of one or more files to the standard output.

To use the pr utility, type pr and the pathlist(s) of the files to list. The listing is sepa-
rated into pages. Each page has the page number, the name of the listing, and the date
and time printed at the top.

pr can produce multi-column output. When printing multiple output columns with the
-m option, if an output line exceeds the column width, the output line is truncated. pr
can also print files simultaneously, one per column.

If no files are specified on the command line and the -z option is used, standard input
is assumed to be a list of file names, one file name per input line, to print out. If no files
are specified on the command line and the -z option is not used, standard input is
displayed on standard output.

Files and options may be intermixed.

A typical page of output consists of 66 lines of output. Consequently, pr uses the
following default parameters: 61 lines of output with 5 blank lines as a trailer. The 61
lines of output contain one line for the title, 5 blank lines for a header, and 55 lines of
text. The trailer can be reduced or eliminated by expanding the number of lines per
page.

OPTIONS: An equal sign (=) in an option specification is optional.

-? Displays the options, function, and command syntax of pr.

-c=<char> Uses <char> as the specified column separator. A <space> is the de-
fault column separator.

-d Specifies the actual page depth.

-f Pads the page using a series of \n (new line), instead of a \f (form feed).

-h=<num> Sets the number of blank lines after title line. The default is 5.

-k=<num> Sets the <num> columns that the output file will be listed in for multi-
column output.

-l=<num> Sets the left margin to <num>. The default is 0.

-m Prints files simultaneously, one file per column. If three files are given
on the command line, each file is printed in its own column on the page.

-n=<num> Specifies the line numbering increment: <num>. The default is 1.

pr Print Files

100 Using Professional OS-9

The OS-9 Utilities pr

-o Truncates lines longer than the right margin. By default, long lines are
wrapped around to the next line.

-p=<num> Specifies the number of lines per page: <num>. The default is 61.

-r=<num> Sets the right margin to <num>. The default is 79.

-t Does not print title.

-u=<title> Uses specified title instead of file name. <title> may not be longer than
48 characters.

-x=<num> Sets the starting page number to <num>. The default is 1.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: The following example prints file1 using the default values of 55 lines of text per page,
one line for the title, and 5 lines each for the header and trailer:

$ pr file1 >/p1

The following example prints file1 with no title. This uses 56 lines of text per page:

$ pr file1 -t >/p1

The following example prints file1 using 90 lines per page. Pagination begins with
page 10:

$ pr file1 -x=10 p=90 >/p1

To display a numbered, unformatted listing of the data directory, type:

$ dir -u ! pr -n

Using Professional OS-9 101

 printenv The OS-9 Utilities

SYNTAX: printenv

FUNCTION: printenv prints any defined environment variables to standard output.

EXAMPLE: $ printenv

NAME=andy
TERM=abm85
LIST=/p1
As_long_as_you_want=long_value

SEE ALSO: setenv and unsetenv utility descriptions and the discussion of the shell environment
in the chapter on the shell

printenv Print Environment Variables

102 Using Professional OS-9

The OS-9 Utilities procs

SYNTAX: procs [<opts>]

FUNCTION: procs displays a list of processes running on the system owned by the user invoking the
routine. Processes can switch states rapidly, usually many times per second. Conse-
quently, the display is a snapshot taken at the instant the command is executed and
shows only those processes running at that exact moment.

procs with no options displays ten pieces of information for each process:

Id Process ID

PId Parent process ID

Grp.usr Owner of the process (group and user)

Prior Initial priority of the process

MemSiz Amount of memory the process is using

Sig Number of any pending signals for the process

S Process status:

w Waiting
s Sleeping
a Active
* Currently executing

CPU Time Amount of CPU time the process has used

Age Elapsed time since the process started

Module & I/O Process name and standard I/O paths:

< Standard input
> Standard output
>> Standard error output

If several of the paths point to the same pathlist, the
identifiers for the paths are merged.

procs Display Processes

Using Professional OS-9 103

 procs The OS-9 Utilities

procs -a displays nine pieces of information: the process ID, the parent process ID, the
process name, and standard I/O paths and six new pieces of information:

Aging Age of the process based on the initial priority and how long it
has waited for processing

F$calls Number of service request calls made

I$calls Number of I/O requests made

Last Last system call made

Read Number of bytes read

Written Number of bytes written

The -b option displays both sets of information. The -e option displays information for
all processes in the system. Detailed explanation of all information displayed by procs
is available in the OS-9 Technical Manual.

OPTIONS: -? Displays the options, function, and command syntax of procs.

-a Displays alternate information.

-b Displays regular and alternate procs information.

-e Displays all processes of all users.

EXAMPLES: $ procs
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term
 6 0 0.0 128 4.00k 0 s 0.02 01:12 tsmon <>>>t1
 7 0 0.0 128 4.00k 0 s 0.01 01:12 tsmon <>>>t2

$ procs -a
Id PId Aging F$calls I$calls Last Read Written Module & I/O
 2 1 129 5 1 Wait 0 0 sysgo <>>>term
 3 2 132 116 127 Wait 282 129 shell <>>>term
 4 3 11 1 0 TLink 0 0 xhog <>>>term
 5 3 128 7 4 GPrDsc 0 0 procs <>>>term
 6 0 130 2 7 ReadLn 0 0 tsmon <>>>t1
 7 0 129 2 7 ReadLn 0 0 tsmon <>>>t2

104 Using Professional OS-9

The OS-9 Utilities profile

SYNTAX: profile <path>

FUNCTION: profile causes the current shell to read its input from the named file and then return to
its original input source which is usually the keyboard.

The file specified in <path> may contain any utility or shell commands, including
those to set or unset environment variables or to change directories. These changes
remain in effect after the command executes. This is in contrast to calling a normal
procedure file by name only, which would then be executed by a child shell. This
would not affect the environment of the calling shell.

You can nest profile commands. That is, the file itself may contain a profile command
for another file. When the latter profile command is completed, the first one will
resume.

A particularly useful application for profile files is within the .login and .logout files
of a system’s users. For example, if each user includes the following line in their .login
file, system-wide commands (common environments, news bulletins, etc.) can be
included in the file /dd/SYS/login_sys:

profile /dd/SYS/login_sys

A similar technique can be used for .logout files.

profile Read Commands from File and Return

Using Professional OS-9 105

 qsort The OS-9 Utilities

SYNTAX: qsort [<opts>] {<path>}

FUNCTION: qsort is a quick sort algorithm that sorts any number of lines up to the maximum
capacity of memory.

To use qsort, type qsort and the pathlist(s) of the file(s) to sort. qsort sorts the file(s)
by a user-specified field or field one by default. The field separation character defaults
to a space if no separation character is specified. If no file names are given on the
command line, standard input is assumed.

CAVEAT: Multiple separation characters in a row are counted as a single field
separator. For example, if a comma is specified as the field separation character, three
commas in a row (,,,) signify only one field separator. If the intent is to create two null
fields, a space must be inserted between each comma (, , ,).

OPTIONS: -? Displays the options, function, and command syntax of qsort.

-c=<char> Specifies the field separation character. If an asterisk (*), question mark
(?), or comma (,) are used as field separation characters, the option and
the character must be enclosed by quotation marks.

-f=<num> Specifies the sort field. NOTE: Only one -f field is allowed on a com-
mand line.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

EXAMPLES: $ qsort file1 file2 file3 Sorts files and displays.

$ dir -ue ! qsort -f=7 Sorts extended directory listing by entry name, field
7.

$ qsort file -f=2 "-c=*" Sorts file by field 2 using an asterisk (*) as the field
separation character.

$ qsort file -f=2 "-c=," Sorts file by field 2 using a comma (,) as the field
separation character.

$ qsort -z Reads file names from standard input.

qsort In-Memory Quick Sort

106 Using Professional OS-9

The OS-9 Utilities rename

SYNTAX: rename [<opts>] <path> <new name>

FUNCTION: rename assigns a new name to the mass storage file specified in the pathlist.

To rename a file, type rename, followed by the name of the file to rename, followed
by the new name. You must have write permission for the file to change its name. You
cannot use the names “.” or “..” for <path>.

OPTIONS: -? Displays the option, function, and command syntax of rename.

-x Indicates that <path> starts at the current execution directory. You must have
execute permission for the specified file.

EXAMPLES: $ dir
 Directory of . 16:22:53
blue myfile
$ rename blue purple
$ dir
 Directory of . 16:23:22
myfile purple

$ rename /h0/HARRY/test1 test2

$ rename -x screenclear clearscreen

rename Change File Name

Using Professional OS-9 107

 romsplit The OS-9 Utilities

SYNTAX: romsplit {<opts>} {<path>}

FUNCTION: romsplit splits the input file specified by <path> into two or four files.

romsplit converts a ROM object image into an 8-bit wide file. This is useful when a
PROM programmer cannot burn more than one PROM at a time and the system has the
ROMs addressed as 16-bit or 32-bit wide memory.

If the -q option is not specified, romsplit copies the even bytes of data to a new file with
the same name with a .0 extension. The odd bytes are copied to a new file with the same
name with a .1 extension.

If the -q option is specified, the following copying scheme is used:

Byte Number Destination File
0, 4, 8, 12 etc. <path>.0
1, 5, 9, 13 etc. <path>.1
2, 6, 10, 14 etc. <path>.2
3, 7, 11, 15 etc. <path>.3

OPTIONS: -? Displays the options, function, and command syntax of romsplit.

-q Splits the input file into four files.

-x Reads the input file from execution directory.

romsplit Split File

108 Using Professional OS-9

The OS-9 Utilities save

SYNTAX: save [<opts>] {<modname>}

FUNCTION: save copies the specified module(s) from memory into your current data directory.
The file(s) created in your directory have the same name(s) as the specified module(s).

To save a specified module, type save, followed by the name(s) of the module(s) to
save. <modname> must exist in the module directory when saved. The new file is
given access permissions for all modes except public write.

If you specify more than one module, each module is stored in a separate file, unless
you use the -f option. In that case, all modules listed are saved in the specified file.

NOTE: To save a module, the module must have read access permission for either
your group or user ID.

NOTE: save uses the current execution directory as the default directory. Executable
modules should generally be saved in the default execution directory.

OPTIONS: -? Displays the options, function, and command syntax of save.

-f=<path> Saves all specified modules to <path>.

-r Rewrites existing files.

-x Changes the default directory to the current execution directory.

-z Reads the module names from standard input.

-z=<file> Reads the module names from <file>.

EXAMPLES: $ save -x dir copy

$ save -f=/d1/math_pack add sub mul div

save Save Memory Module(s) to a File

Using Professional OS-9 109

 set The OS-9 Utilities

SYNTAX: set [<opts>]

FUNCTION: set changes shell options for the individual shell in which they are declared.

To change the options for your current shell, enter set and the desired shell options.
This command is the equivalent of typing the options directly after the shell prompt on
the command line. This is a preferred method of changing shell parameters within pro-
cedure files because of its clarity.

The hyphen that usually proceeds declared options is unnecessary when using the set
command.

The options specified by set change the shell parameters only in the shell in which they
are declared. All descendant shells have the default parameters unless changed within
the new shell.

NOTE: set is a built-in shell command. Therefore, it is not in the CMDS directory.

OPTIONS: ? Displays the options, function, and command syntax of set.

e=<file> Prints error messages from <file>. If no file is specified, the default file
used is /dd/sys/errmsg. Without the -e option, shell prints only error
numbers with no message description.

ne Prints no error messages. This is the default.

l Must log off system with logout.

nl Must log off system with <esc>.

p Displays prompt. The default prompt is $.

np Does not display prompt.

p=<string> Sets current shell prompt equal to <string>.

t Echoes input lines.

nt Does not echo input lines. This is the default.

v Verbose mode. Displays a message for each directory searched when
executing a command.

nv Turns off verbose mode.

set Set Shell Options

110 Using Professional OS-9

The OS-9 Utilities set

x Aborts process upon error. Default.

nx Does not abort on error.

EXAMPLES: All commands on the same line have the same effect:

$ set x $ set -x $ -x

$ set xp="JOE" $ set -xp="JOE" $ -xp="JOE"

Using Professional OS-9 111

 setenv The OS-9 Utilities

SYNTAX: setenv <eparam> <evalue>

FUNCTION: setenv sets environment variables within a shell for use by the individual shell’s child
processes.

<eparam> and <evalue> are strings stored in the environment list by shell. These
variables are known to the shell in which they are defined and are passed on to
descendent processes from that shell.

NOTE: setenv should not be confused with the shell’s set command. It has a com-
pletely different function. setenv is a built-in shell command. Therefore, it is not in
the CMDS directory.

EXAMPLES: $ setenv PATH ../h0/cmds:/d0/cmds:/dd/cmds

$ setenv TERM abm85

$ setenv _sh 0

$ setenv As_long_as_you_want long_value

setenv Set Environment Variables

112 Using Professional OS-9

The OS-9 Utilities setime

SYNTAX: setime [<opts>] [y m d h m s [am/pm]]

FUNCTION: setime sets the system date and time. Once set, it activates the system interrupt clock.

To set the system date and time, type setime, and enter the year, month, day, hour,
minute, second, and am or pm as parameters on the command line.

setime does not require field delimiters, but allows you to use the following delimiters
between the year, month, day, etc.:

colon (:), semicolon (;), slash (/), comma (,), or space ()

If semicolons are used as field delimiters, the date and time string must be enclosed by
quotes. For example:

$ setime "91;1;15;1;25;30;pm"

If no parameters are given, setime issues the prompt:

$ setime
yy/mm/dd hh:mm:ss [am/pm]
Time:

When no am/pm field is specified, OS-9 system time uses the 24 hour clock. For
example, 15:20 is 3:20 pm. Midnight is specified as 00:00. Noon is specified as 12:00.
Using the am/pm field allows you to use the 12 hour clock. If a conflict exists between
the time and the am/pm field (such as 15:20 pm) the system ignores the am/pm
designation.

Entering setime echoes the date and time when set.

IMPORTANT NOTE: You must execute this command before OS-9 can perform
time-sharing operations. If the system does not have a real-time clock, you should still
use this command to set the date for the file system.

Systems with Battery Backed Up Clocks:
setime should still be run to start time-slicing, but you only need to give the -s. The
date and time are read from the clock.

setime Activate and Set the System Clock

Using Professional OS-9 113

 setime The OS-9 Utilities

OPTIONS: -? Displays the options, function, and command syntax of setime.

-d Does not echo date/time when set.

-s Reads time from battery backed up clock.

EXAMPLES: $ setime 91 01 13 15 45 Set to: January 13, 1991, 3:45 PM

$ setime 910113 154500 Same as above

$ setime 91/01/13/3/45/pm Same as above

$ setime -s For systems with a battery-backup clock

$ setime No parameters are specified, therefore a
yy/mm/dd hh:mm:ss [am/pm] prompt is given.
Time:

114 Using Professional OS-9

The OS-9 Utilities setpr

SYNTAX: setpr <procID> <number>

FUNCTION: setpr changes the CPU priority of a process.

To use setpr, type setpr, the process ID, and the new priority number of the process to
change. setpr may only be used with a process having your ID. The priority number
is a decimal number in the range of 1 (lowest) to 65535 (hex FFFF).

Use procs to obtain the ID number and present priority of any current process.

NOTE: This command does not appear in the CMDS directory as it is a built-in shell
command.

EXAMPLE: $ setpr 8 250 Changes the priority of process number 8 to 250.

setpr Set Process CPU Priority

Using Professional OS-9 115

 shell The OS-9 Utilities

SYNTAX: shell [[set] <arglist>]

FUNCTION: shell is OS-9’s command interpreter program. It reads data from its standard input
which is usually the keyboard or a file and interprets the data as a sequence of com-
mands. The basic function of shell is to initiate and control execution of other OS-9
programs.

Usually you enter the shell automatically upon logging into OS-9. The shell displays a
dollar sign ($) prompt to show that it is ready and waiting for a command line. You can
create a new shell by typing shell optionally followed by a command line.

The shell reads and interprets one text line at a time from standard input. After inter-
preting each line, the shell reads another line until an end-of-file condition occurs, at
which time it terminates itself.

An exception occurs when the shell is called from another program. In this case, the
shell processes the specified command as if it was typed on a shell command line. Con-
trol returns to the calling program after the single command line is processed. If no
command is specified (shell<cr>) or the command is a shell option or built-in com-
mand (chd, chx, etc.), more lines are read from standard input and processed as normal.
This continues until an end-of-file condition or the logout command is executed.

CAVEAT: The shell’s ex command does not recognize utility options unless they are
separated from the utility name with a space. For example, ex procs -e works proper-
ly, but ex procs-e does not.

The shell uses special characters for various purposes. Special characters consist of the
following:

Modifiers: # Memory allocation
^ Process priority modification
> Standard output redirection
< Standard input redirection
>> Standard error output redirection

Separators: ; Sequential execution
& Concurrent execution
! Pipe: interprocess communication

shell OS-9 Command Interpreter

116 Using Professional OS-9

The OS-9 Utilities shell

Wildcards: * Stands for any string of characters
? Stands for any single character

To send one of these characters to a utility program, you must use a method called quot-
ing to prevent the shell from interpreting the special character. Quoting consists of en-
closing the sequence of characters to be passed to a routine in single or double quotes.
For example, ‘<char>’ or “<char>”.

The following command line prints the indicated string:

$ echo "Hello; goodbye"
Hello; goodbye

However, the following command displays the string Hello on your terminal screen and
then attempts to execute a program called goodbye.

$ echo Hello; goodbye

The shell expands the two wildcards to build pathlists. The question mark (?) wildcard
matches any single character. The asterisk (*) wildcard matches any string of
characters.

dir ???? displays the names of files in the current directory that are four characters
long. dir s* displays all names of files in the current directory that begin with s.

Any command that uses a pathlist on the command line accepts a pathlist specified with
wildcards. When shell expands the wildcards, if no explicit directory is given, the files
in the current data directory are searched for the matched expansion. If an explicit
directory name is given in the pathlist, the specified directory is searched.

NOTE: If a command uses an option to search for a file in the current execution direc-
tory, wildcards may produce unexpected results. The shell simply reads the current di-
rectory or the given relative pathlist containing a wildcard and passes these file names
to the command. If the command then tries to find the files relative to the execution
directory, the search will most likely fail.

Using Professional OS-9 117

 shell The OS-9 Utilities

Setting Shell Options
There are two methods of setting shell options. The first method is to type the option
on the command line or after the command, shell. For example:

$ -np Turns off the shell prompt.

$ shell -np Creates a new shell that does not prompt.

The second method uses the special shell command, set. To set shell options, type set,
followed by the options desired. When using set, a hyphen (-) is unnecessary before
the letter option. For example:

$ set np Turns off the shell prompt.

$ shell set np Creates a new shell that does not prompt.

As you can see, the two methods accomplish the same function. They are both provided
for your convenience. Use the method that is clearer for you.

The Shell Environment
For each user on an OS-9 system, the shell maintains a unique list of environment vari-
ables. These variables affect the operation of the shell or other programs subsequently
executed. They are programmable defaults that you can set to your liking.

All environment variables can be accessed by any process called by the environment’s
shell or descendent shells. This essentially allows you to use the environment variables
as global variables.

NOTE: If a subsequent shell redefines an environment variable, the variable is only
redefined for that shell and its descendents.

NOTE: Environment variables are case sensitive.

Several special environment variables are automatically set up when you log on a time-
sharing system:

PORT This specifies the name of the terminal. This is automatically set up
by tsmon. /t1 is an example of a legal PORT name.

118 Using Professional OS-9

The OS-9 Utilities shell

HOME This specifies your home directory. The home directory is the
directory specified in your password file entry. This is also the
directory used when the command chd with no parameters is
executed.

SHELL This is the process that is first executed upon logging on to the
system.

USER This is the user name you type when prompted by login.

Four other important environment variables are available:

PATH This specifies any number of directories. Each directory must be
separated by a colon (:). The shell uses this as a list of commands
directories to search when executing a command. If the default
commands directory does not include the file/module to execute,
each directory specified by PATH is searched until the file/module
is found or until the list is exhausted.

PROMPT This specifies the current prompt. By specifying an “at” sign (@) as
part of your prompt, you may easily keep track of how many shells
you personally have running under each other. The @ is used as a
replaceable macro for the shell level number. The environment vari-
able _sh sets the base level.

_sh This specifies the base level for counting the number of shell levels.
For example, set the shell prompt to “@howdy: ” and _sh to 0:

$ setenv _sh 0
$ -p="@howdy: "
howdy: shell
1.howdy: shell
2.howdy: eof
1.howdy: eof
howdy:

TERM This specifies the specific terminal being used. This allows word
processors, screen editors, and other screen dependent programs to
know what type of terminal configuration to use.

The Environment Utilities
Three utilities are available to manipulate environment variables:

• setenv declares the variable and sets its value. The variable is placed in an
environment storage area accessed by the shell. For example:

$ setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds

Using Professional OS-9 119

 shell The OS-9 Utilities

$ setenv _sh 0

• unsetenv clears the value of the variable and removes it from storage. For
example:

$ unsetenv PATH
$ unsetenv _sh

• printenv prints the variables and their values to standard output. For exam-
ple:

$ printenv
PATH ..:/h0/cmds:/d0/cmds:/dd/cmds
PROMPT howdy
_sh 0

The Profile Command

The profile built-in shell command can be used to cause the current shell to read its
input from the named file and then return to its original input source, which is usually
the keyboard. To use the profile command, enter profile and the name of a file:

profile setmyenviron

The specified file (in this case, setmyenviron) may contain any utility or shell
commands, including commands to set or unset environment variables or to change
directories. These changes will remain in effect after the command has finished
executing. This is in contrast to calling a normal procedure file by name only. If you
call a normal procedure file without using the profile command, the changes would not
affect the environment of the calling shell.

Profile commands may be nested. That is, the file itself may contain a profile
command for another file. When the latter profile command is completed, the first one
will resume.

A particularly useful application for profile files is within a user’s .login and .logout
files. For example, if each user includes the following line in the .login file, then
system-wide commands (common environments, news bulletins, etc.) can be included
in the file /dd/SYS/login_sys.

profile /dd/SYS/login_sys

A similar technique can be used for .logout files.

The Login Shell, .login, and .logout
The login shell is the initial shell created by the login program to process the user input
commands after logging in. Two special procedure files are extremely useful for per-
sonalizing the shell environment:

120 Using Professional OS-9

The OS-9 Utilities shell

• .login

• .logout.

To make use of these files, they must be located in your home directory. The .login and
.logout files provide a way to execute desired commands when logging on to and leav-
ing the system.

The login shell processes .login as a command file immediately after successful login.
This allows you to run a number of initializing commands without remembering each
and every command. After processing all commands in the .login file, the shell
prompts you for more commands. The main difference in handling the .login file is that
the login shell itself actually executes the commands rather than creating another shell
to execute the commands. You can issue such commands as set and setenv within the
.login file and have them affect the login shell. This is especially useful for setting up
the environment variables PATH, PROMPT, TERM, and _sh.

The following is an example .login file:

setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds:/h0/doc/spex
setenv PROMPT "@what next: "
setenv _sh 0
setenv TERM abm85h
querymail
date
dir

.logout is executed when logout is executed to exit the login shell and leave the system.
The .logout file is executed before the login shell terminates. Use this to execute any
cleaning up procedures that are done on a regular schedule. This might be anything
from instigating a backup procedure of some sort to printing a reminder of things to do.

The following is an example .logout file:

procs
wait
echo "all processes terminated"
* basic program to instigate backup if necessary *
disk_backup
echo "backup complete"

Using Professional OS-9 121

 shell The OS-9 Utilities

Shell Command Line Syntax

The shell command line consists of a keyword and optionally any of the parts listed be-
low. The keyword must appear first on a command line. The order of the optional parts
depends on the nature of the command and the desired effect. The command line con-
sists of:

Command Line Description
Unit
Keyword A name of a program or procedure file, a pathlist, or built-in

shell command. The shell’s built-in commands are:

ex Executes a process as overlay.
chd Changes your data directory.
chx Changes your execution directory.
kill Aborts a specified process.
logout Terminates the current shell and executes the

.logout procedure file if the login shell is termi-
nated.

profile Causes the current shell to read its input from
the named file and returns to the original input
source.

set Sets shell options.
setenv Sets environment variables.
setpr Sets process priority.
unsetenv Clears environment variables.
w Waits for any one process to finish.
wait Waits for all immediate child processes to fin-

ish.

Parameter File or directory names, values, variables, constants, options,
etc. to be passed to the program. Wildcards may be used to
identify parameter names. The recognized wildcards are:

* Matches any character.
? Matches any single character.

122 Using Professional OS-9

The OS-9 Utilities shell

Execution Modifiers These modify a program’s execution by redirecting
I/O or changing the priority or memory allocation of a pro-
cess:

#<mem size> Allocates specified memory to a
process.

^<priority> Sets the priority of the process.
< Redirects standard input.
>[- or +] Redirects standard output.
>>[- or +] Redirects standard error output.

The hyphen (-) following the modifiers above signify to
write over a specified file. The plus (+) appends the file with
the redirected output.

Separators Separators connect command lines together in the same
command line. They specify to the shell how they are to be
executed. The separators are:

; Indicates sequential execution.
& Indicates concurrent execution.
! Creates a communication pipe between processes.

Pipes connect the standard output of one process to
the standard input of another.

Command Line Execution
The shell command line syntax indicates that a keyword may be a program name, pro-
cedure file name, a pathlist, or built-in shell command. Built-in commands are execut-
ed immediately by the shell; no directory searching is required, nor is a process created
to execute the command. If the specified command is not a built-in command, the shell
must locate the program to execute from a number of possible locations. The following
procedure describes the actions of the shell when processing a command:

¿ Get command line.

¡ Prepare command:

a. Validate syntax
b. Isolate keyword, parameters, and execution modifiers
c. Expand wildcard names if given

Using Professional OS-9 123

 shell The OS-9 Utilities

¬ If the keyword is a built-in command, execute the command. Otherwise,
search the following directories until the command is found or the directory
search is exhausted:

a. The module directory
b. The execution directory
c. Each directory specified by the PATH environment variable

Ð If the command could not be found in the above directories, return error:
can’t find command.

ƒ If the command is found, load the command into the module directory.

Ý If the load fails, execute shell command (command is assumed to be a
procedure file for the shell)

ý If the load succeeds and the module is executable object code, execute
command.

« If the load succeeds and the module is BASIC I-code, execute Runb com-
mand. Command is an argument for RunB.

» If either of the above command execution fails, return error: can’t execute
command.

Commands and procedure files in the current execution directory must have the e
and/or pe file attribute set or the file will not be found.

If the PATH environment variable is set, its value is interpreted as a list of directories
to search if the initial search of the execution directory fails. If an absolute pathlist, a
path beginning with a slash (/) is given as the command, the shell does not perform the
PATH directory search. The following are examples of setting up the PATH variable:

setenv PATH /d0
setenv PATH /h0/cmds:/n0/jack/h0/cmds:/n0/jill/h0/cmds
setenv PATH kim:../kim:.../cmds

Each directory name is separated by a colon (:). Shell isolates the directory name and
appends it to the command name and uses this pathlist to load the command. If the load
fails, the next directory given is used until the command is successfully loaded or all
directories are tried. Regardless of the error encountered, the shell continues with the
next directory. If a directory given is a relative pathlist, the pathlist is relative to the
execution directory.

To assist in determining the directory from which a command was loaded or not loaded,
turn on the -v option to display the shell’s progress while searching the directories.

The login program automatically sets the PATH variable to the execution directory
from which login itself was loaded if the password entry gives an execution directory

124 Using Professional OS-9

The OS-9 Utilities shell

other than “.”. The period (.) tells the shell to use the login’s execution directory.

Example Command Lines
The following example displays a numbered listing of the data directory. dir is a
keyword indicating the dir utility. -u is a parameter for dir. The exclamation point (!)
is a pipe that redirects the unformatted output of dir to the standard input of pr. pr is a
keyword indicating the pr utility. -n is a parameter for pr.

dir -u ! pr -n

The following command line lists all files in the current data directory that have names
beginning with s. list is the keyword. s* identifies the parameters.

list s*

update uses master as standard input in this next example. The output from update
is used as input for sort. The output from sort is redirected to the printer.

update <master ! sort >/p1

OPTIONS: -? Displays the options, function, and command syntax of shell.

-e=<file> Prints error messages from <file>. If no file is specified, the default file
used is /dd/sys/errmsg. Without the -e option, shell prints only error
numbers with no message description.

-ne Prints no error messages. This is the default.

-l The logout built-in command is required to terminate the login shell.
<eof> does not terminate the shell.

-nl <eof> terminates the login shell. The <Esc> key normally sends an
<eof> to the shell.

-p Displays prompt. The default prompt is $.

-np Does not display prompt.

Using Professional OS-9 125

 shell The OS-9 Utilities

-p=<string> Sets current shell prompt equal to <string>.

-t Echoes input lines.

-nt Does not echo input lines. This is the default.

-v Verbose mode. Displays a message for each directory searched when
executing a command.

-nv Turns off verbose mode.

-x Aborts process upon error. This is the default.

-nx Does not abort on error.

126 Using Professional OS-9

The OS-9 Utilities sleep

SYNTAX: sleep [<opts>] <num>

FUNCTION: sleep puts your process to sleep for a number of ticks. It is generally used to generate
time delays in procedure files.

To use the sleep utility, type sleep, followed by the number of ticks you want the pro-
cess to sleep. A tick count of one causes the process to give up its current time slice
and return immediately. A tick count of zero causes the process to sleep indefinitely,
usually until awakened by a signal. The duration of a tick is system-dependent.

sleep is generally used to generate time delays in procedure files.

OPTIONS: -? Displays the option and command syntax of sleep.

-s Changes count representation to seconds.

NOTE: Only one option may be used on the command line. If not specified, <num>
defaults to zero.

EXAMPLES: $ sleep 25 Sleep for 25 ticks.

$ sleep -s 1000 Sleep for 1000 seconds.

sleep Suspend a Process for a Period of Time

Using Professional OS-9 127

 tape The OS-9 Utilities

SYNTAX: tape {<opts>} [<dev>]

FUNCTION: tape provides a means to access a tape controller from a terminal. tape can rewind,
erase, skip forwards and backwards, and write tapemarks to a tape.

If the tape device <dev> is not specified on the command line and the -z option is not
used, tape uses the default device /mt0.

OPTIONS: -? Displays options, function, and command syntax of tape.

-b[=<num>] Skips the specified number of blocks. The default is one block. If
<num> is negative, the tape skips backward.

-e=<num> Erases a specified number of blocks of tape.

-f[=<num>] Skips the specified number of tapemarks. The default is one tapemark.
If <num> is negative, the tape skips backward.

-o Puts tape off-line.

-r Rewinds the tape.

-s Determines the block size of the device.

-t Retensions the tape.

-w[=<num>] Writes a specified number of tapemarks. The default is one tapemark.

-z Reads a list of device names from standard input. The default device is
/mt0.

-z=<file> Reads a list of device names from <file>.

If you specify more than one option, tape executes each option function in a specific
order. Therefore, you can skip ahead a specified number of blocks, erase, and then
rewind the tape all with the same command.

tape Tape Controller Manipulation

128 Using Professional OS-9

The OS-9 Utilities tape

The order of option execution is as follows:

¿ Gets device name(s) from the -z option.

¡ Skips the number of tapemarks specified by the -f option.

¬ Skips the number of blocks specified by the -b option.

Ð Writes a specified number of tapemarks.

ƒ Erases a specified number of blocks of tape.

Ý Rewinds the tape.

ý Puts the tape off-line.

EXAMPLES: $ tape /mt0 -r Rewinds tape on device /mt0.

$ tape -f=5 -e=2 -r Skips forward five files on device /mt0, erases the next two
blocks, and then rewinds the tape.

Using Professional OS-9 129

 tapegen The OS-9 Utilities

SYNTAX: tapegen [<opts>] <filename> <filename>

FUNCTION: tapegen creates the “bootable” tape. tapegen is a standard utility that performs a
function similar to the os9gen utility. Both utilities place the bootstrap file on the me-
dia and mark the media identification block with information regarding the bootstrap
file. In addition, tapegen can optionally place initialized data on the tape, for applica-
tion-specific purposes.

To use the tapegen utility, type tapegen followed by any desired options.

OPTION: -? Displays the options, function, and command syntax of
tapegen.

-b=<bootfile> Installs an OS-9 boot file.

-bz Reads boot module names from standard input.

-bz=<bootlist> Reads boot module names from the specified bootlist file.

-c Checks and displays header information.

-d=<dev> Specifies the tape device name. The default is /mt0.

-o Takes the tape drive off-line when finished.

-t=<target> Specifies the name of the target system.

-i=<file> Installs an initialized data file on the tape. This is usually a RAM
disk image.

-v=<volume> Specifies the name of the tape volume.

-z Reads filenames from standard input.

-z=<file> Reads filenames from the specified file.

EXAMPLES: The following example makes a bootable tape. The disk image is derived from the /dd
device.

$ tapegen -b=OS9Boot.tape -i=/dd@ “-v=OS-9/68K Boot Tape” -t=MySystem

This example makes a bootable tape with no initialized data file. The “header”
information is displayed after writing the tape.

$ tapegen -b=OS9Boot.h0 -c

tapegen Put Files on a Tape

130 Using Professional OS-9

The OS-9 Utilities tee

SYNTAX: tee {<path>}

FUNCTION: tee is a filter that copies all text lines from its standard input to its standard output and
any other additional pathlists given as parameters.

To use the tee utility, type tee and the pathlist(s) to which standard input is to be
redirected. This utility is generally used with input redirected through a pipe.

OPTION: -? Displays the function and command syntax of tee.

EXAMPLES: The example below uses a pipeline and tee to simultaneously send the output listing of
dir to the terminal, printer, and a disk file:

$ dir -e ! tee /printer /d0/dir.listing

This example sends the output of an assembler listing to a disk file and the printer:

$ asm pgm.src l ! tee pgm.list >/printer

This example broadcasts a message to three terminals:

$ echo WARNING System down in 10 minutes ! tee /t1 /t2 /t3

tee Copy Standard Input to Multiple Output Paths

Using Professional OS-9 131

 tmode The OS-9 Utilities

SYNTAX: tmode [<opts>] [<arglist>]

FUNCTION: tmode displays or changes the operating parameters of your terminal.

NOTE: tmode can only be used for SCF or GFM devices.

To change the operating parameters of your terminal, type tmode and any parameters
you want changed. If no parameters are given, the present values for each parameter
are displayed. Otherwise, the parameter(s) given in the parameter list are processed.
You can give any number of parameters, separated by spaces or commas.

If a parameter is set to zero, OS-9 no longer uses the parameter until it is re-set to a
recognizable code. For example, to set xon and xoff to zero, type:

tmode xon=0 xoff=0

Consequently, OS-9 does not recognize xon and xoff until the values are re-set.

To re-set the value of a parameter to its default, type tmode and specify the parameter
with no value. This re-sets the parameter to the default value given in this manual.

Use the -w=<path#> option to specify the path number to be affected. If none is given,
standard input is affected.

NOTE: If you use tmode in a shell procedure file, you must use the option -
w=<path#> to specify one of the standard paths (0, 1, or 2) to change the terminal’s
operating characteristics. The change remains in effect until the path is closed. For a
permanent change to a device characteristic, you must change the device descriptor.
You may alter the device descriptor to set a device’s initial operating parameters using
xmode. See the xmode utility for more information.

You cannot change the following five parameters by tmode: type, par, cs, stop, and
baud. These are included in tmode for informational purposes only. You can only
change these by altering the device descriptor and using iniz. See xmode for more
information.

tmode can work only if a path to the file/device has already been opened. The OS-9
Technical Manual contains full information on device descriptors.

Tmode Parameter Names
Name Function

upc Upper case only. Lower case characters are converted automatically to

tmode Change Terminal Operating Mode

132 Using Professional OS-9

The OS-9 Utilities tmode

upper case.

noupc Upper and lower case characters permitted. Default.

bsb Erase on backspace. Backspace characters are echoed as a backspace-
space-backspace sequence. Default.

nobsb No erase on backspace. Echoes single backspace only.

bsl Backspace over line. Lines are deleted by sending backspace-space-
backspace sequences to erase the same line for video terminals. Default.

nobsl No backspace over line. Lines are deleted by printing a new line se-
quence for hard-copy terminals.

echo Input characters echoed back to terminal. Default.

noecho No echo

lf Auto line feed on. Line feeds are automatically echoed to terminal on
input and output carriage returns. Default.

nolf Auto line feed off

null=n Set null count. Number of null ($00) characters transmitted after
carriage returns for return delay. The number is decimal. The default
null count is 0.

pause Screen pause on. Output suspended upon full screen. See pag param-
eter for definition of screen size. Output can be resumed by typing any
key.

nopause Screen pause mode off

pag=n Set video display page length to n lines, where n is in decimal. Used for
pause mode, see above.

bsp=h Set input backspace character (normally <control>H, default = 08).
Numeric value of character in hexadecimal.

del=h Set input delete line character (normally <control>X, default = 18). Nu-
meric value of character in hexadecimal.

Name Function
eor=h Set end-of-record input character (normally <cr>, default = 0D).

Numeric value of character in hexadecimal.

Using Professional OS-9 133

 tmode The OS-9 Utilities

eof=h Set end-of-file input character (normally <esc>, default = 1B).
Numeric value of character in hexadecimal.

reprint=h Set reprint line character (normally <control>D, default = 04). Numeric
value of character in hexadecimal.

dup=h Sets the duplicate last input line character (normally <control>A,
default = 01). Numeric value of character in hexadecimal.

psc=h Set pause character (normally <control>W, default = 17). Numeric
value of character in hexadecimal.

abort=h Abort character (normally <control>C, default = 03). Numeric value of
character in hexadecimal.

quit=h Quit character (normally <control>E, default = 05). Numeric value of
character in hexadecimal.

bse=h Set output backspace character (default = 08). Numeric value of
character in hexadecimal.

bell=h Set bell (alert) output character (default = 07). Numeric value of
character in hexadecimal.

type=h ACIA initialization value: shows parity, character size, and number of
stop bits. Value in hexadecimal. This value is affected by changing the
individual par(ity), cs (character length), and stop (stop bits) values.
This value cannot be changed by tmode.

par=s Shows parity using one of the following strings: odd, even, or none.
Changing parity will affect the type value. Parity cannot be changed by
tmode.

cs=n Shows character length using one of the following values:
n = 8, 7, 6 or 5 (bits)

Changing character length will change the type value. Character length
cannot be changed by tmode.

Name Function
stop=n Shows number of stop bits used:

n = 1, 1.5 or 2 (stop bits)

Changing the stop bit value affects the type value. The number of stop
bits used cannot be changed by tmode.

134 Using Professional OS-9

The OS-9 Utilities tmode

baud=n Baud rate: The baud rate may currently be set to the following values:
n = 50 134.5 600 2000 4800 19200
 75 150 1200 2400 7200 38400
 110 300 1800 3600 9600 extern

The baud rate cannot be changed by tmode.

xon=h DC1 resume output character (normally <control>Q, default = 11). Nu-
meric value of character in hexadecimal.

xoff=h DC2 suspend output character (normally <control>S, default = 13).
Numeric value of character in hexadecimal.

tabc=h Tab character (normally <control>I, default = 09). Numeric value of
character in hexadecimal.

tabs=n Number of characters between tab stops. The number is in decimal. The
default is 4 characters between tab stops.

normal Set the terminal back to its default characteristics. This will not affect
the following values: type, baud rate, parity, character length, and stop
bits.

OPTIONS: -? Displays the option, function, and command syntax of tmode.

-w=<path#> Changes the path number <path#> affected.

EXAMPLES: $ tmode noupc lf null=4 bse=1F pause

$ tmode pag=24 pause bsl noecho bsp=8 bsl=C

$ tmode xon xoff quit=5

Using Professional OS-9 135

 touch The OS-9 Utilities

SYNTAX: touch [<opts>] {<path>}

FUNCTION: touch updates the last modification date of a file. Usually, this command is used with
a make command’s makefile. Associated with every file is the date the file was last
modified. touch simply opens a file and closes it to update the time the file was last
modified to the current date.

To update the last modification date of a file, type touch and the pathlist of the file to
update. touch searches the current data directory for the file to update if another direc-
tory or the -x option is not specified.

NOTE: If the specified file is not found, touch creates a file with a current
modification date.

OPTIONS: -? Displays the options, function, and command syntax of touch.

-c Does not create a file if not found.

-q Does not quit if an error occurs.

-x Searches the execution directory for the file.

-z Reads the file names from standard input.

-z=<path> Reads the file names from <path>.

EXAMPLES: $ touch -c /h0/doc/program

$ touch -cz

$ dir -u ! touch

touch Update the Last Modification Date of a File

136 Using Professional OS-9

The OS-9 Utilities tr

SYNTAX: tr [<opts>] <str1> [<str2>] [<path1>] [<path2>]

FUNCTION: tr transliterates characters from <str1> into a corresponding character from <str2>. If
<str1> contains more characters than <str2>, the final character in <str2> is used for
each excess character in <str1>.

To use the tr utility, type tr and the characters to search for (<str1>), and optionally, the
replacement characters (<str2>), the input file’s pathlist (<path2>) and the output
file’s pathlist (<path2>).

<str1> is required. If <str2> is missing, all characters in <str1> are deleted from the
output. If <path1> and <path2> are missing, standard input and output are assumed.
If only one path is specified, it is used as the input file pathlist.

<str1> and <str2> are interpreted as character classes. To facilitate creating character
classes, use the following metacharacters:

Char Name/Description
 - RANGE. The hyphen (-) is defined as representing all characters lexico-

graphically greater than the preceding character and less than the following
character. For example:

[a-z] is equivalent to the string abcdefghijklmnopqrstuvwxyz.

[m-pa-f] is equivalent to the string mnopabcdef.

[0-7] is equivalent to the string 01234567.

See the ASCII chart in Appendix A for character values.

 Char Name/Description
\ ESCAPE. The backslash (\) removes special significance from special

characters. It is followed by a base and a numeric value or a special charac-
ter. If no base is specified, the base for the numeric value defaults to hexa-
decimal. An explicit base of decimal or hexadecimal can be specified by
preceding the numeric value with a qualifier of d or x, respectively. It also
allows entry of some non-printing characters such as:

\t = Tab character
\n = New-line character
\l = Line feed character
\b = Backspace character
\f = Form feed character

tr Transliterate Characters

Using Professional OS-9 137

 tr The OS-9 Utilities

NOTE: Do not confuse <str1> and <str2> with the character class regular expres-
sion. <str1> and <str2> do not need surrounding brackets. Brackets are merely treated
as characters in the character class.

OPTIONS: -? Displays the options, function, and command syntax of tr.

-c Transliterates all ASCII characters (1 through $7F) to <str2>, except for
the set of characters in <str1>.

-d Deletes all matching input characters and expressions.

-s Squeezes all repeated output characters or expressions in <str2> to single
characters or expressions.

-v Same as -c.

-z Reads standard input for list of file names.

-z=<path> Reads the file names from <path>.

You can generally give options anywhere on the command line. If you wish to use the
pathlists but not <str2>, you must specify the -d option prior to the pathlists. Similarly,
if you use the -z option to read pathlists from standard input, the -z must precede
<path2>.

The -s option does not differentiate between characters originally in <str2> and
transliterated characters. It always returns a string with no consecutively repeated
characters. For example, the command tr -s abcde x transliterates the string
exasperate into xspxrxtx.

The -s and -d options are mutually exclusive.

If you use the -c option to change all but a certain sequence of characters, it also chang-
es carriage returns and newlines unless they are specified in the sequence of characters.

WARNING: tr always deletes ASCII nul ($00).

EXAMPLES: The following examples use standard input for the input to tr. The output is sent to
standard output. Thus, the first line following each command line is the standard input,
and the second line is the standard output.

$ tr abcd jklm Transliterates standard input, converting a to j,
aabdc_efg b to k, c to l, and d to m.
jjkml_efg

$ tr abcd j Transliterates standard input, converting each a,
abcd_efgh b, c, and d to j.
jjjj_efgh

138 Using Professional OS-9

The OS-9 Utilities tr

$ tr a-d k Transliterates standard input, converting each
abc_abcd-efgh character contained in the expression abcd to k.
kkk_kkkk-efgh

$ tr abcd Transliterates standard input, deleting each a, b,
abcd_efgh c, and d.
_efgh

$ tr -d abcd Transliterates standard input, deleting each a, b,
abcdefg c, and d.
efg

$ tr -s dcba eocd Transliterates standard input converting d to e, c to
edenbcada o, b to c, and a to d. Consecutively repeated output
encoded characters, the matching eocd, are squeezed into a

single character

$ tr -c a-zA-Z \n Transliterates standard input, converting all
one word per line non-alphabetic characters to newline characters.
one
word
per
line

Using Professional OS-9 139

 tsmon The OS-9 Utilities

SYNTAX: tsmon [<opts>] {/<dev>}

FUNCTION: tsmon supervises idle terminals and starts the login utility in a timesharing application.
Typically, tsmon is executed as part of the start-up procedure when the system is first
brought up and remains active until the system shuts down.

The parameter /<dev> specifies a terminal to monitor. This is generally an SCF device.

You can specify up to 28 device name pathlists for tsmon to monitor. When you type
a carriage return on any of the specified paths, tsmon automatically forks login, with
standard I/O paths opened to the device. If login fails because you could not supply a
valid user name or password, control returns to tsmon.

Most programs terminate when an end-of-file character (normally <escape>) is
entered as the first character on a command line. This logs you off the system and
returns control to tsmon.

tsmon prints a message when you log off:

Logout after 11 minutes, 30 seconds. Total time 3:57:46.

The Total time figure is the total amount of time that the terminal has accumulated on-
line since the tsmon was started.

tsmon is normally used to monitor I/O devices capable of bi-directional
communication, such as CRT terminals. However, you may use tsmon to monitor a
named pipe. If this is done, tsmon creates the named pipe, and then waits for data to
be written to it by some other process.

When data arrives, tsmon starts a shell with its input redirected to the pipe file. This is
useful for starting remote processes in a networked environment.

You can run several tsmon processes concurrently, each one watching a different
group of devices. This must be done when more than 28 terminals are to be monitored,
but is sometimes useful for other reasons. For example, you may want to keep modems
or terminals suspected of hardware trouble isolated from other devices in the system.

tsmon forks login with the PORT environment variable set to the SCF device name
and all other environment variables cleared.

OPTIONS: -? Displays the options, function, and command syntax of tsmon.

-d Displays statistics when a ^\ character (control-backslash or hex $1C) is
typed on a monitored terminal.

tsmon Supervise Idle Terminals and Initiate the Login Command

140 Using Professional OS-9

The OS-9 Utilities tsmon

-l=<prog> Forks <prog>, an alternate login program.

-p Displays an “online” prompt to each timesharing terminal being moni-
tored by tsmon.

-r=<prog> Forks an alternate shell program.

-z Reads the device names from standard input.

-z=<path> Reads the device names from <path>.

EXAMPLES: This command starts timesharing on term and t1, printing a welcome message to each.
A similar command might be used as the last line of a system startup file.

tsmon -dp /term /t1&
2 devices online (confirmation by tsmon)

The -d option causes tsmon to print various statistics about the devices being moni-
tored whenever control-backslash (^\) is typed on either terminal. The statistics might
look something like this:

tsmon started 12-11-90 20:38:15 with 2 devices 0:36:06
 /term quiet at 0:08:07 cumulative time 3:29:30 logins: 1/9
*/t1 quiet at 0:36:03 cumulative time 3:57:46 logins: 2/4

NOTE: The standard input device shown for tsmon by the procs utility always
indicates the last device to gain tsmon’s attention.

You must implement the SS_SSig I$SetStat function (send signal on data ready) on
any device to be monitored by tsmon. Because this function is used (for example,
instead of I$ReadLn), it is possible to output data to a terminal that is not logged in
without having to wait for someone to press a key.

Using Professional OS-9 141

 unlink The OS-9 Utilities

SYNTAX: unlink [<opts>] {<modname>}

FUNCTION: unlink tells OS-9 that you no longer need the memory module(s) named

To unlink an attached module, type unlink and the name(s) of the module(s) to unlink.
The link count is then be decremented by one. If the link count becomes zero, the mod-
ule directory entry is deleted and the memory is de-allocated. It is good practice to un-
link modules whenever possible to make most efficient use of available memory re-
sources.

WARNING: Never unlink a module you did not link to or load. Unlinking a module
more than once may prematurely lower its link count and possibly destroy the module
while it is still in use.

OPTIONS: -? Displays the options, function, and command syntax of unlink.

-z Reads the module names from standard input.

-z=<file> Reads the module names from <file>.

EXAMPLES: $ unlink pgm pm5 pgm9 Unlinks pgm, pgm5, and pgm9 and lowers the link
count of each module by one.

$ dir -u ! unlink -z Pipes an unsorted listing of the current data directory to
unlink. This unlinks all modules contained in the
directory and lowers the link count of each module by
one.

$ unlink -z=namefile Unlinks each module listed in namefile and lowers the
link count of each module by one.

$ mdir
 Module Directory at 14:44:35
kernel init p32clk rbf p32hd
h0 d0 r0 edit mdir
$ unlink edit
$ mdir
 Module Directory at 14:44:35
kernel init p32clk rbf p32hd
h0 d0 r0 mdir

unlink Unlink Memory Module

142 Using Professional OS-9

The OS-9 Utilities unsetenv, w/wait

SYNTAX: unsetenv <eparam>

FUNCTION: unsetenv deletes the specified environment variable from the environment list.

To use setenv, type unsetenv, followed by the environment parameter to delete. This
removes the variable from the environment list.

NOTE: If the specified variable has not been previously defined, unsetenv has no
effect and it gives you no message.

EXAMPLES: $ unsetenv _sh

$ unsetenv TERM

SEE ALSO: setenv and printenv utility descriptions

SYNTAX: w
wait

FUNCTION: w causes the shell to wait for the termination of one child process before returning with
a prompt. wait causes the shell to wait for all child processes to terminate before
returning with a prompt.

Type w or wait and a carriage return. When the shell prompt is displayed, the child
process(es) have terminated.

EXAMPLES: $ list file1 >/p1&
$ list file2.temp ! filter >file2&
$ wait
$ list file2 >/p1

In this example, the prompt returns when the first of these three processes (one, two,
or three) terminates:

$ one&
$ two&
$ three$
$ w
$

unsetenv Clear Environment Parameter

w/wait Wait for One/All Child Process(es) to Terminate

Using Professional OS-9 143

 xmode The OS-9 Utilities

SYNTAX: xmode [<opts>] <devname> [<arglist>] {<devname>}

FUNCTION: xmode displays or changes the initialization parameters of any SCF-type device such
as a video display, printer, RS-232 port, etc. Some common uses are to change the baud
rates and control key definitions.

NOTE: xmode can only be used for SCF or GFM devices.

To use the xmode utility, type xmode and any parameters to change. If no parameters
are given, the present values for each parameter are displayed. Otherwise, the param-
eter(s) given in the parameter list are processed. You can give any number of parame-
ters, separated by spaces or commas. You must specify a device name to process the
parameter(s) given in the parameter list.

If a parameter is set to zero, the device no longer uses the parameter until it is re-set to
a recognizable code. For example, set xon and xoff to zero:

xmode /term xon=0 xoff=0

/term will not recognize xon and xoff until the values are re-set.

To re-set the values of a parameter to its default, type xmode and specify the parameter
with no value. This re-sets the parameter to the default value given in this manual.

xmode is similar to the tmode utility. tmode only operates on open paths so it has a
temporary effect. xmode actually updates the device descriptor. The change persists
as long as the computer is running, even if paths to the device are repetitively opened
and closed.

Five parameters need further explanation: type, par, cs, stop, and baud. These
parameters are changed by xmode only if the device is iniz-ed directly after the xmode
changes are made. This is usually done in the startup file or by first deiniz-ing a file.
For example, the following command sequence changes the baud rate of /t1 to 9600:

$ deiniz t1
$ xmode baud=9600
$ iniz t1

This type of command sequence changes the device descriptor and initializes it on the
system. Only the five parameters mentioned above need this special sequence changed.
All other xmode parameters are changed immediately.

OPTIONS: -? Display the options, function, and command syntax of xmode.

xmode Examine or Change Device Initialization Mode

144 Using Professional OS-9

The OS-9 Utilities xmode

-z Reads device names from standard input.

-z=<file> Reads device names from <file>.

Xmode Parameter Names
Name Function
upc Upper case only. Lower case characters are converted automatically to

upper case.

noupc Upper and lower case characters are permitted. Default.

bsb Erase on backspace. Backspace characters are echoed as a backspace-
space-backspace sequence. Default.

nobsb No erase on backspace. Echoes single backspace only.

bsl Backspace over line. Lines are deleted by sending backspace-space-
backspace sequences to erase the same line for video terminals. Default.

nobsl No backspace over line. Lines are deleted by printing a new line se-
quence for hard-copy terminals.

echo Input characters echoed back to terminal. Default.

noecho No echo

lf Auto line feed on. Line feeds are automatically echoed to terminal on
input and output carriage returns. Default.

nolf Auto line feed off

null=n Set null count. Number of null ($00) characters transmitted after
carriage returns for return delay. The number is decimal. By default,
the null count is set to zero.

pause Screen pause on. Output suspended upon full screen. See pag
parameter for definition of screen size. Output can be resumed by
typing any key.

nopause Screen pause mode off

pag=n Set video display page length to n lines. n is a decimal number. Used
for pause mode, see above.

Name Function
bsp=h Set input backspace character (normally <control>H, default = 08).

Using Professional OS-9 145

 xmode The OS-9 Utilities

Numeric value of character in hexadecimal.

del=h Set input delete line character (normally <control>X, default = 18). Nu-
meric value of character in hexadecimal.

eor=h Set end-of-record input character (normally <cr>, default = 0D).
Numeric value of character in hexadecimal.

eof=h Set end-of-file input character (normally <esc>, default = 1B).
Numeric value of character in hexadecimal.

reprint=h Set reprint line character (normally <control>D, default = 04). Numeric
value of character in hexadecimal.

dup=h Set duplicate last input line character (normally <control>A, default =
01). Numeric value of character in hexadecimal.

psc=h Set pause character (normally <control>W, default = 17). Numeric
value of character in hexadecimal.

abort=h Abort character (normally <control>C, default = 03). Numeric value of
character in hexadecimal.

quit=h Quit character (normally <control>E, default = 05). Numeric value of
character in hexadecimal.

bse=h Set output backspace character (default = 08). Numeric value of
character in hexadecimal.

bell=h Set bell (alert) output character (default = 07). Numeric value of
character in hexadecimal.

type=h ACIA initialization value. Sets parity, character size, and number of
stop bits. Value in hexadecimal. This value is affected by changing the
individual par(ity), cs (character length), and stop (stop bits) values.
This value is not affected by the xmode normal command. This value
is not changed until the specified device is iniz-ed.

par=s Sets parity using one of the following strings: odd, even, or none.
Setting parity affects the type value. This value is not affected by
xmode normal. This value is not changed until the specified device is
iniz-ed.

Name Function
cs=n Sets character length using one of the following values:

n = 8, 7, 6 or 5 (bits)

146 Using Professional OS-9

The OS-9 Utilities NOTES

Setting character length changes the type value. This value is not
affected by xmode normal. This value is not changed until the
specified device is iniz-ed.

stop=n Sets the number of stop bits used:

n = 1, 1.5 or 2 (stop bits)

Setting the stop bit value affects the type value. This value is not
affected by xmode normal. This value is not changed until the
specified device is iniz-ed.

baud=n Baud rate. The baud rate may currently be set to the following values:

n = 50 134.5 600 2000 4800 19200
 75 150 1200 2400 7200 38400
 110 300 1800 3600 9600 extern

This value is not affected by xmode normal and is not changed until the
specified device is iniz-ed.

xon=h DC1 resume output character (normally <control>Q, default = 11). Nu-
meric value of character in hexadecimal.

xoff=h DC2 suspend output character (normally <control>S, default = 13).
Numeric value of character in hexadecimal.

tabc=h Tab character (normally <control>I, default = 09). Numeric value of
character in hexadecimal.

tabs=n Number of characters between tab stops. The number is in decimal. By
default, there are four characters between tab stops.

normal Set the terminal back to its default characteristics. This does not affect
the following values: type, baud rate, parity, character length, and stop
bits.

EXAMPLES: $ xmode /term noupc lf null=4 bse=1F pause

$ xmode /t1 pag=24 pause bsl noecho bsp=8 bsl=C

NOTES

End of Chapter

Using Professional OS-9 147

 NOTES The OS-9 Utilities

148 Using Professional OS-9

The OS-9 Utilities NOTES

Using Professional OS-9 149

 NOTES The OS-9 Utilities

150 Using Professional OS-9

ASCII is an acronym for American Standard Code for Information Interchange. It consists of 96 printable
and 32 unprintable characters. The following conversion table includes Binary, Decimal, Octal,
Hexadecimal, and ASCII. The unprintable characters are defined below:

ASCII Symbol Definitions

Symbol Definition Symbol Definition
ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel LF line feed
CR carriage return NAK negative acknowledgement
DC device control NUL null
DEL delete RS record shipment
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form feed US unit separator

VT vertical tabulation

A

ASCII
Conversion

Chart

Using Professional OS-9 A - 1

ASCII Conversion Chart ASCII Conversion Chart

Binary Decimal Octal Hex ASCII
0000000 0 0 0 NUL
0000001 1 1 1 SOH
0000010 2 2 2 STX
0000011 3 3 3 ETX
0000100 4 4 4 EOT
0000101 5 5 5 ENQ
0000110 6 6 6 ACK
0000111 7 7 7 BEL
0001000 8 10 8 BS
0001001 9 11 9 HT
0001010 10 12 A LF
0001011 11 13 B VT
0001100 12 14 C FF
0001101 13 15 D CR
0001110 14 16 E SO
0001111 15 17 F SI
0010000 16 20 10 DLE
0010001 17 21 11 DC1
0010010 18 22 12 DC2
0010011 19 23 13 DC3
0010100 20 24 14 DC4
0010101 21 25 15 NAK
0010110 22 26 16 SYN
0010111 23 27 17 ETB
0011000 24 30 18 CAN
0011001 25 31 19 EM
0011010 26 32 1A SUB
0011011 27 33 1B ESC
0011100 28 34 1C FS
0011101 29 35 1D GS
0011110 30 36 1E RS
0011111 31 37 1F US
0100000 32 40 20 SP
0100001 33 41 21 !
0100010 34 42 22 "
0100011 35 43 23 #
0100100 36 44 24 $
0100101 37 45 25 %
0100110 38 46 26 &
0100111 39 47 27 ’
0101000 40 50 28 (
0101001 41 51 29)
0101010 42 52 2A *

A - 2 Using Professional OS-9

ASCII Conversion Chart ASCII Conversion Chart

Binary Decimal Octal Hex ASCII
0101011 43 53 2B +
0101100 44 54 2C ,
0101101 45 55 2D -
0101110 46 56 2E .
0101111 47 57 2F /
0110000 48 60 30 0
0110001 49 61 31 1
0110010 50 62 32 2
0110011 51 63 33 3
0110100 52 64 34 4
0110101 53 65 35 5
0110110 54 66 36 6
0110111 55 67 37 7
0111000 56 70 38 8
0111001 57 71 39 9
0111010 58 72 3A :
0111011 59 73 3B ;
0111100 60 74 3C <
0111101 61 75 3D =
0111110 62 76 3E >
0111111 63 77 3F ?
1000000 64 100 40 @
1000001 65 101 41 A
1000010 66 102 42 B
1000011 67 103 43 C
1000100 68 104 44 D
1000101 69 105 45 E
1000110 70 106 46 F
1000111 71 107 47 G
1001000 72 110 48 H
1001001 73 111 49 I
1001010 74 112 4A J
1001011 75 113 4B K
1001100 76 114 4C L
1001101 77 115 4D M
1001110 78 116 4E N
1001111 79 117 4F O
1010000 80 120 50 P
1010001 81 121 51 Q
1010010 82 122 52 R
1010011 83 123 53 S
1010100 84 124 54 T
1010101 85 125 55 U

Using Professional OS-9 A - 3

ASCII Conversion Chart ASCII Conversion Chart

Binary Decimal Octal Hex ASCII
1010110 86 126 56 V
1010111 87 127 57 W
1011000 88 130 58 X
1011001 89 131 59 Y
1011010 90 132 5A Z
1011011 91 133 5B [
1011100 92 134 5C \
1011101 93 135 5D]
1011110 94 136 5E ^
1011111 95 137 5F _
1100000 96 140 60 ‘
1100001 97 141 61 a
1100010 98 142 62 b
1100011 99 143 63 c
1100100 100 144 64 d
1100101 101 145 65 e
1100110 102 146 66 f
1100111 103 147 67 g
1101000 104 150 68 h
1101001 105 151 69 i
1101010 106 152 6A j
1101011 107 153 6B k
1101100 108 154 6C l
1101101 109 155 6D m
1101110 110 156 6E n
1101111 111 157 6F o
1110000 112 160 70 p
1110001 113 161 71 q
1110010 114 162 72 r
1110011 115 163 73 s
1110100 116 164 74 t
1110101 117 165 75 u
1110110 118 166 76 v
1110111 119 167 77 w
1111000 120 170 78 x
1111001 121 171 79 y
1111010 122 172 7A z
1111011 123 173 7B {
1111100 124 174 7C |
1111101 125 175 7D }
1111110 126 176 7E ~
1111111 127 177 7F DEL

A - 4 Using Professional OS-9

 B

The ROM
Debugger

This appendix documents the debug version of the ROM debugger. A new ROM debugger, RomBug, is
also available. RomBug is documented in the OS-9 ROM Debugger’s User’s Manual.

The ROM Debugger

The ROM debugger is an optional part of the Professional OS-9 package. The ROM debugger is not a
conventional program because you cannot invoke it from the command line. Assuming the ROM
debugger is present and enabled, it is invoked in the following situations:

• When the machine is turned on and the UseDebug routine in the sysinit.a file returns the Zero
flag of the CCR as false.

• When the abort signal (auto vector level 7) is encountered.

• When a bus error, address error, illegal instruction error, or trace exception is encountered.

Overview of Debugger Functions

The ROM debugger loads and tests OS-9 and I/O drivers. The debugger’s command set allows you to
analyze programs by tracing, single instruction stepping, and breakpointing. It can disassemble instruc-
tions as the instructions are traced or stepped, or as a block. Commands can also examine or alter memory
or CPU registers.

Depending on the type of debugger options selected, you can communicate with the host system as a ter-
minal and download programs into RAM for testing via the communications link.

Using Professional OS-9 B-1

Overview of Debugger Functions The ROM Debugger

The debugger accepts command lines from the console. The command lines consist of a command code
followed by a return key. Use the backspace (<control>H) and line delete (<control>X) keys to correct
errors. If the system’s ioxxx.a files resemble the standard Microware versions, you can use xoff
(<control>S) and xon (<control>Q) to suspend and resume output, respectively.

B-2 Using Professional OS-9

The ROM Debugger Expressions and Register Names

Expressions and Register Names

In some commands, the debugger can accept number expressions, shown as <num> or <len>, and address
expressions, shown as <addr>. Both types of expressions have the same syntax. Expressions can be num-
bers or a combination of numbers, operators, and register names. Expressions are evaluated from left to
right without priority, unless parentheses are used.

All numbers are assumed to be hexadecimal unless preceded with a pound sign character (#). For example,
200 is interpreted as a hex number but #200 is interpreted as a decimal number.

Register names consist of a period (.) followed by the usual assembly language name. For example, .a3
refers to register A3. Register names can be used freely in expressions.

The operators recognized by the debugger are:

One-Operand Operators: - negative
~ bit-by-bit NOT

Two-Operand Operators: + add
- subtract
* multiply
/ divide
> shift right; A>B shifts A right B bits
< shift left; A<B shifts A left B bits
& bit-by-bit AND
| bit-by-bit OR
^ bit-by-bit XOR (exclusive OR)

The debugger has a special internal register called the relocation register. This is used to add a constant
offset to addresses. You can change the value of the relocation register at any time using the .r command.

NOTE: The display mode and change memory mode commands for the debugger are not affected by the
relocation register offset.

It is often convenient to set the relocation register to the beginning physical address of a program code
section or data area. Subsequent address commands can use the same offsets printed on assembler listings.
Any address expression consisting of only a number (no operator) automatically has the relocation value
added. The value of the relocation register can also be used in expressions or changed by referring to the
register as “.r”.

Using Professional OS-9 B-3

The Debugger and Traps The ROM Debugger

The Debugger and Traps

Many of the debugger functions are implemented using traps. In particular, breakpoints cannot be used in
ROM because breakpoints work by transparently replacing the existing instruction opcodes with opcodes
that cause an “illegal instruction” trap. Obviously, instructions in ROM cannot be replaced in this manner.

The e command alternately enables and disables the debugger. When the debugger is enabled, it handles
all address errors, bus errors, illegal instructions, and trace traps. The level 7 autovector trap is also re-
served for use with an optional abort switch. Before the OS-9 kernel is started, traps not deliberately set
by the debugger cause appropriate diagnostic messages to be displayed on the console.

When the debugger is disabled, all traps are passed to OS-9. To run the OS-9 user debug utility after the
system is up, the ROM debugger must be disabled.

Breakpoints and Caching

The debugger uses traps to set up breakpoints. Consequently, systems such as 68020 systems that contain
instruction caches may have occasional problems with missed breakpoints. This occurs when a breakpoint
is set at an instruction location that is currently cached. The debugger sets an “illegal instruction” trap in
the code location specified, but the CPU executes the cached version of the instruction, causing the break-
point to be missed.

To avoid this problem, Microware recommends that all cache resources for the system be disabled while
using the ROM debugger, if possible.

B-4 Using Professional OS-9

The ROM Debugger The Talk-Through Command

The Talk-Through Command

The second communications port on the target system is used for communications with the host system to
provide download and talk-through functions. You can make versions of the debugger that omit the
download or both download and talk-through functions in order to save ROM space.

Talk-through mode makes the debugger transparently pass data between the target system’s terminal and
the communications port to the host system. This effectively makes the target system terminal act as a host
system terminal. The target system’s terminal can be used to edit, assemble, etc., on the host system. This
eliminates the need for two terminals. Use the following command to enter talk-through mode:

tm <EscChar>

This mode is exited when the specified escape character is typed.

Obviously, you should select the escape character carefully so it will not be the same as one used in normal
communications with the host. Infrequently used characters such as the tilde (~) are recommended.

The Download Command

The download command passes a command to the host system which causes it to send program data to the
target system via the communications link. The program is loaded into RAM memory.

The program must be in the industry-standard Motorola S-record format. Only S1, S2, S3, S7, S8, and
S9 record formats are recognized. The binex utility must be used to convert the OS-9 linker output from
its normal binary format to S-record format. binex is a standard utility on professional OS-9 systems, li-
censed OS-9 distribution packages, and Port Paks. A Unix version is included in the distribution packages
for VAX systems.

NOTE: Refer to the OS-9 Utilities section for more information on the binex utility.

The S-record format has data records that include a load address that specifies where to load the program
in memory. OS-9 programs are position-independent, so the load address always starts at address zero.
As S-records are received, the load addresses are added to the debugger’s relocation register value to de-
termine the actual address in RAM where the program is stored.

NOTE: You must download all program modules before OS-9 is executed for the first time. Otherwise,
the modules will not be found by the search.

The relocation register to the area of RAM reserved for downloaded code in the boot.a special search table
must be set. The two versions of the download command are:

Name Description

Using Professional OS-9 B-5

The Download Command The ROM Debugger

l <HostCmd> Downloads data in Motorola S-record format. <HostCmd> is sent to the host
as a command line to trigger the download. I/O delay must be set in register .d0
before the download. The load addresses are displayed every 512 bytes.

le <HostCmd> Same as l <HostCmd> except received S-records are also displayed on the
console instead of load addresses.

The <HostCmd> sent to the host is the command required to dump the S-record file. For OS-9 hosts, the
screen pause must be turned off using the tmode nopause command. A sample download command for
an OS-9 host system is:

.r f1000 l binex objs/boot320

A sample download command for a Unix host system is:

l cat s.rec.file

The debugger transmits the command string to the host and then expects the host to begin transmitting S-
records. The download ends when an S9 type record is received.

Sometimes the target system cannot keep up with a sustained high data rate when downloading. Therefore,
the debugger sends xon and xoff to the host for flow control. If the host system does not respond imme-
diately to xoff, you must set up a buffering delay count in register .d0 before using the download com-
mands. A value of 20 works well in most cases with a data link running at 9600 baud, but you may have
to experiment with this value as it is dependent on a combination of characteristics of the host system:

• xoff response lag time

• The target system CPU speed

• The baud rate

If the download command seems to hang up, a <control>E character aborts the download and also sends
an abort signal to the host system. This may happen if the I/O buffer delay is not large enough or if the
OS-9 host’s screen pause is on.

Downloading using these commands should only be attempted after a hardware reset or after a debugger
rst command. Otherwise, stack/data conflicts may occur within OS-9 and may produce strange results.

If you are debugging only one module, the module should be kept in a different file than the main OS-9
download file. This allows the main OS-9 code already in memory to be used and only the new version
of the module will have to be downloaded. This will save a considerable amount of time. The rst com-
mand must be used first.

B-6 Using Professional OS-9

The ROM Debugger Basic Debugger Commands

Basic Debugger Commands

Command Description

b Display addresses of all breakpoints.

b <addr> Set breakpoint at <addr>. <addr> is relative to the default relocation register.

c <mod> <addr> Enter change memory mode starting at <addr>. <mod> applies until change mode
is exited. The default data length is one byte (8 bits). The <mod> options are:

w R/W words (16 bits)
l R/W long words (32 bits)
n No read for match or print
m No reread for match test
o R/W odd addresses, bytes only
v R/W even addresses, bytes only

Change mode commands are:

<CR> Move to next location
<num> Store new value, reread, verify match, move to next location
- Move to previous location
+ Move to next location
. Exit mode

Commands may be strung together. For example, the following command changes
one location and then exits change mode:

c .a5+3c FF .

d <addr> [<len>] Enter memory display mode beginning at <addr>. Contents of memory are dis-
played in hex and ASCII. If <len> is not specified, 256 bytes are displayed. Dis-
play mode commands are:

<CR> Display next <len> bytes
. Exit mode
other Exit mode, interpret as command

NOTE: The display mode and change memory mode commands for the debugger
are not affected by the relocation register offset.

Using Professional OS-9 B-7

Basic Debugger Commands The ROM Debugger

Command Description

di <addr> [<len>] Disassemble and display <len> instructions beginning at <addr>. If <len> is not
specified, 20 instructions are displayed. Disassemble mode commands are:

<CR> Display next <len> bytes
. Exit mode
other Exit mode, interpret as command

e Enable/disable debugger.

g Execute program starting at <PC>.

g <addr> Execute program starting at <addr>.

NOTE: If the program is stopped at a breakpoint, it is necessary to trace one
instruction before using the g command.

k <addr> Kill (remove) breakpoint located at <addr>. <addr> is relative to the default
relocation register.

k* Kill all breakpoints.

l<hostcmd> Download data in Motorola S-record format. <hostcmd> is sent to the host as a
command line to trigger the download. I/O delay must be set in .d0 before the
download. The load addresses are displayed every 512 bytes.

le<hostcmd> Same as l<hostcmd>, except received S-records are displayed instead of load
addresses.

rst Reset system; PC = Initial PC, SSP = Initial SSP, and SR = Supervisor state in-
terrupts masked are set to level 7. This allows a g command to restart the system.

t <num> Enter trace mode and trace <num> instructions. Trace mode commands are:

<CR> Trace <num> more instructions
. Exit trace mode
other Exit trace mode, interpret as command

tm <EscChar> Enter talk-through mode. This mode is exited when the specified escape character
is typed.

Command Description

. Display all registers.

.<reg> <num> Set register <reg> to value <num>.

.pc <addr> Set program counter to <addr>.

B-8 Using Professional OS-9

The ROM Debugger Basic Debugger Commands

.r <num> Set relocation register to <num>.

End of Appendix B

Using Professional OS-9 B-9

Basic Debugger Commands The ROM Debugger

B-10 Using Professional OS-9

application program:
A program that needs an operating system environment to execute. For example, word processing,
accounting, or spreadsheet programs.

ASCII:
The standard code of symbols, including alphanumerics, used in a computer environment. ASCII
stands for American Standard Code for Information Interchange.

attributes:
A set of status codes that control access to a file for security. Also indicates if a file is a directory
or not.

bit:
An abbreviation for binary digit. This is the most basic unit of information used by a computer. It
is capable of two values: one and zero.

bit map:
A binary table in which each bit represents a specific location of memory accessable to the central
processing unit (CPU).

backup:
A utility provided with OS-9 that allows you to create a duplicate copy of an existing disk. Also,
the copied disk.

boot (bootstrap or cold start):
A startup function that initially loads the operating system into memory and starts it after the com-
puter is first turned on or after it is reset.

C

Glossary

Using Professional OS-9 C - 1

Glossary Glossary

byte:
Unit of memory consisting of 8 binary on/off switches (bits).

cold start:
see boot.

command:
A request made from the keyboard for the execution of a specific operation. Also, sometimes re-
fers to one of the utilities provided with OS-9.

command interpreter:
Software that translates input commands into machine language commands causing the computer
to perform the requested actions. The name of OS-9’s command interpreter program is shell.

command line:
A single line of input including a keyword that the operating system can understand and act upon.
A command line may also include an object and the parameters of the command.

concurrent execution:
The act of deliberately running a program at the same time as another program; also the effect mul-
titasking has on programs. See also: multi-tasking, sequential execution.

cross-development:
This refers to programs developed on one computer for the purpose of translating instructions for/
to another computer.

data directory:
A directory used by OS-9 to locate data files used by programs. You can change which directory
is the current data directory. See also: directory.

data module:
A type of module used for shared variable storage by two or more tasks. See also: memory module.

default system device:
This refers to the system device (disk, RAM, etc.) used for information and program storage used
by a computer. The OS-9 mnemonic for this device is /dd.

device descriptor module:
A type of module which contains the identification and initialization values for a specific I/O de-
vice. The name of the device descriptor module is also the logical name by which the device is
referred to by the software.

device driver module:
A program module that contains the software necessary to interface OS-9 to a particular type of I/
O device. A single driver module is often shared by many identical types of I/O ports (such as for
terminals).

C - 2 Using Professional OS-9

Glossary Glossary

directory:
A special file used by OS-9 which contains the names of other files or directories. A directory al-
lows you to organize your files by placing all files to be grouped together in one place.

DMA:
Abbreviation for Direct Memory Access. This is a procedure or method used to gain direct access
to the computer’s main storage without involving the central processing unit (CPU).

environment:
The shell environment is a list a variables that may be accessed by the shell and any user applica-
tions to be used as global variables. Each user’s shell maintains a unique environment.

exception:
A special control signal that diverts the attention of the computer from the main program because
of a particular event, signal, or set of circumstances.

execution directory:
A directory used by OS-9 to locate files containing programs (utilities). You can change which
directory is your current execution directory at will, but usually the system-wide commands direc-
tory (CMDS) is used. See also: directory.

execution modifier:
A character in a command line recognized by the shell that changes the default execution of the
command. Modifiers are used to change the memory size (#), process priority (^), and standard I/
O paths (>, <, >>).

FPCP:
An abbreviation for a Floating Point Co-Processor (for example, 68881, 68882).

file:
An ordered sequence of bytes used for mass storage. A file may contain a program, text, a list of
commands, etc.

file pointer:
An indicator of where the next access in a file will occur.

file system:
The logical organization of mass storage and all other I/O devices into a common and compatible
system based on paths, files, and directories.

filter:
A special type of utility command program specially designed for use with pipes. A filter typically
performs some useful function on the data flowing through it such as sorting, editing, etc. See also:
pipe.

Using Professional OS-9 C - 3

Glossary Glossary

format:
A utility provided in OS-9 to initialize a disk before it is used. New disks must be formatted prior
to being used. Also refers to the physical division of a disk into sectors, clusters, etc.

group.user ID:
This number is used for file system security purposes. Files have owner and public access permis-
sions. If no public access permissions are set, only the owner of a file may access it. There are two
types of file ownership: by the group and by the user. Each file is stored with a group.user ID.
Any user with the same user ID as the file is considered an owner. Any user with the same group
ID as the file is also considered an owner. This allows people who work on the same project to be
able to access the same files via their group number.

interrupt:
A control signal caused by an event, signal, or set of circumstances that cause a break in the normal
flow of a system or routine such that the flow can be resumed from that point at a later time.

keyword:
A program, procedure file, or built-in command that the shell recognizes in a command line.

link:
An OS-9 function used to request the location of a memory module of a given name prior to its use.
Causes the user count of the module to be increased by one. unlink is the opposite function. See
also: memory module and module directory.

memory module:
A named block of program code or data that is or can be loaded into memory. Memory modules
use a special standardized format. See also: data module, module directory, and program module.

MMU:
Abbreviation for Memory Management Unit. MMU is special hardware used to provide logical to
physical address translation and to protect system memory from accidental modification. Some
MMU hardware also provides virtual memory capabilities. MMU is a super-set of SPU. See SPU.

module directory:
A list automatically maintained by OS-9 of the name, location, and user count of each memory
module which is present in memory. See also: link and memory module.

multi-tasking:
A feature of the operating system which allows multiple programs to be run at the same time.

multi-user:
A function of the operating system which allows multiple users to use the system at the same time;
provides security for the system and each user’s files. Sometimes referred to as timesharing.

C - 4 Using Professional OS-9

Glossary Glossary

NFM:
The Network File Manager is the OS-9 network file manager module that supports networking.
NFM is responsible for maintaining accurate communication between device drivers across a net-
work.

operating system:
The master control program that manages the operation of the computer and provides commonly-
used functions such as I/O for other programs.

owner attributes:
Owner read, owner write, and owner execute. An owner of a file is a user with the same group
number or user ID associated with the file. If set, the owner attributes allow access to the file by
the owner. See public attributes.

parameters:
A character or symbol recognized by the shell in a command line that specifies additional condi-
tions for the execution of the command.

password:
A user-unique code word used to log on to a timesharing system that validates identity for security.

password file:
A file that contains a list of all valid user names and passwords for users on the system.

path:
The routing of input or output between a program and a file or I/O device.

path descriptor:
A data structure used by file managers and device drivers to perform I/O functions. A path descrip-
tor contains information specific to an open path. Every open path is represented by a path descrip-
tor. Path descriptors are allocated and deallocated as paths are opened and closed.

pathlist:
A list of names that specifies the location of the file or I/O device to be associated with a path. It
may in various combinations include a device name, one or more directory names, and a file name.

permission:
Term used to indicate that a certain attribute is set for a file. For example, owner read permission.
Also sometimes used for the term attribute.

pipe:
A special type of I/O path that connects and synchronizes the standard output of a program to the
standard input of another simultaneously running program. Chains of piped programs are called
pipelines. See also: filter and standard I/O paths.

Using Professional OS-9 C - 5

Glossary Glossary

pipeline:
See pipe.

position independent code:
Code that does not reference absolute addresses. All OS-9 code must be position independent.

procedure file:
A file that contains a list of commands to be performed by the shell as if they were typed in from
a keyboard.

process:
An individual running program; synonymous with task.

process ID:
A unique code number assigned by OS-9 when a new process is created. It identifies the process
in subsequent commands or system calls.

program module:
A memory module which contains executable code. All OS-9 programs must be kept in memory
module format. See also: memory module.

public attributes:
Public read, public write, public execute. The public is defined as any user not having the same
user ID or group number as the file. If set, these attributes allow anyone access to the file. See
owner attributes.

RAM disk:
A special device driver module that allows the part of the system’s main memory to behave as a
disk drive. This permits high speed, but non-permanent, storage for small, commonly used files.

RBF:
The Random Block File manager is the OS-9 file manager module that supports random access,
block oriented mass storage devices (disk systems, etc.). RBF can handle any number or type of
such systems simultaneously. It is responsible for maintaining the logical and physical file
structure for OS-9.

record locking:
A special function built into OS-9’s file management system which eliminates problems caused by
two or more users trying to update the same part of a file at the same time.

redirection:
A method of changing the normal input and/or output of a program to alternate files or I/O devices.
This is done at the time the program is run through the use of modifiers in the command line, as
opposed to at the time it is written. See also: standard I/O paths.

C - 6 Using Professional OS-9

Glossary Glossary

re-entrant code:
Code shared by two or more programs. This saves program memory space that would be duplicat-
ed in each program. Re-entrant code must not alter itself in any way.

root directory:
The directory entered when the user first logs on to the system. This directory is specified in the
password file.

SBF:
The Sequential Block File manager is the OS-9 file manager module that supports sequential
access, block oriented mass storage devices (tape systems). SBF can handle any number or type
of such systems simultaneously.

SCF:
The Sequential Character File manager is the OS-9 manager module that supports sequential ac-
cess, character oriented devices (terminals, printers). SCF can handle any number or type of such
systems simultaneously.

self-modifying code:
Code that alters itself during execution. OS-9 code must not be self-modifying.

separator:
A special character recognized by shell in the command line that specifies the sequential or
concurrent execution of more than one process. The special characters are: a semicolon (;) for
sequential execution and an ampersand (&) for concurrent execution.

sequential execution:
The act of deliberately running programs one at a time in the order specified as opposed to
concurrently. This is done when it is necessary for one program to be completed before the next
one in a sequence is begun. See also: multi-tasking, concurrent execution, and separator.

shell:
OS-9’s command interpreter program. This program acts as an interface between your and the op-
erating system. See also: command interpreter.

signal:
A software interrupt that can be sent from one process to another or from OS-9 to a process. For
example, the <control>E abort key causes an abort signal to be sent to a program.

single user:
A mode of operation where only one user utilizes the computer. Also, a file attribute that allows
only one user at a time to access the file.

Using Professional OS-9 C - 7

Glossary Glossary

SPU:
Abbreviation for System Protection Unit. SPU is special hardware used to protect system memory
from accidental modification. If a process tries to access any part of system memory or any other
process’ memory, the SPU hardware causes a bus error and the system aborts the process.

standard I/O path:
The default I/O path used by a program for routine input and output. Every process has three
standard I/O paths: input, output, and error output. See also: path and redirection.

system call:
A request from a programming language that causes OS-9 to perform a specific function such as
input/output.

system disk:
A disk which contains the system boot file plus other common system-wide files such as the utility
command set.

task:
See process.

timesharing:
See multi-user.

UNIX:
An operating system similar to OS-9.

user name:
A name used externally to identify each user when logging on to the system. Based on the contents
of the password file, the system converts this name to the corresponding user ID number for sub-
sequent internal use. See also: user ID and password file.

user ID:
A unique code number used to identify the user’s files and processes. See also: user name and
password file.

utility:
One of the set of programs supplied with OS-9 that is used to perform housekeeping, maintenance,
customization, and convenience functions.

End of Appendix C

C - 8 Using Professional OS-9

Glossary NOTES

NOTES

Using Professional OS-9 C - 9

NOTES Glossary

C - 10 Using Professional OS-9

INDEX

.login file 5-21

.logout file 5-6, 5-21–5-22
_sh environment variable 5-4, 5-28
Abort process 3-6, 5-2, 5-6, 5-21, 5-31
Access to files/directories 4-4, 4-5, 4-9, 4-15, 4-19
Additional memory size modifier 5-9
Application program 1-2
ASCII conversion table Apdx A
Attach device 8-8
Attr utility 4-18–4-19
Attributes 4-18–4-19

Abbreviations 4-5
Attr utility 4-18–4-19
Changing 4-19
Displaying 4-18
File security 4-4

Background process 3-6, 5-15, 5-20, 5-21, 5-30, 5-
32

Definition 1-4

A

B

Using Professional OS-9

Backup procedure 2-3, 2-5–2-7
Frestore utility 7-6–7-11
Fsave utility 7-2–7-5
Incremental 7-1–7-14
Multiple drive 2-6
Single drive 2-6

Backup utility 2-3, 2-5–2-7
Binary conversion table Apdx A
Binex utility B-5
Boot 2-1, 8-26
Bootfiles 8-14
Build utility 4-3, 4-18
Built-in shell commands 5-6

Chd utility 4-7, 4-13–4-14, 5-3, 5-6
Chx utility 4-13–4-14, 5-6
Ex utility 5-6
Kill utility 5-6, 5-32
Logout utility 5-6
Profile 5-6, 5-32
Set utility 5-6
Setenv utility 5-4, 5-6
Setpr utility 5-6
Unsetenv utility 5-4, 5-6
W utility 5-6, 5-30
Wait utility 5-6, 5-30

B (continued)

I - 1

Index Index

Cfp utility 5-25–5-26
Chd utility 4-7, 4-13, 4-14, 5-3, 5-6, 5-8
Chx utility 4-13, 4-14, 5-6, 5-8
Command interpreter 3-3
Command line 3-3, 5-7

Concurrent execution 5-9, 5-15
Execution modifiers 5-7–5-12
Function 3-3
Grouping 5-19
Keyword 5-7, 5-8
Parameters 5-7, 5-8
Processing 5-7, 5-8, 5-16
Separators 5-7, 5-9, 5-14
Sequential execution 5-9, 5-15
Wildcards 5-9, 5-13–5-14

Command separators 5-7, 5-9, 5-14
Concurrent execution 5-9, 5-15
CONFIG macro 8-2, 8-10
Control keys 3-5, 3-6
Copy a file 4-20–4-25

Copy utility 4-20–4-22
Dsave utility 4-22–4-25

Copy utility 4-20–4-22
Current data directory 4-7, 4-9, 4-11, 4-12, 4-13,

4-16
Current execution directory 4-7, 4-9, 4-12, 4-13, 4-

14

Data files 4-3
Date utility 2-2
Decimal conversion chart Apdx A
Default device descriptor 8-20
Deiniz utility 8-19
Del utility 4-25–4-26
Deldir utility 4-25–4-26
Delete a file/directory 4-25–4-26
Destination disk 2-5
Dir utility 4-11–4-13

Directory
Accessing 4-9, 4-15
Attributes 4-8, 4-18–4-19
Changing 4-14, 5-3
Characteristics 4-8
Creating 4-16
Current data 4-7, 4-9, 4-11, 4-12, 4-13, 4-16
Current execution 4-7, 4-9, 4-12, 4-13, 4-14
Deldir utility 4-25–4-26
Deleting 4-25–4-26
Dir utility 4-11–4-13
Displaying 4-11–4-13
Extended listing 4-12
Function 1-3, 4-1
Home 4-7, 5-3
Makdir utility 4-16
Name rules 4-17
Parent 4-6, 4-14
Pathlist 4-9–4-10
Root 4-6

D_MaxAge 8-27
D_MinPty 8-27
Dsave utility 4-22–4-25

Edt utility 4-18
Environment variables 5-3–5-5

Changing 5-4
HOME 4-8, 5-3
PATH 5-3
PORT 5-3
PROMPT 5-4
_sh 5-4
SHELL 5-3
TERM 5-4
USER 5-3

Ex utility 5-6
Executable program module files 4-3

C

D

D (continued)

E

I - 2 Using Professional OS-9

Index Index

Execution modifiers 5-12
Additional memory size 5-9
I/O redirection 5-10
Process priority 5-12

Files
Accessing 4-4, 4-9–4-10, 4-13–4-16
Attributes 4-4, 4-5, 4-18–4-19
Copy utility 4-20–4-22
Copying files 4-20–4-25
Creating 4-17–4-18

Build utility 4-18
Edt utility 4-18
uMACS 4-18

Deleting 4-25–4-26
Directory 4-8
Executable program module 4-3
File pointer 4-2
Function 1-3, 4-1
List utility 4-19–4-20
Name rules 4-17
Ownership 4-4, 4-19
Password 5-24
Pathlist 4-9
Procedure files 5-21–5-27

.login 5-21

.logout 5-21
Applications 5-20
Cfp utility 5-25
Dsave utility 4-22
Password 5-24
Startup file 8-17

Security 4-4–4-5
Termcap 8-31–8-37
Text 4-3

Filters 5-18
Foreground process

Definition 1-4

Format utility 2-3–2-5
Multiple disk 2-4
Parameters 2-3
Single disk 2-4

Free utility 3-9
Frestore utility 7-6–7-11
Fsave utility 7-2–7-5

Group.user ID 4-4
Grouping commands 5-19
Hard disk

Installing OS-9 8-24
Help utility 3-8
Hexadecimal conversion chart Apdx A
Home directory 4-7, 5-3
HOME environment variable 4-8, 5-3
Init module 8-2

CONFIG macro 8-10
Initializing devices 8-18
Iniz utility 8-18
Keyword 5-7, 5-8
Kill utility 5-6, 5-31, 5-32
List utility 4-19
Load utility 8-20
Login procedure 3-2
Logout utility 5-6

Makdir utility 4-16
Make utility Chap. 6
Memory allocation

Mfree utility 3-9, 3-10
Mfree utility 3-9, 3-10
Moded utility 8-9
Modifiers 5-7–5-13

Execution 5-7–5-13
Memory size 5-9
Process priority 5-9
Redirection 5-9, 5-10–5-12

E (continued)

F

F (continued)

G - L

M

Using Professional OS-9 I - 3

Index Index

Modules
De-initializing 8-18
Editing

Moded utility 8-9
Systype.d file 8-10

Executable program 4-3
Extension 8-8
Init 8-2–8-6, 8-12
Initializing 8-18
Library 1-6
Loading 8-20
Memory 1-6, 8-21
Moded utility 8-9

Multi-tasking features 1-4–1-5
Multi-user 1-4–1-5, 8-21
Multiple shells 5-27

Named pipes 5-17
Naming conventions

Files/directories 4-17
I/O devices 5-11

Octal conversion chart Apdx A
Operating system

Definition 1-1
Function 1-1, 1-2

OS9Boot file 2-1, 8-2
Owner attributes 4-5, 4-19

Page pause 3-6
Parameter

Command line 5-7, 5-8
Parent directory 4-6, 4-14
Password file 5-24
PATH environment variable 5-3
Pathlist

Full 4-9
Naming conventions 4-10
Relative 4-9, 4-10, 4-14

Pd utility 4-16
Pipe (line) 5-16

Construction 5-9
Definition 5-16–5-17
Filters 5-18
Named 5-17
Un-named 5-17

PORT environment variable 5-3
Powering down the system 8-22–8-23
Printenv utility 5-4–5-5
Priority

Age 5-12, 8-27
Definition 5-12
D_MaxAge 8-27
D_MinPty 8-27
Initial 5-12
Manipulating 8-27
Modifier 5-13
Setting 5-9

Procedure files
.login 5-21
.logout 5-21
Applications 5-20
Cfp utility 5-25–5-26
Definition 5-20
Dsave utility 4-22–4-25
Shutdown 8-22–8-23
Startup file 8-17

Process
Age 5-12, 8-27
Child 5-10
Definition 1-4
Parent 5-10
Priority 5-9, 8-27
Scheduling 8-27–8-28
System state 8-28
User state 8-28

Procs utility 5-16, 5-28
Profile utility 5-6, 5-22
PROMPT environment variable 5-4

M (continued)

N - O

P

P (continued)

I - 4 Using Professional OS-9

Index Index

RAM disk 8-16
Initializing 8-21
Non-volatile 8-16
Volatile 8-16

Redirecting output 5-9, 5-10–5-12
Root directory 4-6

Separators
Command line 5-7, 5-9
Concurrent execution 5-9
Pipes 5-9
Sequential execution 5-9, 5-15

Sequential execution 5-9, 5-15
Set utility 5-6
Setenv utility 5-4, 5-6
Setime utility 2-2
Setpr utility 5-6
SHELL environment variable 5-3
Shell environment variables 5-3–5-5
Shell utility 3-3, 5-3

Built-in command 5-6
Chd utility 4-17, 4-13–4-14, 5-3, 5-6
Chx utility 4-13–4-14, 5-6
Ex utility 5-6
Kill utility 5-6, 5-32
Logout utility 5-6
Profile utility 5-6, 5-22
Set utility 5-6
Setenv utility 5-4, 5-6
Setpr utility 5-6
Unsetenv utility 5-4, 5-6
W utility 5-6, 5-30
Wait utility 5-6, 5-30

Environment 5-3–5-4
Changing 5-4

Function 5-1
Multiple shells 5-27
Options 5-1–5-2
Procedure files 5-20

Shutting down the system 8-22–8-23
Source device 7-1
Source disk 2-5
Startup file 2-1, 8-17
Startup procedure 5-22, 8-17
Super user

Defined 4-4
System disk

Directories 2-8
System security 4-4
System shut down 8-22–8-23
Systype.d file 8-2, 8-10

Tape utility 7-15–7-16
Target device 7-1
TERM environment variable 5-4
Termcap file 8-31–8-37
Tmode utility 3-6, 8-29
Tsmon utility 5-23, 8-21
Un-named pipes 5-17
Unsetenv utility 5-4, 5-6
USER environment variable 5-3
W utility 5-6, 5-30
Wait utility 5-6, 5-30
Wildcards 5-9, 5-13–5-14
Xmode utility 8-29

R

S

S (continued)

T - Z

Using Professional OS-9 I - 5

Index Index

Notes

I - 6 Using Professional OS-9

		Using Professional OS-9

		Table of Contents

		Chapter 1-3

		Chapter 3-5

		Chapter 5-7

		Chapter 7-8

		Preface

		1. An Overview of OS-9

		What is an Operating System

		Using OS-9 as Your Operating System

		Using OS-9's Functions

		Storing Information

		Multi-tasking and Multi-user Features

		The Memory Module and Modular Software

		2. Starting OS-9

		Booting OS-9

		Backing Up the System Disk

		Formatting a Disk

		Multiple Drive Format

		Single Drive Format

		Continuing the Formatting Process with Either a Single Drive or a Multiple Drive

		The Backup Procedure

		Multiple Drive Backup

		Single Drive Backup

		Directories Contained on the System Disk

		3. Basic Commands and Functions

		Learning the Basics

		Logging on to a Timesharing System

		An Introduction to Shell

		Using the Keyboard

		The Page Pause Feature

		Basic Utilities

		The Help Utility and the -? Option

		Free and Mfree

		4. The OS-9 File System

		OS-9 File Storage

		Text Files

		Executable Program Module Files

		Random Access Data Files

		File Ownership

		Attributes and the File Security System

		The OS-9 File System

		Current Directories

		The Home Directory

		Directory Characteristics

		Accessing Files and Directories: The Pathlist

		Basic File System Oriented Utilities

		Dir: Displaying the Contents of Directories

		Dir Options

		Chd and Chx: Moving Around in the File System

		Climbing Directory Trees

		Using the Pd Utility

		Using Makdir to Create New Directories

		Rules for Constructing File Names

		Creating Files

		Examining File Attributes with Attr

		Listing Files

		Copying Files

		Dsave: Copying Files Using Procedure Files

		Del and Deldir: Deleting Files and Directories

		5. The Shell

		The Function of Shell

		The Shell Environment

		Changing the Shell Environment

		Built-in Shell Commands

		Shell Command Line Processing

		Special Command Line Features

		Execution Modifiers

		Additional Memory Size Modifier

		I/O Redirection Modifiers

		Process Priority Modifier

		Wildcard Matching

		Command Separators

		Sequential Execution

		Multi-tasking: Concurrent Execution

		Pipes and Filters

		Un-named Pipes

		Named Pipes

		Command Grouping

		Shell Procedure Files

		The Login Shell and Two Special Procedure Files: .login and .logout

		The Profile Command

		Setting Up a Time-Sharing System Startup Procedure File

		The Password File

		Creating a Temporary Procedure File

		Multiple Shells

		The Procs Utility

		Waiting For the Background Procedures

		Stopping Procedures

		Error Reporting

		Running Compiled Intermediate Code Programs

		6. Making Files

		The Make Utility

		Implicit Definitions

		Macro Recognition

		Make Generated Command Lines

		Make Options

		Examples of the Make Utility

		Example One: Updating a Document

		Example Two Compiling C Programs

		Redefing the C Compiler Example

		Example Three: A makefile that Uses Macros

		7. Making backups

		Incremental backups

		Making an Incremental Backup: The Fsave Utility

		The fsave Procedure

		Example fsave Commands

		Restoring Incremental Backups: The frestore Uility

		The Interactive Restore Process

		Example Command Lines

		Incremental Backup Strategies

		The Small Daily Backup Strategy

		The Single Tape Backup Strategy

		Use of Tapes/Disks

		The Tape Utility

		8. OS-9 System Management

		Setting Up the System Defaults: the Init Module

		Customization Modules

		Changing System Modules

		Using the Moded Utility

		Editing the Systype.d File

		Making Bootfiles

		Bootlist Files

		Bootfile Requirements

		Making RBF Bootfiles

		Making Tape Bootfiles

		Using the RAM Disk

		Making a Startup File

		Initializing Devices

		Loading Utilities into Memory

		Loading the Default File Descriptor

		Initializing the RAM Disk

		Multi-User Systems

		System Shutdown Procedure

		Installing OS-9 On a Hard Disk

		Checking the Hard Disk Device Descriptor

		Formatting the Hard Disk

		Copying the Distribution Software on to the Hard Disk

		Making the Hard Disk the System Boot Disk

		Test Booting from the Hard Disk

		Managing Prcoesses in a Real-time Environment

		Manipulating Process' Priority

		Using D_MinPty and D_MaxAge to Alter the System's Process Scheduling

		Using System-State Processes and User-State Processes

		Using Tmode and Xmode Utilities

		Using the Tmode Utility

		Using the Xmode Utility

		The Termcap File Format

		Termcap Capabilities

		Example Termcap Entries

		The OS-9 Utilities

		System Command Descriptions

		Basic Utilities

		Programmer Utilities

		System Management Utilities

		Formal Syntax Notation

		General Notes

		Utilities

		A-B-C

		attr

		backup

		binex/exbin

		break

		build

		cfp

		chd/chx

		cmp

		code

		compress

		copy

		count

		D-E-F

		date

		dcheck

		deiniz

		del

		deldir

		devs

		dir

		diskcache

		dsave

		dump

		echo

		edt

		events

		ex

		expand

		fixmod

		format

		free

		frestore

		fsave

		G-H-I

		grep

		help

		ident

		iniz

		irqs

		K-L-M

		kill

		link

		list

		load

		login

		logout

		makdir

		make

		mdir

		merge

		mfree

		moded

		O-P-Q

		os9gen

		pd

		pr

		printenv

		procs

		profile

		qsort

		R-S-T

		rename

		romsplit

		save

		set

		setenv

		setime

		setpr

		shell

		sleep

		tape

		tapegen

		tee

		tmode

		touch

		tr

		tsmon

		U-W-X

		unlink

		unsetenv

		w/wait

		xmode

		Appendix A. ASCII Conversion Chart

		ASCII Symbol Definitions

		Appendix B. The ROM Debugger

		The ROM Debugger

		Overview of Debugger Functions

		Expressions and register Names

		The Debugger and Traps

		Breakpoints and Caching

		The Talk-Through Command

		The Download Command

		Basic Debugger Commands

		Appendix C. Glossary

		A-B

		B-D

		D-F

		F-M

		N-P

		P-R

		R-S

		S-U

		Index

		A-B

		C-E

		E-M

		M-P

		R-Z

