INCORPORATED

P.O. Box 592293
Miami, Florida 33159
(305) 238-3820

COPYRIGHT NOTICE

Copyright (C) 1980 by Key Bits Inc. All Rights Reserved Worldwide. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into human or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise, without the express
written permission of Key Bits Inc., P.O. Box 592293, Miami, Florida, 33159.

TRADEMARK

The following names are trademarks of Key Bits Inc.

The STRING Bit

The STRING/80 Bit
STRING/80

Key Bits Inc.

Key Bits Incorporated

DISCLAIMER

Key Bits Inc. makes no representation or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantibility or fitness for
any particular purpose. Further, Key Bits Inc. reserves the right to revise this publication
and to make changes from time to time in the content hereof without obligation of Key
Bits Inc. to notify any person or organization of such revision or changes.

ACKNOWLEDGMENTS

References are made throughout this document to CP/M. Key Bits Inc. would like
to acknowledge the fact that CP/M is a trademark of Digital Research of Pacific Grove,
California.

the STRING/80 bit

USER MANUAL

April, 1980

Copyright (C) 1980
Key Bits Inc.
P.O. Box 592293
Miami, Florida 33159

All Rights Reserved
Worldwide

The STRING/80 Bit USER MANUAL

TABLE OF CONTENTS

Introduction « o« o o o o o o o o o &
General Conventions and Rules ., . .
Programming with the STRING/80 Bit .
The Demonstration Programs . « « « o
Some Advanced Programming Techniques
The Reference Manual . « « o o o o
APPENDIX
A - Files Included on the Disk
B - External Labels Referenced
C - Quick Reference Guide . . .
D - Software Cross Reference .

E - User Reporting Form

17

35

39

49

61

63

65

66

68

The STRING/80 Bit USER MANUAL

The STRING/80 Bit USER MANUAL

INTRODUCTION

CHAPTER 1

The STRING/80 Bit USER MANUAL
1 - Introduction

Welcome to the world of 280/8080 Fortran String Handling

You have just simplified the task of handling character
strings in your 2%80/8080 computer system environment. The
STRING/80 Bit (tm) has been designed for high performance,
low burden, character string handling in most 280/8080
microcomputers using the CP/M or CP/M-Compatible operating
system. As a collection, these machine-language routines,
developed in assembler language, were specifically designed
to interface to Microsoft's Fortran. However, any language
processor that conforms to the Microsoft convention of
passing call parameters, may obtain direct benefit from The
STRING/80 Bit.

The STRING/60 Bit includes the following calls and
functions:

Housekeeping Call Routines

VERS Returns a string with version
information and copyright notice.

DEFDS Initializes a default string
variable. This variable is a non-
dimensional string space 80
characters in length.

DEFSS Initializes a string variable of a
specified length, up to 255 bytes,
Any non-dimensional string
variable with a length between 1
and 255 can be initialized using
this routine.

DEFTS Initializes multiple dimension
string variables, such as a table
or matrix of strings. The entry
length of these table or matrix
structures can be any 1length
between 1 and 255 characters.

STRIPS Clears a string of unwanted
characters when the string has
been used in reading the disk or
console,

The STRING/80 Bit USER MANUAL

1l - Introduction

String Conversion Call Routines -

UPPERS

LOWERS

CMDS$

MAKES

MERGES$

RIGHTS

MIDS

LEFTS

SWAPS

IEOSS

LENS

IDENS

Converts all alphabetic (A-Z)
characters in the string to upper
case characters regardless of what
they were prior to the operation.

Converts all alphabetic character
in the string to lower case
characters regardless of what they
were prior to the operation.

Retrieves command parameters from
CP/M systems. The default buffer
is located at 080 Hex.

Makes a string variable a copy of
another string.

Appends a copy of one string to
another.

Places a copy of the rightmost
characters of a string into
another.

Fills a string variable with the
characters extracted from the
middle of another string.

Stores a copy of the extracted
leftmost characters of one string
into another.

Swaps one string with another,

String Handling Functions

Sets literal end of string marker
character to be any character the
user desires,

Returns length of string.

Compares two strings and returns a
-1 if the first is less than the

second, a zero if they are equal,
and a +1 if the first is larger
than the second.

The STRING/80 Bit USER MANUAL

1 - Introduction

MATCHS

NVALS

LOOKS$

NFORMS

CHAINS

DIRS

RENS

KILLS

SELCTS$

RESETS$

Returns location of one string
found within another string.

Returns location of numeric value
in string, and moves value to
string buffer to allow DECODE
conversions to be performed.

File Handling Functions

File

Looks to see if a given file
exists on a disk. The routine is
found in the utility library. The
Fortran source is included.

Forms a file name into a eleven
character string which may be used
to open a file.

Handling Call Routine

Executes any CP/M program file,

Retrieves CP/M directory
information., The routine is found
in the utility library. Assembler
source code is included.

Renames a CP/M file. The routine
is found in the utility library.
Fortran source code is included.

Kills, or removes a CP/M file.
The routine 1is found in the
utility library. Fortran source
code is included.

Selects the current CP/M drive
assignment. The routine is found
in the utility library. Fortran
source code is included.

Performs a CP/M system reset. The
routine is found in the utility
library. Fortran source code is
included.

The STRING/80 Bit USER MANUAL
1 - Introduction

System Call and Supporting Function

CPMS$ Exercises the CP/M system calls
under the control of the Fortran
language.

LOCS Determines the string location and

generates a pointer variable that
can be passed to CPMS.

Chapter 2 is an overview of the structure of the
routines, the conventions employed in their use, and the
rules governing their use.

Chapter 3 is an initial discussion of programming using
the STRING/80 routines. A simple "list" program is developed
to demonstrate the simplicity of the routines and their use.

Chapter 4 is a discussion of the Demonstration Program
(DEMO) . Although rather simple in function, and admittedly
contrived, this demonstration program illustrates at least
one use of each of the STRING/80 functions in context of an
application.

Included in the demonstration package are several other
simple programs that can be viewed using the list program.
These include:

DEMO The host program that calls each
of the others and performs several
management tasks such as menus in
response to HELP, a display of
file names in response to DIR,
kills a file (KILL), and renames a
file (REN).

LIST A generalized 1list program as
developed in the programing
section of the manual.

FORMAL A program to reformat a Fortran
source program and sequentially
renumber the labels.

SERIES A program to name and manage up to
three numeric series, each
containing up to seventeen entries
each. Reporting of the individual
series includes the entry count,

5

The STRING/80 Bit USER MANUAL
1 - Introducticn

total value, average, minimum and
maximum values found.

SORT A simple sort program capable of
sequencing a standard CP/M text
file, A 1list of U.S. presidents
in included for the demonstration.

Each of these programs can be run "stand-alone" or as
part of the demonstration program.

Chapter 5 is a brief description of some advanced
programming techniques associated with The STRING/80 Bit for
those who are interested in going further with these
routines. This chapter is not intended to be an exhaustive
course, but rather a primer for those interested in exploring
some Of the subtle capabilities inherent in the STRING/80
package.

Chapter 6 is a complete reference section., Each routine
is identified and the call parameter sequence is discussed.
Unique requirements are jdentified, and where appropriate,
special techniques are reviewed.

The Appendicies contain a quick referecnce quide,
identification of the software included on your disk, and a
handy user comment and/or problem identification sheet.

The STRING/80 Bit is a powerful enhancement to Fortran
in the 280/8080 envirnonment, especially for those using the
CP/M system. We hope you will take your time to become
familiar with it, use it, and appreciate it as much as we
have.

The STRING/80 Bit USER MANUAL

GENERAL CONVENTIONS AND RULES

CHAPTER 2

The STRING/80 Bit USER MANUAL
2 - General Conventions and Rules

Structural Overview

Each STRING/80 Bit function or call routine works upon
one or more character strings. The first thing you must do
to use the STRING/80 Bit is to define the desired string
variables in working storage and give them a name. Once this
is done all further references can be accomplished by using
the defined name,

Defining a String Variable

Before jumping headlong into the structure of the
STRING/80 Bit, let's consider some of the general rules that
apply to the use of all strings while in this environment.
Perhaps not all of these rules and conventions will be
particularly meaningful at this time, however as we proceed
the meaning will become more clear. Once you have completed
this section, and have examined some of the demonstration
(DEMO) code, it is suggested that you return to this section
and review these rules and conventions.

Rules

1. All character strings must be defined as BYTE,
or character type data.

2. The arrays defined should be large enough to
hold the longest string of characters that will be
moved into the string variable., This can be an
array size of from one to 255 characters. If a
string variable of too short a length 1is
inadvertantly used, the STRING/80 Bit truncates the
string when out of room.

3. The valid characters in a string include
alphabetic (upper and lower case), numerics, all
special characters and the TAB character., Another
way to state this for those requiring a more
precise definition is all characters of hexidecimal
values 20H through 7EH, and value 09H. The current
keyboard end-cf-string (EOS) character can never be
used in a string since, by definition, it will
terminate the string. The EOS can however be
changed using the IEOS$ function to be any desired
character. If a zero (binary 0) is assigned using
IEOSS$, any character may be present in the string.

8

The STRING/80 Bit USER MANUAL
2 - General Conventions and Rules

The default keyboard EOS for the system is an at-
sign (@).

4. The maximum character string length allowable
is 255 decimal.

5. The character string variable name size can be
anything between one and six characters in length.
While this provides some flexibility, it is
recommended than you try to keep the names as short
as possible for sake of code clarity; but not so
short that the meaning of the name is lost.

6. Strings used for storing file names must be at
least 12 characters in length. An easy way around
having to keep track of this is to use a default
string (length 80 characters) for this purpose.

7. When compiling and linking Fortran programs,
always search the UTL80.REL library (if necessary)
before searching the STR80.REL library.

8. The STRING/80 Bit routine CHAINS$ is not suited
for storing in ROM memory.

9. Mimic Fortran's use of registers when using the
STRING/80 Bit from assembler language.

In addition to the above rules, it is recommended that
the following conventions be used. Some of these are
presented to make it easier to identify what is happening in
your code, for documentation purposes more than anything
else. Others are presented to help you avoid some of the
situations that can arise. While these are not mandatory,
programming will be much easier and simplier if followed,

especially when you first start using the STRING/80 Bit.
Conventions

1. String variable names should utilize the '$' as
the last position of the name. For ezample, rather
than name a string variable SAM, SAMS$ 1is
preferable.

2. Use defauvlt strings whenever you can. The only
cases not cppropriate for the use of default
strings is when a string of more than 80 characters
is required, storage optimization is a concern, oOr
when a table or matrix of strings is desired.

The STRING/80 Bit USER MANUAL
2 - General Conventions and Rules

3. The String variable lengths for storage
optimization or tables should be defined as only
that needed. If a list of twelve character names
is being managed for example, only twelve
characters need be defined.

4, Always use default strings to read data from
the console or disk and when passing strings to the
CP/M operating system.

5. When control strings (defined below) are used,
define the control string as 8 bytes in length,

6. Change the end-of-string character (EOSS) as
seldom as possible,

7. Do not pass literals (i.e., 1), rather set
variables such as N=1 and pass the variable, N, in
the parameter list. This MUST be the case for all
parameters of the DIRS and CPM$ statements.

The Type of String Variables

There are two types of character string variables that
can be handled in the STRING/80 system, default string
variables and control string variables. Further, string
variables can be single strings or multiple dimension
strings, such as tables of strings or a matrix of strings. A
default string can only be a single string of 80 characters
and is initialized using the DEFD$ statement. Single strings
of lengths other than 80 characters are defined as control
strings and are defined using the DEFSS$ statement. Tables of
strings, whether one dimension or two (matrix), are defined
as control strings and are defined using the DEFTS$ statement.

In summary, all strings other than the default string
are control strings. The Default string is not dimensioned
and has a fixed length of 80 characters. The two types of
control strings are String, with no dimension, and Table with
two dimensions.

The Default String Variable

The default string variable is provided for the common,
and most frequent, string variable requirements. The string
functions will treat a default string as being 80 characters
long. Thus the default string variable takes on the
attributes of being a single dimension string variable with a
string length of 80 characters.

10

The STRING/80 Bit USER MANUAL
2 - General Conventions and Rules

A default string, with the name AS$, is declared as
follows:]

BYTE AS$(80)
CALL DEFDS$(AS)

The dollar sign symbol, while one of the six characters
in the name, is used just as a reminder that this is the
string name that is passed to the string routines. The
dollar sign is not required, any valid Fortran variable name
may be used. The benefits of using the "$" symbol will
become apparent as we proceed. The second line, or
initialization statement DEFD$, define default string, is
generally found as one of the first executable statements in
the program and is the way the default string variable is
initialized. As a result of this action, AS will appear to
be an empty string; or a string of length equal to zero.

While AS could have been defined as less than 80
characters there would be no protection against "over-
running™ the length if more than the defined number of
characters were presented to it. The user, or programmer,
must be aware of and cautious of this limitation. The safest
way is to always declare a default string as BYTE with 80
characters.

It should be noted that the default string could have
been given more than 80 characters also, however no more than
80 would be used by the routines and thus it would only
result in wasted memory.

Controlled String Variables

There are many cases when it is desirable to either
define a string variable with a length other than 80
characters or to define an array of string variables, such as
a table of names. For these situations, the controlled
string variable should be used.

In this case, a control string is declared, preferably
with a dollar sign in the name, and the actual data string
containing the characters is separately declared, generally
without the use of a dollar sign in the name. Consider an
array of strings, each string is 32 characters in length and
there are 20 strings in total, arranged in a multidimensional
array 4 by 5. The DEFTS$, or define table variable, is used
to define this item. This structure is declared as follows:

BYTE AS$(8)

BYTE A(32,4,5)
CALL DEFTS$(AS$,A,32,4,5)

11

The STRING/80 Bit USER MANUAL
2 - General Conventions and Rules

or more typically,

BYTE AS$(8),A(32,4,5)
CALL DEFTS$(AS$,A,32,4,5)

Wwhile the three dimensional Fortran array A(32,4,5)
actually contains the two-dimensional string array
characters, the eight byte array A$ is the array name that is
used in conjunction with each string routine. Thus the
actual Fortran code, whether referencing a default stiing
variable or a controlled string variable, would be similar.

The DEFTS routine initializes the multi-dimensicnral
array and links it to the "control" string. It declares a 3
dimension array, with 32, 4 and 5 being the sizes of each
dimension, under the name A, to be controlled by the control
string AS$ and hereafter referenced by the name AS.

Granted, any other name could have be chosen (Sam and
Carl for example), but for code clarity and improved
documentation AS$ and A were selected. In accordance with the
recommended convention, names such as JOHN$ and JOHN or [IANE.
and NAME will do as adequate a job.

Here is another example of a contrel string variable
declaration, this time a 50 entry table of twenty characters
each:

BYTE NAMES(8) ,NAME(20,50,1)
CALL DEFTS$(NAMES$,NAME,20,50,1)

Included in this control string class for string
variables is the non dimensional, non 80 character type
string variable. This type of string is defined using the
DEFS$ statement (define string). 1In a sinple example where
we want to define a string to hold a file namc, the
definition would look like this:

BYTE FILES(8) ,FILE(12)
CALL DEFSS$(FILES,FILE,12)

Strictly speaking, the length of the control string neec
be only 4 bytes for a string and 8 bytes for up to a two
dimension array. It is recommended that a conventicn cof
declaring _the control string as an 8 byte string always Le
followed. Please note, that in all cases except where you
specifically choose to do byte manipulation, the control
string (AS$) is used and not the data string (A).

Now that we know how to define each of the three

12

The STRING/80 Bit USER MANUAL
2 - General Conventions and Rules

essential string types (Default, String and Table), lct's
look at the rest of the statements and their syntar.

The STR80 and UTL80 Command Syntax

Throughout this document we will use the {olloving
command syntax:

CALL NAMES$(AS,[N1,N2],BS,[N1,N2],[N3],[N4])

where; NAMES - is the statement name,
AS$,BS - are string names using the convention
of a $ in the last position of the name
as a reminder that this is the name used
when referencing string variables.
N1l,N2,
N3,N4 - are integer value parameterc

and; [] - indicates the optional items.

In the above example, note that when N1 is regquirea so
is N2, while N3 or N4 are independent options.

The STRING/80 Bit allows almost all integer parameters
in the parameter lists to be literals, i.e., the routines do

not change their values. The DIR$ and CPM$ routines are
exceptions to this since they do change the values passed.
However, it is still recommended that all parameters be
specified as variables.

The following is a 1list of each routine and their
syntax. Remember that while the string library allows all
types of string usage, the utility library requires that
default strings only be passed. These default strings are
shown as S§.

Housekeeping Call Routines

CALL VERS(AS,[N1,N2])

CALL DEFDS (AS)

CALL DEFS$(AS$,BS$,N1)

CALL DEFTS$(AS$,BS$,N1,N2,N3)

CALL STRIPS(AS,[N1,N2])

13

The STRING/80

Bit USER MANUAL

2 - General Conventions and Rules

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

String Conversion Call Routines

UPPERS$ (AS,[N1,N2],BS$,[N1,N2])
LOWERS$ (AS$,[N1,N2],BS,[N1,N2])
CMDS (AS, [N1,N2])

MAKES (A$, [N1,N2],BS$,[N1,N2])
MERGES (A$,[N1,N2],BS,[N1,N2])
MIDS$(A$,[N1,N2],BS$,[N1,N2],N3,N4)
RIGHTS$(AS,[N1,N2],BS,[N1,N2],N3)
LEFTS(AS$,[N1,N2],BS$,[N1,N2],N3)

SWAPS (AS, [N1,N2],BS, [N1,N2])

String Handling Functions

I=IEOSS (AS)

I=LENS$(AS,[N1], [N2])

I=IDENS$(AS, [N1,N2],BS$, [N1,N2])

I=MATCHS$(AS$,[N1,N2],BS$,[N1,N2],N3)

I=NVALS$(AS$,[N1,N2],BS,[N1,N2],N3)

File Handling Functions

I=LOOKS$(SS$) (UTL8O)

I=NFORMS (AS$,BS$,N1)

14

The STRING/80 Bit USER MANUAL
2 - General Conventions and Rules

File Handling Call Routines

CALL CHAINS(AS,[N1,N2])

CALL DIRS(S$,N1) (UTL8O0)
CALL RENS$(SS) (UTL80)
CALL KILLS$(SS) (UTL8O0)
CALL SELCTS$(N1) (UTL80)
CALL RESETS (UTL8O)

System Call and Supporting Function

CALL CPMS$(A,BC,DE,HL) (passed parameters are
integer values)
I=LOCS(AS,[N1,N2])

In the next chapter we will begin programming with the
STRING/80 Bit using the statement definitions presented in
this chapter. Before proceeding, it is recommended that you
review some of the rules and conventions discussed at the
beginning of Chapter 2.

15

The STRING/80 Bit USER MANUAL

THIS PAGE INTENTIONALLY LEFT BLANK

16

The STRING/80 Bit USER MANUAL

PROGRAMMING WITH THE STRING/80 BIT

CHAPTER 3

17

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

Getting Started

In this chapter we will develop an application using the
STRING/80 bit collection of tools. We will walk you through
each step of the program developement to allow you to gain an
insight into some of the capabilities and features, When
completed you should have a software product that will serve
you in many different capacities in the future.

Beginning a programming project in any environment
requires a definition of what you would like the program to
do, a functional specification. Our project, selected for
the purpose of demonstrating some of the programming
techniques used when developing a program using the STRING/80
bit, will be a LIST program. This will be a program that,
when executed, will list the contents of any text file on the
screen, similar to the TYPE command in the CP/M system.
Since you will already have this capability, you are no doubt
asking yourself, "Why do I need another?". The answer 1is
simple. You would like a list program with some additional
features not found in the typical LIST or TYPE program.

First, let's look at the basic functional requirements.
The most essential part of a list program is to be able to

execute it simply. The primary design issue is to have the
program respond to the following command:

LIST d:nnnnnnnn,xxx

where; d - is the drive identity, A, B, C or D.
No specified drive will default to the
currently assigned drive.

nnnnnnnn - is the file name, and

XXX - is the file extension,

If only LIST is specified the program will respond with
an operator prompt such as the following:

Enter file name to be listed -

In either case, whether a file was specified or entered
as a result to the operator prompt, the program checks to see
if the file exists prior to opening it, and if it does not

18

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

exist, prints the following message at the terminal:

%* FILE NOT FOUND *

In this situation, the program returns with the
previously mentioned operator prompt. The user can now enter
a valid file name or abort the program by entering either the
word END or a control-C (C). Note however that a control-C
returns control directly to the operating system, while END
returns control to the LIST program. The program can now do
an orderly abort and return control to the operating system
or to some other program as can be seen in our next feature.

It is desirable to have the ability to run the LIST
program from another program and to have the LIST program
return control to a specified program. We will develop the
program to return control to the DEMO program for obvious
reasons.,

That should be enough to keep it simple while at the
same time provide additional functions not found in the
common list program. Now let's develop the program to meet

these objectives.
Program Organization

As an aid to the upcomming coding task an outline, or
organization flow of the program, should first be considered.,
The organization of our case program is as follows:

Housekeeping This code names the program,
declares any data variables and
constants required by the program
and then initializes them.

Program Identification Any startup message or bulletin is
printed with this code.

Retrieve Command Line The command line or parameters
entered are retrieved from the
operating system.

Validate File Name This code checks to see that the
file name retrieved from the
command line is a valid file name
for an existing file on the disk.

19

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

Format File Name

Open File

Change String Delimiter

Read

Write

Prompt Operator

Read Error Message

End of Program

Program Return Check

Chain to Program

The now valid file name 1is
formatted for use in a Fortran
OPEN statement.

Open the file we're going to list,

Just before we start reading the
text file, the end-of-string
character is changed to be a non-
text character to prevent it's
presence in the file from
inadvertantly interfering with our
task at hand.

Read and format the input string.

Write the string out to the
terminal.

If an invalid file name was found
in the vValidate File Name routine,
control is passed to this routine
to prompt and retieve a new file
name.

If an error is encountered during
a disk read, control is passed to
this routine to print an error
message and try reading the disk
again,

If during a read the end-of-file
is encountered, control is passed
to this routine for an orderly
termination of the program. Any
sign off messages are displayed
here, 1If END is encountered as a
file name after an operator
prompt, control is passed to this
routine rather than 1look for
another file name.

This routine, executed after the
end of program routine, checks to
see if control should be passed to
another program or back to the

operating system,

If control should be passed to
another program, the Program
Return Check routine passes
control to here,

20

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

End If control should be passed to the
operating system, the Program
Return Check routine passes
control here to perform that
function,

Now let's examine the code for each one of these
routines individually. Once 'we have discussed each one
separately, we'll look at the whole program in context.

Housekeeping

As in any Fortran program, the program is given a name
and the necessary data variables are declared for subsequent
use. In our case the program will be called LIST and the
source code will be put in a file LIST.FOR. The standard
editor is all that is needed to prepare the code.

Data variables required for this program are very few.
Three string variables are used to process the various file
names and disk records. FILES$ was chosen as our name for the
files string variable, It is defined as 80 characters in
length as a Default String Variable., BUFFS$ was chosen as the
string variable for buffering the disk records prior to
printing them at the terminal, Although this could have also
be defined as a default string variable, for purposes of
demonstration a Controlled String Variable was used. All
string variables were defined as BYTE arrays.

The default variable is initialized by DEFDS.
Initialization for the control string is accomplished via the
DEFS$ routine. Notice that for control strings, the
initialization routine is the vehicle that associates the
control string BUFFS$ with the byte array BUFF. Once
initialized all references to BUFFS$, FILES, or NAMESS can be
treated equivalently with the one exception of the read
statment which we look at a little later,

21

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

The initial code looks like the following:

PROGRAM LIST

Cormmm e e —————

C DEFINE STRING VARIABLES

C _________________________________
BYTE FILES(80)
BYTE BUFF$(8), BUFF(80)
BYTE NAMES(8), NAME(12)

(o e o e e e e

C INITIALIZE STRING VARIABLES

C __________________________________

CALL DEFDS$(FILES)

CALL DEFSS$(BUFF$,BUFF,80)
CALL DEFS$(NAMES,NAME,12)
LEOS=0

Program Identification

It is generally a good approach for the program to
identify itself to the user. In our case, we not only want
to identify the program name and version information, but we
also want to communicate the version number of the STRING/80
bit being used in the program. An example of the type of
message to be displayed is as follows:

The LIST Bit (tm) - Version 1.01

Copyright (C) 1980 Key Bits Inc.

January, 1980 - Miami, F1l, USA
using

The STRING/80 Bit (tm) Version 1.16

The code to support this includes several write
statements, the FILES$ variable, and the VERS$ call. The VERS
statement is to retrieve the version identification.

22

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

C __________________________________
C PRINT PROGRAM IDENTIFICATION
C ——————————————————————————————————
WRITE(5,10)
10 FORMAT (1X,12X,1X)
WRITE (5,20)
20 FORMAT (1X,12X,'The LIST Bit (tm) - Version 1.02'")
WRITE(5,30)
30 FORMAT (1X,12X, 'Copyright (C) 1980 Key Bits Inc.')
WRITE(5,40)
40 FORMAT(1X,12X,'January, 1980 - Miami, FL, USA')
WRITE(5,10)
WRITE(5,50)
50 FORMAT (1X,25X,'using"')
WRITE(5,10)
CALL VERS(FILES)
J=LENS$(FILES)
WRITE(5,60) (FILES(I),I=1,J)
60 FORMAT (1X,80Al1)
WRITE(5,10)
WRITE(5,10)

The Command Line Parameter Retrieval

When the user enters the CP/M command to execute the
program, it is possible that he entered a string of
characters such as the following:

LIST TEST.FOR

The CP/M system uses the characters 'LIST' to execute
this program. It converts the string to all upper case
characters and then leaves the residual of the command line,
i.e. ' TEST.FOR', in the system for the programs use. Note
that there is a leading blank in the remaining string. This
string of characters could of course be anything, including
nothing, and are the parameters being passed to the program,
This data, stored at 080 Hex in the CP/M system, will
possibly be destroyed during the execution of our program.
As such, it 1is desirable to retrieve and save this
information as early in the program as possible. The CMDS$
call does this task.

23

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

CALL CMDS (FILES)

I2=MATCHS$(FILES,'#@',1)

J=LENS$(FILES)

IF(J.LT.2)GO TO 90 (Prompt Operator for File Name Routines)

In this case the FILES$ string was once again used as the
string variable in which to save our parameter information.
Further, since there is at least one leading blank, we can
conclude that our parameter string must be at least 2
characters in length to be valid (blank plus 1 character).
If it is less than 2 characters we can conclude that no file
name parameter is present and thus go to the Prompt-Operator-
For-File-Name routine,

Check for Valid File Name

If any data is found in the parameter string it is
assumed to be a file name and must be validated. This is
true whether we get the parameter string data from CMD$ or by
prompting the operator to enter it (which we'll 1look at
next). The simpliest way to validate the file name is to
look on the disk(s) and see if the file of that name exists.
The LOOKS function is used to do this:

C _________________________________

C VALIDATE FILE NAME

C _________________________________

70 CONTINUE
I=LOOKS$(FILES)
IF(I.GT.-1) GO TO 120 (Format File Name Routine)
WRITE(5,80)

80 FORMAT (1X,'*** FILE NOT FOUND *#*%?')

GO TO 90 (Prompt Operator for File Name Routine)

As you can see from the code, the variable 'I' will
contain a -1 if no valid file name is found or some positive
value if it is. 1In this case then, if 'I' is ever greater
than a minus one we have found a valid file name and can go
to the Format File Name Routine, If not, we want to write a

24

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

"File Not Found" message to the operator and go to the Prompt
Operator for File Name Routine.

Prompt Operator for File Name

If no vaild file name is found, the operator gets a
prompt and the response is placed in the same variable,
FILES, as was used to store the results of the previous CMDS$
call,

C ___________________________________

C PROMPT OPERATOR FOR NAME

G e e e e e e e e e e e

90 CONTINUE
WRITE(5,100)

100 FORMAT (1X,'Enter file name to be listed - ')
READ(5,110)FILES

110 FORMAT (80Al)

CALL STRIPS(FILES)

CALL UPPERS(FILES)

J=LENS$ (FILES)

IF(J.NE.3)GO TO 70

I=MATCHS (FILES,"END@',1)

IF(I.GT.0)GO TO 180 (End of Program Routine)
GO TO 70 (Validate File Name)

The STRIPS$ statement marks the end of the string.
Fortran reads from the disk or console as if they were card
readers with 80 positions. This means there will be trailing
blanks. STRIP$ removes the trailing blanks and marks the end
of the string.

There is one other thing we need do in this routine. If
the operator responds with the word 'END' or 'end', we want
to terminate the program. After converting the FILES
variable data to all upper case characters with the UPPERS
statement, we scan the data for a match with the MATCHS
statement. If a match is found the variable 'I' will contain
a value representing the location of the word 'END' in the
variable FILE$., If no match is found, 'I' will contain a
zero.

If the variable 'I' 'is greater than zero control is
passed to the End of Program Routine. If it is zero, the

25

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

Check for Valid File Name Routine is executed. Notice how
the length was tested to see if it was only three characters
before we looked for 'END', This is to avoid interpreting a
file name such as 'SEND,TXT' erroneously.

Special attention should be given to the literal 'END@'
in the MATCHS$ statement. The at-sign within the quotes is
the last character of any string constant. This character
can be changed or set to a different chracter by using the
IEOSS function. Note however, that all string constants MUST
be terminated by the CURRENT VALID end-of-string character.,

Format File Name, Open File, Change EOS

The vaild file name needs to be formatted for acceptance
by Fortran. The Microsoft compiler expects a numeric disk
drive value (0O=current, 1=A, 2=B, 3=C, 4=D) and eleven
characters for the file name. For example, if the operator
entered "B:TEST.FOR" as the parameter string, it need be
converted into a variable, such as 'K', and a string
variable, such as FILE$, wherein the new string value looks
like "TEST FOR". The NFORM$ statement does that job for
us.

C _________________________________
C OPEN VALIDATED FILE NAME

C _________________________________
120 CONTINUE

K=NFORMS$ (NAMES,FILES,1)
CALL OPEN(7,NAME,K)
LEOS=IEOSS$(0)

The NAMES$ variable now has the formatted file name and
'K' has the numeric drive number, The standard Fortran OPEN
statement can now be immediately used to open the file, Note
however that the OPEN statement uses the data string NAME and
not the control string NAMES.

Everything is now ready to proceed, except for one
thing. If the list program were ever to read a copy of
itself or read a copy of a file with an end-of-string (EOS)
marker in it, typically an at-sign, the end-of-string
character would terminate the line on which the EOS were
found and thus produce invalid or truncated results.

26

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

In order to avoid this, we can simply reassign the value
of the end-of-string chracter (EOS) with the IEOSS statement.
In this case we reassigned it a numeric value zero (a binary
0), a character that would never show up in a string of
characters in a text file. Now we are ready to read the
first record.

Read a Record From the File

The character string variable that we decided to use for
our buffer when reading the disk file is BUFF$. As you
recall, BUFF$ is a control string that is linked to the real
data string BUFF via the INITS statement., While we could
have defined BUFF$ to be a default string, for purposes of
illustration we are using it in the control-string
configuration. Note, that had we used a default string, the
standard Fortran READ statement would have used BUFF$. Since
BUFF$ is a control string, the READ statement (and the WRITE
statement) must use the real data string BUFF. This is_one
of those rare occasions when the actual string need be
referenced. It also highlights the value of establishing
consistent variable naming conventions (BUFF$ versus BUFF).

In either case, whether a control string or default
string, the READ statement uses the byte read format, i.e.
80Al.

Commmmmm e

C READ A RECORD FROM FILE

C —————————————————————————————————

130 CONTINUE
READ(7,140,ERR=160,END=180)BUFF

140 FORMAT (80Al)

CALL STRIPS(BUFFS)

Write a Record to the Screen

The implicit DO-loop is used with the real data array to
write the control string variable to the screen or to the
disk. 1In order to set the size of the string and in turn the
limit of the implicit DO-loop, 'J' is set to the length of
the string, or buffer, BUFFS$, immediately prior to writing it
out.

27

The STRING/80 Bit USER MANUAL :
3 - Programming with the STRING/80 bit

O
C WRITE A RECORD TO SCREEN

J=LENS (BUFFS)
IF(J.LE.O).OR.(J.GE.BO)GO TO 130
WRITE(5,150)(BUFF(I),I=1,J)
150 FORMAT (1X,80Al1)
GO TO 130 (Read a Record from the Disk)

Print a Read-Error Message

In case a read error is encountered a message will be
printed to the operator by this routine thus letting him know
of the event. Control will then be passed to the read
routine to read again. No special string handling was used
in this routine., 1It's all standard Fortran, Note however
that we could have used MAKES$ to make a string variable such
as MESSS$, for message, contain the message and then print
MESS$ using the write-routine. Had we, it would have looked
like, "CALL MAKES (MESSS$,'*** READ ERROR ***@')", However we
didn't, so it looks like this:

Cmmmm e
C PRINT READ ERROR MESSAGE
C ___________________________________
160 CONTINUE

WRITE(5,170)
170 FORMAT (1X, '*** READ ERROR kkk 1)

GO TO 130 (Read a Record from the Disk Routine)

End of Program Routine

When the READ statement encounters the end-of-file it
passes control to this routine. The first thing we do is
reset the end-of-string character back to its default value,
'@' in case we want to use it in our program (which we do).
We then print a 'Goodbye' message.

28

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

C ___________________________________
C END OF PROGRAM ROUTINE
C ___________________________________
180 CONTINUE
LEOS=IEOSS$('@")
WRITE(5,10)
WRITE(5,190)
190 FORMAT (1X,12X, ' Goodbye . . .')
WRITE(5,10)

WRITE(5,10)

Check for Return to a Program

At this point we have the option to return to a calling
program or the operating system. Since we will use this
program as part of the DEMO package, for example, the same
program can be used stand-alone or used as part of the DEMO.
In our case the DEMO program called the LIST program and
placed a pound-sign (#) as the last character of the
parameter string, after a blank, and after all the data
parameters. Thus a DEMO initited LIST would look like:

LIST TEST.FOR #

An operator initiated LIST would look the same but
without the last blank and '#'. We can now test if a '#' was
present, the flag I2 was set in the Retrieve Parameter
routine to reflect its presence. If present a "chain" back
to the DEMO program will be made. If not present, control
will go to the operating system via the normal END statement,

IF(I2.GT.0)GO TO 200 (Chain to Calling Program)
GO TO 220 (Return to Operating System)

In the next routine we need to use the standard end-of-
string. It is IMPORTANT that the EOS be reset back to its
default after we complete reading the disk file.

29

4
i

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

Chain to the Calling Program

The CHAINS$ statement is used to call another program.
The string name is the file name of the program followed by

the end-of-string character, i.e. 'DEMO.COM@'. Notice, that
if the CHAINS fails, control falls through to an error

message. This could happen if the DEMO.COM file were not
found on the current disk, for example.

C __________________________________
C CHAIN TO THE CALLING PROGRAM
Cmm e e e e
200 CONTINUE
CALL CHAINS('DEMO.COM@')
WRITE(5,210)
210 FORMAT (1X,'*** DEMO.COM NOT FOUND - RETURNED TO SYSTEM ***!)

Return to Operating System

To return to the operating system, the standard Fortran
END statement is executed.

o e
C RETURN TO OPERATING SYSTEM

Gl o e e e
220 CONTINUE

END

Summary

You have now completed your first program using the
STRING/80. Bit. Many of the features were used. Those that
were not essentially work the same way. The best way to see
this for yourself is to begin using them in you own programs,
referring to the REFERENCE MANUAL chapter (Chapter 6) and the
other demonstration programs for examples. Once oriented,
these tools will vastly improve your productivity in Fortran
and keep your string handling effort to a minimum.

30

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

The Whole LIST Program

PROGRAM LIST

C _________________________________

C DEFINE STRING VARIABLES

G e e e e e
BYTE FILES(80)

BYTE BUFF$(8), BUFF(80)
BYTE NAMES(8), NAME(12)

Com o e e e e e e e e e e e e e e e o e o e

C INITIALIZE STRING VARIABLES

C __________________________________

CALL DEFDS$(FILES)

CALL DEFS$(BUFFS$,BUFF,80)
CALL DEFS$(NAMES$,NAME,12)
LEOS=0

o o e e e e e e e e e e e e e e o e e e e e e e o

C PRINT PROGRAM IDENTIFICATION

C __________________________________

WRITE(5,10)

10 FORMAT (1X,12X,1X)
WRITE(5,20)

20 FORMAT (1X,12X,'The LIST Bit (tm) - Version 1.02')
WRITE(5,30)

30 FORMAT (1X,12X,'Copyright (C) 1980 Key Bits Inc.')
WRITE (5,40)

40 FORMAT(1X,12X,'January, 1980 - Miami, FL, USA')
WRITE(5,10) ,
WRITE(5,50)

50 FORMAT (1X,25X,'using"')

WRITE(5,10)

CALL VERS(FILES)
J=LENS$(FILES)

WRITE(5,60) (FILES(I),I=1,J)

60 FORMAT (1X,80Al1)

WRITE(5,10)
WRITE(5,10)

C ________________________________

C RETRIEVE PARAMETERS

C ________________________________

CALL CMDS$S(FILES)
I2=MATCHS$(FILES,'#@',1)
J=LENS$ (FILES)
IF(J.LT.2)GO TO 90

31

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

C _________________________________
C VALIDATE FILE NAME
C —————————————————————————————————
70 CONTINUE
I=LOOKS$ (FILES)
IF(I.GT.-1) GO TO 120
WRITE(5,80)
80 FORMAT (1X,'*** FILE NOT FOUND ***1')
GO TO 90
C ___________________________________
C PROMPT OPERATOR FOR NAME
C ___________________________________
90 CONTINUE
WRITE(5,100)
100 FORMAT (1X,'Enter file name to be listed - ')
READ(5,110)FILES
110 FORMAT (80A1)
CALL STRIPS(FILES)
CALL UPPERS(FILES)
J=LENS$ (FILES)
IF(J.NE.3)GO TO 70
I=MATCHS(FILES,'END@',1)
IF(I.GT.0)GO TO 180
GO TO 70
o e e e e e e e e e e e e e e e e e e e o e e e
C OPEN VALIDATED FILE NAME
C _________________________________
120 CONTINUE
K=NFORMS$ (NAMES,FILES,1)
CALL OPEN(7,NAMES,K)
LEOS=IEOSS(0)
C _________________________________
C READ A RECORD FROM FILE
C _________________________________
130 CONTINUE
READ(7,140,ERR=160,END=180) BUFF
140 FORMAT (80Al)
CALL STRIPS(BUFFS)
C __________________________________
C WRITE A RECORD TO SCREEN
C __________________________________

J=LENS (BUFFS$)
IF((J.LE.O).OR,. (J.GE,80)GO TO 130

32

The STRING/80 Bit USER MANUAL
3 - Programming with the STRING/80 bit

150 FORMAT (1X,80A1)
GO TO 130
C ___________________________________
C PRINT READ ERROR MESSAGE
C ___________________________________
160 CONTINUE
WRITE(5,170)
170 FORMAT (1X, '*** READ ERROR ***')
GO TO 130
C ___________________________________
C END OF PROGRAM ROUTINE
C ___________________________________
180 CONTINUE
LEOS=IEOSS('@")
WRITE(5,10)
WRITE (5,190)
190 FORMAT (1X,12X, ' Goodbye . . .')
WRITE(5,10)
WRITE(5,10)
C _________________________________
C CHECK FOR RETURN TO A PROGRAM
C _________________________________
IF(I2.GT.0)GO TO 200
GO TO 220
C __________________________________
C CHAIN TO THE CALLING PROGRAM
C __________________________________
200 CONTINUE
CALL CHAINS('DEMO.COM@')
WRITE (5,210)
210 FORMAT (1X, '*** DEMO.COM NOT FOUND - RETURNED TO SYSTEM ***@')
C ———————————————————————————————————
C RETURN TO OPERATING SYSTEM
C ___________________________________
220 CONTINUE
END

33

The STRING/80 Bit USER MANUAL

THIS PAGE INTENTIONALLY LEFT BLANK

34

The STRING/80 Bit USER MANUAL

THE DEMONSTRATION PROGRAMS

CHAPTER 4

35

The STRING/80 Bit USER MANUAL
4 - The Demonstration Programs

The Demonstration Program Functions

The Demonstration Programs have been provided as
examples of how various STRING/80 commands can be used in
real case situations. All of the demonstration programs can
be run from the program DEMO.COM. You will note that each is
in fact a separate program in the directory. They execute
each other by using the CHAINS$ facility found in the
STRING/80 Bit. In addition, each can be run separately.

The collection of demonstration programs include the
following:

DEMO A control program to run the following
programs in a predictable and controlled
fashion,

LIST A program to 1list any file and then

return control to the DEMO program. This
is the same program that was developed in
Chapter 3.

SERIES A program to name up to three series of
17 elements each, load, update and
maintain the data within the series, and
calculate the total, average, count,
minimum, maximum of each series. Upon
termination control is returned to the
DEMO program,

FORMAL A program to reformat and resequence the
numeric labels of a Fortran source
program then return control to the
program DEMO,

SORT A program to sort a 1list of names and
then return control to the program DEMO.
The demonstration file used is the
PRES.TXT, a 1list of U.S. President's
names in the sequence of their term in
office.

In addition to the collection of programs listed above,
there are several functions contained within the main DEMO
program worth noting. These illustrate some of the STRING/80
commands and in particular some of the CPM$ functions.

36

The STRING/80 Bit USER MANUAL
4 - The Demonstration Programs

HELP This command displays a description of
each function or command supported and a
summary menu of all functions.

DIRectory The currently assigned disk directory is
displayed on the console, in bytes rather
than Kbytes. (Record Count times 128

bytes)
REName The file of your choice is renamed.
KILL The file of your choice is deleted from

the disk directory.

The demonstration programs are very much self
explanatory with the possible exception of the program
SERIES. Before providing you with a little more explanation
on SERIES, please remember that the most effective way to get
the feel for how each program works and its capabilities is
to try them out.

The SERIES program uses principles that can be put to
use in an expanded version to make a very useful time series
analysis and reporting system. What follows is a simple
senario of the included SERIES program,

COMMAND? 1=FIRST FIRST is the name assigned
to series number 1.

1=FIRST The command line is echoed.

SERIES NAMES The series names are list-

———————————— ed to confirm action.

1 - FIRST

2 - NO NAME

3 - NO NAME
COMMAND? FIRST(6)=1,2,3,4,5,6,7,8,9,8.5 The series FIRST is given

numeric values starting in
the 6th position.

37

The STRING/80 Bit USER MANUAL
4 - The Demonstration Programs

COMMAND? REPORT FIRST Display series FIRST.
SERIES FIRST
1 0.0000
2 0.0000
3 0.0000
4 0.0000
5 0.0000
6 1.0000
7 2.0000
8 3.0000
9 4.0000
10 5.0000
11 6.0000
12 7.0000
13 8.0000
14 9.0000
15 8.5000
16 0.0000
17 0.0000
TOTAL 53.5000
AVERAGE 5.3500
COUNT 10.0000
MINIMUM 1.0000
MAXIMUM 9.0000
COMMAND?

As a reminder, these demonstration programs are included
as 1illustrative aids for you to follow in your use of the
STRING/80 Bit and not necessarily here as examples of superb
proramming techniques, In all cases, these demonstration
programs were contrived as a platform upon which to model the
STRING/80 Bit routines.

38

The STRING/80 Bit USER MANUAL

SOME ADVANCED PROGRAMMING TECHNIQUES

CHAPTER 5

39

The STRING/80 Bit USER MANUAL
5 - Some Advanced Programming Techniques

The Extended Capabilities of the STRING/80 Bit

The potential capabilities of the STRING/80 Bit go
beyond the obvious and are available to those who wish to
perform extended string handling tasks. The objective in
this chapter is to introduce the adventurous user to some of
the architectural subtleties of the STRING/80 Bit. Through
several carefully selected examples we will illustrate how
these architectural features can be put to use. After that
it will be up to the user to explore these advanced
techniques using his own ingenuity.

Essentially, the material in this chapter takes
advantage of and builds upon the basic STRING/80 Bit
routines, using both Fortan and assembler languages, through
the knowledge and use of some of the inherent idiosyncrasies
of the STRING/80 Bit design. This material will be discussed
in the following order:

1. The Control String Definition
2. Manipulation of the Control String Byte(s)
3. CP/M Calls from the Fortran Language

4. Assemble Language use of the STRING/80 Bit
routines,

Some basic working kriowledge of CP/M and assembler,
although not mandatory, is assumed on behalf of the user for
the remainder of this chapter. Those finding themselves
uncomfortable with the material may wish to review
Microsoft's Fortran documentation on the handling of
registers and Digital Research's documentation on the CP/M
architectrue.

The Control String

Up to now, the control string has been defined as an
eight byte string for any control string created. This is
not necessarily always the case. The eight bytes represent
the maximum number of bytes required. In fact, the required
length of the control string varies with the number of
dimensions desired in the string array, as follows:

40

The STRING/80 Bit USER MANUAL

5 - Some Advanced Programming Techniques

String Dimensions Bytes Required
none 4
1 6 (not used)
2 8

This will perhaps be more obvious after taking a close
look at the structure of the control string. When fully
utilized, i.e. in a two dimension array, the control string

byte allocation is as follows:

Byte Purpose

1 String Type Designator

pata String Address - Low Byte
Data String Address - High Byte
String Length

Row Address - Low Byte

Row Address - High Byte

Column Address - Low Byte
Column Address - High Byte

O~ N W

All types of strings use byte 1, default strings and
control strings. pefault strings use byte one as a storage
location of something other than a binary one, two, OI three.

All control strings use bytes 1,2,3,4.
pouble dimensioned (control) strings, or tables (single

and double dimensioned) use bytes 1 through 8.

Let's examine each of these bytes in more detail and look at
how they are used by each of the STRING/80 Bit routines.

Control String Byte 1 - The Data String Type Designator

All STRING/80 routines utilize this byte to determine
the type of processing that must be performed upon the
character string being referenced. The possible values and

their meanings are as follows:

41

The STRING/80 Bit USER MANUAL
5 - Some Advanced Programming Techniques

Byte 1 String Type Referenced
vValue
1 A non-dimensional character string located at

the address specified in bytes 2 and 3, with a
length of that specified in byte 4, and
referenced by this control string. This is
why a non-dimensional character string
requires a control string of four bytes.

2 Not Used

3 A double dimensioned character string (such as
a matrix of names) whose first entry or string
is located at the address specified in bytes 2
and 3, with each of the string entries having
a fixed length. of that specified in byte 4,
and with the number of horizontal, or row
entries being that specified in bytes 5 and &,
and with the number of vertical or column
entries being that specified in bytes 7 and 8.
This is why a double dimensioned character
string requires a control string of eight
bytes.

0,4-255 Default String.

From the definition of the first byte of the control string
it should now be clear, at least preliminarily, as to the
purpose and use of bytes 2 through 8. Let's look at each of
them a little more closely.

Control String Bytes 2 and 3 - The Data String Address

The initialization routines (DEFS$,DEFTS$) associate a
control string (example, BUFFS$) with a data string (example,
BUFF) by storing the physical memory address of the data
string in bytes 2 and 3 of the control string. Byte 2 is the
low address byte and byte 3 is the high address byte.

As an example, if the data string (BUFF) were stored by
the Fortran compiler at the physical memory address 0184 Hex
(388 Decimal, 0000 0001 1000 0100 Binary), the value stored
in the -second and third bytes would be 132 and 1,
respectfully.

42

The STRING/80 Bit USER MANUAL
5 - Some Advanced Programming Techniques

Control String Byte 4 - The Data String Length

The data string length is stored in byte 4 at the time
of initialization by the appropriate routine. Since only
eight bits are available in a single byte, the maximum string
length is limited to 255 Decimal (OFF Hex, 1111 1111 Binary).

Control String Bytes 5 and 6 - The Row Count

The row count is stored in bytes 5 and 6 at the time of
initilization by the appropriate routine. These two bytes
allow up to 65,535 decimal strings to be stored in a single
table; more than there is memory to accomodate.

Control String Bytes 7 and 8 - The Column Count

The column count is stored in bytes 7 and 8 at the time
of initialization by the appropriate routine. These two
bytes allow more columns than memory will permit to be stored
in a double dimensioned string.

Using the Control String Knowledge

Once aware of the conrol string structure and byte
allocation it is easy to see how this knowledge can be put to
use. First, let's look at the typical (and recommended)
method of defining and initializing a single dimensioned
string variable (table).

BYTE TABLES (8), TABLE (13,600,1)
CALL DEFT$ (TABLES,TABLE,13,600,1)

In this example we have defined a table of 600 entries,
each having 13 characters. The physical location of TABLE in
memory is however a function of the compiler.

43

The STRING/80 Bit USER MANUAL
5 - Some Advanced Programming Techniques

e
%

Let us assume, for purposes of illustration, that we did
not want to depend on the compiler to locate the table, but
rather, we always want the table (TABLE) to start at location
E000 Hex (57344 Decimal). Implementing such a design is
simple and straightforward.

The byte array TABLE is NOT declared and DEFT$ is NOT
used for the task of initialization. Instead, simple
assignment statements and the STRING/80 Bit routine MAKES is
used as follows:

BYTE TABLES(8) (eight bytes needed)

TABLES (1) =3 (table dimensioned string)
TABLES$(2)=0 (location - low byte - 00)
TABLES$ (3) =224 (location - high byte - EO)
TABLES(4) =13 (entry string length)
TABLES$(5)=88 (row count - low byte 88)
TABLES(6) =2 (row count - high byte 512)
TABLES(7)=1 (column count - low byte 1)
TABLES (8) =0 (column count - high byte 0)
po 10 I=1,600

CALL MAKES(TABLES,I,1,'@') (null string)

10 CONTINUE

Once this has been done, TABLES can be referenced by
Fortran and STRING/80 routines exactly as if it had been
defined by the compiler in the more traditional and
recommended method.

Using the logic of this example, we can find many uses
for this technique. AsS illustrated, high memory was used to .
store a table. Another example might be that of passing data
between programs without having to go to disk. The data can
now be passed via a TABLE that is physically located "above"
the highest position of the largest program in the
participating group (remember Fortran places your program
stack at the top of user RAM) . Another case 1is that of
referencing a specific location of a program already in
memory. And, with a little imagination, you can surely think
of many more.

44

The STRING/80 Bit USER MANUAL
5 — Some Advanced Programming Techniques

CP/M Calls from the Fortran Language

Two special routines have been included in the STRING/80
Bit to allow full use of the standard CP/M calls from the
Microsoft Fortran language. These routines are:

CPMS$ This routine is used to load the registers and pass
the parameters to the CP/M system.

LOCS$ This routine is used to locate the string address
and create a pointer to the address that can be
passed using the CPM$ routine.

Perhaps the easiest way to view the operation of these
two routines is to look at the source code of KILLS. KILLS
is written using Fortran, as are RENS, RESETS$, SELCTS$ and
LOOKS$, and utilizes the CP/M call(s) to accomplish it's
function. In the case of KILLS, the CP/M command is number
19 or 13Hex. The file control block (FCB) address is passed
in the DE-Register pair. The following is the total code for
the KILLS subroutine.

SUBROUTINE KILLS(AS)
INTEGER A,BC,DE,HL, DRV
BYTE FCBS$(35)

BYTE AS(1l), BS(32)
EQUIVALENCE (B$(1),FCB$(2))

CALL DEFD (FCBS)

CALL DEFD(BS)
DRV=NFORMS (B$,AS,1)
DE=LOCS$ (FCBS$)
FCBS$ (1) =DRV

BC=19

CALL CPMS$(A,BC,DE,HL)
RETURN

END

Perhaps the only unusual technique is that of defining
the same string space (FCB$) as both FCBS and B$ with the
equivalent statement. Everything else is straight forward
and to the point. This is done so NFORM$ places the
formatted file name in position 2 of the file control block.

45

ey

The STRING/80 Bit USER MANUAL
5 - Some Advanced Programming Techniques

Assembler Language use of the STRING/80 Bit Routines

As mentioned earlier, the STRING Bit routines can be
used by assembler, or any language that conforms to the
Microsoft Fortran convention of parameter passing. In the
DIRS routine included in the utility library, and as used in
the DEMO program, the STRING/80 Bit routine NFORMS$ is used to
format the file control block.

The source code below is a partial listing of the DIRS
routine, only that portion dealing with the use of the
routine NFORMS, For a complete look at the DIR$ routine
source code use LIST to display a copy of UTL80.ASM.

ENTRY IDIRS$,DIRS

~e

EXT NFORMS

IDIR$ is called from fortran by a call with one default
string passed as a parameter. This means that the HL-Reg
contains a pointer to the string address. We would like
to use the I=NFORM (A$,BS$,1) function to format the passed
string to our file control block (FCB). We can do this by
passing pointers to the NFORM$ function in a fortran like

= Se Ne Ne e Se Ve e e we

manner.
DIRS: XRA A ;ZERO A REGISTER
LXI D,FCB+1 ;THIS IS THE POINTER TO
; THE RECEIVING STRING (AS)
XCHG : PLACE PASSED POINTER IN SECOND POSITION,
; THE DE-REG, AND THE FIRST IN THE HL-REG.
LXI B,VALP ;THIS POINTS TO THE PASSED THIRD
; PARAMETER, THE PASSED INTEGER.
MOV M,A ;PLACE A ZERO (NULL DEFAULT STRING) MARKER

; IN OUR RECEIVING STRING (ie. AS).

We now look like a posible fortran like call. Remember the -
HL-Reg will return our function value, the drive number in
our case.

ws w8 ws “e ~o

CALL NFORM$;FILL OUR FCB WITH THE FILE NAME
~ MOV AL ;GET THE LOW VALUE BITS, THEY ARE ENOUGH
- STA FCB ;PLACE THE DRIVE REQUEST VALUE

The FCB name is now formed, we must leave a search instruction
for the first call. DIRS later sets this to a search next comman

e Ne “e weo

46

The STRING/80 Bit USER MANUAL
5 - Some Advanced Programming Techniques

MVI A,17 ;LOAD A SEARCH DIRECTORY COMMAND
STA COMMD ; SAVE FOR LATER USE
RET

This concludes the discussion on some ways in which you
can use the STRING/80 Bit routines to do more than the
obvious. From here on it is up to you to be creative and
reap the rewards accordingly. Best of luck; and remember,
don't be afraid to experiment; you'll enjoy the results for
years to come,

47

The STRING/80 Bit USER MANUAL

THIS PAGE INTENTIONALLY LEFT BLANK

48

The STRING/80 Bit USER MANUAL

THE REFERENCE MANUAL

CHAPTER 6

49

The STRING/80 Bit USER MANUAL
6 - The Reference Manual

Housekeeping Call Routines

VERSION (VER) This routine retrieves the current version and
copyright information on the STRING/80 Bit routines, and
returns it in string AS.

CALL VERS$(AS$,[N1,N2])

AS$=string
Nl=first dimension
N2=second dimension

DEFINE DEFAULT STRING (DEFD) This routine initializes the
named default string to a non-dimensional 80 character fixed

length string variable of length zero. (Places binary =zero
in first position)

CALL DEFD$(AS)

AS=data array variable

DEFINE STRING (DEFS) This routine initializes a non-default,
non-dimensional string variable.

CALL DEFS$(AS$,BS$,N1)

AS$=control string
B$=data array
Nl=length in bytes

DEFINE TABLE (DEFT) This routine initializes tables of
strings of one or more dimensions.

CALL DEFT$(A$,B$,N1,N2,N3)

AS$=control string
B$=data array
_Nl=length in bytes
N2=first dimension
N3=second dimension

50

The STRING/80 Bit USER MANUAL
6 - The Reference Manual

STRIP STRING This routine strips nonrelevant characters from
a string that has been read from the console or disk. All
trailing blanks are suppressed.

CALL STRIPS(AS$,[N1,N2])

AS=the string to be stripped
Nl=first dimension
N2=second dimension

String Conversion Call Routines

UPPER This routine converts all characters in the string to
upper case character, regardless of what they were prior to
execution.

CALL UPPERS(AS,[N1,N2],BS$,[N1,N2])

A$=first string, the string to be returned
BS=second string, the string to be converted
Nl=first dimension

N2=second dimension

LOWER This routine converts all characters in the string to
jower case characters, regardless of what they were prior to
execution,

CALL LOWERS(AS,[N1,N2],B$,[N1,N2])

AS=first string, the string to be retruned
BS=second string, the string to be converted
Nl=first dimension

N2=second dimension

COMMAND (CMD) This routine retrieves a copy of the CP/M
‘command' line from the operating system and puts it in AS.
CALL CMDS$(AS,[N1,N2])
AS=string in which to store command line

Nl=first dimension
N2=second dimension

51

The STRING/80 Bit USER MANUAL
6 - The Reference Manual

MAKE This routine makes the character string AS$ equal to the
character string BS.

CALL MAKES$(AS,[N1,N2],BS$,[N1,N2])

AS=first string, the string returned
B$=second string, the string passed
Nl=first dimension

N2=second dimension

MERGE This routine merges, Or concatenates, the character
string B$ to the end of the character string AS.

CALL MERGES(AS$,[N1,N2],BS$,[N1,N2])

AS=first string, the new string
B$=second string, the string to be added
Nl=first dimension

N2=second dimension

RIGHT This routine makes the character string AS$ equal to the
right N3 most number of characters of character string BS.

CALL RIGHT$(AS,[N1,N2],B$,[N1,N2],N3)

As$=first string, the new string
B$=second string, the string passed
Nl=first dimension

N2=second dimension

N3=number of characters

MIDDLE (MID) This routine makes the character string A$ equal
to the portion of B$ that starts in position N3 and continues
for N4 characters.

CALL MID$(A$,[N1,N2],B$,[N1,N2],N3,N4)

AS=first string, the new string
B$=second string, the string passed
Nl=first dimension

N2=second dimension

N3=starting character

N4=number of characters

52

The STRING/80 Bit USER MANUAL
6 — The Reference Manual

LEFT This routine makes character string AS$ equal to the left
N3 most number of characters of the character string BS.

CALL LEFT$(AS,[N1,N2],BS$,[N1,N2],N3)

AS$=first string, the new string
B$=second string, the string passed
Nl=first dimension

N2=second dimension

N3=number of characters

SWAP This routine swaps string AS$ for string B$ and visa
versa.

CALL SWAPS$(AS$,[N1,N2],BS,[N1,N2])

AS=first string
BS=second string
Nl=first dimension
N2=second dimension

String Handling Functions

INITIALIZE END OF STRING (EOS) This routine sets the end-of-
string (EOS) character to any desired character or symbol,
The only exclusions are that the EOS cannot be either a
binary 1, 2, or 3. Any other binary byte between 0 and 255
decimal is allowed. The system keyboard default is an at-
sign (@ a 040Hex, a 64 decimal). The value N1 is the end-of-
string character desired and Il is the value of the end-of-
string character immediately prior to being reset to Nl.

I1=IEOSS$(N1)
Nl=integer, set value

Il=integer, last value
(no string delimiter necessary).

53

The STRING/80 Bit USER MANUAL
6 — The Reference Manual

LENGTH (LEN) This routine finds the length of character
string A$. Note that TAB characters will be counted as ONE
(1) character if found in the string (not 8) as will
legitimate blanks and non-printable characters, such as the
belil-character., Il will contain the length upon return.

I1=LENS(AS$,[N1,N2])

AS$=string

Nl=first dimension
N2=second dimension
Il=returned integer length

IDENTICAL (IDEN) This routine compares two string. A -1 is
returned if AS$<B$, a 0 if equal, and a +1 if AS>BS.

I1=IDENS(AS, [N1,N2],B$,[N1,N2])

A$=first string

BS$=second string

Nl=first dimension
N2=second dimension
Il=returned integer value

MATCH This routine finds the first occurance of the string BS$
in character string A$, starting in character position N3,
and returns a zero (0) in Il if not found, or returns the
starting position of B$ (within AS$) in I1, if found.

I11=MATCHS (AS$, [N1,N2],B$,[N1,N2],N3)

A$=first string

BS$=second string

Nl=first dimension

N2=second dimension

N3=starting character

Il=returned integer position for start of match

54

The STRING/80 Bit USER MANUAL
6 - The Reference Manual

NUMERIC VALUE (NVAL) This routine finds the first numeric
value occuring after position N3 in B$ and stores it in AS.
A decimal point is placed in position 20. The numeric value
is centered around position 20 of A$. AS$ must be at least 40
bytes long (a default string of length 80 is recommended).
This function is intended to work in conjunction with DECODE.
AS$ can then be used with the FORTRAN function DECODE to
convert characters to numerics. Upon return from the
routine, Il contains the character position immediately
FOLLOWING the numeric value found in BS. The FORTRAN
function ENCODE may be used to convert numerics to characters
and place them in a byte array.

I1=NVALS$(AS$,[N1,N2],BS$,[N1,N2],N3)

AS$=first string, stored number as characters
B$=second string, the string to be scanned
Nl=first dimension

N2=second dimension

N3=starting character

Il=returned integer value, next position

File Handling Functions

LOOK This routine looks for the presence of a file with the
name as stored in the character string S$. If not found, a
minus one (-l1) is returned in Il, if found a zero (0) or
greater is returned to Il. The source for this routine is
included in the utility library. The number returned is the
directory entry number if it exists (0 to 63).

I1=LOOKS$ (S$)

SS=string, file name
Il=returned integer value

NAME FORM (NFORM) This routine formats a string into a
legitimate file name for the Fortran language in the CP/M
environment,

I1=NFORMS$ (AS$,BS$,N1)

As=first string, formated name returned
B$=second string, unformated name passed
Nl=integer, file name position in string B$
Il=integer, drive number

55

The STRING/80 Bit USER MANUAL
6 - The Reference Manual

File Handling Call Routines

CHAIN This routine passes control to the program name
specified in the string variable A$. The string AS$ should
look like a command string as typed from the console,

CALL CHAINS(AS,[N1,N21)

AS=first string, file name
Nl=first dimension
N2=second dimension

DIRECTORY (DIR) These routines provide the capability to
retrieve directory information. The IDIR$ and DIR$ routines
work together. The IDIR$ routine MUST be called first to
intialize the retrieval sequence. The CP/M call rules apply.
There must be no intervening disk I/O between subsequent DIRS
calls., A directory list for example would begin with the
IDIRS routine being passed a 12 character string
2?2?2?22222.22?, and the DIRS$ would then be called to retrieve
each entry and its identification. The string S$ as
recommended, should be a default string. If another type is
selected, it should be at least 12 characters in length,

CALL IDIRS(SS)
S$=file search (mask) string ('D:AAAAAAAA.BBB')

CALL DIRS$(S$,Nl1)
S$=string returned

Nl=integer, returned record values
(MUST be a variable)

56

The STRING/80 Bit USER MANUAL
6 - The Reference Manual

RENAME (REN) This routine renames a disk file. The string S§
is a string containing the command line as normally found in
the CP/M environment,i.e. NEW.TXT=OLD.TXT. This routine
uses the CALL CPM$ routine. The source code for this routine
is included in the utility library.

CALL RENS(SS$)

S$=assignment string
KILL This routine deletes, or kills, a disk file with the
name found in the character string S$. This routine used the
CALL CPM$ routine. The source code for this routine 1is
included in the utility library.

CALL KILLS(SS)

S$=assignment string
SELECT DRIVE (SELCT) This routine selects the drive specified
in N1,

CALL SELCTS$(N1)

Nl=drive number
RESET This routine does a system reset to reinitialize the
disk directory maps similiar to what takes place when a CTL-C
is entered from the console. This routine used the CALL CPMS
routine. The source code for this routine is included in the

utlility library.

CALL RESETS$

57

The STRING/ 80 Bit USER MANUAL
6 - The Reference Manual

System Call and Supporting Function

CPM This routine allows the FORTRAN user to utilize the
standard calls in the CP/M Operating System by following the
conventions specified in the pigital Research CP/M INTERFACE
MANUAL. Specific examples of how this command is used can be
found in Chapter 5, Some Advanced Programming Techniques.

CALL CPM$(P1,P2,P3,P4)

Pl=value placed in the A-register

P2=value placed in the BC-register
p3=value placed in the DE-register
pP4=value placed in the HL-register

LOCATION (LOC) This routine identifies the location of a
string and converts it to a pointer to be used by the CPMS$
routine.

11=LOCS(A$,[N1,N2])
AS=string
Nl=first dimension

N2=second dimension
Il=pointer value

58

The STRING/80 Bit USER MANUAL

APPENDIX

59

The STRING/80 Bit USER MANUAL
Appendix A - Included Software

Software Included On The STRING/80 Bit Distribution Disk

STR80.DOC

STR80.REL

UTL80 .FOR

UTL80 .ASM

UTL80.REL

DEMO.FOR

DEMO.COM

FORMAL, FOR

FORMAL.COM

LIST.FOR

LIST.COM

SERIES.FOR

SERIES,COM

SORT.FOR

The STRING/80 Bit distribution disk
documentation file listing the contents.

The STRING/80 Bit Library

The FORTRAN source code for selected library
routines, namely the CALL CPM enhancement

package.

The Assembler source code for the DIRS
routine. This routine is included as part of
the utility library.

The Utility Library.

The FORTRAN source code for the demonstration
monitor program,

The executable demonstration monitor program.

The FORTRAN source code for the reformat and
resequence program. This program is part of
the demonstration package.

The executable reformat and resequence
program, This program is part of the
demonstration package.

The FORTRAN source code for the file list
program, This program is part of the
demonstration package.

The executable file list program, This
program is part of the demonstrations

package,

The FORTRAN source code for the series
reporting program. This program is part of
the demonstration package.

The executable series reporting program. This
program is part of the demonstration package.

The FORTRAN source code for a simple sort
program, This program reads standard CP/M
text files and sequences it by individual
line. This program is part of the
demonstration package and uses file PRES.TXT

60

The STRING/80 Bit USER MANUAL
Appendix A - Included Software ;

SORT.COM

PRES.TXT

for demonstration purposes.

The executable sort program. This program is
part of the demonstration package.

This is a text file 1listing the U.S.
presidents in order of their term in office.
This file is used by SORT in the demonstration
package and will be converted to an
alphabetical list of presidents names.

61

The STRING/80 Bit USER MANUAL
Appendix B - External Labels

External Labels Referenced by The STRING/80 Bit Modules

The following is a list of external entry point names
that are referenced by some of The STRING/80 Bit library
modules. The names should be cautiously allocated as routine
names that will be used in conjunction with The STRING/80 Bit
package.

CHAINS CMD$ CPM$ DCODE$ DEFD$ DEFS$ DEFT$ DETS DIRS$ EOS1$
GET$ IEOSS$ IDENS$ ITRACE$ KILL$ LEFTS LEN$ LEN1$ LOC$ LOOKS
LOWERS MAKE$ MATCH$ MERGE$ MID$ MID1S$ M0O01l$ MO002$ MO03$
M0O04S$ M005$ NFORM$ NVALS$ POS50$ PUT$ RENS$ RESET$ RIGHTS
RITE2$ RITE3$ RO01$ R002$ RO03$ R004$ RO05$ RO06$ RO07S
RO08$ SELCT$ STRIPS$ SWAP$ TO0lS$ TO002$ T0O03$ TO004$ TOO05$
UPPER$ VERS

62

The STRING/80 Bit USER MANUAL
Appendix C - Quick Reference Guide

The STRING/80 BIT Command Quick Reference Guide

Housekeeping Call Routines

CALL VERS(AS,[N1,N2])

CALL DEFDS(AS)

CALL DEFSS$(AS$,BS$,N1)

CALL DEFTS$(AS$,BS$,N1,N2,N3)
CALL STRIPS(AS,[N1,N2])

String Conversion Call Routines

——— — . G G - T — o —_ T — g -~ —— - Yo" W W —

CALL UPPERS(AS,[N1,N2],BS,[N1,N2])
CALL LOWERS(AS,[N1,N2],BS,[N1,N21])
CALL CMDS$(AS,[N1,N2])

CALL MAKES(AS,[N1,N2],BS,[N1,N2])

CALL MERGES(AS,[N1,N2],BS,[N1,N2])
CALL RIGHTS$(AS,[N1,N2]1,BS,[N1,N2],N3)
CALL MIDS(AS,[N1,N2],BS,[N1,N2],N3,N4)
CALL LEFTS$(AS,[N1,N2],BS,[N1,N2],N3)
CALL SWAPS$(AS,[N1,N2],BS,[N1,N2])

String Handling Functions

I=IEOSS(P1)
I=LENS (AS$,[N1,N2])
I=NVALS(AS,[N1,N2] +B$, [N1,N2] ,N3)

File Handling Functions -

I=LOOKS$(SS$)
I=NFORMS (AS$,BS$,N1)

File Handling Call Routines

- T G — = — - G o o o S—__ e W G - - S~

CALL CHAINS(AS,[N1,N2])
CALL DIRS(SS$,N1)

CALL RENS(SS)

CALL KILLS$(SS)

CALL SELCTS$(N1)

CALL RESETS

e

63

The STRING/80 Bit USER MANUAL
Appendix C - Quick Reference Guide

System Call and Supporting Function

— . o~ —— i~ —— o~

CALL CPM$(A,BC,DE,HL)
I=LOC$ (AS$,[N1,N2])

- Fortran Source Code Included
+ - Assembler Source Code Included

AS,BS

N1,N2,N3,N4

Pl

S$

A,BC,DE,HL

are string names using the convention of a §
in the last position of the name as a reminder
that this is the name used when referencing
string variables,.

are numeric integers (1,2,3....n) that are
generally dimension subscripts of an array (of
strings). In several cases these represent
action codes, string termination values,
position values etc,

are either AS$-type string variable names or
Nl-type integer variable names as defined
above,

is a uniquely defined character string
variable consisting of multiple optional
parameters. This type of string is used to
exchange file parameter information, such as
the file assignment data as follows:
NEWNAME, TXT=OLDNAME,.TXT/L.

are integer variables representing the values

of the respective registers being passed to
CP/M.

64

The STRING/80 Bit USER MANUAL

Appendix D - Software Cross Reference

The Software Cross Reference Guide

VERS
DEFDS
DEFSS$

DEFTS$
STRIPS
UPPERS

LOWERS
CMD$
MAKES

MERGES
RIGHTS
MIDS

LEFTS
SWAPS
IEOSS

LENS
IDENS
MATCHS

NVALS
LOOKS$
NFORMS

CHAINS
DIRS
RENS$

KILLS
SELCTS
RESETS

CPM$
LOCS

LIST

X
X
X

FORMAL SERIES SORT

X
X

]

X X XXX X M X M MMM XX

65

X
X
X
X
X

o

XX XX

X
X

Ll

L

DEMO

X
X

T -

>x X

KX M X

FILE routines

The STRING/80 Bit USER MANUAL
Appendix E - User Comments Form

User Comments and/or Problem Reporting Form

The last page of this manual (The BUG Bit) is a
convenient form upon which you may place you comments or
criticisms. Should this form be missing, please feel free to
send us your comments anyway, to:

KEY BITS INC.
P. O. BOX 592293
MIAMI, FL 33159

66

The STRING/80 Bit USER MANUAL
INDEX

I NDE X

A

ACKNOWLEDGEMENTS, 1
Advanced Programming, 40
Alphabetic conversion, 55
Appendix A, 60

Appendix B, 62

Appendix C, 63

Appendix D, 65

Appendix E, 66

array sizes, 8

Assembler Language calls, 46

B
Byte Allocation within the Control String, 40

C

Calls from Assembler, 46

Chain to Calling Program Routine, 30
chain to next program, 56

CHAINS, 56, 62

Chaining Routine, 30

Change EOS Routine, 26

Check for Return Routine, 29

Check for Valid File Name Routine, 24
Clean up external string, 51

CMDS, 51, 62

Command Line, 51

Command Line Retrieval Routine, 23
Command syntax, 13

Compare for identical, 54

control string, 27

Control String Byte 1, 41

Control String Byte 2, 42

Control String Byte 3, 42

Control String Byte 4, 43

Control String Byte 5, 43

Control String Byte 6, 43

Control String Byte Map, 41

Control String Definition, 40
controlled string variable, 11, 21
Conventions, 8, 9

Convert alphabetic to numeric (nval), 55
Convert numeric to alphabetic (nval), 55
COPYRIGHT NOTICE, 1

cp/M Calls, 58

CP/M calls from Fortran, 45

CPMS$, 58, 62

Ctl-C function (reset), 57

I-1

The STRING/80 Bit USER MANUAL
INDEX

D

data string, 11

Data String Address, 42
Data String Length, 43
Data String Row Count, 43
Data String Type Designator, 41
DCODES, 62

default strings, 9, 10, 21
DEFDS, 11, 50, 62

define default string, 11, 50
define string, 12, 50
DEFINE TABLE, 50

define table variable, 11
defining string sizes, 8
DEFSS$, 12, 50, 62

DEFTS, 11, 50, 62

Delete a file (kill), 57
DEMO, 36

DEMO.COM, 60

DEMO.FOR, 60

Demonstration Programs, 36
DETS, 62

DIRS, 56, 62

DIRectory, 37, 56
DISCLAIMERS, 1

Display Directory, 56

Does file exist (look), 55
dollar sign symbol, 11

E

End of Program Routine, 28

End of String (EOS) Marker, 53

EOS, 26

EOS1$, 62

Erase a file (kill), 57

Exchange one string for another, 53
Extended Programming Techniques, 40
External Labels, 62

Extract character from the right, 52
Extract characters from the left, 53
Extract characters from the middle, 52

F

File Handling Call Routine, 4
File Handling Functions, 4

Find the -length of a string, 54
FORM FILE NAME, 55

FORMAL, 36

FORMAL.COM, 60

FORMAL.FOR, 60

Format CP/M file name, 55

The STRING/80 Bit USER MANUAL
INDEX

Format File Name Routine, 26
Fortran calls to CP/M, 45

G
General Conventions and Rules, 8

GETS, 62

H

HELP, 37

Housekeeping Call Routines, 2
Housekeeping Routine, 21

I

IDENS, 54, 62

IDENTICAL, 54

IEOSS, 53, 62

Included Software, 60

Initialize Default string, 50

Initialize multi-dimensional strings, 50
Initialize non-default string, 50
Introduction, 2

ITRACES, 62

K

KILL, 37

Kill an existing file, 57
KILLS, 57, 62

L

Left characters, 53

LEFTS, 53, 62

LENS, 54, 62

LEN1S, 62

Length of a string, 54

length of the control string, 12
LIST, 36

LIST Program Organization, 19
LIST Program Source Code, 31
LIST.COM, 60

LIST.FOR, 60

LOCS, 62

LOCATION, 58

LOOK, 55

Look for presents of a file, 55
LOOKS, 62

LOWER CASE, 51

LOWERS, 51, 62

M
MO01S$, 62
M002$, 62

I-3

The STRING/80 Bit USER MANUAL
INDEX

M003S, 62

M004$, 62

M005S$, 62

Make one string from another, 52
MAKES, 52, 62

Match two strings, 54
MATCHS, 54, 62

Merge, 52

MERGES, 52, 62

MIDS, 52, 62

MID1S, 62

Middle characters, 52

N

NFORMS, 55, 62

Numeric conversions, 55
NVALS, 55, 62

o)
Open File Routine, 26

P

POS50$, 62

PRES.TXT, 36, 61

Print a Read Error Message Routine, 28
Problem Reporting, 66

Program Identification Print Routine, 22
PROGRAMMING - a case study using the STRING/80 bit, 18
Programming Subtles, 40

Programming with the STRING/80 bit, 18
Prompt Operator for File Name Routine, 25
Psuedo Ctl-C (reset), 57

PUTS, 62

Q
Quick Reference Summary, 63

R

RO01S, 62

R002S, 62

R003S, 62

R0O04S, 62

R0O05S, 62

R0O06S, 62

RO07S, 62

R0O08S, 62

Read a Record from the File Routine, 27
Read using Control Strings, 27
Reference Manual, 50

RENS, 57, 62

REName, 37

I-4

The STRING/80 Bit USER MANUAL
INDEX

Renaming a file, 57

Reset disk maps, 57

RESETS, 57, 62

Return to Operating System Routine, 30
Right Characters, 52

RIGHTS, 52, 62

RITE2S, 62

RITE3S, 62

Rules, 8

rules and conventions, 8

S

Scan a string for a number (nval), 55
Scan for the presents of a string, 54
SELCTS, 57, 62

SELECT DRIVE, 57

SERIES, 36

SERIES.COM, 60

SERIES.FOR, 60

shift to lower case, 51

shift to upper case, 51

Software Cross Reference, 65

Software Included On The Distribution Disk,
SORT, 36

SORT.COM, 61

SORT.FOR, 60

Source Code for LIST, 31

STR80.DOC, 60

STR80.REL, 60

String Conversion Call Routines, 3
String Handling Functions, 3

String Length, 54

String size, 54

string sizes, 8

String variable lengths, 10

string variable name size, 9

String variable names, 9

String Variable Types, 10

STRING/80 Bit calls from Assembler, 46
STRIP STRING, 51

STRIPS, 51, 62

SWAP STRINGS, 53

SWAPS, 53, 62

System Call and Supporting Function, 5

T

TO01lS, 62
T002S, 62
T003S, 62
T004S, 62
TO05S, 62

I-5

60

The STRING/80 Bit USER MANUAL
INDEX

TABLE OF CONTENTS, 1
the LIST program tutorial, 18
TRADEMARKS, 1

U

UPPER CASE, 51

UPPERS, 51, 62

User Comments Form, 66
Using the CP/M Calls, 58
UTL80.ASM, 60

UTL80 .FOR, 60

UTL80.REL, 60

A%

valid characters in a string, 8
VERS$, 50, 62

VERSION, 50

W

Welcome, 2

Write a Record to the Screen Routine, 27
Write using Control Strings, 27

I-6

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf

