
Peoples Pascal II (1979)(Kin-Man Chung and Herbert Yuen).pdf

PEOPLE’S PASCAL II
USER’S MANUAL FOR TRS-80

By KIN-MAN CHUNG and HERBERT YUEN

(The authors wrote, in the September, October and November “Byte” magazine, a three-
part article titled: “A ‘Tiny’ Pascal Compiler”, including listing for North Star Basic.
Since the “Byte” series, they have re-written their tiny Pascal operating system in tiny
Pascal, and compiled it into Z80-native code for TRS-80.)

PEOPLE’S PASCAL OPERATING SYSTEM

Your ‘Tiny’ Pascal system, hereafter called People’s Pascal II, is a complete, self-
contained operating system for creating, compiling, running, saving and loading Pascal
Programs for the TRS-80. Once you have loaded People’s Pascal II, you never need
leave the operating system. The People’s Pascal II system is composed of three inter-
related sections:

Monitor: This is the sub-system which provides run-time support, checks for errors,
and provides the necessary utilities to save and load programs to and from
cassette tape.

Compiler: This is the program which compiles your Pascal source program into P-
code, ready to be executed. The compiler also checks for syntax errors.

Editor: The editor is used to create or modify People’s Pascal source programs.

All these sub-systems are loaded simultaneously, and are always present in RAM, unless
you choose to overwrite portions to free memory space.

MINIMAL SYSTEM requirements are: Level II, 16K RAM!

The first sections of this users’ manual will discuss in detail the three subsystems, what
they do, and how to use them. The next section will deal with the specific aspects,
limitations and enhancements to People’s Pascal II; then follows a chapter on getting
started, to help you get through the first time you bring People’s Pascal up. Finally, you
will find the error codes, syntax diagrams, and the sample programs.

PEOPLE’S PASCAL MONITOR

All operations make at least some use of the monitor, hence we will begin our discussion
of the People’s Pascal II system with it. The monitor provides run-time support to the
entire system, as well as providing you with a means of saving or loading both source
programs, and P-code programs from or to cassette tape. From the monitor one also

gives the command to compile a program, or to run that program once it has been
compiled. You also invoke the editor from the monitor. Below is a list of the monitor
commands and what they do:

E Edit old source file or create a new one.
C Compile source program into P-code, ready to be executed. P-

code is placed after source in RAM.
C/-P Compile source, but do NOT generate P-code (useful to check for

syntax errors).
C/-S Compile source, and overwrite the source program (used when you

have very large programs).
R Run the compiled program.

R/-C Run the compiled program and overwrite the editor and compiler.
LS >filename< Load source program from cassette.
LP >filename< Load P-code program from cassette.

WS >filename< Save source program to cassette.
WP >filename< Save P-code program to cassette.

It should be noted that you are given the ability to overwrite sections of the People’s
Pascal system if you need the space for large programs. However, you must remember
that they are “gone” and you must re-load the entire system again if you are to use them
further.

It should also be noted at the time that a filename can be at most six (6) characters long.
Errors will result if this is not adhered to.

THE PEOPLE’S PASCAL EDITOR

The text editor provided with your People’s Pascal package enables you to create and
modify source programs. The text editor is line oriented, but, unlike Basic, does not use
line numbers. The maximum number of lines of text that you can have is 600, and the
maximum line length is 130 characters.

All editor commands are single characters; some may have numeric arguments following
them, or a character string. In our discussion of the editor, “xx” refers to integer numbers
(1-999), and >string< refers to a string. Each command ends with a >cr<, carriage return
(“ENTER” on your TRS-80 keyboard). Invalid commands are flagged with the message
“ILLEGAL”. The line pointer always points at the line most recently displayed or
modified, or inserted. After a Delete command, the line pointer is moved up one line.

Below is a list of the editor commands. Note: “*” means entirely or “all the way”:

>cr< A carriage return on an empty line will exit from insert mode.

PRINT P Print the current line.

Pxx Print xx lines starting from current line.

P* Print entire file.

Up U Move up one line.

Uxx Move up xx lines.

U* Move up to top of first line of file.

NEXT N Move line pointer to next line (down).

Nxx Move line pointer down xx lines.

N* Move line pointer to last line of file.

Delete D Delete current line.

Dxx Delete xx lines starting at current line.

D* Delete entire file (i.e., “scratch”).

Insert I Enter insert mode (remember, you exit with a >cr<).

Insert lines after current line pointer. A “?” is displayed to prompt
you.

Replace R >st< Replace the current line by >string<.

Extend X The current line is displayed and the cursor is at the end of the line,
more characters can be appended to the end (similar to Basic),

Status S Status of current file displayed includes: number of lines, file
location, position of line pointer.

QUIT Q Return to People’s Pascal II monitor.

The editor also recognizes two special keys:

<- the back arrow, for backspace, and

-> the right arrow, for tab, which is three spaces..

These two keys may be used at any time for editing a command or input file.

Expanding on this: if you want to enter a program, you would type “E” from the monitor,
then you would type “I” for insert. You then can enter text. To stop entering text, you
type a blank carriage return on an empty line.

Hint: When “MEMORY FULL” error occurs while editing or inserting, the source is too
big.

You should play with the editor a while to make sure that you completely understand its
operation.

PEOPLE’S PASCAL COMPILER

Roughly speaking, a compiler is a program that translates the statements of a high-level
language into an equivalent program of machine-readable form. People’s Pascal II
translates the high-level source program into an intermediate file called P-code. P-code is
then interpreted, using the run-time monitor for support. The result is programs which
execute at least four times faster, and up to eight times faster than Basic!

People’s Pascal II is a subset of standard Pascal. The syntax is essentially identical to its
larger brother. Syntax diagrams have been included for those who are just now learning
the language. It must be emphasized that this manual is not an instructional text on
Pascal programming, but rather an explanation of the limits and special features of
People’s Pascal. However, we will review some essential points in the next section.

Partial list of books:

Programming in Pascal; Grogono, Addison-Wesley, 1978
Pascal: User Manual and Report; Jensen & Wirth, Springer-Verlag, 1974
A Primer on Pascal; Conway, Gries and Zimmerman; Winthrop Publishers, 1976

COMPILER SPECIFICS

Maximum number of procedure or function parameters is 15; maximum number of
procedure nestings is seven levels; the symbol table is restricted to 75 (200 for the big
version). “:=” is used for assignment and “=” is used for equality, They are not
interchangeable! “;” is used to separate statements, not to end statements. Thus the last
“;” in a compound statement:

BEGIN STATEMENT
STATEMENT;
IF >EXP< THEN >EXP< ELSE
>EXP<; STATEMENT;

END

is not necessary. It is, however, allowed since a Pascal statement can be a null. Note also
the absence of “;” before an ELSE or an END in the “CASE” statement.

Expressions may be either arithmetic or logical (Boolean). Thus, the following are
perfectly legal:

A := B < C;
.
.
IF A+B THEN ….

Note also that the Boolean operator “OR” has the same precedence as the arithmetic
operator “+” and “-“; “AND” the same as “*” and “DIV”, etc. It is important to
remember that “OR” and “AND” have precedence over “=”, “>”, etc, thus the need for
brackets at times as shown below:

IF (A > 10) AND (A < 5) THEN …

The statement:

IF A > 10 AND (A <5) THEN ….

would be parsed as:

IF A > (10 AND (A < 5)) THEN …

thus producing the undesirable result. There are some context-sensitive rules and
meanings that cannot be inferred from the syntax diagrams, and may be particular to this
implementation:

“(“ and “)” are used in the TRS-80 implementation instead of “{“ and “}”.

Identifier names must start with a letter and may be followed with letters or digits, but
only the first four characters are significant. However, reserved words must be typed in
full. Identifiers must be declared before used. Identifiers can be declared twice, but only
the last one is used. Formal parameters of a procedure need not (and should not) be
declared again inside the procedure. Parameters are passed to procedures or functions by
value, i.e., a copy of the value of the parameter by the program before the call. The scope
rules for identifiers are the same ones used by any block-structure language. The scope
of a variable is the procedure that contains its. An inner procedure can reference a
variable in an outer procedure.

The only data types People’s Pascal supports are integers are one-dimensional integer
arrays. The integers are 16-bit signed, the arrays start at 0. Arrays are NOT checked for
“subscript out of range” at run-time.

The meaning of certain operations is:

A DIV B truncated integer division : 27 DIV 5 = 5
A MOD B A – (A DIV B) * B : 27 MOD 5 = 2
A SHL B Left shift A by B : 27 SHL 2 = 54
A SHR B Right shift A by B : 27 SHR 2 = 13

The built-in array MEM can be used to read to (if it appears in the left side of an
assignment) or from (if it appears in an expression) to or from a specified memory
location, such as:

A := MEM (24467) + 3;
MEM(T) := 0;

A second form of the MEM function is “MEMW”. This enables a two-byte word to be
read to or from memory using the same convention as for “MEM”. Note: the low-order
byte comes first, in accordance with INTEL convention.

Hex constants are prefixed by % (e.g., %2A00).

Strings are enclosed by single quote (‘), not double. When a string appears in an
expression or as a CASE label, it has the value equal to the ASCII value of the first
character of the string. When a string appears in the WRITE statement, the entire string
would be outputted, such as:

X := ‘ABCD’ X would equal ‘A’ = 65

The READ and WRITE statements are character-oriented, not line-oriented. More than
one character can be placed in the same statement. Decimal numbers or Hex numbers
can be read-in from the keyboard by a “#” (decimal) or “%” (hex) after the variable in the
READ statement. Similarly, a decimal integer can be printed on the output device by
following the expression with the appropriate “#” or “%” for Hex.

READ (A,B,C,I#,J%)

This would READ three (3) characters, a decimal number, and a hex number.

A := 65
WRITE (‘HELLO? ‘,A,’ ‘,A#,’ ‘,A%)

would print:

HELLO? A 65 0041

Since the READ is character-oriented, it is necessary to terminate an integer input by a
non-integer character (such as a >cr< or >sp<). To input a hex number, four (4) digits
must be typed.

To write on a new line, it is also necessary to output explicitly the ASCII code for >cr<
and >lf< to the output device. That is, you must manually insert carriage return line feed.
Such as:

WRITE(‘THIS IS A TEST’,13,10)
(HERE CR = 13, LF = 10)

An expression in the IF, WHILE, and REPEAT statements are said to fulfill the
condition if the least-significant bit is 1. This is equivalent to test that the expression
is odd. Thus after:

IF X THEN A := 1 ELSE A := 100

A would have the value of 1 if X is odd, and 100 if X is even.

The relational operators (e.g. “=”, “=>” … etc) always produce a value of 0 or 1. Thus
after:

A := X = 5;
A= 1 IF X=5, OTHERWISE A=0

Comments are delimited by “ (* ” and " *) ".

What follows is a list of built-in functions to the compiler:

ABS(X) returns the absolute value of x
SQR(X) returns square of X

INP(X) inputs port X, used as A = INP(X)
OUTP(X,A) outputs A to port X

INKEY inputs the keyboard, used as in A := INKEY
PLOT(X,Y,A) plots graphics to screen, using the X-Y coordinates. If A is odd

then plot is "set", if A is even then plot is “reset".
POINT(X,Y) just like Basic: returns a "1” if the point is filled, a "0" if blank

MOVE(B,A,N) move a block of memory of N bytes from address A to address
B.

Screen control characters are the same as TRS-80 Basic. For example, use
WRITE (23,31) to clear the screen.

BRINGING UP PEOPLE'S PASCAL

In this section of the People's Pascal users' manual, we will go step by step from
loading the tape the first time, to running your first program. Side one of your tape
comes with three sample programs, the first is loaded with the system, the second is
“HILBER” and the third is “BLOCK”. Side two contains the big version and source
to People’s Pascal, “PAS32K” and “COMPS1”, respectively.

STARTUP

1) Turn on your machine. When asked for MEMORY SIZE, respond by hitting
the is ENTER key.

2) Type SYSTEM to reach system level. TRS-80 will display the prompt: *?.

3) Make sure that your People's Pascal tape is at the start, and type PASCAL
and then ENTER and turn recorder to PLAY.

4) The tape will begin to load, the star will blink every 4 seconds. The entire
load will take about 3 min.

5) Once the tape has loaded, type a “/” (slash) and hit ENTER. At this point
you should receive the opening message:

"TINY PASCAL V-1.0"

6) At this point you have successfully loaded the entire People's Pascal oper-
ating system, and can proceed to the next section, below.

If you did not get this far try loading the tape again, at various volume settings.
Mark down, on the cassette label, the volume setting that was successful. If it will
not load, and other commercial tapes will load, return it to CIE for replacement.

CREATING A PROGRAM

1) From the monitor, type "E". This will place you in the editor.

You will see one of two messages, either:

EMPTY FILE... ENTER TEXT

This is when there is no current source program, or you will see

a set of statistics on the current file.

On the initial load, the sample program is loaded simultaneously. If this is
your very first try, then skip ahead to step 5, otherwise proceed.

2) To "scratch" the sample program which is always loaded with the system,
you simply use the editor command: D*.

3) At this point you may enter a program.

4) Once your program is entered, you may exit insert mode by hitting an
ENTER on the next blank line. This puts you back in the editor command
mode.

5) To return to the monitor, in order to compile, etc., you type Q.

COMPILING, RUNNING, SAVING/LOADING A PROGRAM

1) Normally, to compile a source program, you type C from the monitor. This
creates P-code. If you have any syntax errors, they will show up here.

If you have syntax errors, the error list on the back of this manual will tell you
what they are. You should then go back and re-edit the existing source file,
correcting the syntax errors, before re-compiling.

2) Once you have successfully compiled the program, you may run it by typing
R from the monitor.

3) To save the program, or the P-code. You may use the appropriate monitor
commands. Or you may load a previously saved program.

Remember, you must re-compile a program if you make a change in it!

SPECIAL NOTES

It should be noted that the BREAK key equals a temporary stop of program
execution, and that any other key re-starts it. If you hit BREAK twice in a row,
you will terminate the run, and return to the People’s Pascal monitor (like a
control-C on most other systems).

One should also note that, once a program has been compiled, only the P-code (that is,
the compiled program) need be loaded for execution. In other words, it is not necessary
to compile before each execution if you have saved the P-code on tape.

When error 1001 is encountered during compilation, there is not enough memory.
You should try using C/-P. Be sure to save the source first!

When MEMORY FULL error occurs on running the program, either cut down array
size, or try using R/-C option.

We know that you will enjoy using People's Pascal, and recommend that you “play”
with it a while just to get the feel for it, and to become familiar with all of its
features.

USING THE 'BIG' PASCAL ON SIDE (B)

On side two of your tape is an expanded People's Pascal compiler. That is, it can
handle larger programs. You will need at least 36K RAM to use it.

To use, simply follow the directions "On Bringing Up People's Pascal”, except
substitute PAS32K for PASCAL.

The source to the compiler is immediately after PAS32K on side B. It is called:
COMPS1. You can then "play" with the source to the compiler. Note: you will need at
least 36K to compile the compiler.

IMPORTANT: Source programs are not interchangeable between the two compilers.
That is, a program created using the big compiler can NOT be used with the normal
compiler, and vice versa.

ERROR CODES:

1 error in simple type
2 identifier expected
3 "program" expected
4) expected
5 : expected
6 illegal symbol
7 error in parameter list
8 OF expected
9 (expected
10 error in type
11 (expected
13 END expected
14 ; expected
15 integer expected
16 = expected
17 BEGIN expected
18 error in declaration part
19 error in field-list
20 , expected
21 * expected

50 error in constant
51 := expected
52 THEN expected
53 UNTIL expected
54 DO expected
55 TO/DOWNTO expected
56 IF expected
57 FILE expected
58 error in factor
59 error in variable

101 identifier declared twice
102 low bound exceeds high bound
103 identifier is not of appropriate class
104 identifier not declared
105 SIGN NOT ALLOWED
106 number expected
107 incompatible subrange types
108 file not allowed here
109 type must not be real
110 tagfield type must be scalar
111 incompatible with tagfield type
112 index type must not be real
113 index type must be scalar
114 base type must not be real
115 base type must be scalar
116 error in type of standard procedure parameter
117 unsatisfied forward reference
118 forward reference type identifier in variable declaration
119 forward declared; repetition not allowed
120 function result type must be scalar
121 file value parameter not allowed
122 forward declared function, repetition not allowed
123 missing result type in function declaration
124 F-format for real only
125 error in type of standard function parameter
126 number of parameters does not agree with declaration
127 illegal parameter substitution
128 result type of parameter function does not agree with declaration
129 type conflict of operands
130 expression is not of set type
131 tests on equality allowed only
132 strict inclusion not allowed
133 file comparison not allowed
134 illegal type of operand
135 type of operand must be Boolean

136 set element type must be scalar
137 set element types not compatible
138 type of variable is not array
139 index type is not compatible with declaration
140 type of variable is not record
141 type of variable must be file or pointer
142 illegal parameter substitution
143 illegal type of loop control variable
144 illegal type of expression
145 type conflict
146 assignment of files not allowed
147 label type incompatible with selecting expression
148 subrange bounds must be scalar
149 index type must not be integer
150 assignment to standard function is not allowed
151 assignment to formal function is not allowed
152 no such field in this record
153 type error in read
154 actual parameter must be a variable
155 control variable must neither be formal nor non-local
156 multidefined case label
157 too many cases in case statement
158 missing corresponding variant declaration
159 real or string tagfields not allowed
160 previous declaration was not forward
161 again forward declared
162 parameter size must be constant
163 missing variant in declaration
164 substitution of standard procedure/function not allowed
165 multidefined label
166 multideclared label
167 undeclared label
168 undefined label
169 error in base set
170 value parameter expected
171 standard file was redeclared
172 undeclared external file
173 (not relevant)
174 Pascal procedure or function expected
175 missing input file
176 missing output file
201 error in RREAL constant: digit expected
202 string constant must not exceed source line
203 integer constant exceeds range
204 (not relevant)
250 too many nested scopes of identifiers

251 too many nested procedures and/or functions
252 too many forward references of procedure entries
253 procedure too long
254 too many long constants in this procedure
255 too many errors on this source line
256 too many external references
257 too many externals
258 too many local files
259 expression too complicated

300 division by zero
301 no case provided for this value
302 index expression out of bounds
303 value to be assigned is out of bounds
304 element expression out of range

398 implementation restriction
399 variable dimension arrays not implemented
1000 . missing
1001 out of memory

USEFUL CALLS, ADDRESSES INSIDE THE MONITOR

Below is a list of useful addresses for those who may wish to use them.

address function
4180 (hex) starting address of source
4182 ending address of source
4184 start of P-code
4186 end of P-code
4188 address of editor
418A address of compiler
418C start address of user source program
418E address of run-time stack
4190 ending address of run-time stack
4192 end of memory address (7FFF for 16K)
4194 monitor entry point
4196 address of program currently executing
4198 complement of contents of 418E
419A overflow message flag - default 0

-- I/0 CALLS - - - -
41A0 console in
41A2 console out
41A4 INKEY (input the keyboard - CR [ENTER] not needed)

(* SAMPLE TINY PASCAL PROGRAM BY H. YUEN *)
VAR X0, Y0, X, Y, K, F : INTEGER;
BEGIN
 X0 :=13000;
 Y0 := 18000;
 F :=11;
 REPEAT
 X := X0;
 Y := Y0;
 WRITE(15.23,31);
 FOR K := 1 TO 1000 DO
 BEGIN
 X := X + Y DIV 4;
 Y := Y - X DIV 5;
 PLOT(X SHR 8, Y SHR 8,1)
 END;
 X0 := X0 * X0 DIV F;
 Y0 := Y0 + Y0 DIV F;
 F := F + F DIV 6
 UNTIL F > 70;
 WRITE(28,31,'THE SHOW IS OVER’)
END.

(* PLOT HILBERT CURVES OF ORDERS 1 TO N *)
CONST N = 4, N0 = 32;
VAR I, N, X, Y, X0, Y0, U, V : INTEGER;

PROC MOVE;
VAR I, J : INTEGER;

FUNC MIN(A, B);
BEGIN
 IF A > B
 THEN MIN := B
 ELSE MIN := A
END;

FUNC MAX(A, B);
BEGIN
 IF A < B
 THEN MAX := B
 ELSE MAX := A
END;

BEGIN (* MOVE *)
 FOR I := MIN(X,U) TO MAX(X,U) DO
 FOR J := MIN(Y,V) TO MAX(Y,V) DO
 PLOT(I,J,1);
 U := X;
 V := Y;
END;

PR0C P(TYP,I);
BEGIN
 IF I > 0 THEN
 CASE TYP OF
 1: BEGIN
 P(4,I-1); X := X – H; MOVE;
 P(1,I-1); Y := Y-H; MOVE;
 P(1,I-1); X := X + H; MOVE;
 P(2,I-1);
 END;

 2: BEGIN
 P(4,I-1); X := X – H; MOVE;
 P(1,I-1); Y := Y-H; MOVE;
 P(1,I-1); X := X + H; MOVE;
 P(2,I-1);
 END;

 3: BEGIN
 P(4,I-1); X := X – H; MOVE;
 P(1,I-1); Y := Y-H; MOVE;
 P(1,I-1); X := X + H; MOVE;
 P(2,I-1);
 END;

 4: BEGIN
 P(4,I-1); X := X – H; MOVE;
 P(1,I-1); Y := Y-H; MOVE;
 P(1,I-1); X := X + H; MOVE;
 P(2,I-1);
 END;
 END
END;

BEGIN (*MAIN*)
WRITE(15,23,31,13,' HILBERT CURVES');
I := 0;
H := H0;
X0 := H DIV 2;
Y0 := X0;
REPEAT
 I := I + 1;
 H := H DIV 2;
 X0 := X0 + H DIV 2;
 Y0 := Y0 + H DIV 2;
 X := X0 + (I-1) * 32;
 Y := Y0 + H DIV 2;
 X := X0 + (I-1) * 32;
 Y0 := Y0 + 10;
 U := X;
 V := Y;
 P(1,I)
UNTIL I = N
END.

(* BLOCKADE BY K. M. CHUNG 4/26/79 *)
VAR I, J, SPEED, ABORT, BLNK : INTEGER;
SCORE, MARK, MOVE, CURSOR : ARRAY(1) OF INTEGER;

PROC PSCORE;
BEGIN
 WRITE(SCOR(0)#);
 MEMW(%4020) := %3FFE; (* SET CURSOR *)
 WRITE(SCORE(1)#)
END;

PROC BLINK;
VAR T, K, DELAY : INTEGER;
BEGIN
 T := CUSOR(I)-MOVE(I);
 FOR K := 1 TO 30 DO
 BEGIN
 FOR DELAY := 1 TO 100 DO;
 IF MEMW(T) = BLNK
 THEN MEMW(T) := MARK(I)
 ELSE MEMW(T) := BLNK
 END
END;

BEGIN
 WRITE(‘SPEED(1-10)’);
 READ(SPEED#);
 SPEED := SPEED * 10;
 MARK(0) := ‘*’ + ‘*’ SHL 8;
 MARK(1) := ‘(‘ + ‘)’ SHL 8;
 BLNK := ‘ ‘ + ’ ‘ SHL 8;
 SCORE(0) := 0;
 SCORE(1) := 0;
 REPEAT
 WRITE(15,28,31); (* TURN OFF CURSOR, CLEAR SCREEN *)
 FOR I := 9 TO 117 DO
 BEGIN
 PLOT(I,1,I);
 PLOT(I,45,1)
 END;
 FOR I := 1 TO 45 DO
 BEGIN
 PLOT(9,I,1);
 PLOT(10,I,1);
 PLOT(116,I,1);
 PLOT(117,I,1);

 END;
 CURSOR(0) := %3C00 + 64 * 4 + 12;
 CURSOR(1) := %4000 + 64 * 4 – 16;
 FOR J := 0 TO 1 DO
 MEMW(CURSOR(K)) := MARK(J);
 MOVE(0) := 64;
 MOVE(1) := -64;
 I := 1;
 ABORT := 0;
 PSCORE;
 REPEAT
 UNTIL INKEY <> 0; (* HIT KEY TO START *)
 REPEAT
 I := 1 – I;
 FOR J := 1 TO SPEED DO
 CASE INKEY OF
 ‘W’ : MOVE(0) := -64;
 ‘D’ : MOVE(0) :=2;
 ‘O’ : MOVE(1) := -64;
 ‘;’ : MOVE(1) := 2;
 ‘X’ : MOVE(0) := 64;
 ‘A’ : MOVE(0) := -2;
 ‘.’ : MOVE(1) := 64;
 ‘K’ : MOVE(1) := -2;
 END;
 CURSOR(I) := CURSOR(I) + MOVE(I);
 IF MEMW(CURSOR(I)) = BLNK
 THEN MEMW(CURSOR(I)) := MARK(I)
 ELSE BEGIN
 SCORE(1-I) := SCORE(1-I) + 1;
 ABORT := 1;
 BLNK
 END
 UNTIL ABORT
 UNTIL SCORE(1-I) >= 10
END.

People’s Pascal I
TRS-80 People’s Pascal System Documentation

Pipe Dream Software, Berwick, Australia
Copyright April 1979
All Rights Reserved

1. Introduction

The TRS-80 People's Pascal system is a program development system for Tiny
Pascal, a subset of the Pascal programming introduced by Niklaus Wirth of the
Engineering University at Zurich.

Tiny Pascal was defined in Byte magazine- "A 'Tiny' Pascal Compiler", by
Kin-Man Chung and Herbert Yuen, in three parts: September, October and
November.

The Pascal language is defined in "Pascal: User Manual and Report" by
Kathleen Jensen and Niklaus Wirth (Springer-Verlag 1974). A good
introductory book on Pascal is "Microcomputcr Problem Solving Using
Pascal" by Kenneth L. Bowles (Springer-Verlag 1977).

The following programs are supplied with People's Pascal:

1.1 Text Editor

The editor is line-oriented. Intra-line editing is not provided. Text files may
be manipulated in the following ways: create, edit, list, print, merge, copy, read
from and write to cassette.

The editor uses a 3,000-character (3K) text buffer and 240-character blocked
records on cassette files to achieve its results. Source files of indefinite
length may be manipulated, but short files are recommended for convenience
and modularity. Editor commands are: insert, delete, replace, list, print, read
and merge, write, re-number, compile, and free. Refer to the editor operating
instructions and program documentation for details.

1.2 Compiler

Included in the same program as the editor, to save time-consuming
swapping between programs during program development, the People's
Pascal compiler translates the source program in the text buffer and/or
included from one or more source program text files into a P-code object
program on cassette.

The compiler accepts the following Pascal subset: AND, ARRAY, BEGIN,
CASE, CONST, DIV, DO, DOWNTO, ELSE, END, EOR, FUNC, IF,
INTEGER, MOD, NOT, OF, OR, PROC, READ, REPEAT, SHL, SHR, THEN,
TO, UNTIL, VAR, WRITE.

Note that character arrays, records, files, reals, programmer-defined types
pointers and GOTO are omitted from People's Pascal.

In addition, extensions are provided to read from and write to absolute
memory addresses, and to allow the calling of assembly language
subroutines at absolute memory addresses, together with limited numeric
I/O formatting and the definition of hex constants.

A "$INCL" include-source-file feature is provided to allow modular program
development.

The compiler is a one-pass compiler using recursive descent. Refer to
language definition, compiler operation and compiler program documentation
for details.

1.3 The Interpreter

The interpreter reads a P-code program object file produced by the compiler
into memory and interprets the program, performing the actions required of
the imaginary P-machine, which has P-code as its instruction set.

The interpreter has the following debugging routines:

SET BREAKPOINT(s)
CLEAR ALL BREAKPOINTS
EXAMINE PROGRAM
GO
EXAMINE STACK CONTENT
EXAMINE NEXT PROGRAM LOCATION
QUIT
RUN
SINGLE STEP

TRACE
EXAMINE PREVIOUS PROGRAM LOCATION
DISPLAY P-MACHINE REGISTERS
DISPLAY BREAKPOINTS

The current version of the interpreter written in Basic is slow, with a double
level of interpretation.

P-code object programs of up to 8.6K bytes may be interpreted. Refer to in-
terpreter operating instructions and interpreter program documentation for
details.

1.4 Translator

The translator reads in a P-code object file produced by the compiler and
translates P-code instructions into fast Z-80 code (machine language
instructions) using the Z-80 stack pointer for the People's Pascal stack.
Translated programs run about five times faster than Level-II Basic.
Graphics instructions run about eight time faster.

The translator also has the option to optimize for minimum memory usage,
reducing program size to half at the cost of some speed reduction. Refer to
translator operating instructions and program documentation for details

1.5 People’s Pascal Source Library

The People's Pascal library uses the "$INCL" compiler option to allow an ex-
tendable set of standard routines to be incorporated into user programs. The
following routines are provided:

SET(ON/OFF,X,Y) set/reset graphics
(=S E T(X, Y))

RND(SEED) pseudo random number generation

AT(cursorposition) cursor control
(=PRINTE)

User-written routines may be added to the People's Pascal library. Other
routines also may be provided, such as UCSD "turtle" graphics procedures
MOVE(distance), TURN(angle), MOVETO(X,Y), PENCOLOR(white,
black/none).

1.6 Run-Time System

This program is written in Z-80 assembly language and provides subroutines
called by translated People's Pascal programs for multiply, divide, set, I/O,
etc. It occupies about 1 K byte. Both source and object programs are supplied.
Refer to run-time-system program documentation for details.

2. People’s Pascal Language

It is not the aim of this document to teach the Pascal programming language.

TRS-80 People's Pascal includes the full set of program structuring
statements, such as IF, THEN, ELSE, BEGIN, END, WHILE, REPEAT,
FOR, CASE, PROC, FUNC, but includes integer and array of integer data
types only (16 bit). Refer to the language reference documentation for
details.

3. Memory Maps

3.1 Editor /Compiler (TPEC)

___ __________ __________ _______ _________
BW Compiler Editor Basic Text
AO Stack Buffer
SH Area
IX
C
 ___ __________ __________ _______ _________
| | |
16384 29700 32767

3.2 Interpreter (PPINT)

___ __________ _______ ________________________
BW Interpreter Basic P-Code Program
AO Stack to be Interpreted
SH Area ---------->
IX
C
___ __________ _______ ________________________
| | |
16384 24000 32767

3.3 Translator (PPTRANS)

___ __________ _______ ___ __________________
BW Translator Basic P-Code to be Translated
AO Stack ------->__________________
SH Area Generated Z-80 Code
IX Program Overlays
C P-Code
___ __________ _______ ___ ------->____________
| | | |
16384 23000 24000 32767

3.4 People’s Pascal Translated Program at Run Time

___ _______ ______ ______ __________________
BW T-Bug Run- Tiny Translated
AO Optional Time Pascal Tiny Pascal Program
SR System Stack (in Z-80 Machine Code)
IX <----- -------->
C
___ _______ ______ ______ __________________
| | | | | |
| | 18818 20196 23000 32767
| 17280 Note: This boundary can be
16384 moved up for a larger stack.

4. People’s Pascal Stack

The Pascal pseudo machine is stack oriented. For a complete understanding
of the system, it is first necessary to understand the P-machine and its
stack. The P-machine has two registers, (T) and (B). (T) is the stack pointer,
which always points to the top element on the stack. (B) is the base
register, which points to (i.e.. holds the address of) a stack location which is
the stack base for the "block" (i.e. program, procedure, or function) that is
currently executing. The base is used as a reference point for variable
addresses.

When a block is entered (i.e., when a procedure is called) space for the
variables it declares is allocated on the stack in a new "stack frame", which
uses the space just above the last-used stack locations.

All variables declared within a block (in a stack frame) are identified within
the P-code by an offset from the base of a stack frame, rather than by an
absolute address as in some other systems. Variables which were declared
in the block which is currently executing can be obtained by adding their
offset to the contents of the base register. This forms the absolute address of
the variable. On the other hand, variables which were declared in some other
block must have their offsets added to the base of the stack frame of that
outer block in order to be referenced by their absolute address.

The base of the outer block can be obtained because at the base of each
stack frame is a word which contains the absolute address of the previously-
entered (outer) stack frame. Thus stack frame bases are linked together in a
linked list which descends down the stack to the base of the stack frame of the
outermost block (mainline) of the program.

In fact there are two lists: A "static" list, which links stack frames for obtaining
variable addresses. This list reflects the lexical structure of the program. i.e.,
the static nesting of procedure declarations. The second list links stack
frames in executation sequence, reflecting the sequence of active procedure
calls, at program run time. The second (dynamic) list is used to regain the base
of the calling procedure at exit from the called procedure.

5.1 Diagram of People's Pascal Stack Frame

____________ Top of stack
Variable N Last variable declared in this process or function

Variable N-1

Variable 1 First variable declared in this procedure or function.

Return Address To next instruction in calling procedure

Dynamic Link To base of calling procedure

To base of procedure or program within which this
procedure was declared.

Parameter N

Parameter N-1

Parameter 1

Function Not present for procedures.
Return Value

Last variable of previous procedure.

5. The P-codes

P-codes are the machine Language of the imaginary P-machine.

P-codes occupy four bytes each. The first byte is the operation code (op-code).
There are nine basic P-code instructions, each with a different op-code. The
second byte of the P-code instruction contains either zero or a lexical level
offset, or a condition code for the conditional jump instruction. The last two
bytes taken as a 16-bit integer form an operand which is a literal value, or a
variable offset from a base in the stack, or a P-code instruction location, or an
operation number, or a special routine number, depending on the op-code.

5.1 P-code Details

P-code Hex Description
Op-code

LIT 0,N 00 load literal value onto stack
OPR 0,N 01 arithmetic or logical operation on top of stack
LOD L,N 02 load value of variable at level offset L, base offset

N in stack onto top of stack
LODX L, N 12 load indexed (array) variable as above
STO L,N 03 store value on top of stack into variable location

at level offset L, base offset N in stack
STOX L,N 13 store indexed variable as above
CRL L,N 04 call PROC or FUNC at P-code location N

declared at level offset L
INT 0,N 05 increment stack pointer (T) by N

(may be negative)
JMP 0,N 06 jump to P-code location N
JPC C,N 07 jump if C=value on top of stack to P-code

location N (C can = 0 or 1)
CSP 0,N 08 call standard procedure number N

Language Description

1. Introduction

People's Pascal is a Pascal subset containing all the program structuring
constructs except GOTO, but without many of the data structuring facilities.

2. Pascal Features Not Present in People’s Pascal

2.1 Data Types

Integer and array of integer (16-bit) data types are the only data types provided
(range -32767 to +32767). Integer arrays may be of single-dimension only.
No Boolean, real or CHAR data types. No records, files, or pointer types. No
programmer-defined types. No sets.

However, note that integers and integer arrays can be used to store character
data, and that single-character literals are accepted, and that a write character
string facility is provided, e.g., write ('HELLO THERE’); note also that
logical operations are allowed on integers, e.g.

IF A THEN..;
WHILE 1 DO..: (loops forever).

2.2 Program Structure

No GOTO. No statement labels. Structured programming must be used
exclusively- this can lead to more easily understood programs. For any
function that uses GOTOs, there is another function which performs the same
operation without gotos using only sequential, conditional (IF, CASE.) and
iterative (WHILE, REPEAT, FOR) structures.

2.3 Parameters Passed by Value

People's Pascal only provides for procedure and function parameters passed
by value (i.e. there can be no output parameters from a procedure).

Note that a function can return a value and that procedures can alter global
variables (variables declared outside themselves) as alternatives. The second
alternative is best avoided where possible to minimize the dependence of the
procedure on its environment, and make the program less complex.

2.4 WRITELN

WRITELN is not provided. Use WRITE Instead.

3. Additional Features of People’s Pascal

3.1 Access to Memory

A special "built in" array called "MEM” is provided. This array does not
need to be declared. The MEM array is mapped onto absolute memory.

The contents of MEM(X) consists of the byte of memory at absolute address
X.

E.g. A:=MEM(X); or MEM(30):=0;

This facility is equivalent to Basic PEEK, POKE.

3.2 Access to Routines in Assembly Language

A "CALL" facility is provided to allow the invocation of assembly language
(Z-80 code) routines. E.g., CALL(32650) or CALL(RTN).

All necessary registers arc saved by the People's Pascal run-time system be-
fore the user's routine is entered and restored on return. If the routine is called
from within a procedure, then the procedure parameters can be accessed on the
stack by the called routine.

3.3 Format Control on Read & Write

Without format control, when an integer is written, the result will be that the
character whose ASCII value is that of the integer will be output.

I.e.,

WRITE(65) well cause the character "A" to be written to the display.
WRITE(13) will cause a carriage return.
WRITE(23) will cause wide characters.
WRITE (28) will home the cursor.
WRITE(31) will clear the screen from the current cursor position onwards.
WRITE(28,31) will clear the whole screen.

Refer to Level-II Basic Reference Manual pages c/1 and c/2. Note that all
special control character values can be declared as constants using "CONST".
For purposes of standardization, the following names are recommended:

BS = 8 backspace and erase
LF = 10 linefeed/carriage return
FF = 12 top of form- form feed
CR = 13 linefeed/carriage return
CON = 14 cursor on
COFF = 15 cursor off
WIDE = 23 convert to 32 chars/line - wide characters
CBACK = 24 backspace cursor
CFWD = 25 advance cursor
CDOWN = 26 move cursor down
CUP = 27 move cursor up
HOME = 28 home cursor-move to top LH corner of screen
BLINE = 29 move cursor to beginning of line
ERASE = 30 erase to end of line
CLEAR = 31 clear to end of screen

Similarly, a READ will cause the integer being read to be assigned the
ASCII value of the input character.

Read and write formatting are provided to override this facility,

A WRITE (X) will cause a number to appear on the screen equivalent to the
value of X. READ (A) will cause the input digits to be converted to a 16-bit
integer and stored in A. The “#” is the numeric format indication character.
I.e.. WRITE(65#) will cause the characters"6" and "5" to be written to the
screen at the current cursor location.

3.4 Hexadecimal Constants

Hexadecimal constants are provided for, and are specified by a leading per-
cent sign. Hex constants must contain four hex digits, e.g., %003A, %FFFF.

3.5 Else on Case Statements

An "else branch" is provided on the CASE statement, which will be taken if
the CASE variable does not have a value which matches any of the other
specified values. Be especially careful not to use spurious semicolons before
this statement, or before the end of the case statement. Look at the syntax
diagrams carefully.

E.G.:

CASE X OF
1 : WRITE('X EQUALS ONE',CR);
2 : Write('X Equals TWO',CR) (*NO ';' HERE*)
ELSE : WRITE (' X OUT OF RANGE') (*OR HERE*)

END (*CASE*)

If you had an extra case element before the 'ELSE' (e.g., 3:... in the above
example), remember to put a semicolon on the end of the previous line (e.g.,
2:... in the above example).

4. Tips on Programming in People’s Pascal

4. 1 Modules

Break the program up into functional components.

Write these components as procedures or functions. If the procedure or
function is of general use, then it can be placed in your own library, or into
the People's Pascal library.

Try to connect the procedures to the rest of the program by parameters and
function return values.

Declare variables and constants only required within one procedure inside
that procedure rather than outside it.

Refer to "Structured Design" (Larry Constantine and Ed Yourdon, Yourdon Inc.,
1133 Avenue of the Americas. New York NY 10036) for a thorough
discussion of functional module design.

Avoid declaring procedures within other procedures.

People's Pascal optimization in the translator has been designed so that "well
structured" (structured in the above manner) programs will execute fastest
under "fast" optimization and occupy least memory when optimized with the
"small" option. Thus there should be no conflict between good programming
practice and efficiency.

With a little ingenuity, procedures and functions can be compiled and tested
separately, which can speed up the development process.

To compile a procedure or program mainline which uses other lower-level
procedures, "dummy" procedure declarations can be inserted before the main
block. Dummy declarations consist of only the procedure name and formal
parameter declaration followed by a "begin end;" (e.g. FUNC RND(SEED);
BEGIN END;)

This will allow, the main block to compile without having to wait for all its
procedures to be compiled first.

Of course. to test any procedure, function or mainline. it will usually be
necessary to have compiled in all at the procedures that it uses.

The above process of "dummy" declarations currently only applies to the
syntax (grammatical) error detection process. However, if lower-level
modules are compiled and tested first, then as development proceeds, these
lower level modules are always available for testing the next level.

The "$INCL" feature should be used in conjunction with the separate
procedure/function concept. A complete procedure or set of procedures can
be put into its own file, and "$INCL"uded into the program.

Note that all procedures must be declared before they are referenced (used).
This is a one-pass compiler.

4.2 Initialization of Variables

People's Pascal variables are not cleared when they are allocated on the
stack. Thus their initial value is unpredictable (will be whatever happened to
be in that stack location). Therefore it is important to explicitly initialize
variables (e.g., X:=0;).

4.3 Arithmetic and Stack Overflow

No run-time checking for arithmetic occurs, so an estimate of stack-space
requirement should be made and sufficient stack space allocated. Arithmetic
overflow may be checked for in the interpreter.

5. The People’s Pascal Library

The following routines are available:

SET(ONOFF,X,Y); sets the graphic point at location X,Y, if ONOFF is set
on. If ONOFF= 0 then point set off.

RND(seed); returns a pseudorandom number between 0 and 32767.
The seed should be set to the returned value, for the next
call.

AT(CURPOS); sets the cursor to position CURPOS on he screen.

6. People’s Pascal’s Reserved Words

AND logical AND operator
ARRAY array declaration
BEGIN compound statement opening delimiter
CALL invoke assembly-language routine
CASE multiple-statement selection
CONST constant declaration section keyword
DIV integer divide arithmetic operator
DO while statement component
DOWNTO FOR statement component
ELSE IF and CASE statement alternative branch
END compound statement delimiter
FOR iterative (looping) statement component
FUNC function declaration keyword
INTEGER integer data type declaration keyword
MEM memory array keyword
MOD arithmetic operator giving division remainder
NOT logical NOT operator
OF CASE statement component
OR logical OR operator
PROC procedure declaration keyword
READ READ statement
REPEAT iterative statement keyword
SHL logical shift-bits-left operator
SHR logical shift-bits-right operator
THEN IF statement component
TO FOR statement component
UNTIL REPEAT statement component
VAR variable declaration section keyword
WHILE iterative statement keyword
WRITE WRITE statement

7. People’s Pascal Special Symbols

NOTE 1 The square bracket characters used in Pascal for array index
delimiters are not available on the TRS-80. The round bracket
characters are used instead as in Level-II Basic, rather than the
Pascal alternative "(." and ".)".

NOTE 2 The squiggly bracket characters used in Pascal for comment
delimiters are not available on the TRS-80. The character
combinations "(*" and "*)" are used instead.

read/write numeric format indicator (WRITE(A#)
$ compiler directive line indicator ($INCL FRED)
% hex constant indicator (%A04F)
' character string delimiter (e.g. ‘A’)
(arithmetic or logical expression delimiter
(array index opening delimiter (e.g. AR(30) := 1;)
(* comment opening delimiter
) arithmetic or logical expression delimiter
) array index closing delimiter
* multiplication operator
*) comment closing delimiter
: variable declaration component
:= assignment operator
= equal-to operator
- unary minus and binary subtraction operator
+ addition operator
; statement separator
< less-than operator
<= less-than-or-equal-to operator
, separator
> greater-than operator
>= greater-than-or-equal-to operator
<> not-equal-to operator
. end-of-program indicator

8. People’s Pascal Operators

+ addition
- subtraction and unary minus
* multiplication
DIV integer division
MOD remainder after integer division
SHL logical shift left (can be used for fast multiplication of positive

numbers by a power of two)

SHR logical shift right (can be used for fast division of positive
numbers by a power of two)

NOT logical-NOT unary operator
OR logical OR
AND logical AND
= equal-to
< less than
<= less-than or equal
> greater than
>= greater than or equal
<> not equal to

Operating Instructions
Compiler

1. Introduction

The People's Pascal compiler accepts language statements from an edit-
buffer and/or cassette files, and translates these into P-code, which is output to
an object file on cassette.

The compiler also produces a screen display both of the source code lines and
of the generated object code.

P-codes are machine-language instructions for a simplified stack-oriented
virtual (or imaginary) machine. These P-codes can either be interpreted by a
program which performs the actions expected of the virtual machine, or they
can be translated into code for a different (real) machine. In this case the Z-
80 microprocessor of the Tandy TRS80 microcomputer. Both of these options
are provided in the Pipe Dream People's Pascal implementation.

In addition. the compiler has the option to compile for syntax errors only (no P-
code object file being produced), for increased speed and possibly less oper-
ator intervention.

The compiler also has the option to produce a listing on a lineprinter if one is
attached to the system.

2. Invoking the Compiler

To compile a Peoples Pascal program, it is first necessary to "CLOAD' and
run the "PPEC" editor/compiler program. Refer to People's Pascal editor
operating instructions. A source program may be typed into the text buffer for
compilation, and/or source code may be compiled from cassette using the
"$INCL" include-file option. In addition, a source program may be read into
the text buffer for compilation and/or editing.

After any required editing of the source program, the compiler can be started
with the "C" command. The compiler starts compilation with the first line of
source code in the text buffer. If it is required to compile from an existing
source file on cassette, then it will he necessary to enter a line such as:

100$INCL /FILENAME/

into the text buffer before compilation, where /FILENAME/ is the name of the
People's Pascal source file which is to be compiled.

Note that currently, the "$INCL” compiler option is not nestable. It can only
be used as part of a line of source code in the text buffer (i.e., as part of the
program mainline).

Also, the line must appear exactly as specified, without any leading or
embedded spaces in the "$INCL" statement, apart from the space before the
filename.

Note also that the filename supplied is currently required as an operator aid
only. No filename checking is performed in the current version.

3. Object File Option (OBJ FILE?)

After initialization of the "C" command, the compiler will prompt with "OBJ
FILE?". If the reply is null (just ENTER) then no object file will be
produced, and the compile will be for syntax error check only. Any non-blank
reply to this prompt will result in a P-code cassette object file being
produced.

4. Lineprinter Option (LP?)

The compiler will then prompt with "LP?".

If the reply to this question is "Y”, then the input source program lines and
the compiled object code will be printed on the lineprinter, as well as being
shown on the display.

If the reply to this question is null ,(just ENTER) or "N", then no lineprinter
output will be generated.

For systems without a lineprinter, it is suggested that this prompt be deleted
from the PPEC compiler code, to avoid the annoyance of a prompt to which the
answer is always the same.

5. Compiler Operation

After initialization, the compiler will proceed to compile the specified
source program. On encountering a syntax or (grammatical) error, the
compiler will display a diagnostic error message indicating the type of
error. The compiler will then return to the editor, to allow the error in the
source code to be corrected, and possibly recompiled.

6. Mounting Object Cassettes (OBJ CAS READY?)

If a P-code object file is being produced, then after it has compiled about 50 P-
codes, the compiler will prompt for an output cassette for the object file to
be written to.

A previously-erased cassette should be mounted and the recorder placed in
record mode. When the output cassette is ready, the ENTER key may be
pressed, and the compiler will write a block of object code to the cassette
and proceed with the compilation.

If no input cassette is being used ($lNCL) then no further operator intervention
should be required until the compilation is complete. Assuming a successful
compilation, the output cassette will contain a P-code object file version of the
program, which may be used as input either to the People's Pascal interpreter
to test the program, or to the translator to make a final system-loadable
version of the program in Z-80 machine language.

If the compiler is accepting input from a cassette file ($INCL), and an object
file is being generated, then it will be necessary to periodically swap
cassettes and cassette recorder operating modes when the compiler prompts.

This process is made possible by the blocking of both source and object data on
cassette. Data is read in or out a block at a time, and the cassette is stopped
on an inter-block gap, at which time it may be safely removed and later
remounted without any loss of data.

The process of swapping cassettes is somewhat tedious and human-error
prone, so be careful. If an additional cassette recorder is available, then both
recorders can be mounted in parallel (with extra jack plugs, etc.) with a
ganged switch between them.

One can be left with the object cassette in Record mode, and the other with
the source cassette in Read mode, and the switch operated between them on
prompt from the compiler.

If an expansion interface is available, as well as a second cassette, then the
compiler can be simply modified to write its object files to the second cassette,
and no operator intervention will be required for the object cassette after
initialization.

7. Mounting Source Cassettes (READ CASE1?)

If the "$INCL" option is used, then the compiler will, on encountering the
SINCL line, prompt for the required file as follows:

FILE /FILENAME/ REQD-READCAS?

At this point, the appropriate source cassette should to mounted (remove any
object cassette first) and positioned just before the start of the file. The
cassette recorder should be placed in Read (replay) mode. When everything
is ready, the ENTER key may be pressed, the compiler will read the first
block of source code from the cassette and proceed with the compilation.

Note that the line numbers in the included file bear no relation to the line
numbers in the including file.

If an object file is being generated, then it will be necessary to periodically
swap cassettes on prompt from the compiler. Cassettes should not be
swapped in anticipation, since it is not always possible to predict which
cassette will be required first (refer to previous section).

Note that neither object cassettes nor source cassettes should be rewound or
otherwise interfered with during compilation. They should be simply ejected
or remounted as required by the compiler.

P-code Interpreter /PPINT/
Operating Instructions

1. Introduction

The People's Pascal P-code Interpreter (PPINT) executes Pascal object code
(P-code) output from the People's Pascal compiler. The P-code cassette file
output from the compiler is read into memory and then interpreted under
operator control. Various debugging commands are provided, such as the
setting of breakpoints, to allow monitoring of program execution.

The interpreter currently is written in Basic. A faster version will soon be
available written in People's Pascal. PPINT is not intended for normal
running of programs. Once a program has been debugged, it will be translated
to Z-80 machine code with the People's Pascal translator for fast execution.

2. Running the Interpreter

Required operator responses are underlined. Here is what you see on the screen:

READY
/SYSTEM
.? /0
MEMORY SIZE? 24000

Mount the PPINT program cassette for read.

READY
/CLOAD

Wait until PPINT has loaded.

/RUN
TRS-80 TINY PASCAL INTERPRETER PIPE DREAM SOFTWARE
P-CODE. START ADDRESS (24000)?

The default of 24000 is shown. If this is OK then just press ENTER, otherwise
enter the address you want to use. This is the address that the P-code program
will be loaded at, and address of the first P-code instruction for the "R"
(RUN) command. In the current version, this address cannot be less than
24000.

READ IN P-CODES (Y)?

The default of Y (yes) is shown. If ENTER is pressed, then the interpreter will
read in the P-code program from cassette. If the reply is "N”, then it is
assumed that the P-code program is already resident in memory and the next
question will be bypassed.

MOUNT P-CODE INPUT CASSETTE ON CAS1?

Mount the P-code object file output by the compiler on the cassette deck and
press play.

Press ENTER on the keyboard when cassette is ready.

The P-codes will he read into memory. and some "ADD AT" forward-reference
fixups should appear on the screen.

INT/

The interpreter is now ready to accept program execution and monitoring
commands described below.

3. Interpreter Commands

Interpreter commands consist of single-letter mnemonics terminated by
ENTER. Some commands will result in further prompting.

3.1 Run Program -R

Initializes the program-counter and runs the program.

3.2 Single Step -S

Executes the next P-code instruction and returns to command mode.

3.3 Go On -G

Continues the program from the current program counter location. The
program may have stopped at a break-point, or after a single-step (S)
command.

3.4 Display Program Status -X

Displays the program counter (P). The base register (B) and the stack pointer
(T) of the Pascal P-machine (which the interpreter is emulating). The top two
stack locations also are displayed.

3.5 Display Program Trace -T

Displays the last few P-code instructions executed by the P-code program, in
time-of-execution sequence.

3.6 Display Stack Locations -K

Prompts for a stack location (offset from start of stack) and displays six stack
locations starting from this point.

3.7 Set Breakpoint -B

Prompts with the breakpoint number for a breakpoint address (P-code
program location). When the program counter reaches any value equal to a
breakpoint value, the program will be stopped before the execution of the
instruction at that location. The status of the program and its variables may
be examined. The program may be continued with the "G” (GO) command
or with the "S” (SINGLE STEP) command.

3.8 Clear Breakpoints -C

Clear all the breakpoints set by the “B" command.

3.9 Display Breakpoint Location -Y

Displays breakpoint locations previously set with the "B" command.

3.10 Examine P-code Location -E

Prompts for a P-code location, which is loaded into the P-code location dis-
play pointer. The P-code instruction at this location is displayed.

3.11 Examine Next P-code Instruction -N

Increments the P-code location display pointer and displays the P-code
instruction at that location. Note: if this instruction has been used once, it is
only necessary to press ENTER to repeat it, stepping on to the next location.

3.12 Examine Last P-code Location - U

Decrements the P-code location display pointer and displays the P-code
instruction at that location.

3.13 Quit -Q

Exit from interpreter.

4. P-code Instructions

POP X means remove the top element of the stack and load it into X (the
stack is now one smaller).

PUSH X means place the value of X onto the top of the stack (the stack is
now one bigger).

LIT 0,NN Literal:
PUSH NN

OPR 0,0 Process and Function return operation
OPR 0,1 Negate:

POP A
PUSH -A

OPR 0,2 Add:
POP A
POP B
PUSH B + A

OPR 0,3 Subtract:
POP A
POP B
PUSH B – A

OPR 0,4 Multiply:
POP A
P0P B
PUSH B * A

OPR 0,5 Divide:
POP A
POP B
PUSH B/A

OPR 0,6 Low Bit:
POP A
PUSH (A and 1)

OPR 0,7 Mod:
POP A
POP B
PUSH (B MOD A)

OPR 0,8 Test Equal:
POP A
POP B
PUSH (B=A)

OPR 0,9 Test Not Equal:
POP A
POP B
PUSH (B<>A)

OPR 0,10 Test Less than:
POP A
POP B
PUSH (B < A)

OPR 0,11 Test Greater Than or Equal:
POP A
POP B
PUSH (B>=A)

OPR 0,12 Test Greater than:
POP A
POP B
PUSH (B>A)

OPR 0,13 Test Less than or Equal:
POP A
POP B
PUSH (B<=A)

OPR 0,14 Or:
POP A
POP B
PUSH (B OR A)
NOTE: these are the logical operators OR, AND and NOT)

OPR 0,15 And:
POP A
POP B
PUSH (B AND A)

OPR 0,16 Not:
POP A
PUSH (NOT A)

OPR 0,17 Shift Left:
POP A
POP B
PUSH (B shifted left by A bits)

OPR 0,18 Shift Right:
POP A
POP B
PUSH (B shifted right by A bits)

OPR 0,19 Increment:
POP A
PUSH A+1

OPR 0,20 Decrement:
POP A
PUSH A-1

OPR 0,21 Copy:
P0P A
PUSH A
PUSH A

LOD L,D Load:
Load A from (base of level offset L)+D
PUSH A

LOD 255,0 Load byte from memory address which is on top of stack
onto top of stack:
POP address
Load A with byte from address
PUSH A

LODX L,D Indexed Load:
POP index
Load A from (base of level offset L)+D+ Index
PUSH A

STO L,D Store:
POP A
Store A at (base of level offset L)+D

STO 255,0 Store in Memory:
POP A
POP address
store low byte of A at address

STOX L,D Indexed Store:
POP Index
POP A
STORE A at (Base of level offset L) + D + index

CAL L,A Call procedure or function at P-code location A, with base
at level offset L

CAL 255,0 Call procedure address in memory:
POP address
PUSH return address
JUMP to address

INT 0,NN Add NN to stack pointer
JMP 0,A Jump to P-code location A
JPC 0,A Jump if true:

POP A
IF (A and 1)
then jump to location A

CSP 0,0 Input 1 character:
INPUT A
PUSH A

CSP 0,1 Output 1 character:
POP A
OUTPUT A

CSP 0,2 Input an integer:
INPUT A#
PUSH A

CSP 0,3 Output an integer:
POP A
OUTPUT A#

CSP 0,8 Output a character string:
POP A
FOR I:=1 TO A DO
BEGIN
POP B;
OUTPUT B;
END

NOTE: the result of a logical operation such as (A=B) is defined as 1 if the
condition was met and 0 otherwise.

P-Code to Z-80 Code Translator
/PPTRANS/

Operating Instruction

1. Introduction

The People's Pascal translator program translates P-code object files output
by the People's Pascal compiler (PPEC) into Z-80 microprocessor machine
language object programs which can be saved with T-bug onto cassette, and
loaded under the "system" command.

The translator has two optimization options. Z-80 code object programs can
be optimized for speed, in which case the program occupies about the same
space as the P-codes. Alternatively, object programs can be optimized for
minimum memory usage, in which case the program occupies about half the
memory but runs at about half the speed.

The P-code object program is read into memory. The normal starting address is
24000 (decimal).

After two passes of the P-code to generate a sorted table of P-code jump
destinations and their corresponding Z-80 code addresses, Z-80 code is
generated and stored in memory, normally starting at address 23000.

If the Z-80 program is large enough then it will overwrite the early portion of
the P-code program, which is no longer required. The end of the Z-80
program cannot "catch-up" with the end of the P-code program in a 16 K
machine.

For a larger memory, the P-code may be started at a higher address.

Because of the size of the PPTRANS program, Z-80 code cannot be stored at
addresses lower than 23000. This leaves about 9.5K bytes for the Z-80
program.

Note that some of the memory below 23000 is used by T-bug and the People's
Pascal run-time system (PPRUN). The rest is available for user-generated
assembly-language subroutines callable from People's Pascal and/or for stack
space - refer to memory maps.

2. Choosing Addresses

Normally, the default addresses shown below are satisfactory for translated
People's Pascal programs. However, the translator provides the option to
specify other addresses for exceptional cases, such as where a program has a
very large stack requirement (i.e., greater than 3 K due to large arrays or use
of recursion).

To obtain a larger stack, if the program itself is not too large, then 32500
may be used as the stack address. If the program is large, then the program
itself may be created at a higher address than 23000. Note: this may involve
reading-in the P-codes at a higher address also, and the now-larger space
beneath the program used for stack. Note that this alternative is less desirable
since the total amount of memory to be saved onto cassette is correspondingly
larger as the runtime system is at a fixed location, and thus the program takes
longer to load.

3. Operation

Note: Operator responses are underlined.

1. READY
> SYSTEM

2. *? /0

3. MEMORY SIZE? 23000

now mount PPTRNS program cassette

4. READY
>CLOAD

wait until load is finished

5. READY
>RUN

6. TRS-80 PEOPLE'S PASCAL TRANSLATOR
DEFAULT REPLIES TO PROMPTS ARE SHOWN IN
BRACKETS: (parentheses):

P-CODE START ADDRESS (24000)? < ENTER>
or your address

7. Z-80-CODE START ADDRESS (23000)? < ENTER>
or your address

8. Z-80 STACK ADDRESS (GROWS DOWN) (22999)?
< ENTER> or your address

9. OPTIMIZATION (F=fast, S=small) (F)? >ENTER< or S

10. DISPLAY CODES (Y)? < ENTER > or N

pptrans runs faster if codes are not displayed

11. PRINT CODES (N)? <ENTER> or Y

12. MOUNT P-CODE INPUT FILE ON CAS1 AND TYPE "RUN"

Now rewind and remove PPTRANS program cassette and mount P-code
object program cassette for input, type "RUN" and "RUN". The
translator will read in the P-code cassette, and perform translation.
Wait until translation is complete, with the ratio between P-code and
Z-80 code, etc., being displayed on the screen.

13. Note the last-used Z-80 address. The translated Z-80 program is now
residing in memory starting at address 23000, or your chosen address,
at which this code will be executed.

14. Note the last address used by the Z-80 program which is displayed on the
screen. Rewind and remove the P-code input cassette. Mount the run-
time system object cassette.

15. READY

> SYSTEM

The run-tine system will be read into memory. Now memory contains
your translated program and the Peoples Pascal run-time system.
When loading of the run-time system is complete, rewind and remove the
run-time system cassette.

17. At this point it is possible to run the program via the system command.
However, it is wise to save two copies of the program first, using T-
Bug. To do this, mount the T-Bug cassette for input.

18. *? TBUG

The Tandy T-Bug program will be loaded into memory. At this point,
memory contains your program. the run-time system and T-Bug. Using
T-Bug, it is possible to make a copy of your program and the run-
time system, with or without a copy of T-Bug. This copy will be
loadable under the "SYSTEM" command. Rewind and remove the
T-Bug cassette. Mount a blank cassette for output.

19. *? /

20. * P 4380 XXXX 4A00 YYYYYY (for program with T-Bug)

OR

* P 4980 XXXX 4A00 YYYYYY (for program without T-Bug)

Where XXXX is the last-used address of the Z-80 program in hex noted
after step 13, and YYYYYY is the filename to be assigned to the
program on cassette.

21. Wait until T-Bug "I" command is complete, then reposition output
cassette and repeat step 20 as many times as required. Rewind and
remove the blank cassette and write on it the program name and the
cassette tape counter locations of each copy of the program. The date
can also be useful.

22. * J 4A00 To run the program if required.

4. Running Translated Pascal Programs

Normally, all that is required to run a People's Pascal program is to load it under
the “SYSTEM" command and to run it by typing “/” after it has been loaded
into memory.

This causes control to be passed to the address which was specified as the
program entry point on the cassette tape file. This normally will be hex
4A00 (decimal 18818), which is the standard entry point of the People's Pascal
run-time system.

There is an alternative entry point to the run-time system, hex 4A0E, which
allows the user to initialize the People's Pascal stack pointer at other than the
fixed value, and/or to run a program which does not start at the standard ad-
dress (59D8 hex or 23000 decimal).

When entered at this point (4A0E) the run-time system will prompt for these
values.

T-Bug may be used for debugging translated programs although it is usually
easier to use the P-code interpreter to find bugs.

To use T-bug. type "/17280 after loading the program rather than just “/”.
This is the T-Bug entry point. Refer to Tandy T-Bug operating instructions for
further help in using T-Bug.

Program Documentation
Text Editor

1. Introduction

The PP editor is a line-oriented text editor using line numbers for text
identification. Intra-line editing is not supported in the current version.
Lines are stored in a reserve area of high-address memory called the text
buffer. The program is written in Level-II Basic with machine language
subroutines to move text up and down in the text buffer for speed efficiency.

2. Commands

People's Pascal commands are:

C COMPILE Pass control to the compiler.
D DELETE Delete line number range.
E EOF Write end-of-file mark to cassette file.
F FREE Free bytes left in text buffer inquiry.
L LIST List lines in text buffer on screen.
N NUMBER Renumber lines of text in the buffer.
P PRINT Print lines on the line printer.
R READ Read block(s) from a cassette file.
W WRITE Write line(s) of text to cassette.

3. Record Formats

3.1 Line in Text Buffer

Byte 0 Length of line (0-255) including self and line number bytes.
Byte 1,2 Line number of this line in binary 0-32767 (1-32766

available for user)
Byte 3-N Text of line

3.2 Text Buffer

Line 1 Dummy line, text = " ", line number = 0
Lines 2 to N-1 actual lines of text
Line N Dummy line, no text, line number = 32767
Top byte Buffer has been initialized flag (14= has, any other value =

has not)
Top Byte-2-1 Saved copy of FA variable. This is the only variable that

needs to be saved over a run command. (FA = address of
last byte used in text buffer.

3.3 Line Record in Cassette File Block

Byte 0 Length of text of line in bytes. If length would be equivalent
to certain ASCII characters such as quote ("), then one space
is added to line and length is incremented by 1 to avoid
trouble with Level-II Basic I/O.

Bytes 1 to M Line number in ASCII numeric characters (0 <M < 6)
Bytes M to N Text of line

3.4 Cassette File Block Format

Maximum Size - 240 characters

Byte 0 Quote symbol (') to hold block together through Level-II
Basic 1/0

Bytes 1 to N Lines of text

4. Program Variables

L$ Current line
LN Current line number
LG Length of a string
V Varptr of a variable
W Varptr of a variable and temporary variable
X 16-bit number (work variable)
P Pointer to (holds address of) current line record in text buffer
TA Top address (32767)
FA Address of last byte used in text buffer
SA Address of start of text buffer
ML Maximum line number allowed (32767)
YY$ Used in sneaky transfer of line from text buffer to L$
LM Last cassette I/O mode (read/write source/object cassette)

C M Current Cassette I/O mode
BR Bottom of line number range
TR Top of line number range
A$ Temporary string variable
QL Line number of current line in text buffer
BL$ String to hold cassette source file I/O block
B$ Temporary string variable
PO Pointer to last (old) current line in buffer
Q1 Text buffer move parameter- source address
Q2 Text butter move parameter - destination address
Q3 Text butter move parameter - byte count

(HL=Q1, DE=Q2, BC=Q3, FOR LDIR, LDIR Z-80 instructions)
z8$ String variable used to hold Z-80 code subroutines executed via

USR (0)

5. Program Routines

Note: The program has been renumbered from 1 with an increment of 1 to
reduce its memory size.

Because of the long lines allowed (256 bytes) in Level-II Basic, additions and
changes are still possible.

if the program is renumbered, then lines 1-30 should still start at 1 In in-
crements of 1 to avoid undue expansion.

It is suggested that other lines be renumbered so that the new numbers equal
the old numbers times 10, so patches etc. can still be applied, yet the new
version still resemble the old.

194-201 Once only program initialization
203 Input command prompt (mainline loop)
204 Command interpreter
205 Line insertion/deletion
209 Extract line number (LN) from line
211 Position P pointer at line with line number LN in text buffer
213 Decode line number range in L$ into BR and TR
218 Display line on screen/printer
219 Interpret line number range and find first line in text buffer
220 List (L command) routine
222 Delete (D) routine
224 Write (W) routine
230 Write end-of-file mark (E) routine
231 Re-number (N) routine
234 Write block to cassette (BL$)

236 Write line to cassette (append line to BL$)
242 Read (R) routine
243 Put lines from current block (BL$) into text buffer
244 Read a block (BL$) from cassette
247 Spilt next line from BL$
248 Point to next line in text buffer
250 Copy current line in text buffer into L$, LN
251 Insert (replace, delete) line in text buffer
254 Delete line from buffer
256 Restore FA from reserved high memory after a run command

(which wipes all variables)
257 Save value of FA In reserved high memory
258 Put low, high byte of X Into Z8$
259 Set up Z-80 machine language move routine for text buffer and

execute this routine by obtaining address via VARPTR for
USR(0)

260 Execute Z-80 machine language routine in Z8$ via USR(0)

Tiny Pascal Compiler
Program Documentation

1. Introduction

For a full discussion of the principles of operation. of his compiler, refer to
"Byte magazine, October, 1978, "A Tiny Pascal Compiler - Part 2: the P-
Compiler", by Kin-Man Chung and Herbert Yuen. This program is largely based
on the program listed in that article, but recoded in Level-II Basic and optimized
for minimum memory usage.

The compiler is a one-pass compiler using a technique called recursive descent.
Tandy Microsoft Level-II Basic is used recursively.

The compiler has its own stacks. one for strings and the other for numeric
variables. For maximum speed and memory efficiency, all numeric variables are
declared to be of integer type.

In effect, to compile a program, the compiler simply follows the syntax dia-
grams (railroad diagrams) of the language, deciding which route to take by
looking at the source program text, and emitting object code like smoke as it
goes.

One disadvantage of the compiler is that it does not have the ability to recover
and continue after an error in the source program. To provide this facility would
increase the complexity of the compiler, and thus its memory requirement, cutting
in to the size of the text buffer, or the ability to correct source program errors
without having to load in a different program for editing.

2. Program Variables

T$() Symbol Table - Identifier name string array
S() Stack-Compiler's number stack
S$() Stack- Compiler's string stack
T1() Symbol Table - Absolute program lexical level at which

identifier was declared
T2() Symbol Table-Value if constant, or displacement from base if

variable table, or P-code location if process or function
T3() Symbol Table-Array size for array, else number of parameters

for process or function identification
S9 Numeric Stack Pointer
P8 String Stack Pointer
M$ P-code Operator Mnemonics string values

W0$ People's Pascal Reserved Words string values
T0 Maximum Number of Symbols (size of symbol table) checked

for
FL Nested File Level for "$INCL" (max 1 in current version)
T1 Pointer into Symbol Table Arrays T1(). T2(), T3()
K1 Number of Parameters in previous process, function
OF$ Object File Flag -Non-null => object file to be produced
OB$ Object File Cassette output block area
BZ Pointer into OB$ object file block area
N0 Number of Reserved Words in W0$
N1 Maximum Value of an integer
N2 Length of Identifier
I$ Constant String of value "IDENT"
Y9
LN Current Program Line Number
L$ Current Line of program text
CI Character Pointer into L$
X$ Current Character of Program Text (also used to hold

"expected" in error section)
R Strung Value of Next Token expected by the compiler
E Error Code Number
U,V,W P-Code Generation- Parameters to code-generation routine:

U-opcode, V-relative level, W –value
O String Variable containing next program token (also used to

hold "missing" in error section)
ML Maximum Program Line Number
BL$ Cassette Input file block area
CM Current Cassette I/O Mode (refer to LM)
I,J,K Temporary Loop and work variable
A$ Next Program Text Token, returned by scanner
T ASCII Value of X$
B$ Temporary String Variable
Z$ Temporary String Variable
N3 Value of Token for "NUM" type tokens
C$ Value of a String Literal
K$ Symbol Table Entry Type - C-constant, A-array, P-process,

Y=function. V-Variable
Y$ Temporary String Variable to hold parameter to be pushed

onto, or having been popped from the string stack S$ ()
TT$ Temporary String Variable to hold symbol table entry type

(refer K$)
X Temporary Variable to hold value to be pushed onto or to be

popped from number stack S()
K2 Procedure or Function Call - Number of actual parameters
K3 Procedure or Function Call-Index of entry in symbol table
C1 P-Code Location Pointer

I1 Case Statement-Number of case labels
I2 Case Statement-Number of nested case statements
F9 Flag 1=TO, 0=DOWNTO; also 1=parameters. 0=no parameters
D0 Pascal Stack Location Holder
L1 Absolute Static (lexical) level of procedure or function

declaration
CC Next Byte of P-Code to be output
N4 VARPTR of W
LG Address of OB$ (output block area)
LM Last Cassette I/O mode (refer CM)

1=Write source file (editor)
2=Write object file (compiler)
3=Read source fife (editor)
4=Read source fife (compiler)

LP Line - Printer Output Flag – l=print, 0=don't print

3. Program Routines

2 Check that current token is as required (R) and issue error message
number (E) if not

3 Get next token, cheek that it is as expected and issue error message if
not

4 Push X onto numeric stack
5 Pop X from numeric stack
6 Get next character of program text into X$ and ASCII value into T
7 Issue error message number (E)
8 Analyze expression
9 Code generation-output 4-byte P-code specified by V, V, W
10 Get next token
11 Analyze a statement
12 Enter Symbol in A$ into symbol table at position T
13 Generate P-code with V (level offset)=0
14 Push string in Y$ onto stack
15 Pop siring from stack into Y$
16 Analyze array index expression
17 Code Generation-generate variable-level reference portion of P-code
18 Generate OPR P-code (U=1, V=0)
19 Generate LIT P-code (U=0, V=0)
20 Generate P-Code with W=0 and V=0
21 Scan for start of array index expression
22 Scan for left parenthesis
23 Scan for right parenthesis
24 Initialize various compiler variables
25 Start of compiler execution-INIT

26 Compiler mainline-compile block + "." at end, re-run program to
clear all variables

28 Check that current token is as required, and emit error message if not
34 Input a new line of source code
35 Initialize $INCL(ude) cassette file input
36 Read line from $INCL file
38 Get next token from source program into string variable O (no dollar

($) for brevity since this is so common)
69 Search symbol table for identifier
70 Analyze constant (CONST) declaration
71 Obtain value of constant
76 Analyze single VAR(iable) declaration
77 Analyze simple expression
83 Analyze term
88 Analyze factor
103 Analyze expression
111 Analyze statement
113 Analyze variable assignment (A:=B)
119 Analyze write statement
124 Analyze read statement
138 Analyze IF statement
140 Analyze compound statement
141 Analyze compound statement (BEGIN…END)
143 Analyze repeat statement
145 Analyze WHILE statement
146 Analyze CASE statement
155 Analyze FOR statement
159 Analyze block
162 Analyze CONST declaration
164 Analyze CONST declaration
167 Analyze ARRAY declaration
170 Analyze PROC declaration
171 Analyze FUNC declaration
177 Analyze BEGIN
181 Code Generation - Output 4-byte P-code to object file
187 Output "Fix up forward reference" pseudo P-code to object file and

display
188 Output 1 byte of P-code in CC to cassette output block
189 Output block of object code in OB$ to cassette and reinitialize OB$

NOTES:

Every attempt has been made to reduce to minimum the size of the compiler.

This is the reason for the "jump table" at the front of the program. These
short line numbers are used frequently and take less space.

Whenever a subroutine ends with GOSUB XXXX: RETURN, this code has
been replaced with GOTO XXXX, which is functionally equivalent, takes
less space, but tends to make the program messy to read However, these
occurrences are recognizable, with a bit of practice.

The construct RETURNELSERETURN has been used at the end of IF
statement lines to avoid the memory overload of using another program line.

Some IF Statements involving the comparison of quoted logical operators,
etc., have caused Level-II Basic a few headaches, and will not work without
embedded spaces.

The current version of the compiler is combined with the editor program, but
these two programs are relatively separate, only sharing certain
initialization code, and the routines for finding the next line in the text buffer
and copying that line into LN,L$. The cassette source read routine is also
shared together with the line unpack routine.

Conversion to Disk

The following tasks would be required/desirable:

1. Separate editor and compiler into two separate programs.

2. Add disk file access capability for editor, compiler, translator and in-
terpreter, for both source and P-code object files.

3. Add capability to write translated Z-80 object code files to disk either
as a translator facility, or as an extra program or as an option of the run-
tine system.

4. Allow greater depth of nesting of "$INCL" (ude)s.

5. Alter emphasis in compiler from minimum memory requirement to
higher speed.

Conversion for Additional Memory

The initialization of TA (top address) would need to be altered from 32767.

Care would be required with address calculation in integer mode when
handling addresses over 32767. It might be necessary to use floating-point
data types for such variables.

If the text buffer were to be significantly enlarged it would be desirable to use a
machine-language routine to replace the Basic routine used to position
pointer Pa at the address of the line in the text buffer with a given line
number.

This simple function could be easily implemented and would eliminate any
apparent delay to most commands.

P-Code Interpreter /TPRINT/
Program Documentation

1. Introduction

The People's Pascal P-code interpreter (PPINT) executes Pascal object code
(P-code) output from the People's Pascal Compiler. The P-code cassette file
output from the compiler is read into memory and then interpreted under
operator control. The program currently is written in Level-II Basic.

2. Program Variables

SZ Size of stack array for program to be interpreted.
S1 Size of stack at which overflow message is emitted. A little less than

SZ.
S() Stack array.
M$ Holds P-code instruction mnemonics.
PS P-code start address.
PP P-code pointer-points to current P-code during read-in from cassette.
Z$ Temporary string variable.
P1 First byte of 4-byte P-code.
P2 Second byte of P-code.
P3 Third byte of P-code.
P4 Fourth byte of P-code.
U Size of trace array.
BL Maximum number of breakpoints allowed.
TR() Trace array stores last few P-codes executed.
BR() Breakpoint array stores breakpoint locations.
BA Copy of base for Level L.
B Base register of current stack frame holds address of base of stack

frame of current block.
L Level offset.
A P-code second (16-bit) operand.
Z
T Stack pointer.
P Program counter (Holds P-code locations).
ST Stop execution flag, 0=OK, 1=stop.
P0 P-code location display pointer.
TP Trace array pointer - circulates around TR() trace array as instructions

are executed and stored In TR().
K
X P-code address in memory.
N1 16-bit operand.

F P-code op code.
IX LODX, STOX indexing flag. 0=not, 1=indexing.
SA Top of stack 16-bit word.
SB Top-1 of stack 16-bit word.
M1 Temporary variable.
H Parameter for hex input/output.
PC Parameter for hex.
PC P-code location parameter.
N Pointer parameter into M$.
I Temporary variable.
J Temporary variable.
BP Number of breakpoints currently set.
CM Command mnemonic string.
IB$ Input data block from cassette file.
IP Pointer to next byte in IB$ input block area.
Z9$ String to hold Z-80 machine code routine to read in a block of data

from P-code input file.
LN Length of input block IB$ in characters.
ZZ Temporary variable.

3. Program Routines

100 Initialization.
1000 Initialization - parameter input.
1013 Cassette file read-in to memory. Forward reference fix-ups

output to the P-code object file are fixed up in memory as
they are encountered. Pseudo-P-codes 253 and 254 are used to
label these items. Pseudo P-code 255 is used as an end-of-
program indicator.

9900 Initialization.
20040 Routine to bind the base address corresponding to a given level

offset.
20060 P-code program initialization.
20090 “Execute P-code instruction" routine. Ends at line 20680
20120 P-code or op-code branch out depending on value of op-code.
20140 LIT- Execute literal instruction.
20150 OPR-Execute OPR instruction.
20520 LOD Execute load instruction.
20530 STO-Execute store instruction.
20540 CAL- Execute call instruction.
Note: if it is an absolute call, and the address is that of the graphics "SET'

routine, then a SET/RESET will be performed instead of. call.
20550 INT- Execute increment-stack pointer instruction.
20560 JMP-Execute JUMP instruction.
20570 JPC - Execute conditional jump instruction.

20580 CSP- Perform CSP function.
20690 Get 2nd P-code instruction operand (16-bit).
20710 Display P-code instruction at location PC.
20760 Check if a breakpoint has been encountered.
20820 MAINLINE-Accept and execute operator commands.
20830 Input command and execute it.
20840-20970 Command interpreter.
30010 Get next P-code from cassette file.
30070 Z-80 machine language routine to read-in a block of data from

cassette input file. Level-II basic I/O is bypassed to avoid
records being truncated if certain values (e.g. (")) occur in data.

30080 Routine to read Z-80 routine into Z9$.
30100 Fix up forward reference item encountered on cassette input file.
30210 Routine to execute machine language subroutine in Z9$ which

reads a block of data into the Level-II basic 256-character I/O
buffer at address 16870, and to copy this data into block area
IB$.

30300 Routine to call an assembly language subroutine whose address
is on top of the Pascal stack, unless the address is that of the
graphics "SET” routine, in which case, a level-II Basic
SET/RESET instruction is performed instead.

P-to-Z8O Code Translator /PTRANS/
Program Documentation

1. Introduction

The P-code to Z-80 code translator program (PTRANS) translates a P-code
program into a Z-80-microprocessor machine language program. The P-code
program is input from a P-code object cassette file generated as output by the
People's Pascal compiler.

A People's Pascal program, when translated to Z-80 machine language, will
typically run about five times faster than an equivalent Level-II Basic
program.

The following People's Pascal statements executes in about 5 seconds:

FOR I:=0 TO 127 DO BEGIN
FOR J:=0 TO 47 Do BEGIN
 SET(ON,I,J);
END; (*FOR*)
END; (*FOR*)

Whereas the equivalent Level-II Basic statements:

FOR 1=0 TO 127:
FOR J=0 TO 47:
SET (I,J):
NEXT J:
NEXT I

take about 42.5 seconds,

2. Description

The following actions are performed:

1. Initialization - Translation parameters are prompted for and saved, then
initialization code is deleted and the program run again. Note: a
"CSAVE" after running the program will not produce a viable copy.

2. P-codes are read-in from cassette and stored in memory normally
starting at address 24000. Forward reference fix-ups, generated by the
one-pass Pascal compiler are fixed up as they are encountered in the
cassette file. These forward reference fix-ups ("add X at Y") are stored
as pseudo P-codes in the P-code cassette file using op-codes 253 and
254.

3. Pass-1: establish table of P-code jump or call destination locations by
looking for JMP, JPC and CAL op-codes; remove duplicates and sort
table into ascending P-code location sequence (= ascending Z-80
address sequence).

4. Pass-2: generate Z-80 addresses corresponding to P-code locations in
table by translating P-code to Z-80 code and obtaining the length of
each Z-80 code.

5. Pass-3: generate Z-80 codes, including correct addresses from table;
store in memory normally starting at address 23000, and list-out P-
codes with equivalent Z-80 codes in hex and addresses in decimal and
hex.

3. Program Variables

DI Display flag: 0=don't display object code, 1=do.
LP Print flag: 0=don't print object code, 1=do.
OP optimization flag: 0=optimization for speed, 1=minimum

memory use.
PA P-code address table-array.
ZA Z-80 code address table-array.
JT Run-time system jump-table address.
CO$ P-code op-code mnemonics stored in string.
PS P-code storage start address.
ZS Z-80 code storage start address.
PP Current P-code pointer.
ZP Current Z-80 code pointer.
ZZ$ Temporary string variable.
P1 Value of first byte of current P-code.
P2 Value of second byte of current P-code.
P3 Value of third byte of current P-code.
P4 Value of fourth byte of current P-code.
P5 Value of third and fourth bytes of current P-code taken as a

16-bit integer.
Z8$ Storage area for bytes of current Z-80 code (the Z-80

instruction's equivalent to the current P-code).
A$ Temporary string variable.

PC Current P-code pointer.
I Temporary loop variable.
J Temporary loop variable.
AN Actual number of addresses in address table.
K Temporary variable.
N1 Temporary variable.
CL Current Z-80 code length in bytes.
AP Index into address tables PA and ZA.
X P-code indexed LOD/STO operation (LODX/STOX) flag. Also

work variable in initialization.
LT$ P-code literal string accumulation area for CSP 8.
XX Pointer to address within jump table.
RT Run-time system routine number.
XL Low byte of XX (also temporary variable).
XH High byte of XX (also temporary variable).
P6 -2*P5.
P7 Low byte of P6.
P8 High byte of P6.
HX$ Holds two-character hex string equivalent to one binary byte.
IX Index into P-code address table.
BY Byte to be converted to hex.
BH Four-bit "nibble" of BY.
HB Hex base. ="0" or “A”.
HX Four-bit nibble to be converted to hex character.
Z9$ String to hold Z-80 read-cassette machine language routine

required to bypass Level-I1 Basic input routine.
LN Length of block read from cassette (P-code input file).
IB$ Area to hold P-code block read from cassette.

4. Program Routines

1-25 Initialization - input parameters.
27 Prompt for number showing default value. Accept reply and

save it.
29 Save a value in high memory.
31-35 Read-in P-code cassette fife.
37 Append "Push HL" Z80-code onto Z8$.
39 Restore a value from high memory after "run”.
41 Further initialization, mainline.
45 Pass 1, mainline.
47 Pass 2, mainline.
49 Pass 3, mainline.
53 Termination, mainline.
59 Scan P-codes in memory for P-code jump destinations and

store these in P-code location table.

69 Bubble sort P-code location table.
73 Obtain current P-code into P1, P2, P3, P4, P5.
77 Calculate P5 from P3, P4.
79 Display current P-code on screen.
85 Pass-2: Calculate Z80 addresses corresponding to P-code

locations and store in ZA.
97 Pass-3: Generate, display and store Z80 codes.
103 Display current Z80 code on screen.
105 Generate Z80 code corresponding to current P-code.
113 Translate LIT P-code to Z80 code.
115 Translate OPR P-code to Z80 code.
125 Translate LOD P-code.
135 Translate S'I'O P-code.
143 Translate CAL P-code.
149 Translate JMP P-code.
159 Translate JPC P-code.
165 Translate CSP P-code.
173 Convert XX to XL and VH low and high bytes.
175 Append A "CALL XX" Z80 code to Z8$.
177 Put a "LA HL, [P6]" Z80 code into Z8$.
181 Put a "LD HL, [P5]" Z80 code into Z8$.
183 Put a "LD L, (IX + [P7])

LD H, (IX + [P7 + 1])
PUSH HL" Z80 code into Z8$

185 Put a "POP HP
LD (IX+[P7]), L
LD (IX+[P7+1]),H" code unto ZS$.

187 Calculate P7 from P5.
188 Append a

"LD A, [P2]" Z80 code into Z8$.
191 Append a

"JP XX" Z80 code to Z8$
193 Find Z80 address in table ZA corresponding to P-code location

held in P5 by looking up this P-code location in table PA (linear
search).

195 Look up P-code location held in P5 in table PA.
199 Display Z80 code in Z8$ in hex plus current Z80 address in

decimal and hex and store Z80 code in memory at current Z80
address.

209 Convert binary byte in BY to two hex characters in HX$.
211 Convert 4-bit nibble in HX to hex character and append to

HX$.
215 Store a 4-byte P-code at the current P-code location.
217 Display the contents of the PA and ZA tables.
219 Get next P-code from cassette in P1, P2, P3, P4.

231 Z80 machine language routine to read a block of P-codes from
the cassette input file into the Level-II Basic I/O buffer area.

233 Routine to read Z80 machine language routine into Z9$.
237 Routine to apply forward reference fixup "pseudo-P-codes"

(op-codes 253 & 254) to P-code in memory as these are
encountered on the P-code cassette input file.

239 Routine to execute the Z80 machine language cassette-read
routine held in Z9$ with the USR(0) function, and transfer the
data read into the string area IB$.

5. Z-80 Codes Generated for Each P-Code

Note: IX register is used for Pascal current stack (B) base register. SP is
used for stack pointer (T). HL is used for argument register, A is used to hold
level offset.

5.1 Optimizing for Speed

MNEMONIC OPERATION Z80-Code
LIT 0,NN load literal onto LD HL,NN

stack PUSH HL
OPR 2 add operation POP DE

POP HL
ADD H,DE
PUSH HL

OPR 19 Increment POP HL
operation INC HL

PUSH HL
OPR 20 decrement POP HL

operation DEC HL
PUSH HL

OPR 21 copy top of stack POP HL
PUSH HL
PUSH HL

OPR N arithmetic or CALL
logical operation OPRN

LOD 0,N load variable LD L,(IX+[-N*2])
onto stack
(-64 < N < 64) LD H, (IX+[-N*2+1])

PUSH HL
LOD 0,NN load variable LD HL,NN

onto stack CALL LOD

LOD L,M load Level L LOD HL,NN
variable LD A, L
onto stack CALL LOD1

LODX 0,M load current LD H,M
level indexed CALL LODX
(array) variable
onto stack

LODX L,M load Level L in- LD A, L
dexed variable CALL LODX1
onto stack

STO 0,N store current POP HL
level variable LD (IX+[-N*2]),L
from top of LD (IX+[-N*2+1]),H
stack
(-64 < N < 64)

STO 0,NN store current LD HL,NN
level variable CALL STO
from top of stack

STO L,M store level L LD HL,NN
variable from LD A,L
top of stack CALL STO1

STOX 0,M store current LD HL,M
level indexed CALL STOX
(array) variable
from top of stack

STOX L,M store level L LD HL,M
indexed variable LD A,L
from top of stack CALL STOX1

CALL 0,M call procedure or CALL CAL
function at JP [Z80 ADDR]

P-code loc. M
CALL L,M call procedure or LD A,L

function declared CALL CAL1
at level L JP [Z80 ADDR]

CALL 255,0 call machine CALL CALA
language subroutine

JMP 0,M Jump to P-code JP [Z80 ADDR]
location M

JPC 0,M Jump if condition POP AF
false to P-code JNC [Z80 ADDR]
location M

JPC 1,M Jump if condition POP AF
true to p-code JC [Z80 ADDR]
location M

CSP 0,N call standard CALL CSPN
procedure number N

INT -1 adjust stack POP BC
INT –2 pointer POP BC

POP BC
1NT –3 3 X POP BC
INT 1 DEC SP

DEC SP
INT 2 4 X DEC SP
INT M LD HL, [-M*2]

ADD HL,SP
LD SP,HL

5.2 Optimizing for Minimum Memory Use

The same code as above is produced except as follows:

mnemonic operation Z-80 Code
LIT 0,N load small positive RST 4; RESTART 4

literal onto stack RESTART 4
(0 <= N < 256) DEFB N

LOD 0,N load variable RST5;
with small offset RESTART 5
at this level DEFB –2*N
(-64w<64)

STO 0,N store variable RST 6;
with small offset RESTART 6
at this level DEFB -2*N
(-64<N<64)

LOD 1,N store variable RST 7;
with small positive RESTART 7
offset at DEFB -2*N
one level higher
(0<=N<128)

STO 1,N store variable RST 1;
with small positive RESTART 1
offset at one DEFB -2*N
level higher

NOTE: In order to make the best use of the minimum-memory option, the
programmer may use the following techniques:

1) Do not declare procedures within procedure. All procedures should
be declared at the outermost block Level. (This rule will also make
programs run slightly faster, and is quite sensible from a human point of
view, as well as being compatible with the single level of the $INCL

compiler option. Usually there is no need to declare procedures and
functions at any other than the outermost block level.

2) Declare all single variables before declaring any array variables.
This will generally ensure that all variables have an offset of less than
64 stack locations from the base and therefore allow the translator to
make use of the "small” option. The size of the offset of array variables
does not matter.

Program Documentation
Run-Time System

1. Introduction

The People's Pascal run-time system provides subroutines which are called
by translated People's Pascal Programs. Subroutine are provided for such
functions as multiply and divide, keyboard input, etc.

Code for these functions could be inserted “in-line” into the program by the
translator, but then People's Pascal programs would be very large. In
general, the factor which decides whether a given function should be performed
in-line or as a subroutine, is the size of the code required to perform the
function. The larger the code is, the more economical it is to have only one
copy of it as a subroutine, and the less the proportional overhead in execution
time of the actual subroutine call and return instructions against the code
executed to perform the function.

The run-time system is entirely self contained apart from two Level-II Basic
routines which are used to input a character from the keyboard and to output a
character to the screen. To convert to computer such as the Sorcerer, it should
only be necessary to provide the equivalent of these two routines.

As well as providing subroutines, the run-time system is entered initially when
a People’s Pascal program is run. Certain initialization functions are
performed before control is passed to the program.

2. The Jump Table

Most subroutines within the run-time system are accessed via a jump table
included in the run-time system. This allows modification of subroutine
locations within the system without modifying the addresses of the subroutine
entry points.

This also allows modifications to the run-time system without modifying the
translator program or previously-translated programs, providing of course that
the jump table itself is not moved. Also, subroutine entry routines within the
jump table are at a constant offset from the starting address of the jump table.
Thus if ever the jump table is moved, (re-assembled with a different origin),
then the only parameter to be changed to the translator is the address of the
start of the jump table (JMPTAB).

3. Restart (RST) Instructions

An exception to the use of the jump table is the use of RST instructions in
People’s Pascal programs that have been translated with the minimum-
memory usage optimization option. For certain common functions, the
restart (RST) instructions (1-byte subroutine calls to fixed low-memory
addresses) are used, as follows:

LIT 0,N (0<=N<256) RST 4, DEFB N
LOD 0,N (-64<N<64) RST 5, DEFB –2*N
STO 0,N (-64<N<64) RST 6, DEFB –2*N
LOD 1,N (0<=N<128) RST 7, DEFB –2*N
STO 1,N (0<=N<128) RST 1, DEFB –2*N

Use of the RST instructions is made possible by the flexible approach taken by
Microsoft in designing Level-II Basic.

RST instructions jump to low memory (ROM) addresses, but at these
locations, Microsoft has put jump instructions out into RAM locations 4000
hex onwards for RST 1 to RST 7 (RST 0 is not used in this way). These
locations at 4000 are set to jump back into ROM, or perform other functions
when the memory size question is answered.

On initialization, the People's Pascal run-time system overwrites these loca-
tions at 4000 hex with the addresses of the relevant subroutines itself. These
addresses are restored when the Level-II keyboard/screen I/O routines are
called. This feature is not used by programs optimized for speed.

4. Program Variables and Constants

STK Slack location used by PPRUN during initialization.
CR Carriage return code.
KBUFL Number of characters in keyboard buffer.
KBUFP Pointer to next character in keyboard buffer.
KBUF keyboard buffer area (max 64 characters).
RST Area containing restart table overwrite data. This is copied to

4000 hex on initialization and after keyboard I/O.
NORST Area containing copy of Level-11 Basic version of restart

table. This is copied to 4000 hex on keyboard I/O.
K10 Table of powers-of-ten for binary to decimal conversion for

CSP3 (write #).

5. Register Usage

SP Used for People's Pascal stack pointer (T). It is also used for
subroutine return linkage.

HL Generally, used as an argument register. It is used in code
called by RST instructions to hold addresses of trailing
arguments.

DE General purpose.
BC General purpose.
A Used to hold relative level offset when not 0. Also general

purpose.
IX Used for People's Pascal base register (B).
IY Frequently used to save subroutine return address popped from

stack at start of subroutine and jumped to at end.

Alternate register - Used In CSP1only.

6. Program Routines

START Normal initialization entry point,
INAD Alternate entry point - allows override of stack address and entry

of non-standard program start address.
DORST Overwrites Level-II Basic restart table at 4000 hex.
UNDO Overwrites 4000 hex with original Level-II contents. Note

NORST must be in HL.
LITB Small literal - only for minimum-memory translation option.
CALA Absolute memory address call (CALL(MEM)). Note IX

register is saved. Any other register can be overwritten, so
programmer does not need to worry about destroying register
values in his subroutine.

CAL1 Call procedure at non-zero level offset.
CAL Call procedure at 0 level offset (CAL 0,N).
OPR0 Subroutine return.
OPR1 Negate top of stack (TOS).
OPR2 Add-not currently used-in line instead.
OPR3 Subtract
OPR4 16-bit signed multiply.
OPR5 16-Bit signed divide.
OPR6 Test TOS for odd value.
OPR7 MOD (uses divide, multiply and subtract).
OPR8 Compare equal.
OPR9 Compare not equal.
OPR10 Compare less-than.
OPR11 Compare greater-than or equal.
OPR12 Compare greater than.

OPR13 Compare less-than or equal.
OPR14 OR operation.
OPR15 AND operation.
OPR16 NOT operation.
OPR17 Shift left operation.
OPR18 Shift right operation.
OPR21 Not used – inline instead.
KBIN Routine to input a line of characters from the keyboard, echoing

then to the screen and allowing the delete key to operate if
required.

CSP0 Input a character. Calls KBIN to get next character out of input
line.

CSP1 Output a character. Also resets KBIN input line pointer and
length to zero so next call to CSP1 will cause a new read.

CSP2 Read a number. Calls KBIN to get characters of number.
Number is terminated by first non-digit character.

CSP3 Write a number.
CSP8 Output a string of characters. These arc supplied in form of a

trailing argument terminated by a null (0) byte. Also clears
KBIN input line length and pointer, so next read will cause true
input to be done.

M8 Unsigned 16-bit-by-8-bit multiple.
NEGHL Negate the HI register (internal subroutine only).
LODA Load from absolute memory address (:=MEM(X)).
LOD1B Load from small offset at previous level (small option only).
LOD1 Load, level < > 0.
LODB Load from small offset at current level (small option only).
LOD Load, Level=0.
LODXI Indexed (array) load, level <>0.
LODX Indexed load, level=0.
BASE Find base register value corresponding to level offset supplied

in A register and return base value in BC register.
STO1B Store to small offset, Level=1 (small option only).
STO1 Store, level < > 0.
STOB Store to small offset, level = 0.
S TO Store, level =0.
STOX1 Store indexed (array), level <> 0.
STOX Store indexed, level = 0.
JMPTAB Jump table.

7. Special Subroutines

The following two subroutines are used in the Level-II Basic ROM:

0033 hex Output character in A-register to screen.
002B hex Try for character from keyboard. A-register will have character

if there was one, otherwise A-register will be zero. This is called
in a loop until A < > 0.

These are the only external facilities used by the run-time system, and
equivalent routines would need to be supplied in their stead for a different
micro system. Also, some modification would probably need to be made to
the restart system for minimum-memory optimization if this feature was to
be retained under a different system.

Editor/Compiler
Operating Instructions

1. Introduction

The People's Pascal editor is a line-oriented editor. Edit commands operate
on tines of text in a text buffer, which has room for just over 3,000 characters
or 50-200 lines of text, depending on line length. Intra-line editing is not
provided.

Lines of text in the text buffer may be:

• inserted from keyboard cassette files
• replaced from keyed-in or tape files
• deleted
• renumbered
• written to a cassette file
• listed on the screen
• printed on the lineprinter
• compiled

Files of any length may be created or edited. PPEC files are not loadable
via the "CLOAD" command or the "SYSTEM" command, nor are they
compatible with the Tandy editor/assembler. However, they may easily he
read by a Level-II Basic program. PPEC cassette flies are blocked for
efficiency.

2. Line Numbers

In the line-oriented PP editor, lines of text are identified by line numbers.
Lines always occur in line-number sequence both in the text buffer and in
cassette files. Line numbers may range from 1 to 32,766.

Many of the editor commands operate on text lines having line numbers
falling within a line number range. A line number range is expressed as a
starting line number followed by a single dash (i.e.. "-") character, followed
by a final line number (e.g. 500-1000).

The following variations of this form are allowed:

A. No final line number, (e.g. 500). In this case, the final line number
will default to the value of the starting line number, and the command
will operate on that line only.

B. No starting or final line number. In this case, the starting line number
will default to 1, the final line number will default to the highest line
number allowed (32,766), and the command will operate on all lines in
the text buffer.

C. Startling line number replaced by a full stop (full point or " ")
character, (e.g. -500). In this case, the starting line number will take
the value of the current line number, and the command will operate
from the current line to the final line number.

D. Missing final line number, but a dash character present (e.g. 100- or .).
In this case the final line number will default to the largest line
number allowed, and the command will operate on lines from the
starting line number to the end of the buffer.

3. Commands

People's Pascal editor commands consist of a single letter, possibly followed
by a line number range or other numeric argument.

The following commands are accepted:

C COMPILE Compile People's Pascal program in the text buffer.
D DELETE Delete line(s) from the text buffer.
E EOF Write an end-of-file mark to the output-cassette file.
F FREE Enquire how many bytes "free" (available) in the text

buffer.
L LIST List line(s) in the text buffer on the screen.
N NUMBER Re-number lines in the text buffer.
P PRINT Print line(s) in the text buffer on the line printer.
R READ Read block(s) from the input cassette file, and insert

or replace lines in the text buffer.
W WRITE Write line(s) from the text buffer to the output cassette

file.

Commands must be typed precisely. Leading spaces are not allowed.
Embedded spaces are not allowed between command mnemonics ("C", "D'.
"E", etc.) and the numeric arguments. An unrecognized command will cause a
message from the editor.

4. Inserting and Replacing Lines

NOTE: The current version of the editor requires that any limes containing
the characters “,” or ":” be preceded by the quote sign ("), otherwise the
Level-II Basic I/O will truncate the line at the comma or colon, and emit this
message: "EXTRA IGNORED”. It is good practice to precede every line
containing source code (text) by a quote sign. The quote is "thrown away"
by the Level-II Basic input routine. The editor lists lines in alignment with
lines typed in this fashion, for the consistent appearance of People's Pascal
block-structure indentation of the file on the screen. It is not necessary to
precede command lines by a quote, since these never contain a comma or a
colon.

A line to be inserted into the text buffer is typed preceded by its line number.
If there was already a line in the buffer with this number, then the new line
will replace the old line. Otherwise, the new line will be inserted into thc
buffer in position according to its line number.

5. Deleting Lines - D

To delete a single line, simply type its line number This line will be deleted
from the buffer. To delete several lines, the D command can be used. D
alone will delete line 100 (same effect as just typing 100). D100-500 will
delete lines 100 to 500 inclusive. Some delay may be noticed when many
lines are deleted at once.

6. Listing Lines -L

The L command is used to list lines in the text buffer on the screen. Just L
will list all the lines in the buffer. L100 will list line 100. L100-500 will list
lines 100 to 500 inclusive. "L." (without quotes) will list the current line. L.-
will list from the current line to the end of the text buffer. Note that the ENTER
key will cause the operation of the list command to be terminated, with the
current line being the last line listed (i.e. L.- will continue the listing again
from the point where it was terminated by hitting ENTER.

7. Renumbering Lines - N

The N command is used to assign new line numbers to lines in the text
buffer. This can be useful if it is desired to insert text from a cassette file
into a given location. Lines can also be moved by saving them on cassette,
deleting them, renumbering the remaining lines, and then reading back in the
original lines from cassette.

Lines are renumbered starting from a base number until the end of the
buffer. Just N will cause all lines in the buffer to be renumbered. N500 will
cause line 500 onwards to be renumbered. When the N command has been
entered, the editor will ask for the new base and increment. Lines will be
renumbered starting from this base with this increment. The new base must
be greater than the line number of the line below the lines being renumbered.

8. Reading Text from Cassette -R

Lines on PPEC cassette files are stored as variable-length records in
variable-length blocks of up to 240 characters. The R command will cause the
next block(s) on the cassette to be read into the text buffer in position
according to their line numbers. If there is already a line in the text buffer
with the same number as a line being read from cassette, then the old line will
be replaced. Just R will read in the next block. R100 will read in the next 100
blocks or stop at the next end-of-file mark, or until the text buffer becomes
full, whichever occurs first.

9. Writing Lines to a Cassette File -W

The W command will cause lines to be written to cassette. Just W will cause
all the lines in the buffer to be written to the cassette in blocks. W100-500
will cause lines 100 to 500 to be written to cassette. Lines are written as
variable-length records in variable-length blocks of up to 240 characters. A
"short" block may be written as the last block of a line number range. In
addition, a line starting with a "$” sign will always be the last line in its block
(Refer to " $INCL” in compiler documentation).

On completion of the write command, the editor will ask whether the lines
written out to cassette should be deleted from the text buffer ("DELETE?"). A
reply of "Y" will cause these lines to be deleted from the text buffer. Any
other reply will leave these lines unchanged in the text buffer. This option is
provided for the editing of files that are too big to all fit in the edit buffer at
once.

If the write command was a write to the end of the text buffer, then TPEX will
prompt with "EOF?'"' on completion of the write. If the reply to this prompt
is "Y" then an end-of-file mark will be written to the file at this point (same
effect as E command).

10. Compile - C

The C command will pass control from the People's Pascal editor to the
compiler, which will attempt to compile lines from the text buffer. If it is
required to compile a file from cassette, then it will be necessary to insert a
line such as "100$INCL FRED'' into the text buffer before invoking the
compiler. Before compilation commences, the compiler prompts with an
"LP?". If the reply is "Y”, then the listing output will be printed on the
lineprinter rather than being displayed on the screen.

The compiler then prompts with an "OBJ FILE?”. If the ENTER key is
pressed then no object file will be generated, and the compile will be for
syntax errors detection only. Any other reply will cause an object file to be
generated. In one cassette systems, where source input is being accepted from
cassette, it will be necessary to change cassettes and cassette drive operating
modes (play/record) when the compiler prompts. between the source file
cassette(s) and the object file cassette.

11. Print on Lineprinter Text Buffer Line(s) - P

This command is used in exactly the same way as the L command, except that
the output appears on the lineprinter rather than the screen.

12. Creating, Maintaining Large Files

It is possible to create and maintain cassette files of indefinite length with the
People's Pascal editor, even with only one cassette drive, although large files
of People's Pascal source code are not recommended (refer to compiler docu-
mentation on modular programming).

To create a large file, type lines into the text buffer until it becomes nearly full,
mount an output cassette and write the contents of the buffer out with the W
command, deleting the text that has been written out. Type more lines into the
text buffer, with higher line numbers, and repeat the process until the
complete file has been written out. Write an end-of-file mark to the output
cassette.

To edit a large file, a new copy of the file is made on a fresh cassette, as fol-
lows. Mount the input cassette containing the current version of the file.
Read several blocks of the file into the text buffer and edit them. Remove the
input cassette and mount the chosen output cassette. Write out the edited lines
from the text buffer to the output cassette. Remove the output cassette and
remount the input cassette. Read in some more text from the input cassette
and repeat the process. Repeat until all input text has been processed (end-of-

file-or "#EOF") encountered, and all edited text has been writ ten to the
output cassette. It is advisable to keep one old version of a file, in case the
most up-to-date version is lost, accidentally erased, or becomes unreadable.
Alternatively, a copy of the current version may be made by using the above
process without any editing.

Important Note:

PPEC text files are blocked on cassette. This means that the file consists of
blocks of data with "gaps" in between. It is this feature which makes many
of the features of the program possible. It is especially important that
cassettes that are to be used as output files from the editor should be erased
before they are used. Bulk erasure is not necessary. Simply rewind the
cassette, set the recorder on manual (disconnect computer remote control)
and record over the whole cassette. This can be done any time the recorder is
not being used by the computer.

		People's Pascal II

		User's Manual for TRS-80

		People's Pascal Operating System

		People's Pascal Monitor

		The People's Pascal Editor

		People's Pascal Compiler

		Compiler Specifics

		Bringing Up People's Pascal

		Startup

		Creating a Program

		Compiling, Running,Saving/Loading a Program

		Special Notes

		Using the 'Big' Pascal on Side (B)

		Error Codes

		Useful Calls, Addresses Inside the Monitor

		Tiny Pascal Programs

		Sample

		Hilbert Curves

		Blockade

		TRS-80 People's Pascal System Documentation

		Introduction

		Text Editor

		Compiler

		The Interpreter

		Translator

		People's Pascal Source Library

		Run-Time System

		People's Pascal Language

		Memory Maps

		Editor/Compiler (TPEC)

		Interpreter (PPINT)

		Translator (PPTRANS)

		People's Pascal Translated Program at Run Time

		People's Pascal Stack

		Diagram of People's Pascal Stack Frame

		The P-Codes

		P-Code Details

		Language Description

		Introduction

		Pascal Features Not Present in People's Pascal

		Data Types

		Program Structure

		Parameters Passed by Value

		WRITELN

		Additional Features of People's Pascal

		Access to Memory

		Access to Routines in Assembly Language

		Format Control on Read & Write

		Hexadecimal Constants

		Else on Case Statements

		Tips on Programming in People's Pascal

		Modules

		Initialization of Variables

		Arithmetic and Stack Overflow

		The People's Pascal Library

		People's Pascal Reserved Words

		People's Pascal Special Symbol

		People's Pascal Operators

		Compiler Operating Instructions

		Introduction

		Invoking the Compiler

		Object File Option (OBJ FILE?)

		Lineprinter Option (LP?)

		Compier Operation

		Mounting Object Cassettes (OBJ CAS READY?)

		Mounting Source Cassettes (READ CAS?)

		P-Code Interpreter Operating Instructions

		Introduction

		Running the Interpreter

		Interpreter Commands

		Run Program -R

		Single Step -S

		Go On -G

		Display Program Status -X

		Display Program Trace -Y

		Display Stack Location -K

		Set Breakpoint -B

		Clear Breakpoints -C

		Display Breakpoint Location -V

		Examine P-code Location -E

		Examine Next P-code Instruction -N

		Examine Last P-code Location -U

		Quit -Q

		P-Code Instructions

		Translator Operating Instruction

		Introduction

		Choosing Addresses

		Operation

		Running Translated Pascal Programs

		Text Editor Program Documentation

		Introduction

		Commands

		Record Format

		Line In Text Buffer

		Text Buffer

		Line Record in Cassette File Block

		Cassette File Block Format

		Program Variables

		Program Routines

		Tiny Pascal Compiler Program Documentation

		Introduction

		Program Variables

		Program Routines

		Conversion to Disk

		Interpreter Program Documentation

		Introduction

		Program Variables

		Program Routines

		Translator Program Documentation

		Introduction

		Description

		Program Variables

		Program Routines

		Z-80 Code Generated for Each P-Code

		Optimized for Speed

		Optimized for Minimum Memory Use

		Run-Time System Program Dicumentation

		Introduction

		The Jump Table

		Retart (RST) Instructions

		Program Variables and Constants

		Register Usage

		Program Routines

		Editor/Compiler Operating Instructions

		Introduction

		Line Numbers

		Commands

		Inserting and Replacing Lines

		Deleting Lines -D

		Listing Lines -L

		Renumbering Lines -N

		Reading Text from Cassette -R

		Writing Lines to Cassette File -W

		Compile -C

		Print on Lineprinter Text Buffer Line(s) -P

		Creating, Maintaining Large Files

